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ABSTRACT. We give a combinatorial classification of postsingularhité exponential maps in terms of ex-
ternal addresses starting with the ertiryThis extends the classification results for criticallygeeaodic poly-
nomials P] to exponential maps. Our proof relies on the topologicalrelterization of postsingularly finite
exponential maps given recently it4]. These results illustrate once again the fruitful intagpbetween com-
binatorics, topology and complex structure which has ofteen successful in complex dynamics.
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1. INTRODUCTION

We study the dynamical systems given by iteration of exptaemapsz — E\(z) := Aexp(z) for
non-zero complex parameteks The family of exponential maps is the simplest family ohseendental
entire functions and has been investigated by many peopéef¢s examplel, 3, 8]), often in analogy to
guadratic polynomials as the simplest family of algebraitire functions.

The dynamics of iterated holomorphic functiofis C — C is determined to a large extent by the dy-
namics of the singular values: these are values C which have no neighborhood C C so thatf is
an unramified covering ovdr. For polynomials, singular values are critical values. tanscendental
functions, singular values can also be asymptotic valueimit points of critical or asymptotic values.
The exponential family is special because it has only onenpsytic value, just like unicritical polynomials
(those conjugate te — z¢ + ¢) have only one critical value.

In any family of iterated holomorphic functiong,: C — C, the easiest maps to understand are usually
those for which all singular values have finite orbits, it singular orbits are periodic or preperiodic; such
maps are callegostsingularly finitor, for polynomials, postcritically finite). Often theyeaalso the maps
which are most important for the structure of parameterepac

The main example is the Mandelbrot set: Banch Theoreni5, 23] asserts that branch points (in a
precise sense) within the Mandelbrot set are postcrijidalite, and the entire topology of the Mandelbrot
set is completely described by them (under the assumptidocaf connectivity). Moreover, if the unique
critical orbit is periodic, the corresponding parametethiss center of a hyperbolic component, while if the
critical orbit is preperiodic, the parameter is called a $Mrewicz point”. For iterated rational functions,
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there is a powerful theorem by Thurstos] vhich helps to understand postcritically finite rationah¢-
tions; a variant for polynomials is known apiders[13]. While Thurston’s theorem is deep and powerful,
each time it is applied is usually a theorem in its own righor Fstance, the classification of quadratic
polynomials with periodic critical orbits inl3], the classification of general polynomials with prepeigod
critical orbits in ], and the classification of general postcritically finitdymmmials in [L6] are all derived
form Thurston’s theorem.

There are many analogies between the bifurcation locus adirgtic polynomials (the boundary of the
Mandelbrot set) and the bifurcation locus of exponentialctions. Again, one expects that much of the
structure of the bifurcation diagram is determined by hipic components and postsingularly finite expo-
nential maps. For a recent survey about exponential paearsjgace, sed g, 19, 22].

Since for exponential maps, the singular valig an omitted value, it can never be periodic, so hyperbolic
components have no center. Hyperbolic components havediessified completely ir[l]. Postsingularly
finite exponential maps thus necessarily have preperiadgukar orbits and are sometimes equivalently
called “postsingularly preperiodic”. Since Thurston'®ohhem applies only to rational maps, the investi-
gation of postsingularly finite entire functions is muchderr Recently, 14] provided an extension of
Thurston’s theorem specifically to postsingularly finitgperential maps. We make essential use of that
theorem. Our main result is a combinatorial classificatibexponential functions — A exp(z) for which
the singular valu@ is preperiodic. Our classification is in terms of preperiogiternal addresses, i.e. prepe-
riodic sequences over the integers. We should mention gxavigiler (unpublished) used value distribution
theory to estimate the density of postsingularly finite exgdial maps.

Our result also contributes to answering (a generalizatipran old question of Euler7]: for which
valuesa does the limita®*  exist? Euler asked this only for real> 0, for which the answer is relatively
simple; if a is allowed to be complex, the answer has a very rich structimeorder to be well-defined,
the question needs to be rewritten: fixing a branck: log(a), thena® = ™", and we are asking

eAeA

for which \ the sequence?, et e has a limit; except for the final exponentiation stefs th
asking for which values ok the exponential map — \e® has a converging singular orbit. The answer to
this comes in three parts: (a) convergenc&€iwithout being eventually constant; (b) eventually constan
convergence; (c) convergencedo. Part (a) is easy to answer: this happens\if= pe™ with || < 1
or i a root of unity ', has an attracting or parabolic fixed point). Part (c) has leeswered in10]: the
corresponding locus in parameter space consists of uredglyrany curves in\-space called parameter
rays (see Propositiod.3). Finally, part (b) are exactly the postsingularly finitgperential maps, and their
classification is our main result.

This paper grew out of the Bachelor’s theses of Bastian amadl ¥t International University Bremen in
Spring 2005. We would like to thank Nikita Selinger and anrgimous referee for many helpful comments.

2. DEFINITIONS AND CLASSIFICATION THEOREM

In this section, we introduce the necessary background frponential and symbolic dynamics, we
state our main theorems, and we present a global overvieleargument and thus of the entire paper.

Notation. We setC*: = C\ {0}, C" := C*\R~, C := C U {o0} and letD be the open unit disk ift.
We will denote byf°" then!” iterate of the functiory, and byS? a 2-sphere with two distinguished points
0 andoo. A holomorphic exponential map will be written &5,(z) := Aexp(z).

We will use the following standard concepts on exponentjalagnics; compare with2b, 26].

Definition 2.1. (Escaping point)
For an entire holomorphic functioyfi, an escaping poinis a pointz € C with f°"(z) — oo asn — oc; its
orbit is anescaping orbit

A holomorphic exponential mag’, will be calledpostsingularly finitef its singular valued has a finite
orbit, which means that the singular orbit is preperiodie (vge the word “preperiodic” in the strict sense,
excluding the periodic case; the term “(pre)periodic” isdiso mean either “periodic” or “preperiodic”).



POSTSINGULARLY FINITE EXPONENTIAL MAPS 3

The following discussion applies to exponential maps forcwhhe singular orbit does not escape; only
this case is of interest to us.

Definition 2.2. (Dynamic ray)
A dynamic ray off is a maximal injective curve: (0,00) — C with y(t) — oo ast — oo so thaty(t) is
an escaping point for eache (0, c0). The dynamic rajands at a point € C if lim; ¢ y(t) = a.

In [25, Theorem 4.2], dynamic rays were defined as curves corgisfisscaping points and satisfying
certain asymptotic properties (as in Theorgm below). It was showngb, Corollary 6.9] that every es-
caping point is either on a unique dynamic ray, or it is thaliag point of a unique dynamic ray. Every
path component of the set of escaping points is a dynamicl@yJorollary 4.3]; as such it comes with a
parametrization as an injective curve. Therefore, our defimof dynamic rays given above coincides with
the original one in25] (and is easier to state).

