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ABSTRACT. We give a combinatorial classification of postsingularly finite exponential maps in terms of ex-
ternal addresses starting with the entry0. This extends the classification results for critically preperiodic poly-
nomials [2] to exponential maps. Our proof relies on the topological characterization of postsingularly finite
exponential maps given recently in [14]. These results illustrate once again the fruitful interplay between com-
binatorics, topology and complex structure which has oftenbeen successful in complex dynamics.
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1. INTRODUCTION

We study the dynamical systems given by iteration of exponential mapsz 7→ Eλ(z) := λ exp(z) for
non-zero complex parametersλ. The family of exponential maps is the simplest family of transcendental
entire functions and has been investigated by many people (see for example [1, 3, 8]), often in analogy to
quadratic polynomials as the simplest family of algebraic entire functions.

The dynamics of iterated holomorphic functionsf : C → C is determined to a large extent by the dy-
namics of the singular values: these are valuesa ∈ C which have no neighborhoodU ⊂ C so thatf is
an unramified covering overU . For polynomials, singular values are critical values. Fortranscendental
functions, singular values can also be asymptotic values, or limit points of critical or asymptotic values.
The exponential family is special because it has only one asymptotic value, just like unicritical polynomials
(those conjugate toz 7→ zd + c) have only one critical value.

In any family of iterated holomorphic functionsfλ : C → C, the easiest maps to understand are usually
those for which all singular values have finite orbits, i.e. the singular orbits are periodic or preperiodic; such
maps are calledpostsingularly finite(or, for polynomials, postcritically finite). Often they are also the maps
which are most important for the structure of parameter space.

The main example is the Mandelbrot set: theBranch Theorem[5, 23] asserts that branch points (in a
precise sense) within the Mandelbrot set are postcritically finite, and the entire topology of the Mandelbrot
set is completely described by them (under the assumption oflocal connectivity). Moreover, if the unique
critical orbit is periodic, the corresponding parameter isthe center of a hyperbolic component, while if the
critical orbit is preperiodic, the parameter is called a “Misiurewicz point”. For iterated rational functions,
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there is a powerful theorem by Thurston [6] which helps to understand postcritically finite rational func-
tions; a variant for polynomials is known asspiders[13]. While Thurston’s theorem is deep and powerful,
each time it is applied is usually a theorem in its own right. For instance, the classification of quadratic
polynomials with periodic critical orbits in [13], the classification of general polynomials with preperiodic
critical orbits in [2], and the classification of general postcritically finite polynomials in [16] are all derived
form Thurston’s theorem.

There are many analogies between the bifurcation locus of quadratic polynomials (the boundary of the
Mandelbrot set) and the bifurcation locus of exponential functions. Again, one expects that much of the
structure of the bifurcation diagram is determined by hyperbolic components and postsingularly finite expo-
nential maps. For a recent survey about exponential parameter space, see [18, 19, 22].

Since for exponential maps, the singular value0 is an omitted value, it can never be periodic, so hyperbolic
components have no center. Hyperbolic components have beenclassified completely in [21]. Postsingularly
finite exponential maps thus necessarily have preperiodic singular orbits and are sometimes equivalently
called “postsingularly preperiodic”. Since Thurston’s theorem applies only to rational maps, the investi-
gation of postsingularly finite entire functions is much harder. Recently, [14] provided an extension of
Thurston’s theorem specifically to postsingularly finite exponential maps. We make essential use of that
theorem. Our main result is a combinatorial classification of exponential functionsz 7→ λ exp(z) for which
the singular value0 is preperiodic. Our classification is in terms of preperiodic external addresses, i.e. prepe-
riodic sequences over the integers. We should mention that Bergweiler (unpublished) used value distribution
theory to estimate the density of postsingularly finite exponential maps.

Our result also contributes to answering (a generalizationof) an old question of Euler [7]: for which
valuesa does the limitaa

a...

exist? Euler asked this only for reala > 0, for which the answer is relatively
simple; if a is allowed to be complex, the answer has a very rich structure. In order to be well-defined,
the question needs to be rewritten: fixing a branchλ = log(a), thenaa

a...

= eλe
λe...

, and we are asking

for which λ the sequenceeλ, eλe
λ

, eλe
λeλ

, . . . has a limit; except for the final exponentiation step, this is
asking for which values ofλ the exponential mapz 7→ λez has a converging singular orbit. The answer to
this comes in three parts: (a) convergence inC without being eventually constant; (b) eventually constant
convergence; (c) convergence to∞. Part (a) is easy to answer: this happens iffλ = µe−µ with |µ| < 1
or µ a root of unity (Eλ has an attracting or parabolic fixed point). Part (c) has beenanswered in [10]: the
corresponding locus in parameter space consists of uncountably many curves inλ-space called parameter
rays (see Proposition3.3). Finally, part (b) are exactly the postsingularly finite exponential maps, and their
classification is our main result.

This paper grew out of the Bachelor’s theses of Bastian and Vlad at International University Bremen in
Spring 2005. We would like to thank Nikita Selinger and an anonymous referee for many helpful comments.

2. DEFINITIONS AND CLASSIFICATION THEOREM

In this section, we introduce the necessary background fromexponential and symbolic dynamics, we
state our main theorems, and we present a global overview of the argument and thus of the entire paper.

Notation. We setC∗ : = C \ {0}, C
′

:= C
∗ \ R−, C := C ∪ {∞} and letD be the open unit disk inC.

We will denote byf◦n thenth iterate of the functionf , and byS2 a 2-sphere with two distinguished points
0 and∞. A holomorphic exponential map will be written asEλ(z) := λ exp(z).

We will use the following standard concepts on exponential dynamics; compare with [25, 26].

Definition 2.1. (Escaping point)
For an entire holomorphic functionf , anescaping pointis a pointz ∈ C with f◦n(z)→∞ asn→∞; its
orbit is anescaping orbit.

A holomorphic exponential mapEλ will be calledpostsingularly finiteif its singular value0 has a finite
orbit, which means that the singular orbit is preperiodic (we use the word “preperiodic” in the strict sense,
excluding the periodic case; the term “(pre)periodic” is used to mean either “periodic” or “preperiodic”).
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The following discussion applies to exponential maps for which the singular orbit does not escape; only
this case is of interest to us.

Definition 2.2. (Dynamic ray)
A dynamic ray off is a maximal injective curveγ : (0,∞) → C with γ(t) → ∞ ast → ∞ so thatγ(t) is
an escaping point for eacht ∈ (0,∞). The dynamic raylands at a pointa ∈ C if limt→0 γ(t) = a.

In [25, Theorem 4.2], dynamic rays were defined as curves consisting of escaping points and satisfying
certain asymptotic properties (as in Theorem2.4 below). It was shown [25, Corollary 6.9] that every es-
caping point is either on a unique dynamic ray, or it is the landing point of a unique dynamic ray. Every
path component of the set of escaping points is a dynamic ray [10, Corollary 4.3]; as such it comes with a
parametrization as an injective curve. Therefore, our definition of dynamic rays given above coincides with
the original one in [25] (and is easier to state).

