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ABSTRACT. We provide a detailed analysis of the shock formation process for the non-isentropic 2d Euler
equations in azimuthal symmetry. We prove that from an open set of smooth and generic initial data, solu-
tions of Euler form a first singularity or gradient blow-up or shock. This first singularity is termed a Holder
C3 pre-shock, and our analysis provides the first detailed description of this cusp solution. The novelty of
this work relative to [3] is that we herein consider a much larger class of initial data, allow for a non-constant
initial entropy, allow for a non-trivial sub-dominant Riemann variable, and introduce a host of new identities to
avoid apparent derivative loss due to entropy gradients. The method of proof is also new and robust, exploring
the transversality of the three different characteristic families to transform space derivatives into time deriva-
tives. Our main result provides a fractional series expansion of the Euler solution about the pre-shock, whose
coefficients are computed from the initial data.

1. INTRODUCTION

Investigating shock formation and development is one of the central problems of hyperbolic PDE. Es-
tablishing shock formation (gradient blowup) from smooth initial data, in a constructive manner, is crucial
for analyzing the dynamics of the resulting discontinuous shock waves. A precise description of the solu-
tion at the pre-shock (the spacetime set where smooth solutions first form cusps) is what allows for a full
characterization of singularity propagation, especially in multiple space dimensions (see § 1.2 for details).

This paper establishes shock formation for smooth solutions of the non-isentropic two-dimensional com-
pressible Euler equations in azimuthal symmetry. When compared to [5] this work gives a detailed de-
scription of the solution near the pre-shock as a fractional power series. This paper also goes beyond [3]
by establishing shock formation in the non-isentropic setting, and with minimal constraints imposed on the
initial data (see § 1.2 for details).

Beyond the result itself, we develop a new robust proof strategy for establishing shock formation for a
complex system of hyperbolic PDEs with multiple wave speeds. Instead of appealing to modulated self-
similar analysis (cf. [3,5]), we use new variables which satisfy pointwise and integral identities which
accurately capture the compressible Euler dynamics (see § 1.3 for details).

1.1. The compressible Euler equations. The Euler equations of gas dynamics consist of the three conser-
vation laws for momentum, mass, and energy, given respectively by

O(pu) +div(pu@u+pl) =0, (1.1a)
Op + div(pu) =0, (1.1b)
O E +div((p+ E)u) = 0. (1.1c)

In two space dimensions, the focus of this paper, u : R? x R — R? denotes the velocity vector field,
p:R? x R — R, denotes the strictly positive density function, £ : R?> x R — R denotes the total energy
function, and p : R? x R — R denotes the pressure function which is related to (u, p, E) by the identity
p=(-1E-1p lul?), where 4 > 1 denotes the adiabatic exponent. For the analysis of the shock
formation process, it is convenient to replaced conservation of energy (1.1c) with transport of entropy

oS +u-VS=0. (1.1d)
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Here, S : R? x R — R denotes the specific entropy, and the equation-of-state for pressure is written as
p(p,S) = Lp7es. (1.2)

In preparation for reducing the equations to a more symmetric form, using Riemnann-type variables, we

introduce the adiabatic exponent
— =1
a="3

so that the (rescaled) sound speed reads

o =1\, = Le3 p*. (1.3)

With this notation, the ideal gas equation of state (1.2) becomes

p= %2p02. 1.4)
The Euler equations (1.1a), (1.1b), (1.1d), as a system for (u, o, .S) are then given by
diu+ (u-V)u+aoVo = $£0°VS, (1.5a)
0o+ (u-V)o+aocdivu =0, (1.5b)
XS+ (u-V)S=0. (1.5¢)

We let w = V- - u denote the scalar vorticity, and define the specific vorticity by ¢ = %. A straightforward
computation shows that  is a solution to

¢+ (u- V)¢

The term %%VJ‘U - VS on the right side of (1.6) can also be written as p~>V-p - Vp and is referred to as
baroclinic torque.

The goal of this paper is to give a constructive proof of shock formation for (1.5), from smooth initial
data, via a method powerful enough to capture a high-order series expansion of all fields at the preshock,
information which is in turn necessary to study the shock development problem. More precisely, we prove:

g%v% .VS. (1.6)

Theorem 1.1 (Main result, abbreviated). From smooth, non-isentropic initial data with azimuthal symme-
try lying in an open set', there exist smooth solutions to the 2d Euler equations (1.1) that form a gradient
blowup singularity at a computable time T, and spatial location. More specifically, there exists &, € T such
that when the 2d Euler equations are expressed in polar coordinates as in (2.1), the azimuthal component

of the flow ug and the sound speed o form 05 cusps along the ray 0 = &, at the time of the blowup, and
are given by the fractional series expansions

ug(r, 0, ) = r(bo + b1 (0 — &)"% +ba(0 — &) + 010 - &) ),
o(r,0,T.) = r(co+ b1(0 — &) +ba(0 — £)¥2 + 0710 - &) ),

for 8 in a neighborhood of radius ~ €3,° while the radial component u,. of the flow, the specific entropy S,
1
and the specific vorticity ¢ remain C'©3, with fractional series expansions

ur(r,0,T.) = (a0 +a3(0 — &) +a1(0 — £)"° + O(e7 1210 — &%) ),
S(r,0,T.) = ko +ka(0 — &) + ka(0 — £)° + OO — &),
C(r,0,T.) = vo +v3(0 — &) + O(e7 1|0 — &.Y/3).
Here, the constants ag, a, a4, by, b1, by, co, ko, ks, ks, and vo are O(1) while vs is O(e1).4

Igee § 2.3-2.4 for the details of the pertinent set of initial data.
2We abuse notation here, because the time 7% used here differs from the time 7% referenced in the rest of the paper by a constant
dependent on y > 1. See § 2.1.
3Here e 'isa large parameter quantifying the absolute size of slope of the initial data. See § 2.3 for details.
4See § 2.2 for the details of our use of O(-) and ~.
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1.2. Motivation and prior results. We recall that the classical proofs of finite-time singularity formation
for the compressible Euler equations and related hyperbolic systems are not constructive (see e.g. [16], [18],
[23]). A constructive proof of blowup, and equally importantly, a detailed description of the solution at the
pre-shock, is necessary in order to establish shock development. This is especially true in multiple space
dimensions: while the theory of weak solutions for 1D hyperbolic systems is well-developed (see e.g. [12]),
many of the techniques used in the 1D theory either do not apply in multiple space dimensions’ or are not
precise enough to be useful for the shock development problem, which requires bounds on derivatives of the
solution.

Departing from the weak solutions perspective, Lebaud [17] established shock formation and develop-
ment for the one-dimensional p-system (a variant on 1D isentropic Euler). These results were expanded
upon by Chen and Dong [8] and Kong [13]. Studying shock development in the p-system does not per se
prove anything about physical solutions of Euler, because physical solutions of Euler that have shocks can-
not be isentropic (see § 2.2 of [3] or § 3 of [4] for details). Moreover, non-isentropic solutions of Euler are
generically not irrotational due to a misalignment of pressure and entropy gradients (see (1.6) above, and § 4
of [4] for the 3D case), so physical solutions which have shocks are also generically not irrotational. Study-
ing shock development for piecewise isentropic or even piecewise irrotational solutions of Euler is called
the restricted shock development problem. For the restricted shock development problem, Christodoulou es-
tablished shock formation and development for irrotational flows in his landmark books [9], [10]. Yin [25]
wrote the first paper establishing shock formation and development for non-isentropic Euler, but confined to
spherical symmetry (see also [11]). Luk and Speck [19] proved shock formation for the 2D isentropic Euler
equations in the presence of vorticity, by generalizing Christodoulou’s geometric framework.

A different perspective was taken by Buckmaster, Shkoller, and Vicol [5-7] who used modulated self-
similar variables to construct the first gradient singularity (a point shock) from generic smooth initial data.
In [5] they constructed shocks for 2D isentropic Euler in azimuthal symmetry and characterized the shock
profile as an asymptotically self-similar, stable 1D blowup profile. After that, they proved for the first
time that the 3D isentropic Euler equations generically form a stable point shock, even in the presence of
vorticity [6]. The important generalization to the full non-isentropic setting was achieved in [7], where
it is also shown that irrotational data instantaneously creates vorticity, which remains uniformly bounded
at the point shock. Later, Luk and Speck [20] generalized their 2D result to the full 3D non-isentropic
setting. Going beyond the first point-singularity, Abbrescia and Speck [1] recently tackled the problem
of maximal development for non-irrotational, non-isentropic Euler. Using rough foliations, they obtained
a description of the stable formation of a pre-shock in a subset of spacetime where the normal derivative
of the foliation density has a favorable sign. Using a smooth spacetime geometry, based on the Arbitrary
Lagrangian Eulerian description of fluids, the maximal hyperbolic development of smooth Cauchy data for
Euler has been studied in [22].

Buckmaster, Drivas, Shkoller, and Vicol [3] established for the first time shock developement in the
presence of voriticity, by working in azimuthal symmetry. By improving upon [5], the solution at the pre-
shock is described in [3] by a fractional series, assuming that the flow is initially isentropic (kg = 0 in (2.5¢)
below) and that the subdominant Riemann variable vanishes (zg = 0 in (2.5b) below). They then used this
detailed description of the solution to establish shock development for 2D Euler within the class of azimuthal
solutions. The paper [3] is the first to also confirm the production of both a discontinuous shock wave and
two surfaces of cusp singularities emanating from the pre-shock, as predicted by Landau and Lifschitz [15].

1.3. New ideas. This paper breaks with [5] and [3] by forgoing the use of self-similar variables. Instead,
we use only the fine structure of the Euler system written in the characteristic coordinates that correspond to
the three different wave-speeds present in the system. We show that the sound speed remains bounded from
below up to the time of the first blowup (see Proposition 4.1), which means that the three wave speeds remain
uniformly transverse to one another up to the blowup time. This transversality allows us to to prove useful
integral bounds (see Lemma 3.1 and § 4) and allows us to exchange space derivatives for time derivatives

SFor example, the BV estimates utilized in the classical theory of shocks for 1D hyperbolic systems fails for d > 2. See [21].
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(see § 5), which can be integrated to obtain identities for the higher order derivatives of our variables. This
exchange of space for time derivatives via transversality is the key new idea of this work.

The implementation of this idea is made possible by using the special differentiated Riemann variables
introduced in [3]. These new variables, labeled ¢* and ¢7, evolve along the characteristics of the fastest and
slowest wave speeds respectively, and they do not experience derivative loss (see § 3 of [3] or § 3.2 below).
Whereas [3] utilized ¢ and ¢* for studying shock development, we use ¢ and ¢* to also establish shock
formation in the non-isentropic setting. Using pointwise and integral identities for ¢ and ¢*, we are able
to obtain estimates for our variables and their derivatives up to the blowup time without first establishing
the uniqueness or location of the blowup label; we instead derive the uniqueness and location of the blowup
label as a result of our estimates (see § 10.3).

We note that because we avoid self-similar analysis we are able to place far fewer assumptions on our
initial data than in [3]. When compared to [3], we also obtain a higher order fractional series expansion of
the solution at the time of blowup (see Theorem 2.1).