The E\-image of any dynamic ray is contained in a dynamic ray; ifgimgular value) does not escape,
then theFE\-image of every dynamic ray equals a dynamic ray. A dynamjcyra periodicif there is an
n > 1 such thaty(0, 00) D E5™(v(0,00)) and it ispreperiodicif £5%(~(0,0)) is periodic for somé: > 0.
Note that no point on a ray can be periodic or preperiodicesinescapes, but the curve as a set can be.

Definition 2.3. (External address)
An external address is a sequence = sysss3... over the integers. Lef be the space of all external
addresses endowed with the lexicographic order, and ief — S be the (left) shift map.

The meaning of the external address in the dynamics of thenexgial map is as follows. For an expo-
nential mapE, and for eacly € Z, we let

Rj={2€C: —Im(log\) —7+27mj <Im(z) < —Im(log \) + 7 + 275},

using the convention thatr < Im(log A) < 7. On eachR;, E, is a conformal isomorphism ont®'. The
boundaries of the strips are the s@;l(R‘). This partition of the complex plane into strips is called th
static partition The choice of labels for the strips is so that Ry.

A dynamic ray~ has external addressif for all n € N there isr,, € Rt so thatES"(v(¢)) € Rs,
if ¢ > r, (dynamic rays may well cross the static partition, but theysd only for bounded values of.
By construction in 25, Theorem 4.2], different dynamic rays have necessarifgint external addresses:
external addresses are the analog to external angles fymguoial rays. Different rays may land at the
same point; these rays will then of course have differerdgrexd addresses; see Sect®nA dynamic ray
is (pre)periodic if and only if its external address is.

In [25, Theorem 4.2 and Corollary 6.9], a complete classificatioesoaping points and thus of dynamic
rays was given. For our purposes, the following special tasefficient.

Theorem 2.4. (Dynamic ray at external address)
If the singular orbit does not escape, then for every boureld¢drnal addresg there is a unique injective
continuous curvey,: (0,00) — C (the dynamic ray at external addresy consisting of escaping points
such that:

lim Re(gs(t)) = 400

t—o0
satisfying
Ex(95(t)) = go(s)(F(t)), V>0
and
gs(t) =t —log A + 2misy + r4(t)
with |rs| < 2e7(Jlog A\|+C) and F'(t) = €' — 1; here C'is a universal constant arldg A denotes a branch
with [Im(log A)| < 7.

For our combinatorial classification of postsingularly tnéxponential maps, we need a few concepts
from symbolic dynamics. In what follows, terms likgt (with ¢, € Z andt € S) will denote concatenation.
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Lett = t1ty--- € S, and suppose is not a constant sequence. Then either (¢1¢t, (t1 + 1)t) C S or
t € ((t; — 1)t, t1t) C S; denote the interval that containdy 1. Foru € Z, define the intervals

Iy = {818283 eS8 (81 — U)SQSg s € [0} .
Then{Jy ez u is a partition ofS \ {o~*(¢)}. Using this, we can define combinatorial itineraries.

Definition 2.5. (ltinerary It(s | t))

Consider two sequencest € S. The itinerary ofs with respect ta, denotedlt(s | t), is the sequence
U = Uujusug... overZ such thata’“(§) € ly,,, for k > 0, where thely are defined as above. If
ok (s) € a1y for somek (hences*+1(s) = t), we leave the itinerary undefined; this case will not be eeed
here.

In order to motivate this formal definition, consider the dgmic ray~ at external addregsand suppose
it does not contain the singular value. The countably magspreimages ofy are dynamic rays at external
addressest for £ € Z (where againkt denotes concatenation). These preimage rays subdivitle rig
half planes{z € C: Re(z) > =z} (for sufficiently largex) into countably many components, and every
unbounded component contains unbounded parts of exaettjythamic rayg, at external addresses: Iy
for one particular choice afi € Z, or equivalently those rayg whose itinerariedt(s | t) have a given
first entryu. The lexicographic order of addresses corresponds exacthe vertical order of rays in their
approach tax. In Sectiond, we will show that this concept makes particular sense fstgpogularly finite
exponential maps.

We are now ready to state the main theorems. Together, threyagtomplete combinatorial coding of
postsingularly finite exponential maps: we construct a nnam foreperiodic external addresses to postsin-
gularly finite exponential maps. The first theorem shows thatmap is well-defined and surjective, the
second one measures how injective this map is and thus defimesguivalence relation on preperiodic
external addresses in terms whether or not they descrilbsathe map.

Theorem 2.6. (Combinatorial coding of exponential maps)
For every preperiodic external addregsstarting with the entryd, there is a unique postsingularly finite
exponential map such that the dynamic ray at external addrésmnds at the singular value.

Every postsingularly finite exponential map is associatetthis way to a positive finite number of prepe-
riodic external addresses starting with

Theorem 2.7. (Different codings)
For any two preperiodic external addresseands’, the following are equivalent:

(1) there is a postsingularly finite exponential m&p so that in its dynamic plane, the dynamic rays at
external addressesand s’ land at the singular value;
(2) the parameter rays at external addressemds’ (see SectioB) land at the same parameter
@) It(s' [ s) =Tt(s | );
(4) It(s | s') = It(s" | &);
(6) It(s | s') =Tt(s | s) =1It(s | 5) = It(s" | &);
In all these cases; ands’ have equal period and equal preperiod.

If s is a preperiodic external address with preperibénd periodk, then the itinerarylt(s | s) (the
kneading sequence @) has also preperiod and periodk’ dividing k. The exact number of external
addresses which yield the same postsingularly finite exgi@ienap is equal tok/k’ if £ > &/, and it
equalsl or 2 if k = k’.

The above two theorems give a complete classification ospuagtlarly finite exponential maps in terms
of external addresses. With some more combinatorial sffate can turn this into a classification by
internal addresseas defined in15, 24, 1§]; in this setting, every postsingularly finite exponentiap is
described by a unique internal address, which is a strietlyeiasing sequences of positive integers for which
the difference sequence is eventually periodic, and stibjez certain admissibility condition. We do not
discuss this here (see the section on unicritical polyntsnmig4]).
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The proof of our classification result uses the main resultatbbard, Schleicher and Shishikur&d],
which is an extension of Thurston’s fundamental theorematiomal maps to the setting of exponential
maps: their theorem is used in the existence part of ounstate

The global approach to our results is illustrated in theofelhg commutative diagram. Our exponential
maps are always assumed to be postsingularly finite and tamekaddresses to be preperiodic.

