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ABSTRACT. In [16], Córdoba, Córdoba, and Fontelos proved that for some initial data, the following nonlocal-
drift variant of the 1D Burgers equation does not have global classical solutions

∂tθ + u ∂xθ = 0, u = Hθ,

where H is the Hilbert transform. We provide four essentially different proofs of this fact. Moreover, we study
possible Hölder regularization effects of this equation and its consequences to the equation with diffusion

∂tθ + u ∂xθ + Λγθ = 0, u = Hθ,

where Λ = (−∆)1/2, and 1/2 ≤ γ < 1. Our results also apply to the model with velocity field u = ΛsHθ,
where s ∈ (−1, 1). We conjecture that solutions which arise as limits from vanishing viscosity approximations
are bounded in the Hölder class in C(s+1)/2, for all positive time. August 5, 2014.

1. Introduction

The question of finite time singularities for the 3D incompressible Euler equations, from smooth initial
datum, is one of the fundamental problems in analysis. In the hope of understanding certain aspects of this
question, motivated either by physical scenarios, numerical simulations, or simply by phenomenological
analogies, over the past decades several simplified models have been proposed. Among these, the two-
dimensional surface quasi-geostrophic (SQG) equation introduced by Constantin-Majda-Tabak [13] stands
out for its striking analytic and geometric similarities to the 3D Euler equations. One-dimensional models
have been proposed even earlier, by Constantin-Lax-Majda [12], DeGregorio [20, 21], and a number of
further works [35, 38, 16, 7, 37, 5, 33]. See also the models very recently considered in [34, 11, 10].
While for the SQG equations the question of singularities in finite time remains completely open, for the
aforementioned one-dimensional models, the emergence of singularities is well understood.

In this paper we consider the 1D nonlocal transport equation introduced by Córdoba, Córdoba, and
Fontelos in [16]

∂tθ + u ∂xθ = 0, u = Hθ, (1.1)

where

Hθ(x) =
1

π
p.v.

∫
R

θ(y)

y − x
dy (1.2)

is the Hilbert transform, and (t, x) ∈ [0,∞)×R. With this convention,H∂xθ = −Λθ, where Λ = (−∆)1/2.
Phenomenologically, this equation may be viewed as a toy-model for the 2D SQG equation. However

(1.1) has appeared earlier in the literature in view of the strong analogies with the Birkhoff-Rott equations
modeling the evolution of a vortex sheet [2, 35]. Notwithstanding the fact that this is the simplest nonlocal
active scalar equation that one can write in 1D with a zero order constitutive law for the velocity, a number
of open questions remain, cf. Section 7 below.

Equation (1.1) lies in the middle of a scale of equations with nonlocal velocity

∂tθ + u ∂xθ = 0, u = ΛsHθ, (1.3)
1
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where s ∈ (−1, 1). This system, recently considered in [25] as a simplified model for the 2D α-patch prob-
lem [27], interpolates between the classical Hamilton-Jacobi equation (for s = 1) and a one-dimensional
version of the 2D Euler vorticity equation (s = −1). Whereas the regularity of solutions when s = 1 and
s = −1 is very well understood, the intermediate cases present a number of additional difficulties due to
their nonlocal nature, best exemplified by the case s = 0.

Our interest in the model (1.1) (and by extrapolation in the model (1.3)) also comes from an analytical
point of view: the L∞ norm, which is conserved for classical solutions, may not be the strongest a-priori
controlled quantity. At least for a certain class of initial data, we conjecture in Section 7 that weak solutions
which arise as limits of viscous regularizations have a decaying Hölder 1/2 norm (the corresponding norm
for (1.3) is C(1+s)/2). While such a behavior may seem quite unintuitive given the transport nature of the
equations, the phenomenon of an “attracting regularity” may be natural in the context of fully developed
3D turbulence. Here the Kolmogorov theory predicts that due to the forward energy cascade the C1/3

regularity is in some sense “stable”. We note that in the context of shell-models for 3D Euler, evidence of
this phenomenon was recently obtained in [9]. Moreover, as we discuss in Section 7 an a priori control on
the C1/2 norm for the inviscid problem is expected to show that the dissipative version of (1.1)

∂tθ + u ∂xθ + Λγθ = 0, u = Hθ, (1.4)

where γ ≥ 1/2, has global in time smooth solutions, thereby answering Conjecture 1 in [28]. This scenario
would be particularly interesting as it is not based on scaling arguments around the control obtained from
the maximum principle.

Before discussing our results and the above mentioned conjectures in detail, we recall the previous
works on the models (1.1), (1.3), and (1.4). The local existence of strong solutions to (1.1) was obtained in
[2, 35]. The emergence of finite time singularities from smooth initial datum for (1.1) has been established
in the remarkable work [16]. The initial datum considered there is even, non-negative and decreasing away
from the origin, and the blowup scenario observed is that a cusp forms at the origin in finite time. This
blowup proof was extended in [17] to cover a much wider class of initial data, via a series of new weighted
integral inequalities (which are interesting in their own right). The finite time blowup is obtained from any
non-constant initial data, which is natural in view of the 2-parameter scaling invariance of the equations (see
Section 2). In [6] the authors construct an explicit “expanding-semicircle” self-similar solution θ(t, x) =

−C(1 − x2/t2)
1/2
+ which is C1/2 smooth, where C > 0 is a universal constant. This is a global weak

solution (in a certain sense) with almost everywhere 0 initial datum. Numerical experiments suggest that
this is a stable weak solution.

Regarding the dissipative equation (1.4), the global existence in the L∞-subcritical case γ > 1 was
established in [16]. The global well-posedness in L∞-critical case γ = 1, with general initial datum was
first shown in [23]. We note that the method developed in [41] for general linear drift-diffusion equations
also yield this result (the methods developed in [31, 3, 15, 14] for global regularity of the critically dissipative
SQG equation only appear to work in the case of positive initial datum where the L2 norm of the solution
is under control). The finite time blowup for the dissipative equation (1.4) with γ < 1/2 was established
for the first time in [32], by adapting the methods developed in [16]. The inviscid and viscous blowup
proofs have been revisited in [28], using very elegant, elementary methods, but still the question of finite
time singularities in the parameter range 1/2 ≤ γ < 1 remains to date open. In comparison, for the
fractal Burgers equation, i.e. u = θ in (1.1), it is known that finite time blowup occurs for any γ <
1 [1, 30, 24, 19]. The analogy with the Burgers equation is however tentative at best, since as opposed to
θ ∂xθ, the nonlinearity in (1.1) is dissipative for Lp norms with 1 ≤ p < ∞, which hints to a regularizing
mechanism. Lastly, in [22] the eventual regularity for the fractionally dissipative equation is shown for the
entire range 0 < γ < 1, in the spirit of [8, 40, 18, 29] for the supercritically dissipative Burgers and SQG
equations.

We mention that recently in [25], motivated by analogies with the 2D α-patch problem (see, e.g [27]),
the authors consider the system (1.3) and its fractionally dissipative counterpart. They prove the finite time
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blowup for the inviscid and slightly viscous problem and the global regularity for the critically dissipative
problem. The method extends the arguments in [17, 32] by establishing a series of new weighted inequalities.

The main results of this paper are as follows. We give four essentially different proofs of finite time
blowup from smooth initial datum for (1.1), cf. Theorems 3.7, 4.4, 5.4, and 6.4. The main ideas are:

(i) The proof in Section 3 is based on a new identity for Λ (Proposition 3.5):

Λ[fΛf ](0) + f(0)f ′′(0) =
1

2
(Λf(0))2 − 1

2
(f ′(0))2 −

∥∥∥∥f(x)− f(0)

x

∥∥∥∥2
Ḣ1/2

(1.5)

which holds for any sufficiently smooth function f . This identity encapsulates the information of
Theorem 1.1 (II) of [17] as α → 2 when we apply it to f = Hθ (see also Remark 3.6 below).
Using (1.5) we deduce that if the initial data is strictly positive at any point, then there cannot be a
global C1 solution. This implication is similar to how Theorem 1.1 of [17] is used there to show
that there is finite time blowup in (1.1). This approach is the most similar to [17] from the ones
we show in this paper. It is interesting that we avoid complex integration and perhaps the identity
(1.5) may also be useful in other contexts.

(ii) The proof in Section 4 is based on a virial proof by contradiction, in the same spirit as the proofs
given in [16, 17, 32, 28, 25]. The main novelty of this proof over the aforementioned works is that
we do not appeal to delicate complex analysis arguments, nor to any integration by parts in the
nonlinear term. The main tool is a local in space lower bound for the nonlinearity (Lemma 4.2):∫ x1

x2

Hθ ∂xθ dx ≥ 1

4π
log

x1 + x2
x1 − x2

(θ(x2)− θ(x1))2 (1.6)

which holds for any 0 < x2 < x1, for θ that is even, and decreasing away from the origin (a
property that is maintained by the solution of (1.1) if the initial data obeys it [28]). Estimate (1.6)
is then used with a suitable spacial weight for dyadic points xi = 2−i in order to establish the
finite time blowup of (1.1), (1.3), and (1.4).

(iii) The proof in Section 5 is based on the DeGiorgi iteration scheme. The nonlinearity dissipates the
L1 norm of the solution, idea which at the level of truncations θk = (θ − Ck)+ yields

∂t‖θk‖L1 + ‖θk‖2Ḣ1/2 ≤ 0.

