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Abstract

The Triple Deck model is a classical high order boundary layer model that has been proposed to
describe flow regimes where the Prandtl theory is expected to fail. At first sight the model appears to lose
two derivatives through the pressure-displacement relation which links pressure to the tangential slip. In
order to overcome this, we split the Triple Deck system into two coupled equations: a Prandtl type system
on H and a Benjamin-Ono type equation on R. This splitting enables us to extract a crucial leading order
cancellation at the top of the lower deck. We develop a functional framework to subsequently extend
this cancellation into the interior of the lower deck, which enables us to prove the local well-posedness
of the model in tangentially real analytic spaces. August 31, 2019
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1 Introduction

A fundamental challenge in fluid mechanics is to describe the vanishing viscosity limit (ν → 0) of the
Navier-Stokes equations on domains with a solid boundary. In this paper we consider the fluid domain to
be the two-dimensional half space H. The main difficulty is due to the incompatibility between the no-slip
boundary condition for the Navier-Stokes velocity field (Uν |∂Ω = 0) and the slip boundary condition for
the Euler velocity field (UE |∂Ω · (0,−1) = 0), which makes it difficult to obtain uniform in ν estimates for
norms of Uν which are stronger than L∞t L

2
x.

1.1 Historical Overview

In order to rectify this mismatch, Prandtl [62] proposed the existence of a thin, O(ν
1
2 ), fluid layer near the

boundary through which the Navier-Stokes velocity field transitions from an outer Euler flow in the bulk, to
∗Department of Mathematics, Princeton University. ssiyer@math.princeton.edu.
†Courant Institute for Mathematical Sciences, New York University. vicol@cims.nyu.edu.

1

mailto:ssiyer@math.princeton.edu
mailto:vicol@cims.nyu.edu


the no-slip condition on the solid wall. Mathematically, this corresponds to a formal asymptotic expansion
of the viscous incompressible flow Uν as

Uν(t, x, y) = UE(t, x, y) + UBL(t, x,
y√
ν

) +O(ν
1
2 ) (1.1)

where UE is the Euler flow typically assumed to be known a-priori, and UBL is known as the Prandtl
boundary layer corrector. The boundary layer unknown uP = [uP , vP ] := UBL + UE |Y=0 is a function
of the tangential variable x and the normal fast variable Ȳ = y√

ν
, and is governed by the famous Prandtl

boundary layer equations

∂tu
P + uP∂xu

P + vP∂Ȳ u
P − ∂2

Ȳ u
P = −∂xPE(t, x, 0), (1.2a)

∂xu
P + ∂Ȳ v

P = 0, (1.2b)

[uP , vP ]|Ȳ=0 = 0, uP |Ȳ→0 = uE(t, x, 0), (1.2c)

posed in the half space H = {(x, Ȳ ) : Ȳ > 0}. The system treats the Euler pressure trace PE and the Euler
wall slip velocity uE as known, and is supplemented with an initial condition uP |t=0 = uP0 (x, Ȳ ).

A first step towards establishing the validity or the invalidity of the Prandtl expansion (1.1) is a detailed
understanding of the Prandtl system (1.2) itself. The well- and ill-posedness of the Prandtl equations has a
long history of which we only provide a very brief summary (see the reviews [2, 52] for further references).
Under the monotonicity assumption ∂yuP |t=0 > 0, Oleinik [59, 60] obtained global in time, regular solu-
tions on the domain [0, L] × R+ for small L, and local in time regular solutions for arbitrary finite L. The
aforementioned results rely on the Crocco transform, which is available from the monotonicity hypothesis.
See also the global in time existence result of weak solutions obtained in [75] under the additional assump-
tion of a favorable pressure gradient ∂xPE(t, x) ≤ 0. Without using the Crocco transform, local existence
was established in the works of [38, 53] using energy methods and [1] using a Nash-Moser iteration. When
the monotonicity assumption is removed, local well-posedness results for (1.2) were first established assum-
ing tangential real analyticity of the initial datum [39, 50, 63] (see also [36] for an almost global existence
result for small datum), and more recently assuming only tangential Gevrey-class regularity [23, 47]. The
sharp Gevrey-2 result without any structural assumptions was recently established in [13]. On the other hand,
in Sobolev spaces without monotonicity, the Prandtl equations are ill-posed, as was shown in [20,25,34,49].

Concerning the validity of Prandtl ansatz (1.1), in the unsteady setting the expansion has been verified
locally in time assuming the initial datum is real-analytic [58, 64, 74], under the assumption that the initial
vorticity is supported away from the boundary [16, 17, 51], in the Gevrey setting for initial data close to
certain stable shear flows [22], or assuming that the initial vorticity is analytic only near the boundary of
the half space [41]. In contrast, for initial datum in Sobolev spaces the ansatz (1.1) has been proven to be
invalid [27–30], with the recent result [31] proving that the expansion is not valid in the L∞ topology.

A notable success of the Prandtl theory is in the steady regime, where it was in fact derived in [62].
For steady flows in (1.2a), the initial datum (1.2c) is typically replaced by in-flow data at {x = 0}, which
represents for instance the leading edge of a flat plate. Shortly after Prandtl’s original work, Blasius [3]
discovered the self-similar solution to the steady Prandtl equations

[uP , vP ] := [f ′(η),
1√
x
{ηf ′(η)− f(η)}], where η =

y√
x
, (1.3a)

ff ′′ + f ′′′ = 0, f ′(0) = 0, f ′(∞) = 1,
f(η)

η

η→∞−−−→ 1. (1.3b)

Experiments have confirmed the accuracy of (1.1) for steady flow over a plate to a remarkable degree of
precision [65], especially for the Blasius self-similar boundary layers (1.3). Mathematically, in the steady
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case, the ansatz has been recently verified in [21] for shear boundary layer flows which arise from forced
Navier-Stokes equations, and [32, 33] for a general class of x-dependent boundary layer flows, which arise
from homogeneous Navier-Stokes flows, and which include the Blasius solution. See also [35] for related
results on a moving plate.

In spite of the success of the Prandtl theory in the steady regime, the phenomenon of boundary layer
separation remains mostly unsolved, both in the steady and the unsteady regimes [10, 65, 68, 71]. In the
unsteady case, the van Dommelen and Shen singularity [73], which was recently proven to occur rigor-
ously [8, 9, 15, 42] may be seen as as a diagnostic of separation [19]: an adverse Euler pressure gradient
causes a finite time singularity in the displacement thickness, and so the flow is detached from the flat plate.
The vorticity generated at the boundary is ejected into the bulk of the flow where it rolls up and is considered
as one of the factors responsible for the anomalous dissipation of energy. In the steady case the detachment
of the boundary layer from the flat plate was predicted by Goldstein [26] and has been proven recently
in [12]. This breakdown of the assumptions on which Prandtl equations are derived signals the limitations
of the classical Prandtl boundary layer theory, and new, higher order, theories are required in order to model
the inviscid-boundary layer coupling near points of separation [7, 10].

Two well-known higher order models are the Prescribed Displacement Thickness (PDT) model [6] and
the Interactive Boundary Layer (IBL) model [5, 43, 45]. For instance, in the IBL model the Euler flow and
boundary layer flow are strongly coupled through a boundary condition of the type

vE |y=0 =
√
ν∂x{κuE |y=0}, κ :=

∫
R+

(
1− uP

uE |Y=0

)
dy, uP |y→∞ = uE(t, x, 0). (1.4)

This model has been studied rigorously in [11], where it is shown to be linearly ill-posed even in analytic
spaces. Similar dramatic ill-posedness results are shown in [11] to hold for the PDT model. These severe
instabilities in the PDT and IBL higher order boundary layer models lead us to consider the Triple Deck
system, which is the main purpose of this paper.

1.2 Triple Deck equations

In order to describe the Triple Deck system, it is useful to keep in mind the below diagram, taken from
[67, pp. 220, Figure 4], which describes the steady flow past a finite plate whose boundary is at {y = 0},
with a leading edge to the left and a trailing in the bottom center of the figure:

Here R denotes the Reynolds number. Near the leading edge of the plate, the flow is accurately described
by the Prandtl theory, and in particular by the self-similar Blasius profile (1.3). The trailing edge of the plate
creates a disturbance, and the flow undergoes the so-called Goldstein singularity. The triple-deck theory
describes specifically the transition from the Blasius profile on the left of the plate to the Goldstein near
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which occurs after the trailing edge of the plate. This was formalized in the works of [54, 57, 69, 70] who
proposed the three deck structure, and introduce the horizontal O(R−

5
8 ) and vertical O(R−

5
8 ),O(R−

3
8 )

length scales that are not present in the Prandtl theory. The notion of introducing different scales at the
point of boundary layer separation was introduced earlier in [48]. We refer the reader to the works [37, 44,
55, 56, 67, 72] for an overview of the ideas and history behind the Triple Deck model, and include a formal
derivation of the unsteady triple deck model (cf. system (1.5)–(1.7) below) in Appendix A of this paper.

Specifically, see e.g. [67, Section 3], [72, Section 2] or [14, Section 4], we consider the unsteady Triple
Deck system posed in the half space H = {(x, y) : y > 0}, which is given by

∂tu+ u∂xu+ v∂yu = −∂xp+ ∂2
yu (1.5a)

∂xu+ ∂yv = 0 (1.5b)

∂yp = 0 (1.5c)

supplemented with the boundary conditions

u(x, 0, t) = v(x, 0, t) = 0, (1.6a)

u(x, y, t)− y → 0 as x→ −∞ (1.6b)

u(x, y, t)− y → A(x, t) as y → +∞ (1.6c)

and with the pressure-displacement relation

p(x, t) =
1

π
p.v.

∫
R

(∂xA)(x̄, t)

x− x̄
dx̄ = |∂x|A(x, t) (1.7)

characteristic of incompressible flows. Note that other pressure-displacement relations may be specified in
the case of supersonic and jet-like compressible boundary layer flows (see e.g. [72, Equation (2.4a-e)]). The
system (1.5)–(1.7) is supplemented with a compatible initial condition

u|t=0 = u0 (1.8)

on H. Note that while equations (1.5) look the same as the classical Prandtl equations, the main difference
is that p is not given in advance, and neither is the value of u at the top of the lower deck. Instead, these are
coupled by the relation (1.7) above.

The Triple Deck and the IBL models share the common feature that u, respectively uP , converge as
y → ∞ to a function that is not given a-priori, and must determined through the evolution. However, in
contrast to (1.4) in which uP |y→∞ is governed ultimately by the Euler equations, the behavior of u|y→∞
in (1.5) is governed by the Benjamin-Ono equations, as is shown in Section 2.1. It has been alluded to
in [11] (see also [14, 66]) that the Triple Deck has favorable stability features relative to the IBL model, but
to our knowledge this has not been studied mathematically until the present work. In fact, it is not known
whether the system (1.5)–(1.8) is well-posed, even locally in time.

The unsteady Triple Deck model poses significant mathematical difficulties, because the map u 7→ ∂xp
loses two derivatives in x (in view of (1.7)) and half a derivative in y (due to the restriction to the boundary
{y =∞}). The two derivative loss in x seems to preclude the well-posedness of the system, even in spaces
of analytic functions. Our goal is to show that due to a certain cancellation in L2

x, the loss is only of one
derivative in x, and hence the system admits local in time real-analytic solutions with respect to x, which
are Sobolev smooth in y. Our main result is Theorem 1.1 below, which may be stated informally as: assume
that A0(x) is real-analytic and that the function u0(x, y) − y − A0(x) is tangentially real-analytic and lies
in a weighted L2 space with respect to the normal variable; then there exits locally in time a unique solution
in this class. We discuss the main difficulties and the main ideas of the proof in Section 1.3.3 below. Prior
to this, we introduce the functional setting of the paper and the decomposition (1.14)–(1.15) of the solution.
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1.3 Main result and functional setting

1.3.1 Analytic norms

In order to measure decay in y, we introduce the Gaussian y-weight given by

ρ(y, t) = e
y2

8(1+t/ε) . (1.9)

Note that ρ does not depend on x. The parameter, ε, appearing in (1.9) will be selected small, based only
on the initial datum, according to the relation (3.25a). The time scale over which we prove existence will
be, without loss of generality, restricted to t ∈ [0, T∗], where T∗ ≤ ε, so that in particular the quotient t/ε
appearing in the weight above is bounded. It would be interesting to determine whether one can relax the
growth rate as y →∞ of ρ, for instance following by following the strategy of [13], or that of [39].

We denote the Fourier transform a function f in the x-variable only, at frequency ξ ∈ R, as fξ = fξ(y, t).
Since f is real-valued, we automatically have that f−ξ = fξ. For τ = τ(t) > 0, r > 2, and a function
f(x, y, t) we use Plancherel to define

‖f‖2τ,r =
∥∥∥ρ eτ |∂x|f∥∥∥2

Hr
xL

2
y

=

∫
R

∫ ∞
0

ρ2(y) |fξ(y)|2 e2τ |ξ|〈ξ〉2r dy dξ (1.10)

where 〈ξ〉2 = 1 + |ξ|2, and we have suppressed the time dependence of τ, ρ, and fξ. Associated to this
norm, it is convenient to also define the inner product

〈f, g〉τ,r =

∫
R

∫ ∞
0

ρ2(y)fξ(y)gξ(y)e2τ |ξ|〈ξ〉2r dy dξ

where the time dependence is suppressed. The idea to use real-analytic norms of the type (1.10) goes back
to the work of Foias-Temam [18] in the context of the Navier-Stokes equations, and to [46] in the context of
the Euler equations. See also [4, 40, 61] and references therein.