Definition3.6 Choice of dynamic ray

External Address _ . .
section3  landing at singular value

SectionslTheorenﬁA SectionSTTheorenB.l

Topological Theorens.1 HoOlomorphic
. — )
Exponential Map sectione  Exponential Map

We start our classification in Sectién for every postsingularly finite holomorphic exponentiadhmn a
finite positive number of preperiodic dynamic rays landshatgingular value; choose one such ray. Every
dynamic ray has a unique associated external addressnst dutt that dynamic rays landing at the singular
value always have external addresses starting WitBo far, this associates to every postsingularly finite
exponential map a preperiodic external address (thisvegoh choice). In SectioB, we also discuss rays
in parameter space.

In Section4, we introduce some more concepts and algorithms from syimtighamics which we will
need in the sequel. The main technical construction theresamSectiorb: for every preperiodic external
address we first construct a graph with a continuous selfandghen extend it to a branched coveringof
which we call aopological exponential magBsymbolic dynamics helps us to set things up so that them is n
Thurston obstruction. Therefore, in Secti®we can apply Thurston theory (applied to exponential maps) t
find an equivalent holomorphic postsingularly finite expare map, and again symbolic dynamics shows
that the ray at external addrestnds at the singular value. This finally shows that therengl&defined and
surjective map from preperiodic external addresses tesipagtlarly preperiodic exponential maps, so that
the exponential map associated to an addsdwss the property that the dynamic r@ylands at the singular
value. Finally, we investigate which external addresses gse to the same holomorphic exponential map,
thus describing exactly how far this map is from being irjext

3. FROM EXPONENTIAL MAP TO EXTERNAL ADDRESS

In this section, we start with a postsingularly finite expatied map F,. We show that a preperiodic
dynamic ray lands at the singular value, and associaig tihe external address of the ray.
The hardest part of the work has conveniently been donggnlheorem 4.3], stated below.

Theorem 3.1. (Preperiodic ray at singular value)
For every postsingularly finite exponential map, at least and at most finitely many preperiodic dynamic
rays land at the singular value.

There can be several dynamic rays landing at the singulaeva&@ur classification uses the fact that all
of them start with the entrg.

Proposition 3.2. (External address starts with0)
If the dynamic rayj, lands at the singular value for a postsingularly finite exgotal map, then the external
addresss starts witho.

This is not an obvious statement: the external address ohandig ray is defined using the asymptotics
for large real parts; a priori, it seems quite possible thatathic rays with non-zero first entries in their
external addresses could make it to the singular value. Weephis result at the end of this section, but
we will need to introduce parameter rays (and also for othepgses). Note that this happens in reversal of
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Douady’s famous principle “you first plough in the dynamipéne and then harvest in parameter space”.
We do this the other way around (like Rempe 17]).

Similar to how dynamic rays give structure to dynamical pirparameter space gets a lot of structure
through parameter rays; the latter also help to understénccations of exponential maps. Just as for
guadratic polynomials and the Mandelbrot &t gs well as for higher degree unicritical polynomials and
Multibrot sets P], there are deep relations between the structure in dyrsuplznes and in parameter space.
We follow the arguments fron2p, Section IV.6]. We will need the following special case ¢ thain result
in [11].

Proposition 3.3. (Parameter rays)

For every bounded sequenge= S starting with0, there is an injective curvé’,: (0,00) — C* in param-
eter space, so that for evety> 0, the parameten = G4(t) is the unique parametex so that forE), the
singular value0 = g(t). These parameter rays are disjoint for different exterrddr@sses.

The general statement id]] deals also with unbounded external addresses, but all wé here are
preperiodic hence bounded addresses.

Theorem 3.4. (Landing of preperiodic parameter rays)
For every postsingularly finite exponential mé&j,, and every preperiodic external address, the dynamic
ray g, lands at the singular value if and only if the parameter faylands at\,.

Proof. SupposeE,, has the property that the dynamic ray at preperiodic external addresdands at
the singular value; then the singular orbit B, is preperiodic and terminates at a necessarily repelling
periodic orbit. There is then a neighborhoods A\ in parameter space and a unique holomorphic function
z: U — C so that for every\ € U, the pointz()\) is preperiodic withz()\g) = 0, andz(\) is still the
landing point of the dynamic ray,. This follows from the same arguments as 12][for the polynomial
case: it suffices to know that \y) can be extended holomorphically as a repelling preperipdiit (this is

the implicit function theorem) and that for fixed potentials- 0, the pointg,(¢) depends holomorphically
on \ (and this follows from 25, Proposition 3.4]). I\ makes a small loop arouny), there must be at least
one parameter along this loop for whigh contains the singular valug during one loop of\ around,

the landing pointz(\) must loop some number = 0 times around) (wheren is the local degree of the
holomorphic map\ — z(\)); the same is thus true for poings(¢) with very small potentials. However,
this is not so for large potentialshecause of the asymptotics in Theor2m, and this proves the claim. If

0 = g,(t) for Ey, this means\ = G,(t) by Propositior3.3. Since this is true for arbitrarily small loopsy
must be a limit point ofx.

Suppose thak; € U was another limit point of7, with z(\;) # 0. For this parameter, the dynamic
ray g lands atz(A;) by definition of U, and in particular the singular value is not gnor on one of the
finitely many rays on the forward orbit gf. Sincez(\;) # 0, and the ray, together with its landing point
form a compact set which changes continuously wittagain in analogy to12)), it follows that A\; has a
neighborhood of parameteksin which 0 ¢ g,. But this contradicts the assumption thate U was a limit
point of G. Therefore, the only limit points ofi; within U can be), plus possibly finitely many further
parameters\ with z(\) = 0. The set of limit points of any ray is always connected(zsdands at\,.

Conversely, supposg, is the landing point of the parameter r&{. Then by P6, Theorem 3.2], the
dynamic rayg, lands at a repelling preperiodic poiat. Similarly as above, ray and landing point are stable
under perturbations. Ky # 0, then), could not even be a limit point af,. 0

The following result is stated for convenient reference.

Corollary 3.5. (Landing properties of preperiodic parameter rays)

Every parameter ray- at preperiodic external addresslands at a postsingularly finite exponential map,
and every preperiodic exponential map is the landing pofra finite positive number of parameter rays at
preperiodic external addresses.
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Proof. This follows immediately as soon as our classification teew are proved (we will not use it before).
O

Proof of Propositior3.2. It is shown in [L1] (or [10, Corollary 3.2]) that if the singular value escapes on a
dynamic rayg,, then the external addressstarts withO (provided dynamic rays are parametrized so that
Imlog A\| < ). If a parameter ray lands at a postsingularly finite exptiaemap, then rays and their
parametrization change continuously. O

It might seem that the statement of Proposittb@ makes sense only once a brancha@f A is chosen,
which is not a dynamically well-defined quantity. Howevéistis not so: the proposition says that indepen-
dently of any choice of branch, and any choice of labels g@istlefining external addresses, any dynamic
ray landing at) has asymptotic imaginary part {r-7, 7).