Fed into the DeGiorgi iteration, the above estimate implies a decay for ‖θ(t, ·)‖L∞ and shows that
classical solutions must blowup in finite time (for classical solutions the oscillation of the solution
is constant in time). This idea is closely related to the work of Alexis Vasseur and Chi Hin Chan
on applying De Giorgi’s technique on the Hamilton-Jacobi equation [42]. In fact, we are aware
that they have independently arrived to this proof for equation (1.1) as well.

(iv) The proof in Section 6 is based on constructing a suitable barrier for the solution, loosely in the
spirit of a similar idea employed for the Hamilton-Jacobi equations [4]. We show in Lemma 6.3
that an even, monotone away from the origin, non-negative solution lies below the barrier

θ(t, x) ≤ θ(0, 1/2) +
A

t
(1− |x|1/2)+

for some positive universal constant A, for all (t, x) ∈ (0,∞) × R. Again, since for classical
solutions the L∞ norm is constant, it follows that classical solutions cannot live forever. This
proof is perhaps the most elementary of the four blowup proofs.

All these proofs mutatis mutandis yield the finite time blowup for (1.3) in the entire parameter range s ∈
(−1, 1), recovering the results in [25]. The telescoping series proof in Section 4 also directly applies to the
fractionally dissipative equation (1.4), where it yields finite time blowup in the parameter range γ < 1/2,
cf. Theorem 4.7, thereby recovering the results in [32, 28]. The question of finite time singularities for
1/2 ≤ γ < 1 remains open.

Lastly, in Theorem 7.3 we prove that stationary solutions to the inhomogenous version of equation (1.1)
(respectively (1.3)) with bounded right hand side are C1/2 smooth (respectively C(1+s)/2). The proof is a
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direct consequence of the lower bound (1.6), and thus holds for functions θ that are even, monotone away
from the origin, and non-negative. This result is motivated, and in fact also partly motivates, the discussion
in Section 7 in which we present two conjectures for viscosity solutions to (1.1).

We conjecture that vanishing viscosity solutions to (1.1) have a bounded Hölder 1/2 norm, for all t > 0

(cf. Conjecture 7.1). In general, we conjecture that solutions to (1.3) are controlled inC(1−s)/2. In support of
this conjecture, we note that none of the different blowup proofs in this paper necessarily imply the blowup
of any Cα norm of the solution to (1.1) with α ≤ 1/2. In fact, there are two explicit solutions of (1.1) that
have a singularity of order exactly Hölder 1/2:

θ(t, x) = −|x|1/2 − C1t and θ(t, x) = −C2(1− x2/t2)1/2+ ,

where the Ci > 0 are suitable universal constants. It is not clear however whether these solutions may
be obtained as limits of vanishing viscosity approximations to (1.1). Besides the result in Theorem 7.3
which shows that certain stationary solutions do in fact obey C1/2 bounds, a last argument in favor of such
a regularizing effect, perhaps similar to the one for the Hamilton-Jacobi equations, is suggested by the
numerical experiments which rely on the code available at http://math.uchicago.edu/˜luis/
pde/hilbert.html. In particular, since we expect this regularizing phenomenon to be still valid for the
fractionally dissipative equations, it would imply that the equation (1.4) with γ ≥ 1/2 has global smooth
solutions (cf. [41]), thereby answering Conjecture 1 in [28].

We conclude the paper with a related and perhaps weaker conjecture: that for vanishing viscosity solu-
tions of (1.1) we have a lower bound Λθ(t, x) ≥ −A(t, θ0), for all time t > 0 and some decaying function
A(t, θ0) > 0 (cf. Conjecture 7.5). Geometrically, such a lower bound holds if the cusps that form in the
solution always point up, phenomenon supported by the numerical simulations. In fact we show in Theo-
rem 7.6 that if this conjecture holds, when θ is even, non-negative, and decaying away from the origin, then
θ must be Hölder 1/2 smooth away from the origin. We believe that a lower bound for Λθ is in fact related
to the uniqueness of weak solutions to (1.1), in the same way a one-sided bound for the derivative works
for the Burgers equation and the one sided-bound on the second-derivative works for the Hamilton-Jacobi
equations [26].

2. Preliminaries

In this section we recall some preliminary observations regarding the initial value problem for (1.1).

2.1. Scaling. If θ is a solution to (1.1), then for any values of a, b ∈ R the rescaled function

θab(t, x) = ab−1θ(at, bx)

is also a solution to (1.1).
For the equation with general drift (1.3) the rescaling is given by θab(t, x) = ab−1−sθ(at, bx), while for

the dissipative equation (1.3) the rescaling is given by θb(t, x) = bγ−1θ(bγt, bx). Note that in the later case
we have a one-parameter family.

2.2. Maximum principles. We first state the L∞ maximum principle, which follows directly from the
transport structure of (1.1).

LEMMA 2.1. Let θ solve (1.1). Then supR θ is non increasing in time and infR θ is non decreasing in
time. In particular oscR θ is non increasing.

The maximum principle stated in Lemma 2.1 also holds for solutions to (1.3) and (1.4). In the first
case because we have a transport equation, and in the second case because the fractional Laplacian with
γ ∈ (0, 2] has a maxmimum/minimum principle.

There is no obvious notion of a weak solution to (1.1). We assume that there is a tiny extra viscosity
term ε∆θ on the right side of (1.1), so that the solution is classical, and obtain bounds independent of
ε. This vanishing viscosity makes the equation time-irreversible. In particular, the L∞ norm of θ will be
non-increasing in time instead of constant.

http://math.uchicago.edu/~luis/pde/hilbert.html
http://math.uchicago.edu/~luis/pde/hilbert.html
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There is a mildly stronger version of the above maximum principle, stated below for completeness.

LEMMA 2.2. Let θ be a classical, i.e. C1,α smooth, decaying at infinity, solution of (1.1). The quantity∫
R
|θx(t, x)| dx

is constant in time.

PROOF. Consider {ϕε(·)}ε>0 a family of non-negative smooth convex functions, withϕε(0) = 0, which
converge to the absolute value function | · |, as ε → 0. Multiplying the equation obeyed by θx with ϕ′ε(θx)
and integrating over space we arrive at

∂t

∫
R
ϕε(θx) dx+

∫
R
Hθx

(
θxϕ

′
ε(θx)− ϕε(θx)

)
dx = 0.

The boundary terms arising in the above computation vanish since we assume θx → 0 as |x| → ∞, and we
considered ϕε(0) = 0. The proof is complete by passing ε→ 0 since ϕε(x)− xϕ′ε(x)→ 0 pointwise. �

Using the convexity assumption on ϕε one can show that for solutions which arise as limits of viscous
regularizations, the W 1,1 nor is non-increasing in time.

2.3. Solutions with symmetries. In Sections 4, 6, and parts of Section 7 we restrict the attention to
initial data θ0 that is smooth, non-negative, decaying at infinity, even in x, and with sign(x) ∂xθ0 ≤ 0. The
(viscosity) solution will inherit all these properties for positive time (see Lemma 4.6), except possibly the
smoothness. If θ is an even function, the formula (1.2) becomes

Hθ(x) =
2x

π

∫ ∞
0

θ(y)− θ(x)

y2 − x2
dy. (2.1)

Note that if θ is even and monotone decreasing away from the origin, then Hθ(x) < 0 at every point x > 0
unless θ is constant.

3. Singularity formation via identities for the Zygmund operator

In this section we provide our first proof that some solutions to the equation (1.1) must develop a
singularity in finite time. Before turning to the proof of Theorem 3.7 we use a number of identities for the
Hilbert transform in order to obtain a new identity for Λ, cf. Proposition 3.5 below.

3.1. Preliminary identities around the Hilbert transform.

LEMMA 3.1. For any function g : R→ R,

H[xg(x)] = xHg(x) +

∫
R
g(x) dx,

PROOF. We compute H[xg(x)] directly.

H[xg(x)] = p.v.

∫
R

yg(y)

y − x
dy,

= xHg(x) + p.v.

∫
R

(y − x)g(y)

y − x
dy,

= xHg(x) + p.v.

∫
R
g(y) dy.

�
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REMARK 3.2. Note that the function Hg(x) + ig(x) is the value on the real line of a holomorphic
function f(z) in the upper half space. The function xHg(x) + ixg(x) is the value on the real line of zf(z).
This suggests the formula H[xg(x)] = xHg(x), which is correct up to the addition of a constant term.

The Hilbert transform is a well defined isometric isomorphism in L2(R). Also Hf makes sense for
many functions f which are not in L2. If may extend it to any function f which is the imaginary part of the
value on R of a holomorphic function in the upper half space.

COROLLARY 3.3. For any function g : R→ R,

Λ[xg(x)] = −Hg(x) + xΛg(x).

PROOF. The corollary follows by differentiating the identity in Lemma 3.1. �

LEMMA 3.4. For any function g : R→ R,

H[gHg] =
1

2
Hg2 − 1

2
g2.

PROOF. It is a direct consequence of (Hg + ig)2 = (Hg2 − g2) + 2igHg. �

3.2. An identity for Λ.

PROPOSITION 3.5. Let f : R→ R be any function. Then

Λ[fΛf ](0) + f(0)f ′′(0) =
1

2
(Λf(0))2 − 1

2
(f ′(0))2 −

∥∥∥∥f(x)− f(0)

x

∥∥∥∥2
Ḣ1/2

.

