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ABSTRACT. We address the persistence of Hölder continuity for weak solutions of the linear drift-diffusion
equation with nonlocal pressure

ut + b · ∇u−△u = ∇p, ∇ · u = 0

on [0,∞)× R
n, with n ≥ 2. The drift velocityb is assumed to be at the critical regularity level, with respect

to the natural scaling of the equations. The proof draws on Campanato’s characterization of Hölder spaces, and
uses a maximum-principle-type argument by which we controlthe growth in time of certain local averages of
u. We provide an estimate that does not depend on any local smallness condition on the vector fieldb, but only
on scale invariant quantities.
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1. INTRODUCTION

A classical problem in partial differential equations is toaddress the regularity of solutions to parabolic
problems involving advection by a vector fieldb and diffusion

ut + b · ∇u−△u = 0. (1.1)

If the vector fieldb is sufficiently regular, the solutionu is expected to be regular as well. Naturally, this
is expressed as a result of the type: ifb is bounded with respect to some norm, thenu is smooth in some
sense. The appropriate norms for such statement are the onesthat are either critical or subcritical with
respect to the inherent scaling of the equation. More precisely, if u is a solution of (1.1), then for anyr > 0
the functionur(x, t) = ru(rx, r2t) solves an equation of the same form but with drift velocity given by
br(x, t) = rb(rx, r2t). This change of variables acts as azoom inthat focuses on the local behavior of
the solutionu. An assumption onb is critical with respect to the scaling of the equation if thenorm of br
coincides with the norm ofb, for anyr > 0. The assumption would be subcritical ifbr has smaller norm
thanb for all small enough values ofr, and supercritical otherwise.

As a rule of thumb, with current methods it seems impossible to obtain a regularity result for (1.1) with
a supercritical assumption onb, since the transport part of the equation would be stronger than diffusion
in the small scales. With subcritical assumptions onb, it is generally possible to treat equation (1.1) as a
perturbation of the heat equation, and strong regularity results in this direction are available. The Kato class
condition forb is probably the largest class that falls into this category.For results in the subcritical case see
for example [1, 4, 25].

Obtaining regularity estimates for (1.1) depending only onscale invariantnorms ofb requires the use of
non-perturbative techniques, since the drift term does notbecome negligible at any scale. To the best of our
knowledge, the only results available are variations of theDe Giorgi-Nash-Moser Harnack inequality [18],
which states that weak solutions to (1.1) areCα for positive time, for some smallα > 0. Results in this
direction include a variety of critical assumptions on the vector fieldb. Forb ∈ Lp

tL
q
x with n/q + 2/p = 1,

we refer to [16, Chapter 3] or [19]. For divergence-free driftb ∈ L∞
t BMO−1

x , the Hölder regularity of
weak solutions was proved only recently in [9] and [22]. For b in a space-time Morrey space, this result was
obtained recently in [19]. See [17, 21, 26] for other conditions onb yielding Hölder regularity, such as the
form boundedness condition.
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The equation (1.1) is essentially a scalar equation, since even ifu is a vector field, each component would
satisfy the same equation. In contrast, the De Giorgi-Nash-Moser theory is hard to apply to actual systems.
In this article we consider a Stokes system with drift, i.e. we add a pressure term as is common for the
equations of fluid dynamics, and we look for a solutionu which is divergence free. Given a divergence free
vector fieldb : [0, T ]× R

n → R
n, we consider the following evolution equation

ut + b · ∇u−△u = ∇p (1.2)

for a solutionu : [0, T ] × R
n → R

n which satisfies

∇ · u = 0. (1.3)

The term pressure gradient may be computed from (1.2)–(1.3) by the formula

∇p = ∇(−△)−1 div(b · ∇u). (1.4)

In this paper we prove that if a scale invariant norm ofb is bounded, then theCα norm of u at time
t is bounded in terms of itsCα norm at time zero. Our result is a propagation of regularity instead of a
regularization result, in the sense that we require the initial datau0 to be Hölder continuous, andα ∈ (0, 1)
is arbitrary.

The assumption on the divergence-free drift velocityb is that it is anLp integrable function in time, with
values in theL1-based Morrey-Campanato spaceMβ , whereβ ∈ [−1, 1], andp = 2/(1 + β). We recall
cf. [24, Definition 1.7.2] the definition of theL1-based Morrey-Campanato spacesMβ. For anyβ ∈ [−1, 1],
we sayf ∈Mβ if f ∈ L1

loc and

sup
x∈Rn

sup
0<r<1

r−β inf
P∈Pβ

1

|Br(x)|

∫

Br(x)
|f(z)− P (z)| dz < +∞, (1.5)

wherePβ = {0} if −1 ≤ β < 0, andPβ = {constant functions} if 0 ≤ β ≤ 1. The conditionb(·, t) ∈Mβ

has a different flavor depending of the value of the exponentβ, cf. [24, Theorem 5.3.1]: ifβ = 1, Mβ

coincides with the space of Lipschitz functions; ifβ ∈ (0, 1), it is exactly the Hölder classCβ; if β = 0,
it corresponds to the class of functions of bounded mean oscillation BMO; while if β ∈ [−1, 0) it is the
usual Morrey-Campanato space. In all these cases, the estimate in our main theorem dependsonly on the
semi-norm[b(·, t)]Mβ associated to the space. In this paper we consider divergence-free driftsb such that

[b(·, t)]Mβ := sup
x∈R3

sup
r>0

r−βM(x, t, r) ≤ g(t) (1.6)

for someg ∈ Lp([0, T ]), where we define

M(x, t, r) =
1

rn

∫

Br(x)
|b(z, t) − b̄(x, r, t)| dz =

∫

B1(0)
|b(x+ ry, t)− b̄(x, r, t)| dy (1.7)

and b̄(x, r, t) is chosen to equal zero ifβ ∈ [−1, 0), the average ofb overBr(x) if β = 0, respectively
b(x, t) if β ∈ (0, 1], which is equivalent to (1.5) (except forβ = 1). We give further details on the precise
assumptions onb in Section3 below. Our main theorem in the caseβ ∈ (−1, 1] is given in Theorem1.1
below, while the endpoint caseβ = −1 is addressed in Theorem4.1(see also Remark1.3).

