ANALYTICITY AND GEVREY-CLASS REGULARITY FOR THE SECOND-GRADE FLUID
EQUATIONS

MARIUS PAICU AND VLAD VICOL

ABSTRACT. We address the global persistence of analyticity and Gesless regularity of solutions to the
two and three-dimensional visco-elastic second-grade éguiations. We obtain an explicit novel lower bound
on the radius of analyticity of the solutions that does natista ast — oo, and which is independent of the
Rivlin-Ericksen material parameter. Applications to the damped incompressible Euler equatiane also
given.
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1. INTRODUCTION

In this paper we address the regularity of an asymptoticaitypoth system arising in non-Newtonian
fluid mechanics, which is not smoothing in finite time, but @dna compact global attractor (in the two-
dimensional case). More precisely, we consider the systensan-elastic second-grade fluids

Or(u — o*Au) — vAu + curl(u — a?Au) x u+ Vp =0, (1.1)
divu =0, (1.2)

wherea > 0 is a material parameter, > 0 is the kinematic viscosity, the vector fieldrepresents the
velocity of the fluid, and the scalar field represents the pressure. Héret) € T x [0,00), where
T? = [0,27]? is thed-dimensional torus, and € {2, 3}. Without loss of generality we consider velocities
that have zero-mean @',

Fluids of second-grade are a particular class of non-NeamoRivlin-Ericksen fluids (cf.48]) of differ-
ential type, and the above precise form has been justifiedunn2nd Fosdick]8]. The local existence
in time, and the uniqueness of strong solutions of the egustfl.1)—(1.3) in a two or three-dimensional
bounded domain with no slip boundary conditions has beemeaddd by Cioranescu and Ouazad]|
Moreover, in the two-dimensional case, they obtained tldajlin time existence of solutions (see also
[13, 24, 25, 29]). Moise, Rosa, and Wand{] have shown later that in two dimensions these equations ad-
mit a compact global attractot,, (see alsoZ, 15, 22, 26, 27, 30, 39, 45, 47]). The question of regularity and
finite-dimensional behavior ofl, was studied by Paicu, Raugel, and Rekalo4§][ where it was shown
that the compact global attractor fid®(T?) is contained in any Sobolev spaég™(T?) provided that the
material coefficienty is small enough, and the forcing term is regular. Moreoveithe global attractor, the
second-grade fluid system can be reduced to a finite-dimaissystem of ordinary differential equations
with an infinite delay. As a consequence, the existence ofit firumber of determining modes for the
equation of fluids of grade two was established4f| [

Note that the equationd (1)—(1.3) essentially differ from ther-Navier-Stokes system (cf. Foias, Holm,
and Titi [20, 21], and references therein). Indeed, the equations gowgthim second-grade fluids do not
contain the regularizing termvA(u — o?Aw) (cf. [21]), but instead—vAw, and thus the problem is not
semi-linear. Moreover, the dissipative terrv A is very weak — it behaves like a damping term — and the
system is not smoothing in finite time, that is, for generitiahdata in 72 the solution does not become
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analytic in finite time (as opposed to parabolic equatid® 23, 44]). The a-models are used, in particular,
as an alternative to the usual Navier-Stokes equationsuimenical modeling of turbulence phenomena in
pipes and channels. Note that the physics underlying trengegrade fluid equations and themodels are
quite different. There are numerous papers devoted to ymamstic behavior of ther-models, including
Camassa-Holm equations;Navier-Stokes equationg;-Bardina equations (cf9[ 20, 21, 34, 37)).

In this paper we characterize the domain of analyticity amdréy-class regularity of solutions to the
second-grade fluids equation, and of the Euler equation avidamping term. We prove that if the initial
datau is of Gevrey-class, with s > 1, then the uniqgue smooth solutiaiit) remains of Gevrey-classfor
all t < T, whereT, € (0, 0] is the maximal time of existence in the Sobolev norm of thetsmh.

The main novelty of our result is thatif > 0, andd = 2, or if d = 3 andug is small in a certain norm
(these are the cases whéh = o), then the lower bound on the radius of analyticity does rastish as
t — oo. Instead, itis bounded from below for all time by a constaat tlepends solely an «, the analytic
norm, and the radius of analyticity of the initial data. Imtmast, we note that the shear flow example of
DiPerna and Majdal[7] (see also%]) may be used to construct explicit solutions to the incagspible two
and three-dimensional Euler equations (in the absenceropiti@) whose radius of analyticity is decaying
for all time, and hence vanishes as+ co. We emphasize that whén< « < 1 our lower bound on the
radius of analyticity is independent of which gives the framework in which we prove the convergesfce
analytic solutions to the second-grade fluid equationsdsdtof the corresponding Navier-Stokes equations,
in the limitaw — 0, whend = 2.

Whend = 3 and the initial data is not small, the solution might a-gridow up in finite time. Here we
obtain an explicit lower bound for the real-analyticity iaslof the solution which for all,, « > 0 decays
algebraically inexp(fot IVu(s)||ze=ds). A similar lower bound on the analyticity radius for solutgto
the incompressible Euler equations was obtained by Kukaard Vicol B2, 33], but with an additional
algebraic decay in time (see alsh B, 4, 6, 36]).

The main results of our paper are given bellow (for the deéding see the following sections).

Theorem 1.1 (The two-dimensional caselix v > 0,0 < «a < 1, and assume that, is of Gevrey-class
for somes > 1, with radiust, > 0. Then there exists a unique global in time Gevrey-ckasslutionu(t)
to (1.1)—1.3), such that for alt > 0 the radius of Gevrey-class regularity is bounded from babgw

70

t) > ———
T( ) — 1+ COTO’
whereC\ > 0 is a constant depending anand the initial data via(3.24) below.

Note that in this case we obtain the global in time controhef tadius of analyticity, which is moreover
uniform in«. This allows us to prove the convergencenas> 0 of the solutions of the second-grade fluid to
solutions of the corresponding Navier-Stokes equatioasalytic norms (cf. SectioB.3). The convergence
of solutions to the Eules equations to the corresponding Euler equations, in the imi> 0, has been
addressed ind7]. The corresponding theorem for the damped Euler equaisogisen in Sectiorb.

Theorem 1.2 (The three-dimensional casdfix v,« > 0, and assume that, is of Gevrey-class;, for
somes > 1. Then the unique solutian(t) € C([0,T*); L*(T?)) to (2.6«(2.8) is of Gevrey-class for all
t < T*, whereT™ € (0,00] is the maximal time of existence of the Sobolev solution.eMar, the radius
7(t) of Gevrey-class regularity of the solution is bounded from below as

(t) > 70 .-Cfy IVu(s)lizoods

Co

whereC' > 0 is a dimensional constant, arid, > 0 has additional explicit dependence on the initial data,
a, andv via (4.24) below.