Notice that by definition of the ‖·‖τ,r norm, we have the identity

1

2

d

dt
‖f‖2τ,r + (−τ̇)

∥∥∥|∂x|1/2f∥∥∥2

τ,r
=

∫
R

(
1

2

d

dt
‖ρ fξ‖2L2

y([0,∞))

)
e2τ |ξ|〈ξ〉2r dξ

= 〈∂tf + f∂t(log ρ), f〉τ,r . (1.11)

Therefore, a decrease in the analyticity radius yields a |∂x|1/2-dissipative term.
We introduce similar analytic norms for functions g(x, t), which are independent of y. Here, we let

‖g‖2τ̃,r =
∥∥∥eτ |∂x|g∥∥∥

Hr
x

=

∫
R
|gξ|2e2τ |ξ|〈ξ〉2r dξ (1.12)

with associated inner product

〈f, g〉τ̃,r =

∫
R
fξgξe

2τ |ξ|〈ξ〉2r dξ .

As in (1.11), we have

1

2

d

dt
‖g‖2τ̃,r + (−τ̇)

∥∥∥|∂x|1/2g∥∥∥2

τ̃,r
=

∫
R

(
1

2

d

dt
|gξ|2

)
e2τ |ξ|〈ξ〉2r = 〈∂tg, g〉τ̃,r . (1.13)

Having defined the basic norms, we turn to the definition of the total norms used in this paper and the
corresponding unknowns that we measure using these norms.
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1.3.2 Representation of the solution and the total energy

We shall work with the following decomposition of the solution u(x, y, t) of (1.5)–(1.6). We write

u(x, y, t) = y + w(x, y, t) (1.14)

where the function w(x, y, t) is defined in terms of its tangential (i.e., with respect to x) Fourier transform
coefficients, wξ(y, t) =

∫
Rw(x, y, t)e−ixξdx, given by

wξ(y, t) = w̄ξ(y, t) +Aξ(t)θξ(y, t) . (1.15)

The Gaussian weight function θξ(y, t) is defined explicitly in (2.11) below. The coefficients Aξ(t) are
nothing but the Fourier coefficients in x of the function A(x, t) = limy→∞w(x, y, t). In Section 2.1 we
show that A obeys a forced Benjamin-Ono equation, cf. (2.6), which arises as a compatibility equation for
(1.5)–(1.6). On the other hand, the main unknowns wξ(y, t) are shown in Section 2.2 to solve an evolution
equation, cf. (2.9)–(2.10), which has a very similar structure to the classical Prandtl system, with the addition
of certain singular coupling terms to the evolution for A. The point is that the original function u may be
reconstructed explicitly from knowledge of the Fourier coefficients w̄ξ andAξ. Accordingly, our total norms
measure the analytic regularity of w̄ and A.

Throughout the paper fix a value for r > 2 and a smooth cutoff function χ(y) approximating 1{y≥2}
(defined in (3.11) below). For a function τ(t) > 0 to be defined later, for a parameter δ > 1 to be chosen
precisely later, and with the norms ‖·‖τ,r and ‖·‖τ̃,r defined in (1.10) respectively (1.12), we let

‖(w̄, A)‖Xτ = ‖w̄(t)‖τ(t),r +
1

δ
‖χ∂yw̄‖τ(t),r−1/2 + ‖A(t)‖

τ̃(t),r
(1.16a)

‖(w̄, A)‖Yτ =
∥∥∥|∂x|1/2 w̄(t)

∥∥∥
τ(t),r

+
1

δ

∥∥∥χ |∂x|1/2 ∂yw̄∥∥∥
τ(t),r−1/2

+
∥∥∥|∂x|1/2A(t)

∥∥∥
τ̃(t),r

(1.16b)

‖w̄‖Zτ = ‖∂yw̄(t)‖τ(t),r +
1

δ
‖χ∂yyw̄‖τ(t),r−1/2 (1.16c)

‖w̄‖Hτ = ‖yw̄(t)‖τ(t),r +
1

δ
‖yχ∂yw̄‖τ(t),r−1/2 . (1.16d)

The Xτ norm is the main analytic-in-x and weighted L2-in-y norm used in this paper. The Yτ norm quanti-
fies dissipation in the x variable due to a shrinking analyticity radius, the Zτ norm quantifies dissipation in
the y variable due to the ∂yy terms present in the equation, while the Hτ norm encodes a gain of a y weight
which is important due to the unboundedness of the domain [0,∞). Associated to these norms we define
the total analytic energy via

E(T ) = sup
t∈[0,T ]

‖(w̄, A)‖2Xτ(t) +

∫ T

0
‖(w̄, A)‖2Yτ dt+

1

16

∫ T

0
‖w̄‖2Zτ(t) dt+

1

64ε

∫ T

0
‖w̄‖2Hτ(t) dt. (1.17)

1.3.3 Main Theorem and Overview of Proof

We are now ready to state the main result.

Theorem 1.1 (Main Theorem). Fix an initial radius of analyticity τ0 > 0, and any r > 2, where r is the
analytic weight parameter appearing in (1.10). We decompose the initial data in the following form, written
on the Fourier side in the tangential variable

u
(0)
ξ (y) = y + θξ(y, 0)A(0)(ξ) + w̄

(0)
ξ (y) ,
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where θξ is defined in (2.11). Assume that w̄(0) and A(0) satisfy

E0 := ‖(w̄(0), A(0))‖X10τ0
<∞,

where the analytic energy is defined in (1.17). Then there exists a T∗ > 0 depending on τ0, r, E0, and
there exists a unique solution (w̄, A) to the coupled system (2.9), (2.14) with initial datum (w̄, A)|t=0 =
(w̄(0), A(0)) such that the total analytic energy E(t) is defined (1.17) is bounded as

sup
t∈[0,T∗]

E(t) ≤ 2E0 .

Equivalently, this defines a unique tangentially analytic solution

uξ = y + θξ(t, y)Aξ(t) + w̄ξ(t, y)

to the original system (1.5)–(1.7).

The central difficulty towards establishing Theorem 1.1 is the apparent loss of two x-derivatives in
the coupled equations (1.5a) and (1.7). Indeed, replacing −∂xp on the right-hand side of (1.5a) with
∂x|∂x|A(x, t) according to (1.7), and subsequently replacing A with u(x, y) − y|y→∞, we see that, in
terms of a formal derivative count we have

∂tu+ u∂xu+ v∂yu = −∂x|∂x|u(x,∞) . (1.18)

This loss of two x derivatives precludes the well-posedness of the system even in analytic spaces. Our
starting point is the observation of skew-adjointedness of the loss term on the right-hand side of (1.18).
Indeed, for any smooth decaying function g(x) one has∫

R
g ∂x|∂x|g = 0. (1.19)

The cancellation (1.19) holds because we have |∂x| = −H∂x, where H is the Hilbert transform, and both
H and ∂x are skew-adjoint operators on L2(R).

This motivates our main reformulation of the system and the extraction of the unknowns we analyze.
First, we notice that according to (1.6c), u grows like y as y → ∞, while ∂xu = −∂yv converges to
∂xA(t, x), a bounded function as y → ∞. Hence v = −Iy[∂xu] also grows like y at ∞. Here and
throughout the paper we write

Iy[f ] =

∫ y

0
f(y′) dy′ . (1.20)

We are thus led to introduce the expansion of v at∞:

v = yv1(t, x) + v0(t, x) +O(y−1) as y →∞.

The coefficient v0(t, x) will play a crucial role in the analysis, and is given by the nonlocal integral I∞[∂xu−
∂xA]. We thus reinterpret (1.5) as giving three relations simultaneously, corresponding to the orders of
growth as y → ∞. First, collecting the contributions from (1.5a) which are O(y) (arising from the terms
u∂xu and v∂yu), we obtain the asymptotic information that v1 = −∂xA. Second, we collect the terms which
contribute O(1) terms at y =∞. This yields a forced Benjamin-Ono equation for the unknown A(t, x):

∂tA+A∂xA+ ∂x|∂x|A = −v0 on R. (1.21)
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The cancellation alluded to earlier in (1.19) is now readily apparent upon computing the inner-product of A
against the Benjamin-Ono equation.

Having extracted the O(y) and O(1) contributions, the third step is to extract the functions in (1.5a)
which decay as y → ∞. The relevant unknown, w̄, is then a homogenized version of u, and it obeys a
Prandtl type equation (see (2.9a) below). This procedure gives rise to the start of our analysis: we analyze
simultaneously a Benjamin-Ono equation for A, forced by v0 = v0(w̄), as well as a Prandtl type equation
for w̄, forced by A related quantities. Summarizing, the simultaneous system of equations we extract are
(leaving F an unspecified forcing term for now)

∂tA+A∂xA+ ∂x|∂x|A = −v0(w̄) on R (Benjamin-Ono), (1.22a)

∂tw̄ − ∂2
yw̄ + y∂xw̄ = F (w̄, A) on H (Prandtl-type) . (1.22b)

The cancellation (1.19) applies for the quantity A, which describes u at y = ∞, and thus (1.19) should
be interpreted as solving the derivative-loss problem at y = ∞. We now must continue exploiting this
cancellation for values of y < ∞. Indeed, the two-derivative loss is still lurking for finite y through the
forcing term in (1.22b). Specifically, the reader should consult Bξ(w̄, A), defined in (2.15), and in particular
the most singular contributions arise from the ∂tAξ term, which in turn create a iξ|ξ|Aξ contribution, again
yielding a two-derivative loss. Our observation is that such a term is accompanied by a factor of (1−θξ). By
selecting the lift function θξ in a frequency-dependent manner, we are able to gain back 〈∂x〉3/2. The idea of
tangential-frequency-dependent boundary layer lifts was also successfully used in [24] in the contest of the
hydrostatic Navier Stokes equations. For us, the selection of a ξ-dependent lift, coupled with Hardy-type
inequalities with the homogeneous weights of y enables us to gain back enough regularity near {y = 0}.

A further difficulty that arises in our analysis is the loss of one y-weight. This occurs due to the non-local
integral in (2.10c), which forces the w̄ evolution. In order to handle the loss of a y weight, we control the
quantity y∂yw̄ in L2, which is seen in the specification of the ‖·‖Hτ in (1.16d). To control this component of
the Hτ norm, we in turn need to commute the vector-field y dy with the Prandtl system, which necessitates
an analysis of the vorticity equation that governs the evolution of ∂yw̄. To successfully analyze the vorticity
equation, we capitalize on two essential features. First, we only require this enhanced vector-field for values
of y ≥ 1, so we do not see the boundary effect of the vorticity. Second, we can control the y dy in a weaker
norm in terms of x regularity, which is the reason that the second terms in (1.16c) and (1.16d) are measured
on the Sobolev scale r − 1/2. This type of lagging norm structure is essential for our scheme of estimates
to close, and in particular prevents a further loss of y-weight in the vorticity equation.

Remark 1.2 (Notation). We use heavily the notation . to suppress universal constants. It is important to
emphasize that these universal constants are independent of small values of t, ε, δ, where ε is the weight
parameter in (1.9), and δ is the parameter appearing in our norms, (1.16a)–(1.16d).

2 The Prandtl-Benjamin-Ono splitting

2.1 Benjamin-Ono evolution for A

We need to understand the asymptotic behavior at y =∞ a bit more carefully. First, from (1.6) we obtain

u ∼ y +A(x, t), ∂xu→ ∂xA, ∂tu→ ∂tA, ∂yu→ 1, as y →∞.

The function v(x, y, t) = −Iy[∂xu](x, t) = −
∫ y

0 ∂xu(x, z, t)dz is expected to grow like y at∞, so we let

v ∼ v0(x, t) + v1(x, t)y as y →∞. (2.1)
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We now evaluate the original equation (1.5a) at y =∞ and use the above information to obtain

∂tA+ (y +A)∂xA+ (v0 + v1y) + ∂x|∂x|A = 0. (2.2)

Due to the super-exponential weights in y, ρ(t, y), appearing in our norm (1.10), we guarantee that the
remaining terms in (1.5a) vanish sufficiently rapidly as y → ∞ so as to not contribute towards (2.2). From
here, we extract two equations by matching the orders of y for y →∞:

∂xA+ v1 = 0, (2.3a)

∂tA(x, t) +A∂xA+ v0 + ∂x|∂x|A = 0. (2.3b)

We now compute the function v0 in a different fashion:

v = −Iy[∂xu] = −Iy
[
(∂xu− ∂xA) + ∂xA

]
= −y∂xA− Iy[∂xu− ∂xA]. (2.4)

Here we use the notation in (1.20) for Iy[·]. From (2.1) and (2.4) we deduce that v1 = −Ax and that

v0(x, t) = −I∞[∂xu(x, y, t)− ∂xA(x, t)] . (2.5)

Thus, v0 can be expressed in terms of u and A. To emphasize this, we will write v0 = v0(u,A). Note that
we need to understand u (or ∂xu) for all y in order to understand v0 (it is nonlocal). Inserting back into
(2.3b), we obtain the evolution equation for A:

∂tA+A∂xA+ ∂x|∂x|A = −v0(u,A) for x ∈ R. (2.6)

2.2 Prandtl-type evolution for w̄

The first step towards homogenizing the boundary conditions for u in the equation (1.5a) is to remove the
linear profile y and introduce the unknown

w = u− y

so that (1.6a)–(1.6c) yield

w|y=0 = w|x=−∞ = w|x=∞ = 0, w|y→∞ = A(x, t).