Definition 3.6. (External address ofE))
Let £\ be a postsingularly finite holomorphic exponential map. M associate tdv) the external
address of a dynamic ray;, which lands a0 (this may involve a choice).

4. SYMBOLIC DYNAMICS AND KNEADING SEQUENCES

In Section5 we aim to construct a topological exponential nfap which we encode all the combinatorial
information of a given external addressIn order to do this, we need a few more concepts from symbolic
dynamics.

In Definition 2.5, we defined the spac® of external addresses and, for every pair of sequesges S,
the itinerarylt(s | t) of s with respect ta. Of special importance is the itinerary of a sequence watlfit
the kneading sequence.

Definition 4.1. (Kneading sequence)
For a sequence € S we call K (s) := It(s | s) thekneading sequena# s.

The methods of symbolic dynamics and the concept of itilesaare especially useful for those expo-
nential maps, for which a dynamic ray, lands at the singular value: in particular, if the singulebitis
preperiodic (the main case of interest to us), then by Thedd there are one or several dynamic rays at
preperiodic external addresses landing éee also26, Section 4] for a discussion of several other cases
with similar properties). In this case, the countably madfypreimages of, partition all of C and form
what we call adynamic partition The components in this partition are translates of eackr dth27iZ; the
imaginary parts of any component are in general unboundel(ly, the rayy, spirals into its landing point
0).

There is always a unique component, callgdvhich contains the singular value, and its vertical trates|
by 27j is called!; for j € Z. If z € Cis a point whose orbit is disjoint from,, then we define thiinerary
of z (with respect to the ray,) as the sequence of component labels visited by the orbit of

We call this new partition thdynamic partition(as opposed to the static partition introduced in Secjon
The dynamic partition has the advantage that each dynamis @mpletely contained in one component
(unless it is one of the rays forming the partition boundaayd all points on the ray and its possible landing
point have the same itinerary. In fact, the itinerary of alljs on the ray at external addressIt(¢ | s), and
the itinerary of the singular value (or of any point on any layding at the singular value) is the kneading
sequenceX (s). The following result is shown ir26, Proposition 4.4].

Lemma 4.2. (Itinerary of landing points and rays)

For postsingularly finite exponential maps, no two (prejpeic points have the same itinerary, and a
(pre)periodic dynamic ray lands at a given periodic or prapdic point if and only if ray and point have
the same itinerary. In particular, two (pre)periodic dyninmnays land together if and only if they have the
same itineraries.
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Note that for the dynamic partition, unlike the static gaoti, several rays may have the same itinerary.

The following simple algorithm illustrates the close raatbetween external addresses and itineraries
and shows in particular that their entries differ at most lfup to simultaneous translation of all entries by
the same integer).

Algorithm 4.3. (Construction of It(s | t))
Given external addressest € S so thatt is non-constant and™(s) # t for all n > 0. Thenu := It(s | t)
can be constructed as follows.
—1 ifo(t) >tando®(s) <t
(1) Forn > 1 defined,, := 1 ifo(t) <tando®(s) >t
0 otherwise.
(2) Constructu = ujus... as U, = s, —t1 + on

Proof. It suffices to show that the first entoy, in It(s | ¢) is correct: then-th entry equals by definition
the first entry inlt(¢"~!(s) | ). Adding an integek to the first entrys; of s will add & to u;, so we may
assume that; = 4.

Suppose first that > ¢t. Thenu; = 0 unless there is a preimage in (¢, s); but sinces; = ¢, this is
equivalent to the conditiohe (o(t),o(s)) oro(t) < t < o(s); and exactly in this case,; = 1. Similarly,
if s <t,thenu; = 0unlesso(t) >t > o(s), and exactly in that case; = —1. O

Notice that we have™(s) = s for somen if and only if s is periodic. Algorithm4.3therefore works for
computing the kneading sequences of the preperiodic aslrdlsat we are interested in. It will prove to be
useful when we are trying to recover the external address &ror constructed exponential map.

5. THE TOPOLOGICAL EXPONENTIAL MAP

In this section, we will start with a combinatorial objeckti@rnal address) and turn this into a topological
object (a postsingularly preperiodic topological expdimap). In the next section, we make the step
from topology to the complex structure and find, whenevesitds, a holomorphic exponential map which
is equivalent, in a sense defined by Thurston, to the givenlagjral exponential map.

Convention. All homeomorphisms and coverings in this paper will be ddéon preserving.

Definition 5.1. (Topological exponential map)
A universal coverf: (S?\ {oo}) — (S?\ {o0,0}) is called a topological exponential map. It is called
postsingularly finite if the orbit of O is finite, hence prejpelic. The postsingular seti8; := UnZO feroyu

{o0}.

If a topological exponential map is holomorphic, then itaformally conjugate to an exponential map
z+— By

Definition 5.2. (Thurston equivalence)

Two postsingularly finite exponential mapsand g with postsingular set$’; and P, are called Thurston
equivalent if there are two homeomorphisms ¢, : S* — S* with ¢1|p, = ¢2|p;, Py = ¢1(Py) = d2(Py)
and ¢ (o0) = ¢2(0c0) = oo such that

¢prof=gogy onS*\ {oo}
and¢; is homotopic (or equivalently isotopic) t® on S? relative toPy.

Our goal will be to find, for every postsingularly finite topgical exponential map, a postsingularly
finite holomorphic exponential map which is Thurston egle@ima This is not always possible. In the case
of rational mappings, Thurstorb] determined that this is impossible if and only if there isat/is now
called a Thurston obstruction; see al213]. The extension of this result to the case of exponentialsmap
was done in14]: in this case the possible obstructions have a much sinfipter, called degenerate Levy
cycles.
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Definition 5.3. (Essential curves and levy cycle)

Let f be a topological exponential map with postsingular 82t A simple closed curvé C S?\ Py is
called essentialf both components &? \ 6 contain at least two points i’;. Suppose there exist disjoint
essential simple closed curv&s ..., ,dr = o such that for eacli = 0,...,k — 1, J; is homotopic relative
Py to one component of f~!(4,41) and f: & — &;41 has degree 1. Theh = {dy,d1,...,,8, = do} is
called aLevy cycle

Essential curves are important for the following reasoringke closed curvé ¢ S? \ Py is essential if
and only if, for every homeomorphism: S> — C, there is a lower bound of lengths (with respect to the
hyperbolic metric ofC \ ¢(P;)) of simple closed curves homotopic ¢¢5) relative tog(Py).

