HOLDER CONTINUITY FOR A DRIFT-DIFFUSION EQUATION WITH PRESS URE

LUIS SILVESTRE AND VLAD VICOL

ABSTRACT. We address the persistence of Holder continuity for wediltions of the linear drift-diffusion
equation with nonlocal pressure
ur +b-Vu— Au = Vp, V-u=0

on[0,00) x R™, with n > 2. The drift velocityb is assumed to be at the critical regularity level, with respe
to the natural scaling of the equations. The proof draws anfzaato’s characterization of Holder spaces, and
uses a maximum-principle-type argument by which we cortbelgrowth in time of certain local averages of
u. We provide an estimate that does not depend on any localrsaslicondition on the vector fiebd but only

on scale invariant quantities.
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1. INTRODUCTION

A classical problem in partial differential equations isaidress the regularity of solutions to parabolic
problems involving advection by a vector fidldnd diffusion

ug+b-Vu— Au=0. (1.2)

If the vector fieldb is sufficiently regular, the solution is expected to be regular as well. Naturally, this
is expressed as a result of the typeb i bounded with respect to some norm, theis smooth in some
sense. The appropriate norms for such statement are thetlmateare either critical or subcritical with
respect to the inherent scaling of the equation. More pedgi w is a solution of {.1), then for anyr > 0
the functionu,.(z,t) = ru(rz,r’t) solves an equation of the same form but with drift velocityegi by
b-(x,t) = rb(rz,r?t). This change of variables acts agz@m inthat focuses on the local behavior of
the solutionu. An assumption o is critical with respect to the scaling of the equation if tteem of b,
coincides with the norm af, for anyr > 0. The assumption would be subcriticalbif has smaller norm
thanb for all small enough values of, and supercritical otherwise.

As a rule of thumb, with current methods it seems impossiblebtain a regularity result forl(1) with
a supercritical assumption dn since the transport part of the equation would be strorgan diffusion
in the small scales. With subcritical assumptionsbpit is generally possible to treat equatiohl) as a
perturbation of the heat equation, and strong regulargylte in this direction are available. The Kato class
condition forb is probably the largest class that falls into this categboy.results in the subcritical case see
for example L, 4, 25].

Obtaining regularity estimates fot.() depending only oiscale invariantnorms ofb requires the use of
non-perturbative techniques, since the drift term doedbaocbme negligible at any scale. To the best of our
knowledge, the only results available are variations ofkeGiorgi-Nash-Moser Harnack inequality{],
which states that weak solutions tb.J) are C'* for positive time, for some smatl > 0. Results in this
direction include a variety of critical assumptions on tleeter fieldb. Forb € LY LI with n/q +2/p = 1,
we refer to L6, Chapter 3] or 19]. For divergence-free drift € L°BMO_ !, the Holder regularity of
weak solutions was proved only recently 8} &nd [22]. For b in a space-time Morrey space, this result was
obtained recently in]9]. See [L7, 21, 26] for other conditions o yielding Holder regularity, such as the
form boundedness condition.
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The equation.1) is essentially a scalar equation, since eveniff a vector field, each component would
satisfy the same equation. In contrast, the De Giorgi-Néebker theory is hard to apply to actual systems.
In this article we consider a Stokes system with drift, i.ee add a pressure term as is common for the
equations of fluid dynamics, and we look for a solutiowhich is divergence free. Given a divergence free
vector fieldd : [0, 7] x R™ — R", we consider the following evolution equation

ur+b-Vu—Au=Vp (1.2)
for a solutionu : [0, 7] x R™ — R™ which satisfies
V-u=0. (1.3)
The term pressure gradient may be computed frorg)€(1.3) by the formula
Vp = V(=A)" div(b- Vu). (1.4)

In this paper we prove that if a scale invariant normba$ bounded, then thé&'® norm of v at time
t is bounded in terms of it€'* norm at time zero. Our result is a propagation of regulanstéad of a
regularization result, in the sense that we require th@&lrdatau, to be Holder continuous, and € (0, 1)
is arbitrary.

The assumption on the divergence-free drift velogity that it is anZ? integrable function in time, with
values in thelL!-based Morrey-Campanato spakg’, where € [—1,1], andp = 2/(1 + 3). We recall
cf. [24, Definition 1.7.2] the definition of th&'-based Morrey-Campanato spadd$. For any3 € [—1, 1],
we sayf € MPif f e L} and

loc

B . 1
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whereP? = {0} if —1 < 8 < 0, andP” = {constant functionsif 0 < # < 1. The conditiorb(-, ) € M”
has a different flavor depending of the value of the exporerdf. [24, Theorem 5.3.1]: if3 = 1, M”
coincides with the space of Lipschitz functionsgife (0,1), it is exactly the Holder class’”; if 5 = 0,
it corresponds to the class of functions of bounded meatiatsmn BMO; while if 5 € [—1,0) it is the
usual Morrey-Campanato space. In all these cases, theadstimour main theorem dependsly on the
semi-normb(-, t)] ;s associated to the space. In this paper we consider divegiese driftsb such that

[b(-, )] ars := sup supr™ "M, t,7) < g(t) (1.6)
zeR3 r>0

for someg € LP(]0,T]), where we define

Mty == [ et bl de= [ (bt < Banpldy @)
" J B (x) B1(0)

andb(x,r,t) is chosen to equal zero if € [-1,0), the average ob over B,.(z) if 3 = 0, respectively

b(x,t) if 5 € (0,1], which is equivalent to1(.5) (except forg = 1). We give further details on the precise

assumptions oh in Section3 below. Our main theorem in the casec (—1,1] is given in Theoreni.1

below, while the endpoint case= —1 is addressed in Theorefinl (see also Remark.3).