We do not need to change v here, as it is given by −Iy(∂xu) = −Iy(∂xw). It follows that the evolution
equation for w is

∂tw + w∂xw + (y∂xw + v) + v∂yw − ∂2
yw + ∂x|∂x|A(x, t) = 0.

Summarizing, the unknowns w and v take the place of the usual Prandtl unknowns, and the equation obeyed
by w is nothing but the usual Prandtl system with a few extra linear terms

∂tw − ∂yyw + w∂xw + v∂yw + (y∂xw + v) + ∂x|∂x|A = 0, (2.7a)

w|y=0 = w|x=−∞ = w|x=+∞ = 0, w|y=∞ = A(x, t), (2.7b)

∂xw + ∂yv = 0, v|y=0 = 0, ⇒ v = −Iy[∂xw], (2.7c)

The system (2.7) is of course coupled to the evolution equation for A given in (2.6).
In order to analyze the system (2.7), it is convenient to homogenize the boundary condition of w as

y → ∞. For this purpose we introduce a tangential frequency dependent lift of the normal boundary
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condition, so that we need to write the system obeyed by the Fourier transform in the x variable of (2.7a)–
(2.7c). This yields

∂twξ − ∂yywξ + (w∂xw + v∂yw)ξ + iξ(ywξ − Iy[wξ]) + iξ|ξ|Aξ = 0,

wξ|y=0 = 0, wξ|y→∞ = Aξ,

iξwξ + ∂yvξ = 0, vξ|y=0 = 0⇒ vξ = −iξIy[wξ].

For each ξ ∈ R we introduce a lift function θξ (given explicitly in (2.11) below) and define new unknowns,

w̄ξ := wξ(y, t)−Aξ(t)θξ(y, t)
v̄ξ := vξ + iξAξIy[θξ] .

We derive from (2.7) the evolution for w̄ξ, which reads

∂tw̄ξ − ∂yyw̄ξ + iξyw̄ξ +Nξ(w̄, w̄) + Lξ(w̄, A) +Mξ(w̄, A) + Bξ(w̄, A) = 0, (2.9a)

v̄ξ = −iξIy[w̄ξ], (2.9b)

w̄ξ|y=0 = w̄ξ|y→∞ = 0, (2.9c)

where in (2.9a) above we have defined

Nξ(w̄, w̄) := i

∫
R

(
w̄η(ξ − η)w̄ξ−η − ηIy[w̄η]∂yw̄ξ−η

)
dη (2.10a)

Lξ(w̄, A) := i

∫
R

(
w̄η(ξ − η)Aξ−ηθξ−η +Aηθη(ξ − η)w̄ξ−η − ηIy[w̄η]Aξ−η∂yθξ−η

)
dη (2.10b)

Mξ(w̄, A) := −i
∫

R
ηAηIy[θη]∂yw̄ξ−η dη (2.10c)

Bξ(w̄, A) := Aξ(∂t − ∂yy)θξ + (θξ − 1) ∂tAξ + (∂tAξ + iξ|ξ|Aξ) + iξ
(
Aξ (yθξ − Iy[θξ])− Iy[w̄ξ]

)
+ i

∫
R

(
Aηθη(ξ − η)Aξ−ηθξ−η − ηAηIy[θη]Aξ−η∂yθξ−η

)
dη . (2.10d)

At this stage, we make the following choice for the lift function

θξ(y, t) = 1− e−
y2〈ξ〉2

2(1+t/ε) , (2.11)

where ε > 0 is a parameter to be chosen later. We emphasize here that θξ(y, 0) does not depend on ε, which
is crucial for the proof. Informally, ε will be selected small relative to universal constants, and relative to the
size of the initial data (which is independent of ε). The time of existence T∗ will be selected small relative
to ε and in particular we restrict ourselves to T∗ ≤ ε, so that the quotient t/ε is always bounded by 1.

It is also useful to denote

cθ,ξ(t) := I∞[1− θξ](t) =

∫ ∞
0

(1− θξ(y, t))dy =

∫ ∞
0

e
− y

2〈ξ〉2
1+t/ε dy =

√
π(1 + t/ε)

2〈ξ〉
. (2.12)

With θξ as defined by (2.11), we identify the function v0(w̄, A) from (2.5) as

(v0(w̄, A))ξ(t) = −iξ
∫ ∞

0
(w̄ξ(y, t)−Aξ(t)(1− θξ(y, t))) dy

= −iξI∞[w̄ξ](x, t) + iξcθ,ξ(t)Aξ(t) . (2.13)
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With this notation, we return to (2.6) which in view of (2.13) becomes

∂tAξ + iξcθ,ξAξ − iξI∞[w̄ξ] + iξ|ξ|Aξ = −i
∫

R
Aη(ξ − η)Aξ−η dη . (2.14)

We notice that A enters the evolution equation for w̄ only through the coefficients of B,L, andM, whereas
∂xw̄ enters the evolution equation for A only through its vertical mean encoded in v0(w̄, A).

Lastly, using that A obeys the Benjamin-Ono equation (2.14), and using that cθ,ξ = I∞[1− θξ], we may
rewrite the forcing term Bξ(w̄, A) given in (2.10d) as

Bξ(w̄, A) = Aξ(∂t − ∂yy)θξ + (θξ − 1) ∂tAξ + iξ (I∞[w̄ξ]− Iy[w̄ξ])
+ iξAξ

(
y(θξ − 1)− (I∞[1− θξ]− Iy[1− θξ])

)
+ i

∫
R

(
(ξ − η)AηAξ−η (θηθξ−η − 1)− ηAηAξ−ηIy[θη]∂yθξ−η

)
(2.15)

Because of our choice of θξ, every single term in Bξ(v̄, A) decays to 0 as y → ∞. Throughout the rest of
the paper, we use the formulation (2.15) of the Bξ term (instead of (2.10d)).

3 Energy estimates and the proof of the Main Theorem

In this section we give the energy estimates which prove Theorem 1.1, under the assumption that the non-
linear terms may be bounded suitably (cf. Lemma 3.1). These terms are then estimated in Section 4.

3.1 Energy inequality for A

In view of (1.13) we take product of equation (2.14) with the complex conjugate Aξ, and integrate in ξ
against e2τ |ξ|〈ξ〉2r〈ξ〉 to obtain

〈∂tA,A〉τ̃,r = −
∫

R
e2τ |ξ|〈ξ〉2r

(
iξ(cθ,ξ + |ξ|)|Aξ|2 − iξI∞[w̄ξ]Aξ + iAξ

∫
R
Aη(ξ − η)Aξ−η dη

)
dξ

= TA,1 − TA,2 (3.1)

where we have defined

TA,1 = 〈I∞[∂xw̄], A〉τ̃,r =

∫
R
iξI∞[w̄ξ]Aξe

2τ |ξ|〈ξ〉2r dξ (3.2a)

TA,2 = 〈A∂xA,A〉τ̃,r =

∫
R

∫
R
i(ξ − η)AηAξ−ηAξe

2τ |ξ|〈ξ〉2r dη dξ . (3.2b)

In (3.3) we have used that A is real-valued, so that A−ξ = Aξ, and that cθ,ξ = cθ,−ξ ∈ R (cf. (2.12)).
Combining (1.13) with (3.1) we arrive at

d

2dt
‖A‖2τ̃,r + (−τ̇)

∥∥∥|∂x|1/2A∥∥∥2

τ̃,r
≤ |TA,1|+ |TA,2| (3.3)

which is the desired energy inequality for the analytic norm of A. The terms on the right side of (3.3) are
estimated in Lemma 3.1, bounds (3.15).
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3.2 Energy inequality for w̄

In view of (1.11) we need to compute 〈∂tw̄ + w̄(∂t log)ρ, w̄〉τ,r. Note that by the definition (1.9) we have

∂t(log ρ) = − y2

8ε(1 + t/ε)2
(3.4)

and thus we obtain the damping weight-gaining term

〈w̄∂t(log ρ), w̄〉τ,r = − 1

8ε(1 + t/ε)2
‖yw̄‖2τ,r . (3.5)

In order to compute 〈∂tw̄, w̄〉τ,r, we multiply (2.9a) with ρ2w̄ξe
2τ |ξ|〈ξ〉2r and integrate over (ξ, y) ∈ R ×

[0,∞) to obtain

〈∂tw̄, w̄〉τ,r = −‖∂yw̄‖2τ,r −
1

2(1 + t/ε)

∫
R

∫ ∞
0

∂yw̄ξyw̄ξρ
2e2τ |ξ|〈ξ〉2r dy dξ

− i
∫

R

∫ ∞
0

yξ |w̄ξ|2 ρ2e2τ |ξ|〈ξ〉2r dy dξ − TN − TL − TM − TB

≤ −1

2
‖∂yw̄‖2τ,r +

1

8(1 + t/ε)2
‖yw̄‖2τ,r + |TN |+ |TL|+ |TM|+ |TB| (3.6)

where we have used that by oddness in ξ we have

i

∫
R

∫ ∞
0

ξ |w̄ξ|2 ρ2e2τ |ξ|〈ξ〉2r dη dξ = 0

and we have denoted

TN =

∫
R

∫ ∞
0
Nξ(w̄, w̄)w̄ξρ

2e2τ |ξ|〈ξ〉2r dy dξ (3.7a)

TL =

∫
R

∫ ∞
0
Lξ(w̄, A)w̄ξρ

2e2τ |ξ|〈ξ〉2r dy dξ (3.7b)

TM =

∫
R

∫ ∞
0
Mξ(w̄, A)w̄ξρ

2e2τ |ξ|〈ξ〉2r dy dξ (3.7c)

TB =

∫
R

∫ ∞
0
Bξ(w̄, A)w̄ξρ

2e2τ |ξ|〈ξ〉2r dy dξ (3.7d)

with Nξ,Lξ,Mξ,Bξ, as defined in (2.10). Combining (1.11) with (3.5)–(3.6) we arrive at

d

2dt
‖w̄‖2τ,r + (−τ̇)

∥∥∥|∂x|1/2w̄∥∥∥2

τ,r
+

1

2
‖∂yw̄‖2τ,r +

1− ε
8ε(1 + t/ε)2

‖yw̄‖2τ,r ≤ |TN |+ |TL|+ |TM|+ |TB|

(3.8)

which is the desired energy inequality for the analytic norm of w̄. The four error terms on the right side of
(3.8) are estimated in Lemma 3.1, bounds (3.16).

3.3 Energy inequality for ∂yw̄

In order to overcome a loss of y weight in the term TM, we need to also consider the evolution of the
normalized vorticity ∂yw̄. We apply ∂y to (2.9a) to obtain

∂t∂yw̄ξ − ∂2
y∂yw̄ξ + iξw̄ξ + iyξ∂yw̄ξ = − (∂yNξ + ∂yLξ + ∂yMξ + ∂yBξ) . (3.9)
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Note that some of the terms on the right side of (3.9) have cancelations in them. Using that Iy[∂yw̄ξ] =
w̄ξ = ∂yIy[w̄ξ], and upon noting symmetries η ↔ ξ − η in the below integrals, we may rewrite

∂yNξ(w̄, w̄) = Nξ(w̄, ∂yw̄) = i

∫
R

(
w̄η(ξ − η)∂yw̄ξ−η − ηIy[w̄η]∂yyw̄ξ−η

)
dη (3.10a)

∂yLξ(w̄, w̄) = i

∫
R

(
∂yw̄η(ξ − η)Aξ−ηθξ−η + w̄η(ξ − η)Aξ−η∂yθξ−η

+Aηθη(ξ − η)∂yw̄ξ−η − ηIy[w̄η]Aξ−η∂yyθξ−η
)

dη (3.10b)

∂yMξ(w̄, A) = −i
∫

R

(
ηAηθη∂yw̄ξ−η + ηAηIy[θη]∂yyw̄ξ−η

)
dη (3.10c)

∂yBξ(w̄, A) = Aξ(∂t − ∂yy)∂yθξ + ∂yθξ∂tAξ − iξw̄ξ + iξAξy∂yθξ

+ i

∫
R

(
(ξ − η)AηAξ−ηθη∂yθξ−η − ηAηAξ−ηIy[θη]∂yyθξ−η

)
. (3.10d)

It turns out that we only need information on the vorticity ∂yw̄ away from ∂H = {y = 0}, and for this
purpose we introduce a cut-off function, χ = χ(y), such that 0 ≤ χ′ ≤ 1, satisfying

χ(y) =

{
0, on y ∈ [0, 1)

1, on y ≥ 6 .
(3.11)

Note that χ is independent of time. Our goal is to estimate ‖χ∂yw̄‖τ,r−1/2. The shift in Sobolev regularity
of for the vorticity norm, i.e. the change r 7→ r − 1/2, is essential for the energy estimate to close.