PROOF. By subtracting a constant, we can assume without loss of generality that f(0) = 0, in which
case the second term on the left hand term vanishes.

Assuming f(0) = 0, we want to compute

Λ[fΛf ](0) = −p.v.
∫
R

f(x)Λf(x)

x2
dx. (3.1)

Let f(x) = xg(x). Since f(0) = 0, we can always find such function g. Moreover, we observe that

g(0) = f ′(0) and Hg(0) = −Λf(0).

We rewrite (3.1) in terms of g using Corollary 3.3.

Λ[fΛf ](0) = −p.v.
∫
R

−xg(x)Hg(x) + x2g(x)Λg(x)

x2
dx,

= p.v.

∫
R

g(x)Hg(x)

x
dx− p.v.

∫
R
g(x)Λg(x) dx,

= H[gHg](0)− ‖g‖2
Ḣ1/2 .

We use Lemma 3.4 to rewrite the term H[gHg] and arrive at

Λ[fΛf ](0) =
1

2
(Hg(0))2 − 1

2
(g(0))2 − ‖g‖2

Ḣ1/2 .

Recalling that g(0) = f ′(0) and Hg(0) = −Λf(0), we obtain the identity

Λ[fΛf ](0) =
1

2
(Λf(0))2 − 1

2
(f ′(0))2 − ‖f(x)/x‖2

Ḣ1/2

which concludes the proof. �
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REMARK 3.6. The right hand side in Proposition 3.5 does not have any particular sign. Indeed, if g is
the function as in the proof of Proposition 3.5, we get

Λ[fΛf ](0) =
1

2
(Hg(0))2 − 1

2
(g(0))2 − ‖g‖2

Ḣ1/2 ,

=
1

2
(Hg(0))2 − 1

2
(g(0))2 − ‖Hg‖2

Ḣ1/2 .

Choosing g odd, we would have g(0) = 0. Thus Hg would be an arbitrary even function, and in general the
‖Hg‖Ḣ1/2 norm canot control the value of Hg(0).

Note that this does not contradict the result in [17] since there is a typo in Theorem 1.1 (II). The as-
sumption in that theorem is meant to say that f − f(0) is a nonnegative (or nonpositive) function.

3.3. Blow-up proof using Hilbert transform identity.

THEOREM 3.7. Let θ0 be any function which converges to zero as x → ±∞ and has a positive global
maximum at a point x0. Then, a C1 solution to (1.1) such that θ(0, x) = θ0, cannot exist for all time.

PROOF. For x0 be the point so that

θ(0, x0) = max
x∈R

θ(0, x).

Let us follow the flow

Ẋ(t) = Hθ(t,X(t)),

X(0) = x0.

The value of θ is constant along the flow of the transport equation, therefore

θ(t,X(t)) = max
x∈R

θ(t, x).

In particular θx(t,X(t)) = 0 and Λθ(t,X(t)) > 0.
Now we compute the evolution of Λθ(t,X(t)). We have

∂tΛθ(t,X(t)) = Λθt +Hθ Λθx = −Λ[Hθθx] +Hθ Λθx.

Note that Hθθx = fΛf and Λθx = −fxx for f = Hθ. We apply Proposition 3.5 and obtain.

∂tΛθ(t,X(t)) = −1

2
(θx)2 +

1

2
(Λθ)2 + ‖Hθ/x‖2

Ḣ1/2 ≥
1

2
(Λθ(t,X(t)))2

since θx(t,X(t)) = 0. This ODE for Λθ(t,X(t)) blows up in finite time, thereby concluding the proof. �

REMARK 3.8. The previous proof can also be applied at any initial point x0 which is a local max or
min for which Λθ(x0, 0) > 0. In particular it is possible to find an even initial condition θ0 which develops
a singularity away from the origin.

REMARK 3.9. Note that the computation in the previous proof shows that for smooth solutions of (1.1),
Λθ obeys the PDE

∂tΛθ +Hθ(Λθ)x = −1

2
(θx)2 +

1

2
(Λθ)2 +

∥∥∥∥Hθ(·)−H(x)

· − x

∥∥∥∥2
Ḣ1/2

.

The second and third term in the right hand side are positive, but the first one is negative. If the right hand
side was non negative, it would imply that a lower bound on Λθ is preserved by the flow.

It is currently not clear whether Λθ remains bounded from below for positive time. This issue is ad-
dressed in Section 7 below, in connection with a conjectured a priori estimate for θ in C1/2 (see Conjec-
ture 7.5).
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4. Singularity formation via telescoping sums

In this section we present our second proof that smooth solutions to (1.1) cannot exist for all time
(Theorem 4.3 below). The proof is based on a local in space lower bound for the nonlinearity, which is
established in Lemma 4.2.

4.1. An integral bound for the nonlinearity.

LEMMA 4.1. Assume θ is even and decreasing away from the origin. Then we have

−Hθ(x2) ≥
1

π
log

(
x1 + x2
x1 − x2

)
(θ(x2)− θ(x1)) ≥ 0 (4.1)

for any 0 < x2 < x1.

PROOF. Using (2.1) and monotonicity we have the bound

−Hθ(x2) =
2x2
π

∫ ∞
0

θ(x2)− θ(y)

y2 − x22
dy ≥ 2x2

π

∫ ∞
x1

θ(x2)− θ(y)

y2 − x22
dy

≥ 2x2
π

(θ(x2)− θ(x1))
∫ ∞
x1

dy

y2 − x22
=

1

π
(θ(x2)− θ(x1)) log

(
x1 + x2
x1 − x2

)
and the proof is complete. �

The above estimate was previously used in [28] in order to give a different proof of the inequality in [17],
which avoids the use of subtle complex analysis arguments. The following Lemma yields a lower bound for
the nonlinear term in (1.1), which is local in nature.

LEMMA 4.2. Let θ be smooth, even, and decreasing away from the origin. Then we have∫ x1

x2

Hθ ∂xθ dx ≥ 1

4π
log

x1 + x2
x1 − x2

(θ(x2)− θ(x1))2 (4.2)

for any 0 < x2 < x1.

PROOF. Note that Hθ ∂xθ ≥ 0 by our assumptions on θ. Choose a point x3 ∈ (x2, x1) such that
2θ(x3) = θ(x1) + θ(x2). Without loss of generality we have 2(x3 − x2) ≤ x1 − x2, as the other case can
be treated similarly.

Using the monotonicity of θ and applying the lower bound (4.1) to a point x ∈ (x3, x1), we obtain

−Hθ(x) ≥ 1

π
(θ(x)− θ(x1)) log

(
x1 + x

x1 − x

)
≥ 1

2π
(θ(x2)− θ(x1)) log

(
x1 + x2
x1 − x2

)
.

Now, since −θx ≥ 0, we obtain∫ x1

x2

Hθ ∂xθ dx ≥
∫ x3

x2

Hθ ∂xθ dx ≥ 1

2π
(θ(x2)− θ(x1)) log

(
x1 + x2
x1 − x2

)∫ x3

x2

(−∂xθ) dx

=
1

4π
(θ(x2)− θ(x1))2 log

(
x1 + x2
x1 − x2

)
where we have also used the definition of x3. Note that in the proof we did not integrate by parts. �

In particular, the above Lemma is a local version of the identity∫
R
θxHθ dx = ‖θ‖2

Ḣ1/2 = c

∫∫
R

(θ(x1)− θ(x2))2

(x1 − x2)2
dx1 dx2 ≥ 0

which follows from integration by parts.
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4.2. The inviscid case.

THEOREM 4.3. Let θ0 be even, non-negative, monotone decreasing on (0,∞). Then the initial value
problem for (1.1) does not have a global in time C1

x smooth solution.

The idea of the proof to use a weighted version of Lemma 4.2 in a dyadic fashion. The proof works for
any smooth initial datum θ0 that decays at infinity, and has θ0(0) > 0.

PROOF. Assume the ensuing solution θ of (1.1) lies in L∞(0, T ;C1) for some T > 0. Then θ(·, t) is
even, decreasing away from the origin and non-negative on [0, T ). The following computations are then
justified on this time interval. We will arrive at a contradiction if T is sufficiently large, which implies that
the C1 norm of the solution must blow up in finite time.

Consider the continuous function η : (0,∞)→ (0,∞) defined by

η(x) =

{
x−α , 0 < x < 1,

x−2−α , x > 1,
(4.3)

for some α ∈ (0, 1). Then η ∈ L1(R), is even and monotonically decreases away from the origin. Define
the Lyapunov functional

F (t) = Fθ0(t) =

∫ ∞
0

η(x)(θ(0, t)− θ(x, t)) dx ≥ 0. (4.4)

Then, in view of the L∞ maximum principle of Lemma 2.1, we have that

Fθ0(t) ≤ ‖θ0‖L∞‖η‖L1 =
‖θ0‖L∞

α(1− α)
. (4.5)

We will now use the equation (1.1) to deduce that F obeys an ODE which blows up in finite time, if
F (0) > 0. Differentiating in time, and using that as long θ remains Hölder continuous we must have
Hθ(0, t) = 0, we obtain

dF

dt
(t) =

∫ ∞
0

η(x)∂t(θ(t, 0)− θ(t, x)) dx

=

∫ ∞
0

η(x)Hθ(t, x) ∂xθ(t, x) dx−Hθ(t, 0)∂xθ(t, 0)

∫ ∞
0

η(x) dx

=
∑
k∈Z

∫ 2k+1

2k
η(x)Hθ(t, x) ∂xθ(t, x) dx. (4.6)

We now appeal to Lemma 4.2 and obtain∫ 2k+1

2k
Hθ ∂xθ dx ≥ log 3

4π
(θ(2k)− θ(2k+1))2.