TheEλ-image of any dynamic ray is contained in a dynamic ray; if thesingular value0 does not escape,
then theEλ-image of every dynamic ray equals a dynamic ray. A dynamic ray γ is periodic if there is an
n ≥ 1 such thatγ(0,∞) ⊃ E◦n

λ (γ(0,∞)) and it ispreperiodicif E◦k
λ (γ(0,∞)) is periodic for somek > 0.

Note that no point on a ray can be periodic or preperiodic since it escapes, but the curve as a set can be.

Definition 2.3. (External address)
An external addresss is a sequences = s1s2s3 . . . over the integers. LetS be the space of all external
addresses endowed with the lexicographic order, and letσ : S → S be the (left) shift map.

The meaning of the external address in the dynamics of the exponential map is as follows. For an expo-
nential mapEλ and for eachj ∈ Z, we let

Rj = {z ∈ C : − Im(log λ)− π + 2πj < Im(z) < −Im(log λ) + π + 2πj},

using the convention that−π < Im(log λ) ≤ π. On eachRj, Eλ is a conformal isomorphism ontoC′. The
boundaries of the strips are the setE−1

λ (R−). This partition of the complex plane into strips is called the
static partition. The choice of labels for the strips is so that0 ∈ R0.

A dynamic rayγ has external addresss if for all n ∈ N there isrn ∈ R
+ so thatE◦n

λ (γ(t)) ∈ Rsn

if t > rn (dynamic rays may well cross the static partition, but they do so only for bounded values oft).
By construction in [25, Theorem 4.2], different dynamic rays have necessarily different external addresses:
external addresses are the analog to external angles for polynomial rays. Different rays may land at the
same point; these rays will then of course have different external addresses; see Section3. A dynamic ray
is (pre)periodic if and only if its external address is.

In [25, Theorem 4.2 and Corollary 6.9], a complete classification of escaping points and thus of dynamic
rays was given. For our purposes, the following special caseis sufficient.

Theorem 2.4. (Dynamic ray at external address)
If the singular orbit does not escape, then for every boundedexternal addresss there is a unique injective
continuous curvegs : (0,∞) → C (the dynamic ray at external addresss) consisting of escaping points
such that:

lim
t→∞

Re(gs(t)) = +∞

satisfying
Eλ(gs(t)) = gσ(s)(F (t)), ∀ t > 0

and
gs(t) = t− log λ+ 2πis1 + rs(t)

with |rs| < 2e−t(| log λ|+C) andF (t) = et−1; hereC is a universal constant andlog λ denotes a branch
with |Im(log λ)| ≤ π.

For our combinatorial classification of postsingularly finite exponential maps, we need a few concepts
from symbolic dynamics. In what follows, terms liket1t (with t1 ∈ Z andt ∈ S) will denote concatenation.
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Let t = t1t2 · · · ∈ S, and supposet is not a constant sequence. Then eithert ∈ (t1t, (t1 + 1)t) ⊂ S or
t ∈ ((t1 − 1)t, t1t) ⊂ S; denote the interval that containst by I0. Foru ∈ Z, define the intervals

Iu := {s1s2s3 · · · ∈ S : (s1 − u)s2s3 · · · ∈ I0} .

Then
⋃

u∈Z Iu is a partition ofS \ {σ−1(t)}. Using this, we can define combinatorial itineraries.

Definition 2.5. (Itinerary It(s | t))
Consider two sequencess, t ∈ S. The itinerary ofs with respect tot, denotedIt(s | t), is the sequence
u = u1u2u3 . . . over Z such thatσk(s) ∈ Iuk+1

for k ≥ 0, where theIu are defined as above. If
σk(s) ∈ ∂Iu for somek (henceσk+1(s) = t), we leave the itinerary undefined; this case will not be needed
here.

In order to motivate this formal definition, consider the dynamic rayγ at external addresst and suppose
it does not contain the singular value. The countably manyEλ-preimages ofγ are dynamic rays at external
addresseskt for k ∈ Z (where againkt denotes concatenation). These preimage rays subdivide right
half planes{z ∈ C : Re(z) > x} (for sufficiently largex) into countably many components, and every
unbounded component contains unbounded parts of exactly the dynamic raysgs at external addressess ∈ Iu
for one particular choice ofu ∈ Z, or equivalently those raysgs whose itinerariesIt(s | t) have a given
first entryu. The lexicographic order of addresses corresponds exactlyto the vertical order of rays in their
approach to∞. In Section4, we will show that this concept makes particular sense for postsingularly finite
exponential maps.

We are now ready to state the main theorems. Together, they give a complete combinatorial coding of
postsingularly finite exponential maps: we construct a map from preperiodic external addresses to postsin-
gularly finite exponential maps. The first theorem shows thatthe map is well-defined and surjective, the
second one measures how injective this map is and thus definesan equivalence relation on preperiodic
external addresses in terms whether or not they describe thesame map.

Theorem 2.6. (Combinatorial coding of exponential maps)
For every preperiodic external addresss starting with the entry0, there is a unique postsingularly finite
exponential map such that the dynamic ray at external address s lands at the singular value.

Every postsingularly finite exponential map is associated in this way to a positive finite number of prepe-
riodic external addresses starting with0.

Theorem 2.7. (Different codings)
For any two preperiodic external addressess ands′, the following are equivalent:

(1) there is a postsingularly finite exponential mapEλ so that in its dynamic plane, the dynamic rays at
external addressess ands′ land at the singular value;

(2) the parameter rays at external addressess ands′ (see Section3) land at the same parameterλ;
(3) It(s′ | s) = It(s | s);
(4) It(s | s′) = It(s′ | s′);
(5) It(s | s′) = It(s | s) = It(s′ | s) = It(s′ | s′);

In all these cases,s ands′ have equal period and equal preperiod.
If s is a preperiodic external address with preperiodl and periodk, then the itineraryIt(s | s) (the

kneading sequence ofs) has also preperiodl and periodk′ dividing k. The exact number of external
addresses which yield the same postsingularly finite exponential map is equal tok/k′ if k > k′, and it
equals1 or 2 if k = k′.

The above two theorems give a complete classification of postsingularly finite exponential maps in terms
of external addresses. With some more combinatorial efforts, one can turn this into a classification by
internal addressesas defined in [15, 24, 18]; in this setting, every postsingularly finite exponentialmap is
described by a unique internal address, which is a strictly increasing sequences of positive integers for which
the difference sequence is eventually periodic, and subject to a certain admissibility condition. We do not
discuss this here (see the section on unicritical polynomials in [4]).
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The proof of our classification result uses the main result ofHubbard, Schleicher and Shishikura [14],
which is an extension of Thurston’s fundamental theorem on rational maps to the setting of exponential
maps: their theorem is used in the existence part of our statement.

The global approach to our results is illustrated in the following commutative diagram. Our exponential
maps are always assumed to be postsingularly finite and the external addresses to be preperiodic.