2. AZIMUTHAL SYMMETRY

2.1. The Euler equations in polar coordinates and azimuthal symmetry. The 2D Euler equations (1.5)
take the following form in polar coordinates for the variables (ug, u,, p, S):

(O + w,0r + Lugdp) uy — fuj + a0dro = 3£0°9,5 , (2.1a)

(8t + u,0p + %u@ag) ug + %urue +aZdyo = %"72895, (2.1b)

((% + w0 + %u@ae) o+ ao (%ur + Oruy + %391“9) =0, (2.1¢)
(8¢ + w0y + 2ugdy) S = 0. (2.1d)

We introduce the new variables®
ug(r,0,t) =rb(0,t), uy(r,0,t) =ra(d,t), o(r,0,t)=rc(0,t), S(r,0,t)=k(0,t). (2.2)
The system (2.1) then takes the form

(0 +bIg)a+a® = b +ac® =0 (2.32)
(0 + b9p) b+ acdye + 2ab = 55Ok (2.3b)
(0r 4+ by) ¢ + acdgb + yac =0 (2.3¢)

(8 +bDy) k= 0. (2.3d)

For simplicity of the presentation, we will set v = 2 from here on; note however that all statements in this
paper apply mutatis mutandis to the case of a general v > 1. The Riemann functions w and z are defined by

w=b+c, z=b-—c, (2.4a)

b=1t(w+2z), c=1(w—=2). (2.4b)

It is convenient to rescale time, letting 0; — %8;, and for notational simplicity, we continue to write ¢ for ¢.
With this temporal rescaling employed, the system (2.3c) can be equivalently written as

dyw + A30pw = —Saw + & (w — 2)* gk, (2.5a)
Oz + Mgz = —Saz + F1(w — 2)?0pk, (2.5b)
Otk + XoOpk =0, (2.5¢)
da+ AoOpa = —3a® + L(w +2)? — F(w—2)°. (2.5d)

Note that our symmetry constraints make S discontinuous at the origin unless S is constant. For this reason, a classical solution
of the 2D Euler equations (1.5) is recovered from the azimuthal variables (a, b, ¢, k) via (2.2) on the punctured plane. Alternatively,
we may restrict the domain of evolution for 2D Euler to an annular domain pushed forward under the flow of u (see [5, § 2.1]).
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where the three wave speeds are given by
Alzéw—i-z < A2:§w+%z < )\3:w+%z. (2.6)
We note that (2.3c) takes the form

Oic + AoOgc + %689)\2 = —%ac. 2.7
Finally, we denote the specific vorticity (1.6) in azimuthal symmetry by
w = 4(w + z — dga)c 2", (2.8)

which satisfies the evolution equation
Oyto + NoOgo = %aw + %ek(%k. 2.9)

2.2. Notation. In most of what follows, there will be an important parameter € > 0, and a < b will be
used to signify that a < Cb for some constant C' independent of € and any variables x, €, or t. However, the
constant can depend on the implicit constants in the assumptions on the initial data in § 2.3 and can depend
on our choice of v > 1 for the pressure law’. We will use the notation a ~ b to express a < b < a. We will
also write

f=0(9)
to express that | f| < g everywhere in the relevant domain. We will express bounds of the type
O(bl) \x! < 62 .
x,t) = N simply as = B(b1; ).

Often below we will have functions f defined on T x [0,7}) and maps ¥ : T x [0,7,) — T, and we will
use the notation
fo¥(z,t) = f(¥(x,1),1).
When such an inverse exists, we will write ¥~! to denote the function such that ¥ "o ¥ (z,t) = ¥o
U—l(x,t) = 2 forall .
While the spatial variable 6 for (2.5) lies in T, and we will often identify T with the interval (—m, 7.

2.3. Assumptions on the Initial Data. Our initial data will be wo, 29, ko, ag € H®(T), where zo, ko, and
ag all satisfy

|07kollLoe S €%, [[0daollre S e,  [[0%20]re S, (2.10)
forj =0,1,2,3,4,5, where « , 3;,7; are fixed constants satisfying the relations

ao, B0, > 0,

"= o 20,

vj > p—gforj=2,3,4,5,

aj > p+1—jforj=23,4,5,

Bj >p—jforj=1,23,4,5.

Here 11 > 0 is a fixed positive constant which is a lower bound on the £°° distance of our vector of parameters
(gy. .., 5,71, -+,75, 01, - -, 35) from the boundary of the open set defined by the constraints 3; > —1,
~v1 > 0, etc. Additionally, we assume that wq satisfies

(i) wo ~ 1,
(i) w)(0) := —1 and |w)(z)| < ¢! forall z # 0,
(i) wh(z) > —1 + Ce27" forall |z| > £3/2, and some constant C' > 0.
(iv) wy'(x) ~ e *forall || < 3/2,
(V) |ORwo(x)| < et® forall |z| < €2,
Vi) [|0ZwollLoe S &7,

TWe have already chosen to fix v = 2 for the entirety of this paper, but our result will hold for arbitrary v > 1, and the value of
~ will effect the constants.
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and that zq satisfies
max zg < minwyg. 2.11)
Note that an immediate consequence of our assumptions is that wy must also satisfy
w((0) =0,

o |wj(z)| < e 2 for |z| < &2,
o |[wf]lre S5,

o loflle S e

o [|[0zwollLe Se 2.

The following additional constraints are not at all necessary for proving our theorem, but they do make
the formulas of the proof below cleaner

CMU:BQ:’)/O:OQ :O, ﬁl SO, and Ozj,ﬁj,’}/j <1 Vj:0,1,2,3,4,5. (212)

Note that the constraints made here on the first five derivatives of (wo, 29, ko, ag) are much less stringent
than those imposed in [3]. In [3], the authors assume that kg is constant, 2y is identically O, and that w[’)
and ag have support with diameter O(c'/2), among other constraints. Here we do away with such unnec-
essary hypotheses. Additionally the result of this paper applies to a wide range of parameters (c;, 5;,7;),
whereas in [3] the authors only work with (ag, a1, a2, a3, i) = (1,0, 0,0), which is only one point in our
admissible range for these parameters.

In what follows, we will parametrize time so that the initial time is always ¢ = —e. The local well-
posedness theory of (1.5) implies that for any (wq, 20, ko, ag) € HO(T) there exists a time T, € (—e¢, +o<]
such that there exists a unique C'! solution (w, 2, k, a) of (2.5) satisfying (w, z, k, a) ‘t:_e = (wo, 20, ko, ao).
Furthermore, (w, z, k, a) is guaranteed to be in C%([—¢, T}); HS(T)) N CY([—¢, T%); H?(T)). Additionally,
it follows from the standard theory of (1.5) that if 7T, < oo then

T
| Nomo®lle + 100201 + 100k(E) =+ [ga(t) = di =+ 213)
—&

The inequalities above can be made into open constraints by making them strict inequalities. While the
two pointwise constraints that require wy, to attain its unique global minimum at z = 0 and w{,(0) = —% are
not open constraints, for any suitably small perturbation of initial data (wy, 2o, ko, ag) which satisfying all
of the above constraints, one can recover the two pointwise constraints by translating in space and rescaling
the solution in time. Since the spacial translation and time rescaling can be made sufficientily small, there
exists an open set of initial data around the functions (wo, 2o, ko, ap) described above for which the results
of Theorem 2.1 below still hold. Thus, the shock formation we describe is stable.

2.4. Statement of the main theorem.

Theorem 2.1 (Main theorem). For ;i > 0, € > 0 sufficiently small, and initial data (w, z, k, a)‘ e =
(wo, 20, ko, ag) in the open set described in § 2.3, there exists a blowup time T, with |T,| < e'**, a unique

blowup location &, € T, and unique C* solutions (w, z, k, a) to (2.5) on T x [—¢, T}) such that |x..| < e2tH,
w(-, T,) € COS(T),  2(-T), k(- T.),a(-, T.), w(-, T.) € CY5(T),
where w is the specific vorticity (see (2.8)). Furthermore, there exists a unique blowup label x, € (—7, ]

such that
lim n(x.,t) = &

t—Ty

where 1) is the 3-characteristic defined in § 3.1. In a neighborhood 0 € n([—&2, %], T.) of radius ~ &> the
Sfunctions w(-,Ty), z(+, Tx), k(-, Ty), and a(-, T\) have the following fractional series expansions:
There exists constants ag ,ay’, ay with

S P I IS A ISR
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such that
(0,T.) = ay +a(0 — &) +ay (0 — &)** + O(e 710 — &),
Bpw(0, T.) = §a (0 — &) 7P + 3a5(0 — &) P+ O™,
(0,T%)

There exists constants ag, a3, aj with

a1 S1 lail e, il
such that
2(0,T2) = 2§ +a3(0 — &) +2i(0 — &)° + O 210 — &.°/°),
0p2(6,T.) = a3 + 52i(0 — £)'° + O(e" %10 — &.*/?),
052(0.T.) = %i(e §)7HP+ 0210 - 67,
032(0,T.) = —5-21(0 = &) + O 210 — & °).
There exists constants af, ak, ak with
agl S 1, faslSet, [af] S et
such that
k(0,T.) = g +a5(0 — &) +ai(0 — &) + O 710 - &%),
ok(6,T.) = a5 + 3aj (6 — £)'/° + O 1o — &%),
0pk(0, T.) = gak(0 — &) 7P + O™ 1o — &7/,
O3K(0. T.) = — k(6 — €)% + O]9 — &),
There exists constants ag, as,aj with
a8lS1L, RIS RSt
such that
a(0,T.) = af +2§(0 — &) +aj(0 — £)*° + O(e 710 — &),
Opa(0,T.) = a§ + 324(0 — £)1° + O(e 7110 — &%),
0a(9,T.) = Gai(0 — &) 72° + 0710 — &%),
03a(0,T.) = —a§(0 — £) 772 + 0710 — &.[?).

There exists constants ag , a5 with
w w -1
lag| S 1, EER I

such that

(0.T.) = af +aF (0 — &) + O(e 710 — &[*),
a@ww,ﬂ) a7 + 070 — &',

(0.T.) = O(=1|0 — & 7%/%),
Oy (0,T.) = 0|0 — &[/3).

Moreover, the C® regularity away from the pre-shock is characterized by

max [0 w(n(z, 1), )| + 10 2(n(er, 1), )] + |05 En(a, 1), )| + O a(a, 1), )

7

= _’31 70 —&)” 5/3 %aéu(ﬁ — &) 4/3 + 0(5_1|0 - £*|_1)7
Opw (0, T.) = Wat (0 — €)% + Bay (0 — &) + O(e 710 — & 7).

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)



SBETT[L (T — 1) + cle + ez — 2.)?] He719). (2.19)

Theorem 1.1 clearly follows from Theorem 2.1 as an immediate corollary.

2.5. Outline of the proof of Theorem 2.1. In this paper, we will show that the classical solution (w, z, k, a)
of (2.5) with the initial data specified in § 2.3 breaks down in finite time, and that this occurs when the flow
7 of the fastest wave speed A3 ceases to be a diffeomorphism. More specifically, the blowup time T} will
be characterized as the first time ¢ when ming 7, (z,t) = 0. We will also establish that there is a unique
Lagrangian label z, for which 7, (z.,T,) = 0, which will imply that 7,, vanishes at (z.,T) as well.
While w, z, k, a, 9pz, Ok, and Jpa will be shown to remain bounded on T x [—¢, T], dpw will be shown
to go to —oo at the point (&, Ty) := (n(x«, Tx), T)) and remain smooth elsewhere. The key ingredient for
implementing the above described strategy is to show that the functions w o1, z o n, k o, and a o 7 remain
as smooth as their initial data, uniformly up to T.. The authors of [3] proved such uniform estimates using
self-similar analysis, but only in a special case.® In this paper, we prove obtain uniform C® estimates for
(w, z,k,a) onon T x [—&,Ty], even in the most general setting, not by relying on self-similar variables,
but by instead using the transversality of various families of characteristics. This allows us to also consider
a much broader class of initial data than previously considered in [3]. Once we have shown that all the
variables stay smooth along the n characteristic, we obtain our functional description of the solution near
(&«, Ty) by inverting the map « — n(x,t) for (x,t) near the point (x.,7%). In light of the constraints
Ne (s, Ts) = Naz (T4, Ti) = 0, this amounts to the inversion of what is to leading order a cubic polynomial,
resulting in fractional series expansions of w, z, k, and a near (£,, T}) in terms of powers of (§ — &,)'/3.
This paper is organized as follows:

(i) In § 4 we bound |7%| and prove that Jyw must become infinite at time 7. We use a simple bootstrap
argument to get estimates for w, z, k, a and their first derivatives up to time € A T}. Using these
estimates, we show that 77,, must have a zero before time ¢ = ¢, and conclude that | T%| < eltr This
implies that € A T, = T and therefore all of our estimates and identities hold up to time 7. The
fact that Jgw must blow up then follows immediately from the fact that gz, dpk, and Jpa remain
bounded up to time 7, (see (2.13) above).