Combining the above estimate with (4.6) we obtain

dF

dt
(t) ≥ log 3

4π

∑
k∈Z

η(2k+1)(θ(t, 2k)− θ(t, 2k+1))2 (4.7)

where we have also used that η is decreasing.
On the other hand we may write

η(x) = −∂xϕ(x)

for all x ∈ (0, 1) ∪ (1,∞) where

ϕ(x) =

{
1

1+α + 1
1−α(1− x1−α) , 0 < x < 1,

1
1+αx

−1−α , x > 1.
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Note that ϕ ≥ 0 is monotone decreasing. Therefore, we have

F (t) = −
∫ ∞
0

∂xϕ(x)(θ(t, 0)− θ(t, x)) dx = −
∫ ∞
0

ϕ(x)∂xθ(x, t) dx

=
∑
k∈Z

∫ 2k+1

2k
ϕ(x)(−∂xθ(t, x)) dx ≤

∑
k∈Z

ϕ(2k)(θ(t, 2k)− θ(t, 2k+1)) (4.8)

where in the second to last line we have used that θ and ϕ are decreasing. At last, using the Cauchy-Schwartz
inequality, it follows from (4.8) that

F (t) ≤
∑
k∈Z

ϕ(2k)(η(2k+1))−1/2(θ(t, 2k)− θ(t, 2k+1))(η(2k+1))1/2

≤

(∑
k∈Z

(ϕ(2k))2(η(2k+1))−1

)1/2(∑
k∈Z

η(2k+1)(θ(t, 2k)− θ(t, 2k+1))2

)1/2

. (4.9)

In view of the choice in of η (and thus ϕ), we have that∑
k∈Z

(ϕ(2k))2

η(2k+1)
≤ 21+α

1− α2

∑
k<0

2αk +
22+α

(1 + α)2

∑
k≥0

2−αk = cα

where cα > 0 is an explicitly computable constant.
Therefore, by combining (4.7) with (4.9) we obtain that

dF

dt
(t) ≥ log 3

4πcα
(F (t))2 (4.10)

which implies a finite time blowup forF , sinceF (0) > 0, for any θ0 which is not a constant. This contradicts
(4.5) and thus completes the proof of the theorem. �

4.3. The fractionally transport velocity case.

THEOREM 4.4. Let θ0 be even, non-negative, monotone decreasing on (0,∞). Let s ∈ (−1, 1). Then
the initial value problem for (1.3) cannot have a global in time C1

x smooth solution.

Before giving the proof of the above statement we note that estimate (4.2) has a direct analogue for the
case of a general drift velocity HΛsθ.

LEMMA 4.5. Under the assumptions of Lemma 4.2, when s ∈ (−1, 1) we have∫ x1

x2

HΛsθ ∂xθ dx ≥ 1− s
16s

(
1− (x1 − x2)s

(x1 + x2)s

)
(θ(x2)− θ(x1))2

(x1 − x2)s
(4.11)

for any 0 < x2 < x1.

PROOF. The proof is the same as the one of Lemma 4.2, except that instead of the pointwise estimate
(4.1), we use the bound

−HΛsθ(x2) ≥
(1− s)

4s

(
1− (x1 − x2)s

(x1 + x2)s

)
θ(x2)− θ(x1)

(x1 − x2)s
≥ 0 (4.12)

which holds for 0 6= s ∈ (−1, 1) and any 0 < x2 < x1. Note that in the limit s → 0, be bound (4.12) is
consistent with estimate (4.1).

In order to prove (4.12), recall that HΛsθ = ∂xΛs−1θ. Since s − 1 < 0, the operator Λs−1 is given by
convolution with the Riesz potential

Λs−1θ(x) =
1

cs

∫
R

θ(y)

|y − x|s
dy
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where cs =
√
π21−sΓ((1− s)/2)/Γ(s/2). Therefore we have

HΛsθ(x) =
s

cs
P.V.

∫
R

θ(y)

(y − x)|y − x|s
dy =

s

(1− s)cs
(1− s)

∫
R

θ(y)− θ(x)

(y − x)|y − x|s
dy.

One may verify explicitly that
1

4
≤ s

(1− s)cs
≤ 1

2

for s ∈ (−1, 1), and that the dependence on s is monotone increasing.
The proof now follows just as the proof of Lemma 4.1. Under the standing assumptions on θ we have

−HΛsθ(x2) ≥
1− s

4
(θ(x2)− θ(x1))

∫ ∞
x1

1

(y − x2)s+1
− 1

(y + x2)s+1
dy.

The integral on the right side of the above converges for s ∈ (−1, 1) and after a direct computation we
obtain

−HΛsθ(x2) ≥
1− s

4s
(θ(x2)− θ(x1))

(
1

(x1 − x2)s
− 1

(x1 + x2)s

)
which concludes the proof. �

PROOF OF THEOREM 4.4. The proof is a slight modification of the proof of Theorem 4.3. Note that
the monotonicity and symmetry properties of the solution are maintained by the flow (1.3) in view of its
transport nature. Consider the function η(x) defined in (4.3), and let F (t) be defined by (4.4). In view of
Lemma 4.5, we have that∫ 2k+1

2k
HΛsθ∂xθ dx ≥ 1− s

16s

(
1− 3−s

)
2−ks(θ(2k)− θ(2k+1))2,

so that similarly to (4.7), we have
dF

dt
(t) ≥ cs

∑
k∈Z

η(2k+1)2−ks(θ(2k)− θ(2k+1))2

for some constant cs > 0 that depends only on s ∈ (−1, 1). In view of the bound (4.8), the proof of the
Theorem is completed once we establish that∑

k∈Z

(ϕ(2k))2

η(2k+1)2−ks
<∞ (4.13)

for some α ∈ (0, 1). In view of the definitions of ϕ and η, the estimate (4.13) follows from∑
k<0

2(α+s)k +
∑
k≥0

2(−α+s)k <∞

which holds once we let
α > |s|

which is consistent with α ∈ (0, 1). �

4.4. The fractionally dissipative case. We now show how the telescopic sum argument can also be
used to prove the emergence of singularities in finite time for a problem with fractional diffusion. The proof
is in the same spirit as the proofs given in [32] and [28, 25], but as in the inviscid case we avoid using the
integral inequality of [17].

The symmetry and monotonicity of the function θ plays an important role in this proof. It is easy to see
that if the initial value θ0 is even and non negative, the solution θ(·, t) will stay even and non negative for
all values of t > 0. It is also true that if θ0 is monotone decreasing away from the origin, the same property
holds for θ(·, t) for all t > 0. The preservation of this property is perhaps the least obvious one given the
influence of the fractional diffusion. This fact was already presented in [28, Lemma 6.3]. Since the proof
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in [28] discusses only the case where the sign of θx is lost away from the origin, for the sake of completeness
we give here the proof of this fact, which we state in the following lemma.

LEMMA 4.6. Assume θ0 is even, smooth, and non increasing away from the origin. Let θ be a smooth,
decaying at infinity solution to the problem (1.4). Then θ(·, t) is even and non increasing away from the
origin for any t > 0.

PROOF. The evenness of θ is conserved due to invariance under x 7→ −x of the equation. The more
delicate part is to prove that ∂xθ(t, x) ≤ 0 for all t ∈ [0, T ) and all x ≥ 0. Note that in view of the evenness
of θ(t, ·), we have that ∂xθ(t, 0) = 0.

Assume by contradiction that for some t0 ∈ [0, T ) and some x0 ∈ (0,∞) we have that ∂xθ(t0, x0) > 0.
Fix A = 2 supt≤t0 ‖Λθ(t, ·)‖L∞ and pick ε > 0 sufficiently small so that ∂xθ(t0, x0) > εeAt0 .

The derivative θx = ∂xθ satisfies the equation

∂t(θx) +Hθ ∂x(θx)− Λθ (θx) + Λγ(θx) = 0. (4.14)

Let (t1, x1) ∈ (0,∞) × (0,∞) be the first crossing point between the functions θx(t, x) and εeAt sign(x).
That means that θx(t, x) < εeAt for all x ∈ [0,∞) and t < t1, but that θx(t1, x1) = εeAt1 . This point
must exist because we know that θx(0, x) < ε for x ≥ 0, and by assumption θx(t0, x0) > εeAt0 . Moreover,
θx(t, 0) = 0 for all t and θx is continuous, so that θx(t, x) < εeAt when x is too close to the origin. This
ensures that x1 > 0. Finally, we assume θx(t, x) → 0 as x → ∞ (this decay assumption is not strictly
necessary, but it makes the proof easier).

Now we evaluate the equation for θx at the point (t1, x1) and obtain a contradiction. By the minimality
of t1 we must have ∂t(θx)(t1, x1) ≥ ∂t(εe

At)|t=t1 = AεeAt1 . Note that θx(t1, ·) achieves its maximum on
[0,∞) at x = x1, which yields that ∂x(θx)(t1, x1) = 0. Moreover, when we compute Λγ(θx(t1, x1)). Since
θx is odd we have

Λγθx(t1, x1) = cP.V.