Theorem 1.1. Assumeb : [0, T ]× R
n → R

n is a divergence-free vector field such thatb ∈ Lp([0, T ];Mβ)
with β ∈ (−1, 1] andp = 2/(1 + β). Assume also thatu0 ∈ Cα for some someα ∈ (0, 1). Then there
exists a weak solutionu : [0, T ]× R

n → R
n of the system

ut + b · ∇u−△u = ∇p (1.8)

∇ · u = 0 (1.9)

u(x, 0) = u0(x) (1.10)

such thatu(x, t) isCα in x for all positive timet ∈ (0, T ]. Moreover, we have the estimate

[u(·, t)]Cα ≤ C[u0]Cα ,
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for some positive universal constantC = C(T, α, β, [b]
Lp
tM

β
x
).

Remark 1.2. To the best of our knowledge, the result of Theorem1.1 is new even if the pressure term was
removed, and the scalar equation (1.1) was considered instead. Indeed, the De Giorgi-Nash-Moseriteration
scheme provides aCα estimate for the solution for some smallα only, whereas our result provides aCα

estimate for anyα ∈ (0, 1).

Remark 1.3. The assumptionb ∈ Lp
tM

β
x implies a local smallness condition in the sense that||b||Lp([t−τ,t],Mβ)

becomes arbitrarily small asτ → 0, due to uniform integrability, but without any rate. This isnot true for
the endpoint casep = ∞. However, this is not the reason why we requirep < ∞ in Theorem1.1, and in
fact this local smallness plays no role in our proof. Indeed,the constantC in the estimate of Theorem1.1
depends only on the scaling-invariant norm ofb, and not on any other feature of the vector fieldb, such as
the modulus of continuity of the mapQ 7→ ‖b‖

Lp
tM

β
x (Q)

. Any argument that relies on the local smallness

of b would make the constants in the estimates depend on the rate at which the local norm ofb decays, and
would hence be implicitly a subcritical result. The reasonswhy we exclude the casep = +∞ in Theorem
1.1are more subtle, but we remark that with our current method wecould not prove the result in this case.

In the particular case whenb = u, Theorem1.1becomes a no-blowup condition for solutions to Navier-
Stokes equation. It says that if the norm ofu remains bounded inLp

tM
β
x , thenu does not blow up on

R
3 × [0, T ]. This is a scale invariant condition that is slightly more general (but has the same scaling) than

the classical Ladyzhenskaya-Foias-Prodi-Serrin conditionu ∈ Lp
tL

q
x with 2/p+n/q ≤ 1 (cf. [8, 15, 20, 23]).

Note that the endpoint case(q, p) = (3,∞), whenn = 3, was only treated recently in [10] (see also [11]
and Theorem4.1below for a related statement). The result of Theorem1.1 for the full range ofp ∈ [1,∞)
may be new for the Navier-Stokes equations as well, though itis comparable to other available regularity
criteria in terms of scaling critical norms ofu (cf. [3, 5, 6, 14] and references therein).

One important difficulty for proving Theorem1.1 is to deal with the non-local pressure term on the right
hand side of (1.2). There are very few results of this kind available for equations with pressure terms. In
[26] the same equation (1.2) is considered and a Lipschitz estimate is shown under a sub-critical assumption
on b (which includesb ∈ Lp

tL
q
x with 2/p + n/q ≤ 1− ǫ, for anyǫ > 0).

The idea of the proof is to write the Hölder regularity condition ofu(·, t) in integral form using a classical
theorem of Campanato [2]. Then we claim that these local integral estimates have a certain growth in time
(in terms of integral estimates onb). In order to prove that these estimates hold for all time we argue by
contradiction and look for the first point in which they wouldbe invalidated. At that time we apply the
equation and obtain a contradiction in a way that resembles maximum-principle-type arguments (see also
[12, 13] for the SQG equations). The integral representation of theHölder modulus of continuity allows
us to take advantage of the divergence-free condition and the integral bound onb. The divergence free
condition onu is used in the estimate for the gradient of pressure term. Thegeneral method of the proof
introduced here seems to be new, as it may be applied to systems with pressure gradients, and we believe it
may be applicable to other evolution equations in the future.

In section4 we analyze the endpoint caseβ = −1. The method of this article is applicable in this case,
but we need to impose an extra smallness condition on the vector field b (cf. (4.1)–(4.2) below).

We believe that the most important contribution of this article is the introduction of a new method to
prove Hölder estimates for evolution equations. We believe it is particularly interesting that the method can
be carried out even for systems that are coupled through the pressure term. We also provide an example
of how Theorem1.1 can help prove that a nonlinear equation is well posed. Let usconsider the following
modifiedenergy critical Navier-Stokes equation in 3D (see [7] for a similar modified critically dissipative
SQG equation)

∂tu+
(

(−∆)−1/4u · ∇
)

u−∆u = ∇p (1.11)

div u = 0 (1.12)
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that is,b = (−∆)−1/4u in (1.8)–(1.9). It follows directly from Theorem1.1 that the system (1.11)–(1.12)
is well-posed in the classical sense. Indeed, the global existence of weak solutionsu ∈ L∞

t L
2
x ∩ L2

t Ḣ
1
x

is straightforward, as is the local existence of strong solutions. In particular, for anyT > 0, we have that
(−∆)−1/4u is a priori bounded inL2(0, T ;H3/2(R3)), and by the Calderón-Zygmund theorem we have

∥

∥

∥
(−∆)−1/4u

∥

∥

∥

L2(0,T ;BMO)
<∞ (1.13)

for anyT > 0. Therefore, by applying Theorem1.1 with β = 0, we obtain thatu(·, t) ∈ Cα on (0, T ],
given thatu(·, 0) = u0 ∈ Cα, whereα ∈ (0, 1) is arbitrary. From this estimate, it is easy to obtain higher
regularity ofu by a standard bootstrap argument.