The proofs of the above theorems are based on the Fouriedbasthod introduced by Foias and Temam
[23] to study the analyticity of the Navier-Stokes equations] avhich was further refined by Levermore
and Oliver B6] for the Euler equations (see alsbl| 19, 32, 34, 35, 42, 43, 44]). We emphasize that the
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technique of analytic estimates may be used to obtain tistemde of global solutions for the Navier-Stokes
equation with some type of large initial datd 2] 46]).

2. PRELIMINARIES

In this section we introduce the notations that are usedugirout the paper. We denote the usual
Lebesgue spaces bi?(T?) = LP, for 1 < p < oco. The L?-inner product is denoted by,-). The
Sobolev space&l”(T¢) = H" of mean-free functionare classically characterized in terms of the Fourier
series

HT(T4) = {v(m) = S GeeT s Ty =Ty, To =0,
kezd
ol = @m)* D Ik okl < oo}
kezd

We letA; > 0 be the first positive eigenvalue of the Stokes operator, vimi¢he periodic setting coincides
with —A [16, 49]. For simplicity we considefl? = [0,27]¢, and hence\; = 1. The Poincaré inequality
then reads|v||;2 < ||[Vvl|/z2 for all v € H'. Throughout the paper we shall denote /byhe operator
(—A)1/2, i.e., the Fourier multiplier operator with symbjdi|. We will denote byC' a generic sufficiently
large positive dimensional constant, which does not depend . Moreover, the curl of a vector field
will be denoted bycurlv =V x v.

2.1. Dyadic decompositions and para-differential calculus. Fix a smooth nonnegative radial functign
with support in the bal{|¢| < 3}, which is identicallyl in {|¢| < 2}, and such that the map— x(|r|) is
non-increasing oveR ;. Let (&) = x(£/2) — x(&). We classically have

D (279 =1 forall ¢eR?\{0}. (2.1)
q€Z
We define the spectral localization operatdrsandS, (¢ € Z) by
Agu:= 27 D)u= Y a(k)ep(27k|)
kezd
and
Squi=x(27"D)u =Y (k) x(27k]).
kezd
We have the following quasi-orthogonality property:
ApAgu=0if |k — ¢ > 2; andAg(Sy—1ulgv) = 0if |k —¢q| > 5. (2.2)
We recall the very useflBernstein inequality

Lemma2l. Letn e N,qge Z,1 < p; < py < o0,andy € C’SO(IR{d). There exists a constant depending
only onn, d andsup ¢ such that

[ D" (279 D)ul| ez < C2%(|9p(277D)ul| r1,
and

C™12% (27 D)ul[ e < sup [|0%p(27D)ullzr: < C2%(|p(277D)ul| o1

|a)=n

wheres = n + d(1/p1 — 1/p2).
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In order to obtain optimal bounds on the nonlinear terms lystesn, we use the paradifferential calculus,

a tool which was introduced by J.-M. Bony ][ More precisely, the product of two functiorfsandg may
be decomposed according to

fa9=Trg+Tof + R(f.9) (2.3)
where the paraproduct operafBiis defined by the formula

Trg:=Y _ SeafAgg,

q
and the remainder operatar, by

q

2.2. Analytic and Gevrey-class norms. Classically, aC>°(T¢) function v is in the Gevrey-classs, for
somes > 0 if there existM, 7 > 0 such that

gL

|07 0(a)| < M,

718l
for all z € T, and all multi-indices? € N3. We will refer tor as theradius of Gevrey-class regularityf
the functionv. Whens = 1 we recover the class of real-analytic functions, andréukus of analyticityr
is (up to a dimensional constant) the radius of convergehtieeoTaylor series at each point. When> 1
the Gevrey-classes consist@f functions which are not analytic. It is however more coneehin PDEs
to use an equivalent characterization, introduced by Fanms Temam 23] to address the analyticity of
solutions of the Navier-Stokes equations. Namely, fosall 1 the Gevrey-class is given by

U rD(AreTAl/S)
>0
for anyr > 0, where

AT ™ w2, = (2m)® S [k[2re2 I 2. (2.4)
kezd
See [16, 19, 23, 31, 32, 33, 36, 44, 49] and references therein for more details on Gevrey-clasyés
emphasize that the radius of analyticity gives an estimatthe minimal scale in the flon2B, 31], and it
also gives the explicit rate of exponential decay of its kuroefficients 23].

2.3. Vorticity Formulation. It is convenient to consider the evolution of the vorticitywhich is defined
as

w = curl(u — a?Au) = (I — o®A) curlu. (2.5)
It follows from (1.1)—(1.2), thatw satisfies the initial value problem
Ow — vAI — 2A)'w+ (u- VIw = (w- V)u, (2.6)
divw = 0, (2.7)
w(0, ) = wo(x) = curl(ug — a®Aug) (2.8)

onT¢ x (0,00). Additionally, if d = 2, w is a scalar, and the right side &f.6) is zero. Denote byR,, the
operator

Ra = (—A)I — ?A)7L. (2.9)

It follows from Plancherel's theorem, that for alle L2 we have

1
T allvllee < Ravllre < —fvllre. (2.10)
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The velocity is obtained from the vorticity by solving thdigtic problem
divu =0, curlu = (I — a2A)_1w,/ u =0, (2.11)
T3
which in turn classically gives that
uw=Kx* (I —a?A) " w=Kyw, (2.12)
whereK is the periodic Biot-Savart kernel. Combined with10), the above implies that

C
lull s < — w2, (2.13)

for some universal constagt > 0. Note that wherv — 0 the above estimate becomes obsolete.

3. THE TWO-DIMENSIONAL CASE

3.1. Thecase « large. In the two-dimensional case, the evolution equatidm)(for w does not include
the termw - Vu, which makes the problem tangible, in analogy to the twoedisional Euler equations.
The main result below gives the global well-posedness aftisols evolving from Gevrey-class data, whose
radius(¢) does not vanish als— oc.

Theorem 3.1. Fix v, > 0, and assume that, € D(eTOAl/S), for somes > 1, andty > 0. Then there
exists a unique global in time Gevrey-classolutionw(t) to (2.6)«2.8), such that for allt > 0 we have

w(t) € D(e"®A*) and moreover we have the lower bound

—Vs (¥2
T(t) > TQE_CMO Jo e/ 20N s /o > TO€—C’(2+2042)M0/(041/)’ (3.1)
1/s . .
whereM, = |eT0A / wol| 72, andC'is a universal constant.

Proof of TheorenB.1 We take thel.?-inner product ob;w + vRaw + (u- V)w = 0 with e2"A""* and obtain
1 d s . K] K] s
5EHETAU WH%2 _ THAl/zseTAl/ WH%2 + (eTAl/ Raw,eTAl/ w>

= —(eTAl/S (u-Vw), eTAl/S(,u). (3.2)

Note that the Fourier multiplier symbol of the operay is an increasing function ¢ok| > 1, and therefore

by Plancherel's theorem and Parseval’s identity we have

|k [?

