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ABSTRACT. We address the global persistence of analyticity and Gevrey-class regularity of solutions to the
two and three-dimensional visco-elastic second-grade fluid equations. We obtain an explicit novel lower bound
on the radius of analyticity of the solutions that does not vanish ast → ∞, and which is independent of the
Rivlin-Ericksen material parameterα. Applications to the damped incompressible Euler equations are also
given.
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1. INTRODUCTION

In this paper we address the regularity of an asymptoticallysmooth system arising in non-Newtonian
fluid mechanics, which is not smoothing in finite time, but admits a compact global attractor (in the two-
dimensional case). More precisely, we consider the system of visco-elastic second-grade fluids

∂t(u− α2∆u)− ν∆u+ curl(u− α2∆u)× u+∇p = 0, (1.1)

div u = 0, (1.2)

u(0, x) = u0(x), (1.3)

whereα > 0 is a material parameter,ν ≥ 0 is the kinematic viscosity, the vector fieldu represents the
velocity of the fluid, and the scalar fieldp represents the pressure. Here(x, t) ∈ T

d × [0,∞), where
T
d = [0, 2π]d is thed-dimensional torus, andd ∈ {2, 3}. Without loss of generality we consider velocities

that have zero-mean onTd.
Fluids of second-grade are a particular class of non-Newtonian Rivlin-Ericksen fluids (cf. [48]) of differ-

ential type, and the above precise form has been justified by Dunn and Fosdick [18]. The local existence
in time, and the uniqueness of strong solutions of the equations (1.1)–(1.3) in a two or three-dimensional
bounded domain with no slip boundary conditions has been addressed by Cioranescu and Ouazar [14].
Moreover, in the two-dimensional case, they obtained the global in time existence of solutions (see also
[13, 24, 25, 29]). Moise, Rosa, and Wang [40] have shown later that in two dimensions these equations ad-
mit a compact global attractorAα (see also [2, 15, 22, 26, 27, 30, 39, 45, 47]). The question of regularity and
finite-dimensional behavior ofAα was studied by Paicu, Raugel, and Rekalo in [45], where it was shown
that the compact global attractor inH3(T2) is contained in any Sobolev spaceHm(T2) provided that the
material coefficientα is small enough, and the forcing term is regular. Moreover, on the global attractor, the
second-grade fluid system can be reduced to a finite-dimensional system of ordinary differential equations
with an infinite delay. As a consequence, the existence of a finite number of determining modes for the
equation of fluids of grade two was established in [45].

Note that the equations (1.1)–(1.3) essentially differ from theα-Navier-Stokes system (cf. Foias, Holm,
and Titi [20, 21], and references therein). Indeed, the equations governing the second-grade fluids do not
contain the regularizing term−ν∆(u − α2∆u) (cf. [21]), but instead−ν∆u, and thus the problem is not
semi-linear. Moreover, the dissipative term−ν∆ is very weak — it behaves like a damping term — and the
system is not smoothing in finite time, that is, for generic initial data inH3 the solution does not become
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analytic in finite time (as opposed to parabolic equations [19, 23, 44]). Theα-models are used, in particular,
as an alternative to the usual Navier-Stokes equations for numerical modeling of turbulence phenomena in
pipes and channels. Note that the physics underlying the second-grade fluid equations and theα-models are
quite different. There are numerous papers devoted to the asymptotic behavior of theα-models, including
Camassa-Holm equations,α-Navier-Stokes equations,α-Bardina equations (cf. [9, 20, 21, 34, 37]).

In this paper we characterize the domain of analyticity and Gevrey-class regularity of solutions to the
second-grade fluids equation, and of the Euler equation witha damping term. We prove that if the initial
datau0 is of Gevrey-classs, with s ≥ 1, then the unique smooth solutionu(t) remains of Gevrey-classs for
all t < T∗, whereT∗ ∈ (0,∞] is the maximal time of existence in the Sobolev norm of the solution.

The main novelty of our result is that ifν > 0, andd = 2, or if d = 3 andu0 is small in a certain norm
(these are the cases whenT∗ = ∞), then the lower bound on the radius of analyticity does not vanish as
t→ ∞. Instead, it is bounded from below for all time by a constant that depends solely onν, α, the analytic
norm, and the radius of analyticity of the initial data. In contrast, we note that the shear flow example of
DiPerna and Majda [17] (see also [5]) may be used to construct explicit solutions to the incompressible two
and three-dimensional Euler equations (in the absence of damping) whose radius of analyticity is decaying
for all time, and hence vanishes ast → ∞. We emphasize that when0 ≤ α ≤ 1 our lower bound on the
radius of analyticity is independent ofα, which gives the framework in which we prove the convergenceof
analytic solutions to the second-grade fluid equations to those of the corresponding Navier-Stokes equations,
in the limit α→ 0, whend = 2.

Whend = 3 and the initial data is not small, the solution might a-priori blow up in finite time. Here we
obtain an explicit lower bound for the real-analyticity radius of the solution which for allν, α > 0 decays
algebraically inexp(

∫ t
0 ‖∇u(s)‖L∞ds). A similar lower bound on the analyticity radius for solutions to

the incompressible Euler equations was obtained by Kukavica and Vicol [32, 33], but with an additional
algebraic decay in time (see also [1, 3, 4, 6, 36]).

The main results of our paper are given bellow (for the definitions see the following sections).

Theorem 1.1 (The two-dimensional case). Fix ν > 0, 0 ≤ α ≤ 1, and assume thatu0 is of Gevrey-classs
for somes ≥ 1, with radiusτ0 > 0. Then there exists a unique global in time Gevrey-classs solutionu(t)
to (1.1)–(1.3), such that for allt ≥ 0 the radius of Gevrey-class regularity is bounded from belowby

τ(t) ≥
τ0

1 + C0τ0
,

whereC0 > 0 is a constant depending onν and the initial data via(3.24) below.

Note that in this case we obtain the global in time control of the radius of analyticity, which is moreover
uniform inα. This allows us to prove the convergence asα→ 0 of the solutions of the second-grade fluid to
solutions of the corresponding Navier-Stokes equations inanalytic norms (cf. Section3.3). The convergence
of solutions to the Euler-α equations to the corresponding Euler equations, in the limit α → 0, has been
addressed in [37]. The corresponding theorem for the damped Euler equationsis given in Section5.

Theorem 1.2 (The three-dimensional case). Fix ν, α > 0, and assume thatω0 is of Gevrey-classs, for
somes ≥ 1. Then the unique solutionω(t) ∈ C([0, T ∗);L2(T3)) to (2.6)–(2.8) is of Gevrey-classs for all
t < T ∗, whereT ∗ ∈ (0,∞] is the maximal time of existence of the Sobolev solution. Moreover, the radius
τ(t) of Gevrey-classs regularity of the solution is bounded from below as

τ(t) ≥
τ0
C0
e−C

∫ t
0
‖∇u(s)‖L∞ds,

whereC > 0 is a dimensional constant, andC0 > 0 has additional explicit dependence on the initial data,
α, andν via (4.24) below.

The proofs of the above theorems are based on the Fourier-based method introduced by Foias and Temam
[23] to study the analyticity of the Navier-Stokes equations, and which was further refined by Levermore
and Oliver [36] for the Euler equations (see also [11, 19, 32, 34, 35, 42, 43, 44]). We emphasize that the
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technique of analytic estimates may be used to obtain the existence of global solutions for the Navier-Stokes
equation with some type of large initial data ([12, 46]).

2. PRELIMINARIES

In this section we introduce the notations that are used throughout the paper. We denote the usual
Lebesgue spaces byLp(Td) = Lp, for 1 ≤ p ≤ ∞. TheL2-inner product is denoted by〈·, ·〉. The
Sobolev spacesHr(Td) = Hr of mean-free functionsare classically characterized in terms of the Fourier
series

Hr(Td) =
{
v(x) =

∑

k∈Zd

v̂ke
ik·x : v̂k = v̂−k, v̂0 = 0,

‖v‖2Hr = (2π)3
∑

k∈Zd

|k|2r|v̂k|
2 <∞

}
.

We letλ1 > 0 be the first positive eigenvalue of the Stokes operator, which in the periodic setting coincides
with −∆ [16, 49]. For simplicity we considerTd = [0, 2π]d, and henceλ1 = 1. The Poincaré inequality
then reads‖v‖L2 ≤ ‖∇v‖L2 for all v ∈ H1. Throughout the paper we shall denote byΛ the operator
(−∆)1/2, i.e., the Fourier multiplier operator with symbol|k|. We will denote byC a generic sufficiently
large positive dimensional constant, which does not dependonα, ν. Moreover, the curl of a vector fieldv
will be denoted bycurl v = ∇× v.

2.1. Dyadic decompositions and para-differential calculus. Fix a smooth nonnegative radial functionχ
with support in the ball{|ξ| ≤ 4

3}, which is identically1 in {|ξ| ≤ 3
4}, and such that the mapr 7→ χ(|r|) is

non-increasing overR+. Letϕ(ξ) = χ(ξ/2) − χ(ξ). We classically have
∑

q∈Z

ϕ(2−qξ) = 1 for all ξ ∈ R
d \ {0}. (2.1)

We define the spectral localization operators∆q andSq (q ∈ Z) by

∆q u := ϕ(2−qD)u =
∑

k∈Zd

û(k)eikxϕ(2−q |k|)

and

Sq u := χ(2−qD)u =
∑

k∈Zd

û(k)eikxχ(2−q|k|).

