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ABSTRACT. We provide a detailed analysis of the shock formation process for the non-isentropic 2d Euler
equations in azimuthal symmetry. We prove that from an open set of smooth and generic initial data, solu-
tions of Euler form a first singularity or gradient blow-up or shock. This first singularity is termed a Hölder
C

1
3 pre-shock, and our analysis provides the first detailed description of this cusp solution. The novelty of

this work relative to [3] is that we herein consider a much larger class of initial data, allow for a non-constant
initial entropy, allow for a non-trivial sub-dominant Riemann variable, and introduce a host of new identities to
avoid apparent derivative loss due to entropy gradients. The method of proof is also new and robust, exploring
the transversality of the three different characteristic families to transform space derivatives into time deriva-
tives. Our main result provides a fractional series expansion of the Euler solution about the pre-shock, whose
coefficients are computed from the initial data.

1. INTRODUCTION

Investigating shock formation and development is one of the central problems of hyperbolic PDE. Es-
tablishing shock formation (gradient blowup) from smooth initial data, in a constructive manner, is crucial
for analyzing the dynamics of the resulting discontinuous shock waves. A precise description of the solu-
tion at the pre-shock (the spacetime set where smooth solutions first form cusps) is what allows for a full
characterization of singularity propagation, especially in multiple space dimensions (see § 1.2 for details).

This paper establishes shock formation for smooth solutions of the non-isentropic two-dimensional com-
pressible Euler equations in azimuthal symmetry. When compared to [5] this work gives a detailed de-
scription of the solution near the pre-shock as a fractional power series. This paper also goes beyond [3]
by establishing shock formation in the non-isentropic setting, and with minimal constraints imposed on the
initial data (see § 1.2 for details).

Beyond the result itself, we develop a new robust proof strategy for establishing shock formation for a
complex system of hyperbolic PDEs with multiple wave speeds. Instead of appealing to modulated self-
similar analysis (cf. [3, 5]), we use new variables which satisfy pointwise and integral identities which
accurately capture the compressible Euler dynamics (see § 1.3 for details).

1.1. The compressible Euler equations. The Euler equations of gas dynamics consist of the three conser-
vation laws for momentum, mass, and energy, given respectively by

∂t(ρu) + div(ρu⊗ u+ pI) = 0 , (1.1a)

∂tρ+ div(ρu) = 0 , (1.1b)

∂tE + div((p+ E)u) = 0 . (1.1c)

In two space dimensions, the focus of this paper, u : R2 × R → R2 denotes the velocity vector field,
ρ : R2 × R → R+ denotes the strictly positive density function, E : R2 × R → R denotes the total energy
function, and p : R2 × R → R denotes the pressure function which is related to (u, ρ,E) by the identity
p = (γ − 1)(E − 1

2ρ |u|
2), where γ > 1 denotes the adiabatic exponent. For the analysis of the shock

formation process, it is convenient to replaced conservation of energy (1.1c) with transport of entropy

∂tS + u · ∇S = 0 . (1.1d)
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Here, S : R2 × R → R denotes the specific entropy, and the equation-of-state for pressure is written as

p(ρ, S) = 1
γρ

γeS . (1.2)

In preparation for reducing the equations to a more symmetric form, using Riemnann-type variables, we
introduce the adiabatic exponent

α = γ−1
2

so that the (rescaled) sound speed reads

σ = 1
α

√
∂p/∂ρ = 1

αe
S
2 ρα . (1.3)

With this notation, the ideal gas equation of state (1.2) becomes

p = α2

γ ρσ
2 . (1.4)

The Euler equations (1.1a), (1.1b), (1.1d), as a system for (u, σ, S) are then given by

∂tu+ (u · ∇)u+ ασ∇σ = α
2γσ

2∇S , (1.5a)

∂tσ + (u · ∇)σ + ασ div u = 0 , (1.5b)

∂tS + (u · ∇)S = 0 . (1.5c)

We let ω = ∇⊥ · u denote the scalar vorticity, and define the specific vorticity by ζ = ω
ρ . A straightforward

computation shows that ζ is a solution to

∂tζ + (u · ∇)ζ = α
γ
σ
ρ∇

⊥σ · ∇S . (1.6)

The term α
γ
σ
ρ∇

⊥σ · ∇S on the right side of (1.6) can also be written as ρ−3∇⊥ρ · ∇p and is referred to as
baroclinic torque.

The goal of this paper is to give a constructive proof of shock formation for (1.5), from smooth initial
data, via a method powerful enough to capture a high-order series expansion of all fields at the preshock,
information which is in turn necessary to study the shock development problem. More precisely, we prove:

Theorem 1.1 (Main result, abbreviated). From smooth, non-isentropic initial data with azimuthal symme-
try lying in an open set1, there exist smooth solutions to the 2d Euler equations (1.1) that form a gradient
blowup singularity at a computable time T∗2 and spatial location. More specifically, there exists ξ∗ ∈ T such
that when the 2d Euler equations are expressed in polar coordinates as in (2.1), the azimuthal component
of the flow uθ and the sound speed σ form C0, 1

3 cusps along the ray θ = ξ∗ at the time of the blowup, and
are given by the fractional series expansions

uθ(r, θ, T∗) = r
(
b0 + b1(θ − ξ∗)

1/3 + b2(θ − ξ∗)
2/3 +O(ε−1|θ − ξ∗|)

)
,

σ(r, θ, T∗) = r
(
c0 + b1(θ − ξ∗)

1/3 + b2(θ − ξ∗)
2/3 +O(ε−1|θ − ξ∗|)

)
,

for θ in a neighborhood of radius ∼ ε3,3 while the radial component ur of the flow, the specific entropy S,
and the specific vorticity ζ remain C1, 1

3 , with fractional series expansions

ur(r, θ, T∗) = r
(
a0 + a3(θ − ξ∗) + a4(θ − ξ∗)

4/3 +O(ε−1/2|θ − ξ∗|5/3)
)
,

S(r, θ, T∗) = k0 + k3(θ − ξ∗) + k4(θ − ξ∗)
4/3 +O(ε−1|θ − ξ∗|5/3),

ζ(r, θ, T∗) = v0 + v3(θ − ξ∗) +O(ε−1|θ − ξ∗|4/3).

Here, the constants a0, a3, a4, b0, b1, b2, c0, k0, k3, k4, and v0 are O(1) while v3 is O(ε−1).4

1See § 2.3-2.4 for the details of the pertinent set of initial data.
2We abuse notation here, because the time T∗ used here differs from the time T∗ referenced in the rest of the paper by a constant

dependent on γ > 1. See § 2.1.
3Here ε−1 is a large parameter quantifying the absolute size of slope of the initial data. See § 2.3 for details.
4See § 2.2 for the details of our use of O(·) and ∼.
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1.2. Motivation and prior results. We recall that the classical proofs of finite-time singularity formation
for the compressible Euler equations and related hyperbolic systems are not constructive (see e.g. [16], [18],
[23]). A constructive proof of blowup, and equally importantly, a detailed description of the solution at the
pre-shock, is necessary in order to establish shock development. This is especially true in multiple space
dimensions: while the theory of weak solutions for 1D hyperbolic systems is well-developed (see e.g. [12]),
many of the techniques used in the 1D theory either do not apply in multiple space dimensions5 or are not
precise enough to be useful for the shock development problem, which requires bounds on derivatives of the
solution.

Departing from the weak solutions perspective, Lebaud [17] established shock formation and develop-
ment for the one-dimensional p-system (a variant on 1D isentropic Euler). These results were expanded
upon by Chen and Dong [8] and Kong [13]. Studying shock development in the p-system does not per se
prove anything about physical solutions of Euler, because physical solutions of Euler that have shocks can-
not be isentropic (see § 2.2 of [3] or § 3 of [4] for details). Moreover, non-isentropic solutions of Euler are
generically not irrotational due to a misalignment of pressure and entropy gradients (see (1.6) above, and § 4
of [4] for the 3D case), so physical solutions which have shocks are also generically not irrotational. Study-
ing shock development for piecewise isentropic or even piecewise irrotational solutions of Euler is called
the restricted shock development problem. For the restricted shock development problem, Christodoulou es-
tablished shock formation and development for irrotational flows in his landmark books [9], [10]. Yin [25]
wrote the first paper establishing shock formation and development for non-isentropic Euler, but confined to
spherical symmetry (see also [11]). Luk and Speck [19] proved shock formation for the 2D isentropic Euler
equations in the presence of vorticity, by generalizing Christodoulou’s geometric framework.

A different perspective was taken by Buckmaster, Shkoller, and Vicol [5–7] who used modulated self-
similar variables to construct the first gradient singularity (a point shock) from generic smooth initial data.
In [5] they constructed shocks for 2D isentropic Euler in azimuthal symmetry and characterized the shock
profile as an asymptotically self-similar, stable 1D blowup profile. After that, they proved for the first
time that the 3D isentropic Euler equations generically form a stable point shock, even in the presence of
vorticity [6]. The important generalization to the full non-isentropic setting was achieved in [7], where
it is also shown that irrotational data instantaneously creates vorticity, which remains uniformly bounded
at the point shock. Later, Luk and Speck [20] generalized their 2D result to the full 3D non-isentropic
setting. Going beyond the first point-singularity, Abbrescia and Speck [1] recently tackled the problem
of maximal development for non-irrotational, non-isentropic Euler. Using rough foliations, they obtained
a description of the stable formation of a pre-shock in a subset of spacetime where the normal derivative
of the foliation density has a favorable sign. Using a smooth spacetime geometry, based on the Arbitrary
Lagrangian Eulerian description of fluids, the maximal hyperbolic development of smooth Cauchy data for
Euler has been studied in [22].

Buckmaster, Drivas, Shkoller, and Vicol [3] established for the first time shock developement in the
presence of voriticity, by working in azimuthal symmetry. By improving upon [5], the solution at the pre-
shock is described in [3] by a fractional series, assuming that the flow is initially isentropic (k0 ≡ 0 in (2.5c)
below) and that the subdominant Riemann variable vanishes (z0 ≡ 0 in (2.5b) below). They then used this
detailed description of the solution to establish shock development for 2D Euler within the class of azimuthal
solutions. The paper [3] is the first to also confirm the production of both a discontinuous shock wave and
two surfaces of cusp singularities emanating from the pre-shock, as predicted by Landau and Lifschitz [15].

1.3. New ideas. This paper breaks with [5] and [3] by forgoing the use of self-similar variables. Instead,
we use only the fine structure of the Euler system written in the characteristic coordinates that correspond to
the three different wave-speeds present in the system. We show that the sound speed remains bounded from
below up to the time of the first blowup (see Proposition 4.1), which means that the three wave speeds remain
uniformly transverse to one another up to the blowup time. This transversality allows us to to prove useful
integral bounds (see Lemma 3.1 and § 4) and allows us to exchange space derivatives for time derivatives

5For example, the BV estimates utilized in the classical theory of shocks for 1D hyperbolic systems fails for d ≥ 2. See [21].
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(see § 5), which can be integrated to obtain identities for the higher order derivatives of our variables. This
exchange of space for time derivatives via transversality is the key new idea of this work.

The implementation of this idea is made possible by using the special differentiated Riemann variables
introduced in [3]. These new variables, labeled qw and qz , evolve along the characteristics of the fastest and
slowest wave speeds respectively, and they do not experience derivative loss (see § 3 of [3] or § 3.2 below).
Whereas [3] utilized qw and qz for studying shock development, we use qw and qz to also establish shock
formation in the non-isentropic setting. Using pointwise and integral identities for qw and qz , we are able
to obtain estimates for our variables and their derivatives up to the blowup time without first establishing
the uniqueness or location of the blowup label; we instead derive the uniqueness and location of the blowup
label as a result of our estimates (see § 10.3).

We note that because we avoid self-similar analysis we are able to place far fewer assumptions on our
initial data than in [3]. When compared to [3], we also obtain a higher order fractional series expansion of
the solution at the time of blowup (see Theorem 2.1).

2. AZIMUTHAL SYMMETRY

2.1. The Euler equations in polar coordinates and azimuthal symmetry. The 2D Euler equations (1.5)
take the following form in polar coordinates for the variables (uθ, ur, ρ, S):(

∂t + ur∂r +
1
ruθ∂θ

)
ur − 1

ru
2
θ + ασ∂rσ = α

2γσ
2∂rS , (2.1a)(

∂t + ur∂r +
1
ruθ∂θ

)
uθ +

1
ruruθ + ασr ∂θσ = α

2γ
σ2

r ∂θS , (2.1b)(
∂t + ur∂r +

1
ruθ∂θ

)
σ + ασ

(
1
rur + ∂rur +

1
r∂θuθ

)
= 0 , (2.1c)(

∂t + ur∂r +
1
ruθ∂θ

)
S = 0. (2.1d)

We introduce the new variables6

uθ(r, θ, t) = rb(θ, t) , ur(r, θ, t) = ra(θ, t) , σ(r, θ, t) = rc(θ, t), S(r, θ, t) = k(θ, t) . (2.2)

The system (2.1) then takes the form

(∂t + b∂θ) a+ a2 − b2 + αc2 = 0 (2.3a)

(∂t + b∂θ) b+ αc∂θc+ 2ab = α
2γ c

2∂θk (2.3b)

(∂t + b∂θ) c+ αc∂θb+ γac = 0 (2.3c)

(∂t + b∂θ) k = 0 . (2.3d)

For simplicity of the presentation, we will set γ = 2 from here on; note however that all statements in this
paper apply mutatis mutandis to the case of a general γ > 1. The Riemann functions w and z are defined by

w = b+ c , z = b− c , (2.4a)

b = 1
2(w + z) , c = 1

2(w − z) . (2.4b)

It is convenient to rescale time, letting ∂t 7→ 3
4∂t̃, and for notational simplicity, we continue to write t for t̃.

With this temporal rescaling employed, the system (2.3c) can be equivalently written as

∂tw + λ3∂θw = −8
3aw + 1

24(w − z)2∂θk , (2.5a)

∂tz + λ1∂θz = −8
3az +

1
24(w − z)2∂θk , (2.5b)

∂tk + λ2∂θk = 0 , (2.5c)

∂ta+ λ2∂θa = −4
3a

2 + 1
3(w + z)2 − 1

6(w − z)2 . (2.5d)

6Note that our symmetry constraints make S discontinuous at the origin unless S is constant. For this reason, a classical solution
of the 2D Euler equations (1.5) is recovered from the azimuthal variables (a, b, c, k) via (2.2) on the punctured plane. Alternatively,
we may restrict the domain of evolution for 2D Euler to an annular domain pushed forward under the flow of u (see [5, § 2.1]).
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where the three wave speeds are given by

λ1 =
1
3w + z < λ2 =

2
3w + 2

3z < λ3 = w + 1
3z . (2.6)

We note that (2.3c) takes the form

∂tc+ λ2∂θc+
1
2c∂θλ2 = −8

3ac . (2.7)

Finally, we denote the specific vorticity (1.6) in azimuthal symmetry by

ϖ = 4(w + z − ∂θa)c
−2ek, (2.8)

which satisfies the evolution equation

∂tϖ + λ2∂θϖ = 8
3aϖ + 4

3e
k∂θk . (2.9)

2.2. Notation. In most of what follows, there will be an important parameter ε > 0, and a ≲ b will be
used to signify that a ≤ Cb for some constant C independent of ε and any variables x, θ, or t. However, the
constant can depend on the implicit constants in the assumptions on the initial data in § 2.3 and can depend
on our choice of γ > 1 for the pressure law7. We will use the notation a ∼ b to express a ≲ b ≲ a. We will
also write

f = O(g)

to express that |f | ≲ g everywhere in the relevant domain. We will express bounds of the type

f(x, t) =

{
O(b1) |x| ≤ ε2

O(b2) |x| ≥ ε2
simply as f = B(b1; b2).

Often below we will have functions f defined on T × [0, T∗) and maps Ψ : T × [0, T∗) → T, and we will
use the notation

f ◦Ψ(x, t) := f(Ψ(x, t), t).

When such an inverse exists, we will write Ψ−1 to denote the function such that Ψ−1 ◦Ψ(x, t) = Ψ◦
Ψ−1(x, t) = x for all t.

While the spatial variable θ for (2.5) lies in T, and we will often identify T with the interval (−π, π].

2.3. Assumptions on the Initial Data. Our initial data will be w0, z0, k0, a0 ∈ H6(T), where z0, k0, and
a0 all satisfy

∥∂jxk0∥L∞ ≲ εγj , ∥∂jxa0∥L∞ ≲ εαj , ∥∂jxz0∥L∞ ≲ εβj , (2.10)
for j = 0, 1, 2, 3, 4, 5, where αj , βj , γj are fixed constants satisfying the relations

• α0, β0, γ0 ≥ 0,
• γ1 ≥ µ, α1 ≥ 0,
• γj ≥ µ− j for j = 2, 3, 4, 5,
• αj ≥ µ+ 1− j for j = 2, 3, 4, 5,
• βj ≥ µ− j for j = 1, 2, 3, 4, 5.

Here µ > 0 is a fixed positive constant which is a lower bound on the ℓ∞ distance of our vector of parameters
(α2, . . . , α5, γ1, . . . , γ5, β1, . . . , β5) from the boundary of the open set defined by the constraints β1 > −1,
γ1 > 0, etc. Additionally, we assume that w0 satisfies

(i) w0 ∼ 1,
(ii) w′

0(0) := −1
ε and |w′

0(x)| < ε−1 for all x ̸= 0,
(iii) w′

0(x) ≥ −1
ε + Cε

µ
2
−1 for all |x| ≥ ε3/2, and some constant C > 0.