This section will be concerned with proving the followingetrem.

Theorem 5.4. (External address yields topological expondal map)
Let s be a preperiodic external address. Then there exists a ipgsiarly finite topological exponential
map f with the following properties:

e f has a preperiodic injective curve: (0,00) — S? connecting) to oo;

e v has itinerarylt(s | s) with respect to the partition defined iy ! (v),

e the vertical order of the rayg°" () coincides with the lexicographic order of the shiftsspf

e f does not admit a Levy cycle.

Any two such postsingularly finite topological exponentialps for the same external addresae Thurston
equivalent to each other.

Note that any injective curve connecting the singular valteeoo has countably many disjoint preimages
under any topological exponential map, and this allows wefme a dynamic partition and thus dynamical
itineraries just like for holomorphic exponential maps¥drich a dynamic ray lands at

As always, the curve should be preperiodic as a set; its points need not be (ekve@ndpoint). The
preimagef —!(v) is disjoint from all raysf°*(v). Let+’ be the unique component i1 D starting a) and
let p’ be any component of ~1 (/). Then the rayg°"(v), as well ag/, are disjoint curves too and have
a well-defined cyclic order. Removing induces a linear order among all rays, and this is the véuicker
specified by the theorem; it does not depend on the choigé of

5.1. The graph map. Similarly as for polynomials inZ], we start by constructing an undirected grdph
that encodes the combinatorial information givensbyAn important difference is that our graph is infinite.
We will construct an infinite topological graph and later embed it int&?. Start with two vertices

I' = {ex, -} FOr eachn € Z, add disjoint edgeg,, joining e, t0 e_,. Let k andl be the length
of preperiod and period of respectively. Add vertices,, ..., e,y to I', and for eacle,,, add an edge,
connecting:,, ande.., so that all edges are disjoint and all vertices are disfoamh each other and from all
edges.

We will embedI \ {e_.} into S? and define a graph map from the embedded graph to itself. By
extendingf to a mapf: S?\ {co} — 2\ {0, 00}, we will obtain the desired topological exponential map.
It is straightforward to embell \ {e¢_.} (as it has been constructed up to here) iitan a reasonable

way, define a graph map, and extend it to a topological exg@ienap f on all of S?, so thatf satisfies the
first three properties of Theorem4. The hard part is to make sure thatvill not admit a Levy cycle. The
following lemma tells us when to expect a Levy cycle.

Lemma 5.5. (Levy cycle and itineraries)

Consider a topological exponential map that satisfies trat fivo properties in Theorerd.4. Then two
or more postsingular points are surrounded by the same cuimaLevy cycle if and only if they are all
periodic, and they have the same itinerary with respect éodartition consisting of preimages of the ray
landing at the singular value.

Proof. Suppose that two or more postsingular points are surroungedsimple closed curvéin a degen-
erate Levy cycle. Note first thatcannot surround the singular valoeotherwise, the preimage 6fwould
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not contain any simple closed curve. After homotopy, we nhag assume thatdoes not intersect the ray
~1 connecting) to oc.

Taking preimages, no preimage cui/eof § can intersect the partition boundary, hence all postsargul
points surrounded by have the same first entries in their itineraries. Note thantmber of postsingular
points surrounded by cannot be greater than that fyrthis number could be smaller, depending on which
branches of preimages are chosen. However, sinsgart of a degenerate Levy cycle and hence periodic
(up to homotopy), the number of surrounded postsingulantponust remain constant. It follows that all
postsingular points surrounded byave the same periodic itinerary and are hence periodid¢goin

Conversely, assume that the periodic postsingular peintse;,, ..., e;, have the same itinerary with
respect to the dynamic partition of the plane. Surroundetpeints (but no other postsingular points) by a
simple closed curve; this curve is automatically essential. Note that thereimigeneral infinitely many
homotopy classes of curvégelative to the postsingular points. However, there is @gingle homotopy
class if we require thaf must not intersect the ray into any point which is not surdmeh the complement
in S\ {co} of all these rays is simply connected.

Sinced does not intersect the ray, and all surrounded points are periodic and have the sanezatiy,
there is one preimage componenvafhich surrounds all periodic preimages of the surroundedtpcand
again it does not intersect the rays into those points thddds not surround. Repeating this argument for
one period of the itinerary, we obtain another curve whiahainds the same points & the complement
of the remaining rays, so this curve is homotopi@ @nd we have a degenerate Levy cycle. O

Corollary 5.6. (Levy cycle and itineraries)

A topological exponential map as in Lemra&d admits a Levy cycle containing a curve surrounding the
pointse;, e; if and only if the kneading sequenae= It(s | s) of the curvey landing at the singular value
has the property thal;u;1U;42... = UjUjpUj4o. ...

Proof. If u = uju,... is the kneading sequence of the curvdanding at the singular value, then the
itineraries of the points; = f°(~1)(0) ande; are the appropriate shifts of the kneading sequence. Eguali
of itineraries can hold only if both points have equal pesi@hd preperiods; since they are on the same
preperiodic orbit, this implies that they can have identi@aeraries only if they are periodic. O

The Levy cycle obstruction warns us that raysand~; should really land together at a common point
e; = e;. In order to solve this problem, we will simply “glue” points ande; in the graph: Define the
equivalence relation

ej ~ ej <= Ulj11Uj42--- =U;U;jp1Uj 2. ..

on pointse;, € I'. Redefind” asI'/ ~.

After embedding int&?, the new quotient graph will have the property that no two different vertices
have the same itinerary, so there can be no Levy cycle.

In order to check that the graph can be embedded, we haveity ter following unlinking property: it
never happens that there are four external addregsess| < s, < s, so thats; ands, have the same
itinerary u, and alsas| ands/, have the same itinerary # u. Suppose by contradiction that this problem
does occur. Then (possibly after replacing all four addressith the same shift), we may assume that
u; = u} butuy # uf, whereu = ujuqus. .. andu’ = ujubuy .. .. Without loss of generality, assume that
Us # 0 (the argument is symmetric imandu’). Theno~!(Iy,) N Iy, consists of a single interval which
must contains; ands,, but it cannot contaig or s,. This proves the unlinking property.

After preparing our graph so that no Levy cycle can emergegmbedI first into C and then intdS?.
The complex structure ofl does not play any role, but it allows us to describe the coottm more easily.

Define the embedding: I' — C as an injective continuous map as follows:

(1) Firstlety(e;) = 0 andy(es) = 0.
(2) Since thej-image ofy; must be a curve frori to oo, let+)(y;) = RT.
(3) Foreveryn € Z let(p,,) be the straight horizontal line with imaginary p&i — 1).
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(4) The images of the edges of I' define a partition of” into stripsA,,. We label the strips in vertical
order so that\,, denotes the strip containir@pmi (S00 € Ay).

