
GRADIENT CATASTROPHES AND AN INFINITE HIERARCHY OF HÖLDER
CUSP-SINGULARITIES FOR 1D EULER

ISAAC NEAL, STEVE SHKOLLER, AND VLAD VICOL

ABSTRACT. We establish an infinite hierarchy of finite-time gradient catastrophes for smooth solutions of the 1D Euler
equations of gas dynamics with non-constant entropy. Specifically, for all integers n ≥ 1, we prove that there exist classical
solutions, emanating from smooth, compressive, and non-vacuous initial data, which form a cusp-type gradient singularity in

finite time, in which the gradient of the solution has precisely C
0, 1

2n+1 Hölder-regularity. We show that such Euler solutions
are codimension-(2n− 2) stable in the Sobolev space W 2n+2,∞. December 30, 2024.
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1. INTRODUCTION

One of the central problems in the mathematical theory of the compressible Euler equations, the canonical macro-
scopic model of gas dynamics, is the formation of gradient catastrophes from smooth initial data. The archetypal
singular solution contains a shock, a codimension-1 subset of spacetime across which the solution experiences jump
discontinuities. Compression in the initial conditions ensures that smooth sound waves steepen further and further,
until an infinite gradient is formed along a spacetime set of “first gradient singularities”, which we call the pre-shock.
For localized one-dimensional initial data, the pre-shock is a point in spacetime, along which the gradient of the Eu-
ler solution forms a Hölder-type cusp singularity, in which the state variables remain Hölder continuous, but with
gradients that blow up. It is only after the pre-shock, instantaneously, that the state variables become discontinuous,
resulting in an entropy-producing shock wave. As such, a detailed analysis of the formation of the gradient singularity
at the pre-shock is crucial to our understanding of the transition from smooth to discontinuous solutions of the Euler
system.

The goal of this paper is to prove that the one-dimensional Euler dynamics, starting from from smooth and non-
vacuous initial data, can attain an infinite hierarchy of finite-time cusp-type singularities at the pre-shock, with a Hölder
exponent that is indexed by an integer n ≥ 1. By a slight abuse of terminology, we shall refer to the Euler solution
at the time of the first gradient blowup as the pre-shock solution or simply as the pre-shock. Then, the nth pre-shock
solution in this hierarchy corresponds to a cusp-singularity with Hölder exponent 1/(2n + 1). We analyze the stability
of these singular pre-shock solutions and establish that the set of initial conditions leading to a C0, 1

2n+1 cusp forms
1
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a (2n − 2)-dimensional Banach submanifold of the Sobolev space W 2n+2,∞; in particular, for all n ≥ 2, only finite
codimension stability holds.

The case n = 1, corresponding to the fully-stable C0, 13 pre-shock, has been fully investigated in 1D and under
symmetry in [30, 18, 27, 44, 9, 6, 39], and in multiple space dimensions in [10, 11, 42]. The only prior result concerning
the formation of an unstable pre-shock was obtained in [8], which treats the special case n = 2 in the setting of
azimuthal symmetry, using a modulated stability analysis of an explicit self-similar blowup profile.

Herein, we simultaneously analyze all C0, 1
2n+1 pre-shock solutions in the cusp hierarchy (meaning, all n ≥ 1) with-

out making reference to an self-similar blowup profiles. We achieve this by taking a purely characteristic perspective,
in which the pre-shock singularity is characterized by the narrowing distance between the nearby fast-acoustic char-
acteristics. In this Lagrangian-like characteristic framework, we show that carefully designed differentiated Riemann
variables remain uniformly smooth up to the time of the first gradient singularity. In turn, this allows us to apply the
Implicit Function Theorem in a smooth setting, to precisely characterize the finite-codimension stability. Our method
of analysis for stable and unstable shock formation is sufficiently robust so as to easily generalize to more complicated
hyperbolic systems of conservation laws.

1.1. The 1D Euler equations. The one-dimensional Euler equations are given as the system of conservation laws

∂tρ+ ∂y(ρu) = 0 , (1.1a)

∂t(ρu) + ∂y(ρu
2 + p) = 0 , (1.1b)

∂tE + ∂y((p+ E)u) = 0 , (1.1c)

where the unknowns u, ρ,E, and p are scalar functions defined for (y, t) ∈ T×R. Here u is the fluid velocity, ρ is the
(strictly positive) density, E is the specific total energy, and p is the pressure. To close the system, one introduces an
equation of state that relates the internal energy E − 1

2ρu
2 to p and ρ. For an ideal gas, the equation of state is

p = (γ − 1)(E − 1
2ρu

2), (1.2)

where γ > 1 is a fixed adiabatic exponent.
For the study of shock formation, it is convenient to express the internal energy and pressure as functions of ρ and

the specific entropy S, and to express the Euler evolution in terms of the variables (u, ρ, S). For ideal gases the specific
entropy S is defined by the relation

p = 1
γ ρ

γeS . (1.3)

Introducing the rescaled adiabtic exponent α := γ−1
2 and defining the rescaled sound speed1 by

σ = 1
α

√
∂p
∂ρ = 1

αe
S/2ρα , (1.4)

we can rewrite the one-dimensional Euler equations (1.1)–(1.2) in terms of the variables (u, σ, S) as

∂tσ + u∂yσ + ασ∂yu = 0 , (1.5a)

∂tu+ u∂yu+ ασ∂yσ = α
2γσ

2∂yS , (1.5b)

∂tS + u∂yS = 0 . (1.5c)

Prior to the development of a discontintuous shock wave, the systems (1.1)–(1.2) and (1.3)–(1.5) are equivalent.

1.2. Prior results. The theory of shock wave solutions for systems of hyperbolic conservation laws in one space
dimension is well-developed. For a detailed exposition we refer the reader to [24, 28, 15, 25, 32] and the references
therein. Herein, we shall only summarize results concerning the finite-time formation of gradient singularities for the
Euler equations, from smooth initial conditions.

The fact that smooth Euler solutions generically have a finite lifespan is well-known [41, 29, 26, 31, 35, 43]; such
results rely upon a proof by contradiction argument to show that a finite-time breakdown of the smooth solution occurs.
While such arguments apply in great generality, they generally do not provide detailed information about the emerging
gradient catastrophe. We emphasize that a precise characterization of the first gradient singularity is crucial for solving
the physical shock development problem (see, for example, the discussion in [7]).

Recently, a number of constructive singularity formation results have been established for the Euler equations.
Constructive results show that for an appropriate class of smooth initial data, the very first gradient singularity can

1The actual sound speed in a compressible fluid is c =
√

∂p/∂ρ = eS/2ρα = ασ.
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be precisely described, either as being of shock-type2 or as being an implosion3, and that no other singularity can
occur prior. Since in one space dimension neither implosion4 nor vacuum formation is possible as a first singularity
from smooth solutions [14, 13], we henceforth focus exclusively on constructive proofs of shock-type singularities.
More precisely, when the fundamental variables (u, σ, S) remain Hölder continuous at the time of the first gradient
catastrophe, we refer to the emerging singularity as a pre-shock.

With the exception of the recent papers [8] and [38], all existing constructive blowup results for the Euler system
establish the formation of a C0, 13 Hölder pre-shock as the first singularity. This is because the C0, 13 pre-shock emerges
in a stable fashion from a large open set of smooth and generic initial data. A compendium is listed as follows:

• The paper [30] established both shock formation (as a C0, 13 pre-shock) and shock development for the one-
dimensional p-system. Further refinements were obtained in [18] and [27]. For the three-dimensional Euler equa-
tions in spherical symmetry, [44] used similar ideas to construct solutions which form a C0, 13 cusp (with respect to
the radial coordinate) in finite time, and to show that the resulting weak entropy solution instantaneously develops
a radial shock (jump discontinuity).

• Results similar to [44] have been established in [21], by using techniques originating in mathematical general rel-
ativity. More precisely, [21] appeals to part of the framework developed in [19]. The monograph [19] established
shock formation for multi-dimensional irrotational flows (see also [22]), by studying the second order wave equation
satisfied by the velocity potential. This framework was also used in [20] to analyze the restricted5 shock develop-
ment problem for multi-dimensional irrotational and isentropic flows, and it was used in [33, 34] to prove shock
formation for the two- and three-dimensional Euler equations for initial data close to a plane wave, in the presence
of vorticity and entropy. We emphasize that the shock formation results obtained in [19, 22, 21, 20, 33, 34] do not
provide the precise Hölder regularity of the Euler solution at the time of the very first singularity.

• An alternative approach to shock formation for the Euler equations was proposed in [9]. This approach employs
modulated self-similar analysis6 to establish the stability of an explicit blowup profile. The paper [9] considers the
two-dimensional Euler equations in azimuthal symmetry and establishes the stable formation of a C0, 13 pre-shock
(with respect to the angular variable) in finite time, from generic and smooth initial data. A more refined self-similar
approach was then used in [10, 11] to prove stable gradient singularity formation for the full three-dimensional
Euler system, in the absence of any symmetry assumptions. The papers [10, 11] establish the formation of a stable
point-shock from smooth and generic initial data. Point-shock solutions are multi-dimensional analogues of the
one-dimensional pre-shock solutions; they occur about a distinguished point in space-time and quantify how the
solution forms a C0, 13 cusp singularity in one direction, while remaining smooth in the orthogonal directions. We
emphasize that while proofs of shock formation based on self-similar analysis provide detailed information about
the solution at the point of the very first singularity (the point-shock mentioned earlier), these methods are ill-suited
for resolving the physical shock-development problem.

• In [39] we have revisited the results of [9] from a characteristics-based perspective, adapted to the three distinct
wave-families present in the Euler equations. For the two-dimensional Euler equations in azimuthal symmetry, we
proved the stable formation of C0, 13 cusps in finite time, from smooth and generic initial conditions, in a more
general setting than [9]. A three-wave-family characteristics-based approach, was also used in [6] to resolve the
shock development problem for the two-dimensional Euler equations in azimuthal symmetry. By utilizing the C0, 13

pre-shock as new Cauchy data for the Euler evolution, the paper [6] shows that simultaneously to the discontinuous
shock, a weak-rarefaction and a weak-contact singularity emerge from the pre-shock.

• Recently, pre-shock formation past the time of the first singularity has been established in the context of the maximal
globally hyperbolic development (MGHD) of smooth and generic Cauchy data, for the multi-dimensional Euler

2For shocks the gradients of the fundamental variables (such as velocity and density) blow up, while the fundamental variables themselves
remain bounded, and even retain limited Hölder regularity, which characterizes the type of cusp that forms.

3For implosions the fundamental variables (such as velocity and density) blow up themselves, along with their gradients.
4Smooth solutions that implode at the very first singularity have been recently constructed rigorously in multiple space dimensions, for the

isentropic problem in radial symmetry [36, 37, 5]. These results have been extended perturbatively to hold also outside of symmetry constraints [12],
and they have been used to establish the finite time blowup of vorticity [17, 16] for the multi-dimensional Euler system. We note however that all
known smooth implosions have only been proven to be finite codimensions stable, and that the dimension of the instability remains unquantified.

5In the restricted shock development problem, the flow is artificially constrained to remain irrotational and isentropic even after the shock forms,
which violates the second law of thermodynamics and the Rankine-Hugoniot jump conditions.

6Finite-time blowup results for 2+1-dimensional second-order quasilinear wave equations, which do not satisfy the null-condition (akin to
irrotational isentropic Euler), were previously obtained in [3, 2]. The proofs in [3, 2] use a “blowup technique” which resembles self-similar
analysis, but without the modulation parameters corresponding to unstable modes arising from the Galilean symmetry of the equations.
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equations. In [42], the last two authors of this paper have constructed a fundamental piece of the boundary of the
MGHD, which is necessary for the local shock development problem. Specifically, [42] used a precise geometric
analysis of fast-acoustic characteristic surfaces and a new type of differentiated Riemann variables to smoothly
evolve the Euler solution up to the future temporal boundary of the MGHD, which is a singular hypersurface in
spacetime containing the union of three sets: (i) a codimension-2 set of first singularities all of which are C0, 13 pre-
shocks; (ii) a codimension-1 hypersurface emanating from the pre-shock set in the downstream direction, on which
the Euler solution experiences a continuum of gradient catastrophes; and (iii) a codimension-1 Cauchy horizon
emanating upstream from the pre-shock set, which the Euler solution cannot reach. We also mention the preprint [1]
which evolves the Euler solution up to a portion of the boundary of the MGHD, containing only the sets in (i) and
(ii) above, but not the Cauchy horizon. We note that the proof framework employed in this manuscript closely
resembles the one in [42], except that, in this case, we are not confronted with the geometric complexities inherent
in multiple space dimensions.
To reiterate, every constructive singularity formation result cited in the list above demonstrates the formation of a

stable C0, 13 cusp as the initial gradient singularity of a smooth Euler evolution. So far, only two the papers [8] and [38]
have established the formation of gradient singularity which is not a C0, 13 cusp:
• For the compressible Euler equations in one space dimension, in [38] we have exhibited an open set of initial data,

such that the classical solution of (1.5) forms a C0,α pre-shock as a first singularity, for any α ∈ [1/2, 1). Note that
these pre-shock singularities correspond to Hölder exponents strictly larger than 1/3. Moreover, their formation is
stable with respect to small perturbations of the initial data in the topology of C1, 1−α

α −δ , for any small δ > 0. We
emphasize however that these exotic cusps (with Hölder exponent larger that 1/3) do not arise from smooth initial
conditions; in fact, such initial data cannot lie in C2,0.

• For smooth initial conditions, the only paper which constructed a non-C0, 13 pre-shock for the Euler equations is [8].
The authors of [8] have used modulated self-similar stability analysis of an explicit blowup profile to construct
solutions of the two-dimensional isentropic Euler equations in azimuthal symmetry, which form a C0, 15 cusp as
a first singularity, and have proven that such a solution is codimension-2 stable with respect to C8 perturbations.
The paper [8] builds on the self-similar analysis developed in [9], and uses information about the explicit smooth
unstable blowup profiles for the 1D Burgers equation (see also [23] and the discussion in § 2 below).7 The result
in [8] corresponds to the special case n = 2 and S0 ≡ 0 in our main result, Theorem 1.1 below. We emphasize
that the proof presented in this manuscript is fundamentally different than the one in [8]: instead of modulated
self-similar stability analysis, we appeal to the analysis of differentiated Riemann-type variables in the coordinates
of the fast-acoustic characteristics. We believe that this perspective is more robust (as seen also in [38, 42]), and
generalizes in a straightforward way to general classes of hyperbolic systems of conservation laws.

1.3. Main results. Our main result concerns the construction and the stability analysis of an infinite hierarchy of pre-
shock solutions which arise as the first gradient singularity for velocity and sound speed in smooth one-dimensional
Euler dynamics. The nth pre-shock in this hierarchy (n ≥ 1 is an integer) corresponds to a C0, 1

2n+1 cusp-singularity,
and forms from initial data lying on a (2n − 2)-dimensional Banach submanifold of W 2n+2,∞. A precise statement
of our main result is given in Theorem 9.1 below, while an abbreviated statement is given next in Theorem 1.1.

Fix n ≥ 1 an integer. Let us introduce a function w0 : T → R which has 2n + 2 bounded derivatives, whose
derivative w′

0 attains a global minimum at a distinguished point in T, and such that at this global minimum the function
w′

0 exhibits flatness of order 2n, meaning that the functions {∂j
yw

′
0}2n−1

j=1 all vanish here, but ∂2n
y w′

0 does not. Using
the translation invariance of the Euler equations we may assume w.l.o.g. that w′

0 attains its global minimum at y = 0.
Moreover, using the hyperbolic scaling invariance of the Euler equations (see, for example, Section 1.3 in [10]), we
may assume w.l.o.g. that w′

0(0) = −1. The prototypical such function is given as

w′
0(y) = −1 + y2n , for y close to 0 ,

suitably smooth for y away from 0, T-periodic, and with zero mean on T; this last condition ensures that the function
w0(y) = w0(0)+

´ y
0
w′

0(y)dy is T-periodic. The constant w0(0) is chosen such that w0 > 0 uniformly on T, which is

7We mention here also the paper [40], which does not treat the Euler system, but instead considers dispersive and dissipative perturbations of
the Burgers equation such as fractional KdV, fractal Burgers, and the Whitham equation. Theorem 1.1 in [40] shows that for a codimension 2n− 2

subset of H2n+3(T), the aforementioned models form a C
0, 1

2n+1 cusp as the first gradient singularity. As with [8], the proof in [40] is based on
modulation theory, where the well-known smooth self-similar solutions to the inviscid Burgers equation (see [23]) are used as “profiles” in weighted
L2-based stability estimates. The proof approach taken in our paper avoids self-similar analysis, or knowledge of any explicit blowup profiles.
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a “no-vacuum” assumption on the initial data. A precise definition of all permissible functions w0 satisfying the above
properties is given in (8.1) below. We henceforth fix such a function w0.

Theorem 1.1 (Finite codimension-stable shock formation, abbreviated). Let n ≥ 1 be an integer, and fix the
adiabatic exponent γ > 1. Then there exists a codimension (2n − 2) Banach submanifoldMn of (W 2n+2,∞(T))3
which contains the point (u0, σ0, S0) := 1

2 (w0, w0, 0), and an ε0 = ε0(n, γ) > 0 such that for all 0 < ε ≤ ε0 the
following holds. For any initial data (u0, σ0, S0) ∈ Mn ∩ Bε(u0, σ0, S0) (the ball of radius ε is taken with respect
to the topology of W 2n+2,∞(T)), the unique classical solution (u, σ, S) of the one-dimensional Euler equations (1.5)
with initial data (u, σ, S)|t=0 = (u0, σ0, S0) forms a first gradient singularity for u and σ at time T∗ = 2

1+α +Oγ(ε).8

The function S remains C1, 1
2n+1 smooth uniformly up to time T∗. Furthermore, at time T∗ there exists a distinguished

blowup point y∗ ∈ T, such that away from y = y∗, the variables (u, σ, S)(·, T∗) remain W 2n+2,∞ smooth. Finally,
the gradient singularity experienced by the velocity and sound speed correspond to a C0, 1

2n+1 pre-shock, and the
corresponding cusp profile is given by

u(y, T∗) = u(y∗, T∗)− b (y − y∗)
1

2n+1 +Oγ,n(|y − y∗|
2

2n+1 ), (1.6a)

σ(y, T∗) = σ(y∗, T∗)− b (y − y∗)
1

2n+1 +Oγ,n(|y − y∗|
2

2n+1 ), (1.6b)

S(y, T∗) = S(y∗, T∗) + ∂yS(y∗, T∗)(y − y∗) +Oγ,n(ε|y − y∗|1+
1

2n+1 ), (1.6c)

for all y such that |y − y∗|
1

2n+1 ≲ 1 and a constant b with the asymptotic b = (2n+ 1)
1

2n+1 +Oγ,n(ε).

The precise statement of our main result is given in Theorem 9.1 below, where both the assumptions and the
conclusions are stated in terms of the Riemann variables (w, z, k) := (u+ σ, u− σ, S) defined in (3.1). At this stage,
we make a few comments concerning the statement of Theorem 1.1:

(i) In the case n = 1, M1 is a codimension-0 submanifold of (W 4,∞(T))3 containing the point (u0, σ0, S0). A
different way to state the codimension-0 property of M1 is to say that it is an open subset of (W 4,∞(T))3
containing (u0, σ0, S0). In this case the cusp structure described by (1.6) is that of a stable C0, 13 pre-shock,
which recovers the known results (see e.g. [9, 6, 39]). For n ≥ 2,Mn is the graph of a Lipschitz function from
a codimension-(2n− 2) subspace to R2n−2.

(ii) In the case n = 2,M2 is a codimension-2 submanifold of (W 6,∞(T))3 containing the point (u0, σ0, S0), and
the expansion (1.6) describes the cusp structure of a C0, 15 pre-shock. This recovers (with a different proof) the
result in [8], under milder regularity and smallness assumptions on the initial data (e.g. W 6,∞ instead of C8).

(iii) The intuition behind the cusp-expansion (1.6) stems from an exact computation performed on the 1D Burgers
equation (presented in § 2 below) and the transport-structure of the evolution equation satisfied by the Riemann
variables (see § 3.1 below). At this stage we just note that if the initial data of the one-dimensional Euler equation
is precisely the smooth function (u0, σ0, S0) := 1

2 (w0, w0, 0), which corresponds to the limiting case ε → 0

at fixed n ≥ 1, then for all t ∈ (0, T∗) the solution (u, σ, S)(·, t) of (1.5) is given by 1
2 (w,w, 0)(·, t), where

w solves the 1D Burgers equation ∂tw + 1+α
2 w∂yw = 0, with initial data w0. Now since w′

0(y) = −1 + y2n

for y close to 0, and w′
0(y) ≥ −1 + C for y far from 0 (for some C > 0), the 1D Burgers equation develops

a gradient singularity at exactly time T∗ = 2
1+α , at exactly the location y∗ = 2

1+αw0(0), and the Puiseux

expansion w(y, T∗) = w0(0)−2(2n+1)
1

2n+1 (y−y∗)
1

2n+1 +On(|y−y∗|
1

2n+1 ) holds for all y sufficiently close
to y∗. For 1D Burgers these facts were established earlier in [23, Proposition 9] using self-similar techniques.

(iv) If further regularity assumptions are placed on the initial conditions, such as W 2n+2+L,∞ for some L ≥ 1,
then theOγ,n(|y− y∗|

2
2n+1 ) term present in (1.6a)–(1.6b) and theOγ,n(ε|y− y∗|1+

1
2n+1 ) term present in (1.6c)

may be further expanded as (y − y∗)
2

2n+1 , respectively (y − y∗)
1+ 1

2n+1 multiplied by an (L − 1)th order
Taylor polynomial in the variable (y − y∗)

1
2n+1 (a truncated Puiseux series). In fact, our proof (see § 9 and

Appendix A) gives an algorithm for computing the coefficients of this truncated Puiseux series, resulting in
explicit expressions of these coefficients similar to that for b, up to an Oγ,n(ε) correction. To sum up, if the
initial data is assumed to have L more bounded derivatives, then (1.6) may be expanded to L orders higher, with
controlled coefficients and error bounds. For conciseness, in this paper we choose not to pursue these higher
order expansions.

8Here and throughout the paper, the notation A ≲ B is used to say that there exists a constant C > 0, which is independent of γ, n, ε, such that
A ≤ CB. We write A = O(B) when |A| ≲ B. If the implicit constant C in the ≲ symbol also depends on a parameter F , we write A ≲F B,
and respectively A = OF (B). See § 1.5 for details.
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(v) We have chosen to pay great attention to how the parameter n enters the description about the Euler solution
on the pre-shock; this is the main reason for the extended length of the paper. For instance, the estimate for
the blowup time T∗ = 2/(1 + α) + Oγ(ε) is independent of n. A much more subtle and delicate issue is the
description of the parameter b appearing in (1.6) — to leading order in ε it is given by an explicit formula,
(2n + 1)

1
2n+1 . Equally subtle is the description of the range of y (close to y∗) for which (1.6) holds — the

implicit constant in |y − y∗|
1

2n+1 ≲ 1 is independent of n (the precise bound is ≤ 1/C0, where C0 depends only
on the choice of w0). These n-independent bounds are important for Remark 1.2 below.

Remark 1.2 (The Riemann data and the infinitely unstable limit n → ∞). Consider the limit as n → ∞ of
the function En(y) := a − bn(y − y∗)

1
2n+1 , where bn := (2n + 1)

1
2n+1 and a > 0 are constants. In view of

item (v) in the above remarks, the function En precisely matches the cusp expressions (1.6a) and (1.6b) appearing in
Theorem 1.1. While the pointwise limit may be easily computed as limn→∞ En(y) := a − sgn (y − y∗), which we
recognize as the standard Riemann data of 1D gas dynamics (with left state a+1 and right state a− 1), the constraint
|y − y∗|

1
2n+1 ≤ 1/C0 present in (1.6) (see also item (v) above) means that the range of validity of this limit is trivial

(y = y∗). We thus highlight the fact that while formally the Puiseux series expansion at the pre-shock converges to the
Riemann data in the infinitely unstable limit n → ∞, drawing a direct connection between the solutions of 1D Euler
constructed in Theorem 1.1 (as n → ∞) and the solution of the classical Riemann problem for 1D Euler, remains to
date elusive.

1.4. Outline and new ideas. As we have already noted, the proof of Theorem 1.1 relies on the analysis of differ-
entiated Riemann variables in the coordinates of the fast-acoustic characteristics. When coupled to energy estimates
and geometric considerations, this perspective has proven itself to be fundamental in analyzing shock formation for
multi-dimensional Euler in [42]. The proof of Theorem 1.1 proceeds as follows:

• First, we change variables and study the 1D Euler system in differentiated Riemann variables (see § 3.1) which
allows us to include non-trivial entropy evolution without any derivative loss. Then, we change coordinates by
analyzing the system when the functions are composed with the fast acoustic characteristics η of the system (see
§ 4.1). In these new Lagrangian-type coordinates, the dominant Riemann variable is effectively “frozen”, analogous
to how the solution of Burgers equation is frozen along its corresponding characteristics (see § 2). By making this
change to Lagrangian-type coordinates, we are able to reduce the task of controlling the derivatives of the solution
to that of controlling the derivatives of the subdominant Riemann variable, and the entropy (see e.g. § 5.2 and § 5.4).

• Second, we show in § 4 that for a broad class of initial data the solution forms a singularity in finite time, and
that this singularity is characterized by the flow η of the fast acoustic characteristics becoming degenerate; that is
ηx → 0 at a distinguished point in spacetime.

• Third, in § 5 we prove that in Lagrangian coordinates the solution stays as smooth as the initial data, uniformly
up to the time of the first singularity. To do this, we prove novel Lq energy estimates for the time derivatives of the
system which are uniform in 1 < q <∞, and then send q →∞ to obtain L∞ bounds. After we have obtained L∞

bounds on the time derivatives, the fact that the wave speeds are uniformly transverse to one another (since we are
bounded away from vacuum) allows us extract bounds on mixed space-time derivatives from the time derivatives.

• Next, in § 6 we establish stability estimates for the Euler solution with respect to perturbations of the initial data.
For instance, if the initial data for the dominant Riemann variable is given by w0 = w0 + λw̃0, for some parameter
λ ∈ R and with w0, w̃0 fixed, we compute ∂λ of the resulting one-parameter family of solutions and establish
uniform-in-λ bounds. In § 7 we bound the difference of two solutions in terms of the size of the difference of their
initial data in (W 2n+2,∞(T))3.

• After this, in § 8 we use the implicit function theorem to show that for initial data in a given open subset of
(W 2n+2,∞(T))3 there exists a solution (x∗, T∗) of the system

ηx(x∗, T∗) = 0 , ∂xηx(x∗, T∗) = 0 , . . . ∂2n−1
x ηx(x∗, T∗) = 0 ,

if and only if this data lies on a codimension-(2n−2) Banach submanifold of (W 2n+2,∞(T))3. Because this system
has 2n equations and only 2 unknowns, this is precisely what one would expect. For all such data where a solution
(x∗, T∗) exists, the solution is then shown to be unique.

• Finally, in § 9 we invert the fast-acoustic flow map η at the site of the pre-shock using a Puiseux series, to obtain a
description of the solution in the original Eulerian coordinates. Because in coordinates adapted to the fast acoustic
characteristic, the solution remains as smooth as the initial data up to the time of the first gradient blowup, the
regularity of the solution (w, z, k) in Eulerian variables is determined by the regularity of the inverse flow map η−1.
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1.5. Notation. Throughout the paper we shall appeal to the following notational conventions:
• The notation A ≲ B is used to say that there exists a constant C > 0, such that A ≤ CB. Here, the implicit

constant C is assumed to be independent of the parameters α, n, ε, independent of (x, t) ∈ T × R, independent
of the constant C0 ≥ 3 (appearing in (3.6)), and independent of our choice of (w0, z0, k0) ∈ An(ε, C0) (defined
in (3.6)).

• The notation A ≲F B is used to indicate that there exists a constant C = C(F ) > 0, such that A ≤ CB; that is,
the implicit constant depends on the parameter F .

• We write A = O(B) when |A| ≲ B, and A = OF (B) when |A| ≲F B.
• We write “If A ≪ B then X” to mean that there exists a constant C ≥ 1, independent of α, n, ε, x, t, C0 and

independent of our choice of (w0, z0, k0) ∈ An(ε, C0), such that “if C ·A ≤ B, then X is true”.
• If f is a function defined on T× R, and η is a map defined on T× R, we will write “f ◦ η” to denote the function
f ◦η(x, t) := f(η(x, t), t).

• We use the notation 1A to denote the characteristic function of a set A.
• We write ∂yf, ∂xf, ∂tf to denote the partial derivative of a function f with respect to y, x, and t respectively. If
f is a function of (x, t), and β = (βx, βt) is a multi-index, we write ∂βf to denote ∂βx

x ∂βt

t f . There are a few
exceptions where we will use subscript notation to denote derivatives: ηx := ∂xη, ηxt := ∂x∂tη,Σt := ∂tΣ,Σx :=

∂xΣ, (ηxW̊ )t := ∂t(ηxW̊ ), (Σ−1)t := ∂t(Σ
−1), (Σ−1)x := ∂x(Σ

−1). In § 6 we will also use subscript notation to
denote a derivative with respect to a parameter λ introduced in § 6, except when x or t is already being used as a
subscript; so, for example, we will write ∂βK̊λ to mean ∂βx

x ∂βt

t ∂λK̊ but we will write ∂ληx to denote ∂x∂λη.
• We write w′

0, z
′
0, and k′0 to denote the first derivatives of w0, z0, and k0 respectively.