(iv) w′′′
0 (x) ∼ ε−4 for all |x| ≤ ε3/2,

(v) |∂4xw0(x)| ≲ εµ−5 for all |x| ≤ ε2,
(vi) ∥∂5xw0∥L∞ ≲ ε−7,

7We have already chosen to fix γ = 2 for the entirety of this paper, but our result will hold for arbitrary γ > 1, and the value of
γ will effect the constants.
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and that z0 satisfies
max z0 < minw0. (2.11)

Note that an immediate consequence of our assumptions is that w0 must also satisfy
• w′′

0(0) = 0,
• |w′′

0(x)| ≲ ε−2 for |x| ≤ ε2,
• ∥w′′

0∥L∞ ≲ ε−
5
2 ,

• ∥w′′′
0 ∥L∞ ≲ ε−4,

• ∥∂4xw0∥L∞ ≲ ε−
11
2 .

The following additional constraints are not at all necessary for proving our theorem, but they do make
the formulas of the proof below cleaner

α0 = β0 = γ0 = α1 = 0, β1 ≤ 0, and αj , βj , γj ≤ 1 ∀ j = 0, 1, 2, 3, 4, 5. (2.12)

Note that the constraints made here on the first five derivatives of (w0, z0, k0, a0) are much less stringent
than those imposed in [3]. In [3], the authors assume that k0 is constant, z0 is identically 0, and that w′

0

and a0 have support with diameter O(ε1/2), among other constraints. Here we do away with such unnec-
essary hypotheses. Additionally the result of this paper applies to a wide range of parameters (αj , βj , γj),
whereas in [3] the authors only work with (α0, α1, α2, α3, α4) = (1, 0, 0, 0), which is only one point in our
admissible range for these parameters.

In what follows, we will parametrize time so that the initial time is always t = −ε. The local well-
posedness theory of (1.5) implies that for any (w0, z0, k0, a0) ∈ H6(T) there exists a time T∗ ∈ (−ε,+∞]
such that there exists a uniqueC1 solution (w, z, k, a) of (2.5) satisfying (w, z, k, a)

∣∣
t=−ε = (w0, z0, k0, a0).

Furthermore, (w, z, k, a) is guaranteed to be in C0([−ε, T∗);H6(T))∩C1([−ε, T∗);H5(T)). Additionally,
it follows from the standard theory of (1.5) that if T∗ <∞ thenˆ T∗

−ε
∥∂θw(t)∥L∞ + ∥∂θz(t)∥L∞ + ∥∂θk(t)∥L∞ + ∥∂θa(t)∥L∞ dt = +∞. (2.13)

The inequalities above can be made into open constraints by making them strict inequalities. While the
two pointwise constraints that require w′

0 to attain its unique global minimum at x = 0 and w′
0(0) = −1

ε are
not open constraints, for any suitably small perturbation of initial data (w0, z0, k0, a0) which satisfying all
of the above constraints, one can recover the two pointwise constraints by translating in space and rescaling
the solution in time. Since the spacial translation and time rescaling can be made sufficientily small, there
exists an open set of initial data around the functions (w0, z0, k0, a0) described above for which the results
of Theorem 2.1 below still hold. Thus, the shock formation we describe is stable.

2.4. Statement of the main theorem.

Theorem 2.1 (Main theorem). For µ > 0, ε > 0 sufficiently small, and initial data (w, z, k, a)
∣∣
t=−ε =

(w0, z0, k0, a0) in the open set described in § 2.3, there exists a blowup time T∗ with |T∗| ≲ ε1+µ, a unique
blowup location ξ∗ ∈ T, and uniqueC1 solutions (w, z, k, a) to (2.5) on T× [−ε, T∗) such that |x∗| ≲ ε2+µ,

w(·, T∗) ∈ C0, 1
3 (T), z(·, T∗), k(·, T∗), a(·, T∗), ϖ(·, T∗) ∈ C1, 1

3 (T),

where ϖ is the specific vorticity (see (2.8)). Furthermore, there exists a unique blowup label x∗ ∈ (−π, π]
such that

lim
t→T∗

η(x∗, t) = ξ∗

where η is the 3-characteristic defined in § 3.1. In a neighborhood θ ∈ η([−ε2, ε2], T∗) of radius ∼ ε3 the
functions w(·, T∗), z(·, T∗), k(·, T∗), and a(·, T∗) have the following fractional series expansions:

There exists constants aw0 , a
w
1 , a

w
2 with

|aw0 | ≲ 1, |aw1 | ≲ 1, |aw2 | ≲ 1,
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such that

w(θ, T∗) = aw0 + aw1 (θ − ξ∗)
1/3 + aw2 (θ − ξ∗)

2/3 +O(ε−1|θ − ξ∗|),

∂θw(θ, T∗) =
1
3a
w
1 (θ − ξ∗)

−2/3 + 2
3a
w
2 (θ − ξ∗)

−1/3 +O(ε−1),

∂2θw(θ, T∗) = −2
9a
w
1 (θ − ξ∗)

−5/3 − 2
9a
w
2 (θ − ξ∗)

−4/3 +O(ε−1|θ − ξ∗|−1),

∂3θw(θ, T∗) =
10
27a

w
1 (θ − ξ∗)

−8/3 + 8
27a

w
2 (θ − ξ∗)

−7/3 +O(ε−1|θ − ξ∗|−2). (2.14)

There exists constants az0, a
z
3, a

z
4 with

|az0| ≲ 1, |az3| ≲ εµ−1, |az4| ≲ εµ−1,

such that

z(θ, T∗) = az0 + az3(θ − ξ∗) + az4(θ − ξ∗)
4/3 +O(εµ−2|θ − ξ∗|5/3),

∂θz(θ, T∗) = az3 +
4
3a
z
4(θ − ξ∗)

1/3 +O(εµ−2|θ − ξ∗|2/3),

∂2θz(θ, T∗) =
4
9a
z
4(θ − ξ∗)

−2/3 +O(εµ−2|θ − ξ∗|−1/3),

∂3θz(θ, T∗) = − 8
27a

z
4(θ − ξ∗)

−5/3 +O(εµ−2|θ − ξ∗|4/3). (2.15)

There exists constants ak0, a
k
3, a

k
4 with

|ak0| ≲ 1, |ak3| ≲ εµ, |ak4| ≲ εγ2+1∧µ,

such that

k(θ, T∗) = ak0 + ak3(θ − ξ∗) + ak4(θ − ξ∗)
4/3 +O(εγ2∧µ−1|θ − ξ∗|5/3),

∂θk(θ, T∗) = ak3 +
4
3a
k
4(θ − ξ∗)

1/3 +O(εγ2∧µ−1|θ − ξ∗|2/3),

∂2θk(θ, T∗) =
4
9a
k
4(θ − ξ∗)

−2/3 +O(εγ2∧µ−1|θ − ξ∗|−1/3),

∂3θk(θ, T∗) = − 8
27a

k
4(θ − ξ∗)

−5/3 +O(εγ2∧µ−1|θ − ξ∗|4/3). (2.16)

There exists constants aa0, a
a
3, a

a
4 with

|aa0| ≲ 1, |aa3| ≲ 1, |aa4| ≲ 1,

such that

a(θ, T∗) = aa0 + aa3(θ − ξ∗) + aa4(θ − ξ∗)
4/3 +O(ε−1|θ − ξ∗|5/3),

∂θa(θ, T∗) = aa3 +
4
3a
a
4(θ − ξ∗)

1/3 +O(ε−1|θ − ξ∗|2/3),

∂2θa(θ, T∗) =
4
9a
a
4(θ − ξ∗)

−2/3 +O(ε−1|θ − ξ∗|−1/3),

∂3θa(θ, T∗) = − 8
27a

a
4(θ − ξ∗)

−5/3 +O(ε−1|θ − ξ∗|4/3). (2.17)

There exists constants aϖ0 , a
ϖ
3 with

|aϖ0 | ≲ 1, |aϖ3 | ≲ ε−1,

such that

ϖ(θ, T∗) = aϖ0 + aϖ3 (θ − ξ∗) +O(ε−1|θ − ξ∗|4/3),

∂θϖ(θ, T∗) = aϖ3 +O(ε−1|θ − ξ∗|1/3),

∂2θϖ(θ, T∗) = O(ε−1|θ − ξ∗|−2/3),

∂3θϖ(θ, T∗) = O(ε−1|θ − ξ∗|−5/3). (2.18)

Moreover, the C5 regularity away from the pre-shock is characterized by

max
n≤5

|∂nθw(η(x, t), t)|+ |∂nθ z(η(x, t), t)|+ |∂nθ k(η(x, t), t)|+ |∂nθ a(η(x, t), t)|
7



≲ B(ε−7
[
1
2ε(T∗ − t) + c(ε+ t)ε−4(x− x∗)

2
]−1

; ε−16). (2.19)

Theorem 1.1 clearly follows from Theorem 2.1 as an immediate corollary.

2.5. Outline of the proof of Theorem 2.1. In this paper, we will show that the classical solution (w, z, k, a)
of (2.5) with the initial data specified in § 2.3 breaks down in finite time, and that this occurs when the flow
η of the fastest wave speed λ3 ceases to be a diffeomorphism. More specifically, the blowup time T∗ will
be characterized as the first time t when minx ηx(x, t) = 0. We will also establish that there is a unique
Lagrangian label x∗ for which ηx(x∗, T∗) = 0, which will imply that ηxx vanishes at (x∗, T∗) as well.
While w, z, k, a, ∂θz, ∂θk, and ∂θa will be shown to remain bounded on T × [−ε, T∗], ∂θw will be shown
to go to −∞ at the point (ξ∗, T∗) := (η(x∗, T∗), T∗) and remain smooth elsewhere. The key ingredient for
implementing the above described strategy is to show that the functions w ◦ η, z ◦ η, k ◦ η, and a ◦ η remain
as smooth as their initial data, uniformly up to T∗. The authors of [3] proved such uniform estimates using
self-similar analysis, but only in a special case.8 In this paper, we prove obtain uniform C5 estimates for
(w, z, k, a) ◦ η on T × [−ε, T∗], even in the most general setting, not by relying on self-similar variables,
but by instead using the transversality of various families of characteristics. This allows us to also consider
a much broader class of initial data than previously considered in [3]. Once we have shown that all the
variables stay smooth along the η characteristic, we obtain our functional description of the solution near
(ξ∗, T∗) by inverting the map x 7→ η(x, t) for (x, t) near the point (x∗, T∗). In light of the constraints
ηx(x∗, T∗) = ηxx(x∗, T∗) = 0, this amounts to the inversion of what is to leading order a cubic polynomial,
resulting in fractional series expansions of w, z, k, and a near (ξ∗, T∗) in terms of powers of (θ − ξ∗)

1/3.
This paper is organized as follows:

(i) In § 4 we bound |T∗| and prove that ∂θw must become infinite at time T∗. We use a simple bootstrap
argument to get estimates for w, z, k, a and their first derivatives up to time ε ∧ T∗. Using these
estimates, we show that ηx must have a zero before time t = ε, and conclude that |T∗| ≲ ε1+µ. This
implies that ε ∧ T∗ = T∗ and therefore all of our estimates and identities hold up to time T∗. The
fact that ∂θw must blow up then follows immediately from the fact that ∂θz, ∂θk, and ∂θa remain
bounded up to time T∗ (see (2.13) above).

(ii) Next we show that w ◦ η, z ◦ η, k ◦ η, and a ◦ η remain smooth up to time T∗. To do this, we
first establish crucial identities in § 5 which result from the fact that the waves speeds are uniformly
transverse to one another. Then in § 6 - 9 we prove pointwise bounds on z, k, a and their derivatives
in terms ofw and its derivatives by analyzing how our new variables evolve along the multiple wave
speeds. This allows us to conclude in § 10 that w, z, k, and a all remain smooth along η.

(iii) Lastly, we establish that the singularity occurs at a unique point (ξ∗, T∗) ∈ T × [−ε, T∗] and we
invert η near this point to obtain fractional series expansions for w, z, k, and a. We do this by
establishing in § 10 that there is a unique point (x∗, T∗) ∈ T × [−ε, T∗] where ηx vanishes and
that ηxx(x∗, T∗) = 0 as well. Since η(x, T∗) = ξ∗ + ηxxx(x∗, T∗)(x − x∗)

3 + O(|x − x∗|4) near
(x∗, T∗), it follows (see § 11) that (x − x∗) ∼ (θ − ξ∗)

1/3 for small |x − x∗| at time T∗, and the
Taylor series expansions of the smooth functions w◦η(·, T∗), z ◦η(·, T∗), k◦η(·, T∗), and a◦η(·, T∗)
near x∗ become fractional series expansions of w(·, T∗), z(·, T∗), k(·, T∗), and a(·, T∗) near ξ∗.

3. PRELIMINARIES

3.1. The characteristics. Let φ > 0 and let Ψ be the flow of λ := (1− φ)w + (13 + φ)z.

Ψx = e
´ t
−ε ∂θλ◦Ψ. (3.1)

∂tc+ λ∂θc = −(φ∂θw + (23 − φ)∂θz +
8
3a)c.

8The authors of [3] work in the case where z and k are identically zero and many more constraints are placed on w0 and a0. See
§ 2.3 above for a discussion.
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If c > 0 everywhere, this tells us that

− 1
φ∂t(log c◦Ψ) = (∂θw + (23

1
φ − 1)∂θz +

8
3
1
φa)◦Ψ.

=⇒ ∂θλ◦Ψ = −1−φ
φ ∂t(log c◦Ψ) + ((2− 2

3
1
φ))∂θz −

8
3
1−φ
φ a)◦Ψ.

=⇒ Ψx =
(
c0
c◦Ψ

) 1−φ
φ e

´ t
−ε(2−

2
3

1
φ
))∂θz−

8
3

1−φ
φ
a)◦Ψ

. (3.2)

If c ∼ 1 and ∂θz, a are bounded, then this lets us conclude that Ψx ∼ 1. We will prove in the next section
that c ∼ 1 and that ∂θz, a are indeed bounded on T× [−ε, T∗), so everything that follows is relevant.

In the case where φ = 2
3 , we have λ = λ1, the first wave speed. Let ψ denote the corresponding flow, the

so-called 1-characteristic. Its first derivative satisfies

ψx =

(
c0
c◦ψ

) 1
2

e
´ t
−ε(∂θz−

4
3
a)◦ψ, (3.3)

while its second derivative obeys

ψxx = ψx

(
1
2

c′0
c0

+

ˆ t

−ε
ψx(∂

2
θz −

4

3
∂θa)◦ψ

)
− 1

2ψ
2
x

∂θc◦ψ
c◦ψ

=: ψxΨ− 1
2ψ

2
x

∂θc◦ψ
c◦ψ

. (3.4)

=: ψ2
x(Q1 − 1

2c
−1∂θc)◦ψ. (3.5)

When φ = 1
3 , we have λ = λ2 and the corresponding flow is the 2-characteristic, ϕ. The first derivative

of ϕ satisfies

ϕx =

(
c0
c◦ϕ

)2

e−
16
3

´ t
−εa◦ϕ (3.6)

while its second derivative obeys

ϕxx = ϕx

(
2
c′0
c0

− 16
3

ˆ t

−ε
∂x(a◦ϕ)

)
− 2ϕ2x

∂θc◦ϕ
c◦ϕ

=: ϕxΦ− 2ϕ2x
∂θc◦ϕ
c◦ϕ

(3.7)

=: ϕ2x(Q2 − 2c−1∂θc)◦ϕ . (3.8)

When φ = 0, we have λ = λ3 and the corresponding flow is the 3-characteristics, η. Note that our
analysis for φ > 0 breaks down for η, but also that w is essentially transported along η.

3.2. qw and qz . Our system (2.5) can be written as

∂tx⃗+A∂θx⃗ = b⃗ (3.9)

where

x⃗ :=


w
z
k
a

 , A :=


λ3 0 −1

6c
2 0

0 λ1 −1
6c

2 0
0 0 λ2 0
0 0 0 λ2

 , b⃗ :=


−8

3aw
−8

3az
0

−4
3a

2 + 1
3(w + z)2 − 1

6(w − z)2

 .
Taking ∂θ of (3.9) and diagonalizing A gives us

∂ty⃗ +Dy⃗ = Q(x⃗, y⃗)

where D = diag(λ3, λ1, λ2, λ2), y⃗ := (∂θw − 1
4c∂θk, ∂θz +

1
4c∂θk, ∂θk, ∂θa), and Q : R8 → R4 is a third

order polynomial. This motivates the introduction of the following variables:

qw := ∂θw − 1

4
c∂θk and qz := ∂θz +

1

4
c∂θk. (3.10)

9



On can check using the identities in § A.1 that

∂t
(
qw◦ηηx) = (−8

3
a+

1

12
c∂θk)◦η

(
qw◦ηηx

)
+

1

12
(c∂θk)◦η

(
qz◦ηηx

)
− 8

3
∂x(a◦η)w◦η. (3.11)

∂t
(
qz◦ψψx) = (−8

3
a− 1

12
c∂θk)◦ψ

(
qz◦ψψx

)
− 1

12
(c∂θk)◦ψ

(
qw◦ψψx

)
− 8

3
∂x(a◦ψ)z◦ψ. (3.12)

If we define
It(x) := e

1
8
k◦η− 8

3

´ t
−ε a◦η (3.13)

then our equation for ∂t(qw◦ηηx) gives us the Duhamel formula

ηxq
w◦η = It

[
(w′

0 − 1
4c0k

′
0)e

−1
8k0 + 1

12

ˆ t

−ε
I−1
τ ηx(c∂θkq

z)◦η dτ − 8
3

ˆ t

−ε
I−1
τ w◦η∂x(a◦η) dτ

]
. (3.14)

It follows immediately from the definitions of λ3 and qw that

ηx = 1 +

ˆ t

−ε
ηx∂θλ3◦η dτ = 1 +

ˆ t

−ε
ηxq

w◦η dτ + 1
4

ˆ t

−ε
∂x(k◦η)(c◦η) dτ + 1

3

ˆ t

−ε
∂x(z◦η) dτ.