~ 12 _or|k|Y/s
71_’_042“{:‘2’0.%’ eTH

<eTA1/SRaw,AeTA1/Sw> = (2m)? Z
kez2\{0}

(27’1’)2 ~ k|1/s 1 AL/s
Z |Wl~c|2€2ﬂ| ZWHGT WH%%

2
l+o kez\{0}

>

We therefore have tha priori estimate

1 d ||eTAl/s

- @ A1/2s TA/s
2 di ‘

|eTA1/5

wl[zz — 7l wlze + wlz2

—s|
1+ a2
< |{u- Vuw, e2TA1/Sw>]. (3.3)

The following lemma gives a bound on the convection term errigiht of 3.3) above.
Lemma3.2. Forw e D(Al/QSeTA”S), and divergence free = K,w, we have
S C S S
(- Ve, 220y < =DM ] oAV w2, (3.4)
«

for some dimensional constafit > 0.
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The proof of bound3.4) is the same as the proof of estimatedf below, which is in turn given in the
Appendix. Therefore, by3(3) and 3.4), if we choser that satisfies

Cr s
£ e

(")HL2 - 07 (35)

then we have

1d v
Sl I%.., + WH&)H%{S, <0,
and hence
T 1/s P 1/s _
™A ()2 < [l wol| p2e ™, (3.6)

where we have denoted= v/(2 + 2a2). The above estimate and conditich) show that
7(6) = roe e Cwnllpz Jy e 5 o O 202 0N P2/ (), (3.7)

which concludes the proof of the theorem. The ab@yeiori estimates are made rigorous using a classical
Fourier-Galerkin approximating sequence. We omit furthetails. O

3.2. The case a small. The lower bound {.1) on the radius of Gevrey-class regularity converges &s
a — 0. In this section we give a new estimateoft), in the case when is small.

Theorem 3.3. Fixv > 0,0 < a < 1, and assume thaturl ug € D(AeToAl/s), for somes > 1, andr, > 0.
Then there exists a unique global in time Gevrey-classlutionu(t) to (1.1)—1.3), such that for allt > 0

we haveu(t) € D(e”®A""), and moreover we have the lower bound

0
T > .
(t) - 1—1—00’70’ (3 8)

whereCy = Cy(v, |[ug || g3, [ Ae™N* curlug| 12, [|e™"* curl Augl|;2) is given explicitly in(3.24).

Proof of Theoren8.3. For simplicity of the presentation, we give the proof in tleses = 1. Taking the
L?-inner product of {.1) with —e2™ curl Au, we obtain

1d

2 (JJAe™ curlul|2, + a?||e™ curl Aul|3,) + v|[e™ curl Aul[7,
-7 <|]A3/2eTA curlul|2, + a?||AY2e™ curl AuH%g) <Ty + Ty, (3.9)
where
T = o? ‘(eTA ((u-V)Acurlu),e™A curlu)], (3.10)
and
Ty = ‘(AeTA ((u- V) curlu), Ae™ curl )l . (3.11)
The upper bounds fdf; andTy are given in the following lemma.
Lemma3.4. Lety,7 > 0,0 < o < 1, andu be such thaturlu € D(A%/2e™). Then
Ty < %He curl Au||3, + ——— Ca'r” [AY2e™ curl Au|2, [|e™ curl Aul2,, (3.12)
and
T, < ZH@TAA curlul3, + V—C;H curluHizHAeTA curlul|3,
+ C77-2HA3/267A curlul|2; || Ae™ curl w2, (3.13)

whereC > 0 is a universal constant.
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We give the proof of the above lemma in the Appendix (cf. ®&ddi.1). Assuming that estimate8.(L2)

and @.13 are proven, we obtain from(13) that

1d

T, (|Ae™ curlul|2, + a?||e™ curl Aulf3,) + gHeTA curl Aul2,

c A
< ﬁ” curlu||4L2 ||Ae” curlu||%2

Cr?
+ (7"—1— —THAeTA cur1u|]2L2> HA3/2€TA curluH%Q
v

C 2
+a? <7" + a2—T|]eTA curlAuH2L2> [AY2e™ curl Aul3,.
v

Define
Z(t) = ||Ae™ curlul|7,

and
W(t) =|e™ curl Aul[?,.
We letT be decreasing fast enough so that

2
)+ CTV(” W(t) =0,
which by the Poincaré inequality implies
Cr? 9
T+ —||Ae curlul|7. <0,

and also
C 2
T+ aQ—THeTA curl Aul3, <0,
v

since by assumptioa < 1. It follows from (3.14) that for all0 < o < 1 we have

1d v C
§a(Z + o?W) + §W < —3|| curlul|72Z

g |]cur1uHL2(Z+a2W)
We recall thatv = curl(I — a?A)u solves the equatlon
Ow + VRow + (u - V)w =0
which by the classical energy estimates implies

Sl +
and therefore
(@172 < llwollz2e™"
wherey = v/(2 + 2a2). Using thatd < a < 1 and
leol2> = || eurlul2> + 20%|| A2 + o] curl Aull?
we obtain the exponential decay rate

Feurlu(t)|[re < Clluo|mse™".

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Combining 8.17) and @.22), and usingx < 1, we get

Z(t) < (Z(O) + OZ2W(O))6U% fot ||Cur1u(s)|\12 ds
< (2(0) + W ()t ks < (2(0) + W (0))e T (3.23)

where we have denotetly = ||ug||gs. Plugging the above bound i8.(L6) and integrating in time, we
obtain

Z(t) + a®W (1) + g /t W (s) ds
0

< (@0)+ W) (14 58 [Cemtu(o)Las)

14

4
< (Z(0) + W(0)) (% + C—%eCMé/"“) V2 = Co1?, (3.24)

whereCy = Cy(v, ||uol| g3, Z(0), W (0)) > 0is a constant depending on the data. Thus, by the constnuctio
of 7 in (3.15 and the above estimate, by possibly enlardifagwe have the lower bound

T(t) = i—I—Q/tT/V(S)dS _1>L (3.25)

N 70 v Jo 1+ 7Cy '
thereby proving§.8). We note that this lower bound is independent &f 0, and0 < « < 1. This concludes
thea priori estimates needed to prove Theorgrd The formal construction of the real-analytic solution is
standard and we omit details. The proof of the theorem in&ése<> 1 follows mutatis mutandis g

3.3. Convergence to the Navier-Stokes equations as « — 0. In this section we compare in an analytic
norm the solutions of the second-grade fluids equations thitke of the corresponding Navier-Stokes
equations, in the limit as goes to zero. The fact that the analyticity radius for thetsmhs of the second-
grade fluids is bounded from bellow by a positive constarntafbpositive time, will play a fundamental
role. We considet > 0 andug such thae* uy € H3(T?). We recall that the Navier-Stokes equations