2. INTUITION FROM THE BURGERS EQUATION

This section aims to revisit some well-known aspects of the 1D Burgers equation from a specific perspective that
will inform our proof for the 1D Euler equation. Though the examples presented are not novel, they offer valuable
intuition; moreover, the 1D Burgers equation is embedded in the 1D Euler system. Indeed, upon inspecting (1.5), we
see that if S|t=0 ≡ 0, then S(·, t) ≡ 0 for all times t prior to the first gradient singularity. In this case, the remaining
equations (1.5a)–(1.5b) have a particular solution: if u|t=0 = σ|t=0 and S|t=0 ≡ 0, then the relation u(·, t) ≡ σ(·, t)
holds for all times t prior to the first gradient singularity. Denoting u+ σ = 2u = 2σ by w, we see that in this special
case, (3.2) reduces to:

∂tw + 1+α
2 w∂yw = 0, (2.1)

Rescaling time with t→ 1+α
2 t, this becomes the classical inviscid Burgers equation

∂tw + w∂yw = 0, (2.2)

the archetypal equation for shock formation and development.
Classically, (2.2) is solved by the method of characteristics. If w is a solution of (2.2) on R× [0, T ] and we define

the characteristics η to be the flow of of the scalar field w, namely as the solution of
d
dtη(x, t) = w(η(x, t), t), η(x, 0) = x,

then w must remain constant along the flow lines of η. From this it follows that if w0(x) := w(x, 0) then

η(x, t) = x+ tw0(x). (2.3)

Thus, characteristics are straight lines in spacetime, and the line originating at the spacetime point (x, 0) has slope
w0(x). Conversely, if we are given initial data w0 and we define η via (2.3), then one can construct a unique solution
w via the implicit equation

w(η(x, t), t) = w0(x)

at all points (y, t) such that the equation
(y, t) = (η(x, t), t) (2.4)

has a unique solution x ∈ R. For initial data w0 that is not monotone increasing in x, it is clear that (2.4) will not be
uniquely solvable for all (y, t) ∈ R × [0,∞), resulting in a gradient singularity at some finite time T∗ ∈ (0,∞). In
particular, when w0 ∈ C1

loc(R), the maximal time of existence and uniqueness of the C1 solution w of (2.2) is

T∗ :=

{
− 1

inf w′
0

inf w′
0 < 0 ,

+∞ inf w′
0 ≥ 0 .
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Note that for all prior times 0 ≤ t < T∗ we have

ηx(x, t) = 1 + tw′
0(x) > 0,

and hence η(·, t) : R→ R is a C1 diffeomorphism, but at the point (x∗, T∗) where ηx(x∗, t)→ 0 as t→ T∗, we have
∂yw(η(x∗, t), t) = w′

0(x∗)(ηx(x∗, t))
−1 → −∞. Therefore, the first singularity in a C1 solution of Burgers equation

is characterized by η ceasing to be a C1 diffeomorphism, i.e. the function ηx attaining a zero.
Now suppose that w0 is smooth, w′

0 attains its global minimum at a point x∗, and w′
0(x∗) < 0. Our objective is

to give a precise description of the solution w near the pre-shock (y∗, T∗) = (η(x∗, T∗), T∗). Generically, x∗ is a
non-degenerate local minimum of w′

0, i.e. the second derivative test of calculus applies:

∂xw
′
0(x∗) = 0, and ∂2

xw
′
0(x∗) > 0 .

In this case, from (2.3) we deduce

ηx(x∗, T∗) = 0, ∂xηx(x∗, T∗) = T∗∂xw
′
0(x∗) = 0, and ∂2

xηx(x∗, T∗) = T∗∂
2
xw

′
0(x∗) =: 3!a3 > 0.

Therefore, assuming that w0 ∈ C4, Taylor’s theorem yields

η(x, T∗) = η(x∗, T∗) + a3(x− x∗)
3[1 +O(|x− x∗|)] .

If y = η(x, T∗) and y∗ = η(x∗, T∗), then for y near y∗ we have

x− x∗ =
(
y−y∗
a3

)1/3
+O(|y − y∗|2/3),

and thus

w(y, T∗) = w(η(x, T∗), T∗) = w0(x) = w0(x∗) +
w′

0(x∗)
1! (x− x∗) +O((x− x∗)

2)

= w(y∗, T∗) + w′
0(x∗)

(
y−y∗
a3

)1/3
+O(|y − y∗|2/3). (2.5)

Thus, the Taylor series expansion of the smooth function (w ◦ η)(·, T∗) = w0(·) with respect to x − x∗, becomes a
fractional series expansion of the Hölder continuous function w(·, T∗) with respect to (y−y∗)1/3. Since by assumption
we have that w′

0(x∗) < 0, the expansion (2.5) shows that w(·, T∗) forms a C0, 13 -cusp at (y∗, T∗), resembling −y1/3.
The above described behavior is moreover stable under small W 4,∞ perturbations to w0, because all functions w0

close enough to our original function in W 4,∞ are going to be such that w′
0 attains its minimum at a point nearby x∗,

the minimum will still be negative, and it will still be a non-degenerate critical point of w′
0.

Consider next the case when w′
0 attains its global minimum at a degenerate critical point x∗, and the derivatives of

w′
0 do not vanish to infinite order at x∗. Then, necessarily there would exist some integer n ≥ 2 such that

∂i
xw

′
0(x∗) = 0 for all i ∈ {1, . . . , 2n− 1}, and ∂2n

x w′
0(x∗) > 0 .

The integer n is sometimes referred to as the order of flatness of w′
0 at the critical point x∗. In this case, the same

arguments as before would imply that

x− x∗ =
(
y−y∗
a2n+1

) 1
2n+1 +O(|y − y∗|

2
2n+1 ) ,

where

1 + T∗w
′
0(x∗) = 0 , T∗∂xw

′
0(x∗) = 0 , . . . T∗∂

2n−1
x w′

0(x∗) = 0 , T∗∂
2n
x w′

0(x∗) =: (2n+ 1)!a2n+1 > 0 .

The result is that w(·, T∗) forms a C0, 1
2n+1 -cusp at (y∗, T∗), resembling−y

1
2n+1 . Such a behavior, however, is unstable

under smooth perturbations.
For example, the prototypical function which attains a global minimum at a degenerate critical point x∗, and whose

derivative exhibits flatness of order 2n at x∗, is given by

w0(x) = −x+ 1
2n+1x

2n+1 , (2.6)

for which with x∗ = 0. When n ≥ 2, the C∞-smooth and locally small (take 0 < ε ≤ 1 small) perturbation
w0(x) := w0(x) +

1
3εx

3 represents a function which attains its global minimum at x∗(ε) := 0, but now this global
minimum is non-degenerate since ∂2

xw
′
0(x∗(ε)) = 2ε > 0. A more interesting example is given by the C∞-smooth

and locally small perturbation w0(x) := w0(x)− 1
3εx

3, which attains its global minimum simultaneously at two points
x∗(ε) := ±(ε/n)

1
2n−2 , and each of these global minima are non-degenerate since ∂2

xw
′
0(x∗(ε)) = 2ε(2n − 2) > 0.

These examples provide the simple reason behind the instability of C0, 1
2n+1 -cusp singularities for 1D Burgers.

Next, we discuss the finite codimension stability of C0, 1
2n+1 -cusp singularities for 1D Burgers dynamics, from a

perspective which will turn out to be useful when discussing 1D Euler. Recall the function w0 defined in (2.6), and let
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w be the solution of 1D Burgers (2.2) on R with initial data w0. Since w′
0 has a unique global minimum at x∗ = 0,

and at this point w′
0(0) = −1, the solution w develops a singularity at time T∗ = 1. At the blowup time, we have

η(x, 1) = 1
2n+1x

2n+1 ,

and therefore if y = η(x, 1), so that y∗ = η(x∗, 1) = 0, then

x = ((2n+ 1)y)
1

2n+1 ,

resulting in the precise and global description of the C0, 1
2n+1 -cusp at y = 0:

w(y, 1) = w0(x) = −(2n+ 1)
1

2n+1 y
1

2n+1 + y. (2.7)

The above scenario is in fact stable under suitable perturbations.

Proposition 2.1 (Stability and finite codimension-stability). Let n ≥ 1 be an integer, let w0 be defined as in (2.6), and
define for ε ∈ (0, 1] the ball

Un
ε := {w0 : ∥w0 − w0∥C2n+1 < ε} .

Then there is a codimension-(2n− 2) Banach manifoldMn of initial data in Un
ε such that for all data w0 ∈Mn the

unique solution w has a first singularity at a unique point (y∗, T∗) = (0, 1)+On(ε) and at that point w of (2.2) forms
a cusp resembling (2.7).

Proof. Since ∂2n
x w′

0(x) ≥ (2n)!− ε uniformly in x for all w0 ∈ Un
ε , there is a unique x̊ in R such that ∂2n−1

x w′
0(̊x) =

0, and x̊ satisfies |̊x| ≤ ε
(2n)!−ε . In the case n = 1, x̊ is the unique critical point of w′

0 and is its global minimum. In
the case n ≥ 2, define the function f : Un

ε → R2n−2,

f(w0) :=

 ∂xw
′
0(̊x)
...

∂2n−2
x w′

0(̊x)


If f(w0) = (0, 0 . . . , 0), then Taylor expanding w′

0 about x = x̊ gives us w′
0(x) ≥ w′

0(̊x) + [(2n)!− ε](x− x̊)2n for
all x ∈ R, so x̊ is the unique global minimum of w′

0. If we defineM1 = U1
ε , andMn = {f = 0} for n ≥ 2, then it

is straightforward to show that at time −1/w′
0(̊x) the solution w of (2.2) with initial data w0 ∈ Mn, develops a cusp

resembling −y
1

2n+1 .
When n ≥ 2, we can observe thatMn is a Banach manifold using the Implicit Function Theorem. All w0 ∈ Un

ε

can be decomposed as

w0(x) = w0(x) +
(
λ1

2! x
2 + λ2

3! x
3 + . . .+ λ2n−2

(2n−1)!x
2n−1

)
χ(x) + w̃0(x)

where χ is a C∞ bump function with 1[−1,1] ≤ χ ≤ 1[−3,3], the {λj}2n−2
j=1 are sufficiently small (with respect to ε

and n) real numbers, and w̃0 is a sufficiently small (with respect to ε and n) C2n+1 function satisfying ∂j
xw̃

′
0(0) = 0

for j = 1, . . . , 2n − 2. To see this, simply define λj := ∂j
xw

′
0(0), and then declare w̃0 to be the remainder in the

above formula; since ∂j
xw

′
0(0) = 0 for all j = 1, . . . , 2n − 2, it is clear that w̃0 will then satisfy ∂j

xw̃
′
0(0) = 0 for

j = 1, . . . , 2n − 2. Viewing the critical point x̊ as a function of {λj}2n−2
j=1 and w̃0, and differentiating the expression

∂2n−1
x w′

0(̊x) = 0 respect to λj , taking into account that both w′
0 and x̊ are implicitly functions of λj , and using that

χ′(̊x) = 0, we deduce
∂2n
x w′

0(̊x)
∂x̊
∂λj

= 0 , for all j = 1, . . . , 2n− 2 .

From the positive lower bound ∂2n
x w′

0(̊x) ≥ (2n)! − ε it follows that ∂x̊
∂λj

= 0 for all j = 1, . . . , 2n − 2. Therefore,

writing the ith component of the function f as f i = ∂i
xw

′
0(̊x), and using that ∂x̊

∂λj
= 0, we may similarly obtain

∂fi
∂λj

= ∂i+1
x w′

0(̊x)
∂x̊
∂λj

+ ∂
∂λj

(∑2n−2

k=i

λk

(k−i)! x̊
k−i

)
+ ∂i+1

x w̃′
0(̊x)

∂x̊
∂λj

= x̊j−i

(j−i)!1j≥i ,

for all i, j = 1, . . . , 2n− 2. Since |̊x| ≤ ε
(2n)!−ε , it follows that

Dλf = Id +On(ε)

everywhere in Un
ε . Therefore, for each choice of w̃0 (lying in a sufficiently small ball, of radius related to ε and

n, in C2n+1) there is a unique choice of (λ1, . . . , λ2n−2) such that f(λ1, . . . , λ2n−2, w̃0) = 0, i.e., such that the
corresponding w0 lies inMn. The Implicit Function Theorem yields that his choice of {λj}2n−2

j=1 is given by a C1

function of w̃0 (in the sense of Fréchet derivatives). □
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3. THE DIFFERENTIATED RIEMANN VARIABLES, THE INITIAL DATA, AND A BLOWUP CRITERION

Returning to the 1D Euler equations (1.5), in this section we introduce the classical and the differentiated Riemann-
type variables which are used in our analysis, we precisely characterize the set of initial conditions with which we
work with, and we give a characterization of the time T∗ of the first gradient singularity.

3.1. Classical and differentiated Riemann variables. For many first-order hyperbolic systems in one space dimen-
sion, it can be fruitful to analyze the PDE in terms of Riemann variables, which in a sense diagonalize the system. For
the 1D Euler equations, the Riemann variables w and z are defined as follows:

w := u+ σ , z := u− σ , k := S. (3.1)

Above we have also introduced the notation k for the specific entropy S in order to distinguish the Riemann set of
variables (w, z, k) from the classical ones, (u, σ, S). With respect to the (w, z, k) variables the 1D Euler equations
(1.5) become

∂tw + λ3∂yw = α
2γσ

2∂yk, (3.2a)

∂tz + λ1∂yz = α
2γσ

2∂yk, (3.2b)

∂tk + λ2∂yk = 0, (3.2c)

where

λ1 := u− ασ = 1−α
2 w + 1+α

2 z,

λ2 := u = 1
2w + 1

2z,

λ3 := u+ ασ = 1+α
2 w + 1−α

2 z.

The functions λi are the wave speeds of the system. Most important to us will be λ3 = u+ ασ = u+ c, which is the
fast acoustic wave speed. The fast acoustic characteristics are denoted by η and are as the solutions of the ODE via

∂tη(x, t) = λ3(η(x, t), t), η(x, 0) = 0 . (3.3)

That is, η is the flow of the fast acoustic wave speed.
Because the 1D Euler equations have both Galilean transformations and additions of a constant entropy as symme-

tries, all of the essential dynamics of (1.5) are captured by studying σ, ∂yu, ∂yσ, and ∂yS. Therefore, it makes sense to
study (3.2) in terms of σ, ∂yw, ∂yz, and ∂yk. If one takes ∂y of the system (3.2), and diagonalizes the system (omitting
terms which are quadratic or cubic in ∂yw, ∂yz, and ∂yk), one arrives at the differentiated Riemann variables (ẘ, z̊, k̊),
defined via

ẘ := ∂yw − 1
2γσ∂yk, (3.4a)

z̊ := ∂yz +
1
2γσ∂yk, (3.4b)

k̊ := ∂yk, (3.4c)

and which satisfy the evolution equations

∂tẘ + λ3∂yẘ = −ẘ∂yλ3 +
α
4γσk̊(ẘ + z̊) = −ẘ( 1+α

2 ẘ + 1−α
2 z̊ + α

2γσk̊) +
α
4γσk̊(ẘ + z̊) (3.5a)

∂tz̊ + λ1∂y z̊ = −z̊∂yλ1 − α
4γσk̊(ẘ + z̊) = −z̊( 1−α

2 ẘ + 1+α
2 z̊ − α

2γσk̊)−
α
4γσk̊(ẘ + z̊) (3.5b)

∂t̊k + λ2∂yk̊ = −k̊∂yλ2 = −k̊( 12 ẘ + 1
2 z̊) . (3.5c)

The differentiated Riemann variables will allow us to study the evolution of the system without derivative loss; indeed,
it is evident from (3.5) that these are three coupled transport equations with right hand sides which are polynomial
expressions of the unknowns (see also (4.5) below). The “ring super-index” in the notation of (3.4) is present to signify
that differentiation has taken place; this notation is chosen for consistency with [42].

For the remainder of this paper, we will study the Cauchy problem for the system (3.2) and (3.5). Next, we
describe the initial data for these systems, by specifying the set An(ε, C0) where (w0, z0, k0) lies. The functions
(ẘ0, z̊0, k̊0) := (w′

0 − 1
2γσ0k

′
0, z

′
0 +

1
2γσ0k

′
0, k

′
0) and σ0 = 1

2 (w0 + z0) are then defined as a consequence.
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3.2. Assumptions on the initial data. The domain of our functions will be T×R, where T := R/Z is the torus. We
will use the notation |x − x′| to denote the distance between two points x, x′ on the torus. We will often implicitly
identify the torus with the interval [− 1

2 ,
1
2 ) when describing functions in a neighborhood of the point 0 = 0 + Z ∈ T.

Fix a constant C0 ≥ 3 and an integer n ≥ 1. Assume that the initial data (w0, z0, k0) of (3.2) satisfies
1
2 < σ0 = 1

2 (w0 + z0) < 2, (3.6a)

−1− ε < min
T

w′
0 < −1 + ε, (3.6b)

∥∂i+1
x w0∥L∞

x

i!
< Ci

0(1 + ε) i = 0, . . . , 2n+ 1, (3.6c)

∥∂i+1
x z0∥L∞

x

i!
< Ci

0ε i = 0, . . . , 2n+ 1, (3.6d)

∥∂i+1
x k0∥L∞

x

i!
< Ci

0ε i = 0, . . . , 2n+ 1. (3.6e)

The constraints listed in (3.6a)–(3.6e) define an open set

An(ε, C0) ⊂ (W 2n+2,∞(T))3 . (3.7)

We will show that the solution (w, z, k) emanating from data in this open set all form a gradient singularity at roughly
the same time, and we will prove uniform derivative estimates for all solutions with data in An(ε, C0).

The definition of An(ε, C0) does not require any zeroth order constraints other than (3.6a) because the Euler
equations have Galilean transformations and additions of constant entropy as symmetries (though they are not invariant
under constant perturbations to the mass density). The constraint (3.6b) is not strictly necessary for the formation of
the shock to occur, but is rather used to pin down the blowup time T∗ (see § 3.3 for a definition of T∗); this follows
from the time-rescaling symmetry of the Euler equations. In § 8.4 we will impose additional constraints on the initial
data in order to say more about how the spatial location of the pre-shock is approximately determined by the initial
data; since the Euler equations are invariant under spatial translations, we will not need such specifications until then.

3.3. Local well-posedness and the Eulerian blowup criterion. The Euler equations (1.5) are locally well-posed in
Hs(T) for s > 3

2 . In particular, for u0, σ0, S0 ∈ Hs(T) with σ0 > 0 everywhere, there exists a positive maximal time
of existence T∗ ∈ (0,+∞] such that (1.5) has a unique C1

y,t-smooth solution (u, σ, S) on T× [0, T∗), and furthermore

(u, σ, S) ∈ C([0, T∗); (H
s(T))3) ∩ C1([0, T∗); (H

s−1(T))3).

Additionally, T∗ can only be finite if: (a) the solution (u, σ, S) develops vacuum or implodes in finite time, meaning
that either miny∈T σ(·, t)→ 0 as t→ T∗ or ∥(u, σ, S)(·, t)∥L∞

y
→∞ as t→ T∗; (b) the solutions’ gradients blow up

in finite time, at a non-integrable rate, meaning that it satisfies the Eulerian blowup criterion
ˆ T∗

0

(
∥∂yu(·, t)∥L∞ + ∥∂yσ(·, t)∥L∞ + ∥∂yS(·, t)∥L∞

)
dt = +∞ . (3.8)

These facts follow from the classical local well-posedness theory of symmetrizable quasilinear hyperbolic systems
(see e.g. [25, Chapter V], or [35, Chapter 2]).

For the 1D Euler equations (1.5), it is known that neither vacuum formation nor finite-time implosion is not possible
on T× [0, T∗) (see [14, 13] and Proposition 4.1 for the initial data studied in this paper), for any choice of u0, σ0, S0 ∈
Hs(T) with σ0 > 0 everywhere and s > 3

2 ; using this uniform upper and lower bound on the sound speed, one
can show that (u, σ, S) remain uniformly bounded on T× [0, T∗). That is, option (a) above is not available to the 1D
Euler9 dynamics with smooth and non-vacuous initial conditions. Thus, the Eulerian blowup criterion (3.8) determines
whether a finite-time singularity occurs at a time T∗ <∞.

The Eulerian blowup criterion (3.8) simultaneously serves as a continuation criterion for smooth solutions, and as
a criterion for the propagation of higher regularity. Of relevance to this manuscript is the fact that if the initial data
u0, σ0, S0 ∈ W 2n+2,∞(T) ⊂ H2(T), σ0 is positive, and T∗ is defined via (3.8) as the maximal time of existence of
a C1

y,t-smooth solution, then for all t ∈ (0, T∗) we have that ∥(u, σ, S)(·, t)∥W 2n+2,∞(T) < ∞ (naturally, the upper
bound blows up as t→ T∗).

9In multiple space dimensions, this is not the case: smooth finite-time implosions may be constructed [36, 37, 5, 12, 17, 16]. The formation of
vacuum in finite time, for smooth multi-dimensional Euler dynamics remains however to date open.
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The Eulerian blowup criterion may also be stated in terms of Riemann variables. If n ≥ 1, then for all initial data
w0, z0, k0 ∈ W 2n+2,∞(T) with w0 − z0 > 0 there exists a positive maximal time of existence T∗ ∈ (0,+∞] for
which (3.2) has a unique C1

y,t solution (w, z, k) on T× [0, T∗) and if T∗ <∞ then
ˆ T∗

0

(
∥∂yw(·, t)∥L∞ + ∥∂yz(·, t)∥L∞ + ∥∂yk(·, t)∥L∞

)
dt = +∞ . (3.9)

For the initial data (w0, z0, k0) ∈ An(ε, C0), we will prove that T∗ is finite, so we will refer to T∗ in this context as
the blowup time.

4. INITIAL ESTIMATES ALONG THE FAST ACOUSTIC CHARACTERISTIC

Let η be the fast acoustic characteristics defined in (3.3). We will show that for all initial data (w0, z0, k0) ∈
An(ε, C0), the corresponding solution (w, z, k) of (3.2) stays as smooth as the initial data when precomposed with
η, i.e. the functions w ◦ η, z ◦ η, and k ◦ η stay as smooth as w0, z0, and k0 all the way up until its maximal time
of existence, T∗. For all data in An(ε, C0), the maximal time of existence will be shown to be finite, and will be
approximately determined as

T∗ = 2
1+α +Oα(ε) .

Furthermore, the time T∗ will be characterized as the first time when η ceases being a diffeomorphism. That is, T∗
will be equivalently characterized in terms of the Lagrangian blowup criterion

lim
t→T∗

(
min
x∈T

ηx(x, t)
)
= 0 .

If (y, t) ∈ T×R are the Eulerian variables which the functions w, z, k take as inputs, we will define the Lagrangian
variables (x, t) ∈ T× R via the equation

(y, t) = (η(x, t), t). (4.1)

We will spend the rest of the paper studying the Euler system in terms of functions of these Lagrangian variables
defined in § 4.1. In § 4.2, we prove that for all data inAn(ε, C0) the solution exists up until a time T∗ = 2

1+α +Oα(ε)
at which point ηx must have a zero, which corresponds to ∂yw diverging to −∞. Then in § 5 we will perform energy
estimates in Lp for the higher order derivatives with respect to x and t. In § 6 we utilize similar energy estimates to
quantify the stability of solutions with data in An(ε, C0) with respect to small perturbations in w0.

4.1. The system in Lagrangian variables. With the differentiated Riemann variables ẘ, z̊, k̊ introduced in (3.4), we
define

Σ := σ◦η , W̊ := ẘ◦η , Z̊ := z̊◦η , K̊ := k̊◦η .
These are functions of the Lagrangian variables (x, t).

It is straightforward to compute that

Σt = −αΣZ̊ + α
2γΣ

2K̊, (4.2a)

Σx = 1
2ηxW̊ −

1
2ηxZ̊ + 1

2γ ηxΣK̊, (4.2b)

(Σ−1)t = αΣ−1Z̊ − α
2γ K̊, (4.2c)

ηxt =
1+α
2 ηxW̊ + 1−α

2 ηxZ̊ + α
2γ ηxΣK̊ (4.2d)

(ηxW̊ )t =
α
4γΣK̊(ηxW̊ + ηxZ̊). (4.2e)

One can deduce from (3.2) that
∂t(k◦η) = αΣK̊.

Letting ∂x act on both sides of this equation, we have that

∂t(ηxK̊) = αΣ∂xK̊ + αΣxK̊, ⇒ ηx∂tK̊ = αΣ∂xK̊ + (αΣx − ηxt)K̊.

Plugging in (4.2b) and (4.2d) gives us

ηx∂tK̊ = αΣ∂xK̊ − 1
2K̊ηxW̊ − 1

2ηxK̊Z̊. (4.3)

We can also derive a similar equation for Z̊. Since

∂tu+ λ3∂yu = ασz̊,
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we conclude that
∂t(u◦η) = αΣZ̊.

Letting ∂x act on both sides of this equation and rearranging shows that

∂t(ηxZ̊) = 2α∂x(ΣZ̊)− (ηxW̊ )t.

Expanding this equation and using (4.2b) - (4.2e) gives us the identity

ηx∂tZ̊ = 2αΣ∂xZ̊ − 1−α
2 ηxW̊ Z̊ − α

4γΣK̊ηxW̊ − 1+α
2 ηxZ̊

2 + α
4γ ηxΣK̊Z̊. (4.4)

For the rest of the paper, we will work with the variables ηx,Σ, ηxW̊ , Z̊, and K̊, which solve the following system:

Σt = −αΣZ̊ + α
2γΣ

2K̊, (4.5a)

Σx = 1
2ηxW̊ −

1
2ηxZ̊ + 1

2γ ηxΣK̊, (4.5b)

(Σ−1)t = αΣ−1Z̊ − α
2γ K̊, (4.5c)

ηxt =
1+α
2 ηxW̊ + 1−α

2 ηxZ̊ + α
2γ ηxΣK̊ (4.5d)

(ηxW̊ )t =
α
4γΣK̊(ηxW̊ + ηxZ̊) (4.5e)

ηx∂tK̊ = αΣ∂xK̊ − 1
2K̊ηxW̊ − 1

2ηxK̊Z̊ (4.5f)

ηx∂tZ̊ = 2αΣ∂xZ̊ − 1−α
2 ηxW̊ Z̊ − α

4γΣK̊ηxW̊ − 1+α
2 ηxZ̊

2 + α
4γ ηxΣK̊Z̊. (4.5g)

Notice that we are treating the product ηxW̊ as one of the basic variables rather than analyzing W̊ on its own. This is
because the product ηxW̊ will remain as smooth as the initial data while W̊ does not.

4.2. Initial estimates and determination of the blowup time. We will show that Σ,Σ−1, ηx, ηxW̊ , Z̊ and K̊ all
remain bounded as long as the solution exists, that the solution exists up until a time T∗ = 2

1+α +Oα(ε), and that at
time T∗ ηx must have a zero.

Proposition 4.1. Define the constants

Bz := 6
2

min(1,α) (2 + 1
γ )e

21, and Bk := 6
1
α . (4.6)

Note that Bk < Bz . If ε is chosen small enough such that

(1 +Bz)ε≪ 1,

then for all (x, t) ∈ T× [0, T∗ ∧ 2
1+α (1 + ε

1
2 )) we have that

1
3 ≤ Σ ≤ 3, (4.7a)

|ηxW̊ | ≤ 4
3 , (4.7b)

ηx ≤ 3, (4.7c)

|K̊| ≤ Bkε, (4.7d)

|Z̊| ≤ Bzε, (4.7e)

and

ηxW̊ ≤ − 1
2 + 4ηx. (4.8)

Proof. We will proceed with a bootstrap argument. Fix T ∈ [0, T∗ ∧ 2
1+α (1 + ε

1
2 )) and pick a constant

Bz < A < 2Bz.

We make the following bootstrap assumptions:
1
4 ≤ Σ ≤ 4 ∀ (x, t) ∈ T× [0, T ],

|ηxW̊ | ≤ 2 ∀ (x, t) ∈ T× [0, T ],

ηx ≤ 4 ∀ (x, t) ∈ T× [0, T ],

|K̊| ≤ Aε ∀ (x, t) ∈ T× [0, T ],
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|Z̊| ≤ Aε ∀ (x, t) ∈ T× [0, T ].

It follows from (4.2a) that

Σ(x, t) = σ0(x) exp

(ˆ t

0

(−αZ̊ + α
2γΣK̊)(x, s) ds

)
.

Since T ≤ 2
1+α (1 + ε

1
2 ) and 2α

1+α (1 +
2
γ ) < 2, it follows that

Σ,Σ−1 ≤ 2eαtA(1+ 2
γ )ε ≤ 2e2A(1+ε

1
2 )ε .

It follows that if ε≪ Bz and ε≪ 1 then
1
3 ≤ Σ ≤ 3 ∀ (x, t) ∈ T× [0, T ].

To improve upon the second bootstrap assumption, plugging Σ ≤ 3 and our bootstrap assumptions into (4.2e) gives
us the bound

|(ηxW̊ )t| ≤ 3
8Aε(2 + 4Aε).

Since

(ηxW̊ )(x, t) = w′
0(x)− 1

2γσ0(x)k
′
0(x) +

ˆ t

0

(ηxW̊ )t(x, s) ds

it follows that

|(ηxW̊ )(x, t)− w′
0(x)| ≤ 1

γ ε+
2

1+α (1 + ε
1
2 ) 38Aε(2 + 4Aε) . (4.9)

Therefore,
|ηxW̊ | ≤ 1 + ε

[
1 + 1

γ + (1 + ε
1
2 ) 34A(2 + 4Aε)

]
≤ 4

3

if Bzε≪ 1 and ε≪ 1. This proves our second inequality.
To prove the third inequality in (4.7), our identity (4.2d) for ηxt paired with (4.9) gives us

ηx = 1 +

ˆ t

0

ηxt ds = 1 + 1+α
2 tw′

0 +
1+α
2

ˆ t

0

(ηxW̊ − w′
0) ds+

1−α
2

ˆ t

0

ηxZ̊ ds+ α
2γ

ˆ t

0

ηxΣK̊ ds

= 1 + 1+α
2 tw′

0 +O( 1+α
2 t(1 +Aε)(1 +A)ε)

= 1 + 1+α
2 tw′

0 +O((1 +Aε)(1 +A)ε)

provided that ε≪ 1. Therefore

|ηxt(x, t)− 1− 1+α
2 tw′

0(x)| ≤ O((1 +Aε)(1 +A)ε) . (4.10)

From here it follows that
ηx ≤ 1 + (1 + ε

1
2 )(1 + ε) +O((1 +Aε)(1 +A)ε) ≤ 3

for all (x, t) ∈ T× [0, T ].
Before improving upon the last two bootstrap assumptions, we will prove (4.8) for t ≤ T . When 0 ≤ t ≤ T ∧ 1

1+α ,
(4.10) gives us

ηx ≥ 1 + 1+α
2 tw′

0 +O((1 +Aε)(1 +A)ε)

≥ 1− 1
2 (1 + ε) +O((1 +Aε)(1 +A)ε).

Using this lower bound in conjunction with (4.9) results in

ηxW̊ ≤ 1 +O((1 +Aε)(1 +A)ε)

= 1− 4ηx + 4ηx +O((1 +Aε)(1 +A)ε)

≤ −1 + 4ηx +O((1 +Aε)(1 +A)ε)

≤ − 1
2 + 4ηx.

The last inequality here is true provided that (1 + Bz)ε ≪ 1. For 1
1+α ≤ t ≤ T we have 1 + α ≥ 1

t ≥
1+α

2(1+ε
1
2 )

, so

the inequalities (4.9) and (4.10) imply that

ηxW̊ = 2
1+α

1
t (ηx − 1) + 2

1+α
1
t (1 +

1+α
2 tw′

0 − ηx) + (ηxW̊ − w′
0)

≤ 2ηx − 1

1+ε
1
2
+ 2

1+α
1
t (1 +

1+α
2 tw′

0 − ηx) + (ηxW̊ − w′
0)
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= 2ηx − 1

1+ε
1
2
+O((1 +Aε)(1 +A)ε)

≤ 2ηx − 1
2 .

This proves (4.8) for (x, t) ∈ T× [0, T ]. We will now use this inequality to prove the last two inequalities.
For 1 < q <∞ and a constant δ ≥ 0 to be determined, define the quantities

E0,qk (t) :=

ˆ
T
Σ−δqηx|K̊|q dx,

E0,qz (t) :=

ˆ
T
Σ−δqηx|Z̊|q dx.