External Addresss
Definition3.6
←−−−−−−−

Section3

Choice of dynamic ray
landing at singular value

Section5





y

Theorem5.4 Section3

x





Theorem3.1

Topological
Exponential Map

Theorem6.1
−−−−−−→

Section6

Holomorphic
Exponential Map

We start our classification in Section3: for every postsingularly finite holomorphic exponential map, a
finite positive number of preperiodic dynamic rays lands at the singular value; choose one such ray. Every
dynamic ray has a unique associated external address; it turns out that dynamic rays landing at the singular
value always have external addresses starting with0. So far, this associates to every postsingularly finite
exponential map a preperiodic external address (this involves a choice). In Section3, we also discuss rays
in parameter space.

In Section4, we introduce some more concepts and algorithms from symbolic dynamics which we will
need in the sequel. The main technical construction then comes in Section5: for every preperiodic external
address we first construct a graph with a continuous self-mapand then extend it to a branched covering ofS

2

which we call atopological exponential map. Symbolic dynamics helps us to set things up so that there is no
Thurston obstruction. Therefore, in Section6 we can apply Thurston theory (applied to exponential maps) to
find an equivalent holomorphic postsingularly finite exponential map, and again symbolic dynamics shows
that the ray at external addresss lands at the singular value. This finally shows that there is awell-defined and
surjective map from preperiodic external addresses to postsingularly preperiodic exponential maps, so that
the exponential map associated to an addresss has the property that the dynamic raygs lands at the singular
value. Finally, we investigate which external addresses give rise to the same holomorphic exponential map,
thus describing exactly how far this map is from being injective.

3. FROM EXPONENTIAL MAP TO EXTERNAL ADDRESS

In this section, we start with a postsingularly finite exponential mapEλ. We show that a preperiodic
dynamic ray lands at the singular value, and associate toEλ the external address of the ray.

The hardest part of the work has conveniently been done in [26, Theorem 4.3], stated below.

Theorem 3.1. (Preperiodic ray at singular value)
For every postsingularly finite exponential map, at least one and at most finitely many preperiodic dynamic
rays land at the singular value.

There can be several dynamic rays landing at the singular value. Our classification uses the fact that all
of them start with the entry0.

Proposition 3.2. (External address starts with0)
If the dynamic raygs lands at the singular value for a postsingularly finite exponential map, then the external
addresss starts with0.

This is not an obvious statement: the external address of a dynamic ray is defined using the asymptotics
for large real parts; a priori, it seems quite possible that dynamic rays with non-zero first entries in their
external addresses could make it to the singular value. We prove this result at the end of this section, but
we will need to introduce parameter rays (and also for other purposes). Note that this happens in reversal of
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Douady’s famous principle “you first plough in the dynamicalplane and then harvest in parameter space”.
We do this the other way around (like Rempe in [17]).

Similar to how dynamic rays give structure to dynamical planes, parameter space gets a lot of structure
through parameter rays; the latter also help to understand bifurcations of exponential maps. Just as for
quadratic polynomials and the Mandelbrot set [5], as well as for higher degree unicritical polynomials and
Multibrot sets [9], there are deep relations between the structure in dynamical planes and in parameter space.
We follow the arguments from [20, Section IV.6]. We will need the following special case of the main result
in [11].

Proposition 3.3. (Parameter rays)
For every bounded sequences ∈ S starting with0, there is an injective curveGs : (0,∞) → C

∗ in param-
eter space, so that for everyt > 0, the parameterλ = Gs(t) is the unique parameterλ so that forEλ, the
singular value0 = gs(t). These parameter rays are disjoint for different external addressess.

The general statement in [11] deals also with unbounded external addresses, but all we need here are
preperiodic hence bounded addresses.

Theorem 3.4. (Landing of preperiodic parameter rays)
For every postsingularly finite exponential mapEλ0

and every preperiodic external address, the dynamic
ray gs lands at the singular value if and only if the parameter rayGs lands atλ0.

Proof. SupposeEλ0
has the property that the dynamic raygs at preperiodic external addresss lands at

the singular value; then the singular orbit forEλ0
is preperiodic and terminates at a necessarily repelling

periodic orbit. There is then a neighborhoodU ∋ λ0 in parameter space and a unique holomorphic function
z : U → C so that for everyλ ∈ U , the pointz(λ) is preperiodic withz(λ0) = 0, andz(λ) is still the
landing point of the dynamic raygs. This follows from the same arguments as in [12] for the polynomial
case: it suffices to know thatz(λ0) can be extended holomorphically as a repelling preperiodicpoint (this is
the implicit function theorem) and that for fixed potentialst > 0, the pointgs(t) depends holomorphically
onλ (and this follows from [25, Proposition 3.4]). Ifλ makes a small loop aroundλ0, there must be at least
one parameter along this loop for whichgs contains the singular value0: during one loop ofλ aroundλ0,
the landing pointz(λ) must loop some numbern 6= 0 times around0 (wheren is the local degree of the
holomorphic mapλ 7→ z(λ)); the same is thus true for pointsgs(t) with very small potentialst. However,
this is not so for large potentialst because of the asymptotics in Theorem2.4, and this proves the claim. If
0 = gs(t) for Eλ, this meansλ = Gs(t) by Proposition3.3. Since this is true for arbitrarily small loops,λ0
must be a limit point ofGs.

Suppose thatλ1 ∈ U was another limit point ofGs with z(λ1) 6= 0. For this parameter, the dynamic
ray gs lands atz(λ1) by definition ofU , and in particular the singular value is not ongs or on one of the
finitely many rays on the forward orbit ofgs. Sincez(λ1) 6= 0, and the raygs together with its landing point
form a compact set which changes continuously withλ (again in analogy to [12]), it follows thatλ1 has a
neighborhood of parametersλ in which0 6∈ gs. But this contradicts the assumption thatλ1 ∈ U was a limit
point ofGs. Therefore, the only limit points ofGs within U can beλ0, plus possibly finitely many further
parametersλ with z(λ) = 0. The set of limit points of any ray is always connected, soGs lands atλ0.

Conversely, supposeλ0 is the landing point of the parameter rayGs. Then by [26, Theorem 3.2], the
dynamic raygs lands at a repelling preperiodic pointz0. Similarly as above, ray and landing point are stable
under perturbations. Ifz0 6= 0, thenλ0 could not even be a limit point ofGs. �

The following result is stated for convenient reference.

Corollary 3.5. (Landing properties of preperiodic parameter rays)
Every parameter rayGs at preperiodic external addresss lands at a postsingularly finite exponential map,
and every preperiodic exponential map is the landing point of a finite positive number of parameter rays at
preperiodic external addresses.
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Proof. This follows immediately as soon as our classification theorems are proved (we will not use it before).
�

Proof of Proposition3.2. It is shown in [11] (or [10, Corollary 3.2]) that if the singular value escapes on a
dynamic raygs, then the external addresss starts with0 (provided dynamic rays are parametrized so that
|Im log λ| < π). If a parameter ray lands at a postsingularly finite exponential map, then rays and their
parametrization change continuously. �

It might seem that the statement of Proposition3.2 makes sense only once a branch oflog λ is chosen,
which is not a dynamically well-defined quantity. However, this is not so: the proposition says that indepen-
dently of any choice of branch, and any choice of labels of strips defining external addresses, any dynamic
ray landing at0 has asymptotic imaginary part in(−π, π).

Definition 3.6. (External address ofEλ)
Let Eλ be a postsingularly finite holomorphic exponential map. Then we associate toEλ the external
address of a dynamic raygs which lands at0 (this may involve a choice).