∫
R

θx(t1, x1)− θx(t1, y)

|x1 − y|1+γ
dy,

= cP.V.

∫ ∞
0

(θx(t1, x1)− θx(t1, y))

(
1

|x1 − y|1+γ
− 1

|x1 + y|1+γ

)
dy.

By assumption we have θx(t1, x1) − θx(t1, y) ≥ 0 for all y ≥ 0, and clearly |x1 + y| > |x1 − y| for all
x1 > 0 and y ≥ 0. Thus, Λγ(θx)(t1, x1) > 0. To summarize, we have that

∂t(θx)(t1, x1) ≥ Aεe−At1 ,
Hθ ∂x(θx)(t1, x1) = 0,

Λγ(θx)(t1, x1) > 0.

Recalling the choice A = 2 supt≤t0 ‖Λθ(t, ·)‖L∞ and that θx(t1, x1) = εe−At1 , we obtain a contradiction
with the equation (4.14) at the point (t1, x1). �

THEOREM 4.7. Let θ0 be even, non-negative, monotone decreasing on (0,∞). Let γ ∈ (0, 1/2). Then
the initial value problem for (1.4) cannot have a global in time C1

x smooth solution.

PROOF OF THEOREM 4.7. We modify the proof of Theorem 4.3 by taking the test function η(x) de-
fined as

η(x) =

{
x−1−α , 0 < x < 1,

x−2−α , x > 1,
(4.15)

where the parameter α ∈ (0, 1) will be later chosen suitably, in terms of γ ∈ (0, 1/2). Note that η(x) =
−∂xϕ(x) for all x ∈ (0, 1) ∪ (1,∞), where

ϕ(x) =

{
1

1+α + 1
α(x−α − 1) , 0 < x < 1,

1
1+αx

−1−α , x > 1.
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and ϕ(x) ≥ 0.
Assume θ remains smooth on [0, T ). The following computations are then justified for all t < T . As in

(4.4), we use the Lyapunov functional

F (t) =

∫ ∞
0

η(x)(θ(t, 0)− θ(t, x)) dx. (4.16)

Note that in view of the non-integrable singularity of η near the origin, as opposed to (4.5), ere we do not
a-priori know that F is a bounded function.

Then, similarly to (4.6), since θ is even we have that

dF

dt
(t) =

∫ ∞
0

η(x)Hθ(t, x) ∂xθ(t, x) dx+

∫ ∞
0

η(x) (Λγθ(t, x)− Λγθ(t, 0)) dx.

The nonlinear term is bounded from below as in (4.7) by∫ ∞
0

η(x)Hθ(t, x) ∂xθ(t, x) dx ≥ log 3

4π

∑
k∈Z

η(2k+1)(θ(t, 2k)− θ(t, 2k+1))2 ≥ log 3

4πcα
(F (t))2 (4.17)

where in the last inequality we have used (4.8)–(4.9) and the fact that

cα =
∑
k∈Z

(ϕ(2k))2

η(2k+1)
=
∑
k<0

(
1

1 + α
+

2−kα − 1

α

)2

2(k+1)(1+α) +
∑
k≥0

2−(2+2α)k

(1 + α)2
2(k+1)(2+α) <∞

for α ∈ (0, 1). Here we have implicitly used Lemma 4.6.
In order to treat the nonlocal term, we appeal to a trick already present in [32, 28], namely that

Λα(Λγθ)(t, 0) = Λα+γθ(t, 0). In view of the definition of η and the evenness of θ we may write∫ ∞
0

η(x)(Λγθ(t, x)− Λγθ(t, 0)) dx

= −1

2

∫
R

Λγθ(t, 0)− Λγθ(t, x)

|x|1+γ
dx−

∫ ∞
1

x− 1

x2+α
(Λγθ(t, x)− Λγ(t, 0)) dx

= −cα,γ
∫
R

θ(t, 0)− θ(t, x)

|x|1+γ+α
dx−

∫
R

(
x− 1

x2+α
1x≥1

)
Λγθ(t, x) dx+ Λγθ(t, 0)

∫ ∞
1

x− 1

x2+α
dx.

(4.18)

At this stage we notice that the last term on the right side of (4.18) is positive: indeed, θ(t, ·) attains its
maximum at x = 0, and thus Λγθ(t, 0) > 0, whereas the integral term in positive. Thus this term may be
dropped for lower bounds. Also, the second term in the right side of (4.18) may be bounded as∣∣∣∣∫

R

(
x− 1

x2+α
1x≥1

)
Λγθ(t, x) dx

∣∣∣∣ =

∣∣∣∣∫
R

Λγ
(
x− 1

x2+α
1x≥1

)
θ(t, x) dx

∣∣∣∣ ≤ c′α,γ‖θ(t, ·)‖L∞ ≤ c′α,γ‖θ0‖L∞

where we have used the L∞ maximum principle (Lemma 2.1) and the fact that Λγ
(
x−1
x2+α

1x≥1
)
∈ L1(R)

when γ ∈ (0, 1). Thus, combining the above estimate with (4.18) we obtain∫ ∞
0

η(x)(Λγθ(t, x)− Λγθ(t, 0)) dx ≥ −cα,γ
2

∫ ∞
0

θ(t, 0)− θ(t, x)

x1+γ+α
dx− c′α,γ‖θ0‖L∞

≥ −cα,γ
2

∫ 1

0

θ(t, 0)− θ(t, x)

x1+γ+α
dx− c′′α,γ‖θ0‖L∞ (4.19)

for some suitable constant c′′α,γ . To conclude, we proceed as in (4.8). We have

x−(1+α+γ) =
1

α+ γ
∂x

(
1− x−(α+γ)

)
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and thus

(α+ γ)

∫ 1

0

θ(t, 0)− θ(t, x)

x1+γ+α
dx =

∫ 1

0

1− xα+γ

xα+γ
(−∂xθ(t, x)) dx

≤
∑
k<0

∫ 2k+1

2k

1

xα+γ
(−∂xθ(t, x)) dx

≤
∑
k<0

2−k(α+γ)

(η(2k+1))1/2
(θ(t, 2k)− θ(t, 2k+1)(η(2k+1))1/2

≤

(∑
k<0

2−2k(α+γ)2(k+1)(1+α)

)1/2
F (t)

c
1/2
α

(4.20)

where in the last inequality we have used the Cauchy-Schwartz inequality and estimate (4.17). We empha-
size that only at this stage a condition on the relationship between α, γ ∈ (0, 1) emerges: in order for the
sum on the right side of (4.20) to converge, we need to choose

γ <
1− α

2
.

This is the only reason that restricts the range of γ to (0, 1/2), since we must have α > 0, which is in turn
required to apply the composition of fractional powers of the Laplacian argument in (4.18).

Summarizing (4.16), (4.17), (4.19), and (4.20) we arrive at

dF

dt
(t) ≥ (F (t))2

Cα,γ
− Cα,γF (t)− Cα,γ‖θ0‖L∞

for a sufficiently large constantC that depends solely on α and γ and not on the data. The proof is completed
by choosing θ0 of L∞ norm 1, but with F (0) is sufficiently large. An example of such function can be
obtained by slightly smoothing a cusp at the origin, of height 1. �

5. Singularity formation via De Giorgi

We start with the following identity of Virial type.

LEMMA 5.1. Let θ solve (1.1). Then

∂t

∫
R
θ dx = −‖θ‖2

Ḣ1/2 = −
∫∫

R2

|θ(t, x)− θ(t, y)|2

|x− y|2
dx dy.

PROOF. Integration by parts. �

The Virial type identity of Lemma 5.1 can be used to play the same role as an energy dissipation
inequality in a De Giorgi iteration scheme. This is the idea of this section. Using De Griogi’s technique we
derive a decay for θ in L∞, from which we can deduce that the solution must develop a singularity in finite
time. Otherwise, its oscillation should be constant.

LEMMA 5.2. Let θ solve (1.1). There is a constant ε0 > 0 so that if
∫
R θ(0, x)+ dx ≤ ε0 then

θ(1, x) ≤ 1 for all x ∈ R.

Before giving the proof Lemma 5.2 we recall the following interpolation.

LEMMA 5.3. Let f : R→ R. The following interpolation holds

‖f‖L2 ≤ C‖f‖1/2
L1 ‖f‖

1/2

Ḣ1/2
.
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PROOF. We use the Fourier transform

‖f‖2L2 =

∫
|f̂ |2 dξ ≤

∫ r

−r
|f̂ |2 dξ +

1

r

∫
R\[−r,r]

|ξ||f̂ |2 dξ ≤ 2r‖f‖2L1 +
1

r
‖f‖2

Ḣ1/2

Picking r = ‖f‖H1/2/‖f‖L1 we finish the proof with C = 3. �

PROOF OF LEMMA 5.2. We define the following truncations (like in De Giorgi’s proof)

θk(t, x) =
(
θ(t, x)− (1− 2−k)

)+
.

Naturally, for any value of k, the function θk satisfies the same transport equation as θ.

∂tθk +Hθ ∂xθk = 0.