(i) Next we show that w o 1,z o 1,k o n, and a o n remain smooth up to time 7. To do this, we
first establish crucial identities in § 5 which result from the fact that the waves speeds are uniformly
transverse to one another. Then in § 6 - 9 we prove pointwise bounds on z, k, a and their derivatives
in terms of w and its derivatives by analyzing how our new variables evolve along the multiple wave
speeds. This allows us to conclude in § 10 that w, z, k, and a all remain smooth along 7.

(iii) Lastly, we establish that the singularity occurs at a unique point (§,,7%) € T x [—¢,T] and we
invert 7 near this point to obtain fractional series expansions for w, z, k, and a. We do this by
establishing in § 10 that there is a unique point (z.,7y) € T x [—¢,T\] where 7, vanishes and
that 7., (74, Tx) = 0 as well. Since n(z, Ty) = & + Naax (T4, Te) (. — 24)2 + O(|x — 24|*) near
(4, T,), it follows (see § 11) that (x — z,,) ~ (6 — &,)'/3 for small |z — z,| at time T}, and the
Taylor series expansions of the smooth functions won(-, Ty), zon(-, T%), kon(-, Ty), and aon(-, T})
near x, become fractional series expansions of w(+, T%), z(+, T%), k(+, Tx), and a(+, T ) near &,.

3. PRELIMINARIES

3.1. The characteristics. Let ¢ > 0 and let ¥ be the flow of A := (1 — p)w + (3 + ¢)=.

W, = el e 00 3.1)
drc + Ape = —(pdgw + (3 — ¢)0pz + Sa)c.

8The authors of [3] work in the case where z and k are identically zero and many more constraints are placed on wo and ag. See
§ 2.3 above for a discussion.
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If ¢ > 0 everywhere, this tells us that

—é@t(logcolll) = (8910 + (%% —1)0pz + §la)o\lf.
— Jpho¥ = 9 (log ¢ ) (2= 318z — §52a)o V.
= Vs = (coq,) L Rl (3.2)

If ¢ ~ 1 and Oyz, a are bounded, then this lets us conclude that ¥,, ~ 1. We will prove in the next section
that ¢ ~ 1 and that Opz, a are indeed bounded on T x [—¢, T} ), so everything that follows is relevant.

In the case where p = %, we have A = Ay, the first wave speed. Let ¢/ denote the corresponding flow, the
so-called 1- characterlstlc Its first derivative satlsﬁes
Yo = oS o0 (33)
cow
while its second derivative obeys
c/ t 4 Opcorp
%le/lx<§2+ %(332—3596%)01/1) 2 325 CO@Z)
Oyco
v — 422V (3.4)
cop
= ¥2(Q1 — $c ' 9pc) 0. (3.5)

When ¢ = %, we have A = )2 and the corresponding flow is the 2-characteristic, ¢. The first derivative
of ¢ satisfies

2
— [0 % [lace
g = (Co(b) € (3.6)
while its second derivative obeys
¢$$ — ¢ac <2C6 16 8 (aoqﬁ)) o 2¢2 8gco¢
Co cop
PP f (37)
=: ¢2(Q2 — 2¢” 1590)0¢- (3.8)

When ¢ = 0, we have A = A3 and the corresponding flow is the 3-characteristics, . Note that our
analysis for ¢ > 0 breaks down for 7, but also that w is essentially transported along 7.

3.2. ¢" and ¢®. Our system (2.5) can be written as

O+ ADpT = b (3.9)
where
w A3 O —%02 0 —%aw
- |z 10 x =52 0 > —3az
=gl A=l o X o T 0
a 0 O 0 A —%a2+%(w+z)2—%(u}—z)2

Taking 0y of (3.9) and diagonalizing A gives us
Oy + Dy = Q(Z,7)
where D = diag(As, A1, A2, A2), ¥ := (Qpw — %cﬁgk, Opz + %cf)gk, gk, 0ga), and Q : R® — R* is a third
order polynomial. This motivates the introduction of the following variables:
1 1
W= Opw — anek and ¢ = Opz + anek' (3.10)
9



On can check using the identities in § A.1 that

8 1 1 8
O (g onn.) = (—ga + Ecaek)on(qwonnz) + *(cﬁek)on(qzonnx) - f&f(aon)won- (3.11)

8 1 8
O (g7 orhy) = (—za — EC%MO@ZJ(Q'ZOW/@) - (Cﬁek‘)ow(q oPty) — Z0u(aoh)zoth.  (3.12)

3
If we define

L(z) := eskon=5 /oo (3.13)
then our equation for 9;(q" onn, ) gives us the Duhamel formula
t
Neq®on = I [( coko)e Sko + 12/ I~ e (cOpkq® Jondr — g/ I;lwonax(aon) dT:|. (3.14)

It follows immediately from the definitions of A3 and ¢ that

¢ t t
Ne =1+ / Nz0gAzondr =1+ / Neq* on dr + i Oz (kon)(con) dr + % (9 (zom) dr
—E& —€& —€&

(3.15)

Identity (3.16) will be used in § 4.3, and (3.14) and (3.15) will be used in § 3.3, 4.3, 4.4, 10. Similarly,
q* o), satisfies the Duhamel formula

1 - Sa+-Lcogk)o ¢ o
qzoww;tz(z[/)_i_zc()ké)e fis(g +15c0pk) ¢’_112/ e f(3a+ cOpk) ¢¢ (Caek)q ) 0

t
. / e Gati5¢00R)00y, (9a2)oup dr. (3.16)
—€

3.3. Integral bounds. Let ¢ > 0 and let U be the flow of A := (1 — @)w + (3 + ¢)z.
Lemma 3.1. Suppose that T € [—¢,e A T*| and that for all (0,t) € T x [—¢,T] we have
wel, e~ [k[al ST, [0z SEM, Gk S, |Gpal ST

Then, for all p > 0, we have
t

9

|Opwo W (x, )| dr < ;(E i t) (3.17)

with a constant uniform in ¢ > 0, (z,t) € T x [—e,T).
Proof of Lemma 3.1. Fix ¢ > 0 and define
g(@,t) =0~ (U(z,1),1).
We compute that
Org(x,t) = 0 (W (x,t),t) + O (W (x,t), 1) Uy(, t)
—ni(9(@, 1), t) + V(. 1)
Ne(g(x,1),1)
—X30n((g(x,t),t) + AoW(x,t)
N2 (g(x,1),1)

= (TR (o)1)

= —2wC;”<g<x,t>,t>. (3.18)

xT

Note that d;g(x,t) < 0 everywhere. We also know that

t
U(z,t)=o+ / AoV (x,7)dr, and

—€
10



t
\I’(xvt) = 77(9(90,15)775) = g(ﬂ?,t) + )\3077(9(%75)’ T) dr,

—E&
t
so x—g(x,t)= / Ason(g(z,t), 7) — Ao¥(z, ) dT.
—€
Our hypotheses allow us to conclude (see (4.2) below) that
Ii(z)e sF@ = 1 4+ O(c + )
for times ¢ € [—¢,T]. Using our hypotheses, along with this equation and (3.14), we conclude that that for
all (z,t) € T x [—¢,T], we have

sup |n:q"on| < 5_1(1 +0(M)) + (’)(60/\51+71)(5 +t) sup 7.
[757t} [7571:]
Plugging this into (3.15) and using the fact that T < ¢ gives us
sup 17, < 1+ (e +t)e 11+ OE™)) + (’)(551)(8 +t) sup 0,
[7€’t} [757t}

<1+42(140EM)) +O0EPT) sup 7,
[_Evt]

14+2(1+0(")
- < 4.
- [Silig] 1 1—0(em) -

The last inequality is true for € > 0 taken to be small enough, since ; > 0. Plugging this into (3.14) and
letting ¢ be sufficiently small gives us

Nelg”on| <7114 O(e"))
whlie 5% 4 O(eM)

IN

— ¢Yon = (3.19)
Nz
It follows that ! (1)) + O)
wy(g(x,t)) + O(1
Yol (z,t) = —Log(x, )2 :
q © (ZC, ) 2 tg(l', ) 260\:[/(.%,15)
Since 0;g < 0, it follows that
g0 (2, 1)] S —Lyg(a, 1)L,
So .
— t 1 t
[ laroutenjar s T < 2 (S,
—& (23 ) €
Our result follows immediately from this inequality and our hypotheses. g

4. INITIAL ESTIMATES
4.1. Zeroth Order Estimates.

Proposition 4.1. For € small enough the following estimates hold for all t € [—e,e NT]:
w ~ 1, c~ 1, ¢m ~ 17
106kl < kol llallzee < llaollze +O(e),  llzllzee < llz0llze + Ofe) -

Proof of Proposition 4.1. This follows from an easy bootstrap argument. Let ¢t < ¢ A T. If we assume all
of the listed bounds hold up to time ¢ for some constants, then it follows that (3.6) holds up to time ¢. k
satisfies ko = k¢ and
brOpkod = k. 4.1
Additionally, (2.5) gives us Duhamel formulas for won, z0, and ao¢. Using these Duhamel formulas
along with (2.11),(3.6), (4.1), and the fact that ¢ < ¢ it is straightforward to improve our bounds for all
11



times before ¢, provided the constants we assumed in our bootstrap hypothesis are appropriate and ¢ is small

enough. O
Using these estimates, it is easy to show that for € > 0 sufficiently small we get
[Le s —1| < O(e+1)  VaeT,—e<t<eAT. (4.2)
4.2. Jpa bounds. Using (3.6) and (4.1) we have
8 4
Ou(wo) = 3 (aw)og + gekoagkw (4.3)
8 4
= g(aw)o¢ + gekok()qb;l
8 4 kf
= —(aw)op + f—oekOIE(c 0 ¢)?,
3 3¢
where -
T, = e31-:9°9, 4.4)
Therefore,
4 —21.1 ko ¢ 2
wo¢p = wol; + 3% koe™Zy [ Z;(c®o¢)dr. 4.5)
—E
Note that
by = I 2c 20g. (4.6)
This relation will be useful for estimating the higher derivatives of a.
Since
wo = 4y 2(wo + 20 — ap)er, (4.7)

our assumptions on our initial data let us conclude that |zog| < 1, and therefore for all (0,¢) € T x [—¢,T]
we have

|| S 1. 4.8)
Since
Opa =w + z — iczwe_k, 4.9)
it follows that
|Opa| S'1 (4.10)

for all times t € [—¢,e A T,].
Using (4.10), and the bounds on the initial data we conclude that

@] St (4.11)
for all times t € [—¢,e A Ty].
4.3. Oypz bounds.
Proposition 4.2. For all (z,t) € T x [—¢,e A T,] we have
molg®on| <2e7, me <4, |¢FoUl Slxgllie, W~ 1

Proof of 4.2. We will use a bootstrap argument. Let T € [—¢,e A T}) and let our bootstrap assumption be
that

|7°] < Cllzll L~

for all (6,t) € T x [—¢, T] and a constant C'to be determined. Since we are assuming |9pz| < €?! for times
t € [—¢,T], it follows from (3.3) and our estimates from § 4.1 that 1), ~ 1 with constants independent of C'
for times ¢ € [—¢, T'], provided that € is small enough relative to C'.

12



Using our bootstrap assumption, along with the estimates from § 4.1, 4.2, we can conclude (see Lemma
3.1 and its proof) that for all (z,t) € T x [—¢, T, we have

771 S 47
nelqVon| < 2671,
t
[t

—€
Using this last estimate along with the estimates from § 4.1, 4.2, it follows from (3.16) and the fact that
1 ~ 1 that

|7 o9ty — 20| S M
for times ¢ € [—¢, T. It follows that
|a* o] < |19 | oo (rx e 7y (120l 2 + OE™) )
fort € [—¢,T]. Since 41 > 0 > (3, it follows that if we let € become small enough we get
4] < 20|95z (rx e, 120/l o

forallt € [—¢, T]. If C'is chosen large enough and ¢ is chosen small enough, this improves upon our second
bootstrap assumption. g

It follows as an immediate corollary of this proposition that

|0pz| < e, (4.12)
Nz S 1, (4.13)
by ~ 1, (4.14)

for all times t € [—e,e A T,].