Owu — vAu+curlu X u+Vp =0
divu =0 (3.26)
U‘t:O = Uuo,
have a unique global regular solution whenc L?(T?). Moreover, this solution is analytic for every> 0,
and ife’ uy € H? one can prove that™ u(t) € H? for all t > 0 (for example, one can use the same proof

as in the one in Sectidp). Letu,, denote the solution of the second-grade fluids equatiorsn I b= v, —u
is divergence free, satisfies

O(z — a2Az) —vAz+ curlz X ug + curlu X z + V(py — p)

= 20, Au + o curl Aug X ug,

and the initial condition i(-,0) = 0. The following product Sobolev estimate (sdd]) will prove to be
very useful

€22 (@b) | gros +s2-1(r2) < lle®allgrer () €l oz 72), (3.27)

wheres; +s3 > 0,51 < 1, s < 1. Applying e’® with 0 < § < « fixed but small enough (given for example
by (3.29) to the equation, denoting by (t) = e 2(¢), and considering thé&?(T?) energy estimates, using
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(3.27), the Young inequality, and the classical Sobolev inegjesli we obtain the following estimate
1d
55(\\25\&2 +a?|[ V20| 72) + v V2012

Ca’ 5112 C. 52 5112 v 5112
< THatVU 72 + ;H%HH%HZ HH% + %HVZ 72

6 é 1)
+ o curl A by 1201,y + llcurla?] 2120

§ §
e

Ca* 5 C. s 5 5 5 v 5
< THatVU 172 + ;H%HHHV%HL?HZ l22(IV2°] L2 + %”VZ 172

2 5 513 Sus .53 5|3
+ || curl Aug || 2 [lug || 72 | Vug Il 72 [12°1] 7211 V20 7 2
| 120 22 1V 20| e

Ca* 5 v 5 C. s 5 5
< — 10V l72 + ZIVllLe + 5wl I ValllZal 272

4

Cuo v
+ 7” curl Aud) |72 (|l || 2 | Vud || 12 +

4
From the above estimate and the Poincaré inequality, weadcithat

C
5 5 5
12172 + — I [12° 1 Z2-

d é 1) 6 é
12172 + 1V [72) +(12°172 + V21 72)

c é 9 é 1) 1
< (S0l + IRVl ) 112

Cat
+ —(10:Vul |72 + || curl Aud |7 ud || 2|Vl | 2),

holds fort > 0, where we lety = v/(2 + 2a?) > 0. Integrating this inequality from to ¢ and using the
Gronwall inequality, we obtain

1 1)
POl + 092 1)1
t
c 1) c 1) é 1)
< [ (S1lBn+ SRV ) 1015 ds

Ca' " p 52 52 1.6 5
t—— ¢ 10:Vu’ (s)[|72 + [| curl Aug |72 lug [ 22| Vg 2 ) ds.
0

Using one more time the Gronwall lemma, we deduce from tlow@bstimate that, far> 0
12° ()72 + 2(IV22(8)]175

t
s Chs 5
<o ([ (Sl + SRV 32 ds

4 t
X C—a/ et (IIatVu5(8)lli2 + ||CurlAuglli2Hugllmllwillm>dS- (3.28)
0

1%

We recall the estimate3(24) on,, which gives
t
AU |25 + a2|| curl Aud||2, + V/ || curl Aud||2, < M. (3.29)
0

The equation on,, gives that
Optg = (I — > A) HrvAug — Pleurl(ug — a?Aug) x ug)].

Using estimates3(27), (3.29), and the fact that the operataivV(I — o?A)~! is uniformly bounded on
L*(T?), we obtain that||0;Vul |2 < CM,. Whena < 1, inequality 3.28 together with the above
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uniform bounds and the corresponding property for the Neviekes equation, namelfg \|u‘5||fHl < M,
implies that

122 (@)1 + | V2 (1)172 < o Koer', (3.30)
where K, and K are positive constants depending only|@fi’*w|| ;5. Thus, we obtain the convergence

in the analytic norm asc — 0 of the solution of the second-grade fluid to the solutions a¥ilr-Stokes
equations, with same analytic initial datg, such thae® ug € H?3.

4. THE THREEDIMENSIONAL CASE

4.1. Global in timeresultsfor small initial data. In this section we state our main result in the case 0,
with small initial data: There exists a global in time sabutiwhose Gevrey-class radius is bounded from
below by a positive constant for all time. A similar result &nall data is obtained ir[].

Theorem 4.1. Fix v,a > 0, and assume that, € D(Al/QSeToA”S), for somes > 1, andr, > 0. There
exists a positive sufficiently large dimensional constarguch that if

fllwollps < 5 (4.1)

(1+0a?)’
then there exists a unique global in time Gevrey-classlutionw(t) to (2.6)—«2.8), such that for allt > 0
we haveu(t) € D(eT(t)A”S), and moreover we have the lower bound

T(t) > Toe—n(4+4a2)Mo/(Va) (4.2)

forall ¢ > 0, whereM, = HeToAl/stHLg.

The smallness conditio (1) ensures thatw(t)||;2 decays exponentially in time, and hence by the
Sobolev and Poincaré inequalities the same decay holdSffo(t)| .. Therefore, as opposed to the case
of large initial data treated in Sectigh2, in this case there is no loss in expressing the radius ofe&yevr
class regularity in terms of the vorticity(¢). It is thus more transparent to prove Theorérby just using
the operator\ (cf. [36]), instead of using the operatofs,, (cf. [32]) which are used to prove Theorefr3
below.

Proof of Theoreml.1. Similarly to (3.3), we have the priori estimate

1d FAL/s 2 14 AL/
L e 2+ =L

< 7‘\|A1/2367A1/5w||%2 + |(u - Vw, eQTAl/Sw)| + |(w - Vu, ezTAl/Sw)|. (4.3)

wl|Z

The convection term and the vorticity stretching term atgreged in the following lemma.