Integrating by parts as in Lemma 5.1, we obtain

∂t

∫
R
θk = −

∫
R

Λθ θk dx = −
∫
R

Λθk θk dx+

∫
R

Λ
(
θk − θ + (1− 2−k)

)
θk dx,

Note that θk > 0 only at those points where θ > (1−2−k). These are also the points where the non nega-
tive function

(
θk − θ + (1− 2−k)

)
is equal to zero. Therefore, at these points Λ

(
θk − θ + (1− 2−k)

)
≤ 0

and the second term on the right hand side is negative. Therefore

∂t

∫
R
θk ≤ −

∫
R

Λθk θk dx = −‖θk‖2Ḣ1/2 . (5.1)

For the rest of the proof, we will construct a sequence of times 0 = t0 < t1 ≤ t2 ≤ t2 ≤ · · · < 1 such
that the quantity

ak :=

∫
R
θk(tk, x) dx,

converges to zero as k →∞. That means that if t∞ = lim tk ≤ 1, then θ(t∞, x) ≤ 1 and the result follows
from the maximum principle of Lemma 2.1.

We will make the construction so that for all k > 0, tk belongs to the interval (tk−1, 1− 2−k). Assume
we have constructed tk up to some value k. From (5.1) and the mean value theorem, we can find some
tk+1 < 1− 2−k−1 so that

‖θk(tk+1, ·)‖2Ḣ1/2 ≤ 2k+1ak.

Also from (5.1), we know that ‖θk(tk+1, ·)‖L1 ≤ ‖θk(tk, ·)‖L1 = ak. Using the interpolation of Lemma
5.3,

‖θk(tk+1, ·)‖L2 ≤ ‖θk(tk+1, ·)‖
1/2
L1 ‖θk(tk+1, ·)‖

1/2

H1/2 ,

≤ 2(k+1)/4 a
3/4
k

Therefore,

ak+1 =

∫
(θk − 2−k−1)+ dx ≤ ‖θk‖L2

∣∣∣{θk > 2−k−1
}∣∣∣1/2

≤ 2k+1‖θk‖2L2

≤ 25(k+1)/4 a
3/2
k . (5.2)

Thus, we obtained a recurrence relationship for ak which converges to zero provided that

a0 =

∫
θ0(t0, x) dx ≤ ε0

is small enough, which concludes the proof of the Lemma. �
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THEOREM 5.4. Let θ solve (1.1). Assume θ0 = θ(0, ·) is a non negative function in L1(R). Then

‖θ(T, ·)‖L∞ ≤ C
(
‖θ0‖L1

T

)1/2

.

PROOF. Since θ0 ≥ 0, from Lemma 2.1, θ(t, x) ≥ 0 for all t, x. In particular
∫
R θ(t, x) dx ≥ 0 for all

t ≥ 0. Let ε0 be the absolute constant from Lemma 5.2. Consider the rescaled function θ̃, which also solves
(1.1), defined by

θ̃(t, x) = ab−1θ(at, bx),

with a = T and b = (‖θ0‖L1T/ε0)
1/2. We easily check that

‖θ̃(0, ·)‖L1 = ε0,

‖θ(T, ·)‖L∞ =
b

a
‖θ̃(1, ·)‖L∞

From Lemma 5.1, we conclude that for all t > 0,∫ t

0
‖θ̃(s, ·)‖2

Ḣ1/2 ds ≤ ‖θ̃0‖L1 .

Applying Lemma 5.2, we get that ‖θ̃(1, ·)‖L∞ ≤ 1. Therefore

‖θ(T, ·)‖L∞ ≤
(
‖θ0‖L1

ε0T

)1/2

which concludes the proof. �

COROLLARY 5.5. For any initial data θ0 ≥ 0 which is integrable, there is no classical global solution
θ to (1.1).

PROOF. A classical solution would make maxR θ(t, ·) constant and minR θ(t, ·) = 0 for all time t > 0.
This contradicts Theorem 5.4. �

REMARK 5.6. The proof can be extended to the family of equations

∂tθ + (HΛsθ) θx = 0,

provided that −1 < s < 1. Indeed, when s ∈ (−1, 1) we have that s + 1 > 0 and similarly to (5.1) we
arrive at

∂t

∫
θk dx ≤ −‖θk‖2Ḣ(1+s)/2 .

The interpolation inequality
‖f‖L2 ≤ Cs‖f‖(s+1)/(s+2)

L1 ‖f‖1/(s+2)

Ḣ(1+s)/2

which may be proven as Lemma 5.3 is, then leads to

ak+1 ≤ Cs2(k+1)(2s+5)/(s+2)a
(2s+3)/(s+2)
k

by repeating the argument in (5.2). Since (2s + 3)/(s + 2) > 1 for all s ∈ (−1, 1) the above inequality
is super-linear in ak, and hence assuming that a0 ≤ ε0 is sufficiently small we obtain that ak → 0 as
k → ∞. To conclude the proof of blowup, we note that the equation is invariant under the rescaling
θ̃(t, x) = ab−1−sθ(at, bx). As in the proof of Theorem 5.4, setting T = a and b = (‖θ0‖L1T/ε0)

1/(2+s)

we arrive at the bound

‖θ(T, ·)‖L∞ ≤ b1+s

a
=

‖θ0‖1/(2+s)

ε
1/(2+s)
0 T (1+s)/(2+s)

.

This decay of the L∞ norm, valid for s > −1, then yields the desired contradiction.



ON A TRANSPORT EQUATION WITH NONLOCAL DRIFT 17

6. Singularity formation via barriers

In this sections we show that the equation (1.1) cannot have a global in time, C1, even solution which is
monotone on (0,∞). We do it using barriers, which is arguably the simplest way to prove that a singularity
emerges in finite time for this equation.

LEMMA 6.1. Let f and g be two C1, even functions. Assume that for some point x0 > 0 we have
• f(x) ≥ g(x) if 0 ≤ x ≤ x0.
• f(x) ≤ g(x) if x ≥ x0.

Then Hf(x0) ≤ Hg(x0).

PROOF. It follows from a direct application of formula (2.1). In this case, the integrand in the formula
of H(f − g)(x0) is non positive at every point. �

LEMMA 6.2. Let θ be C1, even and monotone decreasing in (0,∞). Assume that the maximum

max
{
θ(x)−A(1− |x|1/2)+ : x ∈ R

}
,

is achieved at the point x0 ∈ (0, 1/2]. Then

Hθ(x0) ≤ −c0Ax1/20

for some positive universal constant c0.

PROOF. Let
h = max

{
θ(x)−A(1− |x|1/2)+

}
.

We know θ(x0) = A(1− |x0|1/2)+ + h and also θ(y) ≤ A(1− |y|1/2)+ + h for any y ∈ (0,∞).
Let g : R→ R be the even function

g(x) =

{
h+A(1− |x0|1/2)+, if |x| < x0,

h+A(1− |x|1/2)+, if |x| ≥ x0.

Since we assumed that θ is monotone decreasing on [0,∞) we have that θ ≥ g on [0, x0], and by assumption
θ ≤ g on [x0,∞). We apply Lemma 6.1 to get that Hθ(x0) ≤ Hg(x0). We will conclude the proof by
showing that

Hg(x0) ≤ −c0A|x|1/2

for some positive constant c0. This is an explicit computation. Using (2.1), we have

Hg(x0) = −A2x0
π

∫ 1

x0

y1/2 − x1/20

y2 − x20
dy −A2x0

π
(1− x1/20 )

∫ ∞
1

1

y2 − x20
dy.

Note that both terms are negative. Since x0 ∈ (0, 1/2], the interval (x0, 2x0) is part of the first domain of
integration. Then

Hg(x0) ≤ −A
2x0
π

∫ 2x0

x0

y1/2 − x1/20

y2 − x20
dy = −c0Ax1/20

where

c0 =
2

π

∫ 2

1

z1/2 − 1

z2 − 1
dz

is a positive constant. �

LEMMA 6.3. Let θ be a solution to (1.1) which is C1, even and monotone decreasing for x ∈ (0,∞).
Assume h = θ(0, 1/2). Then

θ(t, x) ≤ h+
A

t
(1− |x|1/2)+ (6.1)

for all x ∈ R and t > 0. Here A is a universal constant.
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PROOF. Since θ is even and monotone decreasing on (0,∞), we have that Hθ(t, x) is negative for
x > 0 and positive for x < 0. Moreover Hθ θx ≥ 0 in R. In particular, from (1.1), θt ≤ 0 and the function
θ is monotone decreasing in time.

From the monotonicity properties of θ we immediately conclude that θ(x, t) ≤ h whenever x ≥ 1/2
and t ≥ 0. Thus, the conclusion of the lemma could only be invalidated for x < 1/2.

For t sufficiently small the right hand side in (6.1) will be larger than ‖θ0‖L∞ and thus the strict inequal-
ity holds for 0 ≤ x < 1/2. If this lemma were false, there would be a first time t0 > 0 for which there exists
an x0 ∈ [0, 1/2] so that equality holds in (6.1). Let us assume this in order to get a contradiction. We have

θ(t0, x0) = h+
A

t0
(1− |x0|1/2)+

with x0 ∈ [0, 1/2], and

θ(t, x) ≤ h+
A

t
(1− |x|1/2)+

for all x ∈ R and all 0 ≤ t ≤ t0. The point x0 cannot be equal to zero since the differentiable function θ
cannot be tangent from below at the cusp at x = 0 of h + A

t0
(1 − |x|1/2)+. Moreover, at this point (t0, x0)

we have the classical first order conditions:

θx(t0, x0) = ∂x

[
h+

A

t0
(1− |x|1/2)+

]
|x=x0

= − A

2t0
x
−1/2
0 ,

and

θt(t0, x0) ≥ ∂t
[
h+

A

t
(1− |x0|1/2)+

]
|t=t0

≥ −A
t20
.