Note that for the above system one could also use classical energy estimates at the level of vorticity,
combined with Sobolev interpolation, to obtain the global well-posedness of the problem. On the other
hand our method allows some extra flexibility in the relationship betweenb andu. As explained above,
whenb = (−∆)−1/4u the system is well posed. Following essentially the same idea we can obtain using
Theorem1.1that the system is well posed for any of the following choices

• b = a(x)(−△)−1/4u + ∇q for any bounded functiona in R
3 and∇q is the gradient of a scalar

function that makesb divergence free. In this case we apply the a priori estimateu ∈ L4L3 that is
obtained by interpolation from the energy inequality, and givesb ∈ L4L6.

• b =
∫

k(x, y)u(y) dy wherek(x,−) ∈ L2n/(n+2) for anyx ∈ R
n andk(−, y) is divergence free

for anyy ∈ R
n.

• △b = div(u⊗ u) +∇q.
We plan to explore other applications of this method in the future.

2. PRELIMINARIES

In this section we state a few introductory remarks about theweak and classical solutions to (1.8)–(1.9),
and recall a classical characterization of Hölder spaces in terms of local averages. Throughout the rest of
the paper we will writeLpLq to denoteLp

tL
q
x = Lp(0, T ;Lq), and similarlyLpMβ will be used instead of

Lp
tM

β
x .

We first prove Theorem1.1 assuming that the solution is classical (i.e.C2 in space andC1 in time).
The important feature is that the a priori estimate (1.6) depends only on the assumptions of Theorem1.1
and not on any further smoothness assumptions onb or u. Then we approximate any weak solution with
classical solutions by using a mollification ofb, and pass to the limit to obtain the result of Theorem1.1 in
full generality.

Definition 2.1 (Weak Solutions). If b ∈ L1
loc([0, T ] × R

n) is divergence-free, a functionu ∈ L∞([0, T ] ×
R
n) is a weak solution of(1.2), if it is weakly divergence-free, and for all smooth, divergence-free, compactly

supported test functionsϕ we have:
∫

Rn

ϕ(x, T )u(x, T ) dx+

∫

[0,T ]×Rn

u (−ϕt + b∇ϕ−△ϕ) dx dt =

∫

Rn

ϕ(x, 0)u(x, 0) dx.

The following proposition is standard.

Proposition 2.2. Let bε anduε be a sequence of smooth divergence-free vector fields. Assume thatuε is a
weak solution of(1.2) with drift velocitybε. Assume also thatbε → b strongly inL1

locL
1
uloc. Then, up to a

subsequence,uε converges weakly to a weak solution of(1.2).

Using proposition2.2, we immediately observe the following.

Proposition 2.3. It is enough to prove Theorem1.1assuming thatb is smooth andu is a classical solution.

Proof of Proposition2.3. The assumptionb ∈ LpMβ implies in particular thatb ∈ L1
locL

1
uloc. Using a mol-

lification argument, we consider a sequence of smooth vectorfieldsbε converging strongly tob in L1
locL

1
uloc.
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Moreover, we choosebε such that||bε||LpMβ is bounded uniformly with respect toε (for example mollifying
with a smooth function with fixedL1 norm). For each of these vector fields, we solve the equation (1.2),
for instance using the mild formulation and Picard iteration, to obtain a smooth solutionuε. If the result of
Theorem1.1 is known for classical solutions, we would have thatuε satisfies the estimate (1.6) uniformly
in ε. Note that in particular we also obtainuε ∈ L∞. By Proposition2.2, up to a subsequence,uε converges
weakly to a weak solutionu of (1.2), and therefore this solutionu satisfies (1.6) as well. �

In order to prove the main theorem, we use a local integral characterization of Hölder spaces. For this
purpose, letϕ be a nonnegative, radially symmetric, smooth function supported inB1(0). Unless otherwise
specified, the center of the unit ballB1 in R

n shall be0. Let us also assume that
∫

ϕ(y) dy = 1. The
following theorem (or a small variation of it) is proved in [2].

Theorem 2.4(Campanato’s characterization of Hölder spaces).Let f : Rn → R
m be anL2 function

such that for allr > 0 andx ∈ R
n, there exists a constant̄f such that
∫

B1

|f(x+ ry)− f̄ |2ϕ(y) dy ≤ A2r2α (2.1)

for some positive constantA, andα ∈ (0, 1). Then the functionf has a Ḧolder continuous representative
such that

|f(x)− f(y)| ≤ BA|x− y|α
where the constantB depends on dimension andα only.

The most natural choice of the constantf̄ in the above theorem, for which the converse also holds. is to
choose the average off in the ball.

f̄ =

∫

B1

f(x+ ry)ϕ(y) dy.

This is optimal in the sense that it minimizes the left hand side in (2.1) (see also (1.5)).
The theorem of Campanato is interesting because it providesa non-obvious equivalence between a Hölder

modulus of continuity, which is a priori a pointwise property, and averages of differences of the function,
which is an integral property. This relation will allow us toexploit the divergence free nature of the vector
fieldsb andu when estimating the evolution of a Hölder modulus of continuity.

3. EVOLUTION OF A MODULUS OF CONTINUITY

We will prove that the solutions of (1.8)–(1.10) do not lose regularity by showing that they always satisfy
a time dependent Hölder modulus of continuity. This modulus of continuity will evolve and deteriorate with
time, but it will stay bounded. In order to take advantage appropriately of the divergence-free character of
the vector fieldu, we use the integral characterization of the modulus of continuity. Let ϕ be a radially
symmetric weight supported inB1 with mass one as in section2. We denote the weighted mean ofu on
Br(x) by

ū(x, t, r) =

∫

B1

u(x+ ry, t)ϕ(y) dy. (3.1)

The integral version of the modulus of the continuity ofu is then

I(x, t, r) =
∫

B1

|u(x+ ry, t)− ū(x, t, r)|2ϕ(y) dy. (3.2)

Due to Theorem2.4, if we knew that

I(x, t, r) ≤ f(t)2r2α, (3.3)

for some functionf(t) > 0, and allr > 0, then[u(·, t)]Cα ≤ Cf(t) for some universal constantC. Our
goal is to prove that estimate (3.3) holds for allt > 0, if it holds at t = 0, for some functionf(t) to be
chosen appropriately.
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As discussed in the introduction, our assumptions onb will be in terms of quantities similar toI, which
are distinguished by the parameterβ ∈ [−1, 1] as follows.