4. SYMBOLIC DYNAMICS AND KNEADING SEQUENCES

In Section5we aim to construct a topological exponential mapf in which we encode all the combinatorial
information of a given external addresss. In order to do this, we need a few more concepts from symbolic
dynamics.

In Definition 2.5, we defined the spaceS of external addresses and, for every pair of sequencess, t ∈ S,
the itineraryIt(s | t) of s with respect tot. Of special importance is the itinerary of a sequence with itself:
the kneading sequence.

Definition 4.1. (Kneading sequence)
For a sequences ∈ S we callK(s) := It(s | s) thekneading sequenceof s.

The methods of symbolic dynamics and the concept of itineraries are especially useful for those expo-
nential mapsEλ for which a dynamic raygs lands at the singular value: in particular, if the singular orbit is
preperiodic (the main case of interest to us), then by Theorem 3.1 there are one or several dynamic rays at
preperiodic external addresses landing at0 (see also [26, Section 4] for a discussion of several other cases
with similar properties). In this case, the countably manyEλ-preimages ofgs partition all ofC and form
what we call adynamic partition. The components in this partition are translates of each other by2πiZ; the
imaginary parts of any component are in general unbounded (usually, the raygs spirals into its landing point
0).

There is always a unique component, calledI0, which contains the singular value, and its vertical translate
by 2πj is calledIj for j ∈ Z. If z ∈ C is a point whose orbit is disjoint fromgs, then we define theitinerary
of z (with respect to the raygs) as the sequence of component labels visited by the orbit ofz.

We call this new partition thedynamic partition(as opposed to the static partition introduced in Section2).
The dynamic partition has the advantage that each dynamic ray is completely contained in one component
(unless it is one of the rays forming the partition boundary), and all points on the ray and its possible landing
point have the same itinerary. In fact, the itinerary of all points on the ray at external addresst is It(t | s), and
the itinerary of the singular value (or of any point on any raylanding at the singular value) is the kneading
sequenceK(s). The following result is shown in [26, Proposition 4.4].

Lemma 4.2. (Itinerary of landing points and rays)
For postsingularly finite exponential maps, no two (pre)periodic points have the same itinerary, and a
(pre)periodic dynamic ray lands at a given periodic or preperiodic point if and only if ray and point have
the same itinerary. In particular, two (pre)periodic dynamic rays land together if and only if they have the
same itineraries.
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Note that for the dynamic partition, unlike the static partition, several rays may have the same itinerary.
The following simple algorithm illustrates the close relation between external addresses and itineraries

and shows in particular that their entries differ at most by1 (up to simultaneous translation of all entries by
the same integer).

Algorithm 4.3. (Construction of It(s | t))
Given external addressess, t ∈ S so thatt is non-constant andσn(s) 6= t for all n ≥ 0. Thenu := It(s | t)
can be constructed as follows.

(1) For n ≥ 1 defineδn :=







−1 if σ(t) > t andσ◦n(s) < t
1 if σ(t) < t andσ◦n(s) > t
0 otherwise.

(2) Constructu = u1u2 . . . as un = sn − t1 + δn .

Proof. It suffices to show that the first entryu1 in It(s | t) is correct: then-th entry equals by definition
the first entry inIt(σn−1(s) | t). Adding an integerk to the first entrys1 of s will add k to u1, so we may
assume thats1 = t1.

Suppose first thats > t. Thenu1 = 0 unless there is a preimage oft in (t, s); but sinces1 = t1, this is
equivalent to the conditiont ∈ (σ(t), σ(s)) or σ(t) < t < σ(s); and exactly in this case,u1 = 1. Similarly,
if s < t, thenu1 = 0 unlessσ(t) > t > σ(s), and exactly in that case,u1 = −1. �

Notice that we haveσn(s) = s for somen if and only if s is periodic. Algorithm4.3therefore works for
computing the kneading sequences of the preperiodic addresses that we are interested in. It will prove to be
useful when we are trying to recover the external address from our constructed exponential map.

5. THE TOPOLOGICAL EXPONENTIAL MAP

In this section, we will start with a combinatorial object (external address) and turn this into a topological
object (a postsingularly preperiodic topological exponential map). In the next section, we make the step
from topology to the complex structure and find, whenever possible, a holomorphic exponential map which
is equivalent, in a sense defined by Thurston, to the given topological exponential map.

Convention. All homeomorphisms and coverings in this paper will be orientation preserving.

Definition 5.1. (Topological exponential map)
A universal coverf : (S2 \ {∞}) → (S2 \ {∞, 0}) is called a topological exponential map. It is called
postsingularly finite if the orbit of 0 is finite, hence preperiodic. The postsingular set isPf :=

⋃

n≥0 f
◦n(0)∪

{∞}.

If a topological exponential map is holomorphic, then it is conformally conjugate to an exponential map
z 7→ Eλ.

Definition 5.2. (Thurston equivalence)
Two postsingularly finite exponential mapsf and g with postsingular setsPf andPg are called Thurston
equivalent if there are two homeomorphismsφ1, φ2 : S

2 → S
2 withφ1|Pf

= φ2|Pf
, Pg = φ1(Pf ) = φ2(Pf )

andφ1(∞) = φ2(∞) =∞ such that

φ1 ◦ f = g ◦ φ2 onS2 \ {∞}

andφ1 is homotopic (or equivalently isotopic) toφ2 onS
2 relative toPf .

Our goal will be to find, for every postsingularly finite topological exponential map, a postsingularly
finite holomorphic exponential map which is Thurston equivalent. This is not always possible. In the case
of rational mappings, Thurston [6] determined that this is impossible if and only if there is what is now
called a Thurston obstruction; see also [2, 13]. The extension of this result to the case of exponential maps
was done in [14]: in this case the possible obstructions have a much simplerform, called degenerate Levy
cycles.
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Definition 5.3. (Essential curves and levy cycle)
Let f be a topological exponential map with postsingular setPf . A simple closed curveδ ⊂ S

2 \ Pf is
calledessentialif both components ofS2 \ δ contain at least two points inPf . Suppose there exist disjoint
essential simple closed curvesδ0, . . . , , δk = δ0 such that for eachi = 0, . . . , k− 1, δi is homotopic relative
Pf to one componentδ′ of f−1(δi+1) andf : δ′ → δi+1 has degree 1. ThenΛ = {δ0, δ1, . . . , , δk = δ0} is
called aLevy cycle.

Essential curves are important for the following reason: a simple closed curveδ ∈ S
2 \ Pf is essential if

and only if, for every homeomorphismφ : S2 → C, there is a lower bound of lengths (with respect to the
hyperbolic metric ofC \ φ(Pf )) of simple closed curves homotopic toφ(δ) relative toφ(Pf ).

This section will be concerned with proving the following theorem.

Theorem 5.4. (External address yields topological exponential map)
Let s be a preperiodic external address. Then there exists a postsingularly finite topological exponential
mapf with the following properties:

• f has a preperiodic injective curveγ : (0,∞)→ S
2 connecting0 to∞;

• γ has itineraryIt(s | s) with respect to the partition defined byf−1(γ),
• the vertical order of the raysf◦n(γ) coincides with the lexicographic order of the shifts ofs,
• f does not admit a Levy cycle.