We have the following quasi-orthogonality property:

∆k∆qu ≡ 0 if |k − q| ≥ 2; and∆k(Sq−1u∆qv) ≡ 0 if |k − q| ≥ 5. (2.2)

We recall the very usefulBernstein inequality.

Lemma 2.1. Letn ∈ N, q ∈ Z, 1 ≤ p1 ≤ p2 ≤ ∞, andψ ∈ C∞
c (Rd). There exists a constantC depending

only onn, d andsupψ such that

‖Dnψ(2−qD)u‖Lp2 ≤ C2qs‖ψ(2−qD)u‖Lp1 ,

and

C−12qs‖ϕ(2−qD)u‖Lp1 ≤ sup
|α|=n

‖∂αϕ(2−qD)u‖Lp2 ≤ C2qs‖ϕ(2−qD)u‖Lp1 .

wheres = n+ d
(
1/p1 − 1/p2

)
.
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In order to obtain optimal bounds on the nonlinear terms in a system, we use the paradifferential calculus,
a tool which was introduced by J.-M. Bony in [7]. More precisely, the product of two functionsf andg may
be decomposed according to

fg = Tfg + Tgf +R(f, g) (2.3)

where the paraproduct operatorT is defined by the formula

Tfg :=
∑

q

Sq−1f ∆qg,

and the remainder operator,R, by

R(f, g) :=
∑

q

∆qf∆̃qg with ∆̃q := ∆q−1 +∆q +∆q+1.

2.2. Analytic and Gevrey-class norms. Classically, aC∞(Td) function v is in the Gevrey-classs, for
somes > 0 if there existM, τ > 0 such that

|∂βv(x)| ≤M
β!s

τ |β|
,

for all x ∈ T
d, and all multi-indicesβ ∈ N

3
0. We will refer toτ as theradius of Gevrey-class regularityof

the functionv. Whens = 1 we recover the class of real-analytic functions, and theradius of analyticityτ
is (up to a dimensional constant) the radius of convergence of the Taylor series at each point. Whens > 1
the Gevrey-classes consist ofC∞ functions which are not analytic. It is however more convenient in PDEs
to use an equivalent characterization, introduced by Foiasand Temam [23] to address the analyticity of
solutions of the Navier-Stokes equations. Namely, for alls ≥ 1 the Gevrey-classs is given by

⋃

τ>0

D(ΛreτΛ
1/s

)

for anyr ≥ 0, where

‖ΛreτΛ
1/s
v‖2L2 = (2π)3

∑

k∈Zd

|k|2re2τ |k|
1/s

|v̂k|
2. (2.4)

See [16, 19, 23, 31, 32, 33, 36, 44, 49] and references therein for more details on Gevrey-classes. We
emphasize that the radius of analyticity gives an estimate on the minimal scale in the flow [28, 31], and it
also gives the explicit rate of exponential decay of its Fourier coefficients [23].

2.3. Vorticity Formulation. It is convenient to consider the evolution of the vorticityω, which is defined
as

ω = curl(u− α2∆u) = (I − α2∆) curlu. (2.5)

It follows from (1.1)–(1.2), thatω satisfies the initial value problem

∂tω − ν∆(I − α2∆)−1ω + (u · ∇)ω = (ω · ∇)u, (2.6)

divω = 0, (2.7)

ω(0, x) = ω0(x) = curl(u0 − α2∆u0) (2.8)

onT
d × (0,∞). Additionally, if d = 2, ω is a scalar, and the right side of (2.6) is zero. Denote byRα the

operator

Rα = (−∆)(I − α2∆)−1. (2.9)

It follows from Plancherel’s theorem, that for allv ∈ L2 we have
1

1 + α
‖v‖L2 ≤ ‖Rαv‖L2 ≤

1

α
‖v‖L2 . (2.10)
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The velocity is obtained from the vorticity by solving the elliptic problem

div u = 0, curlu = (I − α2∆)−1ω,

∫

T3

u = 0, (2.11)

which in turn classically gives that

u = K ∗ (I − α2∆)−1ω = Kαω, (2.12)

whereK is the periodic Biot-Savart kernel. Combined with (2.10), the above implies that

‖u‖H3 ≤
C

α
‖ω‖L2 , (2.13)

for some universal constantC > 0. Note that whenα→ 0 the above estimate becomes obsolete.

3. THE TWO-DIMENSIONAL CASE

3.1. The case α large. In the two-dimensional case, the evolution equation (2.6) for ω does not include
the termω · ∇u, which makes the problem tangible, in analogy to the two-dimensional Euler equations.
The main result below gives the global well-posedness of solutions evolving from Gevrey-class data, whose
radiusτ(t) does not vanish ast→ ∞.

Theorem 3.1. Fix ν, α > 0, and assume thatω0 ∈ D(eτ0Λ
1/s

), for somes ≥ 1, andτ0 > 0. Then there
exists a unique global in time Gevrey-classs solutionω(t) to (2.6)–(2.8), such that for allt ≥ 0 we have
ω(t) ∈ D(eτ(t)Λ

1/s
), and moreover we have the lower bound

τ(t) ≥ τ0e
−CM0

∫ t
0 e−νs/(2+2α2)ds/α ≥ τ0e

−C(2+2α2)M0/(αν), (3.1)

whereM0 = ‖eτ0Λ
1/s
ω0‖L2 , andC is a universal constant.

Proof of Theorem3.1. We take theL2-inner product of∂tω+νRαω+(u ·∇)ω = 0 with e2τΛ
1/s

and obtain

1

2

d

dt
‖eτΛ

1/s
ω‖2L2 − τ̇‖Λ1/2seτΛ

1/s
ω‖2L2 + 〈eτΛ

1/s
Rαω, e

τΛ1/s
ω〉

= −〈eτΛ
1/s

(u · ∇ω), eτΛ
1/s
ω〉. (3.2)

Note that the Fourier multiplier symbol of the operatorRα is an increasing function of|k| ≥ 1, and therefore
by Plancherel’s theorem and Parseval’s identity we have

〈eτΛ
1/s

Rαω,Λe
τΛ1/s

ω〉 = (2π)2
∑

k∈Z2\{0}

|k|2

1 + α2|k|2
|ω̂k|

2e2τ |k|
1/s

≥
(2π)2

1 + α2

∑

k∈Z2\{0}

|ω̂k|
2e2τ |k|

1/s
=

1

1 + α2
‖eτΛ

1/s
ω‖2L2 .

We therefore have thea priori estimate

1

2

d

dt
‖eτΛ

1/s
ω‖2L2 − τ̇‖Λ1/2seτΛ

1/s
ω‖2L2 +

ν

1 + α2
‖eτΛ

1/s
ω‖2L2

≤ |〈u · ∇ω, e2τΛ
1/s
ω〉|. (3.3)

The following lemma gives a bound on the convection term on the right of (3.3) above.

Lemma 3.2. For ω ∈ D(Λ1/2seτΛ
1/s

), and divergence freeu = Kαω, we have
∣∣∣〈u · ∇ω, e2τΛ

1/s
ω〉
∣∣∣ ≤ Cτ

α
‖eτΛ

1/s
ω‖L2‖Λ1/2seτΛ

1/s
ω‖2L2 , (3.4)

for some dimensional constantC > 0.
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The proof of bound (3.4) is the same as the proof of estimate (4.4) below, which is in turn given in the
Appendix. Therefore, by (3.3) and (3.4), if we choseτ that satisfies

τ̇ +
Cτ

α
‖eτΛ

1/s
ω‖L2 = 0, (3.5)

then we have
1

2

d

dt
‖ω‖2Xs,τ

+
ν

1 + α2
‖ω‖2Xs,τ

≤ 0,

and hence

‖eτ(t)Λ
1/s
ω(t)‖L2 ≤ ‖eτ0Λ

1/s
ω0‖L2e−γt, (3.6)

where we have denotedγ = ν/(2 + 2α2). The above estimate and condition (3.5) show that

τ(t) ≥ τ0e
−C

α
‖eτ0Λ

1/s
ω0‖L2

∫ t
0 e−γsds ≥ τ0e

−C(2+2α2)‖eτ0Λ
1/s

ω0‖L2/(να), (3.7)

which concludes the proof of the theorem. The abovea priori estimates are made rigorous using a classical
Fourier-Galerkin approximating sequence. We omit furtherdetails. �

3.2. The case α small. The lower bound (3.1) on the radius of Gevrey-class regularity converges to0 as
α→ 0. In this section we give a new estimate onτ(t), in the case whenα is small.