Using (4.5) we compute that

Ė0,qk = −δq
ˆ

Σt

Σ Σ−δqηx|K̊|q +
ˆ

Σ−δqηxt|K̊|q + q

ˆ
Σ−δq|K̊|q−1sgn (K̊)ηx∂tK̊

=

ˆ
Σ−δqηx|K̊|q[αδq(Z̊ − 1

2γΣK̊) + ( 1−α
2 Z̊ + α

2γΣK̊)]

+

ˆ
Σ−δq|K̊|q 1+α

2 ηxW̊ + q

ˆ
Σ−δq|K̊|q−1sgn (K̊)ηx∂tK̊

=

ˆ
Σ−δqηx|K̊|q[αδq(Z̊ − 1

2γΣK̊) + ( 1−α
2 Z̊ + α

2γΣK̊)] +

ˆ
Σ−δq|K̊|q 1+α

2 ηxW̊

+ α

ˆ
Σ1−δq∂x

(
|K̊|q

)
+

ˆ
Σ−δq|K̊|q[− q

2ηxW̊ ] +

ˆ
Σ−δqηx|K̊|q[− q

2 Z̊]

=

ˆ
Σ−δqηx|K̊|q[αδq(Z̊ − 1

2γΣK̊) + ( 1−α
2 Z̊ + α

2γΣK̊)]

+

ˆ
Σ−δq|K̊|q 1+α

2 ηxW̊ +

ˆ
Σ−δq|K̊|q[ 12α(δq − 1)ηxW̊ ]

+ α(δq − 1)

ˆ
Σ−δqηx|K̊|q[− 1

2 Z̊ + 1
2γΣK̊] +

ˆ
Σ−δq|K̊|q[− q

2ηxW̊ ] +

ˆ
Σ−δqηx|K̊|q[− q

2 Z̊]

= [ 1+α
2 + α

2 (δq − 1)− q
2 ]

ˆ
Σ−δq|K̊|qηxW̊

+ [αδq + 1−α
2 −

α
2 (δq − 1)− q

2 ]

ˆ
Σ−δqηx|K̊|qZ̊ + [−αδq + α+ α(δq − 1)]

ˆ
Σ−δqηx|K̊|q 1

2γΣK̊

= [α2 δq −
q−1
2 ]

ˆ
Σ−δq|K̊|qηxW̊ + [α2 δq −

q−1
2 ]

ˆ
Σ−δqηx|K̊|qZ̊.

Performing analogous computations for E0,qz , we find that

Ė0,qk = [α2 δq −
q−1
2 ]

ˆ
Σ−δq|K̊|qηxW̊ + [α2 δq −

q−1
2 ]

ˆ
Σ−δqηx|K̊|qZ̊, (4.11a)

Ė0,qz = [αδq − 1−α
2 (q − 1)]

ˆ
Σ−δq|Z̊|qηxW̊ − q α

4γ

ˆ
Σ−δq|Z̊|q−1sgn (Z̊)ΣK̊ηxW̊

− 1+α
2 (q − 1)

ˆ
Σ−δqηx|Z̊|qZ̊ + [αδq + α( q2 − 1)]

ˆ
Σ−δqηx|Z̊|q 1

2γΣK̊. (4.11b)

First, let us derive bounds on K̊. Choosing δ = 1
α and using (4.11a), (4.8), and our bound ηx ≤ 3 gives us

Ė0,qk = 1
2

ˆ
Σ− q

α |K̊|qηxW̊ + 1
2

ˆ
Σ− q

α ηx|K̊|qZ̊ ≤ − 1
4

ˆ
Σ− q

α |K̊|q + (2 + A
2 ε)E

0,q
k ≤ ( 2312 + A

2 ε)E
0,q
k .

and thus
E0,qk (t)1/q ≤ E0,qk (0)1/qe

1
q (

23
12+

A
2 ε)t ≤ 2

1
α ∥k′0∥Lq

x
e

1
q (

23
12+

A
2 ε)t.

Therefore, for any t ∈ [0, T ] we have that

∥Σ− 1
α K̊∥L∞

x
= lim

q→∞
E0,qk (t)1/q ≤ lim sup

q→∞
2

1
α ∥k′0∥L∞

x
e

1
q (

23
12+

A
2 ε)t = 2

1
α ∥k′0∥L∞

x
.
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So
|K̊| ≤ 6

1
α ∥k′0∥L∞

x
, ∀ (x, t) ∈ T× [0, T ].

To bound Z̊, it is best to bound E0,qk + E0,qz . If δ is large enough that α
2 δq −

q−1
2 > 0 and αδq − 1−α

2 (q − 1) > 0,
then adding (4.11a) and (4.11b) together and using (4.8) gives us

Ė0,qk + Ė0,qz + 1
2 [

α
2 δq −

q−1
2 ]

ˆ
Σ−δq|K̊|q + 1

2 [αδq −
1−α
2 (q − 1)]

ˆ
Σ−δq|Z̊|q

≤ [α2 δq −
q−1
2 ](4 +Aε)E0,qk +

(
4[αδq − 1−α

2 (q − 1)] + 3
2γAε[αδq + α( q2 − 1)] + 1+α

2 (q − 1)Aε
)
E0,qz

− q α
4γ

ˆ
Σ−δq|Z̊|q−1sgn (Z̊)ΣK̊ηxW̊ .

Since |ΣηxW̊ | ≤ 3 · 43 = 4 we have

−q α
4γ

ˆ
Σ−δq|Z̊|q−1sgn (Z̊)ΣK̊ηxW̊ ≤ α

γ (q − 1)

ˆ
Σ−δq|Z̊|q + α

γ

ˆ
Σ−δq|K̊|q,

and our bound on Ė0,qk + Ė0,qz becomes

Ė0,qk + Ė0,qz + 1
2 [

α
2 δq −

q−1
2 −

2α
γ ]

ˆ
Σ−δq|K̊|q + 1

2 [αδq −
1−α
2 (q − 1)− 2α

γ (q − 1)]

ˆ
Σ−δq|Z̊|q

≤ [α2 δq −
q−1
2 ](4 +Aε)E0,qk +

(
4[αδq − 1−α

2 (q − 1)] + 3
2γAε[αδq + α( q2 − 1)] + 1+α

2 (q − 1)Aε
)
E0,qz .

Now choose δ = 2
min(1,α) . This choice of δ is large enough that the factors in front of the damping terms are positive,

and we get

Ė0,qk + Ė0,qz ≤ 10max(1, α)q[1 + 1
2Aε](E0,qk + E0,qz ).

Since T ≤ 2
1+α (1 + ε

1
2 ), we conclude that

(E0,qk (t) + E0,qz (t))1/q ≤ (E0,qk (0) + E0,qz (0))1/qe10max(1,α)[1+ 1
2Aε]t

≤ 2
2

min(1,α) (2 + 1
γ )max(∥k′0∥L∞

x
, ∥z′0∥L∞

x
)e20(1+ε

1
2 )[1+ 1

2Aε]

for all t ∈ [0, T ]. If ε is small enough that 20(1 + ε
1
2 )(1 + Bzε) < 21, sending q → ∞ now gives us the bound

|Z̊| ≤ Bz max(∥k′0∥L∞
x
, ∥z′0∥L∞

x
) in the same manner as before, which finishes our bootstrap argument. □

Proposition 4.2. If ε is chosen small enough so that

(1 +Bz)
2ε≪ 1

then the blowup time T∗ satisfies
(1− ε

1
2 ) 2

1+α < T∗ < (1 + ε
1
2 ) 2

1+α , (4.12a)
and in particular

T∗ = 2
1+α [1 +O((1 +Bz)ε)]. (4.12b)

It follows immediately from (4.12a) that (4.7) holds for all (x, t) ∈ T× [0, T∗).

Proof. Recall from the proof of the previous proposition that

ηxW̊ = w′
0 +O((1 +Bz)ε),

ηx = 1 + 1+α
2 t[w′

0 +O((1 +Bz)ε)],

for all (x, t) ∈ T× [0, T∗ ∧ 2
1+α (1 + ε

1
2 )). Since ηx > 0 for all t < T∗, it follows from (3.6b) that

0 < ηx < 1− 1+α
2 t[(1− ε) +O((1 +Bz)ε)]

for all (x, t) ∈ T× [0, T∗ ∧ 2
1+α (1 + ε

1
2 )). Therefore,

1+α
2 T∗ ∧ (1 + ε

1
2 ) ≤ 1

1−ε+O((1+Bz)ε)
= 1 +O((1 +Bz)ε).

Since (1 +Bz)
2ε≪ 1, we can conclude that

T∗ ≤ 2
1+α [1 +O((1 +Bz)ε)] <

2
1+α (1 + ε

1
2 ).
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Therefore, T∗ = T∗ ∧ 2
1+α (1 + ε

1
2 ), and the inequalities (4.7) are true on T× [0, T∗).

It follows that ˆ T∗

0

(
∥∂yz(·, t)∥L∞

y
+ ∥∂yk(·, t)∥L∞

y

)
dt ≤ T∗[Bz + (1 + 3

2γ )Bk]ε,

and ˆ T∗

0

∥∂yw(·, t)∥L∞
y

dt ≤
ˆ T∗

0

4
3

1
minx∈T ηx(x,t)

+ 3
2γBkε dt.

Since T∗ is finite, it follows from (3.9) that

lim
t→T∗

min
x∈T

ηx(x, t) = 0.

For all t < T∗, our initial data assumption (3.6b) implies that

ηx > 1− 1+α
2 t[1 + ε+O((1 +Bz)ε)].

Sending t→ T∗ and letting (1 +Bz)
2ε be sufficiently small gives us

1+α
2 T∗ ≥ 1

1+O((1+Bz)ε)
= 1 +O((1 +Bz)ε) > 1− ε

1
2 .

□

5. HIGHER ORDER ESTIMATES

In this section, we will prove estimates on the derivatives of Σ, ηx, ηxW̊ , Z̊, and K̊ with constants that do not
depend on our choice of (w0, z0, k0) ∈ An(ε, C0), and whose dependence on ε, α, n, and C0 is explicit. For the
entirety of this section, we assume that ε is chosen small enough such that the results of the previous section hold.

5.1. Estimates at time zero.

Proposition 5.1. Let Cx and Ct and be constants satisfying
• Cx ≥ 2e3C0,
• Cx ≫ 1,
• Ct ≫ (1 + α),
• αCx ≪ Ct.
Then if (1 + α)ε≪ 1 the following inequalities hold at time t = 0 for all |β| ≤ 2n+ 1:

(|β|+ 1)2∥∂βK̊∥L∞
x

|β|!Cβx
x Cβt

t

≤ ε (5.1a)

(|β|+ 1)2∥∂βZ̊∥L∞
x

|β|!Cβx
x Cβt

t

≤ (1 + 1
γ )ε (5.1b)

(|β|+ 1)2∥∂βΣt∥L∞
x

|β|!Cβx
x Cβt

t

≤ 7αε (5.1c)

(|β|+ 1)2∥∂βηxt∥L∞
x

|β|!Cβx
x Cβt

t

≤ 1+α
2 (1 + 2ε) (5.1d)

(|β|+ 1)2∥∂β(ηxW̊ )t∥L∞
x

|β|!Cβx
x Cβt

t

≤ 8α
γ ε. (5.1e)

Proof. We will prove this via induction on βt.
Base Case: At time t = 0

(m+ 1)2∥∂m
x K̊∥L∞

x

m!Cmx
=

(m+ 1)2∥∂m+1
x k0∥L∞

x

m!Cmx
≤

(
e2C0

Cx

)m
ε ≤ ε.

Since

∂m
x Z̊ = ∂m+1

x z0 +
1
2γσ0∂

m+1
x k0 +

1
2γ

m−1∑
j=0

(
m

j

)
∂j+1
x k0∂

m−1−j+1
x σ0,
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at time zero, our assumptions C0 ≥ 3 and Cx ≥ 2e3C0 imply that

(m+ 1)2∥∂m
x Z̊∥L∞

x

m!Cmx ε
≤

(
e2C0

Cx

)m
(1 + 1

γ ) +
1
2γ (

1
2 + ε) 1

Cx

(
C0

Cx

)m−1
(m+ 1)2

m−1∑
j=0

(
m

j

)
j!(m−1−j)!

m!

≤
(
e2C0

Cx

)m
(1 + 1

γ ) +
1
2γ (

1
2 + ε) 1

C0

(
e2C0

Cx

)m m−1∑
j=0

1
m−j

≤ ( 1
2e )

m(1 + 1
γ ) +

1
2γ (

1
2 + ε)1{m≥1}(

1
2e )

m(1 + logm)

≤ ( 1
2e )

m(1 + 1
γ ) +

1
2γ (

1
2 + ε) 1

2e1{m≥1} ≤ 1 + 1
γ .

Similar computations applied to ηxW̊ at time zero also give us the bound

(m+ 1)2∥∂m
x (ηxW̊ )∥L∞

x

m!Cmx
≤ 1 + (1 + 1

γ )ε < 1 + 2ε (5.2)

for all m = 0, . . . , 2n+ 1.
Since Σt = −αΣ∂yz ◦ η, at time zero we have

Σt = −ασ0z
′
0.

Therefore

−∂m
x Σt

α
= σ0∂

m+1
x z0 +

m−1∑
j=0

(
m

j

)
∂j+1
x z0∂

m−1−j+1
x σ0,

and computations analogous to those applied to ∂m
x Z̊ and ∂m

x (ηxW̊ ) give us

(m+ 1)2∥∂m
x Σt∥L∞

x

m!Cmx αε
≤ 2( 1

2e )
m + ( 12 + ε) 1

2e1{m≥1} ≤ 2.

Let 0 ≤ m ≤ 2n+ 1. At time zero

(ηxW̊ )t =
α
4γσ0k

′
0(w

′
0 + z′0),

4γ
α ∂m

x (ηxW̊ )t = σ0

m∑
j=0

(
m

j

)
∂j+1
x k0∂

m−j+1
x (w0 + z0)

+
∑

j1+j2+j3=m
j1≥1

(
m

j1j2j3

)
∂j1−1+1
x σ0∂

j2+1
x k0∂

j3+1
x (w0 + z0).

=⇒ 4γ
α

(m+ 1)2∥∂m
x (ηxW̊ )t∥L∞

x

m!Cmx ε
≤ 2(1 + 2ε)

(
C0

Cx

)m
(m+ 1)3 + (1+2ε)2

2
1
C0

(
C0

Cx

)m
(m+ 1)2

∑
j1+j2+j3=m

j1≥1

1
j1
.

Since ∑
j1+j2+j3=m

j1≥1

1
j1

= (m+ 1)

m∑
j=1

1
j −m,

our hypothesis that Cx ≥ 2e3C0 and C0 ≥ 3 now gives us

4γ
α

(m+ 1)2∥∂m
x (ηxW̊ )t∥L∞

x

m!Cmx ε
≤ 2(1 + 2ε)

(
e3C0

Cx

)m
+ (1+2ε)2

2
1
C0

(
e3C0

Cx

)m m∑
j=1

1
j

≤ 2(1 + 2ε)( 12 )
m + 1{m≥1}

(1+2ε)2

4
1
C0
≤ 3.

Lastly, since ηxt =
1+α
2 w′

0 +
1−α
2 z′0 at time zero, we compute that

(m+ 1)2∥∂m
x ηxt∥L∞

x

m!Cmx
≤

(
e2C0

Cx

)m
( 1+α

2 (1 + ε) + |1−α|
2 ε)

= ( 1+α
2 +max(1, α)ε)

(
e2C0

Cx

)m ≤ 1+α
2 (1 + 2ε)( 1

2e )
m
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for all m = 0, . . . , 2n+ 1. This concludes the base case.
Inductive Step: Now fix 0 ≤ m ≤ 2n and suppose our result is true for all multi indices β with |β| ≤ 2n + 1 and

βt ≤ m.
Let β have |β| ≤ 2n and βt = m. Taking ∂β of (4.3), setting t = 0, and simplifying using the fact that

∂i
xηx(x, 0) = δi0 (5.3)

for all nonnegative integers i, we arrive at the identity

∂β+etK̊ = −
∑

et≤γ≤β

(
β

γ

)
∂γ−etηxt∂

β+et−γK̊

+ α
∑

et≤γ≤β

(
β

γ

)
∂γ−etΣt∂

β+ex−γK̊ + ασ0∂
β+exK̊

+ α

βx∑
j=1

(
βx

j

)
∂j
xσ0∂

β−(j−1)exK̊ − 1
2

βx∑
j=0

(
βx

j

)
∂j
x(ηxW̊ )∂β−jexK̊

− 1
2

∑
et≤γ≤β

(
β

γ

)
∂β−γK̊∂γ−et(ηxW̊ )t − 1

2

∑
0≤γ≤β

(
β

γ

)
∂γK̊∂β−γZ̊

− 1
2

∑
γ1+γ2+γ3=β

γ1≥et

(
β

γ1γ2γ3

)
∂γ1−etηxt∂

γ2K̊∂γ3Z̊.

Applying our inductive hypotheses, the inequality (5.2), Lemma B.2, and (B.2)–(B.3) yields

(|β + et|+ 1)2∥∂β+etK̊∥L∞
x

|β + et|!Cβx
x Cβt+1

t ε

≤ 1
Ct
( 1+α

2 (1 + 2ε) + 2α2 Cx

Ct
ε)

|β|∑
j=1

(
|β|
j

)
(|β|+2)2(j−1)!(|β|+1−j)!

(|β|+1)!j2(|β|+2−j)2

+ 2αCx

Ct
+ α( 12 + ε) 1

Ct

βx∑
j=1

(
βx

j

)
(|β|+2)2(j−1)!(|β|+1−j)!

(|β|+1)!j2(|β|+2−j)2

(
C0

Cx

)j−1

+ 1
2 (1 + 2ε) 1

Ct

βx∑
j=0

(
βx

j

)
(|β|+2)2j!(|β|−j)!

(|β|+1)!(j+1)2(|β|+1−j)2

(
C0

Cx

)j
+ 1

2C2
t

3α
4γ ε

|β|∑
j=1

(
|β|
j

)
(|β|+2)2(|β|−j)!(j−1)!
(|β|+1)!(|β|+1−j)2j2 + 1

2Ct
(1 + 1

γ )ε

|β|∑
j=0

(
|β|
j

)
(|β|+2)2j!(|β|−j)!

(|β|+1)!(j+1)2(|β|+1−j)2

+ 1+α
4 (1 + 2ε)(1 + 1

γ )ε
1
C2
t

∑
j1+j2+j3=|β|

j1≥1

(
|β|

j1j2j3

)
(|β|+2)2(j1−1)!j2!j3!

(|β|+1)!j21(j2+1)2(j3+1)2

≤ 1
Ct
( 1+α

2 (1 + 2ε) + 2α2 Cx

Ct
ε)

|β|∑
j=1

|β|+2
j3(|β|+2−j) + 2αCx

Ct
+ α(1 + 2ε) 1

Ct

|β|∑
j=1

|β|+2
j3(|β|+2−j)

+ (1 + ε) 1
Ct

|β|∑
j=0

|β|+2
(j+1)2(|β|+1−j)2 + 1

C2
t

3α
4γ ε

|β|∑
j=1

|β|+2
j3(|β|+1−j)2 + 1

Ct
(1 + 1

γ )ε

|β|∑
j=0

|β|+2
(j+1)2(|β|+1−j)2

+ 1+α
2 (1 + 2ε)(1 + 1

γ )ε
1
C2
t

∑
j1+j2+j3=|β|

j1≥1

|β|+2
j31(j2+1)2(j3+1)2

≲ 1
Ct
[αCx(1 + αε) + (1 + α)(1 + ε)(1 + 1

Ct
)].

It follows that the bound (5.1a) holds for ∂β+etK̊ provided that Ct ≫ αCx, Ct ≫ 1 + α, and (1 + α)ε≪ 1.
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The inductive step for (5.1b) works out in the same way: pick β with |β| ≤ 2n and βt = m; take ∂β of (4.4); set
t = 0 and simplify; carry out the same type of computations as done above; if Ct is large enough with respect to αCx
and 1 + α, then the right hand side of the inequalities can be made smaller than 1 + 1

γ provided that (1 + α)ε≪ 1.
The inductive steps for proving (5.1c)–(5.1e) will now utilize the fact that we have already proven (5.1a) and (5.1b)

for β with |β| ≤ 2n+1 and βt ≤ m+1. Pick β with |β| ≤ 2n+1 and βt = m+1. Note that since βt ≥ 1, we must
have βx ≤ 2n. Taking ∂β of (4.2a), setting t = 0, and simplifying yields

1
α∂

βΣt = −σ0∂
βZ̊ + 1

2γσ
2
0∂

βK̊ +

βx∑
j=1

(
βx

j

)
[−∂j−1+1

x σ0∂
β−jexZ̊ + 1

γσ0∂
j−1+1
x σ0∂

β−jexK̊]

+
∑

et≤γ≤β

(
β

γ

)
[−∂γ−etΣt∂

β−γZ̊ + 1
γσ0∂

γ−etΣt∂
β−γK̊]

+ 1
2γ

∑
j1+j2+j3=βx

j1,j2≥1

(
βx

j1j2j3

)
∂j1−1+1
x σ0∂

j2−1+1
x σ0∂

βtet+j3exK̊

+ 1
2γ

∑
jex+γ≤β

γ≥et
j≥1

(
β

jex γ β − jex − γ

)
∂j−1+1
x σ0∂

γ−et
t Σ∂β−γ−jexK̊

+ 1
2γ

∑
γ1+γ2+γ3=β

γ1,γ2≥et

(
β

γ1γ2γ3

)
∂γ1−etΣt∂

γ2−etΣt∂
γ3K̊.

Therefore, applying our inductive hypotheses, the fact that (5.1a) and (5.1b) have been proven for multiindices with
βt ≤ m+ 1, and the inequalities in § B gives us

(|β|+ 1)2∥∂βΣt∥L∞
x

|β|!Cβx
x Cβt

t αε
≤ 2 + 4

γ +O( 1
Cx

+ αε
Ct

+ 1
C2
x
+ αε

CxCt
+ α2ε2

C2
t
).

Since Cx ≫ 1, Ct ≫ (1 + α), and ε≪ 1, we have proven (5.1c) for our choice of β.
The proof for (5.1d) is analogous: if |β| ≤ 2n + 1 and βt = m + 1, then taking ∂β of (4.2d), setting t = 0, and

simplifying produces

∂βηxt =
1−α
2 ∂βZ̊ + α

2γσ0∂
βK̊

+ 1+α
2 ∂β−et(ηxW̊ )t +

∑
et≤γ≤β

(
β

γ

)[
1−α
2 ∂γ−etηxt∂

β−γZ̊ + α
2γσ0∂

γ−etηxt∂
β−γK̊

]
+ α

2γ

βx∑
j=1

(
βx

j

)
∂j−1+1
x σ0∂

β−jexK̊ + α
2γ

∑
γ1+jex+γ3=β
γ1≥et,j≥1

(
β

γ1jexγ3

)
∂γ1−etηxt∂

j−1+1
x σ0∂

γ3K̊

+ α
2γ

∑
γ1+γ2+γ3=β
γ1,γ2≥et,

(
β

γ1γ2γ3

)
∂γ1−etηxt∂

γ2−etΣt∂
γ3K̊.

Therefore,

(|β|+ 1)2∥∂βηxt∥L∞
x

|β|!Cβx
x Cβt

t (1 + α)ε
≤ 1

1+α (
|1−α|

2 (1 + 1
γ ) +

α
γ ) +O(

1+|1−α|
Ct

+ 1
(1+α)Cx

+ 1
CxCt

+ αε
C2
t
)

≤ 1 +O( 1+|1−α|
Ct

+ 1
(1+α)Cx

+ 1
CxCt

+ αε
C2
t
).

Since ε≪ 1, Cx ≫ 1, and Ct ≫ (1 + α), this proves (5.1d).
The inductive step for (5.1e) works out in the same way as the inductive steps for (5.1c) and (5.1d). If |β| ≤ 2n+1

and βt = m+ 1, then using (5.2) in addition to the same types of bounds as in the previous computations gives us

(|β|+ 1)2∥∂β(ηxW̊ )t∥L∞
x

|β|!Cβx
x Cβt

t
α
4γ ε

≤ 2(1 + 2ε)

|β|∑
j=0

(|β|+1)2

(j+1)2(|β|+1−j)2 +O(ε+ (1+α)ε
Ct

+ 1
Cx
)
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≤ 8π2

3 (1 + 2ε) +O(ε+ (1+α)ε
Ct

+ 1
Cx
).

Our hypotheses on the relative sizes of Ct, Cx, ε, and α now imply our desired bound on ∂β(ηxW̊ )t. □

5.2. A Priori estimates for time derivatives. In this section, we will fix T ∈ (0, T∗], a function Ct : [0, T∗)→ R+,
and a constant δ ≥ 0. Suppose that Ak ≥ Bk and Az ≥ Bz are constants such that Az ≥ 10Ak and

(m+ 1)2∥Σ−δm∂m
t K̊∥L∞

x

m!Cm
t

≤ Akε, (5.4a)

(m+ 1)2∥Σ−δm∂m
t Z̊∥L∞

x

m!Cm
t

≤ Azε, (5.4b)

for all t ∈ [0, T ], 0 ≤ m ≤ 2n+ 1.

Proposition 5.2. If
• (1 + α)3δ ≪ Ct for all t ∈ [0, T ], and
• (1 +Az)ε≪ 1,
then
(m+ 1)2∥Σ−δm∂m

t (Σ−1)t∥L∞
x

m!Cm
t

≤ 4αAzε,
(m+ 1)2∥Σ−δm∂m

t Σt∥L∞
x

m!Cm
t

≤ 4αAzε, (5.5a)

(m+ 1)2∥Σ−δm∂m
t ηxt∥L∞

x

m!Cm
t

≤ (1 + α)( 23δ0m + 3Azε),
(m+ 1)2∥Σ−δm∂m

t (ηxW̊ )t∥L∞
x

m!Cm
t

≤ 5
8Akε, (5.5b)

for all t ∈ [0, T ], 0 ≤ m ≤ 2n+ 1.

Proof. We prove our result via induction on m. The base case, m = 0, is immediate from (4.5), (4.7), and the fact that
Ak ≥ Bk and Az ≥ Bz .

For the inductive step, suppose that our inequalities are true up to m− 1 for some 1 ≤ m ≤ 2n+ 1.
Applying ∂m

t to both sides of (4.2c) yields

1
α∂

m
t (Σ−1)t = Σ−1∂m

t Z̊ − 1
2γ ∂

m
t K̊ +

m∑
j=1

(
m

j

)
∂j−1
t (Σ−1)t∂

m−j
t Z̊.

The bounds from § B now give us

(m+ 1)2∥Σ−δm∂m
t (Σ−1)t∥L∞

x

m!Cm
t αε

≤ 3Az +
1
2γAk + 4αA2

zε
3δ

Ct

m∑
j=1

(m+1)2

j3(m+1−j)2

≤ [3 + 1
20γ + 100Azε

3δα
Ct

]Az

≤ 4Az.

Here the last inequality holds because of our hypotheses (1 +Az)ε≪ 1 and Ct ≫ 3δ(1 + α).
Taking ∂m

t of (4.2a) gives us

1
α∂

m
t Σt = −Σ∂m

t Z̊ + 1
2γΣ

2∂m
t K̊ −

m∑
j=1

(
m

j

)
∂j−1
t Σt∂

m−j
t Z̊ + 1

γΣ

m∑
j=1

(
m

j

)
∂j−1
t Σt∂

m−j
t K̊

+ 1
2γ

∑
j1+j2+j3=m

j1,j2≥1

(
m

j1j2j3

)
∂j1−t
t Σt∂

j2−1
t Σt∂

j3
t K̊.

Therefore,

(m+ 1)2∥Σ−mδ∂m
t Σt∥L∞

x

m!Cm
t αε

≤ 3Az +
9
2γAk + 3δ4αAzε

Ct
(Az +

3
γAk)

m∑
j=1

(m+1)2

j3(m+1−j)2

+ 1
2γ

(
3δ4αAzε

Ct

)2
Ak

∑
j1+j2+j3=m

j1,j2≥1

(m+1)2

j31j
3
2(j3+1)2

≤ 3Az +
9
2γAk + 25 3δ4αAzε

Ct
(Az +

3
γAk) + 66 1

2γ

(
3δ4αAzε

Ct

)2
Ak
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≤ 4Az.

Taking ∂m
t of (4.2d) gives us

∂m
t ηxt =

1−α
2 ηx∂

m
t Z̊ + α

2γ ηxΣ∂
m
t K̊

+ 1+α
2 ∂m−1

t (ηxW̊ )t +
1−α
2 mηxt∂

m−1
t Z̊ + α

2γmηxtΣ∂
m−1
t K̊

+ 1−α
2

m∑
j=2

(
m

j

)
∂j−1
t ηxt∂

m−j
t Z̊ + α

2γ

m∑
j=2

(
m

j

)
∂j−1
t ηxtΣ∂

m−j
t K̊

+ α
2γ

m∑
j=1

(
m

j

)
ηx∂

j−1
t Σt∂

m−j
t K̊ + α

2γ

∑
j1+j2+j3=m

j1,j2≥1

(
m

j1j2j3

)
∂j1−t
t ηxt∂

j2−1
t Σt∂

j3
t K̊.

Therefore,

(m+ 1)2∥Σ−mδ∂m
t ηxt∥L∞

x

m!Cm
t ε

≤ 3|1−α|
2 Az +

9α
2γAk + (1+α)3δ

Ct
(m+1

m )2
[

1
2m

5
8Ak + |1−α|

2 Az +
3α
2γAk

]
+ 3δε

Ct

[
3|1−α|

2 (1 + α)A2
z +

9α
2γ (1 + α)AkAz + 6α2

γ AkAz

] m∑
j=1

(m+1)2

j3(m+1−j)2

+ 3
2γ

(
3δαε
Ct

)2
(1 + α)AkA

2
z

∑
j1+j2+j3=m

j1,j2≥1

(m+1)2

j31j
3
2(j3+1)2

.

Applying our hypotheses on Ct and ε, as well as our bounds from § B, we obtain our inequality for ∂m
t ηxt.

Lastly, taking ∂m
t of (4.2e) gives us

4γ
α ∂m

t (ηxW̊ )t = ΣηxW̊∂m
t K̊ + ηxΣ

m∑
j=0

(
m

j

)
∂j
t K̊∂m−j

t Z̊

+

m∑
j=1

(
m

j

)
(Σ∂j−1

t (ηxW̊ )t∂
m−j
t K̊ + ∂j−1

t ΣtηxW̊∂m−j
t K̊)

+
∑

j1+j2+j3=m
j1≥1

(
m

j1j2j3

)
(ηx∂

j1−1
t Σt∂

j2
t K̊∂j3

t Z̊ + ∂j1−1
t ηxtΣ∂

j2
t K̊∂j3

t Z̊)

+
∑

j1+j2+j3=m
j1,j3≥1

(
m

j1j2j3

)
∂j1−1
t Σt∂

j2
t K̊∂j3−1

t (ηxW̊ )t

+
∑

j1+j2+j3+j4=m
j1,j2≥1

(
m

j1j2j3j4

)
∂j1−1
t ηxt∂

j2−1
t Σt∂

j3
t K̊∂j4

t Z̊.