(5) Now we are ready to bring in the combinatorial informatgiemming from the kneading sequence
u. Foreachn = 1,2,...,l + k, lety(e,) be a point in stripAy,, (taking into account that certain
points e,, might be identified) and let)(v,,) be a curve inAy, connectingy(e,) to +oco. For
simplicity, assume that imaginary parts©fy,,) are eventually constant. Choose these curves so
that they are disjoint from each other and from all endpoéxsept their own, and choose the
eventually constant imaginary parts so that(v)(e,)) < Im(¢(ey,)) if and only if 0" 1(s) <
o™~ 1(s) for eachn # m; this ensures that the rays respect the order prescribetiebgxternal
address.

We have to justify that this can be done consistently if shemdpoints are identified: it can never
happen that two curveg, and~,, have a common endpoint and sepafdtato two complementary
components which both contain a curyg and~,,, that should have a common endpoint different
frome,, = e,,. This is exactly the unlinking property.

We now mapC homeomorphically t&2, mapping0, oo € C to the two corresponding marked points
0,00 € S2. From now on, we view) as a map fronT" to S? and denotd’s. := +(T") C S2. For simplicity,
we writee,, for ¢ (e, ), v, for ¥ (v,) andp,, for ¢)(p,) (the vertices, the rays, and the partition boundaries).
Since from now on, we only work with the embedded graphs, mbuston can arise.

Remark. In the construction of sz, the only combinatorial information coming frosrare the kneading se-
quenceu and the lexicographic (vertical) order of the set of exteanalresses{s, o (s), . .., c°UTF=D(s)}.
We will see in Algorithm6.3that this information gives us back a unique external addresormalized so
that its first entry ig.

We can now define a graph mgp I’z — T's2 such thatf(co) = oo, as well asf(e;) = e;11 and
f(;) = ~j+1 for all j (counting indices modulo the period, so tifdt; ;) = v,11). Furthermore, for all
k € 7, definef (py) = 1.

Observe thaff is neither surjective nor injective, and that any two glueihts have glued images, so
the graph map respects the gluing. Under the riage orbit of0 is necessarily preperiodic. The graph
map f is continuous everywhere exceptaat this will not affect the extended mafy which is defined on

S2\ {oo}.

5.2. Extension of the graph map. In order to prove Theorerh.4, we need to do three things: we need to
show that the graph map can be extended to a topological eriahmap (Lemm&.9), we need to show
that it satisfies the conditions given in the theorem (Lerdrig and we need to prove the uniqueness claims
(Proposition5.10. The second part is the easiest, so we do it first.

Lemma 5.7. (Every embedding satisfies conditions on rays) .
If f:S2\ {00} — S?\ {0,00} is a topological exponential map which extenfisI's. — Ts2, then f
satisfies the following properties:
e the curvey; connects) to co and is preperiodic undey;
e with respect to the dynamic partition induced by preimades, pthe curvey; has itinerarys;
e the vertical order of the rays,, = fo(”‘l)(yl) coincides with the lexicographic order of the
O'n_l(ﬁ);
e f does not admit a Levy cycle.
Proof. The first three properties follow directly from the constroie. The last property follows from Corol-

lary 5.6because can have a Levy cycle only if there are two different points:; with identical itineraries,
but such points have been glued together. O

The next step is the extension of the graph map to a topologipemnential map. In order to ensure that
the graph map can be extended to a neighborhood of everxkyemeneed the following lemma.
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Lemma 5.8. (f preserves cyclic order)
The cyclic order abo of three or more rays with the same itinerary (landing at tams point) is preserved
by the graph may.

Proof. Suppose the endpoints,, e, ande,,» are identified, so that the three rays, v,/, v, land at a
common point. The vertical order of these rays coincides wie lexicographic order of the addresses
0" 1(s), 0™ ~1(s) ando™" ' (s); suppose without loss of generality thet'(s) < o™ ~(s) < o™ ~1(s).
Since the first entries in the itineraries of these threerpateaddresses coincide, there is a Z so that

ks < o™ V(s) < o™ Ns) < o™ TMs) < (k+1)s

(whereks and(k + 1)s denote adjacent preimagessaiinder the shift). But on every intervgts, (k+1)s),
the shift map is injective and preserves the cyclic order. O

One key construction is Alexander's trick (compare e2§): [if f: S' — S!is an orientation- preservmg
homeomorphism, then there exists an orientation-prasgtvdmeomorphisni : D — D such thatf|aD =

fls = f: one such extension is given byrei?) := rf(ei?).
Moreover if f, g: S' — S! are isotopic rel some finite number of pointsSh, then by extending the
isotopy to the entire disk one gets an isotopy (rel the sarngg)detween the extensiorfsandg: D — D.

Lemma 5.9. (Extension of graph map)
The graph mag : T's: — I's2 can be extended to a topological exponential rfia$?\ {co} — S?\ {0, o0 }.

Proof. For convenience, let us adopt the convention that the egdgasd~,,, contain their endpointsc and
em. Notice that forn € Z, the setS? \ (p,, U p,+1) is the union of three disjoint open topological disks;
among themA,, is the disk which does not intersect amyfor k ¢ {n,n + 1}.

We shall first construct continuous maps (A,, \ {oo}) — (S?\ {cc}) for eachn, such thatf,,(p,) =
fn(pn+1) = 71 as above, and,(T'sz N A,,) = f (T's2 N A,). Moreover, the restriction of,, to A,, is an
orientation preserving homeomorphism ofto\ v, which extends continuously to the boundary.

We distinguish four possible cases fay,:

(i) A, NTg = 0;
(i) A, NTg =, forsomem € {1,2,...,1+ k};

(i) A, NTse = vy U... Uy, for somemy,...,m; € {1,2,...,1 + k} such that all endpoints

€m,, - - - €m, are glued;
(iv) The general case: there may be combinations of sevestances of case (ii) and (iii) on one domain
AV

Case (i) is almost literally Alexander’s trick: the graphpnA prescribes the boundary values on the
topological diskA,, for the mapf,,. The only problem is that the poinb appears twice on the boundary,
mapping ta) on the left and tax on the right. This causes no problem (we do not defiper f onco).

In Case (i) the idea of the construction is the same; we nedithd a homeomorphisnfi: A, \ v, —

S?\ Ym+1 Which coincides with the prescribed boundary value$am;, 1, v, andoo (at two sides). Note
that A, \ 7m =~ S%\ yme1 =~ D. In this case, the curve,, along with its endpoints occurs twice on the
boundary, and,, is already defined on,, via f.