(i) The Morrey-Campanaoto case. Forβ ∈ [−1, 0), let

M(x, t, r) =

∫

B1

|b(x+ ry, t)| dy =
1

rn

∫

Br(x)
|b(z, t)| dz. (3.4)

We assume that there exists a positive functiong ∈ L
2/(1+β)
t such that

sup
x∈Rn

sup
r>0

r−βM(x, r, t) ≤ g(t) ⇔ ‖b(·, t)‖Mβ ≤ g(t) (3.5)

for all t ≥ 0, where‖ · ‖ms denotes the usual Morrey norm (cf. [24]).
(ii) The BMO case. Forβ = 0, we let

M(x, t, r) =

∫

B1

|b(x+ ry, t)− b̄(x, r, t)| dy =
1

rn

∫

Br(x)
|b(z, t)− b̄(x, r, t)| dz, (3.6)

where

b̄(x, r, t) =
1

rn

∫

Br(x)
b(z, t) dz (3.7)

is the usual mean ofb onBr(x). We assume that there exists a positive functiong ∈ L2
t such that

sup
x∈Rn

sup
r>0

M(0, x, r, t) ≤ g(t) ⇔ ‖b(·, t)‖BMO ≤ g(t) (3.8)

for all t ≥ 0, where‖ · ‖BMO denotes the norm on the space of functions with bounded mean
oscillation.

(iii) The Hölder and Lipschitz cases. Forβ ∈ (0, 1], we consider

M(x, t, r) =

∫

B1

|b(x+ ry, t)− b(x, t)| dy =
1

rn

∫

Br(x)
|b(z, t)− b(x, t)| dz. (3.9)

We assume that there exists a positive functiong ∈ L
2/(1+β)
t such that

sup
x∈Rn

sup
r>0

r−βM(x, t, r) ≤ g(t) ⇔ [b(·, t)]Cβ ≤ g(t) (3.10)

for all t ≥ 0, where[·]Cβ denotes the Hölder semi-norm. Note that2/(1 + β) ∈ [1, 2) when
β ∈ (0, 1].

We shall prove that if (3.5), (3.8), or respectively (3.10) holds, then we haveI(x, t, r) < f(t)2r2α for
all t > 0. The proof is in the flavor of a maximum principle. We show thatif the inequality is satisfied
at t = 0, it will be satisfied for all positivet. Kiselev, Nazarov and Volberg [13] used an argument is the
same spirit for proving the well posedness of the critical dissipative SQG equation. But that as opposed to
(1.8)–(1.9), it is a scalar equation that has anL∞ maximum principle and the modulus of continuity can be
studied pointwise in their case.

In order to prove Theorem1.1, assume there is a first timet and some value ofx where thestrict modulus
is invalidated, i.e.

I(x, t, r) = f(t)2r2α. (3.11)

By Proposition2.3, we can assume thatu is a smooth function vanishing at infinity. Therefore the equality
in (3.11) of the modulus must be achieved at somer > 0 andx ∈ R

n.
If we fix t andr, the functionI achieves its maximum atx, and we obtain

0 = ∇xI =

∫

B1

(u(x+ ry, t)− ū(x, t, r)) · (∇xu(x+ ry, t)−∇xū(x, t, r))ϕ(y) dy. (3.12)
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Due to the definition of̄u (3.1), and the fact that∇xū(x, t, r) does not depend ony, we also have

0 =

∫

B1

(u(x+ ry, t)− ū(x, t, r)) · ∇xu(x+ ry, t)ϕ(y) dy. (3.13)

SinceI < f(t)2r2α for all times prior tot, and since(u− ū)ϕ has zero mean, we thus conclude

2f ′(t)f(t)r2α ≤ ∂tI =

∫

B1

(u(x+ ry, t)− ū(x, t, r)) · (∂tu(x+ ry, t)− ∂tū(x, t, r))ϕ(y) dy (3.14)

=

∫

B1

(u(x+ ry, t)− ū(x, t, r)) · ∂tu(x+ ry, t)ϕ(y) dy. (3.15)

The key to prove Theorem1.1 is to find an appropriate upper bound for the right hand side of(3.15) in
terms off(t) andM(r, t). Inserting the equation (1.2) in the right hand side of (3.15), we obtain

2f ′(t)f(t)r2α ≤
∫

B1

(u(x+ ry, t)− ū(x, t, r))

·
(

− b(x+ ry, t) · ∇xu(x+ ry, t) +△xu(x+ ry, t)−∇p(x+ ry, t)
)

ϕ(y) dy

= A+D + P. (3.16)

The following three lemmas give bounds to the three terms on the right side of (3.16). The advection term
A is the simplest one to estimate. Observe that

∇xu(x+ ry) =
1

r
∇yu(x+ ry). (3.17)

This identity, together with the assumptiondiv b = 0, allows us to integrate by parts the gradient into the
weightϕ and obtain a precise estimate forA.

The dissipative term turns out to be negative, but we must analyze it with care in order to obtain a precise
lower bound on its absolute value. In fact, note that ifu is linear inBr(x) thenD = 0. We will obtain an
estimate ofD that measures how muchu is forced to separate from a linear function, just from the values of
I and∂rI at the point where the equality (3.11) holds.

Lastly, we obtain an upper bound for the pressure termP, comparable to the advection termA. This is
to be expected since∇p is obtained fromb · ∇u though an operator of order zero. However, the pressure
estimate is more involved since the formula for the pressureis non-local and in order to obtain the desired
estimate we need to take advantage of some cancellations that occur after integration by parts of Riesz
kernels using that bothb andu are divergence free.

We now carry out the estimates for the three terms on the rightof (3.16) in the three lemmas below.

Lemma 3.1(The advection term). Letu andb be as in the statement of Theorem1.1. Then we have

A =

∫

B1

(u(x+ ry, t)− ū(x, t, r)) · (−b(x+ ry, t) · ∇xu(x+ ry))ϕ(y) dy ≤ Cr2α−1f(t)2M(x, t, r)

(3.18)

for all β ∈ [−1, 1], whereC is a positive constant depending only onα, ϕ, andn.