(3.15)

Identity (3.16) will be used in § 4.3, and (3.14) and (3.15) will be used in § 3.3, 4.3, 4.4, 10. Similarly,
qz◦ψψx satisfies the Duhamel formula

qz◦ψψx = (z′0 +
1

4
c0k

′
0)e

−
´ t
−ε(

8
3
a+ 1

12
c∂θk)◦ψ − 1

12

ˆ t

−ε
e−
´ t
τ (

8
3
a+ 1

12
c∂θk)◦ψψx(c∂θkq

w)◦ψ

− 8
3

ˆ t

−ε
e−
´ t
τ (

8
3
a+ 1

12
c∂θk)◦ψψx(∂θaz)◦ψ dτ. (3.16)

3.3. Integral bounds. Let φ > 0 and let Ψ be the flow of λ := (1− φ)w + (13 + φ)z.

Lemma 3.1. Suppose that T ∈ [−ε, ε ∧ T ∗] and that for all (θ, t) ∈ T× [−ε, T ] we have

w ∼ 1 , c ∼ 1 , |k|, |a| ≲ 1 , |∂θz| ≲ εβ1 , |∂θk| ≲ εγ1 , |∂θa| ≲ 1 .

Then, for all φ > 0, we have ˆ t

−ε
|∂θw◦Ψ(x, τ)| dτ ≲

1

φ

(
ε+ t

ε

)
(3.17)

with a constant uniform in φ > 0, (x, t) ∈ T× [−ε, T ].

Proof of Lemma 3.1. Fix φ > 0 and define

g(x, t) := η−1(Ψ(x, t), t).

We compute that

∂tg(x, t) = ∂tη
−1(Ψ(x, t), t) + ∂tη

−1(Ψ(x, t), t)Ψt(x, t)

=
−ηt(g(x, t), t) + Ψt(x, t)

ηx(g(x, t), t)

=
−λ3◦η((g(x, t), t) + λ◦Ψ(x, t)

ηx(g(x, t), t)

=

(
−λ3◦η + λ◦η

ηx

)
(g(x, t), t)

= −2φ
c◦η
ηx

(g(x, t), t). (3.18)

Note that ∂tg(x, t) < 0 everywhere. We also know that

Ψ(x, t) = x+

ˆ t

−ε
λ◦Ψ(x, τ) dτ, and

10



Ψ(x, t) = η(g(x, t), t) = g(x, t) +

ˆ t

−ε
λ3◦η(g(x, t), τ) dτ,

so x− g(x, t) =

ˆ t

−ε
λ3◦η(g(x, t), τ)− λ◦Ψ(x, τ) dτ.

Our hypotheses allow us to conclude (see (4.2) below) that

It(x)e
− 1

8
k0(x) = 1 +O(ε+ t)

for times t ∈ [−ε, T ]. Using our hypotheses, along with this equation and (3.14), we conclude that that for
all (x, t) ∈ T× [−ε, T ], we have

sup
[−ε,t]

|ηxqw◦η| ≤ ε−1(1 +O(εγ1)) +O(ε0∧β1+γ1)(ε+ t) sup
[−ε,t]

ηx.

Plugging this into (3.15) and using the fact that T ≤ ε gives us

sup
[−ε,t]

ηx ≤ 1 + (ε+ t)ε−1(1 +O(εγ1)) +O(εβ1)(ε+ t) sup
[−ε,t]

ηx

≤ 1 + 2(1 +O(εγ1)) +O(εβ1+1) sup
[−ε,t]

ηx.

=⇒ sup
[−ε,t]

ηx ≤ 1 + 2(1 +O(εµ))

1−O(εµ)
≤ 4.

The last inequality is true for ε > 0 taken to be small enough, since µ > 0. Plugging this into (3.14) and
letting ε be sufficiently small gives us

ηx|qw◦η| ≤ ε−1(1 +O(εµ))

=⇒ qw◦η =
w′
0Ite

− 1
8
k0 +O(εγ1)

ηx
. (3.19)

It follows that

qw◦Ψ(x, t) = − 1
φ∂tg(x, t)

w′
0(g(x, t)) +O(1)

2c◦Ψ(x, t)
.

Since ∂tg < 0, it follows that
|qw◦Ψ(x, t)| ≲ − 1

φ∂tg(x, t)
1
ε .

So ˆ t

−ε
|qw◦Ψ(x, τ)| dτ ≲

x− g(x, t)

φε
≲

1

φ

(
ε+ t

ε

)
.

Our result follows immediately from this inequality and our hypotheses. □

4. INITIAL ESTIMATES

4.1. Zeroth Order Estimates.

Proposition 4.1. For ε small enough the following estimates hold for all t ∈ [−ε, ε ∧ T∗]:
w ∼ 1 , c ∼ 1 , ϕx ∼ 1 ,

∥∂θk∥L∞ ≲ ∥k′0∥L∞ , ∥a∥L∞ ≤ ∥a0∥L∞ +O(ε) , ∥z∥L∞ ≤ ∥z0∥L∞ +O(ε) .

Proof of Proposition 4.1. This follows from an easy bootstrap argument. Let t ≤ ε ∧ T∗. If we assume all
of the listed bounds hold up to time t for some constants, then it follows that (3.6) holds up to time t. k
satisfies k◦ϕ = k0 and

ϕx∂θk◦ϕ = k′0. (4.1)
Additionally, (2.5) gives us Duhamel formulas for w◦η, z ◦ψ, and a◦ϕ. Using these Duhamel formulas
along with (2.11),(3.6), (4.1), and the fact that t ≤ ε it is straightforward to improve our bounds for all

11



times before t, provided the constants we assumed in our bootstrap hypothesis are appropriate and ε is small
enough. □

Using these estimates, it is easy to show that for ε > 0 sufficiently small we get∣∣Ite− 1
8
k0 − 1

∣∣ ≤ O(ε+ t) ∀ x ∈ T,−ε ≤ t ≤ ε ∧ T∗. (4.2)

4.2. ∂θa bounds. Using (3.6) and (4.1) we have

∂t(ϖ◦ϕ) = 8

3
(aϖ)◦ϕ+

4

3
ek0∂θk◦ϕ (4.3)

=
8

3
(aϖ)◦ϕ+

4

3
ek0k′0ϕ

−1
x

=
8

3
(aϖ)◦ϕ+

4

3

k′0
c20
ek0I2

t (c ◦ ϕ)2,

where
It := e

8
3

´ t
−ε a◦ϕ. (4.4)

Therefore,

ϖ◦ϕ = ϖ0It +
4

3
c−2
0 k′0e

k0It
ˆ t

−ε
Iτ (c2 ◦ ϕ) dτ. (4.5)

Note that
ϕx = c20I

−2
t c−2◦ϕ. (4.6)

This relation will be useful for estimating the higher derivatives of a.
Since

ϖ0 = 4c−2
0 (w0 + z0 − a′0)e

k0 , (4.7)
our assumptions on our initial data let us conclude that |ϖ0| ≲ 1, and therefore for all (θ, t) ∈ T× [−ε, T ]
we have

|ϖ| ≲ 1. (4.8)
Since

∂θa = w + z − 1

4
c2ϖe−k, (4.9)

it follows that
|∂θa| ≲ 1 (4.10)

for all times t ∈ [−ε, ε ∧ T∗].
Using (4.10), and the bounds on the initial data we conclude that

|Φ| ≲ ε−1, (4.11)

for all times t ∈ [−ε, ε ∧ T∗].

4.3. ∂θz bounds.

Proposition 4.2. For all (x, t) ∈ T× [−ε, ε ∧ T∗] we have

ηx|qw◦η| ≤ 2ε−1 , ηx ≤ 4 , |qz◦ψ| ≲ ∥z′0∥L∞ , ψx ∼ 1 .

Proof of 4.2. We will use a bootstrap argument. Let T ∈ [−ε, ε ∧ T∗) and let our bootstrap assumption be
that

|qz| ≤ C∥z′0∥L∞

for all (θ, t) ∈ T× [−ε, T ] and a constant C to be determined. Since we are assuming |∂θz| ≲ εβ1 for times
t ∈ [−ε, T ], it follows from (3.3) and our estimates from § 4.1 that ψx ∼ 1 with constants independent of C
for times t ∈ [−ε, T ], provided that ε is small enough relative to C.
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Using our bootstrap assumption, along with the estimates from § 4.1, 4.2, we can conclude (see Lemma
3.1 and its proof) that for all (x, t) ∈ T× [−ε, T ], we have

ηx ≤ 4,

ηx|qw◦η| ≤ 2ε−1,ˆ t

−ε
|qw◦ψ(x, τ)| dτ ≲ 1.

Using this last estimate along with the estimates from § 4.1, 4.2, it follows from (3.16) and the fact that
ψx ∼ 1 that

|qz◦ψψx − z′0| ≲ εγ1

for times t ∈ [−ε, T ]. It follows that

|qz◦ψ| ≤ ∥ψ−1
x ∥L∞(T×[−ε,T ])

(
∥z′0∥L∞ +O(εγ1)

)
for t ∈ [−ε, T ]. Since γ1 > 0 ≥ β1, it follows that if we let ε become small enough we get

|qz| ≤ 2∥ψ−1
x ∥L∞(T×[−ε,T ])∥z′0∥L∞

for all t ∈ [−ε, T ]. IfC is chosen large enough and ε is chosen small enough, this improves upon our second
bootstrap assumption. □

It follows as an immediate corollary of this proposition that

|∂θz| ≲ εβ1 , (4.12)

ηx ≲ 1, (4.13)
ψx ∼ 1, (4.14)

for all times t ∈ [−ε, ε ∧ T∗].

4.4. Bounding |T∗|. Now our estimates will let us conclude that ηx behaves roughly the same as it would if
w were the solution of Burger’s equation with initial dataw0 and η were the flow ofw. Using Proposition 4.1,
(4.2), (4.10), (4.12), and (4.13) in equation (3.14) gives us

ηxq
w◦η =

(
− 1

ε + (w′
0 +

1
ε )
)
Ite

− 1
8
k0 +O(εγ1)

for all times t ∈ [−ε, ε ∧ T∗]. Plugging this into (3.15) and using the same bounds produces

ηx = 1 +
(
− 1

ε + (w′
0 +

1
ε )
) ˆ t

−ε
Iτe

− 1
8
k0 dτ +O(εβ1+1) (4.15)

for t ∈ [−ε, ε ∧ T∗]. Evaluating (4.15) at x = 0 and using (4.2) gives

ηx(0, t) = 1− (ε+ t)ε−1 +O(εµ)

= − t
ε +O(εµ).

Since this is true for all t ∈ [−ε, ε∧T∗], it follows that we must have T∗ ≲ ε1+µ if ε is chosen small enough.
Therefore, T∗ = ε ∧ T∗, and everything we have proven for t ∈ [−ε, ε ∧ T∗] is true for t ∈ [−ε, T∗].

We can also prove a lower bound on T∗. Since w′
0(x) +

1
ε ≥ 0 for all x, it follows from (4.15) and (4.2)

that

ηx ≥ − t
ε +O(εµ)

everywhere. Therefore, |T∗| ≲ ε1+µ, else ∂θw, ∂θz, ∂θk and ∂θa would all stay bounded up to T∗.
We can also get a lower bound for ηx away from 0. Indeed, since w′

0(x) +
1
ε ≥ Cε

µ
2
−1 for |x| ≥ ε3/2,

we have

ηx ≥ − t
ε + Cε

µ
2
−1(ε+ t) +O(εµ)

= (T∗ − t)[ tε − Cε
µ
2
−1] + Cε

µ
2 +O(εµ)
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≥ Cε
µ
2 +O(εµ)

≳ ε
µ
2 . (4.16)

Using Lemma 3.1 and the estimates proven in this section, we can now conclude that the bound (3.17)
holds for all φ > 0, (x, t) ∈ T × [−ε, T∗]. This fact will be used so frequently in the rest of the paper that
we will not bother to cite it.

5. TRANSVERSALITY

Let φ > 0 and let Ψ be the flow of λ := (1− φ)w + (13 + φ)z.

− 1
φΨx∂t(∂θc◦Ψ) = 1

φΨxt∂θc◦Ψ− 1
φ∂tx(c◦Ψ)

= 1
φΨxt∂θc◦Ψ+Ψx(∂θw + (23

1
φ − 1)∂θz +

8
3
1
φa)◦Ψ(∂θc◦Ψ)

+ Ψx(c∂
2
θw + (23

1
φ − 1)c∂2θz +

8
3
1
φ∂θac)◦Ψ.

=⇒ − 1
φ∂t

(
Ψx(c

−1∂θc)◦Ψ
)
= − 1

φΨtx(c
−1∂θc)◦Ψ−Ψx(c

−2∂θc)◦Ψ
(
− 1

φ∂t(c◦Ψ)
)

+ (c−1◦Ψ)
(
− 1

φΨx∂t(∂θc◦Ψ)
)

= Ψx(∂
2
θw + (23

1
φ − 1)∂2θz +

8
3
1
φ∂θa)◦Ψ.

Therefore, if h : T× [−ε, T∗) → R is any differentiable function, we have

Ψx(h∂
2
θw)◦Ψ = − 1

φ∂t
(
Ψx(c

−1∂θch)◦Ψ
)
−Ψx((

2
3
1
φ − 1)h∂2θz +

8
3
1
φ∂θah)◦Ψ

−Ψx(c
−1∂θc)◦Ψ

(
− 1

φ∂t(h◦Ψ)
)
.

This gives us the following equation:

∂x
(
(h∂θw)◦Ψ

)
= − 1

φ∂t
(
Ψx(c

−1∂θch)◦Ψ
)

−Ψx((
2
3
1
φ − 1)h∂2θz +

8
3
1
φ∂θah)◦Ψ

+Ψx

[
(∂θh∂θw)◦Ψ− (c−1∂θc)◦Ψ

(
− 1

φ∂t(h◦Ψ)
)]
. (5.1)

The last term in this expression motivates the following definition:

Definition 5.1 (Transversality). A differentiable function h : T × [−ε, T∗) → R is transversal (or 1-
transversal) if it is bounded and there exists a constant φ > 0 and bounded functions A,B,C such that{

∂θh = Ac−1∂θc+B

∂th+ λ∂θh = −φA∂θw − φC

Here λ = (1−φ)w+(13+φ)z, as in the above discussion. If in additionA,B,C are themselves transversal
functions, we say that h is 2-transversal. We recursively define h to be n-transversal if A,B, and C are
(n− 1)-transversal.

A few remarks about transversal functions:
• If h satisfies the transversality condition for one φ0 > 0, then it satisfies the transversality condition

for all φ > 0. If indeed, if we have{
∂θh = Ac−1∂θc+B

∂th+ λ0∂θh = −φ0A∂θw − φ0C

for some φ0 > 0 then for any other φ > 0 we have{
∂θh = Ac−1∂θc+B

∂th+ λ∂θh = −φA∂θw + (φ− φ0)A∂θz + 2(φ0 − φ)cB − φ0C
.
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Since ∂θz is bounded, h still satisfies the transversality condition for φ, albeit with a different
choice of bounded function C. So the notion of a transversal function is independent of our choice
of φ > 0.

• Note that while being transversal does not depend on the choice of φ (as the previous bullet illus-
trated), and A and B are independent of φ, the function C changes based on φ.

• If h is a bounded function with bounded derivatives, then h is trivially transversal, withA = 0, B =
∂θh and C = − 1

φ(∂th+ λ∂θh).
• If functions h1, h2 are n-transversal, then h1 + h2 is n-transversal. Indeed, we have{

∂θ(h1 + h2) = (A1 +A2)c
−1∂θc+B1 +B2

(∂t + λ∂θ)(h1 + h2) = −φ(A1 +A2)∂θw − φ(C1 + C2)
.

• If functions h1, h2 are n-transversal, then their product is n-transversal. Indeed, we have{
∂θ(h1h2) = (A1h2 +A2h1)c

−1∂θc+B1h2 +B2h1

(∂t + λ∂θ)(h1h2) = −φ(A1h2 +A2h1)∂θw − φ(C1h2 + C2h1)
.

• If h is n-transversal and h ∼ 1 then h−1 is also n-transversal. Indeed,{
∂θ(h

−1) = −h−2Ac−1∂θc− h−2B

∂t(h
−1) + λ∂θ(h

−1) = −φ(−h−2A)∂θw − φ(−h−2C)
.

• If F : R → R is smooth and h is n-transversal, then F ◦h is n-transversal. Indeed, we have{
∂θ(F ◦h) = (AF ′◦h)c−1∂θc+BF ′◦h
(∂t + λ∂θ)(F ◦h) = −φ(AF ′◦h)∂θw − φCF ′◦h

.

This rule will be especially useful for F (x) = ex.
• c is transversal with A = c,B = 0, and C = 4ac when φ = 2

3 . It follows inductively that if
a is n-transversal, then c is (n + 1)-transversal. At this point, we already know that a is at least
1-transversal because it is uniformly C1, so c is currently proven to be at least 2-transversal. c ∼ 1,
so c−1 is also 2-transversal. The fact that both c and c−1 are transversal was the main ingredient
used in the computation of (5.1).

The following lemma will be used in § 7.3, § 8.3, and § 9.3.