The same types of bounds as before give us

4γ
α

(m+ 1)2∥Σ−δm∂m
t (ηxW̊ )t∥L∞

x

m!Cm
t Akε

≤ 4 + 9Azε

m∑
j=0

(m+1)2

(j+1)2(m+1−j)2 + 3δε
Ct

( 158 Ak + 16
3 αAz)

m∑
j=1

(m+1)2

j3(m+1−j)2

+ 2(1 + α) 3
δε
Ct

Az

m−1∑
j=0

(m+1)2

(j+1)2(m−j)2 + 3(4α+ 3(1 + α)) 3
δε
Ct

A2
zε

∑
j1+j2+j3=m

j1≥1

(m+1)2

j31(j2+1)2(j3+1)2

+ 5α
2 AkAz

(
3δε
Ct

)2 ∑
j1+j2+j3=m

j1,j3≥1

(m+1)2

j31(j2+1)2j33
+ 8

3α(1 + α)A2
z

(
3δε
Ct

)2 ∑
j2+j3+j4=m−1

j2≥1

(m+1)2

j32(j3+1)2(j4+1)2
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+ 12α(1 + α)A3
zε
(
3δε
Ct

)2 ∑
j1+j2+j3+j4=m

j1,j2≥1

(m+1)2

j31j
3
2(j3+1)2(j4+1)2

≤ 5.

□

Corollary 5.3. Under the same hypotheses as the previous proposition, we have

(m+ 1)2∥Σ−δm∂m
t ηx∥L∞

x

m!Cm
t

≤ 3,
(m+ 1)2∥Σ−δm∂m

t (ηxW̊ )∥L∞
x

m!Cm
t

≤ 4
3 , (5.6a)

(m+ 1)2∥Σ−δm∂m
t Σx∥L∞

x

m!Cm
t

≤ 1,
(m+ 1)2∥Σ−δm∂m

t (Σ−1)x∥L∞
x

m!Cm
t

≤ 10, (5.6b)

for all t ∈ [0, T ], 0 ≤ m ≤ 2n+ 1 and

(m+ 1)2∥Σ−δm∂m−1
t ∂xK̊∥L∞

x

m!Cm
t

≤ 10
α Akε,

(m+ 1)2∥Σ−δm∂m−1
t ∂xZ̊∥L∞

x

m!Cm
t

≤ 5
αAzε, (5.7)

for all t ∈ [0, T ], 1 ≤ m ≤ 2n+ 1.

Proof. The bounds (5.6a) follow immediately from (4.7) in the case where m = 0, and the 1 ≤ m ≤ 2n + 1 case
follows immediately from (5.5b) and our assumption that (1+α)3δ ≪ Ct. The bounds on ∂m

t Σx are proven by taking
∂m
t of (4.2b), applying (5.5), and using the bounds from § B along with our assumption that (1 + Az)ε ≪ 1. To get

our bounds on ∂m
t (Σ−1)x, take ∂m

t of the equation

(Σ−1)x = −Σ−2Σx (5.8)

and apply (5.5) together with our bounds on ∂m
t Σx.

The estimates (5.7) can be obtained by taking ∂m−1
t of the identities

α∂xK̊ = Σ−1ηx∂tK̊ + 1
2Σ

−1K̊ηxW̊ + 1
2Σ

−1ηxK̊Z̊, (5.9a)

α∂xZ̊ = 1
2Σ

−1ηx∂tZ̊ + 1−α
4 Σ−1(ηxW̊ )Z̊ + α

8γ K̊ηxW̊ + 1+α
4 Σ−1ηxZ̊

2 − α
8γ ηxK̊Z̊. (5.9b)

and then using (5.5), our inequalities from § B, and our assumption that (1 +Az)ε≪ 1. □

5.3. Energy estimates for time derivatives. Pick constants δ, κ with

δ ≥ 6
min(1,α) , (5.10a)

κ := max(1, α)(2 + 5δ) (5.10b)

and define the function Ct : [0, T∗)→ R+,
Ct(t) := Ct(0)e

κt (5.11)

where Ct(0) is some positive constant to be determined.

Proposition 5.4. Suppose Ct(0) satisfies

Ct(0)≫ (1 + α)3δ, Ct(0)≫ max(1, α)2δC0,

and ε satisfies
(1 + α)2(1 +Bz)

2ε≪ 1.

Then

(m+ 1)2∥Σ−δm∂m
t K̊∥L∞

x

m!Cm
t

≤ Bkε, (5.12a)

(m+ 1)2∥Σ−δm∂m
t Z̊∥L∞

x

m!Cm
t

≤ Bzε, (5.12b)

for all t ∈ [0, T∗) and 0 ≤ m ≤ 2n+ 1.
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Proof. These estimates will be proven via Lq energy estimates similar to those performed in the proof of Proposition
4.1. Fix T ∈ [0, T∗) and pick a constants Ak, Az satisfying

Bk < Ak < 2Bk < Bz < Az < 2Bz.

Our bootstrap hypothesis will be that

(m+ 1)2∥Σ−δm∂m
t K̊∥L∞

x

m!Cm
t

≤ Akε,
(m+ 1)2∥Σ−δm∂m

t Z̊∥L∞
x

m!Cm
t

≤ Azε,

for all t ∈ [0, T ], 0 ≤ m ≤ 2n+1. Our assumptions on Ct(0) paired with the fact that Az < 2Bz and (1+Bz)ε≪ 1
imply that the hypotheses of Proposition 5.2 and Corollary 5.3 are satisfied with our choice of δ, T , Ak, and Az .
Additionally, if we define Ct := 1

22
−δCt(0), then our hypotheses on Ct(0) imply that Ct ≫ αC0 and Ct ≫ 1 + α so

that Proposition 5.1 gives us

(m+ 1)2∥Σ−δm∂m
t K̊∥L∞

x

m!Cm
t

≤ ε
2m ,

(m+ 1)2∥Σ−δm∂m
t Z̊∥L∞

x

m!Cm
t

≤ ε
2m−1 , (5.13)

at time t = 0. Therefore, our bootstrap hypothesis is true for T = 0.
For 1 < q <∞ and 1 ≤ m ≤ 2n+ 1 define the energies

Em,q
k (t) :=

ˆ
T
Σ−δmqηx|∂m

t K̊|q dx, Em,q
z (t) :=

ˆ
T
Σ−δmqηx|∂m

t Z̊|q dx,

Em,q
k (t) :=

(m+ 1)2qEm,q
k (t)

(m!)qCt(t)mq
, Em,q

z (t) :=
(m+ 1)2qEm,q

z (t)

(m!)qCt(t)mq
.

Taking ∂t of Em,q
k yields

Ėm,q
k = −δmq

ˆ
Σ−δmq Σt

Σ ηx|∂m
t K̊|q +

ˆ
Σ−δmqηxt|∂m

t K̊|q

+

ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)qηx∂

m+1
t K̊

=

ˆ
Σ−δmqηx|∂m

t K̊|q[(αδmq + 1−α
2 )Z̊ + (−αδmq + α) 1

2γΣK̊]

+ 1+α
2

ˆ
Σ−δmq|∂m

t K̊|qηxW̊ +

ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)qηx∂

m+1
t K̊.

Taking ∂m
t of (4.3) produces the identity

ηx∂
m+1
t K̊ = αΣ∂m

t ∂xK̊ − [ 12ηxW̊ + 1
2ηxZ̊ +mηxt]∂

m
t K̊

−
m∑
j=2

(
m

j

)
∂j−1
t ηxt∂

m+1−j
t K̊ + α

m∑
j=1

(
m

j

)
∂j−1
t Σt∂

m−j
t ∂xK̊

− 1
2ηx

m∑
j=1

(
m

j

)
∂j
t Z̊∂m−j

t K̊ − 1
2

m∑
j=1

(
m

j

)
∂j−1
t (ηxW̊ )t∂

m−j
t K̊

− 1
2

∑
j1+j2+j3=m

j1≥1

(
m

j1j2j3

)
∂j1−1
t ηxt∂

j2
t K̊∂j3

t Z̊. (5.14)

This means that ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)qηx∂

m+1
t K̊

= α

ˆ
Σ1−δmq∂x

(
|∂m

t K̊|q
)
− q

ˆ
Σ−δmq|∂m

t K̊|q[ 12ηxW̊ + 1
2ηxZ̊ +mηxt]

− q

m∑
j=2

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t ηxt∂
m+1−j
t K̊

+ αq

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t Σt∂
m−j
t ∂xK̊
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− 1
2q

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)ηx∂

j
t Z̊∂m−j

t K̊

− 1
2q

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t (ηxW̊ )t∂
m−j
t K̊

− 1
2q

∑
j1+j2+j3=m

j1≥1

(
m

j1j2j3

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j1−1

t ηxt∂
j2
t K̊∂j3

t Z̊.

Since

α

ˆ
Σ1−δmq∂x

(
|∂m

t K̊|q
)
= α

2 (δmq − 1)

ˆ
Σ−δmq|∂m

t K̊|q[ηxW̊ − ηxZ̊ + 1
γ ηxΣK̊],

we get

Ėm,q
k =

ˆ
Σ−δmqηx|∂m

t K̊|q[(αδmq + 1−α
2 )Z̊ + (−αδmq + α) 1

2γΣK̊]

+ 1+α
2

ˆ
Σ−δmq|∂m

t K̊|qηxW̊ + α
2 (δmq − 1)

ˆ
Σ−δmq|∂m

t K̊|q[ηxW̊ − ηxZ̊ + 1
γ ηxΣK̊]

− q

ˆ
Σ−δmq|∂m

t K̊|q[ 12ηxW̊ + 1
2ηxZ̊ +mηxt]

− q

m∑
j=2

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t ηxt∂
m+1−j
t K̊

+ αq

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t Σt∂
m−j
t ∂xK̊

− 1
2q

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)ηx∂

j
t Z̊∂m−j

t K̊

− 1
2q

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t (ηxW̊ )t∂
m−j
t K̊

− 1
2q

∑
j1+j2+j3=m

j1≥1

(
m

j1j2j3

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j1−1

t ηxt∂
j2
t K̊∂j3

t Z̊.

Simplifying the first four terms on the righthand side of this equation gives us

Ėm,q
k = Dk

ˆ
Σ−δmq|∂m

t K̊|qηxW̊ + (Dk + αmq)

ˆ
Σ−δmqηx|∂m

t K̊|qZ̊

− α
2γmq

ˆ
Σ−δmqηx|∂m

t K̊|qΣK̊

− q

m∑
j=2

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t ηxt∂
m+1−j
t K̊

+ αq

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t Σt∂
m−j
t ∂xK̊

− 1
2q

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)ηx∂

j
t Z̊∂m−j

t K̊

− 1
2q

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t (ηxW̊ )t∂
m−j
t K̊
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− 1
2q

∑
j1+j2+j3=m

j1≥1

(
m

j1j2j3

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j1−1

t ηxt∂
j2
t K̊∂j3

t Z̊, (5.15)

where
Dk = Dk(m, q, α) := 1

2 + q[(α2 δ −
1+α
2 )m− 1

2 ]. (5.16)
Our lower bound (5.10) and the fact that q > 1 gives us the bounds

1
2 + 3

2mqmax(1, α) ≤ Dk < 1
2mqα(δ − 1). (5.17)

Since Dk > 0, the inequality (4.8) gives us

Ėm,q
k + 1

2Dk

ˆ
Σ−δmq|∂m

t K̊|q (5.18)

≤ 4DkEm,q
k + (BzDk + αmq(Bz +

3
2γBk))εEm,q

k

− q

m∑
j=2

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t ηxt∂
m+1−j
t K̊

+ αq

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t Σt∂
m−j
t ∂xK̊

− 1
2q

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)ηx∂

j
t Z̊∂m−j

t K̊

− 1
2q

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j−1

t (ηxW̊ )t∂
m−j
t K̊

− 1
2q

∑
j1+j2+j3=m

j1≥1

(
m

j1j2j3

)ˆ
Σ−δmq|∂m

t K̊|q−1sgn (∂m
t K̊)∂j1−1

t ηxt∂
j2
t K̊∂j3

t Z̊. (5.19)

Because
Ėm,q

k = −mqκEm,q
k +

(m+1)2q Ėm,q
k

(m!)qCmq
t

,

multiplying (5.19) by
( (m+1)2

m!Cm
t

)q
and using our a priori estimates from § 5.2 gives us

Ėm,q
k + 1

2Dk

[
(m+1)2∥Σ−δm∂m

t K̊∥L
q
x

m!Cm
t

]q
≤ [−mqκ+ (4 +Bzε)Dk + αmq(Bz +

3
2γBk))ε]E

m,q
k

+ q

[
(m+1)2∥Σ−δm∂m

t K̊∥L
q
x

m!Cm
t

]q−1

AkAzε
2
(
· · ·

)
,

where (
· · ·

)
≤ (2|1− α|+ 5α

γ )

m∑
j=2

(m+1)2(m+1−j)
j3(m+2−j)2 + 50α(1 + 1

γ )

m∑
j=1

(m+1)2(m+1−j)
j3(m+2−j)2

+ 3
2

m∑
j=1

(m+1)2

(j+1)2(m+1−j)2 + 5α
8γ

3δ

Ct

m∑
j=1

(m+1)2

j3(m+1−j)2

+ 1
3
(1+α)3δ

Ct

m−1∑
j=0

m+1
(j+1)2(m−j)2 + (|1− α|+ 5α

2γ )
3δAzε
Ct

∑
j1+j2+j3=m

j1≥1

(m+1)2

j31(j2+1)2(j3+1)2
.

Since (1 + α)3δ ≪ Ct(0), Azε < 2Bzε≪ 1, and
m∑
j=1

(m+1)2(m+1−j)
j3(m+2−j)2 = m+

m∑
j=2

(m+1)2(m+1−j)
j3(m+2−j)2 ≤ m+m(1 + 1

m )

m∑
j=2

m+1
j3(m+2−j) ≤ m+ 10m, (5.20)

it follows from our bounds in § B that (
· · ·

)
≤ (1 + α)mO(1) +O(1).
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Therefore,

Ėm,q
k + 1

2Dk

[
(m+1)2∥Σ−δm∂m

t K̊∥L
q
x

m!Cm
t

]q
≤ [−mqκ+ (4 +Bzε)Dk + αmq(Bz +

3
2γBk))ε]E

m,q
k

+ qm

[
(m+1)2∥Σ−δm∂m

t K̊∥L
q
x

m!Cm
t

]q−1

O((1 + α)AkAzε
2) + q

[
(m+1)2∥Σ−δm∂m

t K̊∥L
q
x

m!Cm
t

]q−1

O(AkAzε
2)

≤ [−mqκ+ (4 +Bzε)Dk + αmq(Bz +
3
2γBk))ε]E

m,q
k +mO((1 + α)AkAzε

3/2)q

+ (m+ 1)(q − 1)ε
q

2(q−1)

[
(m+1)2∥Σ−δm∂m

t K̊∥L
q
x

m!Cm
t

]q
+O(AkAzε

3/2)q. (5.21)

Since ε < 1 and q
q−1 > 1, this can be rewritten as

Ėm,q
k +

[
1
2Dk − (m+ 1)(q − 1)ε

1
2

][
(m+1)2∥Σ−δm∂m

t K̊∥L
q
x

m!Cm
t

]q
≤ [−mqκ+ (4 +Bzε)Dk + αmq(Bz +

3
2γBk))ε]E

m,q
k +mO((1 + α)AkAzε

3/2)q +O(AkAzε
3/2)q.

It now follows from the lower and upper bounds in (5.17) that

Ėm,q
k ≤ −mqmax(1, α)Em,q

k +mO((1 + α)AkAzε
3/2)q +O(AkAzε

3/2)q. (5.22)

This implies (see Lemma B.1) that for all t ∈ [0, T ] we have

Em,q
k (t) ≤ max

(
Em,q

k (0),
O((1 + α)AkAzε

3/2)q

qmax(1, α)
+
O(AkAzε

3/2)q

mqmax(1, α)

)
,

=⇒ Em,q
k (t)1/q ≤ max

(
Em,q

k (0)1/q,O((1 + α)1−
1
q AkAzε

3/2) +O(AkAzε
3/2)

)
.

Therefore, (5.13) and the fact that Ak < 2Bk, Az < 2Bz, now gives us

Em,q
k (t)1/q ≤ max

(
1

2mBk
,O(Bz(1 + α)ε

1
2 )
)
Bkε ∀ t ∈ [0, T ].

Sending q →∞ now yields

(m+ 1)2∥Σ−δm∂m
t K̊∥L∞

x

m!Cm
t

≤ max
(

1
2mBk

,O(Bz(1 + α)ε
1
2 )
)
Bkε, ∀ t ∈ [0, T ].

Since (1 + α)2B2
zε≪ 1, m ≥ 1, and Bk > 1, (5.12a) now follows.

To obtain the bound (5.12b) for t ∈ [0, T ] and thus conclude our bootstrap argument, it is best to bound the sum
Em,q

z +Em,q
k instead of dealing with Em,q

z on its own. The proof for bounding Em,q
z +Em,q

k , however, is essentially
the same as the computations that were just carried out to bound Em,k

q .
Taking ∂m

t of (4.4) yields the identity

ηx∂
m+1
t Z̊ = 2αΣ∂m

t ∂xZ̊ − [ 1−α
2 ηxW̊ + (1 + α)ηxZ̊ +mηxt − α

4γ ηxΣK̊]∂m
t Z̊ − α

4γΣ∂
m
t K̊ηxW̊

−
m∑
j=2

(
m

j

)
∂j−1
t ηxt∂

m+1−j
t Z̊ + 2α

m∑
j=1

(
m

j

)
∂j−1
t Σt∂

m−j
t ∂xZ̊

− 1+α
2 ηx

m−1∑
j=1

(
m

j

)
∂j
t Z̊∂m−j

t Z̊ + α
4γ ηxΣ

m∑
j=1

(
m

j

)
∂j
t K̊∂m−j

t Z̊

−
m∑
j=1

(
m

j

)[
1−α
2 ∂j−1

t (ηxW̊ )t∂
m−j
t Z̊ + α

4γΣ∂
j−1
t (ηxW̊ )t∂

m−j
t K̊ + α

4γ ∂
j−1
t ΣtηxW̊∂m−j

t K̊

]

+
∑

j1+j2+j3=m
j1≥1

(
m

j1j2j3

)
∂j1−1
t ηxt

(
− 1+α

2 ∂j2
t Z̊ + α

4γΣ∂
j2
t K̊

)
∂j3
t Z̊
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+ α
4γ ηx

∑
j1+j2+j3=m

j1≥1

(
m

j1j2j3

)
∂j1−1
t Σt∂

j2
t K̊∂j3

t Z̊

− α
4γ

∑
j1+j2+j3=m

j1,j3≥1

(
m

j1j2j3

)
∂j1−1
t Σt∂

j2
t K̊∂j3−1

t (ηxW̊ )t

+ α
4γ

∑
j1+j2+j3+j4=m

j1,j2≥1

(
m

j1j2j3j4

)
∂j1−1
t ηxt∂

j2−1
t Σt∂

j3
t K̊∂j4

t Z̊. (5.23)

Computations analogous to those performed above for Em,q
k give us the inequality

Ėm,q
z + 1

2Dz

[
(m+1)2∥Σ−δm∂m

t Z̊∥L
q
x

m!Cm
t

]q
≤ [−mqκ+ 4Dz +O((1 + α)(mq + 1)Bzε)]E

m,q
z

+ α
γ q

[
(m+1)2∥Σ−δm∂m

t Z̊∥L
q
x

m!Cm
t

]q−1[
(m+1)2∥Σ−δm∂m

t K̊∥L
q
x

m!Cm
t

]
+ qm

[
(m+1)2∥Σ−δm∂m

t Z̊∥L
q
x

m!Cm
t

]q−1

O((1 + α)A2
zε

2) + q

[
(m+1)2∥Σ−δm∂m

t Z̊∥L
q
x

m!Cm
t

]q−1

O(A2
zε

2), (5.24)

where Dz is defined as
Dz := 1−α

2 + q[(αδ − 1+α
2 )m− 1−α

2 ]. (5.25)
The constant Dz satisfies the bounds

− 1
2 (q − 1) + 5mqmax(1, α) ≤ Dz < mqαδ. (5.26)

Adding (5.21) and (5.24) together gives us

Ėm,q
k + Ėm,q

z +

[
1
2Dk − α

γ − (m+ 1)(q − 1)ε
1
2

][
(m+1)2∥Σ−δm∂m

t K̊∥L
q
x

m!Cn
t

]q
+

[
1
2Dz − (q − 1)(αγ + (m+ 1)ε

1
2 )

][
(m+1)2∥Σ−δm∂m

t Z̊∥L
q
x

m!Cm
t

]q
≤ [−mqκ+ 4max(Dk, Dz) +O((1 + α)(mq + 1)Bzε)]

(
Em,q

k + Em,q
z

)
+ 2mO((1 + α)A2

zε
3/2)q + 2O(A2

zε
3/2)q.

Using (5.17), (5.26) , and (5.10) gives us

Ėm,q
k + Ėm,q

z ≤ −mqmax(1, α)
(
Em,q

k + Em,q
z

)
+ 2mO((1 + α)A2

zε
3/2)q + 2O(A2

zε
3/2)q.

From here, carrying out the same ODE comparison argument as before and then sending q →∞ gives us

max

(
(m+ 1)2∥Σ−δm∂m

t K̊∥L∞
x

m!Cm
t

,
(m+ 1)2∥Σ−δm∂m

t Z̊∥L∞
x

m!Cm
t

)
≤ Bzε.

□

5.4. Bounds on the remaining derivatives. It follows from the definition (5.10) of κ that Ct satisfies

Ct(t) ≤ Ct(0)e
κT∗ < Ct(0)e

2(1+ε
1
2 )(2+5δ)

for all t ∈ [0, T∗). Therefore, if we define the constant

Ct := Ct(0)e
(11+log 3)δ+5, (5.27)

then
Ct > 3δCt(t) (5.28)

for all t ∈ [0, T∗). It follows from Proposition 5.4 and (4.7) that

(m+ 1)2∥∂m
t K̊∥L∞

x

m!C
m

t

≤ Bkε,
(m+ 1)2∥∂m

t Z̊∥L∞
x

m!C
m

t

≤ Bzε, (5.29)
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for all t ∈ [0, T∗), 0 ≤ m ≤ 2n+ 1.

Proposition 5.5. Suppose the hypotheses of Proposition 5.4 are satisfied, and additionally Cx is a constant satisfying

Cx ≫ 1, αCx ≫ Ct.

Then if (1 + α)Bzε≪ 1 the following bounds hold for all t ∈ [0, T∗) and |β| ≤ 2n+ 1:

(|β|+ 1)2∥∂βK̊∥L∞
x

|β|!Cβx

x C
βt

t

≤ Bkε,
(|β|+ 1)2∥∂βZ̊∥L∞

x

|β|!Cβx

x C
βt

t

≤ Bzε, (5.30a)

(|β|+ 1)2∥∂βΣt∥L∞
x

|β|!Cβx

x C
βt

t

≤ 4αBzε,
(|β|+ 1)2∥∂β(Σ−1)t∥L∞

x

|β|!Cβx

x C
βt

t

≤ 4αBzε, (5.30b)

(|β|+ 1)2∥∂βηx∥L∞
x

|β|!Cβx

x C
βt

t

≤ 3,
(|β|+ 1)2∥∂β(ηxW̊ )∥L∞

x

|β|!Cβx

x C
βt

t

≤ 4
3 , (5.30c)

(|β|+ 1)2∥∂βΣx∥L∞
x

|β|!Cβx

x C
βt

t

≤ 1,
(|β|+ 1)2∥∂β(Σ−1)x∥L∞

x

|β|!Cβx

x C
βt

t

≤ 10. (5.30d)

Proof. We proceed by induction on βx.
Base Case: When βx = 0, (5.30a) is implied by (5.29). The rest of the inequalities (5.30b)–(5.30d) in the case

βx = 0 now follow by applying the a priori estimates of § 5.2 with Ak = Bk, Az = Bz, δ = 0, and Ct = Ct.
Inductive Step: Fix m with 0 ≤ m ≤ 2n and suppose that the estimates (5.30a) - (5.30d) are true for choices of β

with |β| ≤ 2n+ 1 and βx ≤ m.
We first prove that (5.30a) is true for choices of β with |β| ≤ 2n + 1 and βx = m + 1. This needs to be done

first, because it will be used to prove that the rest of the bounds (5.30b) - (5.30d) hold for β with |β| ≤ 2n + 1 and
βx = m+ 1.

Fix a choice of β with |β| ≤ 2n and βx = m. We will prove that (5.30a) is true for β + ex. To do this, take ∂β of
(5.9a) to obtain

α∂β+exK̊ = Σ−1ηx∂
β+etK̊ +

∑
jex+γ2+γ3=β

j≥1

(
β

jexγ2γ3

)
∂j−1
x (Σ−1)x∂

γ2ηx∂
γ3+etK̊

+
∑

γ1+γ2+γ3=β
γ1≥et

(
β

γ1γ2γ3

)
∂γ1−et(Σ−1)t∂

γ2ηx∂
γ3+etK̊ + 1

2Σ
−1

∑
γ≤β

(
β

γ

)
∂γK̊∂β−γ(ηxW̊ )

+ 1
2Σ

−1
∑

γ1+γ2+γ3=β

(
β

γ1γ2γ3

)
∂γ1ηx∂

γ2K̊∂γ3Z̊

+ 1
2

∑
jex+γ2+γ3=β

j≥1

(
β

jexγ2γ3

)
∂j−1
x (Σ−1)x∂

γ2K̊∂γ3(ηxW̊ ) + 1
2

∑
jex+γ2+γ3+γ4=β

j≥1

(
β

jexγ2γ3γ4

)
∂j−1
x (Σ−1)x∂

γ2ηx∂
γ3K̊∂γ4Z̊

+ 1
2

∑
γ1+γ2+γ3=β

γ1≥et

(
β

γ1γ2γ3

)
∂γ1−et(Σ−1)t∂

γ2K̊∂γ3(ηxW̊ ) + 1
2

∑
jex+γ2+γ3+γ4=β

γ1≥et

(
β

γ1γ2γ3γ4

)
∂γ1−et(Σ−1)t∂

γ2ηx∂
γ3K̊∂γ4Z̊.

Applying our inductive hypothesis and Lemma B.2 gives us

α
(|β|+ ex|+ 1)2∥∂βK̊∥L∞

x

|β + ex|!C
βx+1

x C
βt

t Bkε
≤ 9 Ct

Cx
+ 30 Ct

C
2
x

|β|+2
|β|+1

∑
j1+j2+j3=|β|

j1≥1

|β|+2
j31(j2+1)2(j3+1)2

+ 1
Cx

|β|+2
|β|+1

[
24αBzε

∑
j1+j2+j3=|β|

j1≥1

|β|+2
j31(j2+1)2(j3+2)

+ 2

|β|∑
j=0

|β|+2
(j+1)2(|β|+1−j)2 + 9

2Bzε
∑

j1+j2+j3=|β|

|β|+2
(j1+1)2(j2+1)2(j3+1)2

]
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+ 1

C
2
x

|β|+2
|β|+1

[
20
3

∑
j1+j2+j3=|β|

j1≥1

|β|+2
j31(j2+1)2(j3+1)2

+ 15Bzε
∑

j1+j2+j3+j4=|β|
j1≥1

|β|+2
j31(j2+1)2(j3+1)2(j4+1)2

]

+ 4αBzε
CxCt

|β|+2
|β|+1

[
4
3

∑
j1+j2+j3=|β|

j1≥1

|β|+2
j31(j2+1)2(j3+1)2

+ 3Bzε
∑

j1+j2+j3+j4=|β|
j1≥1

|β|+2
j31(j2+1)2(j3+1)2(j4+1)2

]
.

The computations from § B now imply that

(|β|+ ex|+ 1)2∥∂βK̊∥L∞
x

|β + ex|!C
βx+1

x C
βt

t Bkε
≲ 1

αCx
[Ct +

Ct

Cx
+ 1 + (1 + α)Bzε+

1+Bzε
Cx

+ αBzε(1+Bzε)

Ct
].

If αCx ≫ Ct and Cx ≫ 1, then the righthand side is less than 1, which proves (5.30a) for ∂β+exK̊. The bound on
∂β+exZ̊ can be proven in an identical manner, so the inductive step for (5.30a) is complete.

We next prove (5.30b) is true for β with |β| ≤ 2n+1 and βx = m+1. Pick β with |β| ≤ 2n+1 and βx = m+1, and
take ∂β of (4.2a). Using the the inductive hypothesis and the fact that (5.30a) has been proven already for multi-indices
with βx ≤ m+ 1, our hypotheses on Ct, Cx and ε imply that

(|β|+ 1)2∥∂βΣt∥L∞
x

|β|!Cβx

x C
βt

t αBzε
≤ 3 + 9

2γ
Bk

Bz
+O(αBzε

Ct
+ 1

Cx
) < 4,

(|β|+ 1)2∥∂β(Σ−1)t∥L∞
x

|β|!Cβx

x C
βt

t αBzε
≤ 3 + 1

2γ
Bk

Bz
+O(αBzε

Ct
+ 1

Cx
) < 4.

Now we prove the inequalities (5.30c) are true for β with |β| ≤ 2n + 1 and βx = m + 1. We will do this via a
bootstrap argument. Fix a time T ∈ [0, T∗), and suppose that

(|β|+ 1)2∥∂βηx∥L∞
x

|β|!Cβx

x C
βt

t

≤ 4, and
(|β|+ 1)2∥∂β(ηxW̊ )∥L∞

x

|β|!Cβx

x C
βt

t

≤ 2,

for all t ∈ [0, T ] and all β with|β| ≤ 2n + 1, βx = m + 1 and. Taking ∂β of (4.2d) and (4.2e) and applying our
bootstrap hypotheses, our inductive hypotheses, and the fact that (5.30a) has already been proven for multi-indices
with βx ≤ m+ 1, we arrive at

(|β|+ 1)2∥∂βηxt∥L∞
x

|β|!Cβx

x C
βt

t

≤ 1+α
2

(|β|+ 1)2∥∂β(ηxW̊ )∥L∞
x

|β|!Cβx

x C
βt

t

+O((1 + α)Bzε) ≤ 1+α
2 (2 +O(Bzε)),

(|β|+ 1)2∥∂β(ηxW̊ )t∥L∞
x

|β|!Cβx

x C
βt

t

≲ Bzε,

for all t ∈ [0, T ] and β with |β| ≤ 2n+ 1, βx = m+ 1. At time t = 0, Proposition 5.1 and (5.2) imply that

(|β|+ 1)2∥∂β(ηxW̊ )∥L∞
x

|β|!Cβx

x C
βt

t

≤ 1
2

for all β with 1 ≤ |β| ≤ 2n+ 1. Now the identities

∂βηx =

ˆ t

0

∂βηxt ds,

∂β(ηxW̊ ) = ∂β(ηxW̊ )(·, 0) +
ˆ t

0

∂β(ηxW̊ )t ds

together with (4.12a) and our hypotheses on ε imply

(|β|+ 1)2∥∂βηx∥L∞
x

|β|!Cβx

x C
βt

t

≤ (1 + ε
1
2 )(2 +O(Bzε)) < 3,

(|β|+ 1)2∥∂β(ηxW̊ )∥L∞
x

|β|!Cβx

x C
βt

t

≤ 1.