4.4. Bounding |7, |. Now our estimates will let us conclude that 7, behaves roughly the same as it would if
w were the solution of Burger’s equation with initial data wq and 7 were the flow of w. Using Proposition 4.1,
(4.2), (4.10), (4.12), and (4.13) in equation (3.14) gives us

Neq¥on = ( — % + (w6 + é))]te_%ko + O(e™M)
for all times t € [—&, e A T,]. Plugging this into (3.15) and using the same bounds produces

t
Ne =14 (—1+(wj+1)) / Le sk dr + O(eh ) (4.15)
—&

fort € [—e,e A T,]. Evaluating (4.15) at = 0 and using (4.2) gives
1:(0,1) =1 — (e + 1)~ + O(e")
ot
=—z+ O(eh).
Since this is true for all t € [—¢, & AT,], it follows that we must have T, < e'*# if € is chosen small enough.
Therefore, T, = ¢ A T}, and everything we have proven for ¢t € [—¢,& A T,] is true for t € [—e, T}].

We can also prove a lower bound on 7. Since w(’J (z) + % > 0 for all z, it follows from (4.15) and (4.2)
that

Ne = —é + O(e")
everywhere. Therefore, |T,| < e'*#, else dyw, Jyz, Ogk and Jpa would all stay bounded up to Ty.

We can also get a lower bound for 7,, away from 0. Indeed, since w((x) + % > Ce? ! for |z| > e3/2,
we have

e > L Ot e +1) + O

= (T —t)[t — Ot~ + Ce? + O(eH)
13



122
2

\Y

C

™

+ O(eM)

NS

€z. (4.16)

Vv

Using Lemma 3.1 and the estimates proven in this section, we can now conclude that the bound (3.17)
holds for all ¢ > 0, (z,t) € T x [—e,Ty]. This fact will be used so frequently in the rest of the paper that
we will not bother to cite it.

5. TRANSVERSALITY
Let ¢ > 0 and let ¥ be the flow of A := (1 — p)w + (% + p)z.
—%\Ifx&g(@gcoklf) = %lllxtagco‘ll — éam(colll)
= %‘I’xtagcollf + \I/x(agw + (%% - )892 + %éa)o\lf(agco\l’)
+ U, (cOiw + (%% —1)cd3z + %%3@@0)0\11.
— —é@t(\lfx(c_lagc)okli) = —%\Iltx(c_laec)olll — \IJI(C_Zagc)o\ll( — %at(colll))
+ (0710\11)( - é\lfwat(agco\lf))
= U, (9w + (%é ~ 1032 + %%&m)o\ll.
Therefore, if b : T x [—¢,Ty) — R is any differentiable function, we have
U, (hdjw)ol = —%@(‘Ifx(c—lagch)olll) — (35— hdsz + 5 ;00ah) oW
— W, (¢ Dpe)ol( — %at(holll)).
This gives us the following equation:
0z ((hOpw)o W) = —é@t (\I/x(cfl(?gch)o\I/)
— U, ((35 — 1)hdfz + § L 0pah)o W
+ W, [(9phpw) oW — (¢ dpc) oW ( — LOy(hoW))]. (5.1
The last term in this expression motivates the following definition:

Definition 5.1 (Transversality). A differentiable function h : T x [—e,T,) — R is transversal (or 1-
transversal) if it is bounded and there exists a constant p > 0 and bounded functions A, B, C such that

Oph = Ac_lagc + B
Oth + A\Ogh = —pAdgw — oC

Here A = (1—p)w+ (% + )z, as in the above discussion. If in addition A, B, C' are themselves transversal
functions, we say that h is 2-transversal. We recursively define h to be n-transversal if A, B, and C are
(n — 1)-transversal.

A few remarks about transversal functions:
o If h satisfies the transversality condition for one ¢y > 0, then it satisfies the transversality condition

for all ¢ > 0. If indeed, if we have
Oph = Ac_lagc + B
Gth + )\oagh == —QO()Aagw — C,OQC

for some ¢y > 0 then for any other ¢ > 0 we have
{ Ogh = Ac'0pc + B

Oth + AOgh = —pAdgw + ((,0 - QO())A(%Z + 2(@0 — QO)CB — oC
14



Since Jyz is bounded, h still satisfies the transversality condition for , albeit with a different
choice of bounded function C'. So the notion of a transversal function is independent of our choice
of o > 0.

e Note that while being transversal does not depend on the choice of ¢ (as the previous bullet illus-
trated), and A and B are independent of ¢, the function C' changes based on ¢.

e If h is a bounded function with bounded derivatives, then h is trivially transversal, with A = 0, B =
Oph and C' = —%(ath + AOgh).

o If functions Ay, ho are n-transversal, then hy + hg is n-transversal. Indeed, we have

89(h1 + h2) = (Al + AQ)C_lagc + B1 + B>
(8t + Aag)(hl + hg) = —(p(A1 + Ag)agw — gO(Cl + Cg)

e If functions h1, ho are n-transversal, then their product is n-transversal. Indeed, we have

ag(hlhg) = (A1h2 + Aghl)cflagc + Bihy + Bohy
(9¢ + Ag)(h1ha) = —p(A1hg + Azh1)dgw — ©(Crhe 4+ Cahy)
e If his n-transversal and h ~ 1 then h~! is also n-transversal. Indeed,
ag(h_l) = —h_QAC_lagc -~ h 2B
O (A~ + X0g(h™1) = —p(—h"2A)0pw — p(—h~2C)
o If I': R — R is smooth and h is n-transversal, then F'oh is n-transversal. Indeed, we have
Op(Foh) = (AF'oh)c10gc + BF'oh
(8t + Aae)(Foh) = —go(AF,Oh)agw - (,OCF/Oh
This rule will be especially useful for F'(z) = e*.
e c is transversal with A = ¢, B = 0, and C = 4ac when ¢ = % It follows inductively that if
a is n-transversal, then c is (n + 1)-transversal. At this point, we already know that a is at least
1-transversal because it is uniformly C', so c is currently proven to be at least 2-transversal. ¢ ~ 1,

so ¢! is also 2-transversal. The fact that both ¢ and ¢~! are transversal was the main ingredient
used in the computation of (5.1).

The following lemma will be used in § 7.3, § 8.3, and § 9.3.

Lemma 5.2 (Identities for transversal functions along 1-characteristics). Ifh : Tx[—e,Ty) — R is transver-
sal with

{ Ooh = Ac™'05c + B
—304(hot) = (Adgw + C)otp
then we have
O (hOpw)orh) = =20y (Va(c ™' Opch)ov)) +1by ([B— 3¢ Clogw) oy + by (5¢ ™ COyz — 40pah)orp. (5.2)
and

O (o (hgw)ov)) = =30, (W2(c~ peh)ots) + 12 ([Qh + B — 1e71C + 3¢~ hp2]dpw) o

+ Y2(2c71COz — 40gah — 3¢ hOpz?) 01 (5.3)

From theses two equations we get the bounds
102 ((hgw) o) + 301 (a(c ™ Bpech) o) | < [[hl e + P [[Cllie + (IBllie + [ Cllz=) Bpwors]. (5.4)
and

|0 (12 (hBgw) o)) + 50, (¥3(c™ Dpch)ovp) | S €21 |[hl| oo + &7 1C] Lo

+ (e Al + [Bllze + |Cllz=)[dpwor].  (5.5)
15



Proof of Lemma 5.2. (5.2) follows immediately from (5.1). To prove (5.3),
0z (Y (hdgw)01h) = e (hDpw) ot + 130y ((hDpw) o))
= 2([Q — Sc ™ 9pclhdpw)orp — 0, (12(c 1 Dgch)orp) + Shupy(c  Dpch)or)
+ 9 ([B — 271 Clogw) o) + Y, (5671 COpz — 40gah) ot
= =30 (Y3 (c ' Opch) o)) + 3 ([Qh+ B — ¢ 'C + 2¢™  hdp2]dpw) o
+Y2(2c7 1 COyz — 40pah — 3¢ hdpz?) 0t
The inequalities follow immediately from the equations and the first order estimates. O

The following lemma will be used in § 7.2, § 8.2, and § 9.2.

Lemma 5.3 (Identities for transversal functions along 2-characteristics). If h : T x [—¢,T,) — Risa
differentiable function satisfying the transversality condition

{ dgh = Ac™'0pc+ B
—30¢(ho¢) = (AGyw + C)o¢
then we have
8x((hagw)o¢>) = —33t(¢x(c_lagch)o¢) + ¢po(BOgw — Cc™Lgc — h@gz — 80yah)od. (5.6)
and
O (92 (hOgw) o) = —30;(¢2 (¢  DpcOpw) o)
+ ¢3(BOgw — Cc ' 0pc + 4c 1 0ychdyz — hdiz — 80gah) o
+ 202 ®(hdpw)o . (5.7)

Proof of Lemma 5.3. (5.6) follows immediately from (5.1). The proof of (5.7) is an easy computation using
(5.1) and (3.7). O

The following lemma will first be used in § 8.3, so there is no circularity in its proof. See § 6.1 for the
definition of £ and § 6.3 for the definition of f.

Lemma 5.4 (Identities for 2-transversal functions along 1-characteristics). If h : T x [—¢,Tx) — R is
2-transversal with

dgh = Ac™'0pc + B
—20¢(hot)) = (Adyw + C)ot)
OpA = Asc10gc + By
—%&(Aow) = (Aa0pw + Cp)ot
9B = Apc '9yc+ Bp
—30,(Boy)) = (Apdyw + Cp)otp
99C = Acc ' 9yc + Be
—304(Corp) = (AcOyw + Cc)ov)
then we have
92 ((hOpw)ovy) = =30, (Y2 (c _1agch + [f 3h+ Ale20pc* + [Q1 + 2B — 3¢ 101 0pe)ot))
+¢2([BQ1 + Bp — 3¢ ' Bc|Ogw) ot
— W[Qlc +Cp — 3¢ 1Cc + 2ac™C + $¢710p2C — 20pah + 40paA] ™ dpc) oy

Y2([3c710p2C — L Acc ™ 0y —{—6}1089]4:] “Lyc) oy



+ (L f — 40pahQ1 — 40}ah — 40paB — Lc€ + LBoc™ 9pz)or) (5.8)

and
02(hotp) = — 30, (2 (Ac2dpc) o)

+ @bi([%Ac_lQl + %BAC_I - %CAC_Q + Aac™? + %Ac_2892]89w) o1)

+¢2([LAc™10pz — 1B+ Ap — $Aac™'0p + L Ac™ ' 0pz + L AOpk]c™ Dpc) ot

+ ¢§(iCAc_28ez — Aac 20yz — 20paAc™ — %AC_28922)O'¢

+2(BQ1 — 2Ac'Q10p2 + Bp — 3Bac ' 0pz — SAcT f + LAE) 0. (5.9)
Proof of Lemma 5.4. Taking 0, of (5.2) gives us

05 ((hdgw)ory) = =307, (u (™' Dpe) o) + Ou ($u([B — ¢~ Cldpw)oy))
+ Oy (Vo (3¢ COpz — 40pah) o).
If we define h := B — %cflC, then the rules for transversal functions tell us that
B; = Bp— 3¢ 'Be

C; =Cp— 3¢ 'Co+2ac™'C.

Applying (5.3) to h and simplifying gives us (5.8).
For the next identity, we see that

P2 (hotp) = 0y (Vu (3 Ac™ Opw)0tp) + 0y (Y (B — LAcT10p2)01p).
Applying (5.3) to the function %Ac‘l and simplifying gives us (5.9). u
The following lemma will be used in § 8 and § 9.