Theorem 3.3. Fix ν > 0, 0 ≤ α < 1, and assume thatcurlu0 ∈ D(∆eτ0Λ
1/s

), for somes ≥ 1, andτ0 > 0.
Then there exists a unique global in time Gevrey-classs solutionu(t) to (1.1)–(1.3), such that for allt ≥ 0

we haveu(t) ∈ D(eτ(t)Λ
1/s

), and moreover we have the lower bound

τ(t) ≥
τ0

1 + C0τ0
, (3.8)

whereC0 = C0(ν, ‖u0‖H3 , ‖Λeτ0Λ
1/s

curlu0‖L2 , ‖eτΛ
1/s

curl∆u0‖L2) is given explicitly in(3.24).

Proof of Theorem3.3. For simplicity of the presentation, we give the proof in the cases = 1. Taking the
L2-inner product of (1.1) with −e2τΛ curl∆u, we obtain

1

2

d

dt

(
‖ΛeτΛ curlu‖2L2 + α2‖eτΛ curl∆u‖2L2

)
+ ν‖eτΛ curl∆u‖2L2

− τ̇
(
‖Λ3/2eτΛ curlu‖2L2 + α2‖Λ1/2eτΛ curl∆u‖2L2

)
≤ T1 + T2, (3.9)

where

T1 = α2
∣∣〈eτΛ ((u · ∇)∆ curlu) , eτΛ∆curlu〉

∣∣ , (3.10)

and

T2 =
∣∣〈ΛeτΛ ((u · ∇) curl u) ,ΛeτΛ curlu〉

∣∣ . (3.11)

The upper bounds forT1 andT2 are given in the following lemma.

Lemma 3.4. Letν, τ > 0, 0 ≤ α < 1, andu be such thatcurlu ∈ D(Λ5/2eτΛ). Then

T1 ≤
ν

4
‖eτΛ curl∆u‖2L2 +

Cα4τ2

ν
‖Λ1/2eτΛ curl∆u‖2L2‖e

τΛ curl∆u‖2L2 , (3.12)

and

T2 ≤
ν

4
‖eτΛ∆curlu‖2L2 +

C

ν3
‖ curlu‖4L2‖Λe

τΛ curlu‖2L2

+
Cτ2

ν
‖Λ3/2eτΛ curlu‖2L2‖Λe

τΛ curlu‖2L2 , (3.13)

whereC > 0 is a universal constant.
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We give the proof of the above lemma in the Appendix (cf. Section 6.1). Assuming that estimates (3.12)
and (3.13) are proven, we obtain from (4.13) that

1

2

d

dt

(
‖ΛeτΛ curlu‖2L2 + α2‖eτΛ curl∆u‖2L2

)
+
ν

2
‖eτΛ curl∆u‖2L2

≤
C

ν3
‖ curlu‖4L2‖Λe

τΛ curlu‖2L2

+

(
τ̇ +

Cτ2

ν
‖ΛeτΛ curlu‖2L2

)
‖Λ3/2eτΛ curlu‖2L2

+ α2

(
τ̇ + α2Cτ

2

ν
‖eτΛ curl∆u‖2L2

)
‖Λ1/2eτΛ curl∆u‖2L2 . (3.14)

Define

Z(t) = ‖ΛeτΛ curlu‖2L2

and

W (t) = ‖eτΛ curl∆u‖2L2 .

We letτ be decreasing fast enough so that

τ̇ (t) +
Cτ(t)2

ν
W (t) = 0, (3.15)

which by the Poincaré inequality implies

τ̇ +
Cτ2

ν
‖ΛeτΛ curlu‖2L2 ≤ 0,

and also

τ̇ + α2Cτ
2

ν
‖eτΛ curl∆u‖2L2 ≤ 0,

since by assumptionα ≤ 1. It follows from (3.14) that for all0 ≤ α ≤ 1 we have

1

2

d

dt
(Z + α2W ) +

ν

2
W ≤

C

ν3
‖ curlu‖4L2Z (3.16)

≤
C

ν3
‖ curlu‖4L2(Z + α2W ). (3.17)

We recall thatω = curl(I − α2∆)u solves the equation

∂tω + νRαω + (u · ∇)ω = 0 (3.18)

which by the classical energy estimates implies

1

2

d

dt
‖ω(t)‖2L2 +

ν

1 + α2
‖ω(t)‖2L2 ≤ 0 (3.19)

and therefore

‖ω(t)‖2L2 ≤ ‖ω0‖
2
L2e

−2γt (3.20)

whereγ = ν/(2 + 2α2). Using that0 ≤ α < 1 and

‖ω‖2L2 = ‖ curl u‖2L2 + 2α2‖∆u‖2L2 + α4‖ curl∆u‖2L2 (3.21)

we obtain the exponential decay rate

‖ curlu(t)‖L2 ≤ C‖u0‖H3e−γt. (3.22)
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Combining (3.17) and (3.22), and usingα ≤ 1, we get

Z(t) ≤ (Z(0) + α2W (0))e
C
ν3

∫ t
0
‖ curl u(s)‖4

L2 ds

≤ (Z(0) + α2W (0))e
C

4γν
‖u0‖4

H3 ≤ (Z(0) +W (0))e
C
ν4

M4
0 , (3.23)

where we have denotedM0 = ‖u0‖H3 . Plugging the above bound in (3.16) and integrating in time, we
obtain

Z(t) + α2W (t) +
ν

2

∫ t

0
W (s) ds

≤ (Z(0) +W (0))

(
1 +

C

ν3
eCM4

0 /ν
4

∫ t

0
‖ curlu(s)‖4L2 ds

)

≤ (Z(0) +W (0))

(
1

ν2
+
CM4

0

ν6
eCM4

0/ν
4

)
ν2 = C0ν

2, (3.24)

whereC0 = C0(ν, ‖u0‖H3 , Z(0),W (0)) > 0 is a constant depending on the data. Thus, by the construction
of τ in (3.15) and the above estimate, by possibly enlargingC0, we have the lower bound

τ(t) =

(
1

τ0
+
C

ν

∫ t

0
W (s) ds

)−1

≥
τ0

1 + τ0C0
, (3.25)

thereby proving (3.8). We note that this lower bound is independent oft ≥ 0, and0 ≤ α ≤ 1. This concludes
thea priori estimates needed to prove Theorem3.3. The formal construction of the real-analytic solution is
standard and we omit details. The proof of the theorem in the cases > 1 follows mutatis mutandis. �

3.3. Convergence to the Navier-Stokes equations as α → 0. In this section we compare in an analytic
norm the solutions of the second-grade fluids equations withthose of the corresponding Navier-Stokes
equations, in the limit asα goes to zero. The fact that the analyticity radius for the solutions of the second-
grade fluids is bounded from bellow by a positive constant, for all positive time, will play a fundamental
role. We considera > 0 andu0 such thateaΛu0 ∈ H3(T2). We recall that the Navier-Stokes equations

∂tu− ν∆u+ curlu× u+∇p = 0

div u = 0 (3.26)

u|t=0 = u0,

have a unique global regular solution whenu0 ∈ L2(T2). Moreover, this solution is analytic for everyt > 0,
and ifeδΛu0 ∈ H3 one can prove thateδΛu(t) ∈ H3 for all t > 0 (for example, one can use the same proof
as in the one in Section5). Letuα denote the solution of the second-grade fluids equations. Thenz = uα−u
is divergence free, satisfies

∂t(z − α2∆z)− ν∆z + curl z × uα + curlu× z +∇(pα − p)

= α2∂t∆u+ α2 curl∆uα × uα,

and the initial condition isz(·, 0) = 0. The following product Sobolev estimate (see [11]) will prove to be
very useful

‖eδΛ(ab)‖Hs1+s2−1(T2) ≤ ‖eδΛa‖Hs1 (T2)‖e
δΛb‖Hs2 (T2), (3.27)

wheres1+s2 > 0, s1 < 1, s2 < 1. Applying eδΛ with 0 < δ < a fixed but small enough (given for example
by (3.25)) to the equation, denoting byzδ(t) = eδΛz(t), and considering theL2(T2) energy estimates, using
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(3.27), the Young inequality, and the classical Sobolev inequalities, we obtain the following estimate

1

2

d

dt
(‖zδ‖2L2 + α2‖∇zδ‖2L2) + ν‖∇zδ‖2L2

≤
Cα4

ν
‖∂t∇u

δ‖2L2 +
C

ν
‖uδα‖

2

H
1
2
‖zδ‖2

H
1
2
+

ν

50
‖∇zδ‖2L2

+ α2‖ curl∆uδα‖L2‖uδα‖H
1
2
‖zδ‖

H
1
2
+ ‖ curl uδ‖L2‖zδ‖2

H
1
2

≤
Cα4

ν
‖∂t∇u

δ‖2L2 +
C

ν
‖uδα‖L2‖∇uδα‖L2‖zδ‖L2‖∇zδ‖L2 +

ν

50
‖∇zδ‖2L2

+ α2‖ curl∆uδα‖L2‖uδα‖
1
2

L2‖∇u
δ
α‖

1
2

L2‖z
δ‖

1
2

L2‖∇z
δ‖

1
2

L2

+ ‖uδ‖H1‖zδ‖L2‖∇zδ‖L2

≤
Cα4

ν
‖∂t∇u

δ‖2L2 +
ν

4
‖∇zδ‖2L2 +

C

ν2
‖uδα‖

2
L2‖∇u

δ
α‖

2
L2‖z

δ‖2L2

+
Cα4

ν
‖ curl∆uδα‖

2
L2‖u

δ
α‖L2‖∇uδα‖L2 +

ν

4
‖zδ‖2L2 +

C

ν
‖uδ‖2H1‖z

δ‖2L2 .