Lemma 5.2 (Identities for transversal functions along 1-characteristics). If h : T×[−ε, T∗) → R is transver-
sal with {

∂θh = Ac−1∂θc+B

−3
2∂t(h◦ψ) = (A∂θw + C)◦ψ

then we have

∂x
(
(h∂θw)◦ψ

)
= −3

2∂t
(
ψx(c

−1∂θch)◦ψ
)
+ψx

(
[B− 1

2c
−1C]∂θw

)
◦ψ+ψx(12c

−1C∂θz−4∂θah)◦ψ. (5.2)

and

∂x
(
ψx(h∂θw)◦ψ

)
= −3

2∂t
(
ψ2
x(c

−1∂θch)◦ψ
)
+ ψ2

x

(
[Qh+B − 1

2c
−1C + 3

4c
−1h∂θz]∂θw

)
◦ψ

+ ψ2
x(

1
2c

−1C∂θz − 4∂θah− 3
4c

−1h∂θz
2)◦ψ. (5.3)

From theses two equations we get the bounds∣∣∂x((h∂θw)◦ψ)+ 3
2∂t

(
ψx(c

−1∂θch)◦ψ
)∣∣ ≲ ∥h∥L∞ + εβ1∥C∥L∞ + (∥B∥L∞ + ∥C∥L∞)|∂θw◦ψ|. (5.4)

and ∣∣∂x(ψx(h∂θw)◦ψ)+ 3
2∂t

(
ψ2
x(c

−1∂θch)◦ψ
)∣∣ ≲ ε2β1∥h∥L∞ + εβ1∥C∥L∞

+ (ε−1∥h∥L∞ + ∥B∥L∞ + ∥C∥L∞)|∂θw◦ψ|. (5.5)
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Proof of Lemma 5.2. (5.2) follows immediately from (5.1). To prove (5.3),

∂x(ψ(h∂θw)◦ψ) = ψxx(h∂θw)◦ψ + ψx∂x
(
(h∂θw)◦ψ

)
= ψ2

x([Q− 1
2c

−1∂θc]h∂θw)◦ψ − ∂t
(
ψ2
x(c

−1∂θch)◦ψ
)
+ 3

2ψxtψx(c
−1∂θch)◦ψ

+ ψx
(
[B − 1

2c
−1C]∂θw

)
◦ψ + ψx(

1
2c

−1C∂θz − 4∂θah)◦ψ
= −3

2∂t
(
ψ2
x(c

−1∂θch)◦ψ
)
+ ψ2

x

(
[Qh+B − 1

2c
−1C + 3

4c
−1h∂θz]∂θw

)
◦ψ

+ ψ2
x(

1
2c

−1C∂θz − 4∂θah− 3
4c

−1h∂θz
2)◦ψ.

The inequalities follow immediately from the equations and the first order estimates. □

The following lemma will be used in § 7.2, § 8.2, and § 9.2.

Lemma 5.3 (Identities for transversal functions along 2-characteristics). If h : T × [−ε, T∗) → R is a
differentiable function satisfying the transversality condition{

∂θh = Ac−1∂θc+B

−3∂t(h◦ϕ) = (A∂θw + C)◦ϕ

then we have

∂x
(
(h∂θw)◦ϕ) = −3∂t

(
ϕx(c

−1∂θch)◦ϕ
)
+ ϕx(B∂θw − Cc−1∂θc− h∂2θz − 8∂θah)◦ϕ. (5.6)

and

∂x
(
ϕ2x(h∂θw)◦ϕ

)
= −3∂t

(
ϕ3x(c

−1∂θc∂θw)◦ϕ
)

+ ϕ3x(B∂θw − Cc−1∂θc+ 4c−1∂θch∂θz − h∂2θz − 8∂θah)◦ϕ
+ 2ϕ2xΦ(h∂θw)◦ϕ. (5.7)

Proof of Lemma 5.3. (5.6) follows immediately from (5.1). The proof of (5.7) is an easy computation using
(5.1) and (3.7). □

The following lemma will first be used in § 8.3, so there is no circularity in its proof. See § 6.1 for the
definition of E and § 6.3 for the definition of f .

Lemma 5.4 (Identities for 2-transversal functions along 1-characteristics). If h : T × [−ε, T∗) → R is
2-transversal with

∂θh = Ac−1∂θc+B

−3
2∂t(h◦ψ) = (A∂θw + C)◦ψ

∂θA = AAc
−1∂θc+BA

−3
2∂t(A◦ψ) = (AA∂θw + CA)◦ψ

∂θB = ABc
−1∂θc+BB

−3
2∂t(B◦ψ) = (AB∂θw + CB)◦ψ

∂θC = ACc
−1∂θc+BC

−3
2∂t(C◦ψ) = (AC∂θw + CC)◦ψ

then we have

∂2x
(
(h∂θw)◦ψ

)
= −3

2∂t
(
ψ2
x(c

−1∂2θch+
[
− 3

2h+A
]
c−2∂θc

2 +
[
Q1 + 2B − 1

2c
−1C

]
c−1∂θc)◦ψ

)
+ ψ2

x

([
BQ1 +BB − 1

2c
−1BC

]
∂θw

)
◦ψ

− ψ2
x

([
Q1C + CB − 1

2c
−1CC + 2ac−1C + 1

2c
−1∂θzC − 2∂θah+ 4∂θaA

]
c−1∂θc

)
◦ψ

− ψ2
x

([
1
4c

−1∂θzC − 1
2ACc

−1∂θz +
1
4C∂θk

]
c−1∂θc

)
◦ψ
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+ ψ2
x(

1
2f − 4∂θahQ1 − 4∂2θah− 4∂θaB − 1

8cE + 1
2BCc

−1∂θz)◦ψ (5.8)

and

∂2x(h◦ψ) = −3
4∂t

(
ψ2
x(Ac

−2∂θc)◦ψ
)

+ ψ2
x

(
[12Ac

−1Q1 +
1
2BAc

−1 − 1
4CAc

−2 +Aac−2 + 3
8Ac

−2∂θz]∂θw
)
◦ψ

+ ψ2
x

(
[14Ac

−1∂θz − 1
2B +AB − 1

2AAc
−1∂θ +

1
4Ac

−1∂θz +
1
4A∂θk]c

−1∂θc
)
◦ψ

+ ψ2
x(

1
4CAc

−2∂θz −Aac−2∂θz − 2∂θaAc
−1 − 3

8Ac
−2∂θz

2)◦ψ
+ ψ2

x(BQ1 − 1
2Ac

−1Q1∂θz +BB − 1
2BAc

−1∂θz − 1
2Ac

−1f + 1
8AE)◦ψ. (5.9)

Proof of Lemma 5.4. Taking ∂x of (5.2) gives us

∂2x
(
(h∂θw)◦ψ

)
= −3

2∂
2
tx

(
ψx(c

−1∂θc)◦ψ
)
+ ∂x

(
ψx([B − 1

2c
−1C]∂θw)◦ψ

)
+ ∂x

(
ψx(

1
2c

−1C∂θz − 4∂θah)◦ψ
)
.

If we define h̃ := B − 1
2c

−1C, then the rules for transversal functions tell us that

B
h̃
= BB − 1

2c
−1BC

C
h̃
= CB − 1

2c
−1CC + 2ac−1C.

Applying (5.3) to h̃ and simplifying gives us (5.8).
For the next identity, we see that

∂2x(h◦ψ) = ∂x
(
ψx(

1
2Ac

−1∂θw)◦ψ
)
+ ∂x

(
ψx(B − 1

2Ac
−1∂θz)◦ψ

)
.

Applying (5.3) to the function 1
2Ac

−1 and simplifying gives us (5.9). □

The following lemma will be used in § 8 and § 9.

Lemma 5.5 (Classes of transversal functions). Let φ > 0 and let Ψ be the flow of λ = (1−φ)w+(13 +φ)z.
Then

(i) If h is a transversal function and H is defined by

H◦Ψ(x, t) :=

ˆ t

−ε
h◦Ψ(x, τ) dτ

then H is transversal.
(ii) Ψx◦Ψ−1 is a transversal function.

(iii) If h is a transversal function and K is defined by

K◦Ψ(x, t) :=

ˆ t

−ε
(h∂θw)◦Ψ(x, τ) dτ

then K is transversal.
(iv) If h is a 2-transversal function and H is defined by

H◦Ψ(x, t) :=

ˆ t

−ε
h◦Ψ(x, τ) dτ

then H is 2-transversal.
(v) Ψx◦Ψ−1 is a 2-transversal function.

(vi) If h is a 2-transversal function and K is defined by

K◦Ψ(x, t) :=

ˆ t

−ε
(h∂θw)◦Ψ(x, τ) dτ

then K is 2-transversal.
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Proof of Lemma 5.5. In this proof, h satisfies{
∂θh = Ac−1∂θc+B

− 1
φ∂t(h◦Ψ) = (A∂θw + C)◦Ψ

.

(i) Since  ∂θH =

(
Ψ−1
x

´ t
−ε(Ac

−1∂θc+B)◦Ψ dτ

)
◦Ψ−1

− 1
φ∂t(H◦Ψ) = − 1

φh◦Ψ
(5.10)

it follows from (3.17) and the fact that Ψx ∼ 1 that H is transversal.
(ii) We know that a is transversal, and it will be proven in § 6.3 that ∂θz is transversal. Therefore, part (i)

applies to the function

H◦Ψ =

ˆ t

−ε
(2− 2

3

1

φ
))∂θz − 8

3

1− φ

φ
a)◦Ψ.

Since F (x) = ex is smooth, it follows that

e
´ t
−ε(2−

2
3

1
φ
))∂θz−

8
3

1−φ
φ
a)◦Ψ◦Ψ−1

is transversal. We already know that c and c−1 are both 2-transversal, so it now follows from (3.2) that
Ψx◦Ψ−1 is transversal.

(iii) Using (5.1) tells us that

∂θK◦ψ = − 1
φ(hc

−1∂θc)◦Ψ+
1

φ
Ψ−1
x c−1

0 c′0h0

−Ψ−1
x

ˆ t

−ε
Ψx((

2
3
1
φ − 1)h∂2θz +

8
3
1
φ∂θah)◦Ψ dτ +Ψ−1

x

ˆ t

−ε
Ψx(B∂θw − c−1∂θcC)◦Ψ dτ,

− 1
φ∂t(K◦Ψ) = − 1

φ(h∂θw)◦Ψ. (5.11)

It now follows from (6.18) that K is transversal.
(iv) This follows immediately from applying (ii) and (iii) to (5.10).
(v) It will be proven in § 6.2 that ∂θa is transversal, from which it will follow that a is 2-transversal, and

it will be proven in § 7.3 that ∂θz is 2-transversal. Since F (x) = ex is smooth, it follows from (iv) that

e
´ t
−ε(2−

2
3

1
φ
))∂θz−

8
3

1−φ
φ
a)◦Ψ◦Ψ−1

is 2-transversal. Since c−1 is 2-transversal it now follows from (3.2) that Ψx◦Ψ−1 is 2-transversal.
(vi) We prove in § 6.2, 6.3, 7.1, 7.3 that ∂θa, ∂θz, E , and f are all transversal, so our result follows from

applying (i), (ii), and (iii) to (5.11).
□

6. SECOND DERIVATIVE ESTIMATES

6.1. ∂2θk bounds. Differentiating (4.1) and plugging in (3.7) gives us

ϕ2x∂
2
θk◦ϕ = k′′0 − ϕxx∂θk◦ϕ

= k′′0 − ϕxΦ∂θk◦ϕ+ 2ϕ2x
∂θc◦ϕ∂θk◦ϕ

c◦ϕ

= k′′0 − Φk′0 + 2ϕ2x
∂θc◦ϕ∂θk◦ϕ

c◦ϕ
. (6.1)

If we define
E := ∂2θk − 2c−1∂θc∂θk, (6.2)
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then it follows that E = [ϕ−2
x (k′′0 − Φk′0)]◦ϕ−1 and from (4.11) we conclude that

|E| ≲ εγ2∧γ1−1. (6.3)

=⇒ |∂2θk| ≲ εγ2∧γ1−1 + εγ1 |∂θw|. (6.4)

With this notation, we can write

∂2θk = (2∂θk)c
−1∂θc+ E

−3
2∂t(∂θk◦ψ) = (2∂θk)∂θw + cE , (6.5)

so ∂θk is transversal. The fact that ∂θk is transversal will be used through § 7 and § 6.

6.2. ∂2θa bounds. Using (3.6) and (A.1a) we have

It∂x(c2◦ϕ) = 2ϕxIt
[
− 3

2
∂t(c◦ϕ)− (4ac+ c∂θz)◦ϕ

]
= c20I−1

t

[
3∂t(c

−1◦ϕ)− (8c−1a+ 2c−1∂θz)◦ϕ
]

= c20
[
3∂t

(
I−1
t c−1◦ϕ

)
− 2I−1

t (c−1∂θz) ◦ ϕ
]
. (6.6)

Therefore, differentiating (4.5) gives us

∂x(ϖ◦ϕ) = ∂x
(
ϖ0It

)
− 4

k′0e
k0

c0
It + 3

k′0e
k0

c◦ϕ
− 8

3k
′
0e
k0It
ˆ t

−ε
I−1
τ (c−1∂θz)◦ϕ dτ

+ 4
3∂x

(k′0ek0
c20

It
) ˆ t

−ε
Iτ (c2◦ϕ) dτ + 4

3

k′0e
k0

c20
It
ˆ t

−ε
∂x

(
Iτ

)
(c2◦ϕ) dτ. (6.7)

It is easy to check that

|I ′
t| ≲ ε. (6.8)

It follows from this bound and (6.7) that

|∂θϖ◦ϕ| ≲ |ϖ′
0|+ εγ2+1∧γ1 .

By differentiating the equation (4.7) and using our assumptions on the initial data, we conclude that |ϖ′
0| ≲

ε−1. Therefore,

|∂θϖ| ≲ ε−1. (6.9)

Differentiating (4.9) in space and using our first derivative estimates along with (6.9) gives us

∂2θa = 2[∂θa− c− 2z]c−1∂θc+ 2∂θz − 1
4c

2∂θϖe
−k + 1

4c
2∂θkϖe

−k

−3
2∂t(∂θa◦ψ) =

(
2[∂θa− c− 2z]∂θw + 4a∂θa− 1

4c
3∂θϖe

−k + 1
4c

3∂θkϖe
−k)◦ψ. (6.10)

So (6.9) lets us conclude that ∂θa is transversal, which will be used in § 7 and § 8. This equation for ∂2θa
and our estimate (6.9) also lets us conclude that

|∂2θa| ≲ ε−1 + |∂θw|. (6.11)

It now follows from (6.11) that

|∂xΦ| ≲ ε−2 + |w′′
0 |. (6.12)
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6.3. ∂2θz bounds. Let’s introduce the new variable

f := ∂2θz − 1
2c

−1∂θc∂θz +
1
4c∂

2
θk. (6.13)

Using the identities from § A.1 along with (6.2) gives us

∂t(f ◦ψ) :=
(
∂t(log c◦ψ) + 1

2∂t(k◦ψ)− 3∂θz◦ψ
)
(f ◦ψ)

+ ( 1
12c

2∂θk∂
2
θk − 1

2c
−1∂θc∂θz

2)◦ψ − 1
8E(

1
3c∂θw − c∂θz)◦ψ

− 8
3(∂

2
θaz +

3
2∂θa∂θz −

1
2∂θac

−1∂θcz)◦ψ. (6.14)

If we define
Jt := e

1
2
k◦ψ−3

´ t
−ε ∂θz◦ψ, (6.15)

then (6.14) gives us the Duhamel formula

f ◦ψ = c−1
0 (z′′0 − 1

2c
−1
0 c′0z

′
0 +

1
2c0k

′′
0)e

− 1
2
k0Jtc◦ψ + 1

12c◦ψJt
ˆ t

−ε
J−1
τ (c∂θk∂

2
θk)◦ψ dτ

− 1
2c◦ψJt

ˆ t

−ε
J−1
τ (c−2∂θc∂θz

2)◦ψ dτ − 1
8c◦ψJt

ˆ t

−ε
J−1
τ E(13∂θw − ∂θz)◦ψ dτ

− 8
3c◦ψJt

ˆ t

−ε
J−1
τ (∂2θac

−1z + 3
2∂θac

−1∂θz − 1
2∂θac

−2∂θcz)◦ψ dτ. (6.16)

It now follows from (6.4), (6.3), (6.11) that

|f | ≲ εβ2∧γ2∧β1−1. (6.17)

It follows immediately from this bound and (6.4) that

|∂2θz| ≲ εβ2∧γ2∧β1−1 + εβ1 |∂θw|. (6.18)

This bound tells us that
|Ψ| ≲ ε−1. (6.19)

We can also conclude that ∂θz is transversal. Indeed

∂2θz =
[
1
2∂θz −

1
2c∂θk

]
c−1∂θc+ f − 1

4cE
−3

2∂t(∂θz◦ψ) =
([

1
2∂θz −

1
2c∂θk

]
∂θw + 1

2c∂θk∂θz −
1
4c

2E + 4∂θaz + a∂θz
)
◦ψ. (6.20)

The fact that ∂θz is transversal will be used in § 7 and § 8.