Any two such postsingularly finite topological exponentialmaps for the same external addresss are Thurston
equivalent to each other.

Note that any injective curve connecting the singular value0 to∞ has countably many disjoint preimages
under any topological exponential map, and this allows us todefine a dynamic partition and thus dynamical
itineraries just like for holomorphic exponential maps forwhich a dynamic ray lands at0.

As always, the curveγ should be preperiodic as a set; its points need not be (exceptthe endpoint). The
preimagef−1(γ) is disjoint from all raysf◦n(γ). Letγ′ be the unique component ofγ ∩D starting at0 and
let p′ be any component off−1(γ′). Then the raysf◦n(γ), as well asp′, are disjoint curves to∞ and have
a well-defined cyclic order. Removingp′ induces a linear order among all rays, and this is the vertical order
specified by the theorem; it does not depend on the choice ofp′.

5.1. The graph map. Similarly as for polynomials in [2], we start by constructing an undirected graphΓ
that encodes the combinatorial information given bys. An important difference is that our graph is infinite.

We will construct an infinite topological graphΓ and later embed it intoS2. Start with two vertices
Γ = {e∞, e−∞}. For eachn ∈ Z, add disjoint edgespn joining e∞ to e−∞. Let k and l be the length
of preperiod and period ofs respectively. Add verticese1, . . . , ek+l to Γ, and for eachen, add an edgeγn
connectingen ande∞, so that all edges are disjoint and all vertices are disjointfrom each other and from all
edges.

We will embedΓ \ {e−∞} into S
2 and define a graph map̃f from the embedded graph to itself. By

extendingf̃ to a mapf : S2 \ {∞} → S
2 \ {0,∞}, we will obtain the desired topological exponential map.

It is straightforward to embedΓ \ {e−∞} (as it has been constructed up to here) intoS
2 in a reasonable

way, define a graph map, and extend it to a topological exponential mapf on all ofS2, so thatf satisfies the
first three properties of Theorem5.4. The hard part is to make sure thatf will not admit a Levy cycle. The
following lemma tells us when to expect a Levy cycle.

Lemma 5.5. (Levy cycle and itineraries)
Consider a topological exponential map that satisfies the first two properties in Theorem5.4. Then two
or more postsingular points are surrounded by the same curvein a Levy cycle if and only if they are all
periodic, and they have the same itinerary with respect to the partition consisting of preimages of the ray
landing at the singular value.

Proof. Suppose that two or more postsingular points are surroundedby a simple closed curveδ in a degen-
erate Levy cycle. Note first thatδ cannot surround the singular value0: otherwise, the preimage ofδ would
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not contain any simple closed curve. After homotopy, we may thus assume thatδ does not intersect the ray
γ1 connecting0 to∞.

Taking preimages, no preimage curveδ′ of δ can intersect the partition boundary, hence all postsingular
points surrounded byδ′ have the same first entries in their itineraries. Note that the number of postsingular
points surrounded byδ′ cannot be greater than that forδ; this number could be smaller, depending on which
branches of preimages are chosen. However, sinceδ is part of a degenerate Levy cycle and hence periodic
(up to homotopy), the number of surrounded postsingular points must remain constant. It follows that all
postsingular points surrounded byδ have the same periodic itinerary and are hence periodic points.

Conversely, assume that the periodic postsingular pointsei1 , ei2 , . . . , eik have the same itinerary with
respect to the dynamic partition of the plane. Surround these points (but no other postsingular points) by a
simple closed curveδ; this curve is automatically essential. Note that there arein general infinitely many
homotopy classes of curvesδ relative to the postsingular points. However, there is onlya single homotopy
class if we require thatδ must not intersect the ray into any point which is not surrounded: the complement
in S

2 \ {∞} of all these rays is simply connected.
Sinceδ does not intersect the rayγ1, and all surrounded points are periodic and have the same itinerary,

there is one preimage component ofδ which surrounds all periodic preimages of the surrounded points, and
again it does not intersect the rays into those points that itdoes not surround. Repeating this argument for
one period of the itinerary, we obtain another curve which surrounds the same points asδ in the complement
of the remaining rays, so this curve is homotopic toδ and we have a degenerate Levy cycle. �

Corollary 5.6. (Levy cycle and itineraries)
A topological exponential map as in Lemma5.5 admits a Levy cycle containing a curve surrounding the
pointsei, ej if and only if the kneading sequenceu = It(s | s) of the curveγ landing at the singular value
has the property thatuiui+1ui+2. . . = ujuj+1uj+2 . . . .

Proof. If u = u1u2 . . . is the kneading sequence of the curveγ landing at the singular value, then the
itineraries of the pointsei = f◦(i−1)(0) andej are the appropriate shifts of the kneading sequence. Equality
of itineraries can hold only if both points have equal periods and preperiods; since they are on the same
preperiodic orbit, this implies that they can have identical itineraries only if they are periodic. �

The Levy cycle obstruction warns us that raysγi andγj should really land together at a common point
ei = ej . In order to solve this problem, we will simply “glue” pointsei andej in the graph: Define the
equivalence relation

ei ∼ ej ⇐⇒ uiui+1ui+2 · · · = ujuj+1uj+2 . . .

on pointsek ∈ Γ. RedefineΓ asΓ/ ∼.
After embedding intoS2, the new quotient graphΓ will have the property that no two different vertices

have the same itinerary, so there can be no Levy cycle.
In order to check that the graph can be embedded, we have to verify the following unlinking property: it

never happens that there are four external addressess1 < s′1 < s2 < s′2 so thats1 ands2 have the same
itineraryu, and alsos′1 ands′2 have the same itineraryu′ 6= u. Suppose by contradiction that this problem
does occur. Then (possibly after replacing all four addresses with the same shift), we may assume that
u1 = u′1 butu2 6= u′2, whereu = u1u2u3 . . . andu′ = u′1u

′
2u

′
3 . . . . Without loss of generality, assume that

u2 6= 0 (the argument is symmetric inu andu′). Thenσ−1(Iu2
) ∩ Iu1

consists of a single interval which
must contains1 ands2, but it cannot contains′1 or s′2. This proves the unlinking property.

After preparing our graph so that no Levy cycle can emerge, weembedΓ first intoC and then intoS2.
The complex structure onC does not play any role, but it allows us to describe the construction more easily.

Define the embeddingψ : Γ→ C as an injective continuous map as follows:

(1) First letψ(e1) = 0 andψ(e∞) =∞.
(2) Since theψ-image ofγ1 must be a curve from0 to∞, letψ(γ1) = R

+.
(3) For everyn ∈ Z let ψ(pn) be the straight horizontal line with imaginary part(2n− 1)π.
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(4) The images of the edgespn of Γ define a partition ofC into strips∆n. We label the strips in vertical
order so that∆n denotes the strip containing2nπi (so0 ∈ ∆0).