This completes our bootstrap argument and proves (5.30c) for β with |β| ≤ 2n+ 1 and βx ≤ m+ 1.
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From here, one can prove that (5.30d) is true for ∂βΣx with |β| ≤ 2n+1 and βx = m+1 by applying ∂β to (4.2b)
and using the inductive hypotheses along with the fact that we have already proven (5.30a) for β with |β| ≤ 2n + 1
and βx = m+ 1.

Lastly, our bounds on ∂β(Σ−1)x can now be proven by taking ∂β of the identity (5.8) and using the fact that our
bounds on ∂βΣx have been proven for β with |β| ≤ 2n+ 1 and βx ≤ m+ 1. □

Corollary 5.6. Under the hypotheses of the previous proposition, we also have that

(|β|+ 1)2∥∂βΣ∥L∞
x

|β|!Cβx

x C
βt

t

≤ 3, (5.31a)

(|β|+ 1)2∥∂β(ηxW̊ )t∥L∞
x

|β|!Cβx

x C
βt

t

≤ 5
8Bzε, (5.31b)

(|β|+ 1)2∥∂βηxt − 1+α
2 ∂β(ηxW̊ )∥L∞

x

|β|!Cβx

x C
βt

t

≤ 20max(1, α)Bzε, (5.31c)

for |β| ≤ 2n+ 1.

Proof. The inequality (5.31a) follows from (4.7), (5.30b), (5.30d), and our hypotheses on Ct and Cx. The inequality
(5.31b) follows from taking ∂β of (4.2e) and applying the bounds from Proposition 5.5.

Taking ∂β of (4.2d) and applying (5.30a), (5.30c), (5.31a), and Lemma B.3 gives us

(|β|+ 1)2∥∂βηxt − 1+α
2 ∂β(ηxW̊ )∥L∞

x

|β|!Cβx

x C
βt

t Bzε
≤ 3|1−α|

2

|β|∑
j=0

(|β|+1)2

(j+1)2(|β|+1−j)2 + 9α
2γ

Bk

Bz

∑
j1+j2+j3=|β|

(|β|+1)2

(j1+1)2(j2+1)2(j3+1)2

≤ 3|1−α|
2 · 4π

2

3 + 9α
2γ ·

1
3e21 ·

3π4

4

= 2π2|1− α|+ 9π4α
8(2α+1)e21

< 20max(1, α).

□

Corollary 5.7. Under the hypotheses of the previous propositions, we have that

∥∂i
xηxt − 1+α

2 ∂i+1
x w0∥L∞

x
≤ 21max(1, α) i!

(i+1)2C
i

xBzε (5.32a)

for all t ∈ [0, T∗), i = 0, . . . , 2n+ 1,

∥∂i
xηx − (δi0 +

1+α
2 t∂i+1

x w0)∥L∞
x
≤ 21max(1, α)t i!

(i+1)2C
i

xBzε, (5.32b)

for all t ∈ [0, T∗], i = 0, . . . , 2n+ 1, and

∥∂i
x∂tηxt∥L∞

x
≤ 21(1 + α) i!

i+1C
i

xBzε, (5.32c)

for t ∈ [0, T∗), i = 0, . . . , 2n.

Proof. Since

∂i
xηxt − 1+α

2 ∂i+1
x w0 = ∂i

xηxt − 1+α
2 ∂i

x(ηxW̊ )− 1+α
2

1
2γ ∂

i
x(σ0k

′
0) +

1+α
2

ˆ t

0

∂i
x(ηxW̊ )t ds,

it follows from Corollary 5.6 that for i = 0, . . . , 2n+ 1 we have

(i+1)2∥∂i
xηxt−

1+α
2 ∂i+1

x w0∥L∞
x

i!C
i
x

≤ 20max(1, α)Bzε+
1+α
4

(i+1)2∥∂i
x(σ0k

′
0)∥L∞

x

i!C
i
x

+ 1+α
2 T∗

5α
4γBzε.

Since Cx > Ct > 3δCt(0) > 6δC0, it follows (see the computations in the proof of Proposition 5.1) that
(i+1)2∥∂i

x(σ0k
′
0)∥L∞

x

i!C
i
x

< ε.

Therefore, we arrive at

(i+1)2∥∂i
xηxt−

1+α
2 ∂i+1

x w0∥L∞
x

i!C
i
x

≤ max(1, α)Bzε[20 +
1

2Bz
+ 5

8 (1 + ε
1
2 )] < 21max(1, α)Bzε.
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This bound implies (5.32a).
To obtain (5.32b), integrate (5.32a) in time. The last inequality (5.32c) is a direct application of (5.31b) and

(5.31c). □

6. STABILITY ESTIMATES WITH RESPECT TO PERTURBATIONS OF w0

We will now quantify the stability of solutions with initial data in An(ε, C0) with respect to perturbations in w0.
Fix a specific choice of data (w0, z0, k0) ∈ An(ε, C0). In this section, we will consider initial data (w0, z0, k0) of the
form

w0 = w0 + λw̃0 , z0 = z0 , k0 = k0 ,

where w̃0 ∈W 2n+2,∞(T) satisfies

∥w̃0∥L∞
x
≤ L,

∥∂i+1
x w̃0∥L∞

i!
≤ LCi

0 ∀ i = 0, . . . , 2n+ 1,

for some positive constant L, and λ is in a small enough neighborhood of 0 that (w0, z0, k0) is still in An(ε, C0) for
all λ considered. Such initial data now defines a family of solutions K̊ = K̊(x, t, λ), Z̊ = Z̊(x, t, λ), etc. with initial
data in An(ε, C0). Our goal is the estimate the partial derivatives (ηxW̊ )λ, Z̊λ, K̊λ,Σλ, etc. and their derivatives in
space x and time t. In the end, we will obtain the estimates stated in § 6.4, which should be viewed as extensions to
the bounds obtained earlier in § 5.4. These estimates will be used in § 8.4. The results in this section and their proofs
will be essentially analogous to those found in § 5, with only minor differences. For this reason, less detail will be
provided; however, the key differences between the proofs in this section and the corresponding proofs in the previous
section will be highlighted.

Taking ∂λ of (4.5) gives us the system

∂λΣt = αΣλ(−Z̊ + 1
γΣK̊)− αΣZ̊λ + α

2γΣ
2K̊λ, (6.1a)

∂ληxt =
1+α
2 (ηxW̊ )λ + ∂ληx(

1−α
2 Z̊ + α

2γΣK̊) + α
2γ ηxΣλK̊ + 1−α

2 ηxZ̊λ + α
2γ ηxΣK̊λ, (6.1b)

∂λ(ηxW̊ )t =
α
4γ (ΣλK̊ +ΣK̊λ)(ηxW̊ + ηxZ̊) + α

4γΣK̊[(ηxW̊ )λ + ∂ληxZ̊ + ηxZ̊λ], (6.1c)

∂λΣx = 1
2 (ηxW̊ )λ − 1

2∂ληxZ̊ −
1
2ηxZ̊λ + 1

2γ [∂ληxΣK̊ + ηxΣλK̊ + ηxΣK̊λ], (6.1d)

ηx∂tK̊λ = αΣ∂xK̊λ − 1
2K̊λ[ηxW̊ + ηxZ̊]− ∂ληx∂tK̊ + αΣλ∂xK̊ (6.1e)

− 1
2ηxK̊Z̊λ − 1

2K̊[(ηxW̊ )λ + ∂ληxZ̊],

ηx∂tZ̊λ = 2αΣ∂xZ̊λ + Z̊λ[− 1−α
2 ηxW̊ − (1 + α)ηxZ̊ + α

4γ ηxΣK̊] (6.1f)

− ∂ληx∂tZ̊ + 2αΣλ∂xZ̊ + α
4γ K̊λΣ(ηxZ̊ − ηxW̊ )

+ Z̊[− 1−α
2 (ηxW̊ )λ − 1+α

2 ∂ληxZ̊ + α
4γ (∂ληxΣ+ ηxΣλ)K̊].

Mulitplying (6.1e) and (6.1f) by Σ−1 and rearranging gives us

α∂xK̊λ = ηxΣ
−1∂tK̊λ + 1

2K̊λΣ
−1[ηxW̊ + ηxZ̊] + ∂ληxΣ

−1∂tK̊ − αΣλΣ
−1∂xK̊ (6.1g)

+ 1
2ηxK̊Σ−1Z̊λ + 1

2Σ
−1K̊[(ηxW̊ )λ + ∂ληxZ̊],

2α∂xZ̊λ = ηxΣ
−1∂tZ̊λ − Z̊λ[− 1−α

2 Σ−1(ηxW̊ )− (1 + α)ηxΣ
−1Z̊ + α

4γ ηxK̊] (6.1h)

+ ∂ληxΣ
−1∂tZ̊ − 2αΣλΣ

−1∂xZ̊ − α
4γ K̊λ(ηxZ̊ − ηxW̊ )

− Z̊[− 1−α
2 Σ−1(ηxW̊ )λ − 1+α

2 ∂ληxΣ
−1Z̊ + α

4γ (∂ληx + ηxΣλΣ
−1)K̊].

Notice that ∂λ(Σ−1) does not appear in any of the above equations; for this reason, we will not have to estimate
∂λ(Σ

−1) or any of its derivatives.

6.1. Estimates at time zero.

Proposition 6.1. Let Cx and Ct and be constants satisfying
• Cx ≥ 2e3C0,
• Cx ≫ 1,



AN INFINITE HIERARCHY OF HÖLDER CUSPS FOR 1D EULER 33

• Ct ≫ (1 + α),
• αCx ≪ Ct.
Then if (1 + α)ε≪ 1 we have the following bounds at time t = 0 for all multi indices β with |β| ≤ 2n:

(|β|+ 1)2∥∂βK̊λ∥L∞
x

|β|!LCβx
x Cβt

t

≤ ε,
(|β|+ 1)2∥∂βZ̊λ∥L∞

x

|β|!LCβx
x Cβt

t

≤ ε,

(|β|+ 1)2∥∂β∂λΣt∥L∞
x

|β|!LCβx
x Cβt

t

≤ 7αε,
(|β|+ 1)2∥∂β∂ληxt∥L∞

x

|β|!LCβx
x Cβt

t

≤ (1 + α),

(|β|+ 1)2∥∂β∂λ(ηxW̊ )t∥L∞
x

|β|!LCβx
x Cβt

t

≤ 8ε.

Proof. Our proof will be almost identical to the proof of Proposition 5.1. We will do induction on βt.
Base Case: Recall from the proof of Proposition 5.1 that at time t = 0

Σ = σ0, ηx = 1, ηxW̊ = w′
0 − 1

2γσ0k
′
0, Z̊ = z′0 +

1
2γσ0k

′
0,

K̊ = k′0, Σt = −ασ0z
′
0 ηxt =

1+α
2 w′

0 +
1−α
2 z′0, (ηxW̊ )t =

α
4γσ0k

′
0(w

′
0 + z′0).

Taking ∂λ of these equations gives

Σλ = 1
2 w̃0 ∂ληx = 0, (ηxW̊ )λ = w̃′

0 − 1
4γ w̃0k

′
0, Z̊λ = 1

4γ w̃0k
′
0,

K̊λ = 0, ∂λΣt = −α
2 w̃0z

′
0 ∂ληxt =

1+α
2 w̃′

0, ∂λ(ηxW̊ )t =
α
4γ [

1
2 w̃0k

′
0(w

′
0 + z′0) + σ0k

′
0w̃

′
0],

(6.2)
at time t = 0. Now take pmx of these equations for m = 0, . . . , 2n and perform computations analogous to those in the
βt = 0 step of the proof of Proposition 5.1 to conclude our base case. One can also compute the analog of (5.2),

(m+ 1)2∥∂m
x (ηxW̊ )λ∥L∞

x

m!LCmx
≤ 1 + ε

4γ ,

to use in the inductive step.
Inductive Step: The inductive step will also be analogous to the inductive step in the proof of Proposition 5.1: fix

0 ≤ m ≤ 2n− 1, and suppose our result is true for all multi indices β with |β| ≤ 2n and βt ≤ m.
We first do the inductive step for K̊λ and Z̊λ. Let |β| ≤ 2n − 1, βt = m. Take the identities for ∂β+etK̊ and

∂β+etZ̊ used in the proof of Proposition 5.1, apply ∂λ to each of these equations, and use (6.2) to simplify. From here,
use the inductive hypotheses and (5.1) to obtain bounds on ∂β+etK̊λ and ∂β+etZ̊λ via the same types of computations
as used in the proof of Proposition 5.1. Because Cx ≫ 1, Ct ≫ αCx, and Ct ≫ 1 + α, the computations go through
just like before.

The inductive step for the remaining three inequalities can be done using (5.1) and our inductive hypotheses in
conjunction with our bounds on ∂βK̊λ and ∂βZ̊λ in a manner completely analogous to the corresponding steps in the
proof of Proposition 5.1. □

6.2. A Priori estimates for time derivatives. In this section, we will fix a time T ∈ (0, T∗], a positive function
Ct : [0, T∗)→ R+, a constant δ ≥ 0, and constants A,M satisfying

A ≥ 10Bz, M ≥ max(1, 5L),

and assume that

(m+ 1)2∥Σ−δm∂m
t K̊λ∥L∞

x

m!MCm
t

≤ Aε,
(m+ 1)2∥Σ−δm∂m

t Z̊λ∥L∞
x

m!MCm
t

≤ Aε, (6.3)

for all t ∈ [0, T ], 0 ≤ m ≤ 2n. We will furthermore assume that

(m+ 1)2∥Σ−δm∂m
t K̊∥L∞

x

m!Cm
t

≤ Bkε,
(m+ 1)2∥Σ−δm∂m

t Z̊∥L∞
x

m!Cm
t

≤ Bzε, (6.4)

for all t ∈ [0, T ], 0 ≤ m ≤ 2n + 1. Note that the hypotheses (6.4) imply that the a priori estimates of § 5.2 all hold
with Ak = Bk, Az = Bz for these choices of Ct and δ. We will use this fact throughout this subsection and the next.
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Proposition 6.2. If (1 + α)Bzε≪ 1 and Aε≪ 1, then for all t ∈ [0, T ] we have

∥Σλ∥L∞
x

M
≤ 1

9 ,
∥∂ληx∥L∞

x

M
≤ 1,

∥(ηxW̊ )λ∥L∞
x

M
≤ 3

4 . (6.5)

Proof. (6.1a) gives us a Duhamel formula for Σλ from which it follows that

|Σλ(x, t)| ≤ 1
2 |w̃0(x)|eO(αtBzε) + αtMAε[3 + 9

2γ ]

for all (x, t) ∈ T× [0, T ]. Since M ≥ max(1, 5L), if Bzε and Aε are small enough we have ∥Σ∥L∞
x
≤ M

9 .
The remaining bounds follow from a bootstrap argument. Let T ′ ∈ [0, T ] and assume that

∥∂ληx∥L∞
x

M
≤ 2,

∥(ηxW̊ )λ∥L∞
x

M
≤ 3

4 + ε,

for all t ∈ [0, T ′]. Then using (6.1b), (6.1c), and the equations

∂ληx =

ˆ t

0

∂ληxt ds, (ηxW̊ )λ = w̃′
0 − 1

4γ w̃0k
′
0 +

ˆ t

0

∂λ(ηxW̊ )t ds

allows us to prove (6.5) for t ∈ [0, T ′], which concludes our bootstrap argument. □

Proposition 6.3. If the hypotheses of the previous proposition are satisfied, and Ct(0), ε also satisfy

(1 + α)3δ ≪ Ct(0), (1 + α)Bzε≪ 1,

then
(m+ 1)2∥Σ−δm∂m

t ∂λΣt∥L∞
x

m!MCm
t

≤ 8αAε,

(m+ 1)2∥Σ−δm∂m
t ∂ληxt∥L∞

x

m!MCm
t

≤ 1+α
2 (δ0m + 9Aε),

(m+ 1)2∥Σ−δm∂m
t ∂λ(ηxW̊ )t∥L∞

x

m!MCm
t

≤ Aε,

(6.6)

for all t ∈ [0, T ], 0 ≤ m ≤ 2n.

Proof. The proof of these estimates is analogous to the proof of Proposition 5.2: do induction on m; at each step, take
∂m
t of the identities (6.1), apply (6.3), the inductive hypotheses, and the estimates from § 5.2; then use the bounds

from § B and the fact that (1+α)3δ

Ct
is sufficiently small to conclude. □

Corollary 6.4. Under the hypotheses of the previous proposition, we have

(m+ 1)2∥Σ−δm∂m
t ∂ληx∥L∞

x

m!MCm
t

≤ 1,
(m+ 1)2∥Σ−δm∂m

t (ηxW̊ )λ∥L∞
x

m!Cm
t

≤ 3
4 ,

(m+ 1)2∥Σ−δm∂m
t ∂λΣx∥L∞

x

m!MCm
t

≤ 1,

for all t ∈ [0, T ], 0 ≤ m ≤ 2n and

(m+ 1)2∥Σ−δm∂m−1
t ∂xK̊λ∥L∞

x

m!MCm
t

≤ 10
α Aε,

(m+ 1)2∥Σ−δm∂m−1
t ∂xZ̊λ∥L∞

x

m!MCm
t

≤ 5
αAε,

for all t ∈ [0, T ], 1 ≤ m ≤ 2n.

Proof. This follows from Proposition 6.3 the same way that Corollary 5.3 follows from Proposition 5.2. □

6.3. Energy estimates for time derivatives.

Proposition 6.5. Define the constant
Bλ := 5

2 · 9
3

min(1,α) · e31. (6.7)

Let δ, κ be as in (5.10), and let Ct and Ct be defined as in (5.11) and (5.27) with these values of δ, κ. If Ct(0) and M
satisfy

M ≥ 5L, Ct(0)≫ (1 + α)3δ, Ct(0)≫ αC0

and ε satisfies

(1 + α)2B2
zε≪ 1, BλCtBzε≪ 1,



AN INFINITE HIERARCHY OF HÖLDER CUSPS FOR 1D EULER 35

then
(m+ 1)2∥Σ−δm∂m

t K̊λ∥L∞
x

m!MCm
t

≤ BλCtBzε,
(m+ 1)2∥Σ−δm∂m

t Z̊λ∥L∞
x

m!MCm
t

≤ BλCtBzε, (6.8)

for all t ∈ [0, T∗), 0 ≤ m ≤ 2n.

Proof. The proof of these estimates is analogous to the energy estimates in the proofs of Proposition 4.1 and Propo-
sition 5.4. We will detail the keys steps of the proof and highlight the slight differences with the previous energy
estimates. We proceed as before with a bootstrap argument. Pick a time T ∈ [0, T∗) and constant A satisfying

BλCtBz < A < 4
3BλCtBz,

and assume that

(m+ 1)2∥Σ−δm∂m
t K̊λ∥L∞

x

m!MCm
t

≤ Aε,
(m+ 1)2∥Σ−δm∂m

t Z̊λ∥L∞
x

m!MCm
t

≤ Aε,

for all t ∈ [0, T ], 0 ≤ m ≤ 2n. Since δ and κ satisfy (5.10), if Ct(0) is chosen large enough and ε is chosen
small enough such that they satisfy the hypotheses of Proposition 5.4, we can conclude that (6.4) holds. Suppose that
BλCtBzε is small enough that the hypotheses of Proposition 6.2 are satisfied with our choice of A. If (1 + α)Bzε is
small enough, these bootstrap hypotheses now imply that we can apply the a priori estimates of § 6.2 to our solution
with our chosen values of A and M . Just like in the proof of Proposition 5.4, our hypotheses on Ct(0),M , and ε allow
us to apply Proposition 6.1 with Ct := 1

22
−δCt(0) and get

(m+ 1)2∥Σ−δm∂m
t K̊λ∥L∞

x

m!MCt(0)m
≤ 1

5
ε
2m ,

(m+ 1)2∥Σ−δm∂m
t Z̊λ∥L∞

x

m!MCt(0)m
≤ 1

5
ε
2m , (6.9)

at time t = 0 for all 0 ≤ m ≤ 2n.
For m = 0, . . . , 2n define the energies

Ẽm,q
k :=

{ ´
T Σ

−q 3
min(1,α) ηx|K̊λ|q dx m = 0´

T Σ
−δqmηx|∂m

t K̊λ|q dx 1 ≤ m ≤ 2n
, Ẽm,q

z :=

{ ´
T Σ

−q 3
min(1,α) ηx|Z̊λ|q dx m = 0´

T Σ
−δqmηx|∂m

t Z̊λ|q dx 1 ≤ m ≤ 2n
,

and for 1 ≤ m ≤ 2n define the energies

Ẽm,q
k :=

(m+ 1)2qẼm,q
k

(m!)qMqCmq
t

, Ẽm,q
z :=

(m+ 1)2qẼm,q
z

(m!)qMqCmq
t

.

We will prove (6.8) for t ∈ [0, T ] separately in the case m = 0 and the case 1 ≤ m ≤ 2n, and since this strictly
improves upon our bootstrap assumptions our bootstrap argument will be complete.

Case 1 (m = 0): We will use our bootstrap hypotheses and the estimates from § 5 to perform energy estimates on
Ẽ0,qk , Ẽ0,qz similar to those in the proof of Proposition 4.1. Since the parameter δ does not appear in Ẽ0,qk , Ẽ0,qz , let us
abuse notation and define δ := 3

min(1,α) just for the m = 0 case.

Just like in the proof of Proposition 4.1, taking the time derivative of Ẽ0,qk and using our identities (6.1) gives us

˙̃E
0,q

k = [α2 δq −
q−1
2 ]

ˆ
Σ−δq|K̊λ|qηxW̊ + [α2 δq −

q−1
2 ]

ˆ
Σ−δqηx|K̊λ|qZ̊

+ q

ˆ
Σ−δq|K̊λ|q−1sgn (K̊λ)[−∂ληx∂tK̊ + α∂λΣ∂xK̊]

− q

ˆ
Σ−δq|K̊λ|q−1sgn (K̊λ)

1
2ηxK̊Z̊λ

− q

ˆ
Σ−δq|K̊λ|q−1sgn (K̊λ)

1
2K̊[(ηxW̊ )λ + ∂ληxZ̊],

˙̃E
0,q

z = [αδq − 1−α
2 (q − 1)]

ˆ
Σ−δq|Z̊λ|qηxW̊

+

ˆ
Σ−δqηx|Z̊λ|q

[
− 1+α

2 (q − 1)Z̊ + [αδq + α( q2 − 1)] 1
2γΣK̊]

+ q

ˆ
Σ−δqηx|Z̊λ|q−1sgn (Z̊λ)[−∂ληx∂tZ̊ + 2α∂λΣ∂xZ̊]
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+ q

ˆ
Σ−δqηx|Z̊λ|q−1sgn (Z̊λ)

α
4γ K̊λΣ(ηxZ̊ − ηxW̊ )

+ q

ˆ
Σ−δqηx|Z̊λ|q−1sgn (Z̊λ)Z̊[− 1−α

2 (ηxW̊ )λ − 1+α
2 ∂ληxZ̊]

+ q

ˆ
Σ−δqηx|Z̊λ|q−1sgn (Z̊λ)

α
4γ K̊Z̊(∂ληxΣ+ ηx∂λΣ).

The bounds (5.7) and (5.29) tell us that

∥∂xK̊∥L∞
x
≤ 5

2αCtBkε, ∥∂xZ̊∥L∞
x
≤ 5

4αCtBzε,

∥∂tK̊∥L∞
x
≤ 1

4CtBkε, ∥∂tZ̊∥L∞
x
≤ 1

4CtBzε.
(6.10)

Therefore, applying (4.8) as in the proof of Proposition 4.1 gives us

˙̃E
0,q

k +

[
1
2 [

α
2 δq −

q−1
2 ]− (q − 1)(Bk

Bz
+ 3

2Bkε)

]
∥Σ−δK̊λ∥qLq

x
− 3

2Bkε∥Σ−δZ̊λ∥qLq
x

≤ (4 +Bzε)[
α
2 δq −

q−1
2 ]Ẽ0,qk +

(
3δMBz(

19
36Ct +

3
8 + 1

2Bzε)ε
)q
,

˙̃E
0,q

z − α
γ (1 +

9
4Bzε)∥Σ−δK̊λ∥qLq

x
+

[
1
2 [αδq −

q−1
2 ]− (q − 1)[αγ (1 +

9
4Bzε) +

1
2 ]

]
∥Σ−δZ̊λ∥qLq

x

≤
(
4[αδq − 1−α

2 (q − 1)] + 1+α
2 (q − 1)Bzε+

3
2γ [αδq + α( q2 − 1)]Bkε

)
Ẽ0,qz

+

(
2 · 3δMBz(

19
36Ct +

3|1−α|
8 + 1+α

2 Bzε+
5α
6γBkε)ε

)q

.

Since Ct > e5Ct(0)≫ 1 + α, it follows that if (1 + α)Bzε is small enough then
19
36Ct +

3
8 + 1

2Bzε <
2
3Ct,

2( 1936Ct +
3|1−α|

8 + 1+α
2 Bzε+

5α
6γBkε) <

4
3Ct.

Adding our inequalities together and using our choice δ = 3
min(1,α) implies that

˙̃E
0,q

k +
˙̃E
0,q

z ≤ 15max(1, α)q(Ẽ0,qk + Ẽ0,qz ) + ( 233
3

min(1,α)MCtBzε)
q + ( 433

3
min(1,α)MCtBzε)

q.

ODE comparison now gives us

(Ẽ0,qk (t) + Ẽ0,qz (t)) ≤
[
(Ẽ0,qk (0) + Ẽ0,qz (0)) +

( 233
3

min(1,α)MCtBzε)
q + ( 433

3
min(1,α)MCtBzε)

q

15max(1, α)q

]
e15max(1,α)qt

for all t ∈ [0, T ]. Taking qth roots of both sides, sending q →∞, and using (6.9) and (4.12a) now produces

max(∥Σ− 3
min(1,α) K̊λ∥L∞

x
, ∥Σ− 3

min(1,α) Z̊λ∥L∞
x
) ≤Mε

[
2

3
min(1,α)

5 + 2 · 3
3

min(1,α)CtBz

]
e31

for all t ∈ [0, T ]. This gives us (6.8) for m = 0, t ∈ [0, T ].
Case 2 (1 ≤ m ≤ 2n): Let m ≥ 1. If Dk = Dk(m, q, α) is the same constant defined by (5.16), then the same

computations as in the proof of Proposition 5.4 give us

˙̃E
m,q

k = Dk

ˆ
Σ−δmq|∂m

t K̊λ|qηxW̊ + (Dk + αmq)

ˆ
Σ−δmqηx|∂m

t K̊λ|qZ̊

− α
2γmq

ˆ
Σ−δmqηx|∂m

t K̊λ|qΣK̊ − q

ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)∂ληx∂

m+1
t K̊

+ qα

ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)Σλ∂

m
t ∂xK̊

− q

ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)∂

m
t K̊[ 12 (ηxW̊ )λ +m∂ληxt]

− q

ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)∂

m
t K̊[ 12∂ληxZ̊ + 1

2ηxZ̊λ]

− q

m∑
j=2

(
m

j

)ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)[∂

j−1
t ηxt∂

m+1−j
t K̊λ + ∂j−1

t ∂ληxt∂
m+1−j
t K̊]
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+ αq

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)[∂

j−1
t Σt∂

m−j
t ∂xK̊λ + ∂j−1

t ∂λΣt∂
m−j
t ∂xK̊]

− 1
2q

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)[∂ληx∂

j
t Z̊∂m−j

t K̊ + ηx∂
j
t Z̊λ∂

m−j
t K̊ + ηx∂

j
t Z̊∂m−j

t K̊λ]

− 1
2q

m∑
j=1

(
m

j

)ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)[∂

j−1
t ∂λ(ηxW̊ )t∂

m−j
t K̊ + ∂j−1

t (ηxW̊ )t∂
m−j
t K̊λ]

− 1
2q

∑
j1+j2+j3=m

j1≥1

(
m

j1j2j3

)ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)∂

j1−1
t ∂ληxt∂

j2
t K̊∂j3

t Z̊

− 1
2q

∑
j1+j2+j3=m

j1≥1

(
m

j1j2j3

)ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)∂

j1−1
t ηxt∂

j2
t K̊λ∂

j3
t Z̊

− 1
2q

∑
j1+j2+j3=m

j1≥1

(
m

j1j2j3

)ˆ
Σ−δmq|∂m

t K̊λ|q−1sgn (∂m
t K̊λ)∂

j1−1
t ηxt∂

j2
t K̊∂j3

t Z̊λ.

Just like in the proof of Proposition 5.4, applying (4.8) to the first term of the righthand side, multiplying through by
( (m+1)2

m!MCm
t
)q , adding −κmqẼm,q

k to both sides, and using the formulas from § B gives us

˙̃
E

m,q

k + 1
2Dk

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q
≤ [−mqκ+ (4 +Bzε)Dk + αmq(Bz +

3
2γBk))ε]Ẽ

m,q
k

+ q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1[
(m+1)2∥Σ−δm∂m+1

t K̊∥L
q
x

m!Cm
t

]
+ α

9 q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1[
(m+1)2∥Σ−δm∂m

t ∂xK̊∥L
q
x

m!Cm
t

]
+ q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1

( 38 +m 1+α
2 )Bkε

+ q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1
15
2 (1 + α)ABzε

2
m∑
j=2

(m+1)2(m+1−j)
j3(m+2−j)2

+ q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1

40α(1 + 2Bk

Bz
)ABzε

2
m∑
j=1

(m+1)2(m+1−j)
j3(m+2−j)2

+ q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1

O((1 + α)ABzε
2)

+ q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1

O((1 + α)B2
zε

2).

Since m ≤ 2n, Corollary 5.3 and (5.28) imply

(m+1)2∥Σ−δm∂m
t ∂xK̊∥L∞

x

m!Cm
t

≤ 10
α

(m+1)3

(m+2)2 3
δCtBkε ≤ 10

α (m+ 1)CtBkε,

(m+1)2∥Σ−δm∂m+1
t K̊∥L∞

x

m!Cm
t

≤ (m+1)3

(m+2)2 3
δCtBkε ≤ (m+ 1)CtBkε.

(6.11)

Therefore, using (5.20) and the bounds from § B yields

˙̃
E

m,q

k + 1
2Dk

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q
≤ [−mqκ+ (4 +Bzε)Dk + αmq(Bz +

3
2γBk))ε]Ẽ

m,q
k
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+ (m+ 1)q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1

[ 199 Ct +
3

8(m+1) +
m

m+1
1+α
2 (1 + 9Aε)]Bkε

+mq

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1

(1 + α)ABzε
2(75 + 440(1 + 2Bk

Bz
) α
1+α )

+ q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1

O((1 + α)ABzε
2)

+ q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q−1

O((1 + α)B2
zε

2).