Lastly, we apply Lemma 6.2 and obtain

Hθ(t0, x0) ≤ −c0
A

t0
x
1/2
0 .

Combining the three relations above we obtain

θt(t0, x0) +Hθ(t0, x0) θx(t0, x0) ≥ −
A

t20
+
Ac0

2

A

t20
.

Choosing A = 4/c0, the right hand side of the above inequality is strictly positive and we arrive at a
contradiction with (1.1). �

THEOREM 6.4. Let θ(0, x) be even, monotone decreasing on (0,∞) and such that θ(0, 1/2) < θ(0, 0).
Then the equation (1.1) cannot have a global in time C1 solution.

PROOF. Using Lemma 6.3 we would obtain that θ(t, 0) < θ(0, 0) for t sufficiently large. However, for
any C1 solution to (1.1), θ(0, t) should be constant. �

REMARK 6.5. The generalization of the above procedure to the active scalar equation (1.3), where the
drift velocity is given by u = HΛsθ, is straightforward. The main difference is that the barrier g(x) has
now to be taken as

gs(t, x) =

{
h+ A

t (1− |x0|(1+s)/2)+, if |x| < x0,

h+ A
t (1− |x|(1+s)/2)+, if |x| ≥ x0.

Indeed, when s ∈ (−1, 1), the formula (2.1) becomes

HΛsθ(x) = cs(1− s)
∫ ∞
0

(θ(y)− θ(x))
(y + x)|y + x|s − (y − x)|y − x|s

|y2 − x2|s(y2 − x2)
dy

for all x ≥ 0 and even functions θ. Here 1/4 ≤ cs ≤ 1/2 is a constant. In particular, Lemma 6.1 holds
without change, since z 7→ z1+s is an increasing function for our range of s. Moreover, as in Lemma 6.2,
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an explicit computation shows that if the maximum of θ(x) − A(1 − |x|(1+s)/2)+ is attained at a point
x0 ∈ (0, 1/2], we have

HΛsθ(x0) ≤ HΛsgs(1, x0) ≤ −c1,sAx(1−s)/20

for some c1,s > 0 that depends only on s. Here it is again important that 1+s > 0. To conclude, we proceed
as in the proof of Lemma 6.3, and use that

(∂tgs +HΛsgs ∂xgs)(t0, x0) ≥
A

t20

(
−1 +

A(1 + s)c1,s
2

)
> 0

for any x0 ∈ (0, 1/2], once A is chosen sufficiently large, depending only on s.

7. A possible regularization effect

In the proof of Section 3 we show that Λθ must become +∞ in finite time at any point where a local
maximum of θ is attained. Intuitively, the graph of θ creates a cusp pointing up at every one of its local
maximum points. This can be visualized numerically. We have experimented with a simple code which is
available on the website http://math.uchicago.edu/˜luis/pde/hilbert.html.

The numerical method which was used is inspired by monotone finite difference schemes for the
Hamilton-Jacobi equation following ideas from [36]. in the numerics, we observe that for any initial data
θ0, the local maximums of θ flow into cusps pointing up while the local minimums tend to open up and
seem to become more regular. If the initial data is very rough, the equation seems to regularize the solution
in some Hölder norm, possibly C1/2. The mechanism of this regularization process is perhaps similar to the
Hamilton-Jacobi equation ut + u2x = 0. It is well known that viscosity solutions to this equation become
immediately Lipschitz and semiconvex for any initial data u0.

7.1. The Hölder 1/2 conjecture. Note that the function

θ(t, x) = −|x|1/2 − Ct
is in fact an exact solution to the equation (1.1) away from x = 0 for some value of C. It is not a weak
solution in the sense of Section 7.4 only because it is unbounded. However, what we want to stress is the
singularity of order exactly 1/2. What this example suggests is that a cusp of order 1/2 does not deteriorate
by the flow. Moreover, we conjecture that solutions of the equation (1.1) have an a priori estimate in C1/2

of the following form.

CONJECTURE 7.1. Let θ be any bounded solution of (1.1) in the time interval [0, T ]. The following
estimate holds

sup
x,y∈R

θ(T, x)− θ(T, y)

|x− y|1/2
≤
C‖θ‖1/2L∞ |x− y|1/2

T 3/2
.

Here C is a universal constant.

Conjecture 7.1 is supposed to hold for as long as the solution exist. Moreover, the vanishing viscosity
limits of (1.1), with any bounded datum θ0, would satisfy Conjecture 7.1 for all T > 0. We make this
explicit as follows. For any ε > 0, we define θε to be the solution to

θεt +Hθε∂xθ
ε − ε∂xxθε = 0,

θε(0, x) = θ0(x).

Then, we believe θε satisfies the a priori estimate

sup
x,y∈R

θε(t, x)− θε(t, y)

|x− y|1/2
≤
C‖θ0‖1/2L∞ |x− y|1/2

t3/2
,

where C is a universal constant independent of ε. The precise form of the right hand side can be easily
derived from scaling considerations.

http://math.uchicago.edu/~luis/pde/hilbert.html
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As ε → 0, we expect θε converges to a weak solution θ of the equation (1.1) which satisfies the same
estimate.

Assuming the result on the above conjecture is still valid after adding fractional dissipation Λγ to the
equations, in view of the natural parabolic scaling, the C1/2 regularity threshold makes the power γ = 1/2
critical. Applying Theorem 1.1 in [41] it would follow that θ is C1 and therefore a global classical solution.

The following conjecture, is in fact a consequence of Conjecture 7.1.

CONJECTURE 7.2. Consider θ0 as in Conjecture 7.1. The vanishing viscosity limits of the supercritically
dissipative Hilbert model (1.4) with γ > 1/2, lie in L∞([0,∞);C∞).

7.2. Hölder continuity for a stationary problem. We have not been able to prove Conjecture 7.1. We
can, however, prove a stationary version of the same result under the monotone regime. In this case we
consider a bounded right hand side.

THEOREM 7.3. Consider a C1 smooth solution θ of the stationary problem

Hθ ∂xθ = f (7.1)

where 0 ≤ f ∈ L∞. If θ is even, monotone decreasing away from the origin, and non-negative, then the
following estimate holds

|θ(x1)− θ(x2)| ≤ C‖f‖1/2L∞ |x1 − x2|1/2

for all x1 6= x2 ∈ R. Here C > 0 is a universal constant.

PROOF. We appeal to Lemma 4.2. Let 0 < x2 < x1 be arbitrary. Then integrating (7.1) from x2 to x1
we arrive at

(x1 − x2)‖f‖L∞ ≥
∫ x1

x2

f dx =

∫ x1

x2

Hθ ∂xθ dx

≥ 1

4
(θ(x2)− θ(x1))2 log

(
x1 + x2
x1 − x2

)
. (7.2)

Now, for 0 ≤ x2 < x1, by the continuity of θ at x2 and the estimate (7.2), we have that

θ(x2)− θ(x1) =
∞∑
k=0

θ(x2 + 2−k−1(x1 − x2))− θ(x2 + 2−k(x1 − x2)),

≤ 2‖f‖1/2L∞

∞∑
k=0

 2−k−1(x1 − x2)

log
(

3 + 2k+2 x2
x1−x2

)
1/2

,

≤ 2(1 +
√

2)

log 3
‖f‖1/2L∞(x1 − x2)1/2. (7.3)

We have proven the inequality whenever x1 and x2 are both positive. The general case follows easily given
that θ is an even function. �

REMARK 7.4. The proof of Theorem 7.1 applies to even, monotone decreasing away from the origin,
continuous at the origin, stationary solutions of

HΛsθ∂xθ = f

when 0 ≤ f ∈ L∞ and s ∈ (−1, 1). In this case it follows from Lemma 4.5 and the argument in (7.3) that

|θ(x1)− θ(x2)| ≤
8‖f‖1/2L∞(

1−s
s (1− 3−s)

)1/2 |x1 − x2|(1+s)/2
for all 0 ≤ x2 < x1.
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7.3. A related conjecture: one sided bounds for Λθ. To conclude the section we discuss what we
believe is an intimate connection between Conjecture 7.1 and lower bounds for Λθ(t, ·). We begin with an-
other conjecture about the evolution (1.1), which has the geometric meaning that the possible cusps forming
in finite time will always open downwards. The formation of only downward opening cusps is consistent
with the numerical simulations of (1.1).

CONJECTURE 7.5. Consider θ0 as in Conjecture 7.1. The vanishing viscosity limits of (1.1) obey

Λθ(t, x) ≥ −A(t) (7.4)

for some A(t) = A(t, θ0) ≥ 0, for every t > 0.

On the one hand, as discussed in Remark 3.9 of Section 3, the integral identity of Proposition 3.5 is
not sufficient (just barely) for showing that a lower bound for Λθ is propagated forward in time by the
evolution 1.1.

On the other hand, if a lower bound of the type (7.4) would hold, we show here that in the presence of
additional symmetries (evenness and monotonicity away from the origin), the Hölder-1/2 continuity of θ
directly follows (as claimed by Conjecture 7.1), but only at points away from the origin.