Using (1.11) with f = χ∂yw̄, property (3.4) of the weight ρ, and the evolution equation (3.9) we obtain

d

2dt
‖χ∂yw̄‖2τ,r−1/2 + (−τ̇)

∥∥∥χ|∂x|1/2∂yw̄∥∥∥2

τ,r−1/2

= 〈χ∂t∂yw̄, χ ∂yw̄〉τ,r−1/2 + 〈χ∂yw̄∂t(log ρ), χ ∂yw̄〉τ,r−1/2

= − 1

8ε(1 + t/ε)2
‖yχ ∂yw̄‖2τ,r−1/2 − ‖χ∂yyw̄‖

2
τ,r−1/2 −

∫
R

∫ ∞
0

∂yyw̄ξ∂y(χ
2ρ2)∂yw̄ξ〈ξ〉2r−1e2τ |ξ| dy dξ

− i
∫

R

∫ ∞
0

ξw̄ξχ
2ρ2∂yw̄ξ〈ξ〉2r−1e2τ |ξ| dy dξ − T∂yN − T∂yL − T∂yM − T∂yB . (3.12)

Here we have used the cancellation property

i

∫
R

∫ ∞
0

yξ |∂yw̄ξ|2 χ2ρ2〈ξ〉2r−1e2τ |ξ| dy dξ = 0

and have denoted

T∂yN =

∫
R

∫ ∞
0

∂yNξ(w̄, w̄)∂yw̄ξχ
2ρ2e2τ |ξ|〈ξ〉2r−1 dy dξ (3.13a)

T∂yL =

∫
R

∫ ∞
0

∂yLξ(w̄, A)∂yw̄ξχ
2ρ2e2τ |ξ|〈ξ〉2r−1 dy dξ (3.13b)

T∂yM =

∫
R

∫ ∞
0

∂yMξ(w̄, A)∂yw̄ξχ
2ρ2e2τ |ξ|〈ξ〉2r−1 dy dξ (3.13c)

T∂yB =

∫
R

∫ ∞
0

∂yBξ(w̄, A)∂yw̄ξχ
2ρ2e2τ |ξ|〈ξ〉2r−1 dy dξ (3.13d)
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with ∂yNξ, ∂yLξ, ∂yMξ, ∂yBξ, as defined in (3.10). From (3.12), the Cauchy-Schwarz inequality and the
definitions of χ and ρ we obtain

d

2dt
‖χ∂yw̄‖2τ,r−1/2 + (−τ̇)

∥∥∥χ|∂x|1/2∂yw̄∥∥∥2

τ,r−1/2
+

1− ε
8ε(1 + t/ε)2

‖yχ ∂yw̄‖2τ,r−1/2 +
1

4
‖χ∂yyw̄‖2τ,r−1/2

≤ ‖∂yw̄‖2τ,r + ‖w̄‖τ,r ‖∂yw̄‖τ,r +
∣∣T∂yN ∣∣+

∣∣T∂yL∣∣+
∣∣T∂yM∣∣+

∣∣T∂yB∣∣ . (3.14)

Here we have used that 〈ξ〉 ≥ 1. The remaining four error terms on the right side of (3.14) are bounded in
Lemma 3.1, estimate (3.17).

3.4 Nonlinear estimates

The following lemma summarizes the available estimates for the error terms in (3.3), (3.8), and (3.14).

Lemma 3.1 (Main Nonlinear Lemma). Assume that r > 2 and that t ≤ ε. For the error terms in the A
energy estimate (3.3) we have

|TA,1| .
∥∥∥|∂x|1/2w̄∥∥∥

τ,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

(3.15a)

|TA,2| .
∥∥∥|∂x|1/2A∥∥∥2

τ̃,r
‖A‖τ̃,r +

∥∥∥|∂x|1/2A∥∥∥
τ̃,r
‖A‖2τ̃,r (3.15b)

for the error terms in the w̄ energy estimate (3.8) it holds that

|TN | .
∥∥∥|∂x|1/2w̄∥∥∥

τ,r

∥∥∥〈∂x〉1/2w̄∥∥∥
τ,r
‖∂yw̄‖τ,r (3.16a)

|TL| .
∥∥∥|∂x|1/2w̄∥∥∥

τ,r
‖w̄‖τ,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

+

(
‖w̄‖2τ,r +

∥∥∥|∂x|1/2w̄∥∥∥2

τ,r

)
‖A‖τ̃,r (3.16b)

|TM| .
∥∥∥〈∂x〉1/2w̄∥∥∥

τ,r

∥∥∥〈∂x〉1/2A∥∥∥
τ̃,r

(
‖∂yw̄‖τ,r + ‖yχ∂yw̄‖τ,r−1/2

)
(3.16c)

|TB| .
1

ε
‖w̄‖τ,r ‖A‖τ̃,r +

∥∥∥〈∂x〉1/2A∥∥∥
τ,r
‖∂yw̄‖τ,r +

∥∥∥|∂x|1/2 w̄∥∥∥2

τ,r

+
∥∥∥|∂x|1/2w̄∥∥∥

τ,r
‖w̄‖τ,r +

∥∥∥〈∂x〉1/2w̄∥∥∥
τ,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r
‖A‖τ̃,r (3.16d)

while for the error terms in the energy estimate (3.14) for ∂yw̄ the estimates

∣∣T∂yN ∣∣ . ∥∥∥〈∂x〉1/2χ∂yw̄∥∥∥2

τ,r−1/2
‖∂yw̄‖τ,r + ‖χ∂yyw̄‖τ,r−1/2 ‖χ∂yw̄‖τ,r−1/2

∥∥∥〈∂x〉1/2w̄∥∥∥
τ,r

(3.17a)∣∣T∂yL∣∣ . ‖χ∂yw̄‖2τ,r−1/2

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

+ ‖χ∂yw̄‖τ,r−1/2

∥∥∥〈∂x〉1/2w̄∥∥∥
τ,r
‖A‖τ̃,r

+
∥∥∥χ|∂x|1/2∂yw̄∥∥∥

τ,r−1/2

∥∥∥χ〈∂x〉1/2∂yw̄∥∥∥
τ,r−1/2

‖A‖τ̃,r (3.17b)∣∣T∂yM∣∣ . ‖χ∂yw̄‖2τ,r−1/2

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

+ ‖yχ∂yw̄‖τ,r−1/2 ‖χ∂yyw̄‖τ,r−1/2

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

(3.17c)∣∣T∂yB∣∣ . 1

ε
‖A‖τ̃,r ‖χ∂yw̄‖τ,r−1/2 +

∥∥∥〈∂x〉1/2w̄∥∥∥
τ,r
‖χ∂yw̄‖τ,r−1/2 +

∥∥∥〈∂x〉1/2A∥∥∥
τ̃,r
‖χ∂yw̄‖τ,r−1/2

+ ‖A‖2τ̃,r ‖χ∂yw̄‖τ,r−1/2 +
∥∥∥|∂x|1/2A∥∥∥

τ̃,r
‖A‖τ̃,r ‖χ∂yw̄‖τ,r−1/2 (3.17d)

hold. The implicit constants in the above estimates are independent of τ , t, and ε (they depend solely on r).
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The proof of Lemma 3.1 is given in Section 4 below. Assuming that this lemma is established, we con-
tinue with the proof of the main theorem. Before doing so, we summarize the bounds proven in Lemma 3.1
using the total norms defined in (1.16) above. Estimate (3.15) shows that

(|TA,1|+ |TA,2|) .
(
1 + ‖(w̄, A)‖Xτ

)
‖(w̄, A)‖2Yτ + ‖(w̄, A)‖3Xτ . (3.18)

The bounds (3.16) and an ε-Young inequality for the second term in (3.16d) yields

|TN |+ |TL|+ |TM|+ |TB|
. ‖(w̄, A)‖2Yτ

(
ε−1 + ‖w̄‖Zτ + ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

)
+ ‖(w̄, A)‖2Xτ

(
ε−1 + ‖w̄‖Zτ + ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

)
+ ε ‖w̄‖2Zτ (3.19)

while the inequality (3.17) implies

δ−2
(∣∣T∂yN ∣∣+

∣∣T∂yL∣∣+
∣∣T∂yM∣∣+

∣∣T∂yB∣∣)
. ‖(w̄, A)‖2Yτ

(
δ−1 + ‖w̄‖Zτ + (1 + δ−1) ‖(w̄, A)‖Xτ

)
+ ‖w̄‖Zτ ‖w̄‖Hτ ‖(w̄, A)‖Yτ

+ ‖(w̄, A)‖2Xτ
(
ε−1δ−1 + δ−1 + ‖w̄‖Zτ + (1 + δ−1) ‖(w̄, A)‖Xτ

)
. (3.20)

The implicit constants in (3.18), (3.19), and (3.20) only depend on r, since we have assumed t, ε ≤ 1.

3.5 Proof of the Main Theorem

In order to prove Theorem 1.1 we couple together the energy estimates (3.3), (3.8), and (3.14) multiplied
by the small factor δ−2, together with the error estimates (3.18), (3.19), and (3.20), to obtain, for universal
constants C0, C̃0,

d

2dt
‖(w̄, A)‖2Xτ + (−τ̇) ‖(w̄, A)‖2Yτ +

1

8
‖w̄‖2Zτ +

1− ε
8ε(1 + t/ε)2

‖w̄‖2Hτ

≤ C0

(
δ−2 ‖w̄‖2Zτ + ‖w̄‖Zτ ‖w̄‖Hτ ‖(w̄, A)‖Yτ

+ ‖(w̄, A)‖2Yτ
(
(ε−1 + δ−1) + ‖w̄‖Zτ + (1 + δ−1) ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

)
+ ‖(w̄, A)‖2Xτ

(
(ε−1 + ε−1δ−1 + δ−1) + ‖w̄‖Zτ + (1 + δ−1) ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

)
≤ C̃0δ

−2 ‖w̄‖2Zτ +
1

100
‖w̄‖2Zτ + C̃0‖w̄‖2Hτ ‖(w̄, A)‖2Yτ

+ C̃0 ‖(w̄, A)‖2Yτ
(
(ε−1 + δ−1) + ‖w̄‖Zτ + (1 + δ−1) ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

)
+ C̃0 ‖(w̄, A)‖2Xτ

(
(ε−1 + ε−1δ−1 + δ−1) + ‖w̄‖Zτ + (1 + δ−1) ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

)
. (3.21)

To go from the second inequality to the final inequality, we have simply used Young’s inequality for prod-
ucts to split the trilinear term, and denoted by C̃0 the resulting (universal) constant. The constant C̃0 is
independent of the parameters δ, ε. We now take δ � 1 so as to ensure that

1

100
+
C̃0

δ2
≤ 1

16
, (3.22)

upon which the first two ‖w̄‖2Zτ terms in (3.21) can be absorbed to the left-hand side. This yields the bound

d

2dt
‖(w̄, A)‖2Xτ + (−τ̇) ‖(w̄, A)‖2Yτ +

1

16
‖w̄‖2Zτ +

1− ε
8ε(1 + t/ε)2

‖w̄‖2Hτ

≤ C̃1‖(w̄, A)‖2Yτ
(
‖w̄‖2Hτ +

(
ε−1 + ‖w̄‖Zτ + ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

) )
+ C̃1 ‖(w̄, A)‖2Xτ

(
ε−1 + ‖w̄‖Zτ + ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

)
,
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for another universal constant C̃1, which is again independent of ε, and large values of δ.
By multiplying through by a sufficiently large universal constant, and taking ε ≤ 1/64, we obtain

d

dt
‖(w̄, A)‖2Xτ + (−τ̇) ‖(w̄, A)‖2Yτ +

1

16
‖w̄‖2Zτ +

1

64ε
‖w̄‖2Hτ

≤ Γ1(t)‖(w̄, A)‖2Yτ + Γ2(t) ‖(w̄, A)‖2Xτ ,

where we have defined

Γ1(t) := C1

(
‖w̄‖2Hτ +

(
ε−1 +

1

4
‖w̄‖Zτ + ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

))
(3.23a)

Γ2(t) := C2

(
ε−1 +

1

4
‖w̄‖Zτ + ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

)
. (3.23b)

for some universal constants C1, C2 ≥ 1. We now make the selection of

τ̇ = −Γ1 − 1

from which the following integral identity and inequality follow:

τ(t) = τ0 − t−
∫ t

0
Γ1(s) ds, E(t) ≤ E(0) +

∣∣∣∣∫ t

0
Γ2(s)‖(w̄, A)‖2Xτ (s) ds

∣∣∣∣ , (3.24)

where the total analytic energy, E(t), has been defined in (1.17). The main result will now follow from:

Lemma 3.2. Fix the parameter δ according to (3.22). There exist universal constants C1, C2 so that if the
parameters ε and the time of existence T∗ satisfy simultaneously the inequalities

3

2
C1εE0 ≤

τ0

8
, (3.25a)

T
1
4
∗ C2(1 + δ)(T

1
2
∗ ε
−1 + 1) ≤ 1, (3.25b)

T
1
2
∗ C1(1 + δ)(T

1
2
∗ + 1)

(
3

2
E0

) 1
2

≤ τ0

8
, (3.25c)

T∗ ≤
τ0

4
, (3.25d)

T
1
4
∗ (1 + E

1
4
0 ) ≤ 1

16
. (3.25e)

Then |E(t)| ≤ 3
2E(0) for all t ∈ [0, T∗] and τ(t) ≥ τ0

2 for all t ∈ [0, T∗]. Moreover, it is possible to select
the parameter ε and the time of existence T∗ so as to achieve the inequalities (3.25).