Proof of Lemma3.1. Using the identities (3.13), (3.17), and integrating by parts, we obtain from (3.18) that

A =
1

r

∫

B1

|u(x+ ry, t)− ū(x, t, r)|2(b(x+ ry, t)− b̄(x, r, t)) · ∇ϕ(y) dy (3.19)

whereb̄ = b̄(x, r, t) is a constant with respect toy, to be chosen suitably in the three cases forβ ∈ [−1, 1],
as discussed above. From identity (3.19), the Hölder inequality, and Theorem2.4, we directly obtain

A ≤ Cr2α−1f(t)2M(x, t, r), (3.20)

for all β ∈ [−1, 1], whereC is a positive constant depending onα, n, andϕ throughsupB1
|∇ϕ|. �

The second term corresponds to the viscosity and it is strictly negative, as we will show below.
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Lemma 3.2(The dissipative term). Letu andb be as in the statement of Theorem1.1. Then we have

D =

∫

B1

△xu(x+ ry, t) · (u(x+ ry, t)− ū(x, t, r))ϕ(y) dy ≤ −cf(t)2r2α−2 (3.21)

for all r > 0, wherec is a sufficiently small positive constant, depending only onn, α, andϕ.

Remark 3.3. Note that the constantc in Lemma3.2goes to zero asα→ 1. This is the reason why Theorem
1.1works forα < 1 only.

In order to prove Lemma3.2, we need the following technical result, which relates the quantitiesD and
I.

Lemma 3.4. For a fixedx, we have

D(r) ≥ c
(2I(r)− rI ′(r))2

r2I(r) (3.22)

for some sufficiently small positive constantc.

For simplicity we omited thex dependence in (3.22). Note that iff is a linear function, thenD = 0 and
I = Cr2 for some constantC. Moreover, in this caserI ′ = 2I. We see that if(rI ′ − 2I) is non zero, then
the functionu cannot be linear. The inequality (3.22) gives a precise quantitative version of this fact.

We note that the identity

∫

B1

|f(y)− c|2ϕ(y) dy =

∫

B1

∫

B1

(f(y)− f(z))2ϕ(y)ϕ(z) dy dz (3.23)

holds for any constantc, in particular forc = f̄ , giving equivalent definitions forI andD in terms of
double-integrals. The proof of identity (3.23) is straightforward, and hence omitted.

With formula (3.23) in mind, we prove the following lemma, which is exactly the caser = 1 for (3.22).
The proof of Lemma3.4follows for all other values ofr from Lemma3.5by scaling.

Lemma 3.5. Letf : B1 → R
n be anyH1 function. There is a constantC depending only onn andϕ such

that

∫∫

B1×B1

(f(y)− f(z))2ϕ(y)ϕ(z) dy dz −
∫∫

B1×B1

(y · ∇f(y)− z · ∇f(z)) · (f(y)− f(z))ϕ(y)ϕ(z) dy dz

≤ C

(
∫∫

B1×B1

(∇f(y)−∇f(z))2ϕ(y)ϕ(z) dy dz

)1/2(∫∫

B1×B1

(f(y)− f(z))2ϕ(y)ϕ(z) dy dz

)1/2

.

Proof of Lemma3.5. We start by writingf(y)−f(z) as an integral of∇f along the segment betweenz and
y. Thus, we have

∫∫

B1×B1

(f(y)− f(z))2ϕ(y)ϕ(z) dy dz

=

∫∫

B1×B1

∫ 1

0
(∇f(sy + (1− s)z) · (y − z)) · (f(y)− f(z))ϕ(y)ϕ(z) ds dy dz.
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Substituting in the first term of the left hand side, we obtain
∫∫

B1×B1

(f(y)− f(z))2ϕ(y)ϕ(z) dy dz

− 2

∫∫

B1×B1

(y · ∇f(y)− z · ∇f(z)) · (f(y)− f(z))ϕ(y)ϕ(z) dy dz

=

∫∫

B1×B1

∫ 1

0

(

(∇f(sy + (1− s)z)−∇f(y)) · y − (∇f(sy + (1− s)z)−∇f(y)) · z
)

× (f(y)− f(z))ϕ(y)ϕ(z) ds dy dz

≤ I1/2E1/2,

whereI is as defined in (3.2), andE is defined as

E =

∫∫

B1×B1

∫ 1

0

(

(∇f(sy + (1− s)z)−∇f(y)) · y − (∇f(sy + (1− s)z)−∇f(y)) · z
)2

ds dy dz.

The quantityE is a bounded quadratic functional with respect to the vectorfield∇f that vanishes whenever
∇f is constant. Therefore, there is a constantC such that

E ≤ C

∫∫

B1×B1

(∇f(y)−∇f(z))2ϕ(y)ϕ(z) dy dz = C D,

which concludes the proof. �

Proof of Lemma3.2. We recall that at the first point of equality in (3.11), the functionI achieves its maxi-
mum as a function ofx. Then we have△xI ≤ 0, and hence

0 ≥
∫

B1

(△xu(x+ ry, t)−△xū(x, t, r)) · (u(x+ ry, t)− ū(x, t, r))ϕ(y) dy

+

∫

B1

|∇u(x+ ry, t)−∇xū(x, t, r)|2ϕ(y) dy.

Therefore, since(u− ū)ϕ has zero mean and△xū does not depend ony, we obtain the inequality

D ≤ −
∫

B1

|∇u(x+ ry, t)−∇xū(x, t, r)|2ϕ(y) dy. (3.24)

According to (3.24), D is negative, but we must estimate how negative it is. It is convenient to rewrite the
formula forI(x, t, r) using (3.23) as

I(x, t, r) =
∫

B1

|u(x+ ry, t)− ū(x, t, r)|2ϕ(y) dy

=

∫∫

B1×B1

|u(x+ ry, t)− u(x+ rz, t)|2ϕ(y)ϕ(z) dy dz. (3.25)

At the point wheref(t)2r2α = I(x, t, r) for the first time, we have∇xI = 0 and△xI ≤ 0, so that

0 ≥ △xI(x, t, r)