Theorem 1.1. Assumé : [0,7] x R® — R" is a divergence-free vector field such tthat L?([0,T]; M?)
with 5 € (—1,1] andp = 2/(1 + ). Assume also that, € C for some some: € (0,1). Then there
exists a weak solution : [0, 7] x R™ — R"™ of the system

u+b-Vu—Au=Vp (1.8)
V-u=0 (1.9)
u(x,0) = ug(z) (1.10)

such thatu(z, t) is C* in z for all positive timet € (0, 7]. Moreover, we have the estimate

[u(, Dlce < Cluglce,
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for some positive universal constafit= C(T', v, 3, [b]  » 5 )-

t x
Remark 1.2. To the best of our knowledge, the result of Theorkrhis new even if the pressure term was
removed, and the scalar equatidnlj was considered instead. Indeed, the De Giorgi-Nash-Mt=@ition
scheme provides @ estimate for the solution for some smallonly, whereas our result provide &
estimate for anyv € (0, 1).

Remark 1.3. The assumptioh € Lfo implies a local smallness condition in the sense gt » (4, 115)
becomes arbitrarily small as — 0, due to uniform integrability, but without any rate. Thisnist true for
the endpoint casg = co. However, this is not the reason why we require: oo in Theoreml.1, and in
fact this local smallness plays no role in our proof. Indgbld,constantC in the estimate of Theoreth 1
depends only on the scaling-invariant normbp&nd not on any other feature of the vector fielduch as
the modulus of continuity of the ma@ — HbHLfME(Q)' Any argument that relies on the local smallness

of b would make the constants in the estimates depend on thetnatech the local norm ob decays, and
would hence be implicitly a subcritical result. The reasoiny we exclude the cage= +oo in Theorem
1.1are more subtle, but we remark that with our current methodawéd not prove the result in this case.

In the particular case whén= u, Theoreml.1 becomes a no-blowup condition for solutions to Navier-
Stokes equation. It says that if the normwofemains bounded ianM:?, thenwu does not blow up on
R? x [0,T]. This is a scale invariant condition that is slightly moregel (but has the same scaling) than
the classical Ladyzhenskaya-Foias-Prodi-Serrin camditic LY L1 with 2/p+n/q < 1(cf. [8, 15, 20, 23)).
Note that the endpoint case, p) = (3,00), whenn = 3, was only treated recently irl{] (see also 11]
and Theorend.1below for a related statement). The result of Theofefrfor the full range ofp € [1, c0)
may be new for the Navier-Stokes equations as well, thoughdbmparable to other available regularity
criteria in terms of scaling critical norms af(cf. [3, 5, 6, 14] and references therein).

One important difficulty for proving Theorem 1is to deal with the non-local pressure term on the right
hand side of 1.2). There are very few results of this kind available for equret with pressure terms. In
[26] the same equatiorl(2) is considered and a Lipschitz estimate is shown under &stital assumption
onb (which includesh € LY L% with 2/p 4+ n/q < 1 — ¢, for anye > 0).

The idea of the proof is to write the Holder regularity cdradi of u(-, ¢) in integral form using a classical
theorem of Campanat@]. Then we claim that these local integral estimates havetainggrowth in time
(in terms of integral estimates @). In order to prove that these estimates hold for all time vgei@a by
contradiction and look for the first point in which they woulé invalidated. At that time we apply the
equation and obtain a contradiction in a way that resembkeamum-principle-type arguments (see also
[12, 13] for the SQG equations). The integral representation ofrthikler modulus of continuity allows
us to take advantage of the divergence-free condition aadntiegral bound om. The divergence free
condition onu is used in the estimate for the gradient of pressure term.géheral method of the proof
introduced here seems to be new, as it may be applied to systémpressure gradients, and we believe it
may be applicable to other evolution equations in the future

In section4 we analyze the endpoint caSe= —1. The method of this article is applicable in this case,
but we need to impose an extra smallness condition on theniéeld b (cf. (4.1)—(4.2) below).

We believe that the most important contribution of thiscetiis the introduction of a new method to
prove Holder estimates for evolution equations. We beligis particularly interesting that the method can
be carried out even for systems that are coupled throughrdssyre term. We also provide an example
of how Theoreml.1 can help prove that a nonlinear equation is well posed. Lebusider the following
modifiedenergy critical Navier-Stokes equation in 3D (s&gfpr a similar modified critically dissipative
SQG equation)

Oru + <(—A)_1/4u . V) u—Au=Vp (1.12)
divu =0 (1.12)
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that is,b = (—A)~*u in (1.8—(1.9). It follows directly from Theoreni.1that the system1(11)—(1.12
is well-posed in the classical sense. Indeed, the globatende of weak solutions € L{°L2 N L?H}
is straightforward, as is the local existence of strongtimis. In particular, for any” > 0, we have that
(—A)~Y*y is a priori bounded iL?(0, T; H3/?(R3)), and by the Calderén-Zygmund theorem we have

H(—A)—Wu( (1.13)

L2(0,T;BMO)

for anyT > 0. Therefore, by applying Theorefnl with 5 = 0, we obtain that:(-,t) € C* on (0,71,
given thatu(-,0) = up € C, wherea € (0,1) is arbitrary. From this estimate, it is easy to obtain higher
regularity ofu by a standard bootstrap argument.