From the above estimate and the Poincaré inequality, we deduce that

d

dt
(‖zδ‖2L2 + α2‖∇zδ‖2L2) + γ

(
‖zδ‖2L2 + α2‖∇zδ‖2L2

)

≤

(
C

ν
‖uδ‖2H1 +

C

ν2
‖uδα‖

2
L2‖∇u

δ
α‖

2
L2

)
‖zδ‖2L2

+
Cα4

ν

(
‖∂t∇u

δ‖2L2 + ‖ curl∆uδα‖
2
L2‖u

δ
α‖L2‖∇uδα‖L2

)
,

holds fort > 0, where we letγ = ν/(2 + 2α2) > 0. Integrating this inequality from0 to t and using the
Grönwall inequality, we obtain

‖zδ(t)‖2L2 + α2‖∇zδ(t)‖2L2

≤

∫ t

0

(
C

ν
‖uδ‖2H1 +

C

ν2
‖uδα‖

2
L2‖∇u

δ
α‖

2
L2

)
‖zδ‖2L2 ds

+
Cα4

ν

∫ t

0
eγ(s−t)

(
‖∂t∇u

δ(s)‖2L2 + ‖ curl∆uδα‖
2
L2‖u

δ
α‖L2‖∇uδα‖L2

)
ds.

Using one more time the Grönwall lemma, we deduce from the above estimate that, fort ≥ 0

‖zδ(t)‖2L2 + α2‖∇zδ(t)‖2L2

≤ exp

(∫ t

0

(C
ν
‖uδ‖2H1 +

C

ν2
‖uδα‖

2
L2‖∇u

δ
α‖

2
L2

)
ds

)

×
Cα4

ν

∫ t

0
eγ(s−t)

(
‖∂t∇u

δ(s)‖2L2 + ‖ curl∆uδα‖
2
L2‖u

δ
α‖L2‖∇uδα‖L2

)
ds. (3.28)

We recall the estimate (3.24) onuδα, which gives

‖∆uδα‖
2
L2 + α2‖ curl∆uδα‖

2
L2 + ν

∫ t

0
‖ curl∆uδα‖

2
L2 ≤M0. (3.29)

The equation onuα gives that

∂tuα = (I − α2∆)−1[ν∆uα − P(curl(uα − α2∆uα)× uα)].

Using estimates (3.27), (3.29), and the fact that the operatorα∇(I − α2∆)−1 is uniformly bounded on
L2(T2), we obtain thatα‖∂t∇uδα‖L2 ≤ CM0. Whenα ≤ 1, inequality (3.28) together with the above
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uniform bounds and the corresponding property for the Navier-Stokes equation, namely
∫ t
0 ‖u

δ‖2H1 ≤ M ,
implies that

‖zδ(t)‖2L2 + α‖∇zδ(t)‖2L2 ≤ α2K0e
K
1 , (3.30)

whereK0 andK1 are positive constants depending only on‖eaΛu0‖H3 . Thus, we obtain the convergence
in the analytic norm asα → 0 of the solution of the second-grade fluid to the solutions of Navier-Stokes
equations, with same analytic initial datau0, such thateaΛu0 ∈ H3.

4. THE THREE-DIMENSIONAL CASE

4.1. Global in time results for small initial data. In this section we state our main result in the caseν > 0,
with small initial data: There exists a global in time solution whose Gevrey-class radius is bounded from
below by a positive constant for all time. A similar result for small data is obtained in [41].

Theorem 4.1. Fix ν, α > 0, and assume thatω0 ∈ D(Λ1/2seτ0Λ
1/s

), for somes ≥ 1, andτ0 > 0. There
exists a positive sufficiently large dimensional constantκ, such that if

κ‖ω0‖L2 ≤
να

2(1 + α2)
, (4.1)

then there exists a unique global in time Gevrey-classs solutionω(t) to (2.6)–(2.8), such that for allt ≥ 0

we haveω(t) ∈ D(eτ(t)Λ
1/s

), and moreover we have the lower bound

τ(t) ≥ τ0e
−κ(4+4α2)M0/(να) (4.2)

for all t ≥ 0, whereM0 = ‖eτ0Λ
1/s
ω0‖L2 .

The smallness condition (4.1) ensures that‖ω(t)‖L2 decays exponentially in time, and hence by the
Sobolev and Poincaré inequalities the same decay holds for‖∇u(t)‖L∞ . Therefore, as opposed to the case
of large initial data treated in Section4.2, in this case there is no loss in expressing the radius of Gevrey-
class regularity in terms of the vorticityω(t). It is thus more transparent to prove Theorem4.1by just using
the operatorΛ (cf. [36]), instead of using the operatorsΛm (cf. [32]) which are used to prove Theorem4.3
below.

Proof of Theorem4.1. Similarly to (3.3), we have thea priori estimate

1

2

d

dt
‖eτΛ

1/s
ω‖2L2 +

ν

1 + α2
‖eτΛ

1/s
ω‖2L2

≤ τ̇‖Λ1/2seτΛ
1/s
ω‖2L2 + |(u · ∇ω, e2τΛ

1/s
ω)|+ |(ω · ∇u, e2τΛ

1/s
ω)|. (4.3)

The convection term and the vorticity stretching term are estimated in the following lemma.

Lemma 4.2. There exists a positive dimensional constantC such that forω ∈ Ys,τ , and u = Kα is
divergence-free, we have

|(u · ∇ω, e2τΛ
1/s
ω)| ≤

Cτ

α
‖eτΛ

1/s
ω‖L2‖Λ1/2seτΛ

1/s
ω‖2L2 , (4.4)

and

|(ω · ∇u, e2τΛ
1/s
ω)| ≤

C

α
‖ω‖L2‖eτΛ

1/s
ω‖2L2

+
Cτ

α
‖eτΛ

1/s
ω‖L2‖Λ1/2seτΛ

1/s
ω‖2L2 . (4.5)

The proof of the above lemma is similar to [36, Lemma 8], but for the sake of completeness a sketch is
given in the Appendix (cf. Section6.2).
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The smallness condition (4.1) implies via the Sobolev and Poincaré inequalities that‖∇u0‖L∞ ≤ ν/(2+
2α2), if κ is chosen sufficiently large. Letγ = ν/(2 + 2α2). It follows from standard energy inequalities
that‖ω(t)‖L2 ≤ ‖ω0‖L2e−γt/2 ≤ ‖ω0‖L2 . Combining this estimate with (4.3), (4.4), and (4.5), we obtain

1

2

d

dt
‖eτΛ

1/s
ω‖2L2 + γ‖eτΛ

1/s
ω‖2L2 ≤

(
τ̇ +

Cτ

α
‖eτΛ

1/s
ω‖L2

)
‖Λ1/2seτΛ

1/s
ω‖2L2 , (4.6)

where we have used thatκ was chosen sufficiently large, i.e.,κ ≥ C. The above a-priori estimate gives the
global in time Gevrey-classs solutionω(t) ∈ D(eτ(t)Λ

1/s
), if the radius of Gevrey-class regularityτ(t) is

chosen such that

τ̇ +
Cτ

α
‖eτΛ

1/s
ω‖L2 ≤ 0. (4.7)

Since under this condition we have

‖eτ(t)Λ
1/s
ω(t)‖L2 ≤ ‖eτ0Λ

1/s
ω0‖L2e−γt/2

for all t ≥ 0, it is sufficient to letτ(t) be such thatτ̇ + CM0e
−γt/2τ/α = 0, where we letM0 =

‖eτ0Λ
1/s
ω0‖L2 . We obtain

τ(t) = τ0e
−CM0

∫ t
0 e−γs/2ds/α, (4.8)

and in particular the radius of analyticity does not vanish as t→ ∞, since it is bounded as

τ(t) ≥ τ0e
−2CM0/(γα) = τ0e

−CM0(4+4α2)/(να), (4.9)

for all t ≥ 0, thereby concluding the proof of Theorem4.1. �

4.2. Large initial data. The main theorem of this section deals with the case of large initial data, where
only the local in time existence of solutions is known (cf. [13, 14]). We prove the persistence of Gevrey-class
regularity: as long as the solution exists and does not blow-up in the Sobolev norm, it does not blow-up in
the Gevrey-class norm. Similarly to the Euler equations, the finite time blow-up remains an open problem.

Theorem 4.3. Fix ν, α > 0, and assume thatω0 is of Gevrey-classs, for somes ≥ 1. Then the unique
solutionω(t) ∈ C([0, T ∗);L2(T3)) to (2.6)–(2.8) is of Gevrey-classs for all t < T ∗, whereT ∗ ∈ (0,∞] is
the maximal time of existence of the Sobolev solution. Moreover, the radiusτ(t) of Gevrey-classs regularity
of the solution is bounded from below as

τ(t) ≥
τ0
C0
e−C

∫ t
0 ‖∇u(s)‖L∞ds, (4.10)

whereC > 0 is a dimensional constant, andC0 > 0 has additional explicit dependence on the initial data,
α, andν via (4.24) below.