7. THIRD DERIVATIVE ESTIMATES

7.1. ∂3θk bounds. Using the fact that E = [ϕ−2
x (k′′0 − Φk′0)]◦ϕ−1, we can compute that

∂θE = [ϕ−3
x (k′′′0 − 3Φk′′0 + (2Φ2 − ∂xΦ)k

′
0)]◦ϕ−1 + 4Ec−1∂θc (7.1)

Define
Ẽ := [ϕ−3

x (k′′′0 − 3Φk′′0 + (2Φ2 − ∂xΦ)k
′
0)]◦ϕ−1. (7.2)

We know from (4.11) and (6.12) that

|Ẽ | ≲ εγ1 |w′′
0 ◦ϕ−1|+ εγ3∧γ2−1∧γ1−2. (7.3)

Since

∂θE = 4Ec−1∂θc+ Ẽ

−3
2∂t(E◦ψ) = (4E∂θw − 8∂θa∂θk + Ẽc)◦ψ. (7.4)

it follows that E is transversal and therefore ∂θk is 2-transversal.
Taking ∂θ of (6.2) gives us

∂3θk = Ẽ + 6Ec−1∂θc+ 2c−2∂θc
2∂θk + 2c−1∂2θc∂θk. (7.5)

20



It follows that

|∂3θk| ≲ εγ3∧γ2−1∧γ1−2 + εγ2∧γ1−1|∂θw|
+ εγ1 |w′′

0 ◦ϕ−1|+ εγ1 |∂θw|2 + εγ1 |∂2θw|. (7.6)

7.2. ∂3θa bounds. Taking ∂x of (6.7) gives us

∂2x(ϖ◦ϕ) = ∂2x
(
ϖ0It

)
− 4∂x

(k′0ek0
c0

It
)
+ 4

∂x(k
′
0e
k0)

c◦ϕ
− 4k′0e

k0ϕx
∂θc◦ϕ
(c◦ϕ)2

− 8
3∂x(k

′
0e
k0It)

ˆ t

−ε
I−1
τ (c−1∂θz)◦ϕ dτ − 8

3k
′
0e
k0It
ˆ t

−ε
∂x

(
I−1
τ (c−1∂θz)◦ϕ

)
dτ

+ 4
3∂

2
x

(k′0ek0
c20

It
) ˆ t

−ε
Iτ (c2◦ϕ) dτ + 8

3∂x
(k′0ek0
c20

It
) ˆ t

−ε
∂x

(
Iτ

)
(c2◦ϕ) dτ

+ 4
3∂x

(k′0ek0
c20

It
) ˆ t

−ε
Iτ∂x(c2◦ϕ) dτ + 4

3

k′0e
k0

c20
It
ˆ t

−ε
∂x(Iτ )∂x(c2◦ϕ) dτ

+ 4
3

k′0e
k0

c20
It
ˆ t

−ε
∂2x(Iτ )(c2◦ϕ) dτ.

It is easy to use (3.7) and (6.11) to get |I ′′
t |, |∂2xIt,τ | ≲ 1. Using (6.6) we have

∂x(It)∂x(c2◦ϕ) =
8

3

( ˆ t

−ε
∂x(a◦ϕ)

)
It∂x(c2◦ϕ)

=c20

[
8∂t

(( ˆ t

−ε
∂x(a◦ϕ)

)
I−1
t c−1◦ϕ

)
− 8∂x(a◦ϕ)I−1

t c−1◦ϕ+ 2∂x(I−1
t )(c−1∂θz)◦ϕ

]
.

(7.7)

Using (6.6) and (7.7) we have

∂x
(k′0ek0
c20

It
) ˆ t

−ε
Iτ∂x(c2◦ϕ) dτ = −3

∂x(k
′
0e
k0It)

c0
+ 6

c′0k
′
0e
k0

c20
It

+

[
3∂x(k

′
0e
k0) + 8k′0e

k0

ˆ t

−ε
∂x(a◦ϕ) dτ − 6

c′0k
′
0e

k0

c0

]
c−1◦ϕ

− 2∂x(k
′
0e
k0It)

ˆ t

−ε
I−1
τ (c−1∂θz)◦ϕ dτ

+ 4
c′0k

′
0e
k0

c0
It
ˆ t

−ε
I−1
τ (c−1∂θz)◦ϕ dτ.

k′0e
k0

c20
It
ˆ t

−ε
∂x(Iτ )∂x(c2◦ϕ) dτ = 8k′0e

k0

( ˆ t

−ε
∂x(a◦ϕ)

)
c−1◦ϕ+ 2k′0e

k0It
ˆ t

−ε
∂x(I−1

t )(c−1∂θz)◦ϕ dτ

− 8c20k
′
0e
k0It
ˆ t

−ε
I−3
τ (∂θac

−3)◦ϕ dτ.

Therefore, we have

∂2x(ϖ◦ϕ) = ∂2x
(
ϖ0It

)
− 8

∂x(k
′
0e
k0It)

c0
+ 12

c′0k
′
0e
k0

c20
It

+

[
8∂x(k

′
0e
k0) + 64

3 k
′
0e
k0

ˆ t

−ε
∂x(a◦ϕ) dτ − 8

c′0k
′
0e

k0

c0

]
c−1◦ϕ− 4k′0e

k0ϕx(c
−2∂θc)◦ϕ

− 16
3 ∂x(k

′
0e
k0It)

ˆ t

−ε
I−1
τ (c−1∂θz)◦ϕ dτ + 16

3

c′0k
′
0e
k0

c0
It
ˆ t

−ε
I−1
τ (c−1∂θz)◦ϕ dτ
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+ 4
3∂

2
x

(k′0ek0
c20

It
) ˆ t

−ε
Iτ (c2◦ϕ) dτ + 8

3∂x
(k′0ek0
c20

It
) ˆ t

−ε
∂x

(
Iτ

)
(c2◦ϕ) dτ

+ 4
3

k′0e
k0

c20
It
ˆ t

−ε
∂2x(Iτ )(c2◦ϕ) dτ

+ 2
3c

2
0k

′
0e
k0It
ˆ t

−ε
I−3
τ

([
c−4∂θz + c−3∂θk

]
∂θw

)
◦ϕ dτ

− 2
3c

2
0k

′
0e
k0It
ˆ t

−ε
I−3
τ (c−4∂θz

2 + c−3∂θk∂θz)◦ϕ dτ

+ c20k
′
0e
k0It
ˆ t

−ε
I−3
τ (23c

−2E − 8
3c

−3f − 32
3 ∂θac

−3)◦ϕ dτ. (7.8)

Rearranging this and using k◦ϕ = k0, (4.1), (4.6), and (3.8), we have

∂2θϖ = Ac−1∂θc+B (7.9)

where

A := 2∂θϖ − 4c−1ek∂θk, (7.10)

B◦ϕ := −(Q2c)◦ϕ

+
[
c−4
0 I4

t ∂
2
x

(
ϖ0It

)
− 8c−5

0 I4
t ∂x(k

′
0e
k0It) + 12c−6

0 c′0k
′
0e
k0I5

t

]
c4◦ϕ

+

[
8∂x(k

′
0e
k0) + 64

3 k
′
0e
k0

ˆ t

−ε
∂x(a◦ϕ) dτ − 8

c′0k
′
0e

k0

c0

]
c−4
0 I4

t c
3◦ϕ

− 16
3 c

−4
0 I4

t ∂x(k
′
0e
k0It)

ˆ t

−ε
I−1
τ (c−1∂θz)◦ϕ dτc4◦ϕ+ 16

3 c
−5
0 c′0k

′
0e
k0I5

t

ˆ t

−ε
I−1
τ (c−1∂θz)◦ϕ dτc4◦ϕ

+ 4
3c

−4
0 I4

t ∂
2
x

(k′0ek0
c20

It
) ˆ t

−ε
Iτ (c2◦ϕ) dτc4◦ϕ+ 8

3c
−4
0 I4

t ∂x
(k′0ek0
c20

It
) ˆ t

−ε
∂x

(
Iτ

)
(c2◦ϕ) dτc4◦ϕ

+ 4
3c

−6
0 k′0e

k0I5
t

ˆ t

−ε
∂2x(Iτ )(c2◦ϕ) dτc4◦ϕ

+ 2
3c

−2
0 k′0e

k0I5
t

[ˆ t

−ε
I−3
τ

([
c−4∂θz + c−3∂θk

]
∂θw

)
◦ϕ dτ

−
ˆ t

−ε
I−3
τ (c−4∂θz

2 + c−3∂θk∂θz)◦ϕ dτ
]
c4◦ϕ

+ c−2
0 k′0e

k0I5
t

ˆ t

−ε
I−3
τ (23c

−2E − 8
3c

−3f − 32
3 ∂θac

−3)◦ϕ dτc4◦ϕ. (7.11)

Taking two derivatives of (4.7) we get the bound

|ϖ′′
0 | ≲ ε−2 + |w′′

0 |. (7.12)

It follows that

|B| ≲ ε−2 + |w′′
0 ◦ϕ−1|. (7.13)

We therefore conclude that

|∂2θϖ| ≲ ε−2 + |w′′
0 ◦ϕ−1|+ ε−1|∂θw|. (7.14)

Differentiating (4.3) and using (4.1) allows us to compute that

−3∂t(∂θϖ◦ϕ) = (A∂θw + C)◦ϕ (7.15)
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where

C := 4ekc−1∂θk∂θz + 2∂θϖ∂θz

− 8a∂θϖ + 8∂θaϖ + 4ekE + 4ek∂θk
2. (7.16)

This, along with (7.14), implies that ∂θϖ is transversal. Therefore (see (6.10)) ∂θa is 2-transversal.
Now taking ∂θ or (6.10) and using (6.4), (6.18), and (7.14) gives us

∂3θa = 2[∂θa− c− 2z]c−1∂2θc+O
(
ε−2 + |w′′

0 ◦ϕ−1|+ ε−1|∂θw|+ |∂θw|2
)
. (7.17)

Now, one can compute that

∂2x(a◦ϕ) = ϕ2x(−[1 + 2c−1z]∂θw + [3 + 2c−1z]∂θz)◦ϕ

+ ϕ2x(
1
4c

2∂θkϖe
−k − 1

4c
2∂θϖe

−k + ∂θaQ2)◦ϕ. (7.18)

It now follows from (4.11), (5.7), (6.4), (6.18), and (7.14) thatˆ t

−ε
∂3x(a◦ϕ) dτ = ϕ3x([3 + 6c−1z]c−1∂θc)◦ϕ+O

(
ε−1 + ε|w′′

0 |
)
. (7.19)

Therefore,

Φxx = 2
c20c

′′′
0 − 3c0c

′
0c

′′
0 + 2(c′0)

3

c30
− ϕ3x([16 + 32c−1z]c−1∂θc)◦ϕ+O

(
ε−1 + ε|w′′

0 |
)
. (7.20)

These equations will be used in § 8.1, § 8.2, § 9.1, § 9.2. 9

7.3. ∂3θz bounds. We know that

ψx(∂θf ◦ψ) =
(

1
2ψx∂θk◦ψ + ψx(c

−1∂θc)◦ψ − 3

ˆ t

−ε
ψx∂

2
θz◦ψ dτ

)
f ◦ψ + Jtc◦ψ∂x

(
J−1
t (c−1f)◦ψ

)
.

Recall from our Duhamel formula for f that

J−1
t (c−1f)◦ψ

= c−1
0 (z′′0 − 1

2c
−1
0 c′0z

′
0 +

1
2c0k

′′
0)e

− 1
2
k0

+

ˆ t

−ε
J−1
t (

[
1
12∂θk

2 − 1
4c

−2∂θz
2 − 1

24E − 2∂θac
−2z + 8

3c
−1z + 16

3 c
−2z2

]
∂θw)◦ψ dτ

+

ˆ t

−ε
J−1
t ( 1

12c∂θkE − 1
12∂θk

2∂θz +
1
4c

−2∂θz
3 + 1

8E∂θz)◦ψ dτ

+

ˆ t

−ε
J−1
t (2∂θac

−2∂θzz − 8c−1∂θzz − 16
3 c

−2∂θzz
2 − 4∂θac

−1∂θz +
2
3c∂θϖe

−kz − 2
3c∂θkϖe

−kz)◦ψ.

(7.21)

Taking ∂x of (7.21) and using (5.4) and (7.3) we have

Jtc◦ψ∂x
(
J−1
t (c−1f)◦ψ

)
= ψx(−1

8∂θc∂θk
2 + 3

8c
−2∂θc∂θz

2 + 1
16E∂θc)◦ψ

+ ψx(3∂θac
−2∂θcz − 4c−1∂θcz − 8c−2∂θcz

2)◦ψ

+O(εβ3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ1 |w′′
0 |+ εβ1+γ1+1∥w′′

0∥L∞). (7.22)

Therefore

∂θf = c−1∂θcf − 1
8∂θc∂θk

2 + 3
8c

−2∂θc∂θz
2 + 1

16E∂θc
+ 3∂θac

−2∂θcz − 4c−1∂θcz − 8c−2∂θcz
2

9For the fifth order estimates, one actually has to write out the full formula for (7.19) and (7.20) and work with it. We will omit
such straightforward but space-consuming details.
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+O(εβ3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ1 |w′′
0 ◦ψ−1|+ εβ1+γ1+1∥w′′

0∥L∞). (7.23)

Taking ∂θ of (6.20) and using these bounds, we conclude

∂3θz = [12∂θz −
1
2c∂θk]c

−1∂2θc

+O
(
εβ3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ2∧γ2∧β1−1|∂θw|+ εβ1 |w′′

0 ◦ψ−1|+ εβ1 |∂θw|2
)
. (7.24)

Since (6.14) can be rewritten as

−3
2∂t(f ◦ψ) = ([f − 1

8c∂θk
2 + 3

8c
−1∂θz

2 + 1
16cE + 3∂θac

−1z − 4z − 8c−1z2]∂θw)◦ψ
+ ((4a+ 1

2c∂θk +
9
2∂θz)f + 1

8c∂θk
2∂θz − 1

8c
2∂θkE − 3

8c
−1∂θz

3)◦ψ
+ (− 3

16c∂θzE − (3∂θac
−1z − 4z − 8c−1z2)∂θz + 6∂θa∂θz)◦ψ

+ (8z∂θz + c2∂θϖe
−kz + c2∂θϖe

−kz)◦ψ.

we can also conclude that f is transversal, and therefore ∂θz is 2-transversal.

8. FOURTH DERIVATIVE ESTIMATES

8.1. ∂4θk bounds. Taking ∂x of Ẽ ◦ϕ and using (4.1) and (7.20) gives us

∂x(Ẽ ◦ϕ) = ϕ−3
x

(
∂4xk0 − 6Φk′′′0 − (4∂xΦ− 11Φ2)k′′0 − (∂2xΦ− 7∂xΦΦ+ 6Φ3)k′0

)
+ 6ϕx(Ẽc−1∂θc)◦ϕ

= ϕ−3
x

(
∂4xk0 − 6Φk′′′0 − (4∂xΦ− 11Φ2)k′′0 − (2

c20c
′′′
0 −3c0c′0c

′′
0+2(c′0)

3

c30
− 7∂xΦΦ+ 6Φ3)k′0

)
+ ϕx

([
∂θk[16 + 32c−1z] + 6Ẽ

]
c−1∂θc

)
◦ϕ+O

(
εγ1−1 + εγ1+1|w′′

0 |
)
.

⇒ ∂θẼ =
[
ϕ−4
x

(
∂4xk0 − 6Φk′′′0 − (4∂xΦ− 11Φ2)k′′0 − (2

c20c
′′′
0 −3c0c′0c

′′
0+2(c′0)

3

c30
− 7∂xΦΦ+ 6Φ3)k′0

)]
◦ϕ−1

+
[
∂θk[16 + 32c−1z] + 6Ẽ

]
c−1∂θc+O

(
εγ1−1 + εγ1+1|w′′

0 |
)
.

Define
Ê = ∂θẼ −

[
∂θk[16 + 32c−1z] + 6Ẽ

]
c−1∂θc. (8.1)

Then (4.11) and (6.12) tell us that

|Ê | ≲ εγ4∧γ3−1∧γ2−2∧γ1−3 + εγ2∧γ1−1|w′′
0 ◦ϕ−1|+ εγ1 |w′′′

0 ◦ϕ−1|.

Using (7.18) one can compute that

−3∂t(Ẽ ◦ϕ) = (6Ẽ∂θw + 6Ẽ∂θz)◦ϕ− 16ϕ−3
x k′′0∂x(a◦ϕ)

+ 16ϕ−3
x k′0

(
4Φ∂x(a◦ϕ)− ∂2x(a◦ϕ)

)
=

([
∂θk[16 + 32c−1z] + 6Ẽ

]
∂θw + 6Ẽ∂θz

)
◦ϕ+O

(
εγ2∧γ1−1

)
. (8.2)

so Ẽ is transversal, and therefore ∂θk is 3-transversal. This will be used in § 9.
Taking ∂θ of (7.5) gives us

∂4θk = Ê +
[
16 + 32c−1z

]
c−1∂θc∂θk + 12Ẽc−1∂θc

+ 20Ec−2∂θc
2 + 8Ec−1∂2θc+ 6c−2∂θc∂

2
θc∂θk + 2c−1∂3θc∂θk. (8.3)

Note that the terms of order |∂θw|3 happen to cancel when this computation is done.
It follows from (6.3), (6.18), (7.3), and (7.24) that

|∂4θk| ≲ εγ4∧γ3−1∧γ2−1∧γ1−3 + εγ3∧γ2−1∧γ1−2|∂θw|
+ εγ2∧γ1−1

(
|w′′

0 ◦ϕ−1|+ |∂θw|2 + |∂2θw|
)

+ εγ1
(
|w′′′

0 ◦ϕ−1|+ |w′′
0 ◦ϕ−1||∂θw|+ |∂θw||∂2θw|+ |∂3θw|

)
. (8.4)
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8.2. ∂4θa bounds. At this point, we can apply Lemma 5.5 to conclude that the variable Q2 defined in (3.8)
is transversal. In fact, Lemma 5.5 allows us to conclude that Q2 is 2-transversal, but we will not need to use
that until § 9.