(5) Now we are ready to bring in the combinatorial information stemming from the kneading sequence
u. For eachn = 1, 2, . . . , l + k, let ψ(en) be a point in strip∆un (taking into account that certain
points en might be identified) and letψ(γn) be a curve in∆un connectingψ(en) to +∞. For
simplicity, assume that imaginary parts ofψ(γn) are eventually constant. Choose these curves so
that they are disjoint from each other and from all endpointsexcept their own, and choose the
eventually constant imaginary parts so thatIm(ψ(en)) < Im(ψ(em)) if and only if σn−1(s) <
σm−1(s) for eachn 6= m; this ensures that the rays respect the order prescribed by the external
address.

We have to justify that this can be done consistently if several endpoints are identified: it can never
happen that two curvesγn andγn have a common endpoint and separateC into two complementary
components which both contain a curveγn′ andγm′ that should have a common endpoint different
from en = em. This is exactly the unlinking property.

We now mapC homeomorphically toS2, mapping0,∞ ∈ C to the two corresponding marked points
0,∞ ∈ S

2. From now on, we viewψ as a map fromΓ to S
2 and denoteΓS2 := ψ(Γ) ⊂ S

2. For simplicity,
we writeen for ψ(en), γn for ψ(γn) andpn for ψ(pn) (the vertices, the rays, and the partition boundaries).
Since from now on, we only work with the embedded graphs, no confusion can arise.

Remark. In the construction ofΓS2, the only combinatorial information coming froms are the kneading se-
quenceu and the lexicographic (vertical) order of the set of external addresses:{s, σ(s), . . . , σ◦(l+k−1)(s)}.
We will see in Algorithm6.3 that this information gives us back a unique external address s, normalized so
that its first entry is0.

We can now define a graph map̃f : ΓS2 → ΓS2 such thatf̃(∞) = ∞, as well asf̃(ej) = ej+1 and
f̃(γj) = γj+1 for all j (counting indices modulo the period, so thatf̃(γl+k) = γl+1). Furthermore, for all
k ∈ Z, definef̃(pk) = γ1.

Observe that̃f is neither surjective nor injective, and that any two glued points have glued images, so
the graph map respects the gluing. Under the mapf̃ , the orbit of0 is necessarily preperiodic. The graph
mapf̃ is continuous everywhere except at∞; this will not affect the extended mapf , which is defined on
S
2 \ {∞}.

5.2. Extension of the graph map. In order to prove Theorem5.4, we need to do three things: we need to
show that the graph map can be extended to a topological exponential map (Lemma5.9), we need to show
that it satisfies the conditions given in the theorem (Lemma5.7), and we need to prove the uniqueness claims
(Proposition5.10). The second part is the easiest, so we do it first.

Lemma 5.7. (Every embedding satisfies conditions on rays)
If f : S2 \ {∞} → S

2 \ {0,∞} is a topological exponential map which extendsf̃ : ΓS2 → ΓS2, thenf
satisfies the following properties:

• the curveγ1 connects0 to∞ and is preperiodic underf ;
• with respect to the dynamic partition induced by preimages of γ1, the curveγ1 has itinerarys;
• the vertical order of the raysγn = f◦(n−1)(γ1) coincides with the lexicographic order of the
σn−1(s);
• f does not admit a Levy cycle.

Proof. The first three properties follow directly from the construction. The last property follows from Corol-
lary 5.6becausef can have a Levy cycle only if there are two different pointsei, ej with identical itineraries,
but such points have been glued together. �

The next step is the extension of the graph map to a topological exponential map. In order to ensure that
the graph map can be extended to a neighborhood of every vertex, we need the following lemma.
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Lemma 5.8. (f̃ preserves cyclic order)
The cyclic order at∞ of three or more rays with the same itinerary (landing at the same point) is preserved
by the graph map̃f .

Proof. Suppose the endpointsen, en′ anden′′ are identified, so that the three raysγn, γn′ , γn′′ land at a
common point. The vertical order of these rays coincides with the lexicographic order of the addresses
σn−1(s), σn

′−1(s) andσn
′′−1(s); suppose without loss of generality thatσn−1(s) < σn

′−1(s) < σn
′′−1(s).

Since the first entries in the itineraries of these three external addresses coincide, there is ak ∈ Z so that

ks < σn−1(s) < σn
′−1(s) < σn

′′−1(s) < (k + 1)s

(whereks and(k+1)s denote adjacent preimages ofs under the shift). But on every interval(ks, (k+1)s),
the shift map is injective and preserves the cyclic order. �

One key construction is Alexander’s trick (compare e.g. [2]): if f : S1 → S
1 is an orientation-preserving

homeomorphism, then there exists an orientation-preserving homeomorphism̂f : D → D such thatf̂ |∂D =

f̂ |S1 = f : one such extension is given bŷf(reiθ) := rf(eiθ).
Moreover if f, g : S1 → S

1 are isotopic rel some finite number of points inS1, then by extending the
isotopy to the entire disk one gets an isotopy (rel the same points) between the extensionŝf andĝ : D→ D.

Lemma 5.9. (Extension of graph map)
The graph map̃f : ΓS2 → ΓS2 can be extended to a topological exponential mapf : S2\{∞} → S

2\{0,∞}.

Proof. For convenience, let us adopt the convention that the edgespn andγm contain their endpoints∞ and
em. Notice that forn ∈ Z, the setS2 \ (pn ∪ pn+1) is the union of three disjoint open topological disks;
among them,∆n is the disk which does not intersect anypk for k /∈ {n, n+ 1}.

We shall first construct continuous mapsfn : (∆n \ {∞})→ (S2 \ {∞}) for eachn, such thatfn(pn) =
fn(pn+1) = γ1 as above, andfn(ΓS2 ∩∆n) = f̃(ΓS2 ∩∆n). Moreover, the restriction offn to ∆n is an
orientation preserving homeomorphism ontoS

2 \ γ1 which extends continuously to the boundary.
We distinguish four possible cases for∆n:

(i) ∆n ∩ ΓS2 = ∅;
(ii) ∆n ∩ ΓS2 = γm for somem ∈ {1, 2, . . . , l + k};
(iii) ∆n ∩ ΓS2 = γm1

∪ . . . ∪ γmi
, for somem1, . . . ,mi ∈ {1, 2, . . . , l + k} such that all endpoints

em1
, . . . emi

are glued;
(iv) The general case: there may be combinations of several instances of case (ii) and (iii) on one domain

∆n.
Case (i) is almost literally Alexander’s trick: the graph map f̃ prescribes the boundary values on the

topological disk∆n for the mapfn. The only problem is that the point∞ appears twice on the boundary,
mapping to0 on the left and to∞ on the right. This causes no problem (we do not definefn or f on∞).