Lemma 5.5 (Classes of transversal functions). Let ¢ > 0 and let U be the flow of A = (1 —)w + (% +p)z.
Then

(i) If h is a transversal function and H is defined by
t
HoV(x,t) ::/ hoW(x,T)dr
—&
then H is transversal.
(ii) Uyo¥ Lisa transversal function.
(iii) If h is a transversal function and K is defined by
t
KoW(z,t) ::/ (hOpw)o W (z, ) dr
—
then K is transversal.
(iv) If h is a 2-transversal function and H is defined by
t
HoW(z,t) == / hoWU(z, ) dr
—&
then H is 2-transversal.
(v) V00U~ is g 2-transversal function.
(vi) If h is a 2-transversal function and K is defined by
t
KoW(a,t)i= [ (houw)ou(a,7) dr
—E&
then K is 2-transversal.
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Proof of Lemma 5.5. In this proof, h satisfies
{ Ogh = Ac™'0pc + B
— 501 (hoW®) = (Agw + C)o ¥
(i) Since
OgH = (q/xl It (Ac'9pc + B)o¥ dr) oW1
— ;0 (HoW) = —LhoU

it follows from (3.17) and the fact that ¥, ~ 1 that H is transversal.
(ii) We know that « is transversal, and it will be proven in § 6.3 that Jyz is transversal. Therefore, part (i)
applies to the function

(5.10)

t 21 1-—
Ho\P:/(Z—))@gz—gwa)o‘P.
—= 39 ®

Since F'(z) = €” is smooth, it follows that
@2 )0pz-5 1 52a)0w g

is transversal. We already know that ¢ and ¢~ 1 are both 2-transversal, so it now follows from (3.2) that
U, oW~ is transversal.
(iii) Using (5.1) tells us that

1
Do K o) = —L(he™ ' 9ge) oW + ;ﬁl;lcalclohg

t

t
— ! / ‘I/m((%% — Dhdiz + %%(%ah)o\ﬂ dr + 1 / U, (Boyw — ¢ L9pcC) oW dr,
—€ —€

—é@t(Ko‘ll) = ——(hOpw)oW. (5.11)

_1

%
It now follows from (6.18) that K is transversal.

(iv) This follows immediately from applying (ii) and (iii) to (5.10).

(v) It will be proven in § 6.2 that Jga is transversal, from which it will follow that a is 2-transversal, and
it will be proven in § 7.3 that 0pz is 2-transversal. Since F'(x) = e” is smooth, it follows from (iv) that

t 21 81—¢p
€f75(2755))89z73 2 a)o‘I/O\Ilfl

is 2-transversal. Since ¢! is 2-transversal it now follows from (3.2) that U, oW —! is 2-transversal.
(vi) We prove in § 6.2, 6.3, 7.1, 7.3 that Jypa, 0pz, £, and f are all transversal, so our result follows from

applying (i), (ii), and (iii) to (5.11).

d
6. SECOND DERIVATIVE ESTIMATES
6.1. 831{: bounds. Differentiating (4.1) and plugging in (3.7) gives us
P2 05ko¢ = ki — drzOpkod
k
— K~ 6uB0pkog + 202 LC000k0
cop
k
= K — k) + 22 20c0000h00 6.1)
cogp
If we define

£ = 0Fk — 2c¢ ' 9ycopk, (6.2)
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then it follows that £ = [¢; 2 (k{ — ®kj)]o¢ ! and from (4.11) we conclude that

€] S el (6.3)
= |05k| e 4 M Opu). (6.4)

With this notation, we can write

02k = (20pk)c 10pc + €
—30,(0pkorp) = (20pk)Ogw + &, (6.5)

so Ok is transversal. The fact that Jyk is transversal will be used through § 7 and § 6.

6.2. 83@ bounds. Using (3.6) and (A.1a) we have

Ti0x(Pod) = 20,T; [ = Z0i(cog) — (4ac+ cOpz)og]

| W

= c3Z; ' [30i(c o) — (8¢ a4 2¢ 1 9yz)o¢]
= c3[30:(Z,  ctog) — 27, (¢ Dpz) 0 ¢). (6.6)
Therefore, differentiating (4.5) gives us
N ) /! ko t
0 (o) = 0, (woTy) — yFo 7 gk gk:ge’%zt/ IV (¢ 0p2)0¢ dr
co cop e
k/ eko t k;/ eko t
+30.(-55-T0) / I (o) dr + 5-25-T, | 0.(Z;)(c?09) dr. (6.7)
CO —e CO —e
It is easy to check that
IZi S e (6.8)

It follows from this bound and (6.7) that
|Dpwod| S Jag| + M2

By differentiating the equation (4.7) and using our assumptions on the initial data, we conclude that |co()| <
¢~ L. Therefore,

0po| S et (6.9)
Differentiating (4.9) in space and using our first derivative estimates along with (6.9) gives us
83@ = 2[0pa — ¢ — 2z]c 1 Dpc + 209z — icQ&;we*k + icQ%kzwe*k

—%&t((%aow) = (2[89a — ¢ — 2z]0pw + 4adpa — ic?’é?gwe_k + ic389kwe_k) o). (6.10)

So (6.9) lets us conclude that Jga is transversal, which will be used in § 7 and § 8. This equation for 83(1
and our estimate (6.9) also lets us conclude that

050 S e+ |Opuwl. 6.11)
It now follows from (6.11) that
10,®] < e+ [wj). (6.12)
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6.3. 03z bounds. Let’s introduce the new variable
f= 832 - %071890892 + %cagk. (6.13)
Using the identities from § A.1 along with (6.2) gives us

O (for) := (O(log cop) + §8i(kotp) — 3dpzoy))(for)
+ (1520pkd3k — Sc19pcdyz?) o) — LE(%cdpw — cpz)or)
— %(agaz + %89(1892’ — %89@0716902)01#. (6.14)
If we define
Jp = eahov=3[L, Bozov (6.15)

then (6.14) gives us the Duhamel formula

t
fop =cyt(zy — %calcgzé + %cokg)e_%kojtco¢ + 112007,/;Jt/ T (cOpk3 k) 0tp dr
—&
t t
- 500@&],5/ TN e 20pcdg2*)orp dr — écoth/ J;lg(%f)gw — Ogz)otp dr

—& —&

— %cowjt /t J;l(ﬁgac_lz + %89(10_169z — %89@0_289%)07,/} dr. (6.16)
—

It now follows from (6.4), (6.3), (6.11) that

|f| S ePriit, 6.17)
It follows immediately from this bound and (6.4) that
1032 < PNt o B9y, (6.18)
This bound tells us that

v <e (6.19)

We can also conclude that Jyz is transversal. Indeed
8922 = [%892 - %cﬁgk] ¢ o+ f — %05
~30,(0pz0v) = ([30pz — 3cOpk] Opw + LcOphdpz — LPE + 40gaz + adyz) orp. (6.20)
The fact that 0y z is transversal will be used in § 7 and § 8.
7. THIRD DERIVATIVE ESTIMATES

7.1. 93k bounds. Using the fact that £ = [¢, 2(k{ — ®k{)]o¢L, we can compute that

00E = (073 (kY — 3Bk + (20% — 9,®)k))]op ™t + 4Ec 1 Dye (7.1)
Define _
E = [0 3 (k) — 3Bkl + (20% — 9,®)k))]op L. (7.2)
We know from (4.11) and (6.12) that
€] S &M ot 4w N2, (7.3)
Since

Op€E = 456_1896 + £
—30,(E0tp) = (4EBpw — 8Bpadgk + Ec)or. (7.4)

it follows that & is transversal and therefore Oyk is 2-transversal.
Taking Oy of (6.2) gives us

Bk = E + 6Ec ' 0pe + 2¢ 2092k + 2¢ 1 D3Ok (1.5)
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It follows that
|8§’k| 5 g3\ Y2— 1Ay =2 + 672A71_1|89w|

+ M wh ot + €7 |Bpw|* 4 €7 |9Fw). (7.6)
7.2. 8g’a bounds. Taking 0, of (6.7) gives us

keO 8(k )_4k ko(b 8@CO¢)

cod (cog)?
t
— g@x(kéekoft)/ T (e 0p2) o dr — %k()ekoft 890 (I;l(cflagz)ogb) dr

—&

O3 (wod) = 03 (w@oTr) — 40, (%

1) +4

t

152 koe® s 84 (ko€ 2
+ 30 ( 2 It)/IT(c o) dr + 509, (55— It)/ 0z (Z;) (cPog) dr

0 —e €

15 (Koe™ ! 2 4 k(’)eko ! 2
+ g@x(ch}) /_IT&B(C og) dr + 302115/ 0x(Z;)0z(c*09) dr

£ 0 —€

387, [ (on) ar

£

It is easy to use (3.7) and (6.11) to get |Z/'|, |02Z; | < 1. Using (6.6) we have
t
02(1;) 0y (P o) = 2( 8x(ao¢)>It8w(020¢)
—€

=c? [8@(( Oz (a0¢)> et ¢> — 8p(acd)T; el ogp + 20, (T, )(Clagz)oqﬁ]

—&

7.7
Using (6.6) and (7.7) we have
t / kOI / 1./ ko
agc(ko€ It)/Laz(c%(z)) dr = —g2ukoe t)+660k02€ 7,
CO —e Co CO
i [36x<kae’fﬂ>+8kae’“° Da(a0 ) dr k} clog
—€&

t

— 28m(k()ekOIt)/ T (¢ 0pz) 0 dr

—€

c k./ k,‘o t
+4-9 It/ Y1 opz)og dr.
Co —e
k! gko t t t
(; 0u(Z,) 0y (o) dr = 8k e ( 8x(ao¢)>clo¢ + 2k)ekoT, / (T ) (¢ 0p2) 0 dr
0 —€ —€ —€

t
— 8c2kheoT, / T-3(9pac™3)o¢ dr.

—E&
Therefore, we have
O (kb ek ;) N 1200143/ eko

e

P(wop) = 02 (woLy) — 8

€o

t ! 1./
+ [83 (kheko) + %k{)eko Or(aod) dr — 8C°k°eko] ¢ Log — dkhero (¢ 20pc) 0
—E

t k’ t
—gﬁax(kgekozt)/ I (c ' 0p2) o dr + ¢ okt - It/ Yt 0pz) o dr
—e —€
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+ o2t zt) /_tIT(cgogZ)) d¢+§az(’f5: 1) a (Z.)(2os) dr
/ ko
#4850 [ BT Po) dr

t
+ C(Q)k:(']ekOIt/I ([ A0z + ¢ 89k]69w)0¢d7'
— cokgekolt/ 40922 + ¢ 30pk0pz) 0 dr

t
+ cgkoe kozt/ I73(2¢726 — 8c73f — 3209gac™)og dr.

—e
Rearranging this and using ko¢ = kg, (4.1), (4.6), and (3.8), we have
Ofw = Ac ' 0pc + B
where
A = 20y — 4 e oyk,
Bo¢ := —(Q2c)0¢
+ [eg T} 02 (woT) — 8¢y °T} 0, (ke Ty) + 12, Och ke I} | ctogp

t / !
{88 (koeF) + Slkger [ 0y(acg) dr — 850’“306“}542;*03@
—&

t
— e 1T, (ke Ty) / I (' 0p2) o drctog + e S ket Ty

—E

+4c _42482(k06 I)/tI (Pog) drctod + Bey*Tio (%6 7,)
3% 2 T 3°0 Y2\ 2

(7.8)

(7.9)

(7.10)

/ Yt oyz)op drcto

(9 ( )(c 0g) drctog

0 —€ 0 —€

+ 3¢, OkpeM Ty 82( (Pog) drctod

t
+ %cg%{,e’fozf [/ I;3([c_469z + c—3a,,k] dpw) o dr

£

t

— / I;S(c*‘l(?gzz + ¢ 30pkdpz)0¢) dr] tog
t

+ COQk‘{)ekOIf/ IT_S(%C 2e % _3f 3289@0_3)og[> d7'04od>.