Note that for the above system one could also use classieafjerstimates at the level of vorticity,
combined with Sobolev interpolation, to obtain the globallvposedness of the problem. On the other
hand our method allows some extra flexibility in the relasioip betweerb andu. As explained above,
whenb = (—A)~1/*y the system is well posed. Following essentially the sama e can obtain using
Theoreml.1that the system is well posed for any of the following choices

e b = a(x)(—A)"*u + Vq for any bounded functiom in R? and Vg is the gradient of a scalar
function that makes divergence free. In this case we apply the a priori estimate L*L? that is
obtained by interpolation from the energy inequality, aivegb ¢ L* LS.

e b= [k(z,y)u(y) dy wherek(z,—) € L*/("*+2) for anyx € R™ andk(—,y) is divergence free
foranyy € R"™.

o Ab=div(u®u)+ Vq.

We plan to explore other applications of this method in thark

2. PRELIMINARIES

In this section we state a few introductory remarks aboutwbak and classical solutions tb.8)—(1.9),
and recall a classical characterization of Holder spatdserms of local averages. Throughout the rest of
the paper we will writel.? L9 to denoteL! L% = LP(0,T; L7), and similarly LP M? will be used instead of
LM .

t x

We first prove Theorem.1 assuming that the solution is classical (i@? in space and”" in time).
The important feature is that the a priori estimates) depends only on the assumptions of Theotkfn
and not on any further smoothness assumptioné onu. Then we approximate any weak solution with
classical solutions by using a mollification iafand pass to the limit to obtain the result of Theorkerin
full generality.

Definition 2.1 (Weak Solutions). If b € Li ([0, 7] x R") is divergence-free, a functiom € L>([0,77] x

R™) is a weak solution of1.2), if it is weakly divergence-free, and for all smooth, divasrge-free, compactly
supported test functions we have:

/ o(z, T)u(z,T) dx + / u (—pr + bV — Ap) dzdt = / o(z,0)u(zx,0) de.
n [0,T] xR™

n

The following proposition is standard.

Proposition 2.2. Letb® andu® be a sequence of smooth divergence-free vector fields. Agbkam® is a
weak solution of(1.2) with drift velocityb°. Assume also thdf — b strongly inL}, L., . Then, upto a
subsequence;® converges weakly to a weak solution(@f?2).

Using propositior?.2, we immediately observe the following.
Proposition 2.3. It is enough to prove Theorefinlassuming thab is smooth and. is a classical solution.

Proof of Propositior2.3. The assumption € LPA? implies in particular thab € L L', . Using a mol-

loc™uloc®

lification argument, we consider a sequence of smooth véietdsb® converging strongly to in L} L!

loc™uloc®
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Moreover, we choosk such that|b?||» 5,4 is bounded uniformly with respect to(for example mollifying
with a smooth function with fixed.! norm). For each of these vector fields, we solve the equatid), (
for instance using the mild formulation and Picard itenatito obtain a smooth solutiour. If the result of
Theoreml.1lis known for classical solutions, we would have thatsatisfies the estimaté..©) uniformly
in . Note that in particular we also obtaifi € L°°. By Proposition2.2, up to a subsequence; converges
weakly to a weak solutiom of (1.2), and therefore this solutiom satisfies {.6) as well. O

In order to prove the main theorem, we use a local integralacherization of Holder spaces. For this
purpose, letr be a nonnegative, radially symmetric, smooth function sugpl in B1(0). Unless otherwise
specified, the center of the unit bal in R™ shall be0. Let us also assume thdty(y) dy = 1. The
following theorem (or a small variation of it) is proved i2][

Theorem 2.4(Campanato’s characterization of Holder spaces).Let f : R" — R™ be anL? function
such that for all- > 0 andx € R", there exists a constarftsuch that

/B @+ ry) — FPo(y) dy < A%2 (2.2)

for some positive constant, anda € (0,1). Then the functiorf has a Hlder continuous representative
such that

|f(z) — f(y)| < BAlz — y|*
where the constanB depends on dimension andonly.

The most natural choice of the constghin the above theorem, for which the converse also holds. is to
choose the average ¢fin the ball.

f= ; f(@+ry)e(y) dy.

This is optimal in the sense that it minimizes the left hamt $n 2.1) (see also1.5)).