In Case (ii) the idea of the construction is the same; we need to find a homeomorphismf : ∆n \ γm →
S
2 \γm+1 which coincides with the prescribed boundary values onpn, pn+1, γm and∞ (at two sides). Note

that∆n \ γm ≈ S
2 \ γm+1 ≈ D. In this case, the curveγm along with its endpoints occurs twice on the

boundary, andfn is already defined onγm via f̃ .
Now we treat Case (iii). The set∆n \ (γm1

∪ . . . ∪ γmi
) consists ofi domains, each of which is home-

omorphic toD; the same is true forS2 \ (γ1 ∪ γm1+1 ∪ . . . γmi+1) (note that the endpointe1 = 0 is never
glued with any other endpoint because its itinerary has longer preperiod than all others). As in Case (i), we
want to extend the mapf along its prescribed boundary values to the appropriate image domains. In order
for this to be possible, we need to assure that for each of thei topological disks, the boundary rays map to
the boundary rays of an appropriate image domain. Leta be the landing point of the raysγm1

, . . . , γmi
; then

we need to make sure that the cyclic order of these rays ata coincides with the cyclic order of the image
rays atf(a). Our construction lets rays land together iff they have identical itineraries, so this fact is assured
by Lemma5.8. Therefore, the mapfn can be defined on∆n as well, and it is again a homeomorphism
fn : ∆n → S

2 \ γ1.
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Finally, the general case (iv) can incorporate several rays, and several groups of rays, within the same
domain∆n. First observe that the vertical order of all raysγmi

⊂ ∆n andpn, pn+1 ⊂ ∂∆n is compatible
with the cyclic order of the image rays near infinity: the vertical order of the rays is determined by their
external addresses, and all external addresses within one domain∆n belong to one interval on which the
shift map is injective. Removing from∆n all rays, we obtain finitely many connected components which
can be treated separately because they have compatible boundary values. For every connected component,
the claim follows by combining the ideas from the previous cases.

Having constructed the mapsfn on all strips, we define a continuous mapf : S2 \ {∞} → S
2 \ {0,∞},

by f |∆n := fn. The values on the boundaries of the∆n (except at∞) match since here they coincide with
the graph map̃f . We obtain a universal coverf : S2 \ {∞} → S

2 \ {0,∞}. �

5.3. Thurston-uniqueness.Of course, the construction of the extension is not unique; however, we have a
uniqueness result in the following sense.

Proposition 5.10. (Thurston-uniqueness of topological exponential map) Suppose thatf1, f2 : (S2 \
{∞}) → (S2 \ {0,∞}) are topological exponential maps satisfying the four itemized properties of The-
orem 5.4 for the preperiodic external addresss. Thenf1 and f2 are postsingularly finite and Thurston
equivalent.

We start with the following lemma.

Lemma 5.11. (Uniqueness of graph map up to homotopy)
Suppose thatf : (S2\{∞})→ (S2\{0,∞}) is a postsingularly finite topological exponential map satisfying
the four itemized properties of Theorem5.4for the preperiodic external addresss. Then the restriction off
to the collection of curves

⋃

n≥−1 f
◦n(γ) yields a graph mapΓS2 which is homotopic relative toPf to any

graph map as constructed above.

With
⋃

n≥−1 f
◦n(γ), we mean the countably many preimage curvesf−1(γ), together with the finitely

many curves on the forward orbit ofγ.

Proof. First we find a homotopy ofS2 relativePf sending the preimagesf−1(γ) to the edgespn of ΓS2; this
is possible because the points inPf have prescribed itineraries. Then we can find homotopies within each
complementary domain∆n of S2 \

⋃

n pn to match the graphs within each∆n; this is possible because:

• the itinerary prescribes which legsγm are within which∆n,
• the order at∞ of the different legs within the same∆n is in both cases prescribed by the lexico-

graphic order of appropriate shifts ofs,
• the same endpoints of legs are identified because of the non-existence of Levy cycles: Corollary5.6

says which endpoints are identified in the topological exponential map, and the same endpoints are
identified by construction in our graph map.

�

Lemma 5.12. (Uniqueness of graph map extension up to homotopy)
Let f̃ : ΓS2 → ΓS2 be a graph map andf1, f2 : S2 \{∞} → S

2 \{0,∞} two different graph map extensions
as in Lemma5.9. Then the mapsf1 andf2 are Thurston equivalent.

Proof. As in [2], we will define a mapϕ : S2 → S
2 such thatf1 = f2 ◦ ϕ andϕ is a homeomorphism

homotopic to the identity rel the vertices ofΓS2 . The construction ofϕ is easy. Each componentU of
S
2 \ ΓS2 is homeomorphic to a disk, and by constructionf1 andf2 coincide on their boundaries. Since both
fi restricted to these disks are homeomorphisms onto their images, they are homotopic to each other relative
to the boundary. Since the postsingular set is contained inΓS2 , f1 andf2 are Thurston equivalent in the
sense of Definition5.2. �

Proof of Proposition5.10. Since the curveγ is preperiodic as a set, and one of its endpoints is the singular
value0, it follows thatf1 andf2 are postsingularly finite. By Lemma5.11, the graph maps off1 andf2
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coincide up to homotopy relative to the postsingular set; the homotopy of graph maps extends to a homotopy
of S2 because the graph maps are embedded intoS

2 in the same way, and by Lemma5.12, we obtain a
Thurston equivalence betweenf1 andf2. �

Proof of Theorem5.4. We have first constructed a graphΓS2 ⊂ S
2 and a graph map̃f : ΓS2 → ΓS2, and we

have then extended the graph map to a postsingularly finite topological exponential map (Lemma5.9) which
satisfies the four itemized properties in the theorem (Lemma5.7). Finally, Proposition5.10shows that all
topological exponential maps satisfying these conditionsare Thurston equivalent. �

6. HOLOMORPHIC EXPONENTIAL MAPS

In the previous section, we have constructed for every preperiodic external address a topological expo-
nential map satisfying the properties of Theorem5.4. In this section, we are going to find a holomorphic
exponential map with the same properties. It is here that we use the main result of [14] stated below.

Theorem 6.1. (Characterization of exponential maps)
A postsingularly finite topological exponential map is Thurston equivalent to a (necessarily unique) postsin-
gularly finite holomorphic exponential map if and only if it does not admit a Levy cycle.

Since the topological exponential map constructed in Theorem 5.4 has no Levy cycle, we have now
associated to every preperiodic external address a unique postsingularly finite holomorphic exponential map.
In order to close the loop of the argument (see the diagram at the end of Section2), we need the following
result.

Proposition 6.2. (Dynamic ray lands at singular value)
For every preperiodic external addresss, suppose thatEλ is a holomorphic exponential map which is
Thurston equivalent to the topological exponential map constructed in Theorem5.4 for external addresss.
Then forEλ, the dynamic ray at external addresss lands at the singular value.

Proof. We prove this claim by translating Thurston equivalence into the language of spiders, and using
results from [26].

For a postsingularly finite topological exponential mapf , aspider legis an injective curveγi : [0,∞] →
S
2 with γi(0) = ei andγi(∞) = ∞, wheree1 = 0, e2, . . . , el+k is the postsingular orbit. Aspider is a

collection of spider legsΦ = {γ1, . . . , γl+k} which are disjoint except possibly for their endpoints. Two
spiders areequivalentif there is an isotopy ofS2 relative toPf = {e1, . . . , el+k,∞} which moves one
spider to the other.

Every spiderΦ lifts underf to an image spider̃Φ = {γ̃1, . . . , γ̃l+k}, where each̃γi is the unique com-
ponent off−1(γi+1) starting atei (counting indices modulo the period as always). It is easy tocheck that
equivalent spiders have equivalent image spiders, so the spider map acts on equivalence classes of spiders.