We note that the radius of Gevrey-class regularity is expressed in terms of‖∇u‖L∞ , as opposed to an
exponential in terms of higher Sobolev norms of the velocity. Hence Theorem4.3 may be viewed as a
blow-up criterion: if the initial data is of Gevrey-classs (its Fourier coefficients decay at the exponential
ratee−τ0|k|1/s), and at timeT∗ the Fourier coefficients of the solutionu(T∗) do not decay sufficiently fast,
then the Sobolev norm of the solution must blow up atT∗.

To prove Theorem4.3, let us first introduce the functional setting. For fixeds ≥ 1, τ ≥ 0, andm ∈
{1, 2, 3}, we define via the Fourier transform the space

D(Λme
τΛ

1/s
m ) =

{
ω ∈ C∞(Td) : divω = 0,

∫

Td

ω = 0,

∥∥∥Λme
τΛ

1/s
m ω

∥∥∥
2

L2
= (2π)d

∑

k∈Zd

|km|2e2τ |km|1/s |ω̂k|
2 <∞

}
,
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whereω̂k is thekth Fourier coefficient ofω, andΛm is the Fourier-multiplier operator with symbol|km|.
Fors, τ as before, also define the normed spacesYs,τ ⊂ Xs,τ by

Xs,τ =
3⋂

m=1

D(Λme
τΛ

1/s
m ), ‖ω‖2Xs,τ

=
3∑

m=1

∥∥∥Λme
τΛ

1/s
m ω

∥∥∥
2

L2
, (4.11)

and

Ys,τ =
3⋂

m=1

D(Λ1+s/2
m eτΛ

1/s
m ), ‖ω‖2Ys,τ

=
3∑

m=1

∥∥∥Λ1+s/2
m eτΛ

1/s
m ω

∥∥∥
2

L2
, (4.12)

It follows from the triangle inequality that ifω ∈ Xs,τ thenω is a function of Gevrey-classs, with radius

proportional toτ (up to a dimensional constant). If instead of theXs,τ norm we use‖ΛeτΛ
1/s
ω‖L2 (cf. [16,

36]), then the lower bound for the radius of Gevrey-class regularity will decay exponentially in‖ω‖H1

(i.e., a higher Sobolev norm of the velocity). It was shown in[32] that using the spacesXs,τ it is possible
give lower bounds onτ that depend algebraically on the higher Sobolev norms ofu, and exponentially on
‖∇u(t)‖L∞ , which in turn gives a better estimate on the analyticity radius.

Proof of Theorem4.3. Assume that the initial datumω0 is of Gevrey-classs, for somes ≥ 1, with ω0 ∈

Ys,τ0, for someτ0 = τ(0) > 0. We take theL2-inner product of (2.6) with Λ2
me

2τ(t)Λ
1/s
m ω(t) and obtain

(∂tω,Λ
2
me

2τΛ
1/s
m ω) + ν(Rαω,Λ

2
me

2τΛ
1/s
m ω)

= −(u · ∇ω,Λ2
me

2τΛ
1/s
m ω) + (ω · ∇u,Λ2

me
2τΛ

1/s
m ω).

For simplicity, we omit thet-dependence ofτ andω. The above implies

(∂tΛme
τΛ

1/s
m ω,Λme

τΛ
1/s
m ω)

− τ̇(Λ1+s/2
m eτΛ

1/s
m ω,Λ1+s/2

m eτΛ
1/s
m ω) + ν(RαΛme

τΛ
1/s
m ω,Λme

τΛ
1/s
m ω)

= −(u · ∇ω,Λ2
me

2τΛ
1/s
m ω) + (ω · ∇u,Λ2

me
2τΛ

1/s
m ω). (4.13)

Note that the Fourier multiplier symbol of the operatorRα is an increasing function of|k| ≥ 1, and therefore
by Plancherel’s thorem and Parseval’s identity we have

(RαΛme
τΛ

1/s
m ω,Λme

τΛ
1/s
m ω) = (2π)3

∑

k∈Z3\{0}

|k|2

1 + α2|k|2
|km|2|ω̂k|

2e2τ |k|
s

≥
(2π)3

1 + α2

∑

k∈Z3\{0}

|km|2|ω̂k|
2e2τ |k|

s
=

1

1 + α2
‖Λme

τΛ
1/s
m ω‖2L2 .

The above estimate combined with (4.13) gives for allm ∈ {1, 2, 3}, thea-priori estimate

1

2

d

dt
‖Λme

τΛ
1/s
m ω‖2L2 +

ν

1 + α2
‖Λme

τΛ
1/s
m ω‖2L2 − τ̇‖Λ1+s/2

m eτΛ
1/s
m ω‖2L2

≤ T1 + T2, (4.14)

where we have denoted

T1 =
∣∣∣(u · ∇ω,Λ2

me
2τΛ

1/s
m ω)

∣∣∣ , andT2 =
∣∣∣(ω · ∇u,Λ2

me
2τΛ

1/s
m ω)

∣∣∣ . (4.15)

The convection termT1, and the vorticity stretching termT2 are estimated using the fact thatdiv u = 0, and
thatu = Kαω.
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Lemma 4.4. For all m ∈ {1, 2, 3} andω ∈ Ys,τ , we have

T1 + T2 ≤ C ‖∇u‖L∞ ‖ω‖2Xs,τ
+
C

α
(1 + τ) ‖ω‖2H1 ‖ω‖Xs,τ

+

(
Cτ ‖∇u‖L∞ +

Cτ2

α
‖ω‖H1 +

Cτ2

α
‖ω‖Xs,τ

)
‖ω‖2Ys,τ

, (4.16)

whereC > 0 is a dimensional constant.

This lemma in the context of the Euler equations was proven byKukavica and Vicol [32, Lemma 2.5],
but for the sake of completeness we sketch the proof in the Appendix (cf. Section6.3). The novelty of
this lemma is that the term‖∇u‖L∞ is paired withτ , while the term‖ω‖H1 is paired withτ2. This gives
the exponential dependence on the gradient norm and the algebraic dependence of the Sobolev norm. By
summing overm = 1, 2, 3 in (4.14), and using (4.16), we have proven thea-priori estimate

1

2

d

dt
‖ω‖2Xs,τ

+
ν

1 + α2
‖ω‖2Xs,τ

≤ C‖∇u‖L∞‖ω‖2Xs,τ
+
C

α
(1 + τ) ‖ω‖2H1 ‖ω‖Xs,τ

+
(
τ̇ + Cτ ‖∇u‖L∞ +

Cτ2

α
‖ω‖H1 +

Cτ2

α
‖ω‖Xs,τ

)
‖ω‖2Ys,τ

. (4.17)

Therefore, if the radius of Gevrey-class regularity is chosen to decay fast enough so that

τ̇ + Cτ ‖∇u‖L∞ +
Cτ2

α
‖ω‖H1 +

Cτ2

α
‖ω‖Xs,τ

≤ 0, (4.18)

then for allν > 0 we have
d

dt
‖ω‖Xs,τ + 2γ‖ω‖Xs,τ ≤ C‖∇u‖L∞‖ω‖Xs,τ +

C

α
(1 + τ0) ‖ω‖

2
H1 , (4.19)

where as beforeγ = ν/(2 + 2α2). Hence by Grönwall’s inequality

‖ω(t)‖Xs,τ(t)
≤M(t)e−2γt

×

(
‖ω0‖Xs,τ0

+
C

α
(1 + τ0)

∫ t

0
‖ω(s)‖2H1e

2γsM(s)−1ds

)
.

where for the sake of compactness we have denoted

M(t) = eC
∫ t
0 ‖∇u(s)‖L∞ds.