The theorem of Campanato is interesting because it progides-obvious equivalence between a Holder
modulus of continuity, which is a priori a pointwise properand averages of differences of the function,
which is an integral property. This relation will allow useéaploit the divergence free nature of the vector
fieldsb andu when estimating the evolution of a Holder modulus of cautin

3. EVOLUTION OF A MODULUS OF CONTINUITY

We will prove that the solutions of.(8)—(1.10) do not lose regularity by showing that they always satisfy
a time dependent Holder modulus of continuity. This modwficontinuity will evolve and deteriorate with
time, but it will stay bounded. In order to take advantagerappately of the divergence-free character of
the vector fieldu, we use the integral characterization of the modulus oficaity. Let ¢ be a radially
symmetric weight supported iB; with mass one as in sectich We denote the weighted meanwofbn
B, (z) by

ater) = [ uta o, 0ply) do (3.1)
By
The integral version of the modulus of the continuityuas then
Tat.r) = [ futae+rgnt) = (o, t.1)Poty) d (3.2
By

Due to Theoren?.4 if we knew that
I(z,t,7) < f(1)*r?, (3.3)
for some functionf(¢) > 0, and allr > 0, then[u(-,t)]ce < Cf(t) for some universal constait. Our

goal is to prove that estimat&.Q) holds for allt > 0, if it holds att = 0, for some functionf(¢) to be
chosen appropriately.
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As discussed in the introduction, our assumptions @il be in terms of quantities similar t@, which
are distinguished by the parametee [—1, 1] as follows.

(i) The Morrey-Campanaoto case. Foe [—1,0), let

1
Mz, t,r) :/ |b(x +ry,t)| dy = —n/ |b(z,t)| dz. (3.4)
B " J B, (x)
We assume that there exists a positive functian Lf/ (45 such that
sup sup "Mz, t) < g(t) < [[b(- )18 < 9(2) (3.5)

z€R™ r>0

forall t > 0, where|| - ||« denotes the usual Morrey norm (c24)).
(i) The BMO case. Fop = 0, we let

_ 1 _
M, t,r) = / [b(w + ry,t) — b(a, 7, t)| dy = — [b(z,t) = bz, 1) dz,  (3.6)
By ™ JBy(2)
where
- 1
bar 1) = / bz 1) dz (3.7)
r(x)
is the usual mean dfon B,.(x). We assume that there exists a positive functian L? such that
sulé) su}gM(O,x,r,t) <g(t) < ||b(-,)|lBMmo < g(t) (3.8)
xeR™ r>

for all t > 0, where|| - ||zmo denotes the norm on the space of functions with bounded mean
oscillation.
(ii) The Holder and Lipschitz cases. Fgre (0, 1], we consider

Mz, tr) = / bz + 1y, ) — b, )| dy = = [ 1b(zt) — bz, £)] dz. (3.9)
B ™ ) B, (x)
We assume that there exists a positive functian Lf/ (145 such that
sup supr " M(z,t,r) < g(t)  [b(-,t)lcs < g(t) (3.10)
z€R™ >0
for all ¢t > 0, where[]-s denotes the Holder semi-norm. Note tl&{1 + ) € [1,2) when
B € (0,1].

We shall prove that if3.5), (3.8), or respectively .10 holds, then we havé(xz,t,r) < f(t)?r2* for
all t > 0. The proof is in the flavor of a maximum principle. We show ttighe inequality is satisfied
att = 0, it will be satisfied for all positiveé. Kiselev, Nazarov and Volberd.8] used an argument is the
same spirit for proving the well posedness of the criticabiiative SQG equation. But that as opposed to
(1.8—(1.9), it is a scalar equation that has AP maximum principle and the modulus of continuity can be
studied pointwise in their case.

In order to prove Theorer.1, assume there is a first timand some value af where thestrict modulus
is invalidated, i.e.

I(z,t,7r) = f(t)*r?. (3.11)

By Proposition2.3, we can assume thatis a smooth function vanishing at infinity. Therefore the aiy
in (3.11) of the modulus must be achieved at some 0 andz € R™.
If we fix ¢t andr, the functionl achieves its maximum at, and we obtain

0=V.T= /B (u(x +ry,t) —ulz,t,r)) - (Vou(z +ry,t) = Vou(z, t,r))e(y) dy. (3.12)
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Due to the definition ofi (3.1), and the fact thaV . u(x, ¢, ) does not depend an we also have
0= /B (u(x +ry,t) —u(z,t,r)) - Veulz + ry, t)e(y) dy. (3.13)
1
SinceZ < f(t)%r?> for all times prior tot, and sincgu — @)y has zero mean, we thus conclude

2f/(t)f(t)r2a < oI = /B (u(x +ry,t) —a(z,t,r)) - (Opu(z + ry,t) — dwu(x, t,7r))e(y) dy  (3.14)

= /B (u(z +ry,t) —a(xz,t, 7)) - Opu(z +ry, t)e(y) dy. (3.15)

The key to prove Theorerh.1lis to find an appropriate upper bound for the right hand sid@.df) in
terms of f(¢t) and M(r, t). Inserting the equatiorL(2) in the right hand side of3(15), we obtain

2f () f(t)r?® < / (w(z 4 7y, t) — a(z, t,7))

By
(= b+ g, t) - Vol +ry, 1) + Dyule +ry,t) = Vp(o +ry,1) ) ely) dy
= A+D+P. (3.16)

The following three lemmas give bounds to the three termsemnight side of 8.16). The advection term
A is the simplest one to estimate. Observe that

1
Vou(z +ry) = ;Vyu(m +ry). (3.17)

This identity, together with the assumptidiv b = 0, allows us to integrate by parts the gradient into the
weighty and obtain a precise estimate fdr

The dissipative term turns out to be negative, but we mudyamdé with care in order to obtain a precise
lower bound on its absolute value. In fact, note that i§ linear in B, (x) thenD = 0. We will obtain an
estimate ofD that measures how muehis forced to separate from a linear function, just from thiei@a of
7 ando,Z at the point where the equalit$.(L1) holds.