If γ1 is a curve connectinge1 = 0 to∞ and is preperiodic underf (as a curve) with preperiodl and
periodk, then thel + k legs on the orbit ofγ1 obviously form an invariant spider.

Now suppose thatf andEλ are Thurston equivalent:φ1 ◦ f = Eλ ◦ φ2, whereφ1 andφ2 are isotopic
relative toPf . ThenΨ := φ1 ◦ Φ is a spider forEλ. We can liftΨ underEλ to an image spider̃Ψ, and the
conditionφ1◦f = Eλ◦φ2 implies thatΨ̃ = φ2◦Φ̃ (lifting spiders is compatible with Thurston equivalences).
Sinceφ1 andφ2 are isotopic relative toPf , it follows that the spidersΨ andΨ̃ are equivalent: the mapEλ

has a fixed spider (up to equivalence) which is related by the Thurston equivalence to the preperiodic curves
γi of f .

Now [26, Theorem 6.4] shows that this fixed spider ofEλ can be replaced by an equivalent spider con-
sisting only of dynamic rays (this theorem is part of the proof that every postsingularly finite exponential
map has a dynamic ray landing at the singular value; the statement reads a bit differently in that context, but
what the theorem actually does is to take a periodic spider given by [26, Proposition 6.3] and turn it into a
spider made of dynamic rays).
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We now know that a dynamic ray landing at 0 has kneading sequenceK(s) = It(s | s), and the order of
the image rays is as constructed in the topological case. At this point, Algorithm6.3below, comes in handy:
it allows us to reconstructs uniquely from its kneading sequenceu = It(s | s) and the order of theσn(s).
It proves that for the holomorphic mapEλ the dynamic ray at external addresss lands at0. �

Algorithm 6.3. (Reversal of construction of kneading sequence)
Suppose we are given the kneading sequenceu of a non-constant, non-periodic external addresss and for
all n ≥ 1 we know the relative order ofs andσn(s). Then the following algorithm uniquely recoverss:

(1) For n ≥ 1 defineδn :=







−1 if σ(s) > s andσ◦n(s) < s
1 if σ(t) < s andσ◦n(s) > s
0 otherwise.

(2) Constructs assn = un − δn.

Proof. Since the relative order ofσ◦n(s) ands is known for alln, we can computeδn for all n. We can thus
reverse the computation in Algorithm4.3. �

Now we can finish the proof of the first classification theorem.

Proof of Theorem2.6. We have just finished the proof of the existence part of the theorem. For uniqueness,
suppose there are two postsingularly finite exponential mapsEλ andEλ′ which both have the property that
their dynamic rays at external addresss lands at the singular value. Then both maps have spiders consisting
of this dynamic ray and its forward images, and there is a homeomorphismφ1 : C → C which sends the
spider ofEλ to the spider ofEλ′ . Sinceφ1(0) = 0 and both maps are exponential maps with asymptotic
value0, it follows thatφ1 lifts to another homeomorphismφ2 : C → C so thatφ1 ◦ Eλ = Eλ′ ◦ φ2. The
spiders assure thatφ1 andφ2 are homotopic to each other relative to the postsingular set, soEλ andEλ′ are
Thurston equivalent. By Theorem6.1, it follows thatλ = λ′.

Finally, the fact that every postsingularly finite exponential map is actually associated to a finite positive
number of preperiodic external addresses is Theorem3.1. �

A core ingredient in this proof was the combinatorial Algorithm 6.3which allows to recover the external
addresss from its kneading sequence and the lexicographic order of the orbit ofs under the shift. There are
other ways to recovers which are perhaps more closely related to the dynamics off ; see for example the
proof of [26, Theorem 6.4].

We have now proved Theorem2.6: for every preperiodic external addresss, there is a unique postsingu-
larly finite exponential map for which the dynamic ray at external addresss lands at the singular value, and
this describes all postsingularly finite exponential maps.

It remains to determine combinatorially which external addresses yield the same exponential map; this is
Theorem2.7.

Proof of Theorem2.7. Supposes ands′ give rise to the same exponential mapEλ: by definition, the dy-
namic rays at addressess ands′ for Eλ land together at 0, and hence they have the same itinerary with
respect to either dynamic partition, henceIt(s | s′) = It(s′ | s′) andIt(s′ | s) = It(s | s). It also follows
thats ands′ have the same period and the same preperiod.

Conversely, fix two preperiodic external addressess, s′ of equal period and equal preperiod such that
It(s | s′) = It(s′ | s′). Construct the holomorphic exponential mapEλ corresponding tos′ using Theo-
rem2.6. Eλ has a dynamic ray at external addresss, and sinceIt(s | s′) = It(s′ | s′), the rays at addresses
s ands′ land together at the same point0. By uniqueness, Theorem2.6 constructs the same map froms.
Hence, both addresses correspond to the same holomorphic exponential map.

This shows the equivalence of Conditions (1), (3), and (4) in the claim. The equivalence of Conditions
(1) and (2) is Theorem3.4. Before dealing with the remaining conditions, let us discuss the last statements
of the theorem.

Dynamic rays landing at a common point always have equal period and equal preperiod. The construction
of kneading sequences makes it clear that ifs has preperiodl and periodk, thenIt(s | s) has preperiodl and
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periodk′ dividing k. Among the external addressess, σ(s), . . . , σk+l(s), only the periodic ones can have
equal itineraries with respect tos, and the number of those who do is obviously equal tok/k′. Therefore,
the corresponding dynamic rays land in groups ofk/k′; by [21, Lemma 5.2], there can be no additional rays
if k > k′, while if k = k′, then the number of rays can be1 or 2, and both cases actually occur. Pulling
back, this gives the number of preperiodic dynamic rays landing at the singular value.

Condition (5) implies the previous ones, so we now show that ifs ands′ generate the same postsingularly
finite exponential mapEλ, thenIt(s | s′) = It(s | s). For everyj ≥ 0, the dynamic raysgσj (s) andgσj (s′)

land together and bound a componentUj ⊂ C with real parts bounded below. IfIt(s | s′) andIt(s | s) differ
in their k-th entries, this implies thatE◦k

λ (gs) ⊂ U0 and, since both rays land together, alsoE◦k
λ (g′s) ⊂ U0

andUk ⊂ U0. We show that this is impossible.
There is a uniquek′ ∈ {0, 1, . . . , k − 1} so that the first entry inσj(s) is the same as inσj(s′), for every

j = k′ +1, . . . , k− 2, but not forj = k′ (if there was no suchk′, then the raysE◦k
λ (gs) andE◦k

λ (g′s) would
be further apart than the raysgs andg′s, and they could not be contained inU0).

Then forj = k′ + 1, . . . , k − 2, the restrictionEλ : Uj → Uj+1 is a conformal isomorphism, and so is
Eλ : Uk′ → C \ Uk′+1. It follows thatUk′+1 contains the singular value0 and hence the raysgs andg′s,
henceUk′+1 ⊃ U0 ⊃ Uk (equality excluded). However, since the rays boundingUk′ have more identical
first entries in their external addresses than the rays boundingUk, they must surround a smaller domain, and
this is a contradiction. �
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