= 2

∫∫

B1×B1

|∇xu(x+ ry, t)−∇xu(x+ rz, t)|2

+ (△xu(x+ ry, t)−△xu(x+ rz, t)) · (u(x+ ry, t)− u(x+ rz, t))ϕ(y)ϕ(z) dy dz

= 2D + 2

∫∫

B1×B1

|∇xu(x+ ry, t)−∇xu(x+ rz, t)|2ϕ(y)ϕ(z) dy dz,
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whereD is given by (3.24). We thus have proven the inequality

D ≤ −
∫∫

B1×B1

|∇xu(x+ ry, t)−∇xu(x+ rz, t)|2ϕ(y)ϕ(z) dy dz

= − 1

r2

∫∫

B1×B1

|∇yu(x+ ry, t)−∇zu(x+ rz, t)|2ϕ(y)ϕ(z) dy dz. (3.26)

The right hand side is clearly negative unlessu is an affine function. We now need to estimate how negative
it is, in terms ofI and∂rI. Note that at the first point of equalityI = f(t)2r2α, we must also have
∂rI = 2αf(t)2r2α−1. We compute∂rI as

∂rI = 2

∫

B1

(u(x+ ry, t)− ū(x, t, r)) y · ∇xu(x+ ry, t)ϕ(y) dy

= 2

∫∫

B1×B1

(u(x+ ry, t)− u(x+ rz, t)) · (y · ∇xu(x+ ry, t)− z · ∇xu(x+ rz, t))ϕ(y)ϕ(z) dy dz

=
2

r

∫∫

B1×B1

(u(x+ ry, t)− u(x+ rz, t)) · (y · ∇yu(x+ ry, t)− z · ∇zu(x+ rz, t))ϕ(y)ϕ(z) dy dz.

(3.27)

From the expression (3.25) and (3.27), we can apply Lemma3.5to obtain

(2I − r∂rI) ≤ CI1/2

(
∫∫

B1×B1

|∇yu(x+ ry, t)−∇zu(x+ rz, t)|2ϕ(y)ϕ(z) dy dz

)1/2

.

Recalling the inequality (3.26), we obtain

D ≤ − c

r2
(2I − r∂rI)2

I = −cf(t)2(1− α)2r2α−2 (3.28)

for some positive constantc, depending only onα, n, andϕ. �

Lastly, we bound the pressure termP arising on the right side of (3.16).

Lemma 3.6(The pressure term). Letu andb be as in the statement of Theorem1.1. Then we have

P =

∫

B1

(u(x+ ry, t)− ū(x, r, t)) · ∇p(x+ ry, t)ϕ(y) dy ≤ Cf(t)2g(t)r2α+β−1 (3.29)

for all r > 0 andβ ∈ [−1, 1], whereC is a positive constant, depending onα, β, n, andϕ.

Proof of Lemma3.6. Since all estimates in this section hold for a fixed timet > 0, we omit the time de-
pendence of all functions. Recall that the functionb̄ = b̄(x, r) (which is constant respect toy) is chosen
to be b̄ = b(x) in the Hölder case, the average ofb overBr(x) in the BMO case, or̄b = 0 in the Morrey-
Campanato case.

In order to estimate the third term in (3.16), let us analyze the identity (1.4). Sinceu is divergence free,
we have

∇xp(x+ ry) = ∇x(−△)−1
x divx(b(x+ ry) · ∇xu(x+ ry))

=
1

r
∇y(−△y)

−1 divy

(

(b(x+ ry)− b̄(x, r)) · ∇y(u(x+ ry)− ū(x, r))
)

. (3.30)

We have the pressure termP equal to
∫

(u(x+ ry)− ū(x, r)) · ∇xp(x+ ry)ϕ(y) dy

=
1

r

∫

(u(x+ ry)− ū(x, r)) · ∇y(−△y)
−1 divy

(

(b(x+ ry)− b̄(x, r)) · ∇y(u(x+ ry)− ū(x, r))
)

ϕ(y) dy.
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We integrate the∇y by parts and use thatu is divergence free to obtain thatP equals

1

r

∫

(−△y)
−1 divy

(

(b(x+ ry)− b̄(x, r)) · ∇y(u(x+ ry)− ū(x, r))
)

(u(x+ ry)− ū(x, r)) · ∇ϕ(y) dy.

Using thatb andu are divergence free, we re-write the above identity as

P =
1

r

∫

(−△y)
−1∂i∂j

(

(b(x+ ry)− b̄(x, r))i(u(x+ ry)− ū(x, r))j

)

(u(x+ ry)− ū(x)) · ∇ϕ(y) dy

=
1

r

∫

RiRj

(

(b(x+ ry)− b̄(x, r))i(u(x+ ry)− ū(x, r))j

)

(u(x+ ry)− ū(x, r)) · ∇ϕy(y) dy

=
1

r

∫

(b(x+ ry)− b̄(x, r))i(u(x+ ry)− ū(x, r))jRiRj

(

(u(x+ ry)− ū(x, r)) · ∇ϕ(y)
)

dy,

(3.31)

where the Riesz transforms are taken with respect to they variable.
The third factor inside the integral is given by Riesz transforms iny of the function

ψx,r(y) = ψ(y) = (u(x+ ry)− ū(x, r)) · ∇ϕ(y) = divy

(

(u(x+ ry)− ū(x, r))ϕ(y)
)

, (3.32)

sinceu is divergence free. The functionψ is supported inB1 and we have
∫

B1
ψ(y) dy = 0. Moreover,

since by assumptionI(x, r) ≤ Cf(t)rα for someα ∈ (0, 1), we have by Theorem2.4 that‖u(x + ry) −
ū(x, r)‖L∞

y (B1) ≤ Cf(t)rα, and therefore‖ψ‖L∞

y (B1) ≤ Cf(t)rα, uniformly in x. In fact,ψ is alsoCα,
with Cα norm bounded byCf(t)rα (note the scaling iny).

Gathering these bounds together, we see thatRiRj(ψ) must be bounded inL∞(Rn) by Cf(t)rα, uni-
formly in x. Indeed, the Riesz transforms are bounded onCα and onL2 (sinceψ is supported onB1 and is
bounded there, itsL2 norm is also finite), and thereforeRiRj(ψ) ∈ L2(Rn) ∩ Cα(Rn) ⊃ L∞(Rn).