Recall from § 7.2 that {
∂2θϖ = Ac−1∂θc+B

−3∂t(∂θϖ◦ϕ) = (A∂θw + C)◦ϕ

where A,B,C are defined by (7.10), (7.11), and (7.16). Since c, ∂θk, ∂θa, ∂θz, ∂θϖ, E are all transversal, it
is immediate that A and C are transversal. We now also know that f and Q2 are transversal, so Lemma 5.5
lets us conclude that B is transversal. So ∂θϖ is 2-transversal. This fact will be utilized in § 8.3.

It is immediate from (7.10) that

∂3θϖ = ∂θAc
−1∂θc−Ac−2∂θc

2 +Ac−1∂2θc+ ∂θB.

Since

∂θA = [2A− 4c−1ek∂θk]c
−1∂θc+ 2B − 4c−1ek∂θk

2 − 4c−1ekE ,

we conclude that

∂3θϖ = Ac−1∂2θc+ [A− 4c−1ek∂θk]c
−2∂θc

2 + [2B − 4c−1ek∂θk
2 − 4c−1ekE ]c−1∂θc+ ∂θB (8.5)

So to estimate ∂3θϖ, all that remains is to estimate ∂θB.
We know from (7.19) that

∂3xIt = ϕ3x([3 + 6c−1z]c−1∂θc)◦ϕ+O
(
ε−1 + ε|w′′

0 |
)
. (8.6)

We know from (5.6) that

∂x

(ˆ t

−ε
I−3
τ

([
c−4∂θz+c

−3∂θk
]
∂θw

)
◦ϕdτ

)
= −3ϕx([c

−4∂θz+c
−3∂θk]c

−1∂θc)◦ϕ+O(εβ2+1∧γ2+1∧β1).

It is straightforward to compute that

∂θQ2 = 2Q2c
−1∂θc+O(ε−2 + |w′′

0 ◦ϕ−1|).

Taking ∂3x of (4.7) produces

|ϖ′′′
0 | ≲ ε−3 + ε−1|w′′

0 |+ |w′′′
0 |. (8.7)

Therefore, taking ∂x of (7.11) and using also (7.3) and (7.23), we conclude that

|∂θB| ≲ ε−3 + ε−1|w′′
0 ◦ϕ−1|+ |w′′′

0 ◦ϕ−1|+
(
ε−2 + |w′′

0 ◦ϕ−1|
)
|∂θw|. (8.8)

Therefore,

|∂3θϖ| ≲ ε−3 + ε−1|w′′
0 ◦ϕ−1|+ |w′′′

0 ◦ϕ−1|
+
(
ε−2 + |w′′

0 ◦ϕ−1|
)
|∂θw|+ ε−1|∂θw|2 + ε−1|∂2θw|. (8.9)

Now, taking ∂3θ of (4.9) and using (6.4), (6.9), (7.6),(7.14),(7.24), and (8.9) gives us

|∂4θa| ≲ ε−3 + ε−1|w′′
0 ◦ϕ−1|+ |w′′′

0 ◦ϕ−1|
+
(
ε−2 + |w′′

0 ◦ϕ−1|
)
|∂θw|+ ε−1|∂θw|2 + ε−1|∂2θw|

+ |∂θw||∂2θw|+ |∂3θw|. (8.10)
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8.3. ∂4θz bounds. Abusing notation, introduce a function J defined so that

J ◦ψ(x, t) = Jt(x).

Lemma 5.5 implies that J is 2-transversal. Using the new function J , we can rewrite (7.21) as

(J−1c−1f)◦ψ = c−1
0 (z′′0 − 1

2c
−1
0 c′0z

′
0 +

1
2c0k

′′
0)e

− 1
2
k0 +

ˆ t

−ε
(Jh1∂θw)◦ψ dτ +

ˆ t

−ε
(Jh2)◦ψ dτ

Given everything that has been proven up to this point h1 and h2 are both 2-transversal. It follows from
Lemma 5.5 that J−1c−1f is 2-transversal, and since c and J are both 2-transversal it thus follows that f is
2-transversal. This will be utilized in § 9.

Using Lemma 5.4 on the functions h1 and h2, along with estimates from the previous sections, we con-
clude that∣∣∣∣∂2x( ˆ t

−ε
(Jh1∂θw)◦ψ dτ +

ˆ t

−ε
(Jh2)◦ψ dτ

)∣∣∣∣ ≲ εµ−4 + εµ−3|∂θw◦ψ|+ εµ−2|∂θw◦ψ|2 + εµ−2|∂2θw◦ψ|.

It therefore follows that∣∣∣∣∂2x((J−1c−1f)◦ψ
)∣∣∣∣ ≲ εµ−5 + εµ−3|∂θw◦ψ|+ εµ−2|∂θw◦ψ|2 + εµ−2|∂2θw◦ψ|.

We conclude that

|∂2θf | ≲ εµ−5 + εµ−
7
2 |∂θw|+ εµ−2|∂θw|2 + εµ−2|∂2θw|.

It now follows that

|∂4θz| ≲ εµ−5 + εµ−
7
2 |∂θw|+ εµ−2|∂θw|2 + εµ−2|∂2θw|

+ εβ1
(
|∂θw|3 + |∂θw||∂2θw|+ |∂3θw|

)
. (8.11)

9. FIFTH ORDER ESTIMATES

9.1. ∂5θk bounds. We already know (see § 8.1) that ∂θk is 3-transversal, and we will not need to show that
∂θk is 4-transversal. ∂θk is 4-transversal, but it doesn’t matter for our purposes. One can easily get the
bound

|∂θÊ | ≲ εγ5∧γ4−1∧γ3−2∧γ2−3∧γ1−4 + εγ3∧γ2−1∧γ1−2|w′′
0 ◦ϕ−1|+ εγ2∧γ1−1|w′′′

0 ◦ϕ−1|
+ εγ1(|w′′

0 ◦ϕ−1|2 + |∂4xw0◦ϕ−1|)
+ (εγ4∧γ3−1∧γ2−2∧γ1−3 + εγ2∧γ1−1|w′′

0 ◦ϕ−1|+ εγ1 |w′′′
0 ◦ϕ−1|)|∂θw|

It now follows from taking ∂θ of (8.3) that

∂5θk = 2c−1∂4θc∂θk +O
(
εγ5∧γ4−1∧γ3− 5

2
∧γ2−4∧γ1− 11

2 + εγ4∧γ3−1∧γ2− 5
2
∧γ1−4|∂θw|

+ εγ3∧γ2−1∧γ1− 5
2 (|∂θw|2 + |∂2θw|)

+ εγ2∧γ1−1(|∂θw|3 + |∂θw||∂2θw|+ |∂3θw|)
+ εγ1(|∂θw|2|∂2θw|+ |∂2θw|2 + |∂θw||∂3θw|)

)
. (9.1)

26



9.2. ∂5θa bounds. Since c, ∂θk, ∂θa, ∂θz, ∂θϖ, and E are all 2-transversal, it follows immediately thatA and
C are 2-transversal. f and Q2 are also 2-transversal, so it follows from Lemma 5.5 that B is 2-transversal.
Therefore ∂θϖ is 3-transversal. This will be used in § 9.3.

Taking ∂θ of (8.5) and using the bounds we already have on A,B,C, ∂θA, and ∂θB gives us

|∂4θϖ| ≲ |∂2θB|+ ε−4|∂θw|+ ε−5/2(|∂θw|2 + |∂2θw|) + ε−1(|∂θw|3 + |∂θw||∂2θw|+ |∂3θw|).

∂2θB can be bounded in a manner similar to the way ∂θB was bounded. One simply needs to use a lemma
similar to Lemma 5.4 but for the 2-characteristics, which is very straightforward to prove at this point. Then,
since ∂2θQ and ∂4xIt can be explicitly computed and bounded 10, one can bound ∂2θB and conclude that

|∂4θϖ| ≲ ε−11/2 + ε−4|∂θw|+ ε−5/2(|∂θw|2 + |∂2θw|) + ε−1(|∂θw|3 + |∂θw||∂2θw|+ |∂3θw|).

From here, taking ∂3θ of (6.10) gives

∂5θa = 2[∂θa− c− 2z]c−1∂4θc+O
(
ε−11/2 + ε−4|∂θw|+ ε−5/2(|∂θw|2 + |∂2θw|)
+ ε−1(|∂θw|3 + |∂θw||∂2θw|+ |∂3θw|)
+ |∂θw||∂3θw|+ |∂θw|2|∂2θw|+ |∂2θw|2

)
. (9.2)

9.3. ∂5θz bounds. One can use Lemma 5.2, Lemma 5.4, and Lemma 5.5 to derive a lemma for 3-transversal
functions analogous to Lemma 5.4. Bounding ∂5θz now follows in a manner completely analogous to § 8.3.
One obtains

∂5θz = [12∂θz −
1
2c∂θk]c

−1∂4θc+O
(
εµ−13/2 + εµ−5|∂θw|+ εµ−7/2(|∂θw|2 + |∂2θw|)
+ εµ−2(|∂θw|3 + |∂θw||∂2θw|+ |∂3θw|)

εβ1(|∂θw|4 + |∂θw||∂3θw|+ |∂θw|2|∂2θw|+ |∂2θw|2)
)
. (9.3)

10. ESTIMATES ALONG η

10.1. Second derivative estimates η. It follows from the first derivative estimates that

|∂xIt| ≲ εγ1

where It is the integrating factor in (3.13). It follows from the second derivative estimates that

ηx|∂2θk◦η| ≲ εγ2∧γ1−1

ηx|∂2θa◦η| ≲ ε−1

ηx|∂2θz◦η| ≲ εβ2∧γ2∧β1−1

Taking ∂x of (3.14) and using these bounds, we get

|∂x
(
ηxq

w◦η)| ≤ |w′′
0 |(1 +O(ε)) +O(εγ2∧γ1−1) +O(ε0∧β1+γ1)(ε+ t) sup

[−ε,t]
ηxx

Taking ∂x of (3.15) and plugging in this estimate gives us

sup
[−ε,t]

|ηxx| ≤ (ε+ t)|w′′
0 |(1 +O(ε)) +O(εβ2∧γ2∧β1−1))(ε+ t) +O(εβ1)(ε+ t) sup

[−ε,t]
|ηxx|.

=⇒ sup
[−ε,t]

|ηxx| ≤
(ε+ t)

[
|w′′

0 |(1 +O(ε)) +O(εβ2∧γ2∧β1−1)
]

1−O(εµ)

≲ (ε+ t)(|w′′
0 |+ εβ2∧γ2∧β1−1). (10.1)

It follows that
|ηxx(x, t)| ≤ B(ε−2(ε+ t); ε−5/2(ε+ t)). (10.2)

10One must write out the full equation for (7.19) in order to do this, which is arduous but straightforward.
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Plugging (10.1) into our bound for |∂x(ηxqw◦η)| gives us

|∂x
(
ηxq

w◦η)| ≤ |w′′
0 |(1 +O(ε)) +O(εγ2∧γ1−1) (10.3)

Using the ηxx bound along with our second derivative bounds, we get

|∂2x(k◦η)| ≲ εγ2∧γ1−1 + εγ1(ε+ t)|w′′
0 | (10.4)

|∂2x(a◦η)| ≲ ε−1 + (ε+ t)|w′′
0 | (10.5)

|∂2x(z◦η)| ≲ εβ2∧γ2∧β1−1 + εβ1(ε+ t)|w′′
0 | (10.6)

|∂2x(ϖ◦η)| ≲ ε−
5
2 + ε−1(ε+ t)|w′′

0 |. (10.7)

Since

∂2xIt =

(
1
8∂

2
x(k◦η)− 8

3

ˆ t

−ε
∂2x(a◦η) dτ

)
It +

(
1
8∂x(k◦η)−

8
3

ˆ t

−ε
∂x(a◦η) dτ

)2

It,

it now follows that

|∂2xIt| ≲ εγ2∧γ1−1 + εγ1(ε+ t)|w′′
0 |.

Lastly, since
ηxq

w◦η = ∂x(w◦η)− 1
4c◦η∂x(k◦η),

we know that

∂2x(w◦η) = ∂x(ηxq
w◦η) + 1

4∂x(c◦η)∂x(k◦η) +
1
4c◦η∂

2
x(k◦η),

and therefore (10.1) and (10.4) imply that

|∂2x(w◦η)| ≲ |w′′
0 |+ εγ2∧γ1−1. (10.8)

Since

η2x∂
2
θw◦η = ∂2x(w◦η)− ηxx∂θw◦η,

it follows that

η2x|∂2θw◦η| ≲ |w′′
0 |+ εγ2∧γ1−1 + ε−1 |ηxx|

ηx
. (10.9)

=⇒ η3x|∂2θw◦η| ≲ |w′′
0 |+ εβ2∧γ2∧β1−1. (10.10)

10.2. Third derivative estimates along η. Using the third derivative estimates and (10.9) gives us

η2x|∂3θk◦η| ≲ εγ3∧γ2−1∧γ1−2 + εγ1 |w′′
0 |+ εγ1 |w′′

0 ◦ϕ−1◦η|+ εγ1−1 |ηxx|
ηx

η2x|∂3θa◦η| ≲ ε−2 + |w′′
0 |+ |w′′

0 ◦ϕ−1◦η|+ ε−1 |ηxx|
ηx

.

η2x|∂3θz◦η| ≲ εβ3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ1 |w′′
0 |+ εβ1 |w′′

0 ◦ψ−1◦η|+ εβ1−1 |ηxx|
ηx

η2x|∂3θϖ◦η| ≲ ε−3 + ε−1|w′′
0 |+ ε−1|w′′

0 ◦ϕ−1◦η|+ |w′′′
0 ◦ϕ−1◦η|+ ε−2 |ηxx|

ηx
.

These estimates will be useful in § 10.4 and § 10.5.
Multiplying the above bounds by ηx gives us

η3x|∂3θk◦η| ≲ εγ3∧γ2−1∧γ1−2 + εγ1 |w′′
0 |+ εγ1 |w′′

0 ◦ϕ−1◦η|
η3x|∂3θa◦η| ≲ ε−2 + |w′′

0 |+ |w′′
0 ◦ϕ−1◦η|

η3x|∂3θz◦η| ≲ εβ3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ1 |w′′
0 |+ εβ1 |w′′

0 ◦ψ−1◦η|
η3x|∂3θϖ◦η| ≲ ε−3 + ε−1|w′′

0 |+ ε−1|w′′
0 ◦ϕ−1◦η|+ |w′′′

0 ◦ϕ−1◦η|.
Using this we compute that∣∣∣∣∂2x(ηxqw◦η)− w′′′

0 e
− 1

8
k0It

∣∣∣∣ ≲ εγ1 |w′′
0 |+ εγ3∧γ2−1∧µ−2 + ε1∧β1+γ1+1(|w′′

0 ◦ψ−1◦η|+ |w′′
0 ◦ϕ−1◦η|)
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+ sup
[−ε,t]

|ηxx|ε0∧β2+γ1+1∧γ2+γ1+1∧β1+γ1 + ε0∧β1+γ1(ε+ t) sup
[−ε,t]

|ηxxx|

≲ εγ1 |w′′
0 |+ ε−2∧γ3∧β2+γ1−1∧γ2−1∧β1+γ1−2 + ε0∧β1+γ1(ε+ t) sup

[−ε,t]
|ηxxx|.

This is true for all x ∈ T, t ∈ [−ε, T∗).
Taking ∂2x of (3.15) and using this bound tells us that

sup
[−ε,t]

|ηxxx| ≲ (ε+ t)
(
|w′′′

0 |+ εµ−4 + εβ1 sup
[−ε,t]

|ηxxx|
)
.

=⇒ |ηxxx| ≲ (ε+ t)
(
|w′′′

0 |+ εµ−4
)

everywhere. Using this bound, we conclude that∣∣∣∣ηxxx − w′′′
0

ˆ t

−ε
e−

1
8
k0Iτ dτ

∣∣∣∣ ≲ (ε+ t)2εβ1 |w′′′
0 |+ (ε+ t)εµ−4.

Since w′′′
0 ∼ ε−4 for |x| ≤ ε3/2 and ∥w′′′

0 ∥L∞ ≲ ε−4, this bound lets us conclude that

ηxxx ∼ (ε+ t)ε−4 ∀ |x| ≤ ε3/2,

and

|ηxxx| ≲ ε−3 ∀ (x, t) ∈ T× [−ε, T∗].

We now conclude that∣∣∣∣∂2x(ηxqw◦η)∣∣∣∣ ≲ |w′′′
0 |+ εµ|w′′

0 |+ ε−2∧γ3∧β2+γ1−1∧γ2−1∧β1+γ1−2

We know that for all (x, t) ∈ T× [−ε, T∗) we have

|∂3x(k◦η)| ≲ (εγ3∧γ2−1∧γ1−2 + εγ1 |w′′
0 |+ εγ1 |w′′

0 ◦ϕ−1◦η|)ηx + εγ2∧γ1−1|ηxx|+ εγ1 |ηxxx|.
|∂3x(a◦η)| ≲ (ε−2 + |w′′

0 |+ |w′′
0 ◦ϕ−1◦η|)ηx + ε−1|ηxx|+ |ηxxx|.

|∂3x(z◦η)| ≲ (εβ3∧γ3∧β2−1∧γ2−1∧β1−2 + εβ1 |w′′
0 |+ εβ1 |w′′

0 ◦ψ−1◦η|)ηx + εβ2∧γ2∧β1−1|ηxx|+ εβ1 |ηxxx|
|∂3x(ϖ◦η)| ≲ (ε−3 + ε−1|w′′

0 |+ ε−1|w′′
0 ◦ϕ−1◦η|+ |w′′′

0 ◦ϕ−1◦η|)ηx + ε−2|ηxx|+ ε−1|ηxxx|.