Since A > BλBzCt and Bλ > e31, it follows that if (1 + α)Bzε is small enough we have

[ 199 Ct +
3

8(m+ 1)
+ m

m+1
1+α
2 (1 + 9Aε)]Bz < [ 199 Ct +

3

16
+ 1+α

2 ]Bz +
1

200A <
1

100
A.

Therefore if (1 + α)Bzε is small enough we have

˙̃
E

m,q

k + 1
2Dk

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!Cm
t

]q
≤ [−mqκ+ (4 +Bzε)Dk + αmq(Bz +

3
2γBk))ε]Ẽ

m,q
k

+ (m+ 1)q

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!Cm
t

]q−1
1

100A.

It now follows from the upper bound (5.17) on Dk and the definition of κ that if Bzε is sufficiently small we get

˙̃
E

m,q

k +

[
1
2Dk − 1

10 (q − 1)(m+ 1)]

][
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q
≤ −mqmax(1, α)Ẽm,q

k + (m+ 1)
(
A
10

)q
. (6.12)

Analogous computations for Ẽm,q
z give us

˙̃E
m,q

z = Dz

ˆ
Σ−δmq|∂m

t Z̊λ|qηxW̊

+ [ 1+α
2 − q( 1−α

2 m+ 1 + α)]

ˆ
Σ−δmqηx|∂m

t Z̊λ|qZ̊

+ α
2γ [−1 + q( 12 +m(δ − 1)]

ˆ
Σ−δmqηx|∂m

t Z̊λ|qΣK̊

− α
4γ q

ˆ
Σ−δmq|∂m

t Z̊λ|q−1sgn (∂m
t Z̊λ)Σ(ηxW̊ )∂m

t K̊λ

− q

ˆ
Σ−δmq|∂m

t Z̊λ|q−1sgn (∂m
t Z̊λ)∂ληx∂

m+1
t Z̊

+ 2αq

ˆ
Σ−δmq|∂m

t Z̊λ|q−1sgn (∂m
t Z̊λ)Σλ∂

m
t ∂xZ̊

−mq

ˆ
Σ−δmq|∂m

t Z̊λ|q−1sgn (∂m
t Z̊λ)∂ληxt∂

m
t Z̊

− α
4γ q

ˆ
Σ−δmq|∂m

t Z̊λ|q−1sgn (∂m
t Z̊λ)∂

m
t K̊[ΣληxW̊ +Σ(ηxW̊ )λ]

− 1−α
2 q

ˆ
Σ−δmq|∂m

t Z̊λ|q−1sgn (∂m
t Z̊λ)(ηxW̊ )λ∂

m
t Z̊

− q

m∑
j=2

(
m

j

)ˆ
Σ−δmq|∂m

t Z̊λ|q−1sgn (∂m
t Z̊λ)[∂

j−1
t ∂ληxt∂

m+1−j
t Z̊ + ∂j−1

t ηxt∂
m+1−j
t Z̊λ]

+ 2αq

m∑
j=2

(
m

j

)ˆ
Σ−δmq|∂m

t Z̊λ|q−1sgn (∂m
t Z̊λ)[∂

j−1
t Σt∂

m−j
t ∂xZ̊ + ∂j−1

t ∂λΣt∂
m−j
t ∂xZ̊λ]
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+ (. . .)

where Dz is the same constant defined in (5.25) and the remaining terms referred to as “. . .” are bounded via[
(m+ 1)2

m!MCm
t

]q
|(. . .)| ≤ q

[
(m+ 1)2∥Σ−δm∂m

t Z̊λ∥Lq
x

m!MCm
t

]q−1

O((1 + α)(A+Bz)Bzε
2).

Therefore, performing the same types of computations done for Ẽm,q
k gives us

˙̃
E

m,q

z − α
γ

[
(m+1)2∥Σ−δm∂m

t K̊λ∥L
q
x

m!MCm
t

]q
+

[
1
2Dz − (q − 1)[(m+ 1)( 1

10 + α
γ )

][
(m+1)2∥Σ−δm∂m

t Z̊λ∥L
q
x

m!MCm
t

]q
≤ −mqmax(1, α)Ẽm,q

z + (m+ 1)( 1
10Aε)q. (6.13)

Using our bounds (5.17) and (5.26), we get
1
2Dk > α

γ + 1
10 (q − 1)(m+ 1),

1
2Dz > (q − 1)(m+ 1)( 1

10 + α
γ ),

so we can add (6.12) and (6.13) together to arrive at

˙̃
E

m,q

k +
˙̃
E

m,q

z ≤ −mqmax(1, α)(Ẽm,q
k + Ẽm,q

z ) + 2(m+ 1)( 1
10Aε)q.

Using ODE comparison (see Lemma B.1), raising both sides to the 1
q , applying (6.9), and sending q →∞ gives us

max

(
(m+1)2∥Σ−δm∂m

t K̊λ∥L∞
x

m!MCm
t

,
(m+1)2∥Σ−δm∂m

t Z̊λ∥L∞
x

m!MCm
t

)
≤ max

(
1
5

ε
2m , 1

10Aε

)
= 1

10Aε.

Since A < 4
3CtBλBz , we conclude that (6.8) is true for t ∈ [0, T ]. This closes our bootstrap argument. □

6.4. Bounds on the remaining derivatives. The results of this section are all analogs of the results of § 5.4. Their
proofs are also completely analogous. For this reason, they will be omitted.

Proposition 6.6. Suppose the hypotheses of Proposition 6.5 are satisfied, and additionally Cx is a constant satisfying

Cx ≫ 1, αCx ≫ Ct.

Under these conditions, if ε is small enough such that

(1 + α)BλCtBzε≪ 1,

then the following bounds hold for each t ∈ [0, T∗) and each β with |β| ≤ 2n:

(|β|+ 1)2∥∂βK̊λ∥L∞
x

|β|!MC
βx

x C
βt

t

≤ BλCtBzε,
(|β|+ 1)2∥∂βZ̊λ∥L∞

x

|β|!MC
βx

x C
βt

t

≤ BλCtBzε,

(|β|+ 1)2∥∂β∂λΣt∥L∞
x

|β|!MC
βx

x C
βt

t

≤ 8αBλCtBzε,

(|β|+ 1)2∥∂β∂ληx∥L∞
x

|β|!MC
βx

x C
βt

t

≤ 1,
(|β|+ 1)2∥∂β(ηxW̊ )λ∥L∞

x

|β|!MC
βx

x C
βt

t

≤ 3
4 ,

(|β|+ 1)2∥∂β∂λΣx∥L∞
x

|β|!MC
βx

x C
βt

t

≤ 1.

Corollary 6.7. Under the hypotheses of the previous proposition, we also have that

(|β|+ 1)2∥∂βΣλ∥L∞
x

|β|!MC
βx

x C
βt

t

≤ 1
9 ,

(|β|+ 1)2∥∂β∂λ(ηxW̊ )t∥L∞
x

|β|!MC
βx

x C
βt

t

≤ BλCtBzε,
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(|β|+ 1)2∥∂β∂ληxt − 1+α
2 ∂β(ηxW̊ )λ∥L∞

x

|β|!MC
βx

x C
βt

t

≤ 185max(1, α)BλCtBzε.

for all t ∈ [0, T∗) and β with |β| ≤ 2n.

Corollary 6.8. Under the hypotheses of the previous propositions, we have that

∥∂i
x∂ληxt − 1+α

2 ∂i+1
x w̃0∥L∞

x
≤ 190max(1, α) i!

(i+1)2MC
i

xCtBλBzε, (6.14a)

∥∂i
x∂ληx − 1+α

2 t∂i+1
x w̃0∥L∞

x
≤ 190max(1, α)t i!

(i+1)2MC
i

xCtBλBzε (6.14b)

for all t ∈ [0, T∗), i = 0, . . . , 2n.

7. SOLUTION CONTINUITY WITH RESPECT TO INITIAL DATA

In this section, we will show that solutions with initial data in An(ε, C0) depend continuously on their initial data
with respect to the (W 2n+2,∞(T))3 topology. For m = 0, . . . , 2n+ 1 define the seminorm10 on (W 2n+2,∞(T))3

∥(w0, z0, k0)∥m,C0
:= max

0≤i≤m

(
∥w0∥L∞

x
, ∥z0∥L∞

x
,
∥∂i+1

x w0∥L∞
x

i!Ci
0

,
∥∂i+1

x z0∥L∞
x

i!Ci
0

,
∥∂i+1

x k0∥L∞
x

i!Ci
0

)
. (7.1)

Note that ∥(w0, z0, k0)∥m,C0 ≤ ∥(w0, z0, k0)∥(Wm+1,∞(T))3 . We will estimate the difference of two solutions in terms
of the distance between their initial data with respect to these seminorms.

The methods and results of this section will be completely analogous to those in the previous two sections. For this
reason, we will only provide a sketch of the proofs.

For the rest of this section, fix (w0, z0, k0), (w̃0, z̃0, k̃0) ∈ An(ε, C0) and let the corresponding solutions of (4.5)

with initial data (w0, z0, k0) and (w̃0, z̃0, k̃0) be K̊, Z̊, ηx,Σ, ηxW̊ and ˜̊
K,

˜̊
Z, η̃x, Σ̃, η̃x

˜̊
W respectively. Let their re-

spective blowup times be T∗ and T̃∗. Adopt the notation

µm := ∥(w0 − w̃0, z0 − z̃0, k0 − k̃0)∥m,C0
m = 0, . . . , 2n.

It follows from (4.5) that the difference of the two solutions satisfies

(Σ− Σ̃)t = α(Σ− Σ̃)[−Z̊ + 1
2γ (Σ + Σ̃)K̊]− α(Z̊ − ˜̊

Z)Σ̃ + α
2γ Σ̃

2(K̊ − ˜̊
K), (7.2a)

ηxt − η̃xt =
1+α
2 [(ηxW̊ )− (η̃x

˜̊
W )] + 1−α

2 (ηx − η̃x)Z̊ + 1−α
2 η̃x(Z̊ − ˜̊

Z) (7.2b)

+ α
2γ (ηx − η̃x)ΣK̊ + α

2γ η̃x(Σ− Σ̃)K̊ + α
2γ η̃xΣ̃(K̊ −

˜̊
K),

(ηxW̊ − η̃x
˜̊
W )t =

α
4γ (Σ− Σ̃)K̊(ηxW̊ + ηxZ̊) + α

4γ Σ̃(K̊ −
˜̊
K)(ηxW̊ + ηxZ̊) (7.2c)

+ α
4γ Σ̃

˜̊
K(ηxW̊ − η̃x

˜̊
W ) + α

4γ Σ̃
˜̊
K(ηx − η̃x)Z̊ + α

4γ Σ̃
˜̊
Kη̃x(Z̊ − ˜̊

Z),

(Σ− Σ̃)x = 1
2 (ηxW̊ − η̃x

˜̊
W )− 1

2 (ηx − η̃x)Z̊ − 1
2 η̃x(Z̊ −

˜̊
Z) (7.2d)

+ 1
2γ (ηx − η̃x)ΣK̊ + 1

2γ η̃x(Σ− Σ̃)K̊ + 1
2γ η̃xΣ̃(K̊ −

˜̊
K).

We will also replace (4.3) and (4.4) with the identities

ηx∂t(K̊ − ˜̊
K) = αΣ∂x(K̊ − ˜̊

K)− 1
2 (K̊ −

˜̊
K)(ηxW̊ )− 1

2ηx(K̊ −
˜̊
K)Z̊ (7.3a)

− (ηx − η̃x)∂t
˜̊
K + α(Σ− Σ̃)∂x

˜̊
K

− 1
2
˜̊
K(ηxW̊ − η̃x

˜̊
W )− 1

2 (ηx − η̃x)
˜̊
KZ̊ − 1

2 η̃x
˜̊
K(Z̊ − ˜̊

Z),

ηx∂t(Z̊ − ˜̊
Z) = 2αΣ∂x(Z̊ − ˜̊

Z)− 1−α
2 ηxW̊ (Z̊ − ˜̊

Z)− 1+α
2 ηxZ̊(Z̊ − ˜̊

Z) + α
4γ ηxΣK̊(Z̊ − ˜̊

Z) (7.3b)

− (ηx − η̃x)∂t
˜̊
Z + 2α(Σ− Σ̃)∂x

˜̊
Z

− α
4γ (Σ− Σ̃)K̊ηxW̊ − α

4γ Σ̃(K̊ −
˜̊
K)ηxW̊ − α

4γ Σ̃
˜̊
K(ηxW̊ − η̃x

˜̊
W )

− 1−α
2 (ηxW̊ − η̃x

˜̊
W )

˜̊
Z

10It is a seminorm because it doesn’t detect constant changes in k0; however our system (3.2) does not detect constant changes in k0 either.



AN INFINITE HIERARCHY OF HÖLDER CUSPS FOR 1D EULER 41

− 1+α
2 ηx(Z̊ − ˜̊

Z)
˜̊
Z − 1+α

2 (ηx − η̃x)
˜̊
Z

2

+ α
4γ ηxΣ(K̊ −

˜̊
K)

˜̊
Z + α

4γ ηx(Σ− Σ̃)
˜̊
K

˜̊
Z + α

4γ (ηx − η̃x)Σ̃
˜̊
K

˜̊
Z.

Multiplying these identities by Σ−1 and rearranging gives us

α∂x(K̊ − ˜̊
K) = ηxΣ

−1∂t(K̊ − ˜̊
K) + (ηx − η̃x)Σ

−1∂t
˜̊
K − αΣ−1(Σ− Σ̃)∂x

˜̊
K (7.4a)

+ 1
2Σ

−1(K̊ − ˜̊
K)(ηxW̊ ) + 1

2ηxΣ
−1(K̊ − ˜̊

K)Z̊

+ 1
2Σ

−1 ˜̊K(ηxW̊ − η̃x
˜̊
W ) + 1

2Σ
−1(ηx − η̃x)

˜̊
KZ̊ + 1

2Σ
−1η̃x

˜̊
K(Z̊ − ˜̊

Z),

2α∂x(Z̊ − ˜̊
Z) = ηxΣ

−1∂t(Z̊ − ˜̊
Z) + (ηx − η̃x)Σ

−1∂t
˜̊
Z − 2αΣ−1(Σ− Σ̃)∂x

˜̊
Z (7.4b)

+ 1−α
2 Σ−1ηxW̊ (Z̊ − ˜̊

Z) + 1+α
2 Σ−1ηxZ̊(Z̊ − ˜̊

Z)− α
4γΣ

−1ηxΣK̊(Z̊ − ˜̊
Z)

+ 1−α
2 Σ−1(ηxW̊ − η̃xΣ

−1˜̊W )
˜̊
Z

+ 1+α
2 ηxΣ

−1(Z̊ − ˜̊
Z)

˜̊
Z + 1+α

2 (ηx − η̃x)Σ
−1 ˜̊Z2

− α
4γ ηx(K̊ −

˜̊
K)

˜̊
Z − α

4γ ηxΣ
−1(Σ− Σ̃)

˜̊
K

˜̊
Z − α

4γ (ηx − η̃x)Σ
−1Σ̃

˜̊
K

˜̊
Z.

Notice that the system above doesn’t feature any terms with the difference Σ−1 − Σ̃−1, so we do not need equations
for (Σ−1 − Σ̃−1)t or (Σ−1 − Σ̃−1)x.

If the constants Cx, Ct, and ε satisfy the same hypotheses as in Propositions 5.1, 6.1, one can prove an analog of
these propositions for the difference of our two solutions. In particular, at time t = 0 one obtains

(|β|+ 1)2∥∂β(K̊ − ˜̊
K)∥L∞

x

|β|!Cβx
x Cβt

t

≤ 3µ|β|,
(|β|+ 1)2∥∂β(Z̊ − ˜̊

Z)∥L∞
x

|β|!Cβx
x Cβt

t

≤ 3µ|β|

for all |β| ≤ 2n.
Next, one performs a priori estimates similar to those in § 5.2, 6.2: fix T ∈ [0, T∗ ∧ T̃∗], a function Ct : [0, T∗ ∧

T̃∗)→ R+, and a constant δ ≥ 0. Suppose that A ≥ 1 is a constant such that

(m+ 1)2∥Σ−δm∂m
t (K̊ − ˜̊

K)∥L∞
x

m!Cm
t

≤ Aµm,
(m+ 1)2∥Σ−δm∂m

t (Z̊ − ˜̊
Z)∥L∞

x

m!Cm
t

≤ Aµm (7.5a)

for all t ∈ [0, T ], 0 ≤ m ≤ 2n. Suppose also that

(m+ 1)2∥Σ−δm∂m
t K̊∥L∞

x

m!Cm
t

≤ Bkε,
(m+ 1)2∥Σ−δm∂m

t Z̊∥L∞
x

m!Cm
t

≤ Bzε, (7.6a)

(m+ 1)2∥Σ−δm∂m
t
˜̊
K∥L∞

x

m!Cm
t

≤ Bkε,
(m+ 1)2∥Σ−δm∂m

t
˜̊
Z∥L∞

x

m!Cm
t

≤ Bzε, (7.6b)

for all t ∈ [0, T ], 0 ≤ m ≤ 2n+1. These hypotheses (7.6) allow us to apply the estimates of § 5.2 to our two solutions,
the same way that (6.4) is used in § 6.2. If Bzε≪ 1 and Ct ≫ (1 + α)3δ for all t ∈ [0, T ], one obtains

∥Σ− Σ̃∥L∞
x
≤ (1 + 16A)µ0, (7.7)

∥ηxW̊ − η̃x
˜̊
W∥L∞

x
≤ (3 + 2A)µ0, ∥ηx − η̃x∥L∞

x
≤ (5 + 10A)µ0. (7.8)

and

(m+ 1)2∥Σ−δm∂m
t (Σ− Σ̃)t∥L∞

x

m!Cm
t

≤ 8αAµm,
(m+ 1)2∥Σ−δm∂m

t (ηxt − η̃xt)∥L∞
x

m!Cm
t

≤ 6(1 + α)Aµm,

(m+ 1)2∥Σ−δm∂m
t (ηxW̊ − η̃x

˜̊
W )t∥L∞

x

m!Cm
t

≤ 5
8Aµm,

(m+ 1)2∥Σ−δm∂m
t (ηx − η̃x)∥L∞

x

m!Cm
t

≤ 15Aµm,
(m+ 1)2∥Σ−δm∂m

t (ηxW̊ − η̃x
˜̊
W )∥L∞

x

m!Cm
t

≤ 5Aµm,
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(m+ 1)2∥Σ−δm∂m
t (Σ− Σ̃)∥L∞

x

m!Cm
t

≤ 17Aµm,
(m+ 1)2∥Σ−δm∂m

t (Σ− Σ̃)x∥L∞
x

m!Cm
t

≤ 7Aµm,

for all t ∈ [0, T ], 0 ≤ m ≤ 2n, as well as

(m+ 1)2∥Σ−δm∂m−1
t (K̊ − ˜̊

K)x∥L∞
x

m!Cm
t

≤ 10
α Aµm,

(m+ 1)2∥Σ−δm∂m−1
t (Z̊ − ˜̊

Z)x∥L∞
x

m!Cm
t

≤ 5
αAµm, (7.9)

for all t ∈ [0, T ], 1 ≤ m ≤ 2n.

Next, we use these a priori estimates to perform Lq energy estimates on the time derivatives of (K̊ − ˜̊
K) and

(Z̊ − ˜̊
Z), similar to those in Propositions 5.4 and 6.5.

Proposition 7.1. Define the constant
Bd := 2 · 6

3
min(1,α) e31. (7.10)

Let δ and κ satisfy (5.10) and let Ct be defined by (5.11). Let Ct be the constant defined by (5.27). If Ct(0) satisfies

Ct(0)≫ (1 + α)3δ, Ct(0)≫ max(1, α)2δC0,

and ε satisfies

(1 + α)(1 +Bz)ε
1
2 ≪ 1, 3

3
min(1,α)Bd(Ct + 1 + α)Bzε

1
2 ≪ 1,

then

(m+ 1)2∥Σ−δm∂m
t (K̊ − ˜̊

K)∥L∞
x

m!Cm
t

≤ Bdµm,
(m+ 1)2∥Σ−δm∂m

t (Z̊ − ˜̊
Z)∥L∞

x

m!Cm
t

≤ Bdµm, (7.11a)

for all t ∈ [0, T∗ ∧ T̃∗) and 0 ≤ m ≤ 2n.

The proof of this proposition is analogous to the proof of Proposition 5.4 and Proposition 6.5. Fix T ∈ [0, T∗ ∧ T̃∗)
and pick a constant A satisfying Bd < A < 2Bd. Our bootstrap hypothesis will be that

(m+ 1)2∥Σ−δm∂m
t (K̊ − ˜̊

K)∥L∞
x

m!Cm
t

≤ Aµm,
(m+ 1)2∥Σ−δm∂m

t (Z̊ − ˜̊
Z)∥L∞

x

m!Cm
t

≤ Aµm,

for all t ∈ [0, T ], 0 ≤ m ≤ 2n. Proposition 5.4 implies that (7.6) holds with the δ, κ and Ct we have chosen. Therefore,
all of the a priori estimates we have derived apply on [0, T ] for this choice of A.

Just like in the proof of Proposition 5.4, if we define Ct := 1
22

−δCt(0), then our hypotheses on Ct(0) allow us to
apply our estimates at time t = 0 and get

(m+ 1)2∥Σ−δm∂m
t (K̊ − ˜̊

K)∥L∞
x

m!Cm
t

≤ 3µm

2m ,
(m+ 1)2∥Σ−δm∂m

t (Z̊ − ˜̊
Z)∥L∞

x

m!Cm
t

≤ 3µm

2m−1 , (7.12)

for m = 0, . . . , 2n, t = 0. Therefore, our bootstrap hypothesis is true for T = 0.
For 0 ≤ m ≤ 2n and 1 < q <∞ define the energies

Êm,q
k :=


´
T Σ

− 3
min(1,α) ηx|(K̊ − ˜̊

K)|q dx m = 0´
T Σ

−δqmηx|∂m
t (K̊ − ˜̊

K)|q dx 1 ≤ m ≤ 2n
,

Êm,q
z :=


´
T Σ

− 3
min(1,α) ηx|(Z̊ − ˜̊

Z)|q dx m = 0´
T Σ

−δqmηx|∂m
t (Z̊ − ˜̊

Z)|q dx 1 ≤ m ≤ 2n
,

and for 1 ≤ m ≤ 2n, 1 < q <∞, define the energies

Êm,q
k :=

(m+ 1)2qÊm,q
k

(m!)qCmq
t

, Êm,q
z :=

(m+ 1)2qÊm,q
z

(m!)qCmq
t

.

We prove (7.11) in the case m = 0 and 1 ≤ m ≤ 2n separately. In both cases, just like in the proofs of Propositions
5.4, 6.5, we take the time derivative of Êm,q

k and Êm,q
z , simplify and rearrange using (7.3a) and (7.3b), and use (4.8) to

produce damping terms which make Êm,q
k + Êm,q

z satisfy

˙̂E
0,q

k +
˙̂E
0,q

z ≤ 15max(1, α)q(Ê0,qk + Ê0,qz ) + 2(Aµ0)
qO(3δ(Ct + 1 + α)Bzε

1
2 )q,
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˙̂
E

m,q

k +
˙̂
E

m,q

z ≤ −mqmax(1, α)(Êm,q
k + Êm,q

z ) + 2(Aµm)q[mO([CtBz + (1 + α)Bz]ε
1
2 )q +O((1 + α)Bzε

1
2 )q].

From here the bootstrap argument closes by using ODE comparison and (7.12), provided that ε is small enough.
After proving Proposition 7.1, one can deduce bounds on the rest of the derivatives of the difference via an induction

argument, just like in Proposition 5.5: if Cx is a constant satisfying

Cx ≫ 1, αCx ≫ Ct,

ε satisfies (1 + α)Bzε ≪ 1, and Ct(0) satisfies Ct(0) ≫ 1, then the following bounds hold for all t ∈ [0, T∗ ∧ T̃∗)
and |β| ≤ 2n:

(|β|+ 1)2∥∂β(K̊ − ˜̊
K)∥L∞

x

|β|!Cβx

x C
βt

t

≤ Bdµ|β|,
(|β|+ 1)2∥∂β(Z̊ − ˜̊

Z)∥L∞
x

|β|!Cβx

x C
βt

t

≤ Bdµ|β|,

(|β|+ 1)2∥∂β(Σ− Σ̃)t∥L∞
x

|β|!Cβx

x C
βt

t

≤ 8αBdµ|β|,

(|β|+ 1)2∥∂β(ηx − η̃x)∥L∞
x

|β|!Cβx

x C
βt

t

≤ 70Bdµ|β|,
(|β|+ 1)2∥∂β(ηxW̊ − η̃x

˜̊
W )∥L∞

x

|β|!Cβx

x C
βt

t

≤ 7Bdµ|β|,

(|β|+ 1)2∥∂β(Σ− Σ̃)x∥L∞
x

|β|!Cβx

x C
βt

t

≤ 120Bdµ|β|,

Our efforts culminate in the following bounds:

(|β|+ 1)2∥∂β(ηxt − η̃xt)∥L∞
x

|β|!Cβx

x C
βt

t

≤ (1 + α)38Bdµ|β| (7.13a)

for all t ∈ [0, T∗ ∧ T̃∗), |β| ≤ 2n, and, as an immediate corollary,

∥∂i
x(ηx − η̃x)∥L∞

x
≤ i!

(i+1)2 38(1 + α)tC
i

xBdµi (7.13b)

for all t ∈ [0, T∗ ∧ T̃∗), i = 0, . . . , 2n. We will use these bounds (7.13) in § 8.3.

8. FINITE-CODIMENSION BANACH MANIFOLDS OF INITIAL DATA

Recall that our aim (see Theorem 9.1 below) is to construct a codimension-(2n − 2) Banach manifold of initial
data (w0, z0, k0) ∈ (W 2n+2,∞(T))3 for which the unique classical solutions (w, z, k) to the corresponding Cauchy
problem (3.2) form C0, 1

2n+1 pre-shocks. In this section, we will show that the initial data (w0, z0, k0) in a particular
neighborhood of (W 2n+2,∞(T))3 for which the system

ηx(x∗, T∗) = 0, ∂xηx(x∗, T∗) = 0, . . . ∂2n−1
x ηx(x∗, T∗) = 0,

has a solution (x∗, T∗) is a codimension-(2n− 2) Banach manifold. In § 9 we will show that solutions (w, z, k) with
initial data in this manifold form cusps resembling −y

1
2n+1 at their first singularities.

8.1. Assumptions on the initial data. Fix a positive integer n and a constant C0 ≥ 3. Now fix a function w0 ∈
W 2n+2,∞(T) satisfying

w0(x) =
5
2 − x+ x2n+1

2n+1 , |x− 0| ≤ 1
C0

, (8.1a)

w′
0(x) ≥ −1 + C−2n

0 , |x− 0| ≥ 1
C0

, (8.1b)

∥∂i+1
x w0∥L∞

x

i!
≤ Ci

0, ∀ i = 0, . . . , 2n+ 1. (8.1c)

Note that

∂i+1
x w0(x) = −δi0 + 1{i≤2n}i!

(
2n

i

)
x2n−i, |x− 0| ≤ 1

C0
,

so that for i = 1, . . . , 2n+ 1 we have

∥∂i+1
x w0∥L∞

x (− 1
C0

, 1
C0

)

i!Ci
0

≤ 1{i≤2n}

(
2n

i

)
C−2n

0 < 1.
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Therefore, our assumptions on w0 are consistent.
With w0 chosen as above, define

Bn(ε, C0) ⊂ (W 2n+2,∞(T))3 (8.2)
to be the set of all (w0, z0, k0) ∈ (W 2n+2,∞(T))3 satisfying

∥w0 − w0∥L∞
x

< ε,

∥z0∥L∞
x

< ε,

∥∂i+1
x (w0 − w0)∥L∞

x

i!
< Ci

0ε, ∀ i = 0, . . . , 2n+ 1,

∥∂i+1
x z0∥L∞

x

i!
< Ci

0ε, ∀ i = 0, . . . , 2n+ 1,

∥∂i+1
x k0∥L∞

x

i!
< Ci

0ε, ∀ i = 0, . . . , 2n+ 1.

Since ∥w′
0∥L∞

x
= 1, we know that 3

2 ≤ w0 ≤ 7
2 everywhere in T. Therefore, if ε < 1

4 we have that 1
2 < σ0 < 2 so

that Bn(ε, C0) ⊂ An(ε, C0). For the remainder of this paper, assume that ε < 1
4 so that this inclusion always holds.

8.2. Preliminary Estimates along the Fast Acoustic Characteristics. For the remainder of this section, suppose
that ε, Ct, and Cx are chosen such that the conclusions of § 5 hold for all initial data (w0, z0, k0) ∈ An(ε, C0).
Furthermore, we will restrict our attention to only solutions with initial data (w0, z0, k0) ∈ Bn(ε, C0).

Lemma 8.1. For all i = 0, . . . , 2n+ 1, t ∈ [0, T∗), the following approximate identities are true:

∥∂i
xηxt − 1+α

2 ∂i+1
x w0∥L∞

x
≤ 22max(1, α) i!

(i+1)2C
i

xBzε, (8.3a)

∥∂i
xηx − (δi0 +

1+α
2 t∂i+1

x w0)∥L∞
x
≤ 22max(1, α)t i!

(i+1)2C
i

xBzε. (8.3b)

As a result, for |x− 0| ≤ 1
C0

, t ∈ [0, T∗), i = 0, . . . , 2n+ 1 we have∣∣∣∣∂i
xηxt(x, t)− 1+α

2

[
− δi0 + 1{i≤2n}i!

(
2n

i

)
x2n−i

]∣∣∣∣ ≤ 22max(1, α) i!
(i+1)2C

i

xBzε, (8.4a)∣∣∣∣∂i
xηx(x, t)−

[
δi0 +

1+α
2 t

[
− δi0 + 1{i≤2n}i!

(
2n

i

)
x2n−i

]∣∣∣∣ ≤ 22max(1, α)t i!
(i+1)2C

i

xBzε. (8.4b)

Proof. The bounds (8.3) follow immediately from Corollary 5.7, the definition of Bn(ε, C0), and the fact that Cx ≥
e2C0 and Bz > 1. □

Lemma 8.2. If
C2n

0 Bzε≪ 1,

then
ηx(x, t) ≥ 1

2C
−2n
0 ∀ |x− 0| ≥ 1

C0
, t ∈ [0, T∗]. (8.5)

It follows from this that ηx(·, T∗) must have at least one zero in |x− 0| < 1
C0

.

Proof. For |x− 0| ≥ 1
C0

, using (8.3b) with i = 0, (8.1) , and (4.12b) gives us

ηx ≥ 1 + 1+α
2 t[−1 + C−2n

0 +O(Bzε)]

≥ 1 + 1+α
2 T∗[−1 + C−2n

0 +O(Bzε)]

= 1 + (1 +O(Bzε))[−1 + C−2n
0 +O(Bzε)] = C−2n

0 +O(Bzε).