Lemma 4.2. There exists a positive dimensional constahsuch that forw € Y, ,, andu = K, is
divergence-free, we have

Cr
o

/s /s /s
(- Ve, 2™ 70| < S| W) o | AV w12, (4.4)

and
1/s C 1/s
|(w - Vu, ™ w)‘SEHWHBHeTA w||7»

Crt s s
=™ wllpa |AY2 N W . (4.5)
The proof of the above lemma is similar 86 Lemma 8], but for the sake of completeness a sketch is

given in the Appendix (cf. Sectio.2).
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The smallness conditior (1) implies via the Sobolev and Poincaré inequalities that |z~ < v/(2+
2a2), if x is chosen sufficiently large. Let = v/(2 + 2a?). It follows from standard energy inequalities

that||w(t)|| 12 < ||woll 2672 < ||lwo|| 2. Combining this estimate with(3), (4.4), and ¢@.5), we obtain
1 d 1/s 1/s . CT 1/s 1/s
S le™ e+ alle™ wllfe < (74 =Dl wllpe ) IAYVE A e, (46)

where we have used thatwas chosen sufficiently large, i.e.,> C. The above a-priori estimate gives the

global in time Gevrey-class solutionw(t) € D(eT(t)Al/s), if the radius of Gevrey-class regularityt) is
chosen such that

. CT s
T+ FHGTAU (,UHL2 S 0 (47)
Since under this condition we have
le™ @A (@) 2 < [l wp|p2e

for all t > 0, it is sufficient to letr(t) be such that- + C'Moe ""/?>7/a = 0, where we letM, =
e o]l 2. We obtain

T(t) _ Toe—CMo fg e*"/Sﬂds/Oc’ (48)
and in particular the radius of analyticity does not vanish a oo, since it is bounded as

T(t) > 7_06—2CM0/(704) _ TOE—CJ\/[O(4+4CY2)/(I/Q)’ (49)
for all ¢ > 0, thereby concluding the proof of Theorefr O

4.2. Largeinitial data. The main theorem of this section deals with the case of larglidata, where
only the local in time existence of solutions is known (&f3,[14]). We prove the persistence of Gevrey-class
regularity: as long as the solution exists and does not hipwa the Sobolev norm, it does not blow-up in
the Gevrey-class norm. Similarly to the Euler equations fithite time blow-up remains an open problem.

Theorem 4.3. Fix v, > 0, and assume that, is of Gevrey-class, for somes > 1. Then the unique
solutionw(t) € C([0,T*); L*(T?)) to (2.6)—2.9) is of Gevrey-class for all t < T*, whereT* € (0, o0] is
the maximal time of existence of the Sobolev solution. Merethe radiusr(t) of Gevrey-class regularity
of the solution is bounded from below as

Co
whereC' > 0 is a dimensional constant, ardy > 0 has additional explicit dependence on the initial data,
«, andv via (4.24) below.

We note that the radius of Gevrey-class regularity is exyg@sn terms of|Vu| .-, as opposed to an
exponential in terms of higher Sobolev norms of the velociience Theorem.3 may be viewed as a
blow-up criterion: if the initial data is of Gevrey-clasg(its Fourier coefficients decay at the exponential
ratee~™/*"*) and at timeT, the Fourier coefficients of the solutiar{Z}.) do not decay sufficiently fast,
then the Sobolev norm of the solution must blow ufi’at

To prove Theoren.3, let us first introduce the functional setting. For fixed> 1, 7 > 0, andm €
{1,2,3}, we define via the Fourier transform the space

D(Ape™n) = {w € C®(TY) : divw = o,/ w=0,
']Td

1/s 2 S~
[Amer ¥, = @m)® 3 PPl P < oo
kezd
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where@, is the k' Fourier coefficient ofv, andA,, is the Fourier-multiplier operator with symbt,,,|.
Fors, 7 as before, also define the normed spacesC X, - by

3
ﬂ A e7'A1/s ’ ”XST Z HA e7'A1/s 227 (411)
m=1
and
3
— ﬂ D(A;n+s/2eq—/\%5)7 HYST Z HA1+3/2 TAl/a H2L27 (412)

It follows from the triangle inequality that ib € X ; thenw is a function of Gevrey-class, with radius

proportional tor (up to a dimensional constant). If instead of tkig. norm we USEHAeTAl/Sw||L2 (cf. [16,
36]), then the lower bound for the radius of Gevrey-class ragtyl will decay exponentially in|w|| ;1
(i.e., a higher Sobolev norm of the velocity). It was showifdg| that using the spaceX; - it is possible
give lower bounds orr that depend algebraically on the higher Sobolev norms, @ind exponentially on
|Vu(t)| L, which in turn gives a better estimate on the analyticityiusd

Proof of Theoreml.3. Assume that the initial datuma, is of Gevrey-class, for somes > 1, with wy €
Y, -, for somery = 7(0) > 0. We take thel2-inner product of 2.6) with A2 2 (A (1) and obtain
sTO m
dw, A2 eZTA%Sw + U(Raw, A2 eZTA%Sw
( ) m b m
/s 1/s
—(u- Vw,Afne%Ai" W) + (w - Vau, A2 e2™An ),

For simplicity, we omit thet—dependence af andw. The above implies

1/s

(Ot A e’ Al W ,Age™m w)
— %(A}nﬂﬂeﬂmsw, A}rjs/zeﬂ\%sw) + V(RaAmeTA%Sw AmeTA’%Sw)
—(u- Vw,Agne%A’l?{Sw) + (w - Vu, A2 e¥An 2 w). (4.13)

Note that the Fourier multiplier symbol of the operay is an increasing function ¢ok| > 1, and therefore
by Plancherel’s thorem and Parseval’s identity we have

m Al/S |k|2 ~ T|k|®
(RaAme™ “w, Ape w) = (27m)? Z W’km‘2lwk’2€2 1
keZ3\ {0}
(27T)3 - 1 7_Al/s
> 2 S P = A w2
keZ3\{0}

The above estimate combined with 13 gives for allm € {1, 2, 3}, thea-priori estimate

1 d . . 1/s
th”Ame m wHLz + 1+a 2HAm€ m (,u”2 THA;"S/2€ Am wH%g
< T1 + Tg, (414)
where we have denoted
1/s /s
T = |(u- Ve, A2 2" )| | andTy = ( w -V, A2, 2™ )| (4.15)

The convection terriy, and the vorticity stretching terff, are estimated using the fact thiat « = 0, and
thatu = KC,w.
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Lemma4.4. Forall m € {1,2,3} andw € Y, -, we have

C
2 2
T+ 13 < C Vull e follk,, + =0+ 7) [l llwlx,

Cr2 Cr2 9
+(OrI9ull + T el + ol ) Bl (@16
whereC > 0 is a dimensional constant.

This lemma in the context of the Euler equations was proveKutkavica and Vicol B2, Lemma 2.5],
but for the sake of completeness we sketch the proof in theeAgip (cf. Section6.3). The novelty of
this lemma is that the teriVu|| .~ is paired withr, while the term||w|| ;1 is paired withr2. This gives
the exponential dependence on the gradient norm and theralgelependence of the Sobolev norm. By
summing overn = 1,2, 3 in (4.14), and using4.16), we have proven tha-priori estimate

1d

v 2
Sl + T=glwlik..

¢ 2
< OVl olx, . + =0 +7) [l wllx. .