Therefore, we have the bounds

|∂3x(k◦η)| ≲ εµ−3

|∂3x(a◦η)| ≲ ε−3

|∂3x(z◦η)| ≲ εµ−4

|∂3x(ϖ◦η)| ≲ ε−4.

Since

∂2x(ηxq
w◦η) = ∂3x(w◦η)− 1

4∂
2
x(c◦η)∂x(k◦η)− 1

2∂x(c◦η)∂
2
x(k◦η)− 1

4c◦η∂
3
x(k◦η).

It follows that

|∂3x(w◦η)| ≲ ε−4. (10.11)

Lastly, it is easy to use the bounds on ∂3x(k◦η) and ∂3x(a◦η) to conclude that

|∂3xIt| ≲ εµ−3.
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10.3. Blowup time, location, and sharp bounds for ηx and ηxx.

Lemma 10.1 (Existence and uniqueness of blowup label). There exists a unique label x∗ ∈ T such that
ηx(x∗, T∗) = 0. Furthermore, we have |x∗| ≲ εµ+2 and

ηx(x∗, T∗) = ηxx(x∗, T∗) = 0.

Proof of Lemma 10.1. Due to (4.16), we know that ηx is bound below outside of (x, t) ∈ [−ε3/2, ε3/2] ×
[−ε, T∗]. We know that ηxxx > 0 in [−ε3/2, ε3/2] × (−ε, T∗], so for all t ∈ (−ε, T∗] there is at most one
zero of ηxx(·, t) in (−ε3/2, ε3/2].

We know from § 10.1 that for all (x, t) ∈ T× [−ε, T∗] we have∣∣ηxx(x, t)− w′′
0(x)

ˆ t

−ε
e−

1
8
k0(x)Iτ (x) dτ

∣∣ ≲ (ε+ t)
(
εβ1+1|w′′

0(x)|+ εβ2∧γ2∧β1−1
)
.

Recall that |w′′
0(x)| ≲ ε−2 for |x| ≤ ε2. It follows that for |x| ≤ ε2 we have∣∣ηxx − w′′

0

ˆ t

−ε
e−

1
8
k0Iτ dτ

∣∣ ≲ (ε+ t)εµ−2.

Since w′′
0(0) = 0 and w′′′

0 ∼ ε−4 for |x| ≤ ε3/2, it follows that

|w′′
0(x)| ≳ ε−4|x| and sgn (w′′

0(x)) = sgn (x)

for |x| ≤ ε3/2. Therefore, we have

|ηxx| ≳ (ε+ t)ε−4[|x| − O(εµ+2)] ∀ |x| ≤ ε2.

It follows that there exists a constant C such that for Cε2+µ < x < ε2 we have ηxx(x, t) > 0 and for
−ε2 < x < −Cε2+µ we have ηxx(x, t) < 0. So for all t ∈ (−ε, T∗] there exists a unique zero of ηxx(·, t)
in (−ε3/2, ε3/2).

Therefore, we conclude that there exists a C2 curve x∗ : (−ε, T∗] → R such that

{(x, t) : |x| ≤ ε3/2, ηxx(x, t) = 0,−ε < t ≤ T∗} = {(x∗(t), t) : −ε < t ≤ T∗}.

Furthermore, we know that |x∗(t)| ≤ Cε2+µ for all t. From here it is easy to conclude that ηxx(x, t) < 0

for −ε3/2 ≤ x < x∗(t) and ηxx(x, t) > 0 for x∗(t) < x ≤ ε3/2, so that x∗(t) must be the minimizer of
ηx(·, t) over [−ε3/2, ε3/2].

Define x∗ := x∗(T∗). We know that minT ηx(·, t) → 0 as t → T∗ and ηx is bound below for |x| ≥ ε3/2,
so ηx(x∗(t), t) → 0 as t→ T∗. Our result now follows. □

We can now improve upon our lower bounds for ηx. Let x∗(t) be the curve from the proof of Lemma
10.1. If t > −ε and x ∈ (−π, π], there exists x(x, t) in between x and x∗ such that

ηx(x, t) = ηx(x∗(t), t) +
ηxxx(x(x, t), t)

2
(x− x∗(t))

2

≥ ηxxx(x(x, t), t)

2
(x− x∗(t))

2.

Since |x∗| ≲ ε2+µ, if ε2 ≤ |x| ≤ ε3/2, then (x− x∗(t))
2 ≳ ε4 and ηxxx(x, t) ≳ (ε+ t)ε−4, so we have

ηx(x, t) ≳ (ε+ t).

It follows that for ε2 ≤ |x| ≤ ε3/2, − ε
2 ≤ t ≤ T∗ we have ηx ≳ ε. We already know (see § 4.4) that

ηx ≥ − t
ε +O(εµ)

for all (x, t) ∈ T× [−ε, T∗], so we conclude that

ηx(x, t) ≳ ε for ε2 ≤ |x| ≤ ε3/2. (10.12)
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Lemma 10.2 (Improved estimates for ηx and ηxx). There exist constants A, c, C such that for all (x, t) ∈
[−ε2, ε2]× [−ε, T ∗), we have

1

2ε
(T∗ − t) + c(ε+ t)ε−4(x− x∗)

2 ≤ ηx(x, t) ≤
3

2ε
(T∗ − t) + Cε−3(x− x∗)

2 (10.13)

−Aε−2(T∗ − t) + c(ε+ t)ε−4(x− x∗) ≤ ηxx(x, t) ≤ Aε−2(T∗ − t) + Cε−3(x− x∗) if x ≥ x∗ (10.14)

−Aε−2(T∗ − t) + Cε−3(x− x∗) ≤ ηxx(x, t) ≤ Aε−2(T∗ − t) + c(ε+ t)ε−4(x− x∗) if x ≤ x∗
(10.15)

Proof of Lemma 10.2. Fix a point (x, t) ∈ [−ε2, ε2]× [−ε, T ∗). We know that ηx is C1 on T× [−ε, T∗] and
is C2 on T× [−ε, T∗). Therefore, Taylor’s theorem tells us that there exists a point (x1, t1) on the segment
connecting (x∗, T∗) to (x, t) such that

ηx(x, t) = ηxt(x∗, T∗)(t− T∗) +
1
2ηxxx(x1, t1)(x− x∗)

2

+ ηxxt(x1, t1)(t− T∗)(x− x∗) +
1
2ηxtt(x1, t1)(t− T∗)

2. (10.16)

Similarly, there exists a point (x2, t2) on the segment such that

ηxx(x, t) = ηxxx(x2, t2)(x− x∗) + ηtxx(x2, t2)(t− T∗). (10.17)

We know that

ηxt = w′
0e

− 1
8
k0It +O(εβ1).

We also know that since w′′
0(0) = 0, |x∗| ≲ ε2+µ, and |w′′′

0 | ≲ ε−4 we have

−1
ε ≤ w′

0(x∗) ≤ −1+Cε1+2µ

ε .

−1
ε −O(εγ1) ≤ ηxt(x∗, T∗) ≤ −1+Cε1+2µ

ε +O(εγ1).

We also know that for i = 1, 2

ηxxx(xi, ti) ∼ (ε+ ti)ε
−4.

ηtxx = ∂x(ηxq
w◦η) + 1

4∂x(c◦η)∂x(k◦η) +
1
4c◦η∂

2
x(k◦η) + 1

3∂
2
x(z◦η).

So for i = 1, 2

|ηtxx(xi, ti)| ≲ ε−2.

Also

ηxtt = (w′
0 − 1

4c0k
′
0)∂t

(
Ite

− 1
8
k0
)
+ ( 1

12c∂θq
z − 8

3∂θaw)◦η
+ ηxt(

1
4∂θk +

1
3∂θz)◦η + ηx(

1
4∂t(∂θk◦η) +

1
3∂t(∂θz◦η)).

=⇒ |ηxtt(x1, t1)| ≲ εγ2∧β1−1.

Our result now follows. □

Using Lemma 10.2, we can now conclude that

1

ηx
≤ B(

[ 1

2ε
(T∗ − t) + c(ε+ t)ε−4(x− x∗)

2
]−1

; ε−1), (10.18)

η2xx
ηx

≤ B(ε−3; ε−4). (10.19)

The bound (10.18) will let us deduce (2.19) and (10.19) will be used frequently in § 10.4 and § 10.5.
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10.4. Fourth derivative estimates along η. We know that

η4x∂
3
θw◦η = ηx∂

3
x(w◦η)− 3ηxx∂

2
x(w◦η) +

(
3η

2
xx
ηx

− ηxxx
)
∂x(w◦η). (10.20)

Therefore,
η4x|∂3θw◦η| ≲ ε−4 + ε−1 η2xx

ηx
≤ B(ε−4; ε−5).

It now follows that

η4x|∂4θk◦η| ≤ B(εγ2−5/2∧µ−4; εµ−5), (10.21)

η4x|∂4θa◦η| ≤ B(ε−4; ε−5), (10.22)

η4x|∂4θz◦η| ≤ B(εµ−5; εµ−6) (10.23)

η4x|∂4θϖ◦η| ≤ B(ε−5; ε−6). (10.24)

The usual argument for bounding derivatives of ηx and ηxqw◦η now gives

|∂4xη| ≤ B((ε+ t)(|∂4xw0|+ εµ−5); (ε+ t)(|∂4xw0|+ εµ−6))

and ∣∣∂3x(ηxqw◦η)∣∣ ≤ B(εµ−5; ε−
11
2 ).

In the end, we get

|∂4x(k◦η)| ≤ B(εγ2−3∧µ−4; εγ2−4∧µ−5), (10.25)

|∂4x(a◦η)| ≤ B(ε−4; ε−5), (10.26)

|∂4x(z◦η)| ≤ B(εµ−5; εµ−6), (10.27)

|∂4x(ϖ◦η)| ≤ B(ε−5; ε−6), (10.28)

|∂4x(w◦η)| ≤ B(εµ−5; ε−
11
2 ). (10.29)

10.5. Fifth Derivative Estimates. These estimates are different from the previous sections because they
require more algebra and hinge on admittedly unexpected cancellation. First note that

η2x∂
2
θc◦η = −∂x(c◦η)ηxxηx + ∂2x(c◦η)

η3x∂
3
θc◦η = (3η

2
xx
ηx

− ηxxx)∂x(c◦η) 1
ηx

− 3∂2x(c◦η)
ηxx
ηx

+ ∂3x(c◦η)

ηxxη
3
x(∂θc∂

2
θc)◦η = ∂x(c◦η)[ηxx∂2x(c◦η)− ∂x(c◦η)η

2
xx
ηx

]

ηxxη
3
x∂

3
θc◦η = (3η

2
xx
ηx

− ηxxx)∂x(c◦η)ηxxηx − 3∂2x(c◦η)
η2xx
ηx

+ ∂3x(c◦η)ηxx

η5x∂
2
θc

2◦η = ∂x(c◦η)2 η
2
xx
ηx

− 2∂2x(c◦η)∂x(c◦η)ηxx + ∂2x(c◦η)2ηx
η5x(∂θc

2∂2θc)◦η = ∂x(c◦η)2[−∂x(c◦η)ηxx + ∂2x(c◦η)ηx]

η5x(∂θc∂
3
θc)◦η = ∂x(c◦η)[(3η

2
xx
ηx

− ηxxx)∂x(c◦η)− 3∂2x(c◦η)ηxx + ∂3x(c◦η)ηx]

η5x∂
4
θc◦η = (10ηxxx − 15η

2
xx
ηx

)∂x(c◦η)ηxxηx − ∂4xη∂x(c◦η) + (15η
2
xx
ηx

− 4ηxxx)∂
2
x(c◦η)

− 6ηxx∂
3
x(c◦η) + ηx∂

4
x(c◦η).

Next note that

∂2θa = 2[∂θa− c+ 2z]c−1∂θc+O(ε−1),

∂3θa = 2[∂θa− c+ 2z]c−1∂2θc+O(ε−
5
2 + ε−1|∂θw|+ |∂θw|2),

∂4θa = 2[∂θa− c+ 2z]c−1∂3θc+O(ε−4 + ε−
5
2 |∂θw|+ ε−1|∂θw|2 + ε−1|∂2θw|+ |∂θw||∂2θw|),

∂5θa = 2[∂θa− c− 2z]c−1∂4θc+O
(
ε−

11
2 + ε−4|∂θw|+ ε−5/2(|∂θw|2 + |∂2θw|)
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+ ε−1(|∂θw|3 + |∂θw||∂2θw|+ |∂3θw|)
+ |∂θw||∂3θw|+ |∂θw|2|∂2θw|+ |∂2θw|2

)
.

Combining these identities and our estimates gives us

10ηxxx
ηxx
ηx
ηx∂

2
θa◦η = 2[∂θac

−1 − 1− 2c−1z]◦η(10ηxxx + 0)∂x(c◦η)ηxxηx + B(ε−5; ε−
11
2 ),

(10ηxxx + 15η
2
xx
ηx

)η2x∂
3
θa◦η = 2[∂θac

−1 − 1− 2c−1z]◦η(−10ηxxx − 15η
2
xx
ηx

)∂x(c◦η)ηxxηx + B(ε−
11
2 ; ε−

13
2 ),

10ηxxη
3
x∂

4
θa◦η = 2[∂θac

−1 − 1− 2c−1z]◦η(−10ηxxx + 30η
2
xx
ηx

)∂x(c◦η)ηxxηx + B(ε−5; ε−
13
2 ),

η5x∂
5
θa◦η = 2[∂θac

−1 − 1− 2c−1z]◦η(10ηxxx − 15η
2
xx
ηx

)∂x(c◦η)ηxxηx + B(ε−
11
2 ; ε−

13
2 ).

Therefore,

∂5x(a◦η) = η5x∂
5
θa◦η + 10ηxxη

3
x∂

4
θa◦η + (10ηxxx + 15η

2
xx
ηx

)η2x∂
3
θa◦η

+ (5∂4xη + 10ηxxx
ηxx
ηx

)ηx∂
2
θa◦η + ∂5xη∂θa◦η

= 2[∂θac
−1 − 1− 2c−1z]◦η

(
[10− 10− 10 + 10]ηxxx + [0− 15 + 30− 15]η

2
xx
ηx

)
∂x(c◦η)ηxxηx

+ ∂5xη∂θa◦η + B(ε−
11
2 ; ε−

13
2 )

= ∂5xη∂θa◦η + B(ε−
11
2 ; ε−

13
2 ).

The exact same cancellation occurs for the other two variables to give us

∂5x(k◦η) = ∂5xη∂θk◦η + B(εγ2−4∧µ− 11
2 ; εµ−

13
2 ),

∂5x(z◦η) = ∂5xη∂θz◦η + B(εµ−
13
2 ; εµ−

15
2 ).

Similar computations prove that

∂4x(ηx(∂θk∂θz)◦η) = ∂5x(k◦η)∂θz◦η + ∂θk◦η∂5x(z◦η) + B(εγ2+µ−5∧2µ− 13
2 ; ε2µ−

15
2 ).

Now the usual method for bounding the derivatives of ηx and ηxqw◦η produces

|∂5xη| ≤ B((ε+ t)(|∂5xw0|+ εµ−
13
2 ); (ε+ t)(|∂5xw0|+ εµ−

15
2 )). (10.30)

In the end, we get

|∂5x(k◦η)| ≲ B(εµ−6; εµ−
13
2 ),

|∂5x(a◦η)| ≲ B(ε−6; ε−
13
2 ),

|∂5x(z◦η)| ≲ B(εµ−7; εµ−
15
2 ),

|∂5x(w◦η)| ≲ ε−7.

Using similar computations to those in this section, one can compute that

η7x|∂5θw◦η| ≤ B(ε−7; ε−9).

This bound, together with similar bounds we proved for ∂nθ z◦η, ∂nθ k◦η, and ∂nθ a◦η throughout this section
combine with (10.18) to give us (2.19).

11. INVERSION OF η

In this section, we will confine our attention to labels x ∈ (−π, π] with |x| ≤ ε2.
Since w◦η(·, T∗) is C4,1,it has the following Taylor expansion about x∗:

w◦η = Bw
0 +Bw

1 (x− x∗) +Bw
2 (x− x∗)

2 +Bw
3 (x− x∗)

3 +Rw0 (x)(x− x∗)
4. (11.1)

Here
|Bw

0 | ≲ 1, |Bw
1 | ≲ ε−1, |Bw

2 | ≲ ε−2, |Bw
3 | ≲ ε−4, |Rw0 | ≲ εµ−5. (11.2)
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The flow η(·, T∗) also has the Taylor expansion

η(x, T∗)− ξ∗ = a3(x− x∗)
3 + a4(x)(x− x∗)

4

= a3(x− x∗)
3 + a4(x∗)(x− x∗)

4 + a5(x)(x− x∗)
5, (11.3)

where ξ∗ := η(x∗, T∗), a3 := 1
6ηxxx(x∗, T∗), a4(x∗) =

1
24∂

4
xη(x∗, T∗),

a4(x) :=

´ x
x∗
∂4xη(y, T∗)(x− y)3 dy

3!(x− x∗)4
and a5(x) :=

´ x
x∗
∂5xη(y, T∗)(x− y)4 dy

4!(x− x∗)5
. (11.4)

Here a3 ∼ ε−3, |a4(x)| ≲ εµ−4, and |a5(x)| ≲ ε−6. Note that |a−4/3
3 a4| ≲ εµ.