Thus it is sufficient to consider the Gevrey-class radiusτ(t) that solves

0 = τ̇(t) + Cτ(t) ‖∇u(t)‖L∞ +
Cτ2(t)

α
‖ω(t)‖H1

+
Cτ2(t)

α
M(t)e−2γt

(
‖ω0‖Xs,τ0

+
C

α
(1 + τ0)

∫ t

0
‖ω(s)‖2H1e

2γsM(s)−1ds

)
(4.20)

The explicit dependence ofτ is hence algebraically on‖ω‖H1 and exponentially on‖∇u‖L∞ via

τ(t) =M(t)−1

(
1

τ0
+
C(1 + τ0)

α2

∫ t

0
e−2γs

∫ s

0
‖ω(s′)‖2H1M(s′)−1e2γs

′

ds′ ds

+
C

α

∫ t

0
‖ω(s)‖H1M(s)−1 + e−2γs‖ω0‖Xs,τ0

ds

)−1

. (4.21)

A more compact lower bound forτ(t) is obtained by noting that ifν ≥ 0 we have

‖ω(t)‖2H1 ≤M(t)e−2γt‖ω0‖
2
H1 (4.22)
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for all t ≥ 0. Assuming (4.22) holds, ifν > 0 (and henceγ > 0), then

τ(t) ≥M(t)−1

(
1

τ0
+ C

‖ω0‖H1 + ‖ω0‖Xs,τ0

αγ
+ C

(1 + τ0)‖ω0‖
2
H1

4α2γ2

)−1

≥
τ0
C0
M(t)−1 (4.23)

where the constantC0 = C0(ν, α, τ0, ω0) is given explicitly by

C0 = 1 +Cτ0(‖ω0‖H1 + ‖ω0‖Xs,τ0
)
1 + α2

να
+ Cτ0(1 + τ0)‖ω0‖

2
H1

(1 + α2)2

ν2α2
. (4.24)

The proof of the theorem is hence complete, modulo the proof of estimate (4.22), which is given in the
Appendix (cf. Section6.4). �

5. APPLICATIONS TO THE DAMPEDEULER EQUATIONS

The initial value problem for thedampedEuler equations in terms of the vorticityω = curlu is

∂tω + νω + (u · ∇)ω = (ω · ∇)u (5.1)

u = Kd ∗ ω (5.2)

ω(0) = ω0 = curlu0, (5.3)

whereKd is theTd-periodic Biot-Savart kernel, andν ≥ 0 is a fixed positive parameter. Hereu andω are
T
d-periodic functions with

∫
Td u = 0, andd = 2, 3. Whend = 2 the vorticity is a scalar and the term on

the right of (5.1) is absent. It is a classical result that ifd = 2, and for anyν ≥ 0, the initial value problem
(5.1)–(5.3) has a global in time smooth solution in the Sobolev spaceHr, with r > 2. We refer the reader
to [10, 38] for details. Moreover, in the cased = 3, andν > 0, if the initial data satisfies‖∇u0‖L∞ < ν/κ
for some sufficiently large positive dimensional constantκ, it follows from standard energy estimates that
(5.1)–(5.3) has a global in time smooth solution inHr, with r > 5/2.

For results concerning the analyticity and Gevrey-class regularity of (5.1)–(5.3), with ν = 0, i.e. the
classical incompressible Euler equations, we refer the reader to [1, 3, 4, 6, 32, 36]. Note that in this case
one can construct explicit solutions (cf. [5, 17]) to (5.1)–(5.3) whose radius of analyticity is decaying for all
time and hence vanishes ast → ∞, both ford = 2 andd = 3. In this section we show that ifν > 0, and
eitherd = 2, or if d = 3 and the initial data is small compared toν, then this is not possible: there exists
a positive constant such that the radius of analyticity of the solution never drops below it. The following is
our main result.

Theorem 5.1. Assume thatν > 0, and that the divergence-freeω0 is of Gevrey-classs, for somes ≥ 1. If
additionally, one of the following conditions is satisfied,

(1) d = 2
(2) d = 3 and‖∇u0‖L∞ ≤ ν/κ, for some sufficiently large positive constantκ,

then there exists a unique global in time Gevrey-classs solution to(5.1)–(5.3), withω(t) ∈ D(Λreτ(t)Λ
1/s

)
for all t ≥ 0, and moreover we have the lower bound

τ(t) ≥ τ(0)e−C̄
∫ t
0
e−νs/2ds ≥ τ(0)e−2C̄/ν , (5.4)

whereC̄ > 0 is a constant depending only onω0.

Proof of Theorem5.1. Let us first treat the case whend = 2, with ν > 0 fixed. Sincediv u = 0, it classically
follows from (5.1) that for all1 ≤ p ≤ ∞ we have

‖ω(t)‖Lp ≤ ‖ω0‖Lpe−νt, (5.5)
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t ≥ 0, and for anyr > 0 the Sobolev energy inequality holds

1

2

d

dt
‖ω(t)‖2Hr + ν‖ω(t)‖2Hr ≤ C‖∇u(t)‖L∞‖ω(t)‖2Hr , (5.6)

whereC is a positive dimensional constant depending onr. Moreover, ifr > 1 the classical potential
estimate(cf. [8, 38])

‖∇u‖L∞ ≤ C‖ω‖L2 + C‖ω‖L∞ + C‖ω‖L∞ log

(
1 +

‖ω‖Hr

‖ω‖L∞

)

combined with (5.5) shows that

‖∇u(t)‖L∞ ≤ Ce−νt

(
‖ω0‖L2 + ‖ω0‖L∞ + ‖ω0‖L∞ log

(
1 +

eνt‖ω(t)‖Hr

‖ω0‖L∞

))

≤ CC0e
−νt
(
2 + log

(
1 + eνt‖ω(t)‖Hr/C0

))
, (5.7)

whereC0 = max{‖ω0‖L2 , ‖ω0‖L∞} > 0. Multiplying (5.6) by eνt and combining with the above estimate
(5.7), upon lettingy(t) = eνt‖ω(t)‖Hr/C0, we obtain

ẏ(t) ≤ Ce−νty(t) (2 + log(1 + y(t))) .

By Grönwall’s inequality, the above implies that there exists a positive constantC1 = C(C0, ν, ‖ω0‖Hr )
such thaty(t) ≤ C1/C0 for all t ≥ 0, and therefore by the definition ofy(t) we have

‖ω(t)‖Hr ≤ C1e
−νt, (5.8)

for all t ≥ 0. Similarly, by (5.7), there existsC2 = C(C0, C1) > 0 such that for allt ≥ 0 we have

‖∇u(t)‖L∞ ≤ C2e
−νt. (5.9)

We now turn to the corresponding Gevrey-class estimates. For r > 5/2, and initial vorticity satisfying
‖Λr+1/2seτ0Λ

1/s
ω0‖L2 <∞, the following estimate can be deduced from [36]

1

2

d

dt
‖ΛreτΛ

1/s
ω‖2L2 + ν‖ΛreτΛ

1/s
ω‖2L2

≤ C‖ω‖3Hr +
(
τ̇ + Cτ‖ΛreτΛ

1/s
ω‖L2

)
‖Λr+1/2seτΛ

1/s
ω‖2L2 . (5.10)

Therefore, ifτ(t) decays fast enough so thatτ̇(t)+Cτ(t)‖Λreτ(t)Λ
1/s
ω(t)‖L2 ≤ 0 for all t ≥ 0, then using

(5.8) we have
1

2

d

dt
‖Λreτ(t)Λ

1/s
ω(t)‖2L2 + ν‖Λreτ(t)Λ

1/s
ω(t)‖2L2 ≤ CC3

1e
−3νt, (5.11)

and hence there exists a positive constantC3 = C(C1, ν, ‖Λ
reτ0Λ

1/s
ω0‖L2) such that for allt ≥ 0

‖Λreτ(t)Λ
1/s
ω(t)‖L2 ≤ C3e

−νt/2. (5.12)

Then it is sufficient to impose

τ̇(t) +CC3τ(t)e
−νt/2 = 0, (5.13)

and hence we obtain the lower bound for the radius of Gevrey-class regularity

τ(t) ≥ τ0e
−CC3

∫ t
0 e−νs/2ds. (5.14)

In particular it follows that for allt ≥ 0,

τ(t) ≥ τ0e
−2CC3/ν , (5.15)

which proves the first part of the theorem. The cased = 3 is treated similarly: the estimate (5.10) holds also
if d = 3, so the missing ingredient is the exponential decay of the Sobolev norms. But as noted earlier, the
smallness condition on‖∇u‖L∞ , not only gives the global in time existence ofHr solutions, but also their
exponential decay. We omit further details. �
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6. APPENDIX

6.1. Proof of Lemma 3.4.

Proof of (3.12). Recall that we need to bound the quantity

T1 = α2
∣∣〈eτΛ ((u · ∇)∆ curlu) , eτΛ∆curlu〉

∣∣

= α2
∣∣〈eτΛ ((u · ∇)∆ curlu) (u · ∇)eτΛ∆curlu, eτΛ∆curlu〉

∣∣ , (6.1)

sincediv u = 0. By Plancherel’s theorem we have

T1 ≤ Cα2
∑

j+k=l; j,k,l 6=0

(
eτ |l| − eτ |k|

)
|ûj · j||k|

2|k × ûk||l|
2|l × ûl|e

τ |l|. (6.2)

Since|eτ |l| − eτ |k|| ≤ Cτ |j|emax{|k|,|l|}, we obtain

T1 ≤ Cα2τ
∑

j+k=l; j,k,l 6=0

|j|2|ûj |e
τ |j||k|2|k × ûk|e

τ |k||l|2|l × ûl|e
τ |l|

≤ Cα2τ
∑

j+k=l; j,k,l 6=0; |l|≥|k|

|j|3/2|ûj|e
τ |j||k|2|k × ûk|e

τ |k||l|5/2|l × ûl|e
τ |l|

≤ Cα2τ‖Λ1/2eτΛ curl∆u‖L2‖eτΛ curl∆u‖L2

∑

j 6=0

|j|3/2|ûj |e
τ |j|

≤ Cα2τ‖Λ1/2eτΛ curl∆u‖L2‖eτΛ curl∆u‖2L2 . (6.3)

In the above we have used the triangle inequality|j|1/2 ≤ |k|1/2 + |l|1/2, the Cauchy-Schwartz inequality,
and the fact that in the two-dimensional case we have