Proof of Lemma 3.2. We first establish, using the definition of Γ2 in (3.23b), the following estimate∣∣∣∣∫ T∗

0
Γ2(s) ds

∣∣∣∣ ≤C2

∫ T∗

0
(ε−1 + ‖w̄‖Zτ + ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ ) ds

≤C2

(
T∗ε
−1 + T

1
2
∗

∥∥∥‖w̄‖Zτ∥∥∥
L2(0,T∗)

+ T∗ sup
t∈[0,T∗]

‖(w̄, A)‖Xτ + δT
1
2
∗

∥∥∥‖w̄‖Hτ∥∥∥
L2(0,T∗)

)
≤C2(1 + δ)(T∗ε

−1 + T
1
2
∗ )(1 + E(T∗)

1
2 ). (3.26)
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Next, we establish using (3.23a),∣∣∣∣∫ T∗

0
Γ1(s) ds

∣∣∣∣ ≤C1

∣∣∣∣∫ T∗

0

(
‖w̄‖2Hτ +

(
ε−1 +

1

4
‖w̄‖Zτ + ‖(w̄, A)‖Xτ + δ ‖w̄‖Hτ

))
ds

∣∣∣∣
≤C1ε

∥∥∥ 1

64ε
‖w̄‖Hτ

∥∥∥2

L2(0,T∗)
+ C1

(
T∗ε
−1 + T

1
2
∗

∥∥∥‖w̄‖Zτ∥∥∥
L2(0,T∗)

+ T∗

∥∥∥‖(w̄, A)‖Xτ
∥∥∥
L∞(0,T∗)

+ δT
1
2
∗

∥∥∥‖w̄‖Hτ∥∥∥
L2(0,T∗)

)
≤C1εE(T∗) + C1(1 + δ)(T∗ε

−1 + T
1
2
∗ )E(T∗)

1
2 . (3.27)

We now select ε via

3

2
C1εE0 <

τ0

8
. (3.28)

Once ε has been selected (depending only on the initial datum) through (3.28), we pick T∗ depending on δ, ε
in order to satisfy simultaneously the two inequalities

C2(1 + δ)(T
3
4
∗ ε
−1 + T

1
4
∗ ) ≤ 1, C1(1 + δ)(T∗ε

−1 + T
1
2
∗ )

(
3

2
E0

) 1
2

<
τ0

8
. (3.29)

Such a choice is possible because every parameter other than T∗ in (3.29) has been fixed already, so we can
take T∗ small enough so as to achieve (3.29).

Inserting the first inequality in (3.29) into the second integral inequality in (3.24), we obtain the nonlinear
inequality

E(T∗) ≤ E0 + sup
t∈[0,T∗]

‖(w̄, A)‖Xτ(s)‖
2

∫ T∗

0
Γ2(s) ds|

≤ E0 + C2(1 + δ)(T∗ε
−1 + T

1
2
∗ )(1 + E(T∗)

1
2 )E(T∗)

≤ E0 + T
1
4
∗ E(T∗) + T

1
4
∗ E(T∗)

3
2 ,

which implies the desired bound, E(T∗) ≤ 3
2E0 by selecting T∗ small enough to obey

T
1
4
∗ (1 + E

1
4
0 ) ≤ 1

16
.

We subsequently insert the inequalityE(T∗) ≤ 3
2E0 together with the two inequalities (3.28) and the second

inequality of (3.29) into (3.27) so as to ensure for all t ∈ [0, T∗]

|τ(t)| ≥ τ0 − |t| −
∣∣∣∣∫ t

0
Γ1(s) ds

∣∣∣∣ ≥ τ0 − T∗ −
τ0

8
− τ0

8
≥ τ0

2
, (3.30)

where we have appealed to the last inequality on T∗, (3.25d), to establish the final inequality in (3.30). In
summary, one first chooses δ, then ε, and T∗ is picked last.

Remark 3.3 (Construction of the solution). The proof of Theorem 1.1 presented above only consists of a
priori estimates. Since the spaces in which the solution is shown to remain bounded decrease with time, the
construction of solutions is not trivial (once one shows that solutions exist, it is however easy to show that
they are unique). The existence of solutions with finite energy E(T ), as defined in (1.17) above, follows by
approximating the Prandtl equation with a fully parabolic problem (by adding an ε |ξ|2 w̄ξ term to the left
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side of (2.9)), by adding a dissipative term to the forced Benjamin-Ono equation (by adding ε |ξ|2Aξ term
to the left side of (2.14)), and by establishing bounds which are independent of ε. Since our estimates are
fully L2-based, and since the initial datum assumption in Theorem 1.1 is for a space with analyticity radius
10τ0 > τ0, all our a-priori estimates carry over to this regularized system, yielding ε-independent bounds.
Passing ε → 0, the existence of solutions follows, by using the detailed argument presented in [36] pages
834–846, or in [24], page 33.

4 Proof of the Main Nonlinear Lemma

Before turning to the proof, we recall a few technical results which are used in the proof of Lemma 3.1.

4.1 Properties the weight and the lift function

Let us record the following straightforward inequality

|Iy[θξ]| =
∫ y

0
θξ(y

′, t) dy′ ≤
∫ y

0
1 dy′ ≤ y, (4.1)

and emphasize that (4.1) is independent of the parameter ε. Recalling (1.9), we note that θξ obeys

(1− θξ)ρ = e
− y2〈ξ〉2

2(1+ t
ε ) e

y2

8(1+ t
ε ) = e

− y
2(4〈ξ〉2−1)

8(1+ t
ε ) ≤ e

− 3y2〈ξ〉2

8(1+ t
ε ) (4.2)

from which we may deduce the the inequality

‖(1− θξ)ρ‖L2
y
.

(1 + t/ε)1/4

〈ξ〉1/2
.

1

〈ξ〉1/2
, (4.3)

which will be used frequently below.
It will be convenient to appeal to the bound

‖Iy[f ]‖L∞y . (1 + t/ε)1/4 ‖ρf‖L2([0,∞)) . ‖ρf‖L2([0,∞)) (4.4)

which is a consequence of the estimate
∥∥ρ−1

∥∥
L2(0,∞)

. (1 + t/ε)1/4 and

‖Iy[f ]‖L∞y ≤
∫ ∞

0
ρ(y)f(y)ρ(y)−1dy ≤ ‖ρf‖L2([0,∞))

∥∥ρ−1
∥∥
L2[0,∞)

.

As a consequence of the proof of (4.4), the fundamental theorem of calculus, we have that whenever f |y=0 =
0, the estimate

‖f‖L∞y ≤ ‖Iy[∂yf ]‖L∞y . (1 + t/ε)1/4 ‖ρ∂yf‖L2([0,∞)) . ‖ρ∂yf‖L2([0,∞)) (4.5)

also holds. The following weighted Poincaré/Hardy inequality will be useful for our proof.

Lemma 4.1. Let the weight function ρ be as defined in (1.9). Assume that f is such that ρ∂yf ∈ L2. Then
we have

‖ρf‖2L2 +
1

4(1 + t/ε)
‖yρf‖2L2 ≤ 4(1 + t/ε) ‖ρ∂yf‖2L2 .
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Proof of Lemma 4.1.∫ ∞
0

ρ2f2 =

∫ ∞
0

e
y2

4(1+t/ε) f2 =

∫ ∞
0

∂y{y}e
y2

4(1+t/ε) f2

=
−1

2(1 + t/ε)

∫ ∞
0

y2e
y2

4(1+t/ε) f2 − 2

∫ ∞
0

ye
y2

4(1+t/ε) f∂yf.

Due to the monotone increasing and super-exponential nature of our weight, the negative term on the right
side of the above is the key contribution. Rearranging yields

‖ρf‖2L2 +
1

2(1 + t/ε)
‖yρf‖2L2 ≤ 2

∣∣∣∣∫ ∞
0

yρ2f∂yf

∣∣∣∣ ≤ 2 ‖yρf‖L2 ‖ρ∂yf‖L2

≤ 1

4(1 + t/ε)
‖yρf‖2L2 + 4(1 + t/ε) ‖ρ∂yf‖2L2 ,

which concludes the proof of the lemma.

4.2 Error terms in the A energy

First, using (4.4) and the Cauchy-Schwartz inequality it follows that the term TA,1 defined in (3.2a) may be
bounded as

|TA,1| ≤
∥∥∥|ξ|1/2〈ξ〉reτ |ξ|I∞[w̄ξ]

∥∥∥
L2
ξ

∥∥∥|ξ|1/2〈ξ〉reτ |ξ|Aξ∥∥∥
L2
ξ

.
∥∥∥|∂x|1/2w̄∥∥∥

τ,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

.

In order to estimate the term TA,2 defined in (3.2b) we use that for any r ≥ 0 we have

〈ξ〉r . 〈ξ − η〉r + 〈η〉r

where the implicit constant depends solely on r, and that 〈ξ〉1/2 ≤ 〈η〉1/2〈ξ − η〉1/2, to conclude that

|TA,2| .
∫

R

∫
R
|ξ − η|

(
〈ξ − η〉r−1/2 + 〈η〉r−1/2

)
|Aη| eτ |η| |Aξ−η| eτ |ξ−η|〈ξ〉r+1/2 |Aξ| eτ |ξ| dη dξ

.
∥∥∥|∂x|1/2A∥∥∥

τ̃,r

∥∥∥Aηeτ |η|∥∥∥
L1
η

∥∥∥〈∂x〉1/2A∥∥∥
τ̃,r

+
∥∥∥|ξ − η|〈ξ − η〉1/2Aξ−ηeτ |ξ−η|∥∥∥

L1
ξ−η

‖A‖2τ̃,r

.
∥∥∥|∂x|1/2A∥∥∥2

τ̃,r
‖A‖τ̃,r +

∥∥∥|∂x|1/2A∥∥∥
τ̃,r
‖A‖2τ̃,r .

In the last inequality above we have used that for r > 3/2 we have 〈ξ〉−r+1 ∈ L2
ξ . This proves (3.15).

4.3 Error terms in the w̄ energy

4.3.1 The TN term

According to (2.10a) and (3.7), we decompose TN as

TN = i

∫
R

∫
R

∫ ∞
0

w̄η(ξ − η)w̄ξ−ηw̄ξρ
2e2τ |ξ|〈ξ〉2r dy dη dξ

− i
∫

R

∫
R

∫ ∞
0

ηIy[w̄η]∂yw̄ξ−ηw̄ξρ
2e2τ |ξ|〈ξ〉2r dy dη dξ

=: T
(1)
N + T

(2)
N . (4.6)
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For the first term above we appeal to the inequality

|ξ − η|1/2〈ξ〉r . (|η|1/2 + |ξ|1/2) (〈η〉r + 〈ξ − η〉r) ,

to the triangle inequality of the exponential term, and to the bound (4.5) to conclude∣∣∣T (1)
N

∣∣∣ . ∫
R

∫
R
|η|1/2 ‖ρw̄η‖L2

y
|ξ − η|1/2 ‖ρw̄ξ−η‖L2

y
(〈η〉r + 〈ξ − η〉r) 〈ξ〉r ‖w̄ξ‖L∞y e2τ |ξ| dη dξ

+

∫
R

∫
R
‖w̄η‖L∞y |ξ − η|

1/2 ‖ρw̄ξ−η‖L2
y

(〈η〉r + 〈ξ − η〉r) |ξ|1/2〈ξ〉r ‖ρw̄ξ‖L2
y
e2τ |ξ| dη dξ

.
∥∥∥|∂x|1/2w̄∥∥∥

τ,r
‖∂yw̄‖τ,r

∥∥∥|ζ|1/2ρw̄ζeτ |ζ|∥∥∥
L1
ζL

2
y

+
∥∥∥|∂x|1/2w̄∥∥∥2

τ,r

∥∥∥ρ∂yw̄ζeτ |ζ|∥∥∥
L1
ζL

2
y

.
∥∥∥|∂x|1/2w̄∥∥∥2

τ,r
‖∂yw̄‖τ,r (4.7)

where in the last inequality we have used that r > 1/2.
For the second term in (4.6) we proceed similarly, but appeal to the bound (4.4), which yields∣∣∣T (2)

N

∣∣∣ . ∫
R

∫
R
|η|1/2〈η〉r ‖Iy[w̄η]‖L∞y |ξ − η|

1/2 ‖ρ∂yw̄ξ−η‖L2
y
〈ξ〉r ‖ρw̄ξ‖L2

y
e2τ |ξ| dη dξ

+

∫
R

∫
R
|η|1/2〈η〉r ‖Iy[w̄η]‖L∞y ‖ρ∂yw̄ξ−η‖L2

y
|ξ|1/2〈ξ〉r ‖ρw̄ξ‖L2

y
e2τ |ξ| dη dξ

+

∫
R

∫
R
|η| ‖Iy[w̄η]‖L∞y 〈ξ − η〉

r ‖ρ∂yw̄ξ−η‖L2
y
〈ξ〉r ‖ρw̄ξ‖L2

y
e2τ |ξ| dη dξ

.
∥∥∥|∂x|1/2w̄∥∥∥

τ,r
‖w̄‖τ,r

∥∥∥|ξ − η|1/2ρ∂yw̄ξ−ηeτ |ξ−η|∥∥∥
L1
ξ−ηL

2
y

+
∥∥∥|∂x|1/2w̄∥∥∥2

τ,r

∥∥∥ρ∂yw̄ξ−ηeτ |ξ−η|∥∥∥
L1
ξ−ηL

2
y

+ ‖w̄‖τ,r ‖∂yw̄‖τ,r
∥∥∥|η|ρw̄ηeτ |η|∥∥∥

L1
ηL

2
y

.
∥∥∥|∂x|1/2w̄∥∥∥

τ,r

∥∥∥〈∂x〉1/2w̄∥∥∥
τ,r
‖∂yw̄‖τ,r (4.8)

since r > 1. Combining the estimates (4.7)–(4.8) yields the desired bound (3.16a).