Therefore, if C2n
0 Bzε≪ 1 then we obtain (8.5).

Since minT ηx(·, T∗) = 0, ηx(·, T∗) must have a zero in |x− 0| < 1
C0

. □

Now, define the function η̃x : T× [0,∞)→ R,

η̃x(x, t) :=

{
ηx(x, t) t ≤ T∗

ηx(x, T∗) + (t− T∗)ηxt(x, T∗) t ≥ T∗
. (8.6)

η̃x extends ηx to a C2n,1
x C1

t function on all of T× [0,∞) in a manner analogous to the way that for Burgers equation
the family of lines 1 + tw′

0(x) extends ηx to all of T× [0,∞) (see § 2).
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Lemma 8.3. For all i = 0, . . . , 2n, t ∈ [0,∞), the following approximate identities are true:

∥∂i
xη̃xt − 1+α

2 ∂i+1
x w0∥L∞

x
≤ 22max(1, α) i!

(i+1)2C
i

xBzε, (8.7a)

∥∂i
xη̃x − (δi0 +

1+α
2 ∂i+1

x w0)∥L∞
x
≤ 22max(1, α)t i!

(i+1)2C
i

xBzε. (8.7b)

As a result, for |x− 0| ≤ 1
C0

, t ≥ 0, i = 0, . . . , 2n, we have that∣∣∣∣∂i
xη̃xt(x, t)− 1+α

2

[
− δi0 + 1{i≤2n}i!

(
2n

i

)
x2n−i

]∣∣∣∣ ≤ 22max(1, α) i!
(i+1)2C

i

xBzε, (8.8a)∣∣∣∣∂i
xη̃x(x, t)−

[
δi0 +

1+α
2 t

[
− δi0 + 1{i≤2n}i!

(
2n

i

)
x2n−i

]∣∣∣∣ ≤ 22max(1, α)t i!
(i+1)2C

i

xBzε. (8.8b)

In particular, if Bzε≪ 1 we obtain the bounds

− 2
3 (1 + α) ≤ η̃xt(x, t) ≤ − 1+α

2 ∀ |x− 0| ≤ 1

C0
. (8.9)

Proof. It is immediate from the definition of η̃x that

η̃xt(x, t) =

{
ηxt(x, t) t ≤ T∗

ηxt(x, T∗) t ≥ T∗
.

Taking ∂i
x of η̃xt and applying (8.3a) and (8.4a) gives us (8.7a) and (8.8a) respectively.

Integrating (8.7a) and (8.8a) in time gives us (8.7b) and (8.8b) respectively. (8.9) is an immediate consequence of
(8.8a) if 44Bzε <

1
9 . □

Lemma 8.4. If C
2n

x Bzε≪ 1, then for all |x− 0| ≤ 1
C0

and t ≥ 2
3

2
1+α , we have the lower bound

∂2n
x η̃x(x, t) ≥ (2n)!

2 . (8.10)

It follows that ηx(·, T∗) can have at most n zeros in T. In particular, when n = 1, ηx always has a unique zero in
T× [0, T∗].

Proof. Apply (8.4b) with i = 2n to obtain

∂2n
x η̃x = 1+α

2 t(2n)![1 +O(C2n

x Bzε)] ≥ 2
3 (2n)![1 +O(C

2n

x Bzε)].

If C
2n

x Bzε is small enough, the lower bound (8.10) follows.
It now follows from (4.12a) that ∂2n

x ηx(x, T∗) ≥ (2n)!
2 for all |x− 0| ≤ 1

C0
. Therefore ∂2n−1

x ηx(·, T∗) is a strictly
increasing function on the interval [− 1

C0
, 1
C0

], so it has no critical points and at most one zero in [− 1
C0

, 1
C0

]. This
implies that ∂2n−2

x ηx(·, T∗) has at most one critical point and at most two zeros in [− 1
C0

, 1
C0

]. Continuing inductively
in this manner, ηx(·, T∗) has at most 2n− 1 critical points and at most 2n zeros in [− 1

C0
, 1
C0

]. However, we know that
ηx(·, T∗) ≥ 0 everywhere, so it follows from (8.5) that all zeros of ηx(·, T∗) in T must themselves be critical points in
the interval |x− 0| ≤ 1

C0
. In between any two zeros of ηx(·, T∗) must be at least one other critical point, so ηx(·, T∗)

can have at most n zeros. □

Proposition 8.5. Suppose (x∗, t∗) ∈ T× [0,∞) is a point such that |x∗ − 0| ≤ 1
C0

and

η̃x(x∗, t∗) = ∂xη̃x(x∗, t∗) = . . . = ∂2n−1
x η̃x(x∗, t∗) = 0. (8.11)

Then t∗ = T∗, and x∗ is the unique zero of ηx in T× [0, T∗]. Furthermore, x∗ satisfies the bound

|x∗|2n ≲ Bzε. (8.12a)

Proof. Since η̃x(x∗, t∗) = 0, we know t∗ ≥ T∗. Taylor expanding η̃x(·, t∗) about x̊ and using (8.10) gives us

η̃x(x, t∗) ≥ 1
2 (x− x∗)

2n, ∀|x− 0| ≤ 1
C0

. (8.13)

In particular, η̃x(·, t∗) ≥ 0. It now follows from (8.4a) that

ηx(x, T∗) = η̃x(x, t∗)− (t∗ − T∗)ηxt(x, T∗)

≥ 1
2 (x− x∗)

2n − (t∗ − T∗)
1+α
2

[
− 1 + x2n +O(Bzε)

]
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= 1
2 (x− x∗)

2n + (t∗ − T∗)
1+α
2

[
1− x2n +O(Bzε)

]
≥ 1

2 (x− x∗)
2n + (t∗ − T∗)

1+α
2

[
1− C−2n

0 +O(Bzε)

]
≥ 1

2 (x− x∗)
2n + (t∗ − T∗)

1+α
4

for all |x − 0| ≤ 1
C0

. We know from Lemma 8.2 that ηx(·, T∗) must have a zero and all zeros of ηx(·, T∗) must be in
the interval {|x− 0| ≤ 1

C0
}. Since t∗ ≥ T∗, this is only possible if t∗ = T∗ and the zero must be x = x∗.

Since t∗ = T∗, plugging x = 0 into (8.13) and using (8.4b) and (4.12) gives us

|x∗|2n ≤ 2|ηx(0, T∗)|
≤ 2| 1+α

2 T∗ − 1|+ 44max(1, α)T∗Bzε

≲ Bzε.

□

Now define the function G : T× [0,∞)→ R2,

G(x, t) :=

[ 1
(2n)!∂

2n−1
x η̃x(x, t)

− 2
1+α η̃x(x, t)

]
. (8.14)

Proposition 8.6. If

(1 + α)C0 < Cx, C
2n

x Bzε≪ 1,

then there exists a unique point (̊x, T̊ ) in a ball of radius 1
3(1+α)C0

around the point (0, 2
1+α ) such that

G(̊x, T̊ ) = (0, 0).

Proof. For |x− 0| ≤ 1
C0

, the formulas (8.8) give us

DG(x, t) =

( 1
(2n)!∂

2n
x η̃x(x, t)

1
(2n)!∂

2n−1
x η̃xt(x, t)

− 2
1+α∂xη̃x(x, t) − 2

1+α η̃xt(x, t)

)

=

 1+α
2 t[1 +

O(C
2n
x Bzε)

(2n+1)2 ] 1+α
2 [x+

O(C
2n
x Bzε)

(2n)3Cx
]

t[−2nx2n−1 +
O(C

2n
x Bzε)

C
2n−1
x

] 1− x2n +
O(C

2n
x Bzε)

C
2n
x

 . (8.15)

For (x, t) in a ball of radius R := 1
3(1+α)C0

around (0, 2
1+α ), the fact that C0 ≥ 3 implies that

| 1+α
2 t− 1| ≤ 1+α

2 R ≤ 1
18 , 2n|x|2n−1t ≤ 2nR2n−1( 2

1+α +R)

1+α
2 |x| ≤

1+α
2 R ≤ 1

18 , = 12C0n(R
2)n + 2nR2n

|x|2n ≤ 1
81(1+α)2 , ≤ 12C0R

2 + 2R2

≤ 38
81(1+α)2 .

Therefore, ∣∣∣∣Id −DG(x, t)

∣∣∣∣ < 1
2 +O

(
C

2n

x Bzε
)

∀ (x, t) ∈ BR((0,
2

1+α )).

It follows that if C
2n

x Bzε is small enough we have ∥Id −DG∥L∞
x,t(BR(0, 2

1+α )) ≤ 2
3 .

Plugging (x, t) = (0, 2
1+α ) into the formulas (8.8) yields

∣∣ 1
(2n)!∂

2n−1
x η̃x(0,

2
1+α )

∣∣ ≤ 44C
2n

x Bzε

(2n)3Cx

,∣∣ 2
1+α η̃x(0,

2
1+α )

∣∣ ≤ 88Bzε.

Since Cx > (1+α)C0, it follows that if C
2n

x Bzε is small enough we have |G(0, 2
1+α )| <

1
3R. Our result now follows

from Lemma C.1. □
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Notice that one always has the inequality T̊ ≥ T∗: indeed, if T̊ ≤ T∗ then

ηx(̊x, T̊ ) = η̃x(̊x, T̊ ) = 0,

which means that T̊ = T∗.

Corollary 8.7. If (̊x, T̊ ) is the solution of G = (0, 0) given by Proposition 8.6, then x̊, T̊ satisfy the bounds

| 1+α
2 T̊ − 1| < 1

18 , (8.16)

|̊x| ≤ 93
(2n)3C

2n−1

x Bzε. (8.17)

It follows that if n ≥ 2 and C
2n

x Bzε≪ 1 then

|∂i
xη̃xt(̊x, T̊ )| ≤ 1+α

2
50

(2n) (2n)!C
2n−2

x Bzε, (8.18a)

|∂i
xη̃x(̊x, T̊ )| ≤ 53

(2n) (2n)!C
2n−2

x Bzε, (8.18b)

for 1 ≤ i ≤ 2n− 2.

Proof. The inequality (8.16) is immediate from Proposition 8.6 and the fact that C0 ≥ 3. Since ∂2n−1
x η̃x(̊x, T̊ ) = 0,

(8.10) gives us ∣∣∂2n−1
x η̃x(0, T̊ )

∣∣ = ∣∣∣∣ˆ 0

x̊

∂2n
x η̃x(x, T̊ ) dx

∣∣∣∣ ≥ (2n)!
2 |̊x|.

Plugging i = 2n− 1, x = 0, t = T̊ , into (8.8b) now yields

|̊x| ≤ 44
(2n)3 max(1, α)T̊C

2n−1

x Bzε.

Our bound (8.17) now follows from (8.16).
Now suppose n ≥ 2. Since |̊x| < 1, we have

max
1≤i≤2n−2

(2n)!
(2n−i)! |̊x|

2n−i = (2n)!
2 |̊x|

2 ≤ (2n)!
2

(
93

(2n)3C
2n−1

x Bzε)
2.

For 1 ≤ i ≤ 2n− 2 the bound (8.8a) now implies

|∂i
xη̃xt(̊x, T̊ )| ≤ 1+α

2 (2n)!C
2n−1

x Bzε

[
(93)2

2(2n)3C
2n−1

x Bzε+ 44 (2n−4)!

(2n)!Cx

]
.

Therefore, if C
2n

x Bzε is small enough we get (8.18a). The bound (8.18b) follows from analogous computations using
(8.8b). □

Now for n ≥ 2 define the function fn : Bn(ε, C0)→ R2n−2,

fn(w0, z0, k0) :=


∂xη̃x(̊x, T̊ )

∂2
xη̃x(̊x, T̊ )

...
∂2n−2
x η̃x(̊x, T̊ )

 . (8.19)

The zero set of fn is precisely the initial data in Bn(ε, C0) for which the flow η forms an initial singularity of the form

ηx(x∗, T∗) = ∂xηx(x∗, T∗) = . . . = ∂2n−1
x ηx(x∗, T∗) = 0, (8.20)

at a point x∗ ∈ T, and whenever such a root x∗ exists it must be the only root of ηx(·, T∗). To see this, if
fn(w0, z0, k0) = 0 then it follows from the definitions of G and (̊x, T̊ ) that (x∗, t∗) = (̊x, T̊ ) solves (8.11), and
Proposition 8.5 implies that (x∗, t∗) = (̊x, T̊ ) is the unique root of ηx in T× [0, T∗] . Conversely, if x∗ ∈ T is a point
solving (8.20) then Lemma 8.2 implies that |x∗−0| < 1

C0
and Proposition 8.5 therefore implies that x∗ is the only root

of ηx(·, T∗) and also satisfies the bound (8.12a). Since we are assuming that C
2n

x Bzε is small and (1 + α)C0 < Cx,
as in the premise of Proposition 8.6, it follows that |x∗| < 1

3(1+α)C0
and therefore (x∗, T∗) = (̊x, T̊ ).

We will now quantify the regularity of fn so that we can apply the implicit function theorem and conclude that the
zero set of fn is the graph of a Lipschitz function from a codimension-(2n − 2) subspace of (W 2n+2,∞(T))3 into
R2n−2.
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8.3. Stability of solutions. Now suppose further that Cx, Ct are chosen large enough and ε is chosen small enough
such that the hypotheses of § 7 are satisfied, and therefore the bounds (7.13) apply for all initial data in Bn(ε, C0).

Proposition 8.8. The blowup time, T∗, and the extensions η̃x depend on the initial data in way that is Lipschitz with
respect to the W 2n+2,∞ norm on Bn(ε, C0): i.e. if ∥ · ∥m,C0

is the seminorm on (W 2n+2,∞(T))3 defined by (7.1) and
(w1

0, z
1
0 , k

1
0), (w

2
0, z

2
0 , k

2
0) ∈ Bn(ε, C0) we have

|T∗(w
1
0, z

1
0 , k

1
0)− T∗(w

2
0, z

2
0 , k

2
0)| ≤ 140

1+αBd∥(w1
0 − w2

0, z
1
0 − z20 , k

1
0 − k20)∥0,C0 , (8.21)

and if CtBzε≪ 1 then for all (x, t) ∈ T× [0,∞), i = 0, . . . , 2n− 1 we have

|∂i
xη̃xt(x, t, w

1
0, z

1
0 , k

1
0)− ∂i

xη̃xt(x, t, w
2
0, z

2
0 , k

2
0)| ≤ 45

(1 + α)i!C
i

xBd

i+ 1
∥(w1

0 − w2
0, z

1
0 − z20 , k

1
0 − k20)∥i,C0 , (8.22a)

|∂i
xη̃x(x, t, w

1
0, z

1
0 , k

1
0)− ∂i

xη̃x(x, t, w
2
0, z

2
0 , k

2
0)| ≤ 45

(1 + α)ti!C
i

xBd

i+ 1
∥(w1

0 − w2
0, z

1
0 − z20 , k

1
0 − k20)∥i,C0

. (8.22b)

Here η̃x(·, ·, wj
0, z

j
0, k

j
0) is the function η̃x corresponding to the solution with initial data (wj

0, z
j
0, k

j
0).

Proof. Let us adopt the notation T j
∗ := T∗(w

j
0, z

j
0, k

j
0) for j = 1, 2 and µi := ∥(w1

0 − w2
0, z

1
0 − z20 , k

1
0 − k20)∥i,C0

.
Suppose without loss of generality that T 1

∗ ≤ T 2
∗ . There exists a point x1

∗ ∈ T with |x1
∗ − 0| < 1

C0
such that

ηx(x
1
∗, T

1
∗ , w

1
0, z

1
0 , k

1
0) = 0.

Since T 2
∗ ≥ T 1

∗ , it now follows from (7.13) and (8.9) that

0 ≤ ηx(x
1
∗, T

2
∗ , w

2
0, z

2
0 , k

2
0) ≤ 70Bdµ0 − 1+α

2 (T 2
∗ − T 1

∗ ).

The inequality (8.21) now follows immediately.
For t ≤ T 1

∗ , Corollary 7.13 implies

|∂i
xη̃xt(x, t, w

1
0, z

1
0 , k

1
0)− ∂i

xη̃xt(x, t, w
2
0, z

2
0 , k

2
0)| ≤ 38

(1 + α)i!C
i

xBd

(i+ 1)2
µi

for all x ∈ T. For T 1
∗ ≤ t, (5.32c) gives us

|∂i
xη̃xt(x, t, w

1
0, z

1
0 , k

1
0)− ∂i

xη̃xt(x, t, w
2
0, z

2
0 , k

2
0)| ≤ ∥∂i

x∂tηxt(w
2
0, z

2
0 , k

2
0)∥L∞

x,t
(t ∧ T 2

∗ − T 1
∗ ) + 38

(1+α)i!C
i
xBd

(i+1)2 µi

≤ (1 + α)C
i

xi!

i+ 1

[
21CtBzε(T

2
∗ − T 1

∗ ) + 38Bdµi

i+1

]
≤ (1 + α)C

i

xi!Bd

i+ 1
µi

[
21CtBzε · 140

1+α
µ0

µi
+ 38

]
.

Therefore, if CtBzε is small enough we obtain (8.22a). The inequality (8.22b) now follows from using the fact that
∂i
xηx is always constant at time t = 0 with ∂i

xηx(x, 0) = δi0 and integrating (8.22a) in time. □

One immediate consequence of Proposition 8.8 is that the function G defined in (8.14) is Lipschitz in (w0, z0, k0)
with

|G(x, t, w1
0, z

1
0 , k

1
0)−G(x, t, w2

0, z
2
0 , k

2
0)| ≤ 135Bd

[C2n−1
x

(2n)2 + 2
1+α

]
∥(w1

0 − w2
0, z

1
0 − z20 , k

1
0 − k20)∥2n−1,C0

for all (x, t) ∈ T×[0, 3
1+α ], (w

1
0, z

1
0 , k

1
0), (w

2
0, z

2
0 , k

2
0) ∈ Bn(ε, C0). As a result (see § C), (̊x, T̊ ) is a Lipschitz function

of (w0, z0, k0) with

|(̊x, T̊ )(w1
0, z

1
0 , k

1
0)− (̊x, T̊ )(w2

0, z
2
0 , k

2
0)| ≤ 405Bd

[C2n−1
x

(2n)2 + 2
1+α

]
∥(w1

0 − w2
0, z

1
0 − z20 , k

1
0 − k20)∥2n−1,C0

.

It now also follows from Proposition 8.8 that fn is a Lipschitz function of (w0, z0, k0) as well.
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8.4. An implicit function theorem argument. In this subsection, we will further restrict our attention to the case
n ≥ 2. Define the subspace

Xn := {w̃0 ∈W 2n+2,∞(T) : ∂i
xw̃0(0) = 0 ∀ i = 2, . . . , 2n− 1}. (8.23)

Note that w0 ∈ Xn.
Pick functions w̃n

1 , . . . , w̃
n
2n−2 ∈ C∞

x (T) such that

∥w̃n
j ∥L∞

x
≤ Ln, (8.24a)

∂i+1
x w̃n

j (0) = δij , i = 0, . . . , 2n− 2, (8.24b)

∥∂i+1
x w̃n

j ∥L∞
x

i!
≤ LnC

i
0, i = 0, . . . , 2n+ 1, (8.24c)

|∂2n
x w̃n

j (x)| ≤ (2n− 1)!Ln(
C0

2 )2n−1ε, |x− 0| ≤ 1
C0

, (8.24d)

for some constant Ln. For such functions, Taylor expanding about x = 0 for x with |x− 0| ≤ 1
C0

gives us∣∣∣∣∂i+1
x w̃n

j (x)− 1{i≤j}
xj−i

(j−i)!

∣∣∣∣ ≤ (2n−1)!Ln(
C0

2 )2n−1ε

(2n−1−i)! |x|2n−1−i

≤ i!Ln

(
2n− 1

i

)
1

22n−1C
i
0ε

≤ i!LnC
i
0ε

for i = 0, . . . , 2n.
For a concrete example of such a collection of functions, pick a smooth bump function χ ∈ C∞

c (R) satisfying

1[−1,1] ≤ χ ≤ 1
[−C0

2 ,
C0
2 ]

and then define the Z-periodic functions w̃j via

w̃j(x) :=
xj+1

(j+1)!χ(C0x) for |x| ≤ 1
2 .

One can check that for any n ≥ 2 if we define the functions w̃n
1 , . . . w̃

n
2n−2 to be w̃n

j := w̃j , then these functions
satisfy (8.24) with

Ln = C0(2n+ 2) max
0≤k≤2n+2

∥∂kχ∥L∞
x

k! .

Note, however, that in this example Ln must diverge to∞ as n grows.
Since W 2n+2,∞(T) = Rw̃n

1 ⊕ · · · ⊕ Rw̃n
2n−2 ⊕ Xn and w0 ∈ Xn, we have the affine change of coordinates

Xn × R2n−2 ←→W 2n+2,∞(T)

(w̃0, λ)←→ w0,

w0 = w0 + w̃0 + λ1w̃
n
1 + . . .+ λ2n−2w̃

n
2n−2,

λj = ∂j+1
x w0(0).

This extends to an affine isomorphism Xn × (W 2n+2,∞(T))2 × R2n−2 ←→ (W 2n+2,∞(T))3

(w̃0, z0, k0, λ)←→ (w0, z0, k0),

w0 = w0 + w̃0 + λ1w̃
n
1 + . . .+ λ2n−2w̃

n
2n−2,

λj = ∂j+1
x w0(0).

This change of coordinates for (W 2n+2,∞(T))3 will allow us to characterize the zero set of fn as a codimension-
(2n− 2) Banach manifold in a neighborhood of the point (w0, 0, 0) ∈ (W 2n+2,∞(T))3.

With this choice of coordinates in mind, define the open set

Λn(ε, Ln) :=
{
λ ∈ R2n−2 : Ln

2n−2∑
j=1

|λj | < ε
2

}
, (8.25)

and define the open set
Un(ε, C0) ⊂ Xn × (W 2n+2,∞(T))2
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to be (w̃0, z0, k0) ∈ Xn × (W 2n+2,∞(T))2 satisfying

∥w̃0∥L∞
x

< ε
2 , (8.26a)

∥z0∥L∞
x

< ε, (8.26b)

∥∂i+1
x w̃0∥L∞

x

i!
< Ci

0
ε
2 , i = 0, . . . , 2n+ 1, (8.26c)

∥∂i+1
x z0∥L∞

x

i!
< Ci

0ε, i = 0, . . . , 2n+ 1, (8.26d)

∥∂i+1
x k0∥L∞

x

i!
< Ci

0ε, i = 0, . . . , 2n+ 1. (8.26e)

Note that if (w̃0, z0, k0, λ) ∈ Un(ε, C0) × Λn(ε, Ln) and w0 = w0 + w̃0 + λ1w̃
n
1 + . . . + λ2n−2w̃

n
2n−2, then

(w0, z0, k0) ∈ Bn(ε, C0). For this reason, we can treat the functions x̊, T̊ , and fn defined in § 8.2 as functions of
(w0, z0, k0) ∈ Bn(ε, C0) as functions of (w̃0, z0, k0, λ) ∈ Un(ε, C0) × Λn(ε, Ln) by identifying (w̃0, z0, k0, λ) with
the corresponding (w0, z0, k0) ∈ Bn(ε, C0) via the affine change of coordinates. We will make this tacit identification
for the rest of this subsection.

We will further assume for the rest of this section that Ct, Cx and ε are chosen to satisfy the hypotheses of the
propositions in § 6 with L = Ln,M = 5Ln. Therefore, for all solutions with initial data (w̃0, z0, k0, λ) ∈ Un(ε, C0)×
Λn(ε, Ln), the partial derivatives Z̊λj

, ∂λj
ηx, etc. exist for j = 1, . . . , 2n − 2 and the solution satisfies the estimates

from § 6.4.
It follows from (8.21) that if j ∈ {1, . . . , 2n−2}, (w0, z0, k0) ∈ Bn(ε, C0), and (w0+∆λjw̃

n
j , z0, k0) ∈ Bn(ε, C0)

for some scalar ∆λj we have

|T∗(w0 +∆λjw̃
n
j , z0, k0)− T∗(w0, z0, k0)| ≤ 140

1+αLnBd∆λj .

Therefore, for each (w̃0, z0, k0) ∈ Un(ε, C0) the map λ ∈ Λn(ε, C0) → T∗(w̃0, z0, k0, λ) is 140
1+αLnBd-Lipschitz in

each λj . It follows that the map λ→ T∗(w̃0, z0, k0, λ) is a (2n− 2)
1
2

140
1+αLnBd-Lipschitz map of λ ∈ Λn(ε, C0) for

each (w̃0, z0, k0) ∈ Un(ε, C0) and therefore is differentiable at almost every λ ∈ Λn(ε, C0) with

∥∂λjT∗∥L∞
λ (Λn(ε,Ln)) ≤ 140

1+αLnBd ∀ j = 1, . . . , 2n− 2. (8.27a)

Since Bλ > 4Bd, (8.27a) implies

∥∂λj
T∗∥L∞

λ (Λn(ε,Ln)) ≤ 35
1+αLnBλ ∀ j = 1, . . . , 2n− 2. (8.27b)

Lemma 8.9. For all (w̃0, z0, k0) ∈ Un(ε, C0), i = 0, . . . , 2n − 1, j = 1, . . . , 2n − 2, and (x, t) ∈ T × [0,∞) we
have that

∥∂i
x∂λj

η̃x(x, t)− 1+α
2 t∂i+1

x w̃n
j (x)∥L∞

λ (Λn(ε,C0)) ≲ (1 + α)ti!LnC
i

xCtBλBzε, (8.28a)

and for values of x ∈ T with |x− 0| ≤ 1
C0

we have that

∥∂i
x∂λj

η̃x(x, t)− 1+α
2 t1{i≤j}

xj−i

(j−i)!∥L∞
λ (Λn(ε,C0)) ≲ (1 + α)ti!LnC

i

xCtBλBzε. (8.28b)

It follows that

∥∂i
x∂λj η̃x(̊x, T̊ )− 1+α

2 T̊ δij∥L∞
λ (Λn(ε,C0)) ≲

1+α
2 T̊

( (2n)!C
2n−1
x

(2n)3 + i!LnC
i

xCtBλ

)
Bzε. (8.28c)

Proof. The inequality (8.28a) is an application of Corollary 6.8 and (8.27b). The bound (8.28b) follows from (8.28a)
and the identity

∂i+1
x w̃n

j (x) = 1{i≤j}
xj−i

(j−i)! +O
(
i!LnC

i
0ε
)

|x− 0| ≤ 1
C0

, i = 0, . . . , 2n− 1

derived earlier in this section. The last inequality (8.28c) follows from plugging (x, t) = (̊x, T̊ ) into (8.28b) and
applying (8.17). □

Proposition 8.10. Let n ≥ 2 and let fn be the function defined in (8.19). If

(2n)!LnC
2n−1

x CtBλBzε≪ 1
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then there exists a function λ∗ : Un(ε
2, C0) → Λn(ε, C0), Lipschitz with respect to the (W 2n+2,∞(T))3 norm, such

that{
(w̃0, z0, k0, λ) ∈ Un(ε

2, C0)× Λn(ε, C0) : fn = 0

}
=

{
(w̃0, z0, k0, λ∗(w̃0, z0, k0)) : (w̃0, z0, k0) ∈ Un(ε, C0)

}
.

Proof. First, we apply ∂λj to the equation G(̊x, T̊ ) = (0, 0) and get[
∂λj x̊

∂λj
T̊

]
= −DG(̊x, T̊ )−1

[
1

(2n)!∂λj
∂2n−1
x η̃x(̊x, T̊ )

− 2
1+α∂λjηx(̊x, T̊ )

]
.

We know from the proof of Proposition 8.6 that ∥Id −DG(̊x, T̊ )∥operator ≤ |Id −DG(̊x, T̊ )| ≤ 2
3 , so it follows (use

Neumann series) that ∥DG(̊x, T̊ )−1∥operator ≤ 3. It therefore follows from (8.28c) that

∥∂λj
x̊∥L∞

λ (Λn(ε,C0)) ≲
1+α
2 T̊ 1

2n

(
1 + LnCtBλ

)
C

2n−1

x Bzε,

∥∂λj T̊∥L∞
λ (Λn(ε,C0)) ≲

1+α
2 T̊ 1

2n

(
1 + LnCtBλ

)
C

2n−1

x Bzε.

Using these bounds for ∂λj x̊ and ∂λj T̊ in conjunction with the bounds (8.18a), (8.18b), and (8.28c), we compute
that for i, j = 1, . . . , 2n− 2 we have that

∂f i
n

∂λj
=

∂

∂λj

[
∂i
xη̃x(̊x, T̊ )

]
= ∂i

x∂λj
η̃x(̊x, T̊ ) + ∂i+1

x η̃x(̊x, T̊ )∂λj
x̊+ ∂i

xη̃xt(̊x, T̊ )∂λj
T̊

= 1+α
2 T̊ [δij +

1
(2n)3O((2n)!C

2n−1

x Bzε) +O(i!LnC
i

xCtBλBzε)]

+ 1+α
2 T̊ 1

2nO((2n)!C
2n−1

x Bzε)O
(

1
2n

(
1 + LnCtBλ

)
C

2n−1

x Bzε
)
.

It follows that if (2n)!LnC
2n−1

x CtBλBzε is small enough we have that

∥∂λj
f i
n − 1+α

2 T̊ δij∥L∞
λ (Λn(ε,C0)) ≤ 1

19
1+α
2 T̊ 1

(2n)2

for all i, j = 1, . . . , 2n− 2. Therefore, ∥∥Dλfn − Id ∥L∞
λ (Λn(ε,C0)) ≤ 1

9 .

If (w̃0, z0, k0) ∈ Un(ε
2, C0) and λ = 0, then (w0, z0, k0) = (w̃0, z0, k0) ∈ Un(ε

2, C0) ⊂ Bn(ε2, C0). It follows
from (8.18b) that

|f i
n(w̃0, z0, k0, 0)| ≤ 50

(2n)!LnC
2n−1

x Bzε

(2n)

ε

Ln
.

for i = 1, . . . , 2n− 2, (w̃0, z0, k0) ∈ Un(ε
2, C0). Therefore, if (2n)!LnC

2n−1

x Bzε is small enough we have

|fn(w̃0, z0, k0, 0)| ≤ ε
10Ln

∀ (w̃0, z0, k0) ∈ Un(ε
2, C0).

It now follows (see § C) that we can apply the implicit function theorem to fn and conclude our result. □

Another way of phrasing Proposition 8.10 is as follows: if we define the open neighborhood

B̃n(ε, C0, Ln) := {(w0 +

2n−2∑
j=1

λjw̃
n
j + w̃0, z0, k0) : (w̃0, z0, k0, λ) ∈ Un(ε

2, C0)× Λn(ε, Ln)
}

(8.29)

of (w0, 0, 0) in (W 2n+2,∞(T))3, then the zero set of fn in B̃n(ε, C0) is a codimension-(2n−2), C0,1 Banach manifold.
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9. A DETAILED DESCRIPTION OF THE CUSP STRUCTURE AT THE FIRST SINGULARITY

We will now prove our main theorem, which will imply Theorem 1.1.