∑
j∈Z2\{0} |j|

−3 < ∞. By estimating the right side
of (6.3) as

ν

4
‖eτΛ curl∆u‖2L2 +

Cα4τ2

ν
‖Λ1/2eτΛ curl∆u‖2L2‖e

τΛ curl∆u‖2L2 ,

the proof of (3.12) is concluded. �

Proof of (3.13). Recall that we need to bound the quantityT2, which can be written as

T2 =
∣∣〈ΛeτΛ ((u · ∇) curlu) ,ΛeτΛ curlu〉 − 〈(u · ∇)ΛeτΛ curlu,ΛeτΛ curlu〉

∣∣ , (6.4)

using the fact thatdiv u = 0. By Plancherel’s theorem we have

T2 ≤ C
∑

j+k=l; j,k,l 6=0

(
|l|eτ |l| − |k|eτ |k|

)
|ûj · j||k × ûk||l||l × ûl|e

τ |l|. (6.5)

By the mean value theorem
∣∣∣|l|eτ |l| − |k|eτ |k|

∣∣∣ ≤ |j|(1 + τ max{|l|, |k|})eτ max{|l|,|k|},

and therefore by the triangle inequality we obtain

T2 ≤ C
∑

j+k=l; j,k,l 6=0

|ûj ||j|
2eτ |j||k × ûk|e

τ |k||l||l × ûl|e
τ |l|

+ Cτ
∑

j+k=l; j,k,l 6=0

|ûj ||j|
2eτ |j|(|j|+ |k|)|k × ûk|e

τ |k||l||l × ûl|e
τ |l|. (6.6)
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By symmetry, and usingex ≤ 1 + xex for all x ≥ 0, we get

T2 ≤ C
∑

j+k=l; j,k,l 6=0; |j|≤|l|

|ûj ||j|e
τ |j||k × ûk||l|

2|l × ûl|e
τ |l|

+ Cτ
∑

j+k=l; j,k,l 6=0; |j|≤|k|,|l|

|ûj ||j|
1/2eτ |j||k|3/2|k × ûk|e

τ |k||l|2|l × ûl|e
τ |l|,

and by the Cauchy-Schwartz inequality, it follows that

T2 ≤ C‖ curlu‖L2‖eτΛ curl∆u‖L2

∑

j 6=0

|ûj ||j|e
τ |j|

+ Cτ‖Λ3/2eτΛ curlu‖L2‖eτΛ curl∆u‖L2

∑

j 6=0

|ûj||j|
1/2eτ |j|. (6.7)

Note that in the two-dimensional case, by the Cauchy-Schwartz inequality we have

∑

j 6=0

|ûj ||j|e
τ |j| =

∑

j 6=0

(
|j||ûj |

1/2eτ |j|/2
)(

|j|3/2|ûj |
1/2eτ |j|/2

)
|j|−3/2

≤ C‖ΛeτΛ curlu‖
1/2
L2 ‖e

τΛ curl∆u‖
1/2
L2 . (6.8)

Similarly,

∑

j 6=0

|j|1/2|ûj |e
τ |j| ≤

∑

j 6=0

|j|2|ûj |e
τ |j||j|−3/2 ≤ C‖ΛeτΛ curlu‖L2 , (6.9)

and therefore

T2 ≤ C‖ curlu‖L2‖ΛeτΛ curlu‖
1/2
L2 ‖e

τΛ curl∆u‖
3/2
L2

+ Cτ‖Λ3/2eτΛ curlu‖L2‖ΛeτΛ curlu‖L2‖eτΛ curl∆u‖L2 . (6.10)

The above estimate and Young’s inequality concludes the proof of (3.13). �

6.2. Proof of Lemma 4.2. For convenience of notation we letζ = 1/s, so thatζ ∈ (0, 1]. Sincediv u = 0,
cf. [32, 36] we have(u · ∇eτΛ

ζ
ω, eτΛ

ζ
ω) = 0, and therefore

T1 =
∣∣∣(u · ∇ω, e2τΛ

ζ
ω)
∣∣∣ =

∣∣∣(u · ∇ω, e2τΛ
ζ
ω)− (u · ∇eτΛ

ζ
ω, eτΛ

ζ
ω)
∣∣∣ .

As in [23, 32, 36], using Plancherel’s theorem we write the above term as

T1 =

∣∣∣∣∣∣
(2π)3i

∑

j+k=l

(ûj · k)(ω̂k · ¯̂ωl)e
τ |l|ζ

(
eτ |l|

ζ
− eτ |k|

ζ
)
∣∣∣∣∣∣
, (6.11)

where the sum is taken over allj, k, l ∈ Z
3 \ {0}. Using the inequalityex − 1 ≤ xex for x ≥ 0, the

mean-value theorem, and the triangle inequality|k + j|ζ ≤ |k|ζ + |j|ζ , we estimate

∣∣∣eτ |l|ζ − eτ |k|
ζ
∣∣∣ ≤ τ

∣∣|l|ζ − |k|ζ
∣∣eτ max{|l|ζ ,|k|ζ} ≤ Cτ

|j|

|k|1−ζ + |l|1−ζ
eτ |j|

ζ
eτ |k|

ζ
,
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for all ζ ∈ (0, 1], whereC > 0 is a dimensional constant. By (6.11), the triangle inequality, and the
Cauchy-Schwartz inequality we obtain

T1 ≤ Cτ
∑

j+k=l

|j||ûj |e
τ |j|ζ |ω̂k|e

τ |k|ζ |ω̂l|e
τ |l|ζ |k|

|k|1−ζ + |l|1−ζ

≤ Cτ
∑

j+k=l

|j||ûj |e
τ |j|ζ |ω̂k|e

τ |k|ζ |ω̂l|e
τ |l|ζ |k|ζ/2

(
|j|ζ/2 + |l|ζ/2

)

≤ Cτ‖eτΛ
ζ
ω‖L2‖Λζ/2eτΛ

ζ
ω‖L2

∑

j 6=0

|j|1+ζ/2|ûj |e
τ |j|ζ

+Cτ‖Λζ/2eτΛ
ζ
ω‖2L2

∑

j 6=0

|j||ûj |e
τ |j|ζ

≤ Cτ‖eτΛ
ζ
ω‖L2‖Λζ/2eτΛ

ζ
ω‖L2‖Λ3+ζ/2eτΛ

ζ
u‖L2

+Cτ‖Λζ/2eτΛ
ζ
ω‖2L2‖Λ

3eτΛ
ζ
u‖L2 (6.12)

In the above we used the fact that
∑

j 6=0, j∈Z3 |j|−4 < ∞. We recall that by (2.12) we haveu = Kαω, and
therefore forα > 0 we have

‖Λ3u‖L2 ≤
C

α
‖ω‖L2 ,

and similarly

‖Λ3eτΛ
ζ
u‖L2 ≤

C

α
‖eτΛ

ζ
ω‖L2 , and‖Λ3+ζ/2eτΛ

ζ
u‖L2 ≤

C

α
‖Λζ/2eτΛ

ζ
ω‖L2 . (6.13)

By combining (6.12) and (6.13) above, we obtain for allτ ≥ 0, andζ ∈ (0, 1] that

T1 ≤
Cτ

α
‖eτΛ

ζ
ω‖L2‖Λζ/2eτΛ

ζ
ω‖2L2 , (6.14)

for some sufficiently large dimensional constantC, thereby proving (4.4), sinceζ = 1/s.
The estimate for the vorticity stretching term is similar. By the triangle inequality and the the estimate

ex ≤ 1 + xex for all x ≥ 0, we have

T2 =
∣∣∣(ω · u, e2τΛ

ζ
ω)
∣∣∣ =

∣∣∣∣∣∣
(2π)3i

∑

j+k=l

(ω̂j · k)(ûk · ¯̂ωl)e
2τ |l|ζ

∣∣∣∣∣∣

≤ C
∑

j+k=l

|ω̂j |e
τ |j|ζ |k||ûk|e

τ |k|ζ |ω̂l|e
τ |l|ζ

≤ C
∑

j+k=l

|ω̂j |e
τ |j|ζ |k||ûk||ω̂l|e

τ |l|ζ

+Cτ
∑

j+k=l

|ω̂j|e
τ |j|ζ |k|1+ζ |ûk|e

τ |k|ζ |ω̂l|e
τ |l|ζ

≤
C

α
‖ω‖L2‖eτΛ

ζ
ω‖2L2 +

Cτ

α
‖eτΛ

ζ
ω‖L2‖Λζ/2eτΛ

ζ
ω‖2L2 . (6.15)

In the last inequality above we also used‖Λ3u‖L2 ≤ C‖ω‖L2/α. This proves (4.5) and hence concludes
the proof of the lemma.