The Riesz transforms of functions with compact support are not compactly supported. The decay of the
Riesz transform of a compactly supported function is normally of order−n. However, in this case since the
functionψ has integral zero, and since it is a derivative, we have thatRiRj(ψ) decays like|y|−n−2 for |y|
large. To see this, letKij be the Kernel associated with the Riesz transform and, usingthatdiv u = 0, we
compute

Rij(ψ)(y) =

∫

ψ(z)Kij(y − z) dz =

∫

ϕ(z)(u(x + rz)− ū(x, r)) · ∇Kij(y − z) dz

=

∫

ϕ(z)(u(x + rz)− ū(x, r)) ·
(

∇Kij(y − z)−∇Kij(y)
)

dz

(3.33)

in principal value sense, since
∫

ϕ(u− ū) = 0. Lettingy be such that|y| > 2, we obtain that|∇2Kij(ξ)| ≤
C|y|n+2, for all ξ that lies betweeny andy − z, whereC is a sufficiently large dimensional constant, gives
the desired decay in|y|.

To summarize, we have proved that

RiRj[(u(x+ ry)− ū(x, r)) · ∇ϕ(y)] ≤
{

Cf(t)rα if |y| < 2
Cf(t)rα

|y|n+2 if |y| ≥ 2
(3.34)

whereC is a universal constant that does not depend onx. Recall that by our assumption and Campanato’s
theorem we also have(u(x + ry) − ū(x, r)) ≤ Cf(t)(ry)α. Therefore, we obtain from (3.31) and (3.34)
the estimate

P ≤ Cf(t)2r2α−1

(

∫

B2

|b(x+ ry)− b̄(x, r)| dy +
∫

Rn\B2

|b(x+ ry)− b̄(x, r)| 1

|y|n+2−α
dy

)

. (3.35)

It is here where it is necessary to make the distinction between the Hölder and Morrey-Camapanato cases
for the a priori assumptions onb, by making the specific choices forb̄.
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The Ḧolder case.If b̄(x, r) = b(x), it is clear that
∫

B2

|b(x+ ry)− b̄(x)| dy ≤ CM(x, r/2) ≤ Cg(t)rβ (3.36)

for β ∈ (0, 1]. To bound the tail of the integral arising from the Riesz transforms, we first change variables
ry = z so that
∫

Rn\B2

|b(x+ ry)− b̄(x)| 1

|y|n+2−α
dy = r2−α

∫

Rn\B2r

|b(x+ z)− b̄(x)| 1

|z|n+2−α
dz

= r2−α

∫ ∞

2r

∫

∂Bρ

|b(x+ z)− b̄(x)| dσ(z) 1

ρn+2−α
dρ

= r2−α

∫ ∞

2r

∂

∂ρ

(

∫

Bρ

|b(x+ z)− b̄(x)| dσ(z)
)

1

ρn+2−α
dρ

≤ Cr2−α

∫ ∞

2r
(ρnM(x, ρ))

1

ρn+3−α
dρ

≤ Cr2−αg(t)

∫ ∞

2r

1

ρ3−α−β
≤ Cg(t)rβ. (3.37)

From (3.35), (3.36), and (3.37), we obtain

P ≤ Cf(t)2g(t)r2α+β−1. (3.38)

The BMO case.In this case we havēb(x, r) = (1/rn)
∫

Br(x)
b(z) dz. The difference with the Hölder case

lies in the tail of the integral due to the Riesz transform. Weuse the following classical fact about BMO
functions: the difference between the mean onBr anBλr is bounded by2n ln(1+λ) times the BMO norm,
for all λ > 1. We split the integral in dyadic cylinders to find a bound for each and sum.

∫

Rn\B2

|b(x+ ry)− b̄(x, r)| 1

|y|n+2−α
dy =

∞
∑

k=1

∫

B
2k+1\B2k

|b(x+ ry)− b̄(x, r)| 1

|y|n+2−α
dy

≤
∞
∑

k=1

∫

B
2k+1\B2k

(

|b(x+ ry)− b̄(x, 2k+1r)|+ |b̄(x, 2k+1r)− b̄(x, r)|
) 1

2k(n+2−α)
dy

≤
∞
∑

k=1

1

2k(2−α)
||b||BMO +

1

2k(n+2−α)

∫

B
2k+1r

\B
2kr

|b̄(x, 2k+1r)− b̄(x, r)| dy

≤
∞
∑

k=1

1

2k(2−α)
||b||BMO +

1

2k(n+2−α)
C2kn log(1 + 2k+1)||b||BMO ≤ C||b||BMO.

Thus, the tail of the integral in the bound ofP (3.35) is bounded byC||b||BMO ≤ Cg(t), as well as the fist
term in (3.35). Therefore, in this case (β = 0) we also obtain

P ≤ Cf(t)2g(t)r2α+β−1.

The Morrey-Campanato case.In this case we havēb(x, r) = 0. The same proof as in the Hölder case above,
but with b̄ = 0, shows that

P ≤ Cf(t)2g(t)r2α+β−1 (3.39)

whensupr>0 r
−βM(x, r) <∞, andβ ∈ [−1, 0). �

Once we have estimated the three terms on the right side of (3.16), the proof of the main theorem is
concluded as follows.
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Proof of Theorem1.1. Since the vector driftb is a priori assumed to lie inMβ, for someβ ∈ (−1, 1], with

[b(·, t)]Mβ ≤ g(t), andg ∈ L
2/(1+β)
t , we obtain from (3.20), (3.28), and (3.38) the estimate

f ′(t)f(t)r2α ≤ C∗f(t)
2g(t)r2α+β−1 − c∗f(t)

2r2α−2 (3.40)

which holds for some sufficiently large constantC∗, and some sufficiently small positive constantc∗. The
above estimate implies

f ′(t)

f(t)
≤ C∗g(t)r

β−1 − c∗r
−2 ≤ C̄g(t)2/(1+β) (3.41)

for some positive constant̄C = C̄(C∗, c∗, β). The last inequality was obtained maximizing the expression
with respect tor.