4.3.2 The TL term

Recall that the term TL is defined in (3.7), via (2.10), as

TL = i

∫
R

∫
R

∫ ∞
0

ρ2e2τ |ξ|〈ξ〉2rw̄ξη
(
w̄ξ−ηAηθη +Aξ−ηθξ−ηw̄η − Iy[w̄η]Aξ−η∂yθξ−η

)
dy dη dξ

= T
(1)
L + T

(2)
L + T

(3)
L .
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We estimate each of the above terms individually. Using that 0 ≤ θξ ≤ 1 pointwise in t, y, ξ, that |η|1/2 ≤
|ξ|1/2 + |ξ − η|1/2, and 〈ξ〉r . 〈η〉r + 〈ξ − η〉r, for the T (1)

L term we have∣∣∣T (1)
L

∣∣∣ ≤ ∫
R

∫
R

∫ ∞
0

ρ2eτ |ξ|eτ |ξ−η|eτ |η|〈ξ〉2r |w̄ξ| |η|1/2(|ξ|1/2 + |ξ − η|1/2) |w̄ξ−η| |Aη| dy dη dξ

.
∥∥∥|∂x|1/2w̄∥∥∥

τ,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

∥∥∥ρeτ |ξ−η| |w̄ξ−η|∥∥∥
L1
ξ−ηL

2
y

+ ‖w̄‖τ,r
∥∥∥|∂x|1/2A∥∥∥

τ̃,r

∥∥∥ρ|ξ − η|1/2eτ |ξ−η| |w̄ξ−η|∥∥∥
L1
ξ−ηL

2
y

+
∥∥∥|∂x|1/2w̄∥∥∥

τ,r
‖w̄‖τ,r

∥∥∥|η|1/2eτ |η| |Aη|∥∥∥
L1
η

.
∥∥∥|∂x|1/2w̄∥∥∥

τ,r
‖w̄‖τ,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

(4.9)

since r > 1. Similarly, for the T (2)
L term we have∣∣∣T (2)

L

∣∣∣ ≤ ∫
R

∫
R

∫ ∞
0

ρ2eτ |ξ|eτ |ξ−η|eτ |η|〈ξ〉2r |w̄ξ| |η|1/2(|ξ|1/2 + |ξ − η|1/2) |w̄η| |Aξ−η| dy dη dξ

.
∥∥∥|∂x|1/2w̄∥∥∥2

τ,r

∥∥∥eτ |ξ−η| |Aξ−η|∥∥∥
L1
ξ−η

+
∥∥∥|∂x|1/2w̄∥∥∥

τ,r
‖w̄‖τ,r

∥∥∥|ξ − η|1/2eτ |ξ−η| |Aξ−η|∥∥∥
L1
ξ−η

+

(∥∥∥|∂x|1/2w̄∥∥∥
τ,r
‖A‖τ̃,r + ‖w̄‖τ,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

)∥∥∥ρ|η|1/2eτ |η| |w̄η|∥∥∥
L1
ηL

2
y

.
∥∥∥|∂x|1/2w̄∥∥∥2

τ,r
‖A‖τ̃,r +

∥∥∥|∂x|1/2w̄∥∥∥
τ,r
‖w̄‖τ,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

. (4.10)

The T (3)
L term is treated slightly differently due to the presence of ∂yθξ−η. Here we use that

ρ〈ξ〉−1/2∂yθξ =
ρ(y, t)〈ξ〉3/2y

(1 + t/ε)
e
− y2〈ξ〉2

2(1+t/ε) .
〈ξ〉1/2

(1 + t/ε)1/2
e

y2

8(1+t/ε) e
− y2〈ξ〉2

4(1+t/ε)

.
〈ξ〉1/2

(1 + t/ε)1/2
e
− y2〈ξ〉2

8(1+t/ε) . 〈ξ〉1/2e−
y2〈ξ〉2

8(1+t/ε)

from which it follows upon taking an L2 norm in y and a supremum over ξ ∈ R that∥∥∥ρ〈ξ〉−1/2∂yθξ

∥∥∥
L∞ξ L

2
y

. 1 . (4.11)

Appealing also to (4.4) with f = w̄η, and to the inequality

|η|〈ξ − η〉1/2〈ξ〉r . |η|〈ξ − η〉r+1/2 + |η|1/2〈η〉r|ξ|1/2〈ξ − η〉1/2 + |η|1/2〈η〉r|ξ − η|1/2〈ξ − η〉1/2
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we obtain∣∣∣T (3)
L

∣∣∣ ≤ ∫
R

∫
R

∫ ∞
0

ρeτ |ξ|eτ |ξ−η|eτ |η|〈ξ〉2r |w̄ξ| |η|〈ξ − η〉1/2 |Aξ−η| |Iy[w̄η]|
ρ |∂yθξ−η|
〈ξ − η〉1/2

dy dη dξ

.
∫

R

∫
R
‖ρw̄ξ‖L2

y
〈ξ〉reτ |ξ| |Aξ−η| eτ |ξ−η| ‖ρw̄η‖L2

y
eτ |η||η|〈ξ − η〉1/2〈ξ〉r dη dξ

. ‖w̄‖τ,r
∥∥∥〈∂x〉1/2A∥∥∥

τ̃,r

∥∥∥|η| ‖ρw̄η‖L2
y
eτ |η|

∥∥∥
L1
η

+
∥∥∥|∂x|1/2w̄∥∥∥2

τ,r

∥∥∥〈ξ − η〉1/2Aξ−ηeτ |ξ−η|∥∥∥
L1
ξ−η

+ ‖w̄‖τ,r
∥∥∥|∂x|1/2w̄∥∥∥

τ,r

∥∥∥〈ξ − η〉Aξ−ηeτ |ξ−η|∥∥∥
L1
ξ−η

. ‖w̄‖2τ,r
∥∥∥〈∂x〉1/2A∥∥∥

τ̃,r
+
∥∥∥|∂x|1/2w̄∥∥∥2

τ,r
‖A‖τ̃,r + ‖w̄‖τ,r

∥∥∥|∂x|1/2w̄∥∥∥
τ,r
‖A‖τ̃,r (4.12)

since r > 3/2. Summing (4.9), (4.10), and (4.12), and massaging the resulting terms we arrive at (3.16b).

4.3.3 The TM term

This term has the distinguished feature of losing a y-weight, which is why we have introduced the vorticity
∂yw̄ in the first place. Recall from (2.10c) and (3.7) that

TM = −i
∫

R

∫
R

∫ ∞
0

ρ2e2τ |ξ|〈ξ〉2rw̄ξηAηIy[θη]∂yw̄ξ−η dy dη dξ .

Recall from (4.1) that |Iy[θη]| ≤ y, and thus, with the cutoff χ defined in (3.11) we have that

|(1− χ(y))Iy[θη]| . 1

pointwise in η. Therefore, the contribution to TM coming from the support of 1− χ(y) may be bounded as∣∣∣∣∫
R

∫
R

∫ ∞
0

ρ2e2τ |ξ|〈ξ〉2rw̄ξηAηIy[θη]∂yw̄ξ−η(1− χ(y)) dy dη dξ

∣∣∣∣
.
∫

R

∫
R

∫ ∞
0

eτ |ξ|eτ |η|eτ |ξ−η|〈ξ〉2rρ |w̄ξ| |η| |Aη| ρ |∂yw̄ξ−η| dy dη dξ

.
∥∥∥|∂x|1/2w̄∥∥∥

τ,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

∥∥∥ρ |∂yw̄ξ−η| eτ |ξ−η|∥∥∥
L1
ξ−ηL

2
y

+
∥∥∥〈∂x〉1/2w̄∥∥∥

τ,r
‖∂yw̄‖τ,r

∥∥∥|η|1/2Aηeτ |η|∥∥∥
L1
η

+
∥∥∥〈∂x〉1/2w̄∥∥∥

τ,r
‖A‖τ̃,r

∥∥∥ρ|ξ − η|1/2 |∂yw̄ξ−η| eτ |ξ−η|∥∥∥
L1
ξ−ηL

2
y

.
∥∥∥〈∂x〉1/2w̄∥∥∥

τ,r
‖∂yw̄‖τ,r

∥∥∥〈∂x〉1/2A∥∥∥
τ̃,r

. (4.13)

On the other hand, the contribution to TM from the support of χ(y) requires us to use the third term on
the left side of (3.14), but with r replaced by r − 1/2. More precisely, we use that χ(y) |Iy[θη]| ≤ yχ(y)
pointwise in η, and the inequality

|η|〈ξ〉2r . |η|〈η〉r−1/2〈ξ〉r+1/2 + |η|〈ξ − η〉r−1/2〈ξ〉r+1/2
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to deduce that∣∣∣∣∫
R

∫
R

∫ ∞
0

ρ2e2τ |ξ|〈ξ〉2rw̄ξηAηIy[θη]∂yw̄ξ−ηχ(y) dy dη dξ

∣∣∣∣
.
∫

R

∫
R
eτ |ξ|eτ |η|eτ |ξ−η|〈ξ〉2r ‖ρw̄ξ‖L2

y
|η| |Aη| ‖ρyχ(y)∂yw̄ξ−η‖L2

y
dη dξ

.
∥∥∥〈∂x〉1/2w̄∥∥∥

τ,r

(∥∥∥|∂x|1/2A∥∥∥
τ̃,r

∥∥∥ρyχ(y)∂yw̄ξ−ηe
τ |ξ−η|

∥∥∥
L1
ξ−ηL

2
y

+ ‖yχ∂yw̄‖τ,r−1/2

∥∥∥|η|Aηeτ |η|∥∥∥
L1
η

)
.
∥∥∥〈∂x〉1/2w̄∥∥∥

τ,r
‖yχ∂yw̄‖τ,r−1/2

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

(4.14)

since r was taken to be sufficiently large. Combining (4.13) and (4.14) we obtain the estimate (3.16c).

4.3.4 The TB term

According to (2.15) and (3.7), we decompose the TB term as

TB =

∫
R

∫ ∞
0

Aξ(∂t − ∂yy)θξw̄ξρ2e2τ |ξ|〈ξ〉2r dy dξ

+

∫
R

∫ ∞
0

(θξ − 1) ∂tAξw̄ξρ
2e2τ |ξ|〈ξ〉2r dy dξ

+ i

∫
R

∫ ∞
0

ξ (I∞[w̄ξ]− Iy[w̄ξ]) w̄ξρ2e2τ |ξ|〈ξ〉2r dy dξ

+ i

∫
R

∫ ∞
0

ξAξ
(
y(θξ − 1)− (I∞[1− θξ]− Iy[1− θξ])

)
w̄ξρ

2e2τ |ξ|〈ξ〉2r dy dξ

+ i

∫
R

∫
R

∫ ∞
0

ξAηAξ−η (θηθξ−η − 1) w̄ξρ
2e2τ |ξ|〈ξ〉2r dy dη dξ

− i
∫

R

∫
R

∫ ∞
0

ηAηAξ−ηIy[θη]∂yθξ−ηw̄ξρ
2e2τ |ξ|〈ξ〉2r dy dη dξ

= T
(1)
B + T

(2)
B + T

(3)
B + T

(4)
B + T

(5)
B + T

(6)
B (4.15)

We bound the six terms above individually, and note that the second term, T (2)
B , is the most involved one, as

it involves analyzing the four terms arising from the Aξ evolution in (2.14).
We bound the most difficult term first. Combining (4.15) and (2.14) we rewrite

T
(2)
B = −i

∫
R

∫ ∞
0

(θξ − 1) ξcθ,ξAξw̄ξρ
2e2τ |ξ|〈ξ〉2r dy dξ

− i
∫

R

∫ ∞
0

(θξ − 1) ξ|ξ|Aξw̄ξρ2e2τ |ξ|〈ξ〉2r dy dξ

+ i

∫
R

∫ ∞
0

(θξ − 1) ξI∞[w̄ξ]w̄ξρ
2e2τ |ξ|〈ξ〉2r dy dξ

− i
∫

R

∫
R

∫ ∞
0

(θξ − 1)AηAξ−η(ξ − η)w̄ξρ
2e2τ |ξ|〈ξ〉2r dy dη dξ

= T
(2,1)
B + T

(2,2)
B + T

(2,3)
B + T

(2,4)
B . (4.16)

Using the definition of cθ,ξ in (2.12) and the bound (4.3) for the L2
y norm of ρ (θξ − 1), we obtain∣∣∣T (2,1)

B

∣∣∣ . ‖w̄‖τ,r ‖A‖τ̃,r . (4.17)
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For the second term, we use the one dimensional Hardy inequality ‖f/y‖L2
y
. ‖∂yf‖L2

y
. ‖ρ∂yf‖L2

y
, valid

for f such that f |y=0 = 0 since ρ ≥ 1, and the bound

〈ξ〉3/2
∥∥y(θξ − 1)ρ2

∥∥
L2
y
. 〈ξ〉3/2

∥∥∥∥ye− y2〈ξ〉2
4(1+t/ε)

∥∥∥∥
L2
y

. 〈ξ〉1/2
∥∥∥∥e− y2〈ξ〉2

8(1+t/ε)