THEOREM 7.6. Let θ : R → R be even, continuous, non-negative, and monotone decreasing in
[0,+∞). Assume Λθ ≥ −A. Then, we have

θ(x1)− θ(x2) ≤ C max (‖θ‖L∞ , Ax1)

(
x1 − x2
x1

)1/2

(7.5)

for all 0 < x1 < x2, where C > 0 is a universal constant.

We note that the above result is a property of functions, and the evolution (1.1) is not used here. Before
giving the proof of Theorem 7.6 we discuss two auxiliary lemmas.

LEMMA 7.7. The function r(x) = x
1/2
+ satisfies

Λr(x) =

{
−1

2 |x|
−1/2 if x < 0,

0 if x > 0.

PROOF. This is a classical computation. The function

u(x, y) =

(√
x2 + y2 + x

2

)1/2

obeys ∆x.yu = 0 for y > 0, i.e., it is harmonic in the upper half plane. Moreover,

u(x, 0) = x
1/2
+ , uy(x, 0) =

{
1
2 |x|

−1/2 if x < 0,

0 if x > 0.

Thus, we recover Λr as the Dirichlet to Neumann map corresponding to u. �

LEMMA 7.8. The function

b(x) = min
(

1, (|x| − 1)
1/2
+

)
satisfies

Λb(x) ≥ 1

2π
for all 1 < x ≤ 2. (7.6)
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PROOF. The proof of this lemma follows from the explicit commutation in Lemma 7.7 and a comparison
principle. First we note that b(x) = r(x− 1) for all x ∈ [−1, 2]. Then, for all x ∈ (1, 2] we obtain

Λb(x) = Λb(x)− Λr(x− 1) =
1

π
p.v.

∫
R

b(x)− b(y)− r(x− 1) + r(y − 1)

(x− y)2
dy

=
1

π
p.v.

∫
R

r(y − 1)− b(y)

(x− y)2
dy

=
−1

π

∫ −1
−∞

b(y)

(x− y)2
dy +

1

π

∫ ∞
2

(y − 1)1/2 − 1

(x− y)2
dy

≥ −1

π

∫ ∞
1

1

(x+ y)2
dy +

1

π

∫ ∞
2

(y − 1)1/2 − 1

(x− y)2
dy

≥ −1

π

∫ ∞
1

1

(1 + y)2
dy +

1

π

∫ ∞
2

(y − 1)1/2 − 1

(1− y)2
dy

= − 1

2π
+

1

π
=

1

2π
. (7.7)

This completes the proof of the lemma. �

PROOF OF THEOREM 7.6. Without loss of generality, we prove estimate (7.5) for the case x1 = 1. The
general case follows by scaling.

Define the function
f(x) = θ(x) + max (‖θ‖L∞ , 2πA) b (x) .

We prove that the global minimum value of f is achieved at x = 1. From that, the lemma will follow.
For |x| > 2, we have f(x) ≥ ‖θ‖L∞ ≥ f(1). Since f is continuous, it must thus achieve its global

minimum in the interval [−2, 2].
Since the second term in the definition of f is constant for x ∈ (−1, 1) and the first term is monotone,

we have that f(x) ≥ f(1) for all x ∈ [−1, 1]. Therefore, the global minimum of f must be achieved on the
interval [1, 2]. Here we also used that f is even.

Assume that f achieves its global minimum at some point x0 ∈ (1, 2]. Then by the definition of A we
have that

0 > Λf(x0) = Λθ(x0) + 2πAΛb (x0) ≥ A (−1 + 2πΛb (x0)) ≥ 0,

where in the last inequality we have used (7.6). This yields a contradiction which means that the minimum
must be achieved at x0 = 1. Therefore, for any x > 1, we have f(1) ≤ f(x), which by definition means
that

θ(1)− θ(x) ≤ C max (‖θ‖L∞ , A) (x− 1)1/2 .

As noted earlier, the proof of the lemma now follows from the above estimate and re-scaling. �

REMARK 7.9. We conclude the subsection by pointing out that in the presence of symmetries, additional
information may be obtained for the endpoint Sobolev embeddings. For instance, recall that in 1D the
Sobolev embedding of H1/2 in L∞ barely fails. However, under the additional assumption of monotonicity
away from the origin, the boundedness of the H1/2 norm implies the continuity of the solution. Indeed,
letting 0 < x2 < x1 we have

c‖θ‖2
Ḣ1/2 =

∫∫
(θ(y)− θ(z))2

(y − z)2
dy dz ≥

∫
0<y<x2

∫
z>x1

(θ(y)− θ(z))2

(y − z)2
dy dz

≥ (θ(x1)− θ(x2))2
∫
0<y<x2

∫
z>x1

1

(y − z)2
dy dz

= (θ(x1)− θ(x2))2 log
x1

x1 − x2
(7.8)
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for some universal constant c > 0. That is, when θ is even, positive, and decreasing away from the origin,
we have

0 ≤ θ(x2)− θ(x1) ≤ c‖θ‖Ḣ1/2

(
log

x1
x1 − x2

)−1/2
for any 0 < x2 < x1, where C > 0 is a universal constant. The above estimate is in direct analogy with the
fact that in 2D, H1 functions that obey the maximum principle on every ball have a logarithmic modulus of
continuity [39].

7.4. Weak solutions.

DEFINITION. Let θ0 ∈ L1 ∩ L∞ be non-negative, even, decreasing on (0,∞), and let T > 0. We call
a non-negative, even, decreasing on (0,∞) function

θ ∈ L∞(0, T ;L1(R) ∩ L∞(R)) ∩ L2(0, T ; Ḣ1/2(R))

a weak solution to the initial value problem (1.1) with initial datum θ0 on [0, T ), if∫ T

0

∫
R

(
θ∂tϕ−Hθ θ∂xϕ+

1

2
θ2Λϕ+

1

2
D[θ]ϕ

)
dx dt+

∫
R
θ0ϕ dx = 0

for any ϕ ∈ C∞0 ([0,∞)× R), where

D[θ](x) = C

∫
R

(θ(x)− θ(y))2

(x− y)2
dy (7.9)

where C is a universal constant.

The above definition of a weak solution is natural in view of the pointwise identity

Hθ ∂xθ = ∂x(Hθ θ)− ∂xHθ θ = ∂x(Hθ θ) + Λθ θ = ∂x(Hθ θ) +
1

2
Λ(θ2) +

1

2
D[θ].

Note that in one dimension the space H1/2 ∩ L∞ is an algebra. Also, since

D[θ] ≥ 0, and
∫
R
D[θ](x) dx = ‖θ‖2

Ḣ1/2

we have ∣∣∣∣∫
R
D[θ]ϕ dx

∣∣∣∣ =

∫
R
D[θ]|ϕ| dx ≤ ‖ϕ‖L∞‖θ‖2

Ḣ1/2

so that all terms in the distributional definition of the weak solution are well-defined.

REMARK 7.10. Consider a sequence of viscosity approximations, i.e. global in time smooth (in positive
time) solutions θε of

∂tθ
ε +Hθε ∂xθ

ε = ε∆θε, θε = θ0,

for ε ∈ (0, 1]. Using the L∞ (cf. Lemma 2.1) and the L1 energy inequality (cf. Lemma 5.1) is not difficult
to see that

{θε}ε>0 is uniformly bounded in L∞t L
1
x ∩ L∞t L∞x ∩ L2

t Ḣ
1/2
x

globally in time. Moreover, we have the energy inequality

‖θε(T )‖L1 +

∫ T

0
‖θε(t)‖2

Ḣ1/2 dt ≤ ‖θ0‖L1

for any T > 0. It seems however that one is missing a bit more regularity, in order to ensure that the
sequence θε converges along a subsequence to a weak solution θ of (1.1). The main missing part is the
convergence of D[θε]→ D[θ] in L1

loc,t,x.
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REMARK 7.11. One-sided conditions on the derivative of the drift velocity are known [26] to ensure the
uniqueness of weak solutions to the Burgers and Hamilton-Jacobi equations (the extremal equation on the
scale (1.3)). For Burgers solutions the shocks occur in one direction, which follows since the derivative of
the solution obeys a one-side bound. For the Hamilton-Jacobi (s = 1) equation we have one-sided bounds
for the second derivatives. One may expect that a one sided bound on Λθ = −∂x(Hθ) is thus relevant in
establishing the uniqueness of weak solutions. Insofar this remains open.

REMARK 7.12. In [6] the authors construct the expanding semicircle solution

θ : (0,+∞)× R→ R,

θ(t, x) = −C(1− x2/t2)1/2+

where C > 0 is a universal constant. This is a weak solution to (1.1) that converges to zero as t → 0+ for
all x 6= 0. Using the transformation t 7→ −t and θ 7→ −θ we also derive the shrinking semicircle solution

θ : (−∞, 0)× R→ R,

θ(t, x) = C(1− x2/t2)1/2+

which is also a weak solution and converges to zero as t→ 0− for x 6= 0.
Based on our numerical computations, only the former appears to be stable. Additionally for the later

solution the lower bound on Λθ does not hold. This suggests that the shrinking semicircle may not be a
vanishing viscosity limit.

We can compare this situation with Burgers or Hamilton-Jacobi equation in the sense that time re-
versibility is broken in the vanishing viscosity limit by the entropy condition or the viscosity solution con-
dition respectively.
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[6] A. Castro and D. Córdoba. Self-similar solutions for a transport equation with non-local flux. Chinese Annals of Mathematics,

Series B, 30(5):505–512, 2009.
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