Lastly, we obtain an upper bound for the pressure tBxnaomparable to the advection tetth This is
to be expected sinc¥p is obtained fromb - Vu though an operator of order zero. However, the pressure
estimate is more involved since the formula for the pressurmn-local and in order to obtain the desired
estimate we need to take advantage of some cancellation®dbar after integration by parts of Riesz
kernels using that bothandw are divergence free.

We now carry out the estimates for the three terms on the oifgf®.16) in the three lemmas below.

Lemma 3.1(The advection term). Letw andb be as in the statement of Theorém. Then we have

A= (w(z + ry,t) — alz, t,7)) - (=b(x + ry,t) - Voulz +7y))e(y) dy < Cr2 L f(£)2 M (z,t,r)
B
' (3.18)
forall g € [—1, 1], whereC'is a positive constant depending only @nyp, andn.

Proof of Lemma&.1 Using the identities3.13), (3.17), and integrating by parts, we obtain frof1 18 that

A= 1 /B lu(x + 7y, t) — a(x, t,r))?(b(x + ry,t) — b(x, 1)) - Vo(y) dy (3.19)

r

whereb = b(z,r,t) is a constant with respect g to be chosen suitably in the three cases¥ar 1, 1],
as discussed above. From identi®y19), the Holder inequality, and Theorea¥, we directly obtain

A< Cr2 o ()2 Mz, t, 1), (3.20)
forall 5 € [-1,1], whereC'is a positive constant depending a@nn, andy throughsupp, [Vl O

The second term corresponds to the viscosity and it isIgtnegative, as we will show below.
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Lemma 3.2(The dissipative term). Letu andb be as in the statement of Theorém. Then we have

D= Apu(x +ry,t) - (u(z +ry,t) — a(x,t,r))e(y) dy < —cf(t)2r2°‘_2 (3.22)
B1

for all » > 0, wherec is a sufficiently small positive constant, depending only.am, and .

Remark 3.3. Note that the constamtin Lemma3.2goes to zero as — 1. This is the reason why Theorem
1.1works fora < 1 only.

In order to prove Lemma&.2, we need the following technical result, which relates tharditiesD and
T.

Lemma 3.4. For a fixedz, we have

(3.22)

for some sulfficiently small positive constant
For simplicity we omited the: dependence ir3(22). Note that if f is a linear function, the® = 0 and
T = Cr? for some constant’. Moreover, in this caseZ’ = 27. We see that ifrZ’ — 27) is non zero, then

the functionu cannot be linear. The inequalit®.@2) gives a precise quantitative version of this fact.
We note that the identity

/ F@) — cPely) dy = / (F@) — F(2)2ey)e(z) dy dz (3.23)
B By J By

holds for any constant, in particular forc = £, giving equivalent definitions foZ andD in terms of
double-integrals. The proof of identiti3.23 is straightforward, and hence omitted.

With formula (3.23 in mind, we prove the following lemma, which is exactly theser = 1 for (3.22).
The proof of Lemma.4 follows for all other values of from Lemma3.5 by scaling.

Lemma 3.5. Let f : B; — R™ be anyH ' function. There is a constadt depending only om and ¢ such
that

/ / (F) — F(2)P0(y)e(z) dy dz - / / (Vi) -2 VIE) - (F@) - F)ew)e(z) dy dz
B1x B, B1x B,

<C (//leBl(Vf(y) — V() e(y)e(z) dy dz) v <//le31(f(y) — [(2)%e(y)p(z) dy dz) v :

Proof of Lemma&.5. We start by writingf (y) — f(z) as an integral oV f along the segment betweermand
y. Thus, we have

//Bl><B1 — [(2))*0(y)¢(2) dy dz

//B XB/ (Vi(sy+ (1= 5)2) - (y — 2)) - (f(y) — F(2))p(w)p(2) ds dy dz.
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Substituting in the first term of the left hand side, we obtain

/ / () — F(2)0()elz) dy dz
B1><Bl
9 / / (- V@) -2 Vi) - (F) - F)ew)e(z) dy dz
B1 ><Bl

- // /1 ((Tfsy+ (1 =5)2) = V@) -y = (V(sy+ (1= 5)2) = V() - 2)
B1xB1 J0

x (f(y) = F(2)e(y)e(z) ds dy dz
< 11/251/27

whereZ is as defined in3.2), and€ is defined as
! 2
£ = / / ((Vf(sy +(1=8)2) = VW) -y— (Vflsy+(1—s)z)—VIy))- z) ds dy dz.
Bl ><B1

The quantity€ is a bounded quadratic functional with respect to the veaat V f that vanishes whenever
V f is constant. Therefore, there is a constarguch that

E< C//leBl(Vf(y) — Vf(2))*e(y)e(z) dy dz = C D,

which concludes the proof. O

Proof of Lemma&.2. We recall that at the first point of equality iB.(1), the functionZ achieves its maxi-
mum as a function of. Then we have\ ,Z < 0, and hence

0 Z/B (Apu(x +ry,t) — Agu(x,t,r)) - (u(x 4+ ry,t) — a(z, t,7))p(y) dy

|Vu(x + ry,t) — Vyu(z,t, 7’)]24,0(y) dy.
By

Therefore, sincéu — @)y has zero mean anfl,,u does not depend ayn we obtain the inequality
D<— / V(e + 1y, £) — Vol t,r)o(y) dy. (3.24)
B