6.3. Proof of Lemma 4.4. For ease of notation we letζ = 1/s, so thatζ ∈ (0, 1]. Following notations in
Section4, for anym ∈ {1, 2, 3}, we need to estimate

T1 = (u · ∇ω,Λ2
me

2τΛζ
mω), (6.16)
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and

T2 = (ω · ∇u,Λ2
me

2τΛζ
mω). (6.17)

First we bound the termT1. Note that sincediv u = 0, we have

(u · ∇Λme
τΛζ

mω,Λme
τΛζ

mω) = 0,

and therefore by Plancherel’s theorem (see also [32]) we obtain

T1 = (u · ∇ω,Λ2
me

2τΛζ
mω)− (u · ∇Λme

τΛζ
mω,Λme

τΛζ
mω)

= i(2π)3
∑

j+k=l

(
|lm|eτ |lm|ζ − |km|eτ |lm|ζ

)
(ûj · k)(ω̂k · ¯̂ωl)|lm|eτ |lm|ζ (6.18)

where the summation is taken over allj, k, l ∈ Z
3 \ {0}. We split the Fourier symbol arising from the

commutator, namely|lm|eτ |lm|ζ − |km|eτ |lm|ζ , in four parts (cf. [32]) by letting

T11 = i(2π)3
∑

j+k=l

(|lm| − |km|) eτ |km|ζ (ûj · k)(ω̂k · ¯̂ωl)|lm|eτ |lm|ζ ,

T12 = i(2π)3
∑

j+k=l

|lm|eτ |km|ζ
(
eτ(|lm|ζ−|km|ζ) − 1− τ(|lm|ζ − |km|ζ)

)

× (ûj · k)(ω̂k · ¯̂ωl)|lm|eτ |lm|ζ ,

T13 = i(2π)3
∑

j+k=l

τ |km|1−ζ/2eτ |km|ζ
(
|lm|ζ − |km|ζ

)

× (ûj · k)(ω̂k · ¯̂ωl)|lm|1+ζ/2eτ |lm|ζ ,

T14 = i(2π)3
∑

j+k=l

τ(|lm| − |km|)eτ |km|ζ
(
|lm|1−ζ/2 − |km|1−ζ/2

)

× (ûj · k)(ω̂k · ¯̂ωl)|lm|1+ζ/2eτ |lm|ζ .

To isolate the term‖∇u‖L∞ arising fromT11 andT13, we need to use the inverse Fourier transform and
hence may not directly bound these two terms in absolute value. The key idea is to use the one-dimensional
identity (cf. [32])

|jm + km| − |km| = jm sgn(km)

+ 2(jm + km) sgn(jm)χ{sgn(km+jm) sgn(km)=−1}, (6.19)

an notice that on the region{sgn(km + jm) sgn(km) = −1}, we have0 ≤ |km| ≤ |jm|. Define the
operatorHm as the fourier multiplier with symbolsgn(km), which is hence bounded onL2. From (6.18),
the definition ofT11, and (6.19), it follows that

T11 = (∂mu · ∇Hme
τΛζ

mω,Λme
τΛζ

mω)

+ i(2π)3
∑

j+k=l;{sgn(km+jm) sgn(km)=−1}

2(jm + km) sgn(jm)eτ |km|ζ

× (ûj · k)(ω̂k · ¯̂ωl)|lm|eτ |lm|ζ . (6.20)

The first term in the above equality is bounded by the Hölder inequality from above by‖∇u‖L∞‖ω‖2Xs,τ
.

The second term is bounded in absolute value, by making use ofeτ |km|ζ ≤ e + τ2|km|2ζeτ |km|ζ , and of
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|km| ≤ |jm|, by the quantity

C‖ω‖H1‖ω‖Xs,τ


∑

j 6=0

|jm||ûj |


+ Cτ2‖ω‖2Ys,τ


∑

j 6=0

|jm|1+ζ |ûj |


 . (6.21)

By the Cauchy-Schwartz inequality, and the fact that2(ζ − 3) < −3 for all ζ ∈ (0, 1], we have
∑

j 6=0

|jm|1+ζ |ûj | =
∑

j 6=0

|jm|1+ζ |j|3−ζ |ûj||j|
−3+ζ

≤ C‖Λ1+ζ
m Λ3−ζu‖L2 ≤ C‖ω‖H1/α, (6.22)

and similarly
∑

j 6=0 |jm||ûj | ≤ C‖ω‖H1/α. Therefore

|T11| ≤ C‖∇u‖L∞‖ω‖2Xs,τ
+
C

α
‖ω‖2H1‖ω‖Xs,τ +

C

α
τ2‖ω‖H1‖ω‖2Ys,τ

. (6.23)

To boundT13 one proceeds exactly the same ifs = ζ = 1. If ζ ∈ (0, 1), (6.19) may not be applied directly
to |lm|ζ − |km|ζ . In this case, by the mean value theorem, for any|lm|, |km| ≥ 0, there existsθm,k,l ∈ (0, 1)
such that

|lm|ζ − |km|ζ = ζ(|lm| − |km|)|km|ζ−1

+ ζ(|lm| − |km|)
(
(θm,k,l|km|+ (1− θm,k,l)|lm|)ζ−1 − |km|ζ−1

)
. (6.24)

We apply (6.19) to the first term in the above identity, while the second termis bounded in absolute value
by ζ(1− ζ)|jm|2|km|ζ−1/min{|km|, |lm|}. The rest of theT13 estimate is the same as the one forT11 and
one similarly obtains

|T13| ≤ C‖∇u‖L∞‖ω‖2Xs,τ
+
C

α
‖ω‖2H1‖ω‖Xs,τ +

C

α
τ2‖ω‖H1‖ω‖2Ys,τ

. (6.25)

The termT12 is estimated in absolute value, by making use of the inequality |ex − 1 − x| ≤ x2e|x|, and of
||lm|ζ − |km|ζ | ≤ C|jm|/(|km|1−ζ + |lm|1−ζ). It follows from the Cauchy-Schwartz inequality applied in
the Fourier variables that

|T12| ≤
C

α
τ2‖ω‖Xs,τ ‖ω‖

2
Ys,τ

. (6.26)

Similarly, by using thatex − 1 ≤ xex for all x ≥ 0, it follows that

|T14| ≤
C

α
τ‖ω‖2H1‖ω‖Xs,τ +

C

α
τ2‖ω‖H1‖ω‖2Ys,τ

. (6.27)

Combining the estimates (6.23), (6.26), (6.25), and (6.27), and using thatτ(t) ≤ τ(0) ≤ C, we obtain the
desired estimate onT1. To estimateT2, we proceed similarly. Here we do not have a commutator, and all
terms are estimated in absolute value in Fourier space. We omit details and refer the interested reader to [32,
Proof of Lemma 2.5].

6.4. Proof of Estimate (4.22). If we take the inner product of (2.6) with ω, and then with∆ω, using the
fact that

∫
u∇ω∆ω = −

∫
∂kui ∂iωj ∂kωj by integrating by parts, we obtain

d

2dt
‖ω‖2H1 +

ν

1 + α2
‖ω‖2H1 ≤ C‖∇u‖L∞‖ω‖2H1 + |〈∂k(ω · ∇u), ∂kω〉|. (6.28)

The proof of (4.22) follows from the above estimate by using Hölder’s inequality and Grönwall’s inequality
and assuming that we have

‖ω · ∇u‖H1 ≤ C‖∇u‖L∞‖ω‖H1 . (6.29)

The latter can be proved by using the Bony’s para-differential calculus [10]. This inequality is equivalent to
proving that

‖∆q(ω · ∇u)‖L2 ≤ C2−qaq‖∇u‖L∞‖ω‖H1 ,
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for some0 ≤ aq ∈ ℓ2(N) with
∑
a2q ≤ 1. Let∆q(ab) = ∆qTab+∆qTba+∆qR(a, b), where

∆qR(a, b) =
∑

q′>q−3

∆q(∆q′a∆̃q′b),

and
∆qTab =

∑

|q−q′|≤4

∆q(Sq′−1b∆q′a).

We have∆q(ω∇u) = ∆qTω∇u+∆qT∇uω +∆qR(∇u, ω). Using a Bernstein type inequality we have

‖Sq′−1ω‖L∞ ≤ C22q
′

‖∇u‖L∞

and also
‖∆q′∇u‖L2 ≤ C2−2q′ sup

|α|=2
‖∆q′∂

α∇u‖L2 ≤ Cα−12−2q‖∆q′ω‖L2 .

So, we obtain
‖∆qTω∇u‖L2 ≤ C‖∇u‖L∞‖∆q′ω‖L2 ≤ C2−qaq‖∇u‖L∞‖ω‖H1 ,

whereaq ∈ ℓ2(N). Similarly, we have

‖∆qT∇uω‖L2 ≤ C‖∇u‖L∞‖∆q′ω‖L2 ≤ C2−qaq‖∇u‖L∞‖ω‖H1 .

Concerning the rest term, we have

‖∆qR(ω,∇u)‖L2 ≤
∑

q′>q−3

‖∆q′ω‖L∞‖∆̃q′∇u‖L2

≤
∑

q′>q−3

‖∇u‖L∞‖∆q′ω‖L2

≤ C
∑

q′>q−3

2−q′aq′‖∇u‖L∞‖ω‖H1 ≤ C2−qãq‖∇u‖L∞‖ω‖H1 (6.30)

whereãq =
∑

q′>q−3 2
−(q′−q)aq′ ∈ ℓ2(N). This completes the proof.
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