—E&

Taking two derivatives of (4.7) we get the bound
|| S €72+ |-
It follows that
Bl S e +[wgos™|.
We therefore conclude that
050 S e+ [wgod™ | + e dpuwl.
Differentiating (4.3) and using (4.1) allows us to compute that

—38t((99wo¢) = (Aagw + C)O(;S
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where
C = 4e*c 1 0pkdpz + 20y 2
— 8adyw + 8dpaw + 4e*E + 4eF k2. (7.16)

This, along with (7.14), implies that Jyw is transversal. Therefore (see (6.10)) dga is 2-transversal.
Now taking Jy or (6.10) and using (6.4), (6.18), and (7.14) gives us

Jpa = 2[0pa — c — 22]c ' 0fc + O (e + [wjod ™| + e~ Hdpw| + |Opw]?). (7.17)
Now, one can compute that
02(aod) = ¢2(—[1+2¢712]0pw + [3 + 2¢12]9p2) 0
+ 2 (EPOpkwe™ — L2Gpwe ™ + 9paQ2) 0. (7.18)
It now follows from (4.11), (5.7), (6.4), (6.18), and (7.14) that

¢
2(aog) dr = ¢3([3+6¢ 'z]c 1 dpc)ogp + O™t + ewf]). (7.19)
Therefore,
2///_3 ///+2/3
®,, = 290% COZ%CO (0] _ 43 (116 + 3261 2]~ Bpe) oip + O +eluf)). (7.20)

These equations will be used in § 8.1, § 8.2, § 9.1, § 9.2. ?
7.3. 93z bounds. We know that

t
Y (Ogfor)) = (;wxagkow + 1/13;(0715'90)01/1 -3 wxﬁgzow d7'> fo 4+ JecoO, (Jt_l(clf)mp).
Recall from our Duhamel formula for f that

Jt_l(cilf)ol/f

1o 1. —1 g0 | 1. 30\, —1k
= ¢y (20 — 3¢9 oz + 3ok )e™ 2™
t
—1/71 2 1.-29 .2 1 ) 8 —1 16 —2 2
—|—/Jt ([ﬁﬁgk — 3C 02" — 57€ —20pac” "z + 53¢ 2+ FcC z]agw)owdT
—€&

t
+ / i (35000kE — 1500k 0pz + ¢ 092" + §EDpz) 0t d

—&

t
+ / Jt71(289ac_289,zz — 8¢ 19pzz — %0_289222 — 49pac 1Oz + %cagwe_kz — %cagk:we_kz)oqb.

—E&

(7.21)
Taking 0, of (7.21) and using (5.4) and (7.3) we have
Jycorhdy, (Jtl(c_l f)o¢) = 1y (— 1 0pcOpk® + 2c20gc0pz” + 1£EDpc) ot
+ 2/)1(309ac_28902 — 4 Ppez — 80_2890z2)o¢
+ O(ePsNsN B = INGL =2 B Pt o). (7.22)

Therefore
—1 1 2 3,.—2 2 1
Ogf = ¢ "Ogcf — gagcagk + g¢ OpcOyz” + EE@@C
+ 30pac 20ycz — 4c L Ogez — 8¢ 20pcz?
9For the fifth order estimates, one actually has to write out the full formula for (7.19) and (7.20) and work with it. We will omit

such straightforward but space-consuming details.
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+ O(ePNNB2m 2= INBI=2 . Bl oqp= 1] o At Ll oo ). (7.23)
Taking Oy of (6.20) and using these bounds, we conclude
Opz = [30pz — LeOpk]c95¢
+ O(ePsMnPemim =N =2 g P2M 2N Gap| 4 P w0t + €71 |Gpw?).  (7.24)
Since (6.14) can be rewritten as
—30,(foy)) = ([f — %089k2 + 30718922 + %605 + 30gac™ 1z — 4z — 8¢ 1 2% 0pw) o)
+ ((4a + %cc‘?@k + 5092) f + %ca@ﬁa@z - %6289k5 - %c’lagz?’)ow
+ (—1%6892:5 — (30gac 'z — 4z — 8¢ 12%) Dz + 609adyz) o1
+ (820pz + Agroe F 2 + Ogme " 2) oy

we can also conclude that f is transversal, and therefore 0y z is 2-transversal.

8. FOURTH DERIVATIVE ESTIMATES
8.1. 8;% bounds. Taking 0, of £ o¢ and using (4.1) and (7.20) gives us
8, (Eog) = ¢3%(tko — 6Dk — (40,® — 11B?)kf — (92® — T, DD + 6°)k}) + 6¢,(Ec ™ Dpc)o¢
= ¢;3(0 ko — 6Ok — (40,® — 1102)K] — (20303/‘30023‘*2(06)3 — 70,0 + 60°)k))

+ ¢ ([0pk[16 + 32¢7 2] + 65] ¢ 1Opc)od + O(eM ™ 4+ 7 wg]).
= O4€ = 63" (92ko — 6DKY — (40,® — 110?)ky — (2L 0N UGS _ 75 ) 4 60%)k))] 0"
0

+ [0pk[16 + 32¢7 2] + 65] ¢ 1Ope+ O + et ug)).
Define
E = 9pE — [9pk[16 + 32¢712] + 6| ¢ Dpe. (8.1)
Then (4.11) and (6.12) tell us that
L T L B
Using (7.18) one can compute that
—30,(E0dp) = (6EDgw + 6EDgz) 0 — 16¢; kD, (a0 )
+ 166, °k) (400, (a0¢) — 0 (ace))
= ([0k[16 + 3271 2] + 65’] Opw + 65892) o+ O 1), (8.2)
s0 & is transversal, and therefore dyk is 3-transversal. This will be used in § 9.
Taking Oy of (7.5) gives us
8319 =&+ [16 + 320_12] ¢ Oycopk + 1250_1690
+20E¢20yc* + 8Ec 1 Dpc + 6¢2Dpcda cOpk + 2¢O cOpk. (8.3)

Note that the terms of order |Gyw|> happen to cancel when this computation is done.
It follows from (6.3), (6.18), (7.3), and (7.24) that

|8§k| S YN8 —1AY2=1AY1 =3 + €V3M2—1M1—2|36w|
+ 2 Jwgog ™! + [Bpw]? + |O5w] )

+ e (Jwg'0p ™!+ [whod ™ ||0gw] + [dpw]|0fw] + |9w]). (8.4)
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8.2. 83@ bounds. At this point, we can apply Lemma 5.5 to conclude that the variable ()5 defined in (3.8)
is transversal. In fact, Lemma 5.5 allows us to conclude that (), is 2-transversal, but we will not need to use
that until § 9.

Recall from § 7.2 that

—30(Ogwod) = (Adyw + C)od

where A, B, C are defined by (7.10), (7.11), and (7.16). Since ¢, Ogk, Oya, Dyz, Oy, £ are all transversal, it
is immediate that A and C are transversal. We now also know that f and ()5 are transversal, so Lemma 5.5
lets us conclude that B is transversal. So Jywo is 2-transversal. This fact will be utilized in § 8.3.

It is immediate from (7.10) that

{ 02w = Ac '9pc + B

8g’w = OgAc 1 Opc — Ac20pc? + Acilagc + 0y B.
Since
OpA =[2A — 4c_1ek69k]c_1890 +2B — de ek ggk? — 47 teRE,
we conclude that
Ofw = Ac7105¢ + [A — dcLefOgk] e 209c% + [2B — 4 1P 0pk? — ek Elc 1 0gc + D9 B (8.5)

So to estimate 85’73, all that remains is to estimate Oy B.
We know from (7.19) that

BTy = ¢2([3 + 6¢ 2]c 19pc)ogp + O + e|wf]). (8.6)

We know from (5.6) that

t
az</ I_S([C_4892+C_389k] 89w)od>d7') _ —3¢x([c_4agz+c_339k‘]6_1896)0¢+O(€ﬁ2+1/w2+1/\61)-

e
It is straightforward to compute that
9pQ2 = 2Q2c™ dpc + O(e™2 + |wiod™t|).
Taking 02 of (4.7) produces
|| S e 3 + e Hwf| + |wy|. (8.7)
Therefore, taking 0, of (7.11) and using also (7.3) and (7.23), we conclude that
09B] S &7 + e ugod | + |wg'os ™  + (77 + |wgod ™ |) [dguw]. (8:8)
Therefore,
05| S e +eHuwgos™ | + |wg o™
+ (e72 + Jwgod ™) |0pw| + e Opw|* + e Iw]. (8.9)
Now, taking 83 of (4.9) and using (6.4), (6.9), (7.6),(7.14),(7.24), and (8.9) gives us
95al S 7% + e hwgod™ | + Jwp od ™|
+ (72 + lwgog ) |0ew| + e Ipw|* + e Ow)

+ |Opw|| 03 w| + |D3w|. (8.10)
25



8.3. 05z bounds. Abusing notation, introduce a function .J defined so that
Jow(:v, t) = Jt(l')

Lemma 5.5 implies that J is 2-transversal. Using the new function J, we can rewrite (7.21) as

t t
(Jre oy = cg (=0 — deptehah + %cok({)e—%ko + / (Jh10gw) o) dr + / (Jha)ot) dr

—€& —€

Given everything that has been proven up to this point ~; and ho are both 2-transversal. It follows from
Lemma 5.5 that J~1¢1 f is 2-transversal, and since ¢ and J are both 2-transversal it thus follows that f is
2-transversal. This will be utilized in § 9.

Using Lemma 5.4 on the functions h; and ho, along with estimates from the previous sections, we con-
clude that

S et 4 e Qgwo] + 2 dgwor|? + 2 Bfwoy).

Fon < /t(Jhlaew)oz/) dr + /t(Jhg)olj} dT)

—E& —E

It therefore follows that

0> ((chlf)oip) ‘ < PP 4 3| 9gwonh| + M2 Bpworp|? + M2 DFwonp|.

We conclude that
102f] < M5 + 13| Bgw| + 2| Dgw|? + " 2|0%w).
It now follows that

|04 2] S €475 + &3 |Bgw| + £#2|Fpw|? + 2| DR

+ &7 (|0pw]* + |Opw||0Fw| + [fw]). 8.11)

9. FIFTH ORDER ESTIMATES

9.1. 831{ bounds. We already know (see § 8.1) that Jyk is 3-transversal, and we will not need to show that
Opk is 4-transversal. Opk is 4-transversal, but it doesn’t matter for our purposes. One can easily get the
bound

’aea < VNV INY3 =2/ =3/ —4 | 673A72—1/\71—2’w6/0¢—1| + 572A71—1|w6//o¢—1‘
+eM (lwgop™ " ? + [pwooe ™)

+ (574A73—1/\72—2/\”/1—3 + 672M1—1|w6/o¢—1| +em |w8/0¢_1|)|36w|

It now follows from taking Jy of (8.3) that

05k = 2¢O copk + (’)(575/\74*1/\’73*%/\"/2*4/\’Y1*% + E’Y4/\’YS*1/\'YZ*2A71*4|80M|
NS (G + [Gfw)
+ ML (18gw]? + [9pw][9Fw] + |05w])

+ M (|0pw| 05wl + |05w]* + [9pw]|O5wl) ). 9.1
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9.2. 8;;’(1 bounds. Since ¢, Ogk, Oya, Oyz, Dy, and £ are all 2-transversal, it follows immediately that A and
C are 2-transversal. f and (o are also 2-transversal, so it follows from Lemma 5.5 that B is 2-transversal.
Therefore Ogwo is 3-transversal. This will be used in § 9.3.

Taking Oy of (8.5) and using the bounds we already have on A, B, C, 0y A, and 9y B gives us

05| < 193 Bl + e 4|0pw| + e 2(|0gwl?* + |95w]) + e (|9pw]® + [9pw||OFw] + |Fjw]).