According to 8.24), D is negative, but we must estimate how negative it is. It isrearent to rewrite the
formula forZ(x,t,r) using 8.23 as

I(z,t,r) = /B lu(z 4 ry, t) — a(z, t,7)|*p(y) dy

- //B 5 lu(x + ry,t) — u(z 4+ r2,t)|*o(y)e(z) dy dz. (3.25)

At the point wheref (t)%r>* = Z(z,t,r) for the first time, we hav&,Z = 0 andA,Z < 0, so that
0> AyZ(z,t,7)

—2// \Vou(z +ry,t) — Veu(z + 7z, )2
B1 ><B1
+ (Dgulz +ry,t) — Dgu(z +rz,t) - (u( +ry,t) —ulx +12,1))p(y)e(2) dy dz

—9D 42 / / Vaule + ry,t) — Voulw +rz,8) 2o(y)e(z) dy dz,
Bl XB1



10 LUIS SILVESTRE AND VLAD VICOL
whereD is given by @.24). We thus have proven the inequality

D<— // \Vou(z 4 ry,t) — Vou(z +72,t) 2 o(y)e(z) dy dz
Bl ><Bl
1
=—= // \Vyu(z +ry,t) — Vou(zx +rz, t)]2cp(y)<p(z) dy dz. (3.26)

r Bix B
The right hand side is clearly negative unleds an affine function. We now need to estimate how negative
it is, in terms ofZ and9,Z. Note that at the first point of equality = f(¢)?r2®, we must also have
0,T = 2af(t)*r**~1. We compute), Z as
0.2=2 [ (ule+ry.t) — ae.t.r)) g Vouo +ry. 06(0) dy

By

=2 // (u(x + 71y, t) —u(x +rz,t) - (y- Veulz +ry,t) — z- Veulx +rz,t))p(y)p(z) dy dz
B1x By

2
= // (u(z +ry,t) —u(z+rz,t)) - (y- Vyulx +ry,t) —z - Vou(z +rz,t))p(y)e(z) dy dz.
BixB
o (3.27)
From the expressiorB(25 and @3.27), we can apply Lemma.5to obtain
1/2
(2T — rd,T) < CT'? <// \Vyu(z +ry,t) — Vou(z +7r2,0)20(y)e(2) dy dz> .
leBl
Recalling the inequality3.26), we obtain
¢ (2 —rd, 1) 2 2 2a—2
Dg—ﬁf:—cf(t) (1 —a)r (3.28)
for some positive constart depending only o, n, ande. O

Lastly, we bound the pressure tefPmarising on the right side of3(16).
Lemma 3.6(The pressure term). Letu andb be as in the statement of Theorém. Then we have

P= [ (u(x+ryt)—alz,rt)) Vplz+ry t)ely) dy < Cf(t) g(t)r2oth-1 (3.29)
By

forall » > 0andp € [—1, 1], whereC is a positive constant, depending ans, n, andy.
Proof of Lemma3.6. Since all estimates in this S(_ectior_1 hold for a fixed titne 0, we omit the time de-
pendence of all functions. Recall that the functioe= b(x, ) (which is constant respect tg is chosen

to beb = b(z) in the Holder case, the averagetobver B,(z) in the BMO case, ob = 0 in the Morrey-

Campanato case.
In order to estimate the third term i8.(L6), let us analyze the identityl (4). Sinceu is divergence free,

we have
Vap(x +ry) = Vx(—A);l divy (b(z + ry) - Vau(z 4+ ry))

1 1. = _
= ;Vy(—Ay) ! div, ((b(m +ry) — bz, 7)) - Vy(u(z +ry) — u(x,r))) (3.30)
We have the pressure terfhequal to

/ (u(z + ry) — a(z,r)) - Vap(z + ry)e(y) dy

- /(u(m ry) — (e, r) - Vy(~0,) " divy (0 +r9) B, r) - Vy(ula +ry) — (1)) o(y) dy.
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We integrate th&/, by parts and use thatis divergence free to obtain th&tequals

1

. /(—Ay)_l div, ((b(m +ry) — b(z, 7)) - Vy(u(z + ry) — a(z, r))) (u(z +ry) —a(x,r)) - Ve(y) dy.

Using thath andw are divergence free, we re-write the above identity as

P = [[(=2) 710003 (060 + r9) — B iCuter + ) = o) ) (ulo + 73) — ) - Tily) dy

= % /RZRj <(b(:£ +7ry) — b(x,7))i(u(x + ry) — a(z, r))j) (w(x +1ry) —u(z, 7)) - Vo (y) dy

= 2 [0+ ) = B it + 1) — e R (0o + ) = ) - Vo))
(3.31)

where the Riesz transforms are taken with respect tg tregiable.
The third factor inside the integral is given by Riesz transfs iny of the function

Vo r(y) = Y(y) = (u(z +7ry) —a(z,7)) - Vo(y) = div, ((u(x +ry) — u(z, 7”))cp(y))’ (3.32)

sincew is divergence free. The function is supported inB; and we havefB1 ¥(y) dy = 0. Moreover,
since by assumptiof(z,r) < C'f(t)r® for somea € (0, 1), we have by Theorer.4 that||u(x + ry) —
u(z,r)||pe(p) < Cf(t)r®, and therefore|y)|| Lo (5,) < Cf(¢)r®, uniformly inz. In fact, ¢ is alsoC*,
with C* norm bounded by f (¢)r (note the scaling iwy).