Cr? Cr?
+ (74 07Vl oo + = ollgp + —— [l . ) ol .- (4.17)
Therefore, if the radius of Gevrey-class regularlty is et decay fast enough so that
Cr? Cr?
T+ O7[IVullpoo + ——=llwllgn + = lwllx, , <0, (4.18)
then for allv > 0 we have
d C
slwlx., +2vlwllx... < CIVulrellwlx, . + —(1+ ) ol (4.19)

where as before = /(2 + 2a2). Hence by Gronwall’s inequality
lw(®)llx, .y < M(t)e"

C t _
(ol + S0+ m) [ o) e ar()1as).
0

where for the sake of compactness we have denoted
M(t) = € Jo IVul®)llzoeds

Thus it is sufficient to consider the Gevrey-class radi(ts that solves
CT2(t)
—= [ @)l

_ C ! _
MO (el + S04 70) [ oM as)  (420)
0

The explicit dependence ofis hence algebraically dfw|| ;1 and exponentially ofiVu|| L Vvia

T<t>=M<t>—1<i+M / / () 122 M (') 162 d! ds

To o?

0=7(t) +C7(t) [[Vu(t)| g +
CT2(t)
+ T

~1
C [t _ o
+5/ ()l M (s) ™" + €72 |wol x, ., d8> - (4.21)
0

A more compact lower bound fof(¢) is obtained by noting that if > 0 we have
lo@®)lF < ME)e™" woll 7 (4.22)
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forall t > 0. Assuming 4.22) holds, ifv > 0 (and hencey > 0), then
1 lwolla + llwollx. ., o

_ (1 + 70)llwol 7
ﬂﬂzM@1<%+C - +C m%2H>

.
> 0

M(t)~1 (4.23)

where the constartty = Cy(v, «, 79, wp) is given explicitly by

1+ a? 1+ a?)?
Co =1+ Cm(llolls + ool ) e + Ot + el S5 (829
The proof of the theorem is hence complete, modulo the prbestmate 4.22), which is given in the
Appendix (cf. Sectiorb.4). O
5. APPLICATIONS TO THE DAMPEDEULER EQUATIONS
The initial value problem for thdampedeuler equations in terms of the vorticity = curl u is

Ow+rvw+ (u-Viw= (w-V)u (5.1)

u=Kg*w (5.2)

w(0) = wp = curluyg, (5.3)

where K is the T¢-periodic Biot-Savart kernel, and > 0 is a fixed positive parameter. Heeandw are
T9-periodic functions witthd u = 0, andd = 2,3. Whend = 2 the vorticity is a scalar and the term on
the right of 6.1) is absent. It is a classical result thatli= 2, and for anyv > 0, the initial value problem
(5.1)—(5.3) has a global in time smooth solution in the Sobolev spd€ewith » > 2. We refer the reader
to [10, 38] for details. Moreover, in the casé= 3, andv > 0, if the initial data satisfie§Vug ||z~ < v/k

for some sulfficiently large positive dimensional constanit follows from standard energy estimates that
(5.1)—(5.3) has a global in time smooth solution K", with » > 5/2.

For results concerning the analyticity and Gevrey-clagsilegity of (5.1)—(5.3), with v = 0, i.e. the
classical incompressible Euler equations, we refer théeret [L, 3, 4, 6, 32, 36. Note that in this case
one can construct explicit solutions (c3, [L7]) to (5.1)—(5.3) whose radius of analyticity is decaying for all
time and hence vanishes @as+ ~o, both ford = 2 andd = 3. In this section we show that if > 0, and
eitherd = 2, or if d = 3 and the initial data is small comparedupthen this is not possible: there exists
a positive constant such that the radius of analyticity efgblution never drops below it. The following is
our main result.

Theorem 5.1. Assume that > 0, and that the divergence-freg, is of Gevrey-class, for somes > 1. If
additionally, one of the following conditions is satisfied,

(1) d=2
(2) d =3 and||Vugl||z~ < v/k, for some sufficiently large positive constant

then there exists a unique global in time Gevrey-classlution to(5.1)<(5.3), withw(t) € D(ATe™®AY*)
for all t > 0, and moreover we have the lower bound

7(t) > 7(0)eCloe " 2ds > 7(0)e=20/v, (5.4)
whereC > 0 is a constant depending only an.

Proof of Theorenb.1 Let usfirsttreat the case whén= 2, with v > 0 fixed. Sincelivu = 0, it classically
follows from (5.1) that for all1 < p < oo we have

lw(®)|lr < llwollzre™", (5.5)
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t > 0, and for anyr > 0 the Sobolev energy inequality holds

1d
55Hw(t)\|%r +ulw®)|Fr < CVut)l=lw®)F, (5.6)
whereC' is a positive dimensional constant dependingronMoreover, ifr > 1 the classical potential

estimate(cf. §, 39))

w r
IVullzee < Cllwllzs + Cllwllze + Cllw]lze» log (1 " |‘||w\|||fw>

combined with §.5) shows that
. e’tlw(t)|| g
I9u®)= < e (Jlolle + ool + ol tog (1+ 20 )
< CCoe " (24 log (1 + e ||w(t) || /Co)) , (5.7)
whereCy = max{||wo||z2, [|wol|z=} > 0. Multiplying (5.6) by ¢* and combining with the above estimate
(5.7), upon lettingy(t) = e"!||w(t)|| g+ /Co, we obtain
§(t) < Ce™y(t) (2 + log(1 +y(t))) -

By Gronwall's inequality, the above implies that therestxia positive constardt; = C(C, v, ||wol|ar)
such thaty(t) < C;/C for all t > 0, and therefore by the definition gft) we have

lw(®)||ar < Cre™™, (5.8)
for all t > 0. Similarly, by 6.7), there exist&”y = C'(Cy, C7) > 0 such that for alt > 0 we have
IVu(t)l|z~ < Coe™. (5.9)

We now turn to the corresponding Gevrey-class estimates.r Fe 5/2, and initial vorticity satisfying
|[ATH1/25eT0A 011y < o0, the following estimate can be deduced frada][
1d

/s /s
5NN Wl +w AT ),

< Clwlr + (+ + 0¢||A7"eTA”“’w||L2) [ATH/25eTAYS )12, (5.10)

Therefore, ifr(t) decays fast enough so thit) + CT(t)|]A7"eT(t)A1/Sw(t)|]Lz < Oforallt > 0, then using
(5.8) we have

S IATETON )2, 4 AT O ), < CCRe, (5.11)
and hence there exists a positive constént= C(C1, v, |]A7"e70A1/Sw0HL2) such that for alt > 0
IA7eTON o (t)| 2 < Cae™ /2, (5.12)
Then it is sufficient to impose
#(t) + CCsr(t)e "% = 0, (5.13)
and hence we obtain the lower bound for the radius of Geviassaeegularity
T(t) > ’7‘06_003 Jo eﬁsmds. (5.14)

In particular it follows that for alt > 0,
7(t) > Toe 20/, (5.15)

which proves the first part of the theorem. The cése 3 is treated similarly: the estimat®.(L0) holds also

if d = 3, so the missing ingredient is the exponential decay of tHske norms. But as noted earlier, the
smallness condition ojiVu|| .-, not only gives the global in time existencef solutions, but also their
exponential decay. We omit further details. O
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6. APPENDIX
6.1. Proof of Lemma 3.4.