83B can be bounded in a manner similar to the way Jy B was bounded. One simply needs to use a lemma
similar to Lemma 5.4 but for the 2-characteristics, which is very straightforward to prove at this point. Then,
since 83@ and 927; can be explicitly computed and bounded '°, one can bound 633 and conclude that

0y < e V2 4 e Ol + e 2 (0wl + [0Fw]) + e (19wl + pw]|0Fw] + |5 w]).
From here, taking 63 of (6.10) gives
dpa = 2[0pa — ¢ — 22]c 1 0fc + O (e + 7 Fgw| + e 75/*(|9pw]* + |93 w])
+e7H(|8gwl” + |Opw| |05 w| + |05 w])
+ |Opw||05w| + |Opw|?|Ofw| + [Ofw]* ). 9.2)
9.3. 95z bounds. One can use Lemma 5.2, Lemma 5.4, and Lemma 5.5 to derive a lemma for 3-transversal

functions analogous to Lemma 5.4. Bounding 8;;’2 now follows in a manner completely analogous to § 8.3.
One obtains

Bpz = (3092 — Scdpk]c™ 0pc + O (P 132 4 75| 9gw)| + e~ T/2(|0gw]|? + |93 w|)
+ " 2(|0pw ]’ + |Opw]|0Fw] + [ w])
71 (10pwl* + |9pw]| 03w + |Bpw[*|0Fw]| + [0Fw]?) ). (9.3)

10. ESTIMATES ALONG 7
10.1. Second derivative estimates 7. It follows from the first derivative estimates that
|0 1| S e
where I; is the integrating factor in (3.13). It follows from the second derivative estimates that
el S o] < €727
7796‘83@077‘ S et
el 0 zom| S PNt
Taking 0, of (3.14) and using these bounds, we get

102 (100" on)| < Jwg|(1+ O(e)) + O~ + O+ 1) (e +- 1) AL
—&,t

Taking 0, of (3.15) and plugging in this estimate gives us

Sup [nez| < (€ + )wg|(1 + O(e)) + O M1 1)) (e + 1) + O(€7) (€ + 1) sup [naal-
[—&,t] [—&,t]

(e +1) [|w6’ (1+0()) + (’)(552/\“/2/\5171”
= su x| <
e e 1—0O(et)
< (e + 1) (Jwg| 4 M), (10.1)

It follows that
a2, t)] < B(e™2(e + t);67>/2(e + 1)). (10.2)

100ne must write out the full equation for (7.19) in order to do this, which is arduous but straightforward.
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Plugging (10.1) into our bound for |0 (n,¢" on)| gives us

10z (n=q" om)| < wg|(1+ O(e)) + O (103)
Using the 7., bound along with our second derivative bounds, we get
102(kon)| < EVZMH + &7 (e + t)wg (10.4)
|02(aon)| < et + (e + t)|wf (10.5)
82 (zom)| < PNt L 2B (e 4 t)|wf) (10.6)
|02 (won)| S e % +& (e + ) wy]. (10.7)
Since
2
021, = <§82(k077) -8 62<aon> d7>1t " ( 0, (kom) — 3 [ ou(aom) df) I
—e

it now follows that

021, < e 4 M (e + 1) |wf

Lastly, since

12q" o1 = Oy (won) — jcondy(kon),

we know that
82 (won) = By(neq”on) + 18, (con)dy (kon) + Leond?(kon),
and therefore (10.1) and (10.4) imply that
|02 (won)| < |wf| 4+ 7L, (10.8)

Since

7732580211}077 = aﬁ(woﬁ) - ﬁmae’won,
it follows that

naldpwon| S fuwg| + 72\ 4 7t el (10.9)
— ni|dfwon| < wg| + P/ (10.10)

10.2. Third derivative estimates along 7. Using the third derivative estimates and (10.9) gives us
ng’@gk}om S 673/\7271/\71 2 E'Yl|wl/’ +571]w 0¢~ 077‘ M- 1|nm|

1 |7]xx‘
Ne -~

7795’832077’ <553A’73A62 INY2—1INB1— 2+651]w//|+8’81|w oh” 1077’_,_551 1|77w|

nzl0gaon| S e + |wi| + |whodton| + e~

n2|0fwon| S e + e w4+ e uwlod Lon| + |wl op o) 4 &2zl

Nax
These estimates will be useful in § 10.4 and § 10.5.
Multiplying the above bounds by 7, gives us

| dgkon| S €272 4 eMu] + M fwgog on
ol dgaon| S €% + wg| + [wgog™ o
0|0 zon| S e8I INA =2 4 O] 4 &Pt |wg oy o
773‘693@07” < e+ 571|w |+~ 1|w Yo 1077\ + ]w’”ogi)*lom.
Using this we compute that
97 (114" on) — w'e —skog,| < eMwfl| + N2 JIABHTHL (1l oL og| + [wlog ™ on)|)
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+ sup ‘nm‘60/\52+’71+1/\’72+’71+1/\ﬁ1+71 +€0Aﬁ1+71 (E—l—t) sup ’nxx:c‘
[—e,t] [—e.t]
< 571’wg‘ + e 2AY3AB2 Y1 —1AY2 = 1AB1 +y1 =2 + JRUAYE: ! (5 + t) sup ”'hm’
[—E,t]

This is true for all z € T, t € [—¢,T%).
Taking 02 of (3.15) and using this bound tells us that

sup Nzl S (e + 1) (Jwh'] + 4 + 7 sup M)
—&,t et

= [Nawa| S (e + 1) (Jwf| +"77)

everywhere. Using this bound, we conclude that

t
_1
nxm—wé”/ e 8k°IT dr

—&

S (e + )% wf| + (e + e

Since w’ ~ e~ for || < &%/2 and ||[w{|| L < e7*, this bound lets us conclude that
Neze ~ (€ + t)5_4 Vx| < 63/2,
and
|77:Em:r| S g3 v (33’,t) e T x [—E,T*].

‘We now conclude that

83%(77@*(]10077)’ S |w///| +E#|w//‘ _’_572/\73/\,82+71 1AY2—1ABL+71—2

We know that for all (x,t) € T x [—¢,T) we have

(02 (kon)| S (722772 4 M fw | + €M fwg 0 g™ o)1 + €72 T g | + €7 Mo
102(aon)| S (€72 + |wg| + lwgog™ onl)ne + &~ |naa] + [1zwal.
|03 (z0m)| S (PN INAZ2 g Byt ] 4+ &Pt fuwg o™ o) + €™ 2N | 4 e gy |
2 (won)| S (7% + e Hug| + e Hwgod ™ on| + [wg ¢ onl)ne + e pa| + € inal.
Therefore, we have the bounds
|02 (kom)| S 6” ’
|02 (aon)| S e
|02 (z0m)| S 6“ !
|03 (won)| S e
Since
83 (112q" on) = O (won) — 397 (con)dy(kon) — 50u(con)d3(kon) — jeondy (ko).
It follows that
|93 (won)| S et (10.11)

Lastly, it is easy to use the bounds on 92 (kon) and 93(aon) to conclude that

|8§’It\ S 6‘“_3.
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10.3. Blowup time, location, and sharp bounds for 7, and n,,.

Lemma 10.1 (Existence and uniqueness of blowup label). There exists a unique label x, € T such that
Nz (74, Ty) = 0. Furthermore, we have |x.| < e*2 and

Proof of Lemma 10.1. Due to (4.16), we know that 7,, is bound below outside of (z,t) € [—£%/2 £3/?] x
[—&,T.]. We know that 7., > 0in [—£3/23/2] x (—¢,T,], so for all t € (—¢,T,] there is at most one
zero of 1y, (-, t) in (—%/2,£3/2].

We know from § 10.1 that for all (x,t) € T x [—¢, Ti] we have

t
|1 (2, 1) —w’o’(x)/ e R () dr| S (e + 1) (M |wf ()] + 5/,

—€
Recall that |wf (z)| < 72 for || < 2. It follows that for |z| < &2 we have

t
‘nmx - w()'/ 6_%%[7— dT‘ S (e+ t)EM_Q.

&
Since w{(0) = 0 and wy’ ~ =% for || < £3/2, it follows that
w (2)] Z e™*|z| and sgn (w () = sgn (x)
for || < £3/2. Therefore, we have
12z Z (e + t)e™ o] — O(e"+2)] Vx| <€

It follows that there exists a constant C' such that for Ce*** < x < 2 we have 7, (z,t) > 0 and for
—e2 < 1 < —Ce®TH we have 1, (z,t) < 0. So for all t € (—¢,T,] there exists a unique zero of 7, (-, t)
in (—&3/2,£%/2).

Therefore, we conclude that there exists a C2 curve z, : (—e,Ty] — R such that

{(x,t) : 2| < %2 npe(a,t) =0,—e <t < T} = {(z(1), 1) : —e <t < T}

Furthermore, we know that |z, (t)| < Ce?T# for all t. From here it is easy to conclude that 7, (x,t) < 0
for —e%/2 < & < 2.(t) and 9ge (2, 1) > 0 for x.(t) < x < £3/2, 50 that x,(t) must be the minimizer of
(-, t) over [—e3/2,£3/2].

Define . := x.(7%). We know that miny 7,.(-,¢) — 0 as t — T} and 7, is bound below for |z| > ¢
80 Nz (z«(t),t) — 0 as t — T. Our result now follows. O

3/2

We can now improve upon our lower bounds for 7,. Let z,(¢) be the curve from the proof of Lemma
10.1. If t > —e and x € (—m, 7], there exists Z(x, t) in between x and z, such that

nxxx(x;xa t)v t) (:C o x*(t))Z

> Dol T 00 0 1)
Since || < e2t, if 2 < |z| < €%/2, then (z — x.(t))? 2 e and 1300 (T, 1) = (¢ + t)e~%, so we have
Nz (2, 1) Z (€ +1).

It follows that for 2 < lz| < 63/2, —% <t < T, we have n,, 2 . We already know (see § 4.4) that

ne > —L 4+ O(e")
forall (z,t) € T x [—¢,T,], so we conclude that

Mz (2, 1) = 1z (24(8), 1) +

Ne(z,t) > e fore? < |z < %2 (10.12)
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Lemma 10.2 (Improved estimates for 7, and 7),,). There exist constants A, c,C such that for all (x,t) €
[—e2,€2] x [~&,T*), we have

\ o

Q%(T* —t) +ele +Ft)eHr —2)? < mulayt) < 5 (Ty —t) + Ce3(x — x4)? (10.13)
—AeTHT, —t) + cle + t)e Ha — ) < w2, t) < Ae (T, —t) + Ce3(z — 2,) if >z, (10.14)
—AeTH (T, —t) + Ce3(x — 2,) < Mga(z,t) < Ae2(Ty — t) + c(e + t)e Mo — z,) ifz < x,

(10.15)

Proof of Lemma 10.2. Fix apoint (z,t) € [—€2,&2] x [—¢, T*). We know that 7, is C* on T x [—¢, T}] and
is C2 on T x [—¢, T%). Therefore, Taylor’s theorem tells us that there exists a point (x1,¢;) on the segment
connecting (x4, T%) to (z,t) such that

N2 (2,1) = ot (@, T) (¢ — T2) + 37nan (21, 1) (2 — 2)°
+ nmxt(xlv tl)(t - T*)(JI - SL‘*) + %nxtt(-rl’ tl)(t - T*)2 (1016)
Similarly, there exists a point (x2, t2) on the segment such that

nmx(xy t) = nxxx(x% t2)(x - x*) + ntxz(x% t2)(t - T*) (10.17)
We know that
Nut = wée_ékoft + O(sﬁl).

We also know that since w( (0) = | < e¥#, and |wf'| < e * we have

1 / 14+Celt2n
L < up(a) < O

~1O(eM) < nutlas, Th) < —1HEEZE 1 O(eM),
We also know that for: =1, 2
Nawa (i i) ~ (€ + ti)e
Ntzz = Oz (12q" o) + %Bz(con)a (kom) + COWaQ(kOU) 8 > (z0m).
Sofori=1,2
Mt (i, 13)] S €72
Also
Nutt = (w6 - %cok:é)@t (Iteféko) + (
+ 0ot ($0pk + 2092) on + 10 (30,
= |Nue(z1,t1)| S 2L

% hq”® —fagaw)on
(Bgkon) + 30,(Dpzon)).

Our result now follows. g

Using Lemma 10.2, we can now conclude that

1

?7 <B([ E( L — 1)+ cle + e Ha —2)?] e, (10.18)
7;& < B(e3:e74). (10.19)

The bound (10.18) will let us deduce (2.19) and (10.19) will be used frequently in § 10.4 and § 10.5.
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10.4. Fourth derivative estimates along . We know that

2
My Ogwon = 0y (won) — 30,05 (won) + (352 — 1,,) O, (won).

Therefore,
nil8fwon| S et + e e < Be~de7d).
It now follows that
0 kon] < B(ew /2wt e =5),
1g|dgaon| < B(e™he™?),
13|85 20m| < B(E“ % et )
yOgwon| < Be™*;e7°).
The usual argument for bounding derivatives of 7, and 7,.q" on now gives
19an < B((e + £)(|05wo| +€*7%); (¢ + 1) (|05wol + £#7°))

and

In the end, we get

04 (kon)| < B3 w4, gr2dru=5),
04 (aon)| < Ble~%e70),

82 (z0m)| < B(eh~5;¢179),

04 (won)| < B(e~5;¢79),

04 (won)| < B(e"Pe7 %)

(10.20)

(10.21)
(10.22)
(10.23)
(10.24)

(10.25)
(10.26)
(10.27)
(10.28)

(10.29)

10.5. Fifth Derivative Estimates. These estimates are different from the previous sections because they

require more algebra and hinge on admittedly unexpected cancellation. First note that
n203con = —0, (con)Te= + 0% (con)
nEORcon = (32 — nua)da(con) L — 302 (con) 22 4 9(con)
N pcdic) o = D (com) 02 (con) — Dy(con) ]
Naa 205 con = (3152 — 1140)8y (con) == — 30%(con) = + 03(con)as
03¢ on = O (Con)”” 23§(con)az(con)nm + 03 (con)® s
13 (pc* 05 c) o = Oy (con)*[~0z(con)ize + 07 (con)i]

2
13 (Dpcdye)on = Op(con)[(375 — awa)Oa(con) — 307 (con)nae + Dy (con)n.]