Now we treat Case (iii). The séX,, \ (7, U ... U vn,) consists ofi domains, each of which is home-
omorphic toD; the same is true fd8? \ (1 U my+1 U - .. Ym,+1) (NOte that the endpoint; = 0 is never
glued with any other endpoint because its itinerary hasdopgeperiod than all others). As in Case (i), we
want to extend the map along its prescribed boundary values to the appropriatgéntmains. In order
for this to be possible, we need to assure that for each aof ihygological disks, the boundary rays map to
the boundary rays of an appropriate image domainalbe the landing point of the rays,, , . . . , ym,; then
we need to make sure that the cyclic order of these rayiscaincides with the cyclic order of the image
rays atf (a). Our construction lets rays land together iff they have fidahitineraries, so this fact is assured
by Lemmab.8. Therefore, the may,, can be defined or\,, as well, and it is again a homeomorphism
fn: Ay — S2\ 1.



POSTSINGULARLY FINITE EXPONENTIAL MAPS 13

Finally, the general case (iv) can incorporate several,rayd several groups of rays, within the same
domainA,,. First observe that the vertical order of all rays, C A,, andp,,, p,+1 C 94A,, is compatible
with the cyclic order of the image rays near infinity: the i@t order of the rays is determined by their
external addresses, and all external addresses withinanaidA,, belong to one interval on which the
shift map is injective. Removing from\,, all rays, we obtain finitely many connected components which
can be treated separately because they have compatiblddrguralues. For every connected component,
the claim follows by combining the ideas from the previousssa

Having constructed the magfs on all strips, we define a continuous mapS? \ {oo} — S?\ {0, o0},
by f|a,, := f.. The values on the boundaries of thg (except abo) match since here they coincide with
the graph magf. We obtain a universal covef: S?\ {oco} — S?\ {0, 00}. O

5.3. Thurston-uniqueness. Of course, the construction of the extension is not uniqoe,dver, we have a
uniqueness result in the following sense.

Proposition 5.10. (Thurston-uniqueness of topological gonential map) Suppose thaffi, fo: (S \
{o0}) = (S?\ {0,00}) are topological exponential maps satisfying the four iteedi properties of The-
orem 5.4 for the preperiodic external address Then f; and f, are postsingularly finite and Thurston
equivalent.

We start with the following lemma.

Lemma 5.11. (Unigueness of graph map up to homotopy)

Suppose that: (S?\{oc}) — (S?\{0, c0}) is a postsingularly finite topological exponential map sfiing
the four itemized properties of Theoréml for the preperiodic external address Then the restriction of
to the collection of curvels), ., f°"(v) yields a graph map's> which is homotopic relative t&; to any
graph map as constructed above.

With |J,,~_; f°"(v), we mean the countably many preimage curyes(v), together with the finitely
many curves on the forward orbit of

Proof. First we find a homotopy d§? relative Py sending the preimages(v) to the edgep,, of I'sz; this
is possible because the points/ta have prescribed itineraries. Then we can find homotopiesiméach
complementary domain,, of S? \ U,, p» to match the graphs within each,; this is possible because:

e the itinerary prescribes which legs, are within whichA,,,

e the order abo of the different legs within the sam&,, is in both cases prescribed by the lexico-
graphic order of appropriate shifts gf

e the same endpoints of legs are identified because of thexistemce of Levy cycles: Corollary.6
says which endpoints are identified in the topological egpbial map, and the same endpoints are
identified by construction in our graph map.

0

Lemma 5.12. (Uniqueness of graph map extension up to homotgp
Letf: I's2 — I's: be a graph map andly, fo: S?\ {oc} — S2\ {0, oo} two different graph map extensions
as in Lemma.9. Then the mapg; and f, are Thurston equivalent.

Proof. As in [2], we will define a mapp: S? — S? such thatf; = f; o ¢ andp is a homeomorphism
homotopic to the identity rel the vertices bf.. The construction ofy is easy. Each componebt of

S?\ T's2 is homeomorphic to a disk, and by constructjfirand f» coincide on their boundaries. Since both
fi restricted to these disks are homeomorphisms onto thegesjahey are homotopic to each other relative
to the boundary. Since the postsingular set is containdddn f; and f» are Thurston equivalent in the
sense of Definitiorb.2. 0

Proof of Propositiorb.10. Since the curvey is preperiodic as a set, and one of its endpoints is the singul
value0, it follows that f; and f» are postsingularly finite. By Lemma 11, the graph maps of; and f,
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coincide up to homotopy relative to the postsingular sethibmotopy of graph maps extends to a homotopy
of S? because the graph maps are embeddedSatim the same way, and by Lemnial2 we obtain a
Thurston equivalence betweégpand fs. O

Proof of Theoren®.4. We have first constructed a grapk. C S? and a graph mayp: I'se — I's2, and we
have then extended the graph map to a postsingularly fippt@dgical exponential map (Lemn&a9) which
satisfies the four itemized properties in the theorem (Lerfa Finally, Propositiors.10shows that all
topological exponential maps satisfying these conditemesThurston equivalent. O

6. HOLOMORPHIC EXPONENTIAL MAPS

In the previous section, we have constructed for every piegtie external address a topological expo-
nential map satisfying the properties of TheorBm. In this section, we are going to find a holomorphic
exponential map with the same properties. It is here thatseghe main result ofll] stated below.

Theorem 6.1. (Characterization of exponential maps)
A postsingularly finite topological exponential map is T$tan equivalent to a (necessarily unique) postsin-
gularly finite holomorphic exponential map if and only if dek not admit a Levy cycle.

Since the topological exponential map constructed in Témds.4 has no Levy cycle, we have now
associated to every preperiodic external address a unagisipgularly finite holomorphic exponential map.
In order to close the loop of the argument (see the diagralmeatind of Sectio2), we need the following
result.

Proposition 6.2. (Dynamic ray lands at singular value)

For every preperiodic external addregs suppose thaty is a holomorphic exponential map which is
Thurston equivalent to the topological exponential mapstrcted in Theorerd.4 for external address.
Then forE, the dynamic ray at external addres$ands at the singular value.

Proof. We prove this claim by translating Thurston equivalence ihie language of spiders, and using
results from R6].

For a postsingularly finite topological exponential nygm spider legis an injective curvey; : [0, oo] —

S? with 7;(0) = e; and~y;(c0) = oo, Wheree; = 0, ea,. .., e iS the postsingular orbit. Apideris a
collection of spider leg® = {v1,...,v.x} Which are disjoint except possibly for their endpoints. Two
spiders areequivalentif there is an isotopy of? relative toP; = {ei1,..., €4k, 00} which moves one
spider to the other.