Proof of (3.12). Recall that we need to bound the quantity

T, = o? |(eTA (u-V)Acurlu),e™A curlu)|

=a? !(eTA ((u- V)Acurlu) (u-V)e™ A curlu, e™ A curlu)] (6.1)
sincediv u = 0. By Plancherel's theorem we have
T <Ca® Y (a‘” - eﬂkl) 1@ - 311121k x aglli[2)0 x dagle™. (6.2)
Sincele™l! — eTlFl| < Cr|j|emax{IkLI} ) we obtain
Ty <CoPr > [Pl e R IR x dle P x dylem!
JHk=L;j,k,1#0
< Ca’r > 191272 (@171 k)2 ke < e ® 15721 % @y |e!
JH+k=l; j.k,1£0; 1| > k|
< Ca’r||AV2e™ curl Aul|2[le™ curl Aullzz Y |22 |a;]em!
J#0
< Ca?7||AY2e™ curl Aul| 2] curl Aul2,. (6.3)

In the above we have used the triangle inequality/? < |k|'/? + |I|'/2, the Cauchy-Schwartz inequality,
a?zj(stg)e fact that in the two-dimensional case we h@é%zz\{o} 5|73 < oo. By estimating the right side
of (6.3) as

Ca*r?

ZH@TA curl Aul3, + A2 curl Aul3, e curl Aul3s,

the proof of 8.12) is concluded. g

Proof of (3.13. Recall that we need to bound the quaniity which can be written as
T = |<AeTA ((u-V)curlu) ,Ae™ curl uy — ((u - V)AeTA curlu, Ae™ curl u)‘ , (6.4)
using the fact thadlivu = 0. By Plancherel’s theorem we have

n<Cc Y (yzyef\” - \kyef\kl) 1@ - 1k x a1l x a@lem! (6.5)
Grk=l; §,k,1£0

By the mean value theorem
[ete = il 1| < 1311+ 7 max{ ], ] }yer m<dHbED,
and therefore by the triangle inequality we obtain

T, < C Z @112k x ag e N |1 x aylem !
J+k=l; j,k,I#0
+Cr Z 11131271 (] + k)| x Tgle™™[1][0 x alem (6.6)
J+Ek=l; j,k,I#0
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By symmetry, and using” < 1 + xe® for all z > 0, we get

T, <C Z @717 ke | |11 x Tyle™
J+k=l; 5,k,170; |51 <|l|
+Cr > 1)1 2™ K32k x a0 x glem!,

J+k=L;3,k,17£0; || <[kl |l

and by the Cauchy-Schwartz inequality, it follows that
Ty < C| curlul|pz[le™ curl Aullr2 Y |a||jle™
370
+ C7|| A% 2™ curlu) 2] €™ curl Aul| 2 Z @]/ 2 e, (6.7)
J#0

Note that in the two-dimensional case, by the Cauchy-Sdavisequality we have

Z |ﬂj||j|€7‘j| _ Z <|j||aj|1/2€‘r|ﬂ/2> <|j|3/2|aj|1/267\j|/2> |j|_3/2

70 70
< C|Ae™ culr1u||1L/22||eTA curlAu||1L/22. (6.8)
Similarly,
D Mg le™ < P laglen V|2 < Ol Ae™ curl w2, (6.9)
j#0 J#0

and therefore

Ty < C|| curlul|p2[|Ae™ curlquL/QZHeTA curl AuHi/QZ

+ C7||A%2e™ curlul| 2 || Ae™ curlul| 2 ||e™ curl Aul| ;2. (6.10)

The above estimate and Young’s inequality concludes thef @fo(3.13). O

6.2. Proof of Lemma4.2. For convenience of notation we I¢t= 1/s, so that{ € (0, 1]. Sincedivu = 0,
cf. [32, 36] we have(u - Ve™ w, ™ w) = 0, and therefore

T) = |(u-Vw, eQTACw)‘ = ‘(u -Vw, eZTACw) —(u- VerMw, eTACw)‘ .
As in [23, 32, 36], using Plancherel’'s theorem we write the above term as
Ty = |(20)% Y (@ - k)@ - ar)e™ (eTl”C - eTIW) , (6.11)
j+k=l

where the sum is taken over gllk,l € Z?\ {0}. Using the inequalitye® — 1 < ze® for x > 0, the
mean-value theorem, and the triangle inequality- j|¢ < |k|¢ + |4|°, we estimate

el 6T\k|<‘ < THUC . ’k‘g“‘ermax{\l\c,m\c} < CTWJN@T'“,
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for all ¢ € (0,1], whereC > 0 is a dimensional constant. B¥.(L1), the triangle inequality, and the
Cauchy-Schwartz inequality we obtain

L

NIPN i<~ k1S~ 11¢
h<Cr Z 111725 ™1 [ €T @y e [R[I=C + i<

j4k=1
B PN A TG 1T .
<Cr 37 jlfalem @il e <2 (151672 4+ 0102
j4k=l
+AC FAS . PTS
< Crlle™ w2 A2 w2 Y 13 a e
J#0
+ OTI| A2 w]|2, 3 |l lenI*
J#0
< O7flem™ wll 2| A2 w1 [ AP 2™ w1
+ Cl|A2e™ w12, | APe™ w2 (6.12)
In the above we used the fact th@j#) jezs l7|=* < oo. We recall that by Z.12 we haveu = K,w, and
therefore fora > 0 we have
C
1A%l 2 < —=lwllz2,
o
and similarly
3 7AC C' rac 34¢/2 A C i h¢/2 A
1A% ull 2 < —fle™ wliz2, and[ATTZe™ ul| 2 < —[IAY "™ w]| 2. (6.13)
By combining 6.12) and 6.13) above, we obtain for alt > 0, and¢ € (0, 1] that
Cr
T < 7HeTA%uHLg||A</2eTA<w\|%2, (6.14)

for some sufficiently large dimensional constéhtthereby proving4.4), since¢ = 1/s.
The estimate for the vorticity stretching term is similary Be triangle inequality and the the estimate
e® <1+ ze® forall z > 0, we have

Ty = ((w.u, ezf“w)( = @)% > @ k) (- G)e
J+k=l

<O N7 (@ylem o g e M gy e

J+k=l
<O N 1ylem [kl @]

J+k=l

+Cr D (@l R e @y
j+k=l
C ¢ Cr ¢ ¢

< EHw”BHeTA w22 + ;Heﬂx w| p2]|AS 2™ wl|2. (6.15)

In the last inequality above we also useiul|;» < C|lw| ;2/a. This proves 4.5 and hence concludes
the proof of the lemma.