∥∥∥∥
L2
y

. 1 (4.18)

which follows similarly to (4.3), and obtain∣∣∣T (2,2)
B

∣∣∣ ≤ ∫
R

∫ ∞
0
|ξ|3/2

∣∣yρ2 (θξ − 1)
∣∣ |ξ|1/2 |Aξ| ∣∣∣∣ w̄ξy

∣∣∣∣ e2τ |ξ|〈ξ〉2r dy dξ

.
∥∥∥|∂x|1/2A∥∥∥

τ,r
‖∂yw̄‖τ,r . (4.19)

For the third term on the right side of (4.16) we simply appeal to (4.3) and (4.4) to obtain∣∣∣T (2,3)
B

∣∣∣ . ∫
R
|ξ| ‖ρ(θξ − 1)‖L2

y
|I∞[w̄ξ]| ‖ρw̄ξ‖L2

y
e2τ |ξ|〈ξ〉2r dξ

.
∫

R
|ξ|1/2 ‖ρw̄ξ‖2L2

y
e2τ |ξ|〈ξ〉2rdξ

.
∥∥∥|∂x|1/2w̄∥∥∥

τ,r
‖w̄‖τ,r . (4.20)

Lastly, for the nonlinear term in (4.16) we similarly have∣∣∣T (2,4)
B

∣∣∣ . ∫
R

∫
R
|ξ − η| ‖ρ(θξ − 1)‖L2

y
|Aη| |Aξ−η| ‖ρw̄ξ‖L2

y
e2τ |ξ|〈ξ〉2r dη dξ

.
∫

R
|ξ − η|

(
〈η〉r−1/2 + 〈ξ − η〉r−1/2

)
|Aη| |Aξ−η| ‖ρw̄ξ‖L2

y
e2τ |ξ|〈ξ〉r+1/2dξ

.
∥∥∥〈∂x〉1/2w̄∥∥∥

τ,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r
‖A‖τ̃,r . (4.21)

Combined, the bounds (4.17)–(4.21) yield an estimate for the T (2)
B term. Next, we estimate the remaining

five terms on the right side of (4.15).
In order to bound T (1)

B we note from (2.11) that

|∂tθξ| =
y2〈ξ〉2

2ε(1 + t/ε)2
e
− y2〈ξ〉2

2(1+t/ε) ≤ 1

ε(1 + t/ε)
e
− y2〈ξ〉2

3(1+t/ε) .
1

ε
e
− y2〈ξ〉2

3(1+t/ε)

and

|y∂yyθξ| ≤
y〈ξ〉2

(1 + t/ε)
e
− y2〈ξ〉2

2(1+t/ε) +
y3〈ξ〉4

(1 + t/ε)2
e
− y2〈ξ〉2

2(1+t/ε) . 〈ξ〉e−
y2〈ξ〉2

3(1+t/ε)

from which we deduce

‖ρ∂tθξ‖L2
y
.

1

ε〈ξ〉1/2
(4.22a)

‖yρ2∂yyθξ‖L2
y
. 〈ξ〉1/2 . (4.22b)

With estimates (4.22b)–(4.22a), the Hardy inequality and the fact that ρ ≥ 1, we may estimate∣∣∣T (1)
B

∣∣∣ ≤ ∫
R
|Aξ| ‖ρ∂tθξ‖L2

y
‖ρw̄ξ‖L2

y
e2τ |ξ|〈ξ〉2r dξ +

∫
R
|Aξ|

∥∥yρ2∂yyθξ
∥∥
L2
y

∥∥∥∥ w̄ξy
∥∥∥∥
L2
y

e2τ |ξ|〈ξ〉2r dξ

. ‖w̄‖τ,r ‖A‖τ̃,r + ‖∂yw̄‖τ,r
∥∥∥〈∂x〉1/2A∥∥∥

τ̃,r
.
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In order to estimate the T (3)
B term in (4.15), we note that upon applying Lemma 4.1 to f = I∞[w̄ξ] −

Iy[w̄ξ], we have that

‖ρ(y) (I∞[w̄ξ]− Iy[w̄ξ])‖L2
y
. ‖ρw̄ξ‖L2

y
(4.23)

and thus ∣∣∣T (3)
B

∣∣∣ . ∫
R
|ξ| ‖ρw̄ξ‖2L2

y
e2τ |ξ|〈ξ〉2r dξ .

∥∥∥|∂x|1/2 w̄∥∥∥2

τ,r
. (4.24)

For the T (4)
B term in (4.15), we use (4.18) to obtain that ‖yρ(θξ − 1)‖L2

y
. (1 + t/ε)3/4〈ξ〉−3/2, and the

estimate

‖ρ(I∞[1− θξ]− Iy[1− θξ])‖L2
y
.

∥∥∥∥∫ ∞
y

e
− (y′)2〈ξ〉2

2(1+t/ε) dy′
∥∥∥∥
L2
y

.
1

〈ξ〉3/2
(4.25)

to conclude∣∣∣T (4)
B

∣∣∣ ≤ ∫
R
|ξ| |Aξ|

(
‖ρy(1− θξ)‖L2

y
+ ‖ρ(I∞[1− θξ]− Iy[1− θξ])‖L2

y

)
‖ρw̄ξ‖L2

y
e2τ |ξ|〈ξ〉2r dξ

. ‖w̄‖τ,r ‖A‖τ̃,r . (4.26)

Lastly, we turn to the two nonlinear terms in (4.15). First, we use (4.3) to estimate

‖ρ |θηθξ−η − 1|‖L2
y
≤ ‖ρ |θξ−η − 1|‖L2

y
+ ‖ρ |θη − 1|‖L2

y
.

1

〈ξ − η〉1/2
+

1

〈η〉1/2

and then use the bound

〈ξ〉r|ξ|1/2 . 〈η〉r|η|1/2 + 〈ξ − η〉r|ξ − η|1/2

to conclude∣∣∣T (5)
B

∣∣∣ ≤ ∫
R

∫
R
|ξ|1/2〈ξ〉r |Aη| |Aξ−η| ‖ρ(θηθξ−η − 1)‖L2

y
|ξ|1/2〈ξ〉r ‖ρw̄ξ‖L2

y
e2τ |ξ| dη dξ

.
∥∥∥|∂x|1/2w̄∥∥∥

τ,r
‖A‖τ̃,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

. (4.27)

For the last term in (4.15), we use that

‖ρ Iy[θη]∂yθξ−η‖L2
y
≤ ‖ρy∂yθξ−η‖L2

y
.

∥∥∥∥e y2

8(1+t/ε) e
− y

2〈ξ−η〉2
4(1+t/ε)

∥∥∥∥
L2
y

.
1

〈ξ − η〉1/2

and the triangle inequality |η|1/2 ≤ |ξ − η|1/2 + |ξ|1/2 to conclude that∣∣∣T (6)
B

∣∣∣ ≤ ∫
R

∫
R
|η|1/2(|ξ − η|1/2 + |ξ|1/2)〈ξ〉r |Aη| |Aξ−η| ‖ρIy[θη]∂yθξ−η‖L2

y
〈ξ〉r ‖ρw̄ξ‖L2

y
e2τ |ξ| dη dξ

.
∥∥∥〈∂x〉1/2w̄∥∥∥

τ,r
‖A‖τ̃,r

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

. (4.28)

Upon collecting the bounds (4.17)–(4.21), (4.23)–(4.24), and (4.26)–(4.28), we conclude the proof of (3.16d).
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4.4 Error terms in the ∂yw̄ energy

The estimates in this section are very similar to those in Section 4.3, however, several modifications are in
order: we are testing the equation with the conjugate of ∂yw̄, 〈ξ〉2r becomes 〈ξ〉2r−1, and we may use that
the cutoff χ vanishes near {y = 0}.

4.4.1 The T∂yN term

From (3.10a) we see that ∂yNξ(w̄, w̄) = Nξ(w̄, ∂yw̄), and thus the estimates are very similar to the TN
term. From (3.10a) and (3.13a) we have∣∣T∂yN ∣∣ . ∫

R

∫
R
‖ρ∂yw̄η‖L2

y
‖χρ∂yw̄ξ−η‖L2

y
‖χρ∂yw̄ξ‖L2

y

× |ξ − η| (〈η〉r−1/2 + 〈ξ − η〉r−1/2)〈ξ〉r−1/2e2τ |ξ| dη dξ

+

∫
R

∫
R
‖ρw̄η‖L2

y
‖χρ∂yyw̄ξ−η‖L2

y
‖χρ∂yw̄ξ‖L2

y

× |η| (〈η〉r−1/2 + 〈ξ − η〉r−1/2)〈ξ〉r−1/2e2τ |ξ| dη dξ

.
∥∥∥〈∂x〉1/2χ∂yw̄∥∥∥2

τ,r−1/2
‖∂yw̄‖τ,r

+ ‖χ∂yyw̄‖τ,r−1/2 ‖χ∂yw̄‖τ,r−1/2

∥∥∥〈∂x〉1/2w̄∥∥∥
τ,r

where we have used that r > 2. The above estimate gives the proof of (3.17a).

4.4.2 The T∂yL term

The term T∂yL is defined via (3.10b) and (3.13b), and may be split into four terms T (j)
∂yL with j ∈ {1, . . . , 4},

according to the four terms in the integrand of (3.10b). For the first term we have∣∣∣T (1)
∂yL

∣∣∣ . ∫
R

∫
R
‖χρ∂yw̄η‖L2

y
|Aξ−η| ‖χρ∂yw̄ξ‖L2

y
|ξ − η|〈ξ〉2r−1e2τ |ξ| dη dξ

. ‖χ∂yw̄‖2τ,r−1/2

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

. (4.29)

Using χ ≡ 0 on [0, 1], we have that χ(y) . y2χ(y), which we may combine with the pointwise bound∣∣y2∂yθξ
∣∣ . 〈ξ〉−1, to estimate∣∣∣T (2)

∂yL

∣∣∣ . ∫
R

∫
R
‖ρw̄η‖L2

y

∥∥χy2∂yθξ−η
∥∥
L∞y
|Aξ−η| ‖χρ∂yw̄ξ‖L2

y
|ξ − η|〈ξ〉2r−1e2τ |ξ| dη dξ

. ‖χ∂yw̄‖τ,r−1/2 ‖w̄‖τ,r ‖A‖τ̃,r . (4.30)

For the third term in the definition of T∂yL we have∣∣∣T (3)
∂yL

∣∣∣ . ∫
R

∫
R
‖χρ∂yw̄ξ−η‖L2

y
|Aη| ‖χρ∂yw̄ξ‖L2

y
|ξ − η|〈ξ〉2r−1e2τ |ξ| dη dξ

.
∥∥∥χ|∂x|1/2∂yw̄∥∥∥

τ,r−1/2

∥∥∥χ〈∂x〉1/2∂yw̄∥∥∥
τ,r−1/2

‖A‖τ̃,r . (4.31)

For the last term, we use again that χ(y) . y2χ(y), and that similarly to (4.22b) (and the equation two lines
above it) we have∣∣ρ2y2∂yyθξ

∣∣ . (y2〈ξ〉2 + y4〈ξ〉4
)
e

y2

4(1+t/ε) e
− y2〈ξ〉2

2(1+t/ε) . e
− y

2(〈ξ〉2−1)
4(1+t/ε) . 1
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which implies∣∣∣T (4)
∂yL

∣∣∣ . ∫
R

∫
R
‖Iy[w̄η]‖L∞y |Aξ−η|

∥∥ρ−1
∥∥
L2
y

∥∥χy2ρ2∂yyθξ−η
∥∥
L∞y
‖χρ∂yw̄ξ‖L2

y
|η|〈ξ〉2r−1e2τ |ξ| dη dξ

.
∫

R

∫
R
‖ρw̄η‖L2

y
|Aξ−η| ‖χρ∂yw̄ξ‖L2

y
|η|〈ξ〉2r−1e2τ |ξ| dη dξ

. ‖χ∂yw̄‖τ,r−1/2

∥∥∥|∂x|1/2 w̄∥∥∥
τ,r
‖A‖τ̃,r . (4.32)

Combining the bounds (4.29), (4.30), (4.31), and (4.32), we obtain the proof of (3.17b).

4.4.3 The T∂yM term

The T∂yM terms is defined via (3.10c) and (3.13c) as T (1)
∂yM + T

(2)
∂yM, where the decomposition is between

the two terms in the integrand of (3.10c). For the first term we use that |θη| ≤ 1 to obtain∣∣∣T (1)
∂yM

∣∣∣ . ∫
R

∫
R
|η||Aη| ‖χρ∂yw̄ξ−η‖L2

y
‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dη dξ

. ‖χ∂yw̄‖2τ,r−1/2

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

(4.33)

while for the second term we appeal to |θη| ≤ y, which gives∣∣∣T (2)
∂yM

∣∣∣ . ∫
R

∫
R
|η||Aη| ‖χρ∂yyw̄ξ−η‖L2

y
‖yχρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dη dξ

. ‖yχ∂yw̄‖τ,r−1/2 ‖χ∂yyw̄‖τ,r−1/2

∥∥∥|∂x|1/2A∥∥∥
τ̃,r

. (4.34)

Combining (4.33) and (4.34) we obtain the proof of (3.17c).