On the other hand, ifg ∈ L
2/(1+β)
t , we can choosef to be the solution to the ODE

f ′(t) = 2C̄g(t)2/(1+β)f(t),

which contradicts the above inequality and makes it impossible for the Hölder modulus of continuity to ever
be invalidated. Note that the above ODE has the explicit solution

f(t) = e(
∫ t
0 Cg(s)2/(1+β) ds)f(0),

which stays bounded for allt. �

4. THE ENDPOINT CASEβ = −1

For the three-dimensional Navier-Stokes equations, i.e.b = u, obtaining regularity of the solutions in the
endpoint caseu ∈ L∞L3 is highly non-trivial, and this issue was only settled recently by Iskauriaza, Seregin,
and Sverak in [10] (see also [11] for the caseL∞H1/2). The case(p, q) = (∞, n) on the Ladyzhenskaya-
Foias-Prodi-Serrin scale is of particular importance as itis the scaling-critical space for the initial data, and it
gives the borderline space (on the Lebesgue scale) for constructing solutions via the Picard iteration scheme
(so-called mild solutions). Note thatL3 ⊂M−1.

It turns out that for the linear system (1.8)–(1.10), the proof given above fails in the caseb ∈ L∞M−1,
as the constant̄C blows up asβ → −1. The corresponding result for the Navier-Stokes equations(as in
[10] or [11]) relies essentially on the nonlinear structure of the equation. In order to obtain a result in this
direction for the liner equation (1.2), with the method of this article, we need to impose an extra smallness
condition.

Theorem 4.1. LetT > 0 be arbitrary. Assume thatb is a divergence-free vector field inL∞([0, T ];M−1),
and letu0 ∈ L2 ∩ Cα for someα ∈ (0, 1). There exists a positive constantǫ > 0 such that if for all
t ∈ (0, T ] there existsr∗(t) > 0 with

sup
t∈[0,T ]

sup
x∈Rn

sup
0<r<r∗(t)

r

∫

B1

|b(x+ ry, t)| dy ≤ ǫ (4.1)

and
∫ T

0

1

r∗(t)2
dt <∞, (4.2)

thenu(·, t) ∈ Cα(Rn) for all t ∈ (0, T ].

Remark 4.2. If ‖b‖L∞M−1 ≤ ǫ, the theorem holds trivially. Additionally, note that for any φ ∈ L3(R3), or
anyφ in the closure ofC∞

0 in M−1, we have

lim
r→0

r

∫

B1

|φ(x+ ry)| dy = 0,

for all x, and hence (4.1) holds for somer∗ > 0. Therefore, ifb is continuous in time with values inL3, or
piecewise continuous with arbitrarily large jumps, or if all jumps are of size smaller thanε/2, the conditions
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(4.1)–(4.2) are automatically satisfied, withr∗(t) being a sufficiently small constant, proving regularity of
the solution (see also [5, Theorem 3.1] for a similar result in the critical Besov space). Theorem4.1 states
that if the drift velocityb(·, t) is nicely behaved at sufficiently small scalesr∗(t), and if these scales do not
go to0 too fastat any pointt ∈ [0, T ], i.e. r∗(s) cannot vanish att with a rate faster than

√
t− s, then the

solution is regular untilT . Note that with respect to time regularity, the conditions of Theorem4.1 above
are stronger than merelyb ∈ L∞

t L
3
x, but weaker thanCtL

3
x.

Proof of Theorem4.1. From (3.20), (3.28), (3.36), and (3.37), we obtain

2f ′(t)f(t)r2α ≤ C∗r
2α−1f(t)2M(x, t, r) − c∗f(t)

2r2α−2

+ C∗f(t)
2r2α−1

(

M(x, t, r/2) + r2−α

∫ ∞

2r
M(x, t, ρ)

1

ρ3−α
dρ

)

, (4.3)

whereM(x, t, r) =
∫

B1
|b(x+ ry, t)| dy, and by assumption of the theorem we have

sup
0<r<r∗(t)

rM(x, t, r) ≤ ǫ (4.4)

and

sup
r>0

rM(x, t, r) ≤ ‖b‖L∞

t M−1
1

= B <∞ (4.5)

uniformly in x, t. Inserting the bounds (4.4)–(4.5) into (4.3), we have

2r2
d

dt
log f(t) ≤ C∗rM(x, t, r)− c∗ + C∗rM(x, t, r/2)

+ C∗r
3−α

(
∫ r∗

2r
(ρM(x, t, ρ))

1

ρ4−α
dρ+

∫ ∞

r∗

(ρM(x, t, ρ))
1

ρ4−α
dρ

)

(4.6)

for all r > 0. To bound the right side of (4.6), we distinguish the casesr/r∗ ≤ δ, andr/r∗ > δ, where we
let

δ = min

{

( ǫ

B

)1/(3−α)
,
1

2

}

. (4.7)

Indeed, ifr/r∗ ≤ δ, we have2r < r∗ andB(r/r∗)
3−α ≤ Bδ3−α ≤ ǫ, so that by (4.1) implies

2r2
d

dt
log f(t) ≤ C∗ǫ− c∗ + 2C∗ǫ+ C∗r

3−αCα

(

ǫrα−3 +Brα−3
∗

)

≤ C∗(3 + 2Cα)ǫ− c∗, (4.8)

for some positive constantCα > 0, and for all0 < r ≤ δ r∗. Therefore, if we chooseǫ as

ǫ =
c∗

C∗(3 + 2Cα)
, (4.9)

then we obtain from (4.8) that

d

dt
log f(t) ≤ 0 (4.10)

for all t ∈ [0, T ], and all0 < r ≤ δ r∗(t). On the other hand, ifr > δ r∗(t), we bound the right side of (4.6)
by making use of (4.5), namely

d

dt
log f(t) ≤ 1

2r2

(

3C∗B + C∗Br
3−α

∫ ∞

2r

1

ρ4−α

)

≤ C∗B(3 + Cα)

2δ2r∗(t)2
(4.11)

for someCα > 0, for all r > δ r∗(t). The proof of the theorem is then concluded since we may choose f as

f(t) = f(0) exp

(

C∗B(3 + Cα)

δ2

∫ t

0

1

r∗(s)2

)

(4.12)

which is finite for allt ≤ T by (4.2), and it contradicts (4.10)–(4.11). �
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Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)5 (1967), 169–185. MR 0236541 (38 #4836)
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