6.3. Proof of Lemma 4.4. For ease of notation we lét= 1/s, so that¢ € (0, 1]. Following notations in
Section4, for anym € {1, 2,3}, we need to estimate

T = (u- Vw,AgnezTAfnw), (6.16)



ANALYTICITY FOR THE SECOND-GRADE FLUIDS 19
and
Ty = (w- Vu, Afne%Ag"w). (6.17)
First we bound the terri;. Note that sinceliv v = 0, we have
(u - VAmeTA’C"w, AmeTAg”w) =0,
and therefore by Plancherel’'s theorem (see @&} e obtain
T = (u- Vw,AgnezTAgnw) —(u- VAmeTAgnw,AmeTA%lw)
—i2n)? Y (|zm|eﬂlm\< - |k:m|eT”m‘<> (@ - k)@, - @) [l eI (6.18)
j+k=l

where the summation is taken over alk,l € Z3\ {0}. We split the Fourier symbol arising from the
commutator, namelii,,|e”" | — |k, [e7!=I, in four parts (cf. 82]) by letting

T =i2r)° Y (bl = [kal) €71 (@ - ) @ - D0)llale™
J+k=l

T12 — 1(27{.)3 Z ‘lm’€7—‘km‘< (67(|lm|<_|km‘<) 1 T(‘lm‘c . ‘kmyc))
Jj+k=l

7{lm ¢
9

x (W - k) (@ - ©)|lmle
Tyg = ’i(27T)3 Z 7_|k/,m|1—C/2€7’|km|4 <|lm|C _ |km|C>
j+k=l
X (i1 - k) @ - B) L | 2T
Tia = i) > (|| — k)™l <|lm|1—</2 . |km|1—</2)
jHk=l
X (1 - k)@ - @y)|I |/ 27ImIC
To isolate the term|Vu||z- arising fromT3; and7}3, we need to use the inverse Fourier transform and
hence may not directly bound these two terms in absoluteevdlhe key idea is to use the one-dimensional
identity (cf. [32])
[Jm + km| = k| = jm sgn(km)
+ Q(Jm + km) Sgn(jm)X{sgn(km-i-jm) sgn(km)=—1}> (619)
an notice that on the regiofsgn(k,, + jm)sgn(k,) = —1}, we have0 < |k,| < |jn|. Define the

operatorH,,, as the fourier multiplier with symbaign(k,,), which is hence bounded ai¥. From 6.18),
the definition ofl}1, and 6.19), it follows that

T11 = (Omu - VHmeTA%w,AmeTAgnw)

. . . ¢
+i(2m)? > 2(jm + kin) sg0 ()&
j+k:l§{5gn(km+jm) Sgn(km):_l}

x (1 - k) (@ - D) |l e (6.20)

The first term in the above equality is bounded by the Holdeguality from above bMVuHLoonH%(S i
The second term is bounded in absolute value, by making us&®of® < e + 72|k,,|Xe*= I, and of
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lkm| < |im|, by the quantity

j#0 J#0
By the Cauchy-Schwartz inequality, and the fact th@t— 3) < —3 for all ¢ € (0, 1], we have
D lgml Ol =D LGP P
j#0 j#0
< ClAL A ull e < Cllwlln /o, (6.22)
and similarly . |jim|t;| < Cllwl| g1 /c. Therefore

Cllwl g llwllx, - (ijﬂj + O WY, | Do liml el - (6.21)

C c
T11| < C||Vul e ik, , + EHWH?prHXS,T + 572\\wHH1HwH§/M- (6.23)

To boundT73 one proceeds exactly the same = ¢ = 1. If ¢ € (0,1), (6.19 may not be applied directly
to |1, | — |kim|C. Inthis case, by the mean value theorem, for @y, |k,,,| > 0, there existd,, . ; € (0,1)
such that

‘lm’C - ’kM‘C - C(’lm’ - ‘km’)’km’C_l
| = Vo) (Ot o] + (1= ) o) = el TH). (6:29)

We apply 6.19 to the first term in the above identity, while the second tesrounded in absolute value
by C(1 — O)|gm|*|km| 1/ min{|k,n|, || }. The rest of thel ;3 estimate is the same as the oneTr and
one similarly obtains

C c
| T13| < C||Vul = |wll%, , + EIIWH?pHWIIXS,T + 572\IWI|H1\|WI|§S,T- (6.25)

The termT7, is estimated in absolute value, by making use of the ineguali — 1 — 2| < z2el*l, and of
]S = [km|S] < Climl/(km] = + |lm|~¢). It follows from the Cauchy-Schwartz inequality applied in
the Fourier variables that

C
Th| < ET2IIw\Ixs,TIIw\Ii,T- (6.26)
Similarly, by using that® — 1 < xze” for all x > 0, it follows that
C C
T4l < ETHwH?prHxs,, + ET2HwHH1HwHi,T. (6.27)

Combining the estimate$ 23, (6.26), (6.25, and 6.27), and using that (¢t) < 7(0) < C, we obtain the
desired estimate oi;. To estimatel’,, we proceed similarly. Here we do not have a commutator, #nd a
terms are estimated in absolute value in Fourier space. Vitedetails and refer the interested reader3® |
Proof of Lemma 2.5].

6.4. Proof of Estimate (4.22). If we take the inner product oR2(6) with w, and then withAw, using the
fact that [ uVwAw = — [ dyu; d;w, Opw; by integrating by parts, we obtain
d v
salelin + T azlelin < ClIVulz=lwlin + (0w - Tu), ). (6.28)
The proof of .22 follows from the above estimate by using Holder’s inegyalnd Gronwall’s inequality
and assuming that we have

lw - Vul g < Ol V| pelw] g (6.29)

The latter can be proved by using the Bony’s para-diffeegmtiiculus 10]. This inequality is equivalent to
proving that
[1Aqg(w - Vu)|2 < C27%q||Vul|Loe [|w] g,
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for some0 < aq € 2(N) with Y a2 < 1. Let Ay(ab) = AJTub + A Tya + AyR(a,b), where

AgR(a,b) = Y Ag(Agalyb),

q'>q—3

and

ATb= Y Ay(Sy-1bAga).

lg—q'|<4
We haveA,(wVu) = AT, Vu+ A/Ty,w + AgR(Vu,w). Using a Bernstein type inequality we have
1Sy 1wllzoe < C2°7 ||V Lo

and also

Ay Vul2 < C272 sup |Ayd° Va2 < Ca 272 A w]| 2.
ja|=2

So, we obtain

[18¢TuVul[r2 < C|Vul[e[[Agw| 2 < C27%aq|[Vul[ Lo~ [w]| g1,
wherea, € ¢*(N). Similarly, we have

[AgTvuwlr2 < Cl|Vul| L= [|Agw|[r2 < C27%ag||Vaul| oo [lw]| g1 -
Concerning the rest term, we have

18R, V)2 < D [Agwllzel|Ag Vull 2

q’'>q—3
< 3 IVullz= | Agwl 2
q'>q—3
<C Y 2%ay | Vul e @l < C27%,|[Vull gl (6.30)
q'>q—3

whered, = 3 2-(@~9q, € (>(N). This completes the proof.

q'>q—3
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