Every spider® lifts under f to an image spide® = {71, ..., %1%}, where eachy is the unique com-
ponent of f~! (1) starting ate; (counting indices modulo the period as always). It is easyhteck that
equivalent spiders have equivalent image spiders, so ttlergpap acts on equivalence classes of spiders.

If v1 is a curve connecting; = 0 to co and is preperiodic undef (as a curve) with preperioand
periodk, then thel + & legs on the orbit of; obviously form an invariant spider.

Now suppose thaf and £, are Thurston equivalenty; o f = E) o ¢o, Where¢; and ¢, are isotopic
relative toP;. ThenV¥ := ¢; o ® is a spider forEy. We can lift¥ underE) to an image spide®, and the
conditiong; o f = E)og, implies thatd = ¢,0® (lifting spiders is compatible with Thurston equivalences
Since¢; and¢, are isotopic relative td, it follows that the spiderd andV are equivalent: the map),
has a fixed spider (up to equivalence) which is related by theston equivalence to the preperiodic curves
7i of f.

Now [26, Theorem 6.4] shows that this fixed spiderfof can be replaced by an equivalent spider con-
sisting only of dynamic rays (this theorem is part of the pribat every postsingularly finite exponential
map has a dynamic ray landing at the singular value; therstatereads a bit differently in that context, but
what the theorem actually does is to take a periodic spidemngbdy 6, Proposition 6.3] and turn it into a
spider made of dynamic rays).
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We now know that a dynamic ray landing at O has kneading segu€iis) = It(s | s), and the order of
the image rays is as constructed in the topological casénig\pbint, Algorithm6.3 below, comes in handy:
it allows us to reconstruct uniquely from its kneading sequenae= It(s | s) and the order of the™(s).
It proves that for the holomorphic mdp, the dynamic ray at external addresknds at). 0

Algorithm 6.3. (Reversal of construction of kneading sequece)
Suppose we are given the kneading sequencka non-constant, non-periodic external addresand for
all n > 1 we know the relative order gfandc"(s). Then the following algorithm uniquely recovers
—1 ifo(s) >sando®(s) < s
(1) Forn > 1 defines,, := 1 ifo(t) <sando®(s) > s
0 otherwise.
(2) Constructs ass,, = u, — dy.

Proof. Since the relative order of°"(s) ands is known for alln, we can computé,, for all n. We can thus
reverse the computation in Algorithi3. O

Now we can finish the proof of the first classification theorem.

Proof of Theoren2.6. We have just finished the proof of the existence part of thertdtra. For uniqueness,
suppose there are two postsingularly finite exponentialsndgpand £, which both have the property that
their dynamic rays at external addredands at the singular value. Then both maps have spidergstiogs
of this dynamic ray and its forward images, and there is a fwnoephism¢; : C — C which sends the
spider of £, to the spider ofFy,. Sinceg;(0) = 0 and both maps are exponential maps with asymptotic
value0, it follows that¢; lifts to another homeomorphisay,: C — C so thatg; o Ey = Ey o ¢9. The
spiders assure thaf and¢, are homotopic to each other relative to the postsingulaisedt, and Fy, are
Thurston equivalent. By Theorefl, it follows that\ = .

Finally, the fact that every postsingularly finite expori@ntap is actually associated to a finite positive
number of preperiodic external addresses is The@dm O

A core ingredient in this proof was the combinatorial Aldglonn 6.3 which allows to recover the external
address from its kneading sequence and the lexicographic orderenbthit of s under the shift. There are
other ways to recovey which are perhaps more closely related to the dynamigg ste for example the
proof of [26, Theorem 6.4].

We have now proved TheoremG:. for every preperiodic external addresgshere is a unique postsingu-
larly finite exponential map for which the dynamic ray at emtg addresg lands at the singular value, and
this describes all postsingularly finite exponential maps.

It remains to determine combinatorially which externalreddes yield the same exponential map; this is
Theorem2.7.

Proof of Theoren®.7. Supposes ands’ give rise to the same exponential maR: by definition, the dy-
namic rays at addressesand s’ for E, land together at 0, and hence they have the same itinerahy wit
respect to either dynamic partition, herices | s') = It(s' | ') andIt(s’ | s) = It(s | s). It also follows
thats ands’ have the same period and the same preperiod.

Conversely, fix two preperiodic external addresses’ of equal period and equal preperiod such that
It(s | &) = It(s' | '). Construct the holomorphic exponential map corresponding t@’ using Theo-
rem2.6. F\ has a dynamic ray at external addresand sincdt(s | s') = It(s" | '), the rays at addresses
s ands’ land together at the same poiint By uniqueness, Theorefh6 constructs the same map fram
Hence, both addresses correspond to the same holomorgitunential map.

This shows the equivalence of Conditiord3, ((3), and @) in the claim. The equivalence of Conditions
(1) and @) is Theorem3.4. Before dealing with the remaining conditions, let us déscthe last statements
of the theorem.

Dynamic rays landing at a common point always have equabpemd equal preperiod. The construction
of kneading sequences makes it clear thathiés preperiod and periodk, thenlt(s | s) has preperiod and
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period &’ dividing k. Among the external addressesr(s), ..., o"!(s), only the periodic ones can have
equal itineraries with respect tg and the number of those who do is obviously equat té’. Therefore,
the corresponding dynamic rays land in groupé 6f'; by [21, Lemma 5.2], there can be no additional rays
if & > k', while if £ = £/, then the number of rays can lheor 2, and both cases actually occur. Pulling
back, this gives the number of preperiodic dynamic raysifandt the singular value.

Condition €) implies the previous ones, so we now show thatahds’ generate the same postsingularly
finite exponential magr, thenlt(s | s') = It(s | s). For everyj > 0, the dynamic rayg,; ) andge s
land together and bound a compon&ntC C with real parts bounded below. Iif(s | s") andIt(s | s) differ
in their k-th entries, this implies thats* (gs) C Uy and, since both rays land together, alsg (¢.) € Uy
andU; C Uy. We show that this is impossible.

There is a uniqué’ € {0,1,...,k — 1} so that the first entry in7 (s) is the same as in’ (s'), for every
j=Fk+1,...,k—2, butnotforj = & (if there was no suck’, then the rays75*(g,) and E5*(g.) would
be further apart than the rays andg/, and they could not be containediR).

Then forj = k' +1,...,k — 2, the restrictionE) : U; — U, 4, is a conformal isomorphism, and so is
Ey: Uy — C\ Ugryq. It follows thatUy 1 contains the singular valugand hence the rayg andg’,
hencelU,,.; D Uy D Uy, (equality excluded). However, since the rays boundifighave more identical
first entries in their external addresses than the rays ogiad,, they must surround a smaller domain, and
this is a contradiction. O
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