4.4.4 The T∂yB term

According to (3.10d) and (3.13d) we write

T∂yB =

6∑
j=1

T
(j)
∂yB,

where the decomposition is according to the six terms in (3.10d).
Since we are doing estimates on the support of χ, i.e. for y ≥ 1, y-derivatives of the lift function

θξ can be made arbitrarily small on this region, resulting in simpler estimates. For instance, similarly to
(4.22a)–(4.22b), we may show that

‖χρ2∂t∂yθξ‖L∞y . ‖ρ2y∂t∂yθξ‖L∞y .
1

ε
‖χρ2∂yyyθξ‖L∞y . ‖ρ2y3∂yyyθξ‖L∞y . 1

and therefore ∣∣∣T (1)
∂yB

∣∣∣ . ∫
R
|Aξ| ‖χρ2∂t∂yθξ‖L∞y

∥∥ρ−1
∥∥
L2
y
‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dξ

+

∫
R
|Aξ| ‖χρ2∂yyyθξ‖L∞y

∥∥ρ−1
∥∥
L2
y
‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dξ

.
1

ε
‖A‖τ̃,r ‖χ∂yw̄‖τ,r−1/2 (4.35)
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where we have used that ε . 1 and t . 1. We may also directly estimate∣∣∣T (3)
∂yB

∣∣∣ . ∫
R
|ξ| ‖ρw̄ξ‖L2

y
‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dξ . ‖χ∂yw̄‖τ,r−1/2

∥∥∥|∂x|1/2 w̄∥∥∥
τ,r

(4.36)

and similarly to (4.35) we have∣∣∣T (4)
∂yB

∣∣∣ . ∫
R
|Aξ| |ξ| ‖χρ2y∂yθξ‖L∞y

∥∥ρ−1
∥∥
L2
y
‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dξ

.
∥∥∥|∂x|1/2A∥∥∥

τ̃,r
‖χ∂yw̄‖τ,r−1/2 . (4.37)

It remains to treat the ∂tAξ and the nonlinear terms in (3.10d).
For the ∂tAξ contribution, namely T (2)

∂yB, we need to use a decomposition that is analogous to (4.16).
The main difference is that the θξ − 1 are now replaced by ∂yθξ, and as mentioned earlier, χ(y) |∂yθξ| can
be made arbitrarily small. In particular, we may use the bound

〈ξ〉j
∥∥χρ2∂yθξ

∥∥
L∞y

. 〈ξ〉j
∥∥ρ2y1+j∂yθξ

∥∥
L∞y

. 1, (4.38)

combined with (2.14) to estimate∣∣∣T (2)
B

∣∣∣ . ∫
R
|∂tAξ|

∥∥χρ2∂yθξ
∥∥
L∞y

∥∥ρ−1
∥∥
L2
y
‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dξ

.
∫

R
|ξ| cθ,ξ |Aξ| ‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dξ +

∫
R

1

〈ξ〉
|ξ|2 |Aξ| ‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dξ

+

∫
R

|ξ|
〈ξ〉1/2

|I∞[w̄ξ]| ‖χρ∂yw̄ξ‖L2
y
〈ξ〉2r−1e2τ |ξ| dξ

+

∫
R

∫
R

|ξ|
〈ξ〉
|Aη| |Aξ−η| ‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dη dξ

.
∥∥∥〈∂x〉1/2A∥∥∥

τ̃,r
‖χ∂yw̄‖τ,r−1/2 + ‖w̄‖τ,r ‖χ∂yw̄‖τ,r−1/2 + ‖A‖2τ̃,r ‖χ∂yw̄‖τ,r−1/2 . (4.39)

Lastly, for the two nonlinear contributions, arising due to the the last two terms in (3.10d), we again
appeal to (4.38) and estimate∣∣∣T (5)

B

∣∣∣ . ∫
R

∫
R
|ξ − η| |Aη| |Aξ−η|

∥∥χρ2∂yθξ−η
∥∥
L∞y

∥∥ρ−1
∥∥
L2
y
‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dη dξ

.
∫

R

∫
R
|Aη| |Aξ−η| ‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dη dξ

. ‖A‖2τ̃,r ‖χ∂yw̄‖τ,r−1/2 (4.40)

and ∣∣∣T (6)
B

∣∣∣ . ∫
R

∫
R
|η| |Aη| |Aξ−η|

∥∥χρ2y∂yyθξ−η
∥∥
L∞y

∥∥ρ−1
∥∥
L2
y
‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dη dξ

.
∫

R

∫
R
|η| |Aη| |Aξ−η| ‖χρ∂yw̄ξ‖L2

y
〈ξ〉2r−1e2τ |ξ| dη dξ

.
∥∥∥|∂x|1/2A∥∥∥

τ̃,r
‖A‖τ̃,r ‖χ∂yw̄‖τ,r−1/2 . (4.41)

By summing the bounds (4.35)–(4.37), and (4.39)–(4.41), we obtain the bound (3.17d).
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A Review of the incompressible Triple Deck over a flat 2D plate

We roughly follow the presentation from [67]. We first introduce the variables

X =
x− 1

ν3/8
, Ȳ =

y

ν1/2
, Y =

y

ν5/8
, Ỹ =

y

ν3/8
, T =

t

ν1/4
. (A.1)

Here Ȳ , Y , and Ỹ are the fast vertical variables in the main deck, lower deck, and upper deck, respectively.
The X variable is the fast variable in the vicinity of the trailing edge, situated at x = 1, y = 0. On the fast
time scale T , to leading order only perturbances in the lower deck are active, while the other decks the fast
time dependence does not enter the momentum equation. Throughout this section we abuse notation and
write ν instead of an inverse Reynolds number, i.e. we treat ν as if it is dimensionless.

A.1 Main deck

The ansatz on the solution of the 2D Navier-Stokes equation in this region is

(uM , vM , pM ) =
(
UB(Ȳ ) + ν

1
8u1(X, Ȳ , T ), ν

1
4 v1(X, Ȳ , T ), ν

1
4 p1(X, Ȳ , T )

)
+ lower order terms.

(A.2)

Above, UB is defined to be the Blasius boundary layer, introduced in (1.3a) as UB := f ′( Ȳ√
x
), where f

solves (1.3b). To ease notation, we suppress the x dependence of UB , and denote by U ′B = ∂Ȳ UB , since our
scaling ensures that we are very close to x = 1. Inserting ansatz (A.2) into the 2D Navier-Stokes equations
and collecting only the leading order terms we obtain the inviscid type system

UB∂Xu1 + v1U
′
B = 0 (A.3a)

∂Ȳ p1 = 0 (A.3b)

∂Xu1 + ∂Ȳ v1 = 0 . (A.3c)

Note that both the time derivative and the dissipation term in the tangential momentum equation drop out,
as they are lower order in ν. The system (A.3) has as a solution

u1 = A(X,T )U ′B(Ȳ ), v1 = −∂XA(X,T )UB(Ȳ ), p1 = P (X,T ) , (A.4)

for some unknown functions A(X,T ) and P (X,T ). Note that the solution (A.4) satisfies the boundary
condition u1|Ȳ→∞ = 0. This type of matching condition enforces, from (A.2), that the horizontal velocity
in the main deck converges rapidly to the ambient Blasius flow, which is what is observed when the boundary
layer separates.

The boundary condition

A(X,T )→ 0 as X → −∞

ensures that, approaching from the left, i.e. as x → 1− the main deck profile matches with the Blasius
boundary layer profile UB

(
Ȳ√
x

)
. Therefore, at the lateral boundary x = 1− in original variables, which is

the same as the boundary X → −∞ in rescaled variables (as ν → 0).
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A.2 Lower deck

Notice now that the main deck, (A.3), contributes a non-zero trace onto Ȳ = 0, which needs to be adjusted.
Thus, it does not suffice to take the main deck as the full flow, as it does not satisfy the no-slip boundary
condition. This is the purpose of introducing the lower deck. More precisely, we compute

uM |Ȳ→0 = UB(Ȳ ) + ν
1
8u1(X, Ȳ , T ) ∼ Ȳ U ′B(0) + ν

1
8A(X,T )U ′B(0)

∼ ν
1
8U ′B(0)(ν−

1
8 Ȳ +A(X,T )) ∼ ν

1
8U ′B(0)(Y +A(X,T )), (A.5)

where we have used the scaling Y = ν−
1
8 Ȳ which relates the lower deck scaling and main deck/ Prandtl

scaling. This then suggests that in order to correct for the boundary trace, (A.5), we need to seek a lower deck
expansion in of magnitude ν

1
8 . The ansatz on the solution (uL, vL, pL) of the 2D Navier-Stokes equation in

this region is thus

(uL, vL, pL) =
(
ν

1
8U(X,Y, T ), ν

3
8V (X,Y, T ), ν

1
4P (X,Y, T )

)
+ lower order terms . (A.6)

Inserting ansatz (A.6) into the 2D Navier-Stokes equations and collecting only the leading order terms we
obtain the boundary layer type system

∂TU + U∂XU + V ∂Y U + ∂XP − ∂2
Y U = 0 (A.7a)

∂Y P = 0 (A.7b)

∂XU + ∂Y V = 0 . (A.7c)

Matching the tangential velocity as Y → ∞ in (A.6), with the tangential velocity as Ȳ → 0 in (A.5), we
arrive at the boundary condition (for simplicity, take U ′B(0) = 1)

lim
Y→∞

(U(X,Y, T )− Y ) = A(X,T ) . (A.8)

On the other hand, at the boundary of the plate we impose Dirichlet boundary conditions

U(X, 0, T ) = V (X, 0, T ) = 0 . (A.9)

A.3 Upper deck

The flow in this region is to leading order of steady potential inviscid type. That is, the leading order is
an Euler flow, which takes as argument the unscaled variables, (t, x, y), from (A.1). In comparison to the
perturbations, which in this deck are functions of (X, Ỹ ), every Euler flow fluctuates slowly, and so, without
loss of generality, we take the outer Euler flow to be the constant shear flow (1, 0). Thiss yields the ansatz

(uU , vU , pU ) =
(

1 + ν
1
4u2(X, Ỹ , T ), ν

1
4 v2(X, Ỹ , T ), ν

1
4 p2(X, Ỹ , T )

)
+ lower order terms . (A.10)

Inserting this ansatz into the 2D Navier-Stokes equations and collecting only the leading order terms we
obtain the potential type system

∂Xu2 + ∂Xp2 = 0 (A.11a)

∂Xv2 + ∂
Ỹ
p2 = 0 (A.11b)

∂Xu2 + ∂
Ỹ
v2 = 0 . (A.11c)
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The matching condition at Ỹ = 0 with the flow in the main deck as Ȳ →∞ requires that

p2(X, 0, T ) = P (X,T ), v2(X, 0, T ) = −∂XA(X,T ) (A.12)

which, according to (A.3), cancels out the normal velocity component from the main deck. Matching the
upper deck velocity with the outer Euler solution as Ỹ →∞ yields

lim
Ỹ→+∞

p2(X, Ỹ , T ) = lim
Ỹ→+∞

v2(X, Ỹ , T ) = 0 .

A.4 The closed coupled system

From (A.11) we deduce that the pressure p2 and the normal velocity v2 are harmonic in the variables X, Ỹ .
But one can say more: the functions p2 and v2 are harmonic conjugates. Therefore, we may view v2 as the
real part of an analytic function, and p2 as its imaginary part. Hence their traces at the boundary of the half
space are related via the Hilbert transform

P (X,T ) = p2(X, 0, T ) = Hv2(X, 0, T ) = −(H∂X)A(X,T ) =
1

π
p.v.

∫
R

∂X′A(X ′)

X −X ′
dX ′ (A.13)

which concludes the proof of (1.7). Recall that −H∂X = |∂X |. Therefore, the system (A.7) together with
the boundary conditions (A.8), (A.9), and (A.13) form a closed evolution system, which is called the Triple
Deck model. Once the solution in the lower deck is determined, we derive from (A.4) the leading order
solution in the main deck, while from (A.12) and harmonic extension in the upper half space, we determine
the leading order solution in the upper deck.

A.5 The scalings

Now that we have presented the derivation of the model, we briefly discuss the idea behind the scalings
(A.1). We roughly follow the exposition in [44]. a-priori, one wants to rescale the x variable near the point
of separation, which may physically correspond to the trailing edge of a flat plate, or if a plate were to have
a disturbance. In our presentation, x = 1 is this point. To achieve this, one introduces a fast, horizontal
variable. Next, one scales the magnitude of the deviation from Blasius in the main deck, which represents
the separation effect. Summarizing the starting point:

X =
x− 1

L
, uM = UB(Ȳ ) + `u1(X, Ȳ , T ), vM =

√
ν`

L
v1(X, Ȳ , T ). (A.14)

for scalings L, ` to be determined in terms of ν. An inspection of (A.1) shows that L = ν
3
8 and ` = ν

1
8 .

In the next step, one introduces a lower deck to cancel out the boundary contribution from the main
deck. This contribution, the content of (A.5), is now of the form

uM |Ȳ→0 ∼ Ȳ U ′B(0) + `A(X,T )U ′B(0) ∼ `U ′B(0)(Y +A(X,T )),

where the lower deck fast variable and magnitude are now

Y := `−1Ȳ , uL := `U.

In the lower deck step, equating the convection uL∂x and the viscosity ν∂yy just as in the standard Prandtl
theory gives the relation

`2L−1 ∼ uL∂xuL = ν∂yyuL ∼ ν
1

ν

1

`2
`,
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which gives `3 = L. The final physical determination comes from the upper deck. One realizes that the
contribution of vM at the top of the Main Deck needs to match the order of the pressure, which is `2. Thus,

√
ν

`2
= `2 ⇒ ` = ν

1
8 , L = ν

3
8 ,

which concludes the scale analysis.
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