Gathering these bounds together, we see fhat; (/) must be bounded ih>*(R™) by C f(t)r*, uni-
formly in 2. Indeed, the Riesz transforms are bounded’6rand onL? (sincer is supported o3, and is
bounded there, it&? norm is also finite), and therefor@; R; () € L*(R™) N C*(R™) D L®(R™).

The Riesz transforms of functions with compact support atecompactly supported. The decay of the
Riesz transform of a compactly supported function is nolyraflorder —n. However, in this case since the
function+ has integral zero, and since it is a derivative, we have Bi&; (1) decays likely| =2 for |y|
large. To see this, lek;; be the Kernel associated with the Riesz transform and, ubatglivu = 0, we
compute

Rij(¥)(y) = /1/1(2')Kz‘j (y—2)dz = /SO(Z)(U@C +rz) —u(z,r)) - VKi(y — 2) dz

= [ ate+r2) — aer)) - (V= 2) - VEy () dz
(3.33)

in principal value sense, singep(u — @) = 0. Lettingy be such thaly| > 2, we obtain thatV2K;;(¢)| <
Cly|™+2, for all ¢ that lies between andy — z, whereC is a sufficiently large dimensional constant, gives
the desired decay ipy|.
To summarize, we have proved that
Cfityre if Jy| <2
RiR;i|(u(x +ry) —u(z,r)) - Vo(y)] < o

il r) = @) VoWl < ety
where( is a universal constant that does not depend.oRecall that by our assumption and Campanato’s
theorem we also have:(x + ry) — a(z,r)) < Cf(t)(ry)®. Therefore, we obtain from3(31) and 3.34)
the estimate

P < Cf(t)22 ! (

(3.34)

|b(z + ry) — b(z,r)| dy —|—/

- 1
b(z +ry) —b(z,r)|——— dy | . (3.35)
e )

B>

It is here where it is necessary to make the distinction betviee Holder and Morrey-Camapanato cases
for the a priori assumptions dn by making the specific choices for
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The Holder case.If b(z,r) = b(z), it is clear that
/ b@ + ry) — b(@)| dy < CM(z,r/2) < Cylt)r (3.36)
B>

for g € (0,1]. To bound the tail of the integral arising from the Riesz sfarms, we first change variables
ry = z SO that

- 1 - 1
bw—i—ry—bxidy:rz_a/ b(x + z) — b(z)|———— dz
o, Mt ) =B s ey, ) T A

/ZT /(,)Bp (@ +2) = b(o)] do() =z Ay

— plo xr+z)— o #
_ /2 ap(/Bp“)( +2) — bz )Id()>pn+2adp

—Q > V23 1
<cr [ (M) s

T

—a < 1
From (.35, (3.36), and 3.37), we obtain
P < Of(t)%g(t)r2ethL, (3.38)
The BMO caseln this case we havi(z,r) = (1/r") fB (w ) dz. The difference with the Holder case

lies in the tail of the integral due to the Riesz transform. lWe the following classical fact about BMO
functions: the difference between the mean®ran B, is bounded by" In(1 + \) times the BMO norm,
for all A > 1. We split the integral in dyadic cylinders to find a bound facle and sum.

- 1
e +r2) = oD =3 [l ) = )
/]R”\Bg ] +2 Z Bog+1\Byk ly[*+2
o0 _ _ _ 1
<> (1w -+ ry) = B 210) + b, 2510) = B2, 1)) sy
k=1 Bok+1\Bak
<SS bswo + #/ 1B, 254 17) — B, )| dy
> p 2k(2—a) 2k(n+2—a) Byjir \Bay,

> 1 1 kn k+1
< kZ_l meHBMo + Sitraay 2 log(1 +2"70)|[bl|ppmo < C||bl|Bro-
Thus, the tail of the integral in the bound Bf(3.35) is bounded byC'||b|| saro < Cyg(t), as well as the fist
term in 3.35. Therefore, in this case’(= 0) we also obtain
P < Cf(t)*g(t)r*e 7

The Morrey-Campanato casén this case we havi(z, r) = 0. The same proof as in the Holder case above,
but withb = 0, shows that

P < Cf(t)g(t)reti! (3.39)
whensup,.. o M(z,r) < 0o, andg € [-1,0). O

Once we have estimated the three terms on the right sida.o§)( the proof of the main theorem is
concluded as follows.
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Proof of Theoreni..1. Since the vector drifb is a priori assumed to lie in/?, for somes € (—1, 1], with
b(-, )]s < g(t), andg € L) we obtain from §.20), (3.29), and .39 the estimate
P @ F@)r* < Cuf (1)2g()r* 071 — e f (1) (3.40)

which holds for some sufficiently large constarit, and some sufficiently small positive constant The
above estimate implies

/
];((f)) < Cug(t)rP™ — car™ < Cyg(t)*/0FF) (3.41)
for some positive constaidt = C(C., c., ). The last inequality was obtained maximizing the expressio
with respect ta-.