Theorem 9.1 (Finite-codimension stable shock formation). Fix an integer n ≥ 1, a value of α = γ−1
2 > 0, and

a constant C0 ≥ 3. Define w0 as in (8.1). Then there exists a codimension-(2n − 2) Banach manifold11 Mn ⊂
(W 2n+2,∞(T))3 containing (w0, 0, 0) and a constant

ε0 = ε0(n, α,C0)

such that if ε < ε0 then for all initial data (w0, z0, k0) ∈Mn satisfying

∥w0 − w0∥L∞
x

< ε,

∥z0∥L∞
x

< ε,

∥∂i+1
x (w0 − w0)∥L∞

x

i!
< Ci

0ε, ∀ i = 0, . . . , 2n+ 1,

∥∂i+1
x z0∥L∞

x

i!
< Ci

0ε, ∀ i = 0, . . . , 2n+ 1,

∥∂i+1
x k0∥L∞

x

i!
< Ci

0ε ∀ i = 0, . . . , 2n+ 1,

(9.1)

the unique locally-well posed solution (w, z, k) to (3.2) with initial data (w0, z0, k0) satisfies the following:
(i) (w, z, k) exists as a classical solution up until a finite time T∗ with

T∗ = 2
1+α [1 +Oα(ε)]; (9.2)

(ii) the functions z and k remain uniformly C1, 1
2n+1 on T× [0, T∗] with

[∂yz]
C

0, 1
2n+1

y

≲n,α,C0 ε, [∂yk]
C

0, 1
2n+1

y

≲n,α,C0 ε, (9.3)

but w has a gradient blowup at a unique point (y∗, T∗) ∈ T× [0, T∗] with y∗ satisfying

|y∗ − 1
2 | ≲n,α,C0 ε; (9.4)

(iii) away from (y∗, T∗), w, z, and k remain locally C2n+1,1 in T× [0, T∗] ;
(iv) for all y in the interval |y − y∗| < 1

(2n+2)(2n+1)22n+2C2n+1
0

we have

w(y, T∗) = b0 + b1(y − y∗)
1

2n+1 +OC0
(|y − y∗|

2
2n+1 ), (9.5a)

∂yw(y, T∗) =
1

2n+1b1(y − y∗)
− 2n

2n+1 +On,α,C0
(|y − y∗|−

2n−1
2n+1 ), (9.5b)

where b0 and b1 are constants satisfying

b0 = 5
2 +On,α,C0(ε),

b1 = −(2n+ 1)
1

2n+1 [1 +On,α,C0
(ε)].

Proof. Recall that the constants Bk, Bz, Bd, Bλ are determined by α via the definitions

Bk := 6
1
α , Bz := 6

2
min(1,α) (2 + 1

γ )e
21,

Bd := 2 · 6
3

min(1,α) e31, Bλ := 5
2 · 9

3
min(1,α) · e31.

Choose
δ := 6

min(1,α) and κ := max(1, α)(2 + 5δ)

so that δ and κ satisfy (5.10). With this choice of δ and κ, choose the positive constant Ct(0) to satisfy

Ct(0)≫ (1 + α)3δ, Ct(0)≫ max(1, α)2δC0,

where the implicit constants here are those given by the hypotheses of Propositions 5.4, 6.5, and 7.1. Now define

Ct := Ct(0)e
(11+log 3)δ+5

11In the case n = 1, M1 is simply an open subset of (W 4,∞(T))3. When n ≥ 2, it is the graph of a Lipschitz function.
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in accordance with definition (5.27), and pick a constant Cx large enough that

Cx ≫ 1, αCx ≫ Ct + 1, Cx ≫ (1 + α)C0,

where the implicit constants are sufficient to satisfy the hypotheses on Cx in § 5–7 and Proposition 8.6.
Now choose ε0 > 0 small enough that

(1 + α)2B2
zε0 ≪ 1, 3

3
min(1,α)Bd(Ct + 1 + α)Bzε

1
2 ≪ 1,

CtBλBzε≪ 1, C
2n

x Bzε0 ≪ 1,

so that Bn(ε, C0) ⊂ An(ε, C0) and the hypotheses of §4–8.2 are satisfied for any choice of ε ≤ ε0. If n ≥ 2, pick a
choice of functions w̃n

1 , . . . , w̃
n
2n−2 with a corresponding constant Ln as described in §8.4 and add the constraint

(2n)!LnC
2n−1

x CtBλBzε0 ≪ 1,

so that the hypotheses of Proposition 8.10 are satisfied for any ε ≤ ε0. Lastly, if Rn and Mn are the constants defined
in § A, we will add the constraints that ε0 is small enough that

93C
2n

x Bzε0 < 1,

22(1+ε
1
2
0 )

(n+1)2 ( 1
C0

+ 1
6n3Cx

)C
2n+1

x Bzε0 < 1,

88(1+ε
1
2
0 )

(n+1)2Rn
( 1
C0

+ 1
6n3Cx

)C
2n+1

x Bzε0 < 1,

88(1+ε
1
2
0 )Mn

(n+1)2Rn
C

2n+1

x Bzε0 < 1,

44(1+ε
1
2
0 )

(n+1)2 C
2n+1

x Bzε0 < 1.

(9.6)

These last constraints (9.6) will be used in some of our computations below.
With the constants Cx, Ct, Ln, and ε0 now chosen, defineMn ⊂ (W 2n+2,∞(T))3 to be

Mn :=

{
B1(ε0, C0) n = 1

{(w0, z0, k0) ∈ B̃n(ε0, C0, Ln) : fn(w0, z0, k0) = 0} n ≥ 2
,

where B1(ε0, C0) ⊂ A1(ε0, C0) is the open set defined by (8.2) when n = 1, fn is the function defined by (8.19),
and B̃n(ε, C0, Ln) is the open set defined by (8.29). We know from Proposition 8.10 that when n ≥ 2, Mn is a
codimension-(2n − 2) Banach submanifold of (W 2n+2,∞(T))3, i.e. it is the graph of a Lipschitz function from a
codimension-(2n− 2) linear subspace of (W 2n+2,∞(T))3 into R2n−2.

Fix ε ≤ ε0 and a choice of initial data (w0, z0, k0) ∈ Mn satisfying (9.1). According to Proposition 4.2, the
blowup time T∗ is finite and satisfies (4.12a)–(4.12b). Since

∂t(w◦η) = α
2γΣ

2K̊, ∂t(z◦η) = 2αΣZ̊ − α
2γΣ

2K̊, ∂t(k◦η) = αΣK̊,

it follows from (4.7) and our assumptions on w0, z0, k0 that

w◦η = w0 +O(Bkε), z ◦ η = z0 +O(αBzε), k ◦ η = k0 +O(αBkε). (9.7)

We know (see the discussion at the end of § 8.2) that because (w0, z0, k0) ∈Mn, ηx has a unique zero in T×[0, T∗]
at a point (x∗, T∗), that

∂xηx(x∗, T∗) = . . . = ∂2n−1
x ηx(x∗, T∗) = 0, (9.8)

and that x∗ satisfies the bounds |x∗ − 0| < 1
3(1+α)C0

and (8.12). (8.17) and (9.6) also imply that

|x∗| ≤ 93
(2n)3C

2n−1

x Bzε <
1

(2n)3Cx
. (9.9)

The estimates in § 5 prove that the map η(·, T∗) : T→ T is a C2n+1,1 homeomorphism. It follows from (9.8) that
η(·, T∗) lifts to a map x→ y from R to R with a Taylor expansion

y = y∗ + a2n+1(x− x∗)
2n+1 + a2n+2(x)(x− x∗)

2n+2.

In what follows, we will continue to abuse notation and use x to refer both to the Lagrangian variable x ∈ T and
to the lifted variable x ∈ R. Additionally, we will abuse notation and use y to refer both to the Eulerian variable
y = η(x, T∗) ∈ T and the lifted variable y ∈ R. So, for example, when we show below that the zeroth order term
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y∗ ∈ R of the above Taylor expansion satisfies y∗ = 5
2 +On,α,C0(ε) we can conclude that the corresponding Eulerian

variable y∗ = η(x∗, T∗) ∈ T = R/Z satisfies |y∗ − 1
2 | ≲n,α,C0

ε.
Because

a2n+1 =
∂2n
x ηx(x∗,T∗)
(2n+1)! ,

it follows from (8.4b), (4.12b), and (8.10) that

a2n+1 = 1
2n+1 [1 +O(C

2n

x Bzε)], (9.10a)

a2n+1 > 1
2(2n+1) . (9.10b)

Using (8.4b) and (4.12a), we obtain

|a2n+2(x)| ≤ 44(1 + ε
1
2 )

C
2n+1
x Bzε
(2n+2)3 , ∀ |x| ≤ 1

C0
. (9.11)

The inequalities (9.9),(9.10b), (9.11) together with the hypotheses (9.6) allow us to apply Lemma A.3 with r = 1
C0

and obtain ∣∣∣∣(x− x∗)−
(
y−y∗
a2n+1

) 1
2n+1

∣∣∣∣ < ∣∣ y−y∗
a2n+1

∣∣ 2
2n+1 ∀ |x| ≤ 1

C0
. (9.12)

Lemma A.3 and the fact that 1
C0
− |x∗| > 1

2C0
lets us conclude that {y : η(x, T∗) = y, |x| ≤ 1

C0
} contains the ball

|y − y∗| < 1
(2n+2)(2n+1)22n+2C2n+1

0

.

Taylor expanding w ◦ η(·, T∗) in x about x∗ gives us

w◦η(x, T∗) = w◦η(x∗, T∗) + ∂x(w◦η)(x∗, T∗)(x− x∗) +O
(
∥∂2

x(w◦η)(·, T∗)∥L∞
x
(x− x∗)

2
)
.

(9.7), (9.9), and our hypotheses on w0 imply that if we define Bw
0 := w◦η(x∗, T∗) then

w◦η(x∗, T∗) =
5
2 +O(C

2n−1
x Bzε
(2n)3 ) +O(Bkε).

Since

∂x(w◦η) = w′
0 − 1

2γσ0k
′
0 +

ˆ t

0

(ηxW̊ )t ds+
1
2γ ηxΣK̊,

our derivative estimates from § 5 tell us that

(i+ 1)2∥∂i+1
x (w◦η)− ∂i+1

x w0∥L∞
x

i!C
i

x

≲ Bkε (9.13)

for t ∈ [0, T∗], i = 0, . . . , 2n+ 1. Therefore, if we define

Bw
1 := ∂x(w◦η)(x∗, T∗) = −1 + x2n

∗ + ∂x(w◦η)(x∗, T∗)− w′
0(x∗) (9.14)

then (8.12a) and (9.13) give us
Bw

1 = −1 +O(Bzε). (9.15)

Our assumptions on Cx and ε0 imply that CxBzε0 < 1, so (9.13) also yields

∥∂2
x(w◦η)(·, T∗)∥L∞

x
≤ C0 +O(CxBkε) ≲ C0. (9.16)

We thus arrive at the expansion

w◦η(x, T∗) = Bw
0 +Bw

1 (x− x∗) +O(C0(x− x∗)
2)

for all x. Plugging (9.12) into this equation gives us

w(y, T∗) = Bw
0 +Bw

1

(
y−y∗
a2n+1

) 1
2n+1 [1 +O

(∣∣ y−y∗
a2n+1

∣∣ 1
2n+1

)
] +O

(
C0

∣∣ y−y∗
a2n+1

∣∣ 2
2n+1

)
= Bw

0 +Bw
1

(
y−y∗
a2n+1

) 1
2n+1 +O

(
(1 + C0)

∣∣ y−y∗
a2n+1

∣∣ 2
2n+1

)
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for all |y − y∗| < 1
(2n+2)(2n+1)22n+2C2n+1

0

. If we define

b0 := Bw
0 = 5

2 +O(C2n

x Bzε),

b1 := Bw
1 a

− 1
2n+1

2n+1 = −[1 +O(Bzε)](
1

2n+1 )
− 1

2n+1 [1 +O(C2n

x Bzε)]
− 1

2n+1

= −(2n+ 1)
1

2n+1 [1 +O(C2n

x Bzε)],

(9.17)

then, using (9.10b), we arrive at our expansion (9.5a) for w(·, T∗).
Taylor expanding ηx(·, T∗) about x∗ and using (9.8), (8.4b), (4.12a), and (9.6) gives us

ηx(x, T∗) = (2n+ 1)a2n+1(x− x∗)
2n + h2n+1(x)(x− x∗)

2n+1, (9.18a)

|h2n+1(x)| ≤ 44(1+ε
1
2 )

(2n+2)2 C
2n+1

x Bzε <
1
4 ∀ |x| ≤ 1

C0
. (9.18b)

We know from (9.16) that

∂x(w◦η)(x, T∗) = Bw
1 +O

(
∥∂2

x(w◦η)(·, T∗)∥L∞
x
(x− x∗)

)
= Bw

1 +O
(
C0(x− x∗)

)
for all x. Therefore, it follows from (9.12) that for all y in the interval |y − y∗| < 1

(2n+2)(2n+1)22n+2C2n+1
0

we have
that

∂yw(y, T∗) =
∂x(w◦η)(x, T∗)

ηx(x, T∗)

=

[
Bw

1 +O
(
C0(x− x∗)

)]
(2n+ 1)a2n+1

(x− x∗)
−2n

[
1 +O(C2n+1

x Bzε(x− x∗))
]

=
Bw

1 +O(C0| y−y∗
a2n+1

|)
(2n+ 1)a2n+1

(
y−y∗
a2n+1

)− 2n
2n+1

[
1 +O

(
C

2n+1

x Bzε
∣∣ y−y∗
a2n+1

∣∣ 1
2n+1

)
]

= − 1
2n+1b1(y − y∗)

− 2n
2n+1 +On,α,C0

(∣∣ y−y∗
a2n+1

∣∣− 2n−1
2n+1

)
which gives us (9.5b).

To approximate the location of y∗, using (4.12b), (9.7), and our bounds on |x∗| gives us

y∗ = η(x∗, T∗) = x∗ +

ˆ T∗

0

λ3◦η(x∗, t) dt =
5
2 +

O(C
2n
x Bzε)

n3Cx
+O((1 + α)Bzε).

This implies (9.4).

To prove C
1, 1

2n+1
y estimates on z and k, we will first show that η−1(·, t) is uniformly C

0, 1
2n+1

y up to time T∗. In
particular, we will show that

|x1 − x2| ≤ 22−
1

2n+1C2n
0 |η(x1, t)− η(x2, t)|

1
2n+1 ∀ x1, x2 ∈ T, t ∈ [0, T∗]. (9.19)

We will prove (9.19) by bounding |x1 − x2| separately on the segments |x− 0| ≤ 1
C0

and |x− 0| ≥ 1
C0

.
We know from Lemma 8.2 that

ηx ≥ 1
2C

−2n
0

for |x− 0| ≥ 1
C0

. Therefore, for all x1, x2 in this segment we have the bound

|x1 − x2| ≤ 2C2n
0 |η(x1, t)− η(x2, t)| ≤ 2C2n

0 |η(x1, t)− η(x2, t)|
1

2n+1 ∀ t ∈ [0, T∗].

Now consider x1, x2 with− 1
C0
≤ x1 < x2 < 1

C0
. We know from (8.4a) that ηxt(x, t) < 0 for all |x−0| ≤ 1

C0
, t ∈

[0, T∗], and therefore,

|η(x2, t)− η(x1, t)| =
ˆ x2

x1

ηx(x, t) dx ≥
ˆ x2

x1

ηx(x, T∗) dx = |η(x2, T∗)− η(x1, T∗)|

for all t ∈ [0, T∗]. Therefore, it suffices to bound |η(x2, T∗) − η(x1, T∗)| below. In the case where x∗ ≤ x1, (9.18)
and (9.10b) imply

η(x2, T∗)− η(x1, T∗) =

ˆ x2

x1

ηx(x, T∗) dx
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≥ a2n+1

ˆ x2

x1

(2n+ 1)(x− x∗)
2n dx− 1

4

ˆ x2

x1

(x− x∗)
2n+1 dx

= a2n+1

[
(x2 − x∗)

2n+1 − (x1 − x∗)
2n+1

]
− 1

4(2n+2)

[
(x2 − x∗)

2n+2 − (x1 − x∗)
2n+2

]
≥

[
a2n+1 − 1

4(2n+2)
2n+1
2n+2

]
(x2 − x1)

2n+1

≥ 1
4(2n+1) (x2 − x1)

2n+1.

The same argument works for the case where x2 ≤ x∗. In the last case where x1 < x∗ < x2, (9.12) gives us the bound

|x2 − x1| ≤
∣∣y2−y1

a2n+1

∣∣ 1
2n+1 +

∣∣y2−y∗
a2n+1

∣∣ 2
2n+1 +

∣∣y1−y∗
a2n+1

∣∣ 2
2n+1

≤ 3
∣∣y2−y1

a2n+1

∣∣ 1
2n+1

≤ 3(2(2n+ 1))
1

2n+1 |y2 − y1|
1

2n+1 ,

where yi = η(xi, T∗). Therefore
|x2 − x1| ≤ 6|η(x2, t)− η(x1, t)|

1
2n+1

for all x1, x2 with |xi| ≤ 1
C0

, t ∈ [0, T∗]. Putting this together with our bounds for |x − 0| ≥ 1
C0

, we conclude that
(9.19) holds.

It now follows from our estimates in § 5 that

|∂yk(y1, t)− ∂yk(y2, t)| = |K̊(x1, t)− K̊(x2, t)| ≤ ∥∂xK̊∥L∞
x,t
|x1 − x2| ≤ C2n

0 CxBkε|y1 − y2|
1

2n+1 .

Analogous computations also give us uniform C
0, 1

2n+1
y estimates on ∂yz.

It is also straightforward consequence of our estimates from § 5 that w ◦ η, z ◦ η, and k ◦ η are C2n+1,1
x,t on

T × [0, T∗] and the inverse map (x, t) → (y, t) is locally C2n+1,1
x,t away from (x∗, T∗), so w, z, and k are locally

C2n+1,1
y,t on T× [0, T∗] \ {(y∗, T∗)}. □

APPENDIX A. POLYNOMIAL INVERSION

This section generalizes the results from the appendix of a previous work of the authors [39]. Let C((z)) denote
the field of formal Laurent series in the variable z with coefficients in C, i.e. the field of formal power series with
coefficients in C that also allow for finitely many terms of negative degree. The field of Puiseux series in the variable
x with coefficients in C is then defined to be the union

⋃
j>0 C((x1/j)), which is itself a field. The Puiseux-Newton

theorem states that
⋃

j>0 C((x1/j)) is in fact an algebraically closed field. We will now introduce a useful special case
of the Puiseux-Newton theorem:

Theorem A.1 (Analytic Puiseux-Newton). If C{x} denotes the ring of convergent power series in x, and f(x, y) ∈
C{x}[y] is a polynomial of degree m > 0, irreducible in C{x}[y], then there exists a convergent power series y ∈
C{z} such that the roots of f in

⋃
j>0 C((x1/j)) are all given by

y(x1/m), y(e2πi/mx1/m), . . . , y(e2πi
m−1
m x1/m).

It follows that in general if f(x, y) ∈ C{x}[y] then for each Puiseux series solution y of f(x, y(x)) = 0 there exists
some y ∈ C{z} and m ≤ deg f such that y(x) = y(x1/m).

Proof of Theorem A.1. See [4, Section 8.3]. □

Now, fix a positive integer n. Recursively define the sequence

cn0 := 1,

cnm :=
∑

ℓ1+···+ℓ2n+2=m−1

cnℓ1 · · · c
n
ℓ2n+2

− 1
2n+1

∑
j1+···j2n+1=m
0≤ji≤m−1

cnj1 · · · c
n
j2n+1

,

and then define the formal power series

yn(x) :=

∞∑
j=0

(−1)j

(2n+1)j cjx
j .
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One can check that
y0(x) := x

1
2n+1 yn(x

1
2n+1 )

is a Puiseux series solution of the algebraic equation

−x+ y2n+1
0 + y2n+2

0 = 0.

It follows from Theorem A.1 that yn is a convergent power series with some positive radius of convergence

Rn :=
2n+ 1

lim supj→∞ |cnj |1/j
> 0.

If a2n+1 ∈ R×, a2n+2 ∈ R one can check that

y(x) := ( x
a2n+1

)
1

2n+1 yn
(a2n+2

a2n+1
( x
a2n+1

)
1

2n+1
)

= ( x
a2n+1

)
1

2n+1

∞∑
j=0

( −a2n+2

(2n+1)a2n+1

)j
cnj (

x
a2n+1

)
j

2n+1

solves
−x+ a2n+1y

2n+1 + a2n+2y
2n+2 = 0

for all x satisfying
|a2n+2|2n+1|x| < a2n+2

2n+1R
2n+1
n .

Since yn is holomorphic, if 0 < r < Rn then Cauchy’s estimate gives us

| cj
(2n+1)j | ≤ r−j max

|z|=r|
|yn(z)|

for all nonnegative integers j. It follows that for 0 < r < Rn and N ≥ 0, we have∣∣yn(z)− N∑
j=0

(−1)j

(2n+1)j cjz
j
∣∣ ≤ | zr |N+1

1− | zr |
max
|z|=r

|yn(z)| ∀ |z| < r.

Therefore, if we define
Mn := max

|z|= 3Rn
4

|yn(z)|, (A.1)

then for any N ≥ 0 we get the bound∣∣y(x)− ( x
a2n+1

)
1

2n+1

N∑
j=0

( −a2n+2

(2n+1)a2n+1

)j
cnj (

x
a2n+1

)
j

2n+1

∣∣ ≤ 3Mn(
4a2n+2

3a2n+1Rn
)N+1| x

a2n+1
|
N+2
2n+1 (A.2)

∀ x s.t. |a2n+2|2n+1|x| < a2n+2
2n+1(

Rn

2 )2n+1.

Lemma A.2. Let n be a positive integer, let I ⊂ R be an interval, and let y ∈ C2n+1,1(I). Suppose y has a Taylor
series expansion about x∗ ∈ I of the form

y(x) = y∗ + a2n+1(x− x∗)
2n+1 + a2n+2(x)(x− x∗)

2n+2

where a2n+1 > 0. Define J ⊂ I to be

J := {x ∈ I : |a2n+2(x)|2n+1|y(x)− y∗| < a2n+2
2n+1R

2n+1
n , (2n+2)a2n+2(x)(x−x∗)

(2n+1)a2n+1
> −1},

and define J̃ to be the connected component of J containing x∗. Then for all x ∈ J̃ we have

(x− x∗) =
(y(x)−y∗

a2n+1

) 1
2n+1

∞∑
j=0

( −a2n+2(x)

(2n+1)a2n+1

)j
cnj
(y(x)−y∗

a2n+1

) j
2n+1 . (A.3)

Proof. Without loss of generality, x∗ = y∗ = 0 . For (y, a) ∈ R2 satisfying

|a|2n+1|y| < a2n+2
2n+1R

2n+1
n

define the function x̃ via the series

x̃(y, a) :=
(

y
a2n+1

) 1
2n+1

∞∑
j=0

( −a
(2n+1)a2n+1

)j
cnj
(

y
a2n+1

) j
2n+1
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which we know to converge. For (y, a) in the domain of x̃, x̃(y, a) solves

−y + a2n+1x̃(y, a)
2n+1 + ax̃(y, a)2n+2 = 0.

For all x ∈ J , (y(x), a2n+2(x)) is in the domain of x̃ and we have

y(x) = a2n+1x̃(y(x), a2n+2(x)))
2n+1 + a2n+2(x)x̃(y(x), a2n+2(x))

2n+2 = 0. (A.4)

For x ∈ J̃ , define the bootstrap hypothesis and conclusion

H(x) := “ (2n+2)a2n+2(x)x̃(y(x),a2n+2(x))
(2n+1)a2n+1

> −1”
C(x) := “x̃(y(x), a2n+2(x)) = x.”

We note that

(i) H(0) is true,
(ii) the set of x ∈ J̃ where C(x) is true is a closed subset of J̃ because x→ x̃(y(x), a2n+2(x)) is continuous, and

(iii) the set of x ∈ J̃ where C(x) is true is in the interior of the set where H(x) is true, by virtue of the definition of
J and the fact that x→ x̃(y(x), a2n+2(x)) is continuous.

Lastly, the set where H(x) is true contains the set where C(x) is true. To see this, for (x, z) ∈ I × R satisfying

(2n+2)a2n+2(x)z
(2n+1)|a2n+1| > −1

define the function

f(x, z) := a2n+1z
2n+1 + a2n+2(x)z

2n+2.

For all (x, z) in the domain of f we have

∂zf(x, z) = (2n+ 1)a2n+1z
2n[1 + (2n+2)a2n+2(x)z

(2n+1)a2n+1
]

so that f is a strictly increasing function of z everywhere in its domain. If x ∈ J̃ is such that H(x) is true, then
x̃(y(x), a2n+2(x)) is in the domain of f and (A.4) implies that

f(x, x̃(y(x), a2n+2(x))) = y(x) = f(x, x).

Since f is a strictly increasing function of its second argument on its domain, we conclude that C(x) is true. This
completes our bootstrap argument, and since J̃ is connected we conclude that C(x) is true for all x ∈ J̃ . □

Lemma A.3. In the context of the previous lemma, if we further assume that I = [−r, r] and r satisfies

(2n+2)∥a2n+2∥L∞
x

(2n+1)a2n+1
(r + |x∗|) < 1, (A.5a)

∥a2n+2∥L∞
x

a2n+1Rn
(r + |x∗|) < 1

4 , (A.5b)

then for all x ∈ I we have ∣∣∣∣(x− x∗)−
(y(x)−y∗

a2n+1

) 1
2n+1

∣∣∣∣ ≤ 4Mn∥a2n+2∥L∞
x

a2n+1Rn
|y(x)−y∗

a2n+1
|

2
2n+1 . (A.6)

Furthermore, the range of y contains the ball

|y − y∗| ≤ a2n+1(r−|x∗|)2n+1

2n+2 . (A.7)

Proof. It is immediate from (A.5a) that

|y(x)− y∗| ≥ a2n+1

2n+2 |x− x∗|2n+1

for all x ∈ I . This implies that the range of y contains the ball defined by (A.7). Furthermore, (A.5) implies that
J = I and therefore J̃ = I . Lemma A.2 therefore implies that (A.3) holds for all x ∈ I . Now our assumption (A.5b)
allows us to apply (A.2) with N = 1 to obtain (A.6). □
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APPENDIX B. FREQUENTLY USED COMPUTATIONS

The following lemmas are straightforward exercises:

Lemma B.1. If A > 0 and f ∈ R are constants, and x : [0, T ]→ R satisfies

ẋ ≤ −Ax+ f

for all t ∈ [0, T ], then

x(t) ≤ x(0)e−At + (1− e−At) f
A ≤ max(x(0), f

A ) ∀ t ∈ [0, T ].

Lemma B.2. If β is a multi-index and j1 + . . .+ jm = |β|, then∑
γ1+···+γm=β

|γi|=ji

(
β

γ1 · · · γm

)
=

(
|β|

j1 · · · jm

)
. (B.1)

Lemma B.3. For all positive integers m, ℓ and all p > 1, we have the bound∑
j1+...+jℓ=m

(m+1)p

(j1+1)p···(jℓ+1)p < ℓ1+p

( ∞∑
j=1

1
jp

)ℓ−1

.

In particular, for p = 2 and ℓ = 2, 3 we have
m∑
j=0

(m+1)2

(j+1)2(m+1−j)2 < 4π2

3 ,
∑

j1+j2+j3=m

(m+1)2

(j1+1)2(j2+1)2(j3+1)2 < 3π4

4 . (B.2)

Many variants of the inequalities (B.2) can be proven via similar computations:
m∑
j=0

m+2
(j+1)2(m+2−j) <

2π2

3 ,

m∑
j=1

m+2
j3(m+2−j) < 8,

m∑
j=2

m+1
j3(m+2−j) < 6.1,

m∑
j=1

(m+1)2

j3(m+1−j)2 < 25,

m−1∑
j=0

(m+1)2

(j+1)2(m−j)2 < 16π2

3 ,
∑

j1+j2+j3=m
j1≥1

(m+1)2

j31(j2+1)2(j3+1)2
< 163

∑
j1+j2+j3=m

j1≥1

m+2
j31(j2+1)2(j3+2)

< 21,
∑

j1+j2+j3=m
j1,j2≥1

(m+1)2

j31j
3
2(j3+1)2

< 66,
∑

j1+j2+j3+j4=m
j1,j2≥1

(m+1)2

j31j
3
2(j3+1)2(j4+1)2

< 641.

(B.3)
These inequalities (B.2)–(B.3) are used throughout § 5-6. Note that the righthand side of the inequalities (B.2)–(B.3)
is always independent of m.

APPENDIX C. IMPLICIT FUNCTION THEOREM

In this section, suppose that X is a Banach space, U ⊂ X is an open set, and V ⊂ RN is an open, convex set with
Br(y0) ⊆ V ⊆ BR(y0) for some y0 ∈ RN , 0 < r ≤ R. Let f : U × V → RN .

Lemma C.1 (Existence of unique solutions). Suppose that f is Lipschitz in y and that there exists a constant θ ∈ [0, 1)
such that for all x ∈ U we have

∥Id −Dfy(x, ·)∥L∞
y (V ) ≤ θ, (C.1a)

|f(x, y0)| ≤ r − θR. (C.1b)

Then there exists a function g : U → V such that{
(x, y) ∈ U × V : f(x, y) = 0

}
=

{
(x, g(x)) : x ∈ U

}
.

Proof. For each x ∈ U , define the map Ψ(x) : V → RN , Ψ(x)(y) := y− f(x, y). Since V is convex, it follows from
(C.1a) that Ψ(x) is θ-Lipschitz for all x ∈ U . Therefore, (C.1b) implies that

Ψ(x)(V ) ⊂ BθR(Ψ(x)(y0)) ⊂ Br(y0) ⊂ V.

Thus Ψ(x) is a contraction mapping for each x ∈ U . Define g(x) to be the unique fixed point of Ψ(x). □
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Lemma C.2 (Lipschitz implicit function theorem). In the context of the previous lemma, if we additionally assume
that f is uniformly Lipschitz in x with

|f(x1, y)− f(x2, y)| ≤ L|x1 − x2| ∀ x1, x2 ∈ U, y ∈ V, (C.2)

then the function g is L
1−θ -Lipschitz.

Proof. Recursively define the sequence of functions{
g0(x) := x

gn+1(x) := Ψ(x)(gn(x))
.

It is immediate that [gn+1]C0,1
x (U) ≤ θ[gn]C0,1

x (U) + L for all n. Therefore, we have

[gn+1]C0,1
x (U) ≤ L

n∑
j=0

θj <
L

1− θ

for all n. Since gn converges pointwise to g, our result follows. □
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