Let θ = η(x, T∗). Lemma A.3 implies that there exists a constant C such that for all x ∈ [−ε2, ε2] such
that |θ − ξ∗| ≤ Cε−3µ we have

(x− x∗)

= a
−1/3
3 (θ − ξ∗)

1/3
[
1 + 1

3

(
− a

−4/3
3 a4(θ − ξ∗)

1/3
)
+ 1

3

(
− a

−4/3
3 a4(θ − ξ∗)

1/3
)2

+O(ε3µ|θ − ξ∗|)
]

= a
−1/3
3 (θ − ξ∗)

1/3

[
1 + 1

3

(
− a

−4/3
3 a4(θ − ξ∗)

1/3
)
+O(ε2µ|θ − ξ∗|2/3)

]
(11.5)

= a
−1/3
3 (θ − ξ∗)

1/3
[
1 +O(εµ|θ − ξ∗|1/3)

]
. (11.6)

A quick bootstrap argument lets us conclude that this formula holds for all x ∈ [−ε2, ε2]. Furthermore, it
is easy to show that there exists two constants 0 < c < C such that

{θ : |θ − ξ∗| ≤ cε3} ⊂ {θ : |x| ≤ ε2} ⊂ {θ : |θ − ξ∗| ≤ Cε3}.

So we are working is a neighborhood of radius ∼ ε3 around ξ∗.
If we define

aw0 := Bw
0 ,

aw1 := a
−1/3
3 Bw

1 ,

aw2 := a
−2/3
3 Bw

2 − 1
3a

−5/3
3 a4(x∗)B

w
1 ,

then we have

|aw0 | ≲ 1, |aw1 | ≲ 1, |aw2 | ≲ 1,

and

w(θ, T∗) = aw0 + aw1 (θ − ξ∗)
1/3 + aw2 (θ − ξ∗)

2/3 +O(ε−1|θ − ξ∗|). (11.7)

Squaring (11.5) and cubing (11.6) gives us

(x− x∗)
2 = a

−2/3
3 (θ − ξ∗)

2/3 − 2
3a

−2
3 a4(θ − ξ∗) +O(ε2µ+2|θ − ξ∗|4/3),

(x− x∗)
3 = a−1

3 (θ − ξ∗) +O(εµ+3|θ − ξ∗|4/3).

Therefore,

ηx(x, T∗) = 3a3(x− x∗)
2 + [4a4(x) + ∂xa4(x)(x− x∗)](x− x∗)

3

=: 3a3(x− x∗)
2 + ã4(x− x∗)

3

= 3a
1/3
3 (θ − ξ∗)

2/3 + a−1
3 (ã4 − 2a4)(θ − ξ∗) +O(ε2µ−1|θ − ξ∗|4/3). (11.8)

Using this formula, one can compute that

ηx(x, T∗)
−1 = 1

3a
−1/3
3 (θ − ξ∗)

−2/3 − 1
9a

−5/3
3 (ã4 − 2a4)(θ − ξ∗)

−1/3 +O(ε2µ+1).

34



Since a4(x) = a4(x∗) +O(ε−5|θ − ξ∗|1/3) and ã4(x) = 4a4(x∗) +O(ε−5|θ − ξ∗|1/3), it follows that

ηx(x, T∗)
−1 = 1

3a
−1/3
3 (θ − ξ∗)

−2/3 − 2
9a

−5/3
3 a4(x∗)(θ − ξ∗)

−1/3 +O(1). (11.9)

Since ∂x(w◦η) = Bw
1 + 2Bw

2 (x− x∗) +O(ε−4|x− x∗|2), it follows that at time T∗ we have

∂θw◦η = η−1
x ∂x(w◦η)

=
[
1
3a

−1/3
3 (θ − ξ∗)

−2/3 − 2
9a

−5/3
3 a4(x∗)(θ − ξ∗)

−1/3 +O(1)
]

·
[
Bw

1 + 2a
−1/3
3 Bw

2 (θ − ξ∗)
1/3 +O(ε−2|θ − ξ∗|2)

]
= 1

3a
w
1 (θ − ξ∗)

−2/3 + 2
3a
w
2 (θ − ξ∗)

−1/3 +O(ε−1).

This is the expansion for ∂θw(·, T∗) in Theorem 2.1.
Now consider

∂2θw◦η = ηx(x, T∗)
−2

[
∂2x(w◦η)− ηxx(x, T∗)∂θw◦η(x, T∗)

]
.

Differentiating (11.3) twice and using our above expansions for (x− x∗)
2 and (x− x∗)

3 gives us

ηxx(x, T∗) = 6a3(x− x∗) + 12a4(x∗)(x− x∗)
2 + [20a5 + 10∂xa5(x− x∗) + ∂2xa5(x− x∗)

2](x− x∗)
3

= 6a3(x− x∗) + 12a4(x∗)(x− x∗)
2 +O(ε−6|x− x∗|3)

= 6a
2/3
3 (θ − ξ∗)

1/3 + 10a
−2/3
3 a4(x∗)(θ − ξ∗)

2/3 +O(ε−3|θ − ξ∗|). (11.10)

Using the fact that ∂2x(w◦η) = 2Bw
2 + 6Bw

3 (x − x∗) + O(εµ−5|x − x∗|2) along with our expansion for
∂θw◦η, (11.9), and (11.10) now gives us our expansion for ∂2θw(·, T∗) as stated in Theorem 2.1.

Lastly, since

∂3θw◦η = η−3
x

[
∂3x(w◦η)− 3ηxxηx∂

2
θw◦η − ηxxx∂θw◦η

]
,

we can do similar computations to get the expansion for ∂3θw(·, T∗).
To get the expansions for the variables z, k, and a, similar computations can be made, except with the

constants Bz
j , B

k
j , or Ba

j instead of Bw
j . The computations for these variables are nicer becauseBz

1 = Bk
1 =

Ba
1 = Bz

2 = Bk
2 = Ba

2 = 0, but one should use fifth order expansions of z◦η, k◦η and a◦η. So we have

az0 := Bz
0 ,

az3 := a−1
3 Bz

3 ,

az4 := a
−4/3
3 Bz

4 − a
−7/3
3 a4(x∗)B

z
3 ,

and ak0, a
k
3, a

k
4, a

a
0, a

a
3, a

a
4 are defined analogously. When one does the computations, one obtains the expan-

sions for z, k, and a listed in Theorem 2.1.
Unlike the functions w◦η, z ◦ η, k◦η, and a◦η, which are in C4,1(T) at time T∗, the function ϖ◦η has

only been proven to be in C3,1(T) at time T∗, so the Taylor expansion can only go to fourth order. However,
we still have Bϖ

1 = Bϖ
2 = 0 which allows us to get constants in our expansion. □

APPENDIX A.

A.1. Basic identities. The following equations are easy to compute from (2.5):

−3
2∂t(c◦ψ) = (∂θw + 4a)◦ψ(c◦ψ). (A.1a)

−3
2∂t

(
∂θc◦ψ

)
= (c∂2θw)◦ψ + 3

2(∂θc∂θw) +
3
2(∂θc∂θz)◦ψ + 4(∂θac+ a∂θc)◦ψ. (A.1b)

−3
2∂t(k◦ψ) = (c∂θk) ◦ ψ. (A.1c)

−3
2∂t

(
∂θk◦ψ) = (c∂2θk)◦ψ + (∂θk∂θw + ∂θk∂θz)◦ψ. (A.1d)

−3
2∂t(z◦ψ) = (4az − 1

4c
2∂θk)◦ψ. (A.1e)
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−3
2∂t(∂θz◦ψ) = (12∂θw∂θz +

3
2∂θz

2 − 1
2c∂θc∂θk −

1
4c

2∂2θk)◦ψ + 4(∂θaz + a∂θz)◦ψ. (A.1f)

−3
2∂t(a◦ψ) = (∂θac+ 2a2 − c2 − 4cz − 2z2)◦ψ (A.1g)

−3
2∂t(∂θa◦ψ) = (∂2θac+ 2∂θa∂θc+ 2∂θa∂θz + 4a∂θa)◦ψ − ([2c+ 4z]∂θc+ [4c+ 4z]∂θz)◦ψ.

(A.1h)

−3
2∂t(c◦ϕ) = (4ac+ c∂θc+ c∂θz)◦ϕ. (A.1i)

−3
2∂t(∂θc◦ϕ) = (c∂2θc)◦ϕ+ (c∂2θz + 3∂θc

2)◦ϕ+ 3(∂θc∂θz)◦ϕ+ 4(∂θac+ a∂θc)◦ϕ. (A.1j)

−3
2∂t(∂θk◦ϕ) = (∂θk∂θw + ∂θk∂θz)◦ϕ. (A.1k)

−3
2∂t(c ◦ η) = (∂θz + 4a) ◦ η(c◦η). (A.1l)

−3
2∂t(k◦η) = −(c∂θk) ◦ η (A.1m)

−3
2∂t(∂θk◦η) = (∂θw∂θk + ∂θz∂θk − c∂2θk)◦η. (A.1n)

A.2. Quartic Inversion. If K is a field, and K((z)) denotes the field of formal Laurent series 11 in the
variable z. The field of Puiseux series in the variable x is then defined to be the union

⋃
n>0K((x1/n))

which is itself a field. The most important result concerning Puiseux series is the following:

Theorem A.1 (Puiseux-Newton). If K is an algebraically closed field of characteristic 0, then the field⋃
n>0K((x1/n)) of Puiseux series with coefficients in K an algebraically closed field. Furthermore, given

a polynomial P (y) =
∑N

i=0 ai(x)y
i with ai ∈

⋃
n>0K((x1/n)), the coefficients of the roots of P in y can

be constructed using the method of Newton polygons.

Proof of Theorem A.1. See [24, Chapter IV, Section 3] or [2, Section 8.3]. □

Of particular interest to us will be the following special case of the Puiseux-Newton theorem:

Theorem A.2 (Analytic Puiseux-Newton). If C{x} denotes the ring of convergent power series in x, and
f(x, y) ∈ C{x}[y] is a polynomial of degree m > 0, irreducible in C{x}[y], then there exists a convergent
power series y ∈ C{z} such that the roots of f in

⋃
n>0C((x1/n)) are all given by

y(x1/m), y(e2πi/mx1/m), . . . , y(e2πi
m−1
m x1/m).

It follows that in general if f(x, y) ∈ C{x}[y] then for each Puiseux series solution y of f(x, y(x)) = 0

there exists some y ∈ C{z} and m ≤ deg f such that y(x) = y(x1/m).

Proof of Theorem A.2. See [2, Section 8.3]. □

Lemma A.3 (Quartic Inversion). There exists a constant R > 0 and a nonempty open interval I containing
0 such that for all a3 ∈ R×, a4 ∈ R there exists a function y(x) defined for x satisfying |a34x| < R3a43 such
that{

(x, y) ∈ R2 : |a34x| < R3a43, a4y ∈ a3I,−x+ a3y
3 + a4y

4 = 0
}
=

{
(x, y(x)) : |a34x| < R3a43

}
.

Furthermore, y(x) is an analytic function of x1/3 satisfying the bounds∣∣y(x)− a
1/3
3 x1/3 + 1

3a
−5/3
3 a4x

2/3 − 1
3a

−3
3 a24x

∣∣ ≲ a
−13/3
3 a34x

4/3

for all |a34x| < R3a43, with the constant in the inequality independent of a3, a4.

11Formal Laurent series are formal power series which allow for finitely many terms of negative degree, not to be confused with
the Laurent series in complex analysis, which may have infinitely many terms of negative degree but must converge in an annulus.
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Proof of Lemma A.3. The case where a4 = 0 is trivial, so we will prove our result in the case a4 ∈ R×.
Define the recursive sequence c0 := 1,

cn :=
∑

k⃗∈(Z≥0)
4

k1+k2+k3+k4=n−1

ck1ck2ck3ck4 − 1
3

∑
m⃗∈(Z≥0)

3

m1+m2+m3=n
0≤mi≤n−1

cm1cm2cm3 ,

and define the formal power series y ∈ R[[x]],

y(x) =

∞∑
n=0

(−1)n cn3nx
n+1.

It is easy to check that y0(x) := y(x1/3) is a Puiseux series solution to the algebraic equation −x+y30+y40 =
0. It follows from A.2 that y must be convergent with some positive (possibly infinite) radius of convergence
R. Now pick any a3 ∈ R×, a4 ∈ R×. If we define

y(x) := a3
a4
y(a

−4/3
3 a4x

1/3),

then it is easy to check that y solves −x+ a3y
3 + a4y

4 = 0.
Define the interval I to be the range of y, thought of as a function on (−R,R) and define f(x, y) = −x+

a3y
3 + a4y

4. Because ∂xf = −1 everywhere, we know that for each y ∈ R the equation f(x, y) = 0 has
exactly one solution, x. Therefore, if (x, y) is a point such that |x| < a43a

−3
4 R3, y ∈ a3a

−1
4 I , and f(x, y) =

0, then there exists x′ with |x′| < a43a
−3
4 R3 such that y(x′) = y and since f(x′, y) = f(x′, y(x′)) = 0 we

conclude that x = x′ and y = y(x).
The remaining expansion follows from the fact that c1 = 1 and c2 = 3, combined with the fact that the

power series y is convergent. □

Theorem A.4. There exists universal constants C1, C2 such that the following is true: Suppose that I ⊂ R
is an interval, x0 ∈ I , and θ ∈ C3,1(I) is such that L := ∥∂4xθ∥L∞ , a3 ∈ R×, and θ has the Taylor
expansion

θ(x) = θ0 + a3(x− x0)
3 + a4(x)(x− x0)

4

at x0. Then for all x ∈ I such that |θ(x)− θ0| ≤ C1
a43
L3 , we have

(x− x0) = a
−1/3
3 (θ(x)− θ0)

1/3 − 1
3a

−5/3
3 a4(x)(θ(x)− θ0)

2/3 + 1
3a

−3
3 a4(x)

2(θ(x)− θ0) +R(θ − θ0),

where R is a C0, 1
3 continuous function satisfying

|R(θ − θ0)| ≤ C2a
−13/3
3 a4(x)

3(θ(x)− θ0)
4/3.

Proof of Theorem A.4. Assume without loss of generality that a3 > 0. We know that a4 = (x− x0)
−4(θ −

θ0 − a3(x− x0)
3) is C3 away from x0 and that

a4(x) =

´ x
x0
∂4xθ(t)(x−t)3 dt
3!(x−x0)4

for all x ̸= x0. It follows from this formula that

|a4(x)| ≤ L
4! and |∂xa4(x)| ≤ L

3
1

|x−x0|

for all x ̸= x0.
First define the function f : R× (I − x0) → R,

f(x, y) := −x+ a3y
3 + a4(y + x0)y

4.

Using our bounds on |a4| and |∂xa4|, we see that

∂yf(x, y) ≥ y2(3a3 − L
2 |y|),

f(x, a3L ) ≥ 23
24

a43
L3 − |x|,
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f(x,−a3
L ) ≤ |x| − 23

24
a43
L3 .

Therefore, if we define A := {|x| < 23
24

a43
L3 } and B : {|y| < 6a3

L }, then for all x ∈ A the function
f(x, ·) : B → R is strictly increasing and has a zero in the interior of B. It follows from Corollary 1.1
in [14] that there exists a unique continuous function h : A→ B such that

{(x, y) ∈ A×B : f(x, y) = 0} = {(x, h(x)) : x ∈ A}.
Now define the function F : R3 → R,

F (x, y, a) := −x+ a3y
3 + ay4.

It is easy to check that if |a| ≤ L
4! and |x| < 23

24
a43
L3 then

∂yF (x, y, a) ≥ y2(3a3 − L
3! |y|), F (x, a3L , a) > 0, and F (x,−a3

L , a) < 0.

Therefore, if Ã := {(x, a) : |x| < 23
24

a43
L3 , |a| ≤ L

4!} and B̃ := (−18a3L , 18
a3
L ) then for all (x, a) ∈ Ã the

function F (x, ·, a) : B̃ → R is strictly increasing and contains a 0 in the interior of B̃. It follows from
Corollary 1.1 of [14] that there exists a unique H : Ã→ B̃ continuous such that

{(x, y, a) : |x| < 23
24

a43
L3 , |y| < 18a3L , |a| ≤

L
4! , F (x, y, a) = 0} = {(x,H(x, a), a) : |x| < 23

24
a43
L3 , |a| ≤ L

4!}.
Our previous lemma A.3 tells us that there exists a constants R,C2 > 0 independent of a3 or L such that

for all |a| ≤ L
4! , |x| < R3(4!)3

a43
L3 we have

H(x, a) = a
−1/3
3 x1/3 − 1

3a
−5/3
3 ax2/3 + 1

3a
−3
3 a2x+ R̃(x, a),

where |R̃(x, a)| ≤ C2a
−13/3
3 a3x4/3. Now suppose that |x| < 23

24
a43
L3 . Then |h(x)| < 6a3L < 18a3L and

F (x, h(x), a4(h(x) + x0)) = f(x, h(x)) = 0,

so h(x) = H(x, a4(h(x))). It follows that if C1 := min
(
23
24 , (R4!)

3
)

then we have

h(x) = a
−1/3
3 x1/3 − 1

3a
−5/3
3 a4(h(x) + x0)x

2/3 + 1
3a

−3
3 a4(h(x) + x0)x+ R̃(x, a4(h(x) + x0))

=: a
−1/3
3 x1/3 − 1

3a
−5/3
3 a4(h(x) + x0)x

2/3 + 1
3a

−3
3 a4(h(x) + x0)x+R(x)

for all |x| < C1
a43
L3 . Our result now follows. □
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