On the other hand, i§ € Lf/(lw), we can choos¢ to be the solution to the ODE
F1(t) =2Cg(t)* P £ (1),

which contradicts the above inequality and makes it imgmsgor the Holder modulus of continuity to ever
be invalidated. Note that the above ODE has the explicittesiu

F(t) = o(Jo Ca(s)?/0FH) ds)f(o)

)

which stays bounded for all O

4. THE ENDPOINT CASEfS = —1

For the three-dimensional Navier-Stokes equationsp ize ., obtaining regularity of the solutions in the
endpoint case € L>L? is highly non-trivial, and this issue was only settled retbelny Iskauriaza, Seregin,
and Sverak in10] (see also 11] for the caseL>°H'/?). The cas€p, q) = (co,n) on the Ladyzhenskaya-
Foias-Prodi-Serrin scale is of particular importance a&sthie scaling-critical space for the initial data, and it
gives the borderline space (on the Lebesgue scale) forroatiay solutions via the Picard iteration scheme
(so-called mild solutions). Note that® ¢ M.

It turns out that for the linear systerf.8)—(1.10), the proof given above fails in the cabes LM 1,
as the constanf’ blows up as3 — —1. The corresponding result for the Navier-Stokes equat{@asn
[10] or [11]) relies essentially on the nonlinear structure of the &gna In order to obtain a result in this
direction for the liner equationl(2), with the method of this article, we need to impose an extralmess
condition.

Theorem 4.1. LetT > 0 be arbitrary. Assume thdtis a divergence-free vector field i ([0, 7]; M 1),
and letuy € L? N C* for somea € (0,1). There exists a positive constant> 0 such that if for all
t € (0,7 there exists . (t) > 0 with

sup sup sup 7“/ |b(z +ry,t)| dy < e (4.2)
te[0,T] zeR™ 0<r<r«(t) J B
and
T
— dt < 4.2
| < 42)

thenu(-,t) € C*(R™) forall t € (0,7.

Remark 4.2. If ||b]| -1 < €, the theorem holds trivially. Additionally, note that famap € L3(R3), or
any ¢ in the closure of’§° in M ~1, we have

lim r/ |p(z + ry)| dy = 0,
B1

r—0

for all 2, and hence4.1) holds for some-, > 0. Therefore, ifb is continuous in time with values ih?, or
piecewise continuous with arbitrarily large jumps, or Iffaips are of size smaller thar2, the conditions
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(4.1)—(4.2) are automatically satisfied, with.(¢) being a sufficiently small constant, proving regularity of
the solution (see als®] Theorem 3.1] for a similar result in the critical Besov spacTheoreny. 1 states
that if the drift velocityb(-, t) is nicely behaved at sufficiently small scalest), and if these scales do not
go to0 too fastat any pointt € [0, 77, i.e. r.(s) cannot vanish at with a rate faster thag/t — s, then the
solution is regular untill’. Note that with respect to time regularity, the conditioid beorem4.1 above
are stronger than merelye L L2, but weaker thaw, 3.

Proof of Theorem.1. From 3.20), (3.28), (3.36), and @.37), we obtain
2f'(0) f(1)r*® < Cur®* L ()2 Mz, t,7) — e f ()22

o 1
+ C*f(t)27"2a_1 <M(gj> t, T/Q) + ,r,2—a M(gj> t, p)pg—_a dp> ) (43)
2r

whereM(z,t,7) = [ |b(z +ry,t)| dy, and by assumption of the theorem we have

sup  rM(z,t,r) <€ (4.4)
0<r<r(t)
and

suprM(x,t,r) < HbHLtooM;1 =B <0 (4.5)

r>0
uniformly in z, t. Inserting the boundsgi(4)—(4.5) into (4.3), we have

QTZ% log f(t) < CrM(a,t,r) — s + CorM(a, t,7/2)
. Ty 1 o 1
+ O (/2 (pM(w,t,p))pzl—_a dp+/ (pM($7t7p))p4—a dp> (4.6)

T

for all » > 0. To bound the right side of}(6), we distinguish the casegr, < 4, andr/r. > ¢, where we

let
. e\1/B-a) 1
0= mm{(E) ,5} (4.7)

Indeed, ifr /7, < &, we have2r < r, andB(r/r,)3~® < B§3~* < ¢, so that by 4.1) implies

2r2i log f(t) < Cye — ¢y + 20, + Cr®~2C,, (ero‘_3 + Brf‘g)

dt
< Cu(342C,)e — ¢, (4.8)
for some positive constaidt, > 0, and for all0 < » < § r,.. Therefore, if we chooseas
Cx
- 4.9
‘T C. (3120, (4.9)
then we obtain from4.8) that
d
7 log f(t) <0 (4.10)

forallt € [0,7], and all0 < r < dr.(t). On the other hand, if > ¢ r.(¢), we bound the right side of(6)
by making use 0f4.5), namely

d 1 s [ C.B(3+C,)
- < < .
7 log f(t) < 5,2 <3C'*B + CyBr /2T p4—a> 352 ()2 (4.12)
for someC,, > 0, for all » > § r.(¢t). The proof of the theorem is then concluded since we may ehpes
C.B(3+Cy) [P 1
t) = 4.12
) = g0y esp (SEEEE) [ @12)

which is finite for allt < T by (4.2), and it contradicts4.10—(4.11). O
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