2
772830077 = (107222 — 15%)893(0077)% - 3;177835(0077) + (15%76 - 47796361)8 (com)

- 677%8%(0077) + nxa,%(con).
Next note that
Ofa = 2[0ga — c + 22]c L Opc + O(e ™),

,i
2

[ ]

8ga = 2[0pa — c+ 2z]c*16§c +0(e 2 +¢ 1]8910] + lagw] ),
[ ]
[ ]

(
dga = 2[0pa — c+ 22)c 1 Ggc + O(e™ + ¢ 5]89111] + e Hopw|? + 7 OFw] + |Ogw]||0Fw)]),

% 4 e 9pw| + e7%2(|9pw]? + |02w])
32
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+e7 (|9pwl® + |9pwl| 05 w] + |Ogw])
+ |pw]|0w] + [Opw|*|O5w| + [F5w]* ).
Combining these identities and our estimates gives us

107]96361%775583@017 = 2[0pac™! — 1 — 2¢7 2] on(10n,0s + 0)0z(con) == + B(e®;e72),
2

10nen205a0n = 2[0pac™ — 1 — 2¢ 2] on(—10n,0 + 30%)8;5(0017)%—? +B(e™ '57%),

(

(107240 + 15%)773(93@07} = 2[8gac —1-—2¢71 2]on(=10nzze — 15%)3 (con)"” +B(e™
(=

n205aon = 2[0pac™t — 1 — 2¢ 2] on(10n,0 — 15%)3 (con)z= 4 B(e™% ;e 7).

Therefore,
87 (aon) = 1305a0m + 107:m305a0n + (107500 + 15"”) YRRy
+ (5031 + 100500 22 )05 aon + O2ndpacn
= 2[0pac™t —1 —2¢~ z]on([lo — 10 — 10 + 10]9gzs + [0 — 154+ 30 — 15]%)8 (con)”m

11

+ Ondgaon + B(e™ 2 ;e —§)
= 5ndpaon + B(e R _%)

The exact same cancellation occurs for the other two variables to give us
13

8§(ko77) = 827789]%77 + 3(57274/\;17%; )
15

d5(zom) = O2ndpzon + B(e“_%; el 2).
Similar computations prove that
D2 (12 (9gkdgz)on) = 82 (kon)dgzon + Dgkond>(zon) + B(E’Yﬁ'“_‘:’/\?"_%; 62“_175).
Now the usual method for bounding the derivatives of 7, and 1,¢" on produces
03] < B((e + t)(|03wo| + =% ); (e + 1) (|03wo| + 4~ 2)). (10.30)

In the end, we get

AR AR AR A

@)
|

Using similar computations to those in this section, one can compute that
M| Ggwon| < B(e™"e™).
This bound, together with similar bounds we proved for 9 zon, 9y kon, and i aon throughout this section
combine with (10.18) to give us (2.19).

11. INVERSION OF 7

In this section, we will confine our attention to labels z € (—, 7] with |z| < 2.
Since won (-, Ty) is C*1,it has the following Taylor expansion about z,:

won = BY 4+ BY(z — x.) + BY(x — x.)? + BY(z — 2.)* + R¥(x)(x — )" (11.1)
Here
By| S LIBY| Sl By S e By S IRy S 7. (112)
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The flow 7(+, T%) also has the Taylor expansion

(@, T.) — & = ag(x — 2.)° + as(@) (x — 2.)*
= a3(x — 2.)° 4 a4(z) (z — 2.)* + a5 () (z — 2,)5, (11.3)
where &, 1= n(zy, Ty), a3 1= %nzm(x*,T*), ag(xy) = 8477(1'*, ¥)s
Sy Ozn(y, T)(z — y)* dy [5 n(y, T)(x — y)* dy
ay(x) == 3@ — )t and as(x) = 4‘(:6_36*)5 (11.4)

Here a3 ~ 73, |as(x)| < e#~4, and |as(z)| < e75. Note that |a§4/3a4] S et
Let § = n(x,T). Lemma A.3 implies that there exists a constant C' such that for all x € [—£2, £?]
that |0 — &,| < Ce* we have

such

(x — )
a3 0 =€) PI1+ (= a3 Paa(0 - €)V%) + 1(— ayPaa(0 - €)1°)* + O — )]
,1/3(9_5*)1/3 1+%(_a§4/3a4(9_§*)1/3) +O(€2p’6_£*|2/3) (115)
= a5 (0 - €)P[1+ 0|0 - &%), (11.6)

A quick bootstrap argument lets us conclude that this formula holds for all z € [—&2, £2]. Furthermore, it

is easy to show that there exists two constants 0 < ¢ < C such that

{0:10 —&| <c3yc{O:|z| <} C{h:|0—¢&| <O}

So we are working is a neighborhood of radius ~ £ around &,.
If we define
ay = By,
at :==a _1/SBw
3 = a3 *"BY — Jag " as() BY,
then we have
EX IS S ET S ay | <1,
and
w(f, T.) = ay +a}' (0 — &)'3 +ay (0 — &) + 0710 - &), (11.7)

Squaring (11.5) and cubing (11.6) gives us
(2= 2.)” = a3 (0 = €07 — a5 (0 - &) + O +10 - &),
(@ —2.)% = az " (6 — &) + O(" )0 — &),

Therefore,
ne(x, Ti) = 3a3(x — )% + [dayg () + Opas(z)(z — 2.)](z — 2,)2
=:3az(z — 2.)* + @z — )
= 3050 — £)%3 + a5 (@4 — 204) (0 — &) + O 1|0 — &, |Y/3). (11.8)
Using this formula, one can compute that
me(a, 1)1 = a5 (0 —6) 7 — §ag™ @ — 200)(0 - €) 70 + O,
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Since a4 () = ag(z.) + O(e 5|0 — £,|'/3) and Gy (x) = dag(x.) + O(e~°|0 — &.|1/3), it follows that
(2, To) ™t = 2ag V(0 — €) 7% — 207 Pay(2) (0 — €)1V + 0(1). (11.9)
Since O (won) = BY’ + 2By (:U —z,) + Oz - x*\ ), it follows that at time T, we have
Bpwon = 1 (won)
_ [3 31/3(0 £.)" 2/3 _ 2 75/ as(z.)(0 — & )_1/3+O(1)]
[BY + 20 31“32 (6 €)Y + 010 - &)
=50 (0—&) P+ Jay (0 - )P+ O,

This is the expansion for dpw(-, T ) in Theorem 2.1.
Now consider

agwon = 173,3(QU,T*)_2 [8%(111017) — nm(:ﬁ,T*)agwon(:r,T*)].
Differentiating (11.3) twice and using our above expansions for (z — z,)? and (z — z,)? gives us
Nee (2, Ty) = 6az(x — x.) 4+ 12a4(z4) (2 — 24)? + [20a5 + 100,05 (x — ) + 02as(x — 2.)?](x — )3
= Gas(x — x,) + 12a4(z,) (x — 2,)% + O(e Oz — z, )
= 6a23(0 — €)'/ + 10a3 7 Pas(z.) (0 — £)%3 + 0730 — &.). (11.10)

Using the fact that 92(won) = 2BY + 6BY (z — z.) + O(e# 5|z — x.|?) along with our expansion for
Opwon, (11.9), and (11.10) now gives us our expansion for ng(-, T,) as stated in Theorem 2.1.
Lastly, since

(9311)077 = 77;3 [35;’(10077) - 37793177908927“077 - nwwxa€wo7ﬁ )

we can do similar computations to get the expansion for 65’11}(-, T,).
To get the expansions for the variables z, k, and a, similar computations can be made, except with the
constants B, B]’? , or B instead of B}. The computations for these variables are nicer because B} = BY =

B§ = B = B = B$ = 0, but one should use fifth order expansions of zon, kon and aon. So we have

aj:=ag '"Bj—ag 7/3‘14(95*)357

and alg, alg, afj, ag,as, ay are defined analogously. When one does the computations, one obtains the expan-
sions for z, k, and a listed in Theorem 2.1.

Unlike the functions won, z o 0, kon, and aon, which are in C**(T) at time T, the function won has
only been proven to be in C3*(T) at time 7, so the Taylor expansion can only go to fourth order. However,
we still have BfY = B5” = 0 which allows us to get constants in our expansion. U

APPENDIX A.

A.1. Basic identities. The following equations are easy to compute from (2.5):

—38,(corp) = (Bpw + 4a)orp(corp). (A.la)
—%(% (8gcow) (cagw 01/1 + 2 ( Opcpw) + %(896892)01/J + 4(0pac + adyc) o). (A.1b)
—38,(kot) = (cOpk) o (A.1c)
Ut
—30,(9pkop) = (co, 2k:)o¢ + (OgkOgw + Dpkdgz) 0. (A.1d)
—30(z00) = (daz — 1026914:)01/) (A.le)
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—30y(Opzotp) = (30pwdpz + 3992* — LcOpcdgk — 12 05k) ot + 4(Dpaz + adyz) o). (A.1f)

—30(aoy)) = (Gpac + 2a* — ¢ — 4ez — 22%) ot (A.lg)
—30,(9paotp) = (Jfac + 20padyc + 20padpz + 4adya)orp — ([2¢ + 4z]0pc + [de + 42]0pz) 01).
(A.1h)
—%&t(coqﬁ) = (4ac + cOgc + cOpz)o . (A.11)
~30,(0pcod) = (czc)od + (cOjz + 30pc?) o + 3(Dpcdyz)o¢ + 4(Dpac + adyc) o . (A.15)
—30,(9gkod) = (Opkdpw + Dpkdyz) 0. (A.1Kk)
—30,(con) = (Dpz + 4a) o n(con). (A.11)
—30y(kon) = —(cOpk) on (A.1m)
—%Bt(agkon) = (OpwOgk + 0pz0gpk — cagk:)on. (A.1n)

A.2. Quartic Inversion. If K is a field, and K ((z)) denotes the field of formal Laurent series ! in the

variable z. The field of Puiseux series in the variable x is then defined to be the union J, -, K (/)
which is itself a field. The most important result concerning Puiseux series is the following:

Theorem A.1 (Puiseux-Newton). If K is an algebraically closed field of characteristic 0, then the field
Un>o K ((zY™)) of Puiseux series with coefficients in K an algebraically closed field. Furthermore, given

a polynomial P(y) = Zfio a;(x)y’ with a; € \J,<o K((xY/™)), the coefficients of the roots of P in'y can
be constructed using the method of Newton polygons.

Proof of Theorem A.1. See [24, Chapter IV, Section 3] or [2, Section 8.3]. ]

Of particular interest to us will be the following special case of the Puiseux-Newton theorem:

Theorem A.2 (Analytic Puiseux-Newton). If C{x} denotes the ring of convergent power series in x, and
f(z,y) € C{z}[y] is a polynomial of degree m > 0, irreducible in C{x}[y|, then there exists a convergent
power series y € C{z} such that the roots of f in |, C((xY™)) are all given by

. .m—1
y(xl/m), y(e2m/mx1/m), e ,y(eQMTxl/m).

It follows that in general if f(x,y) € C{x}[y| then for each Puiseux series solution j of f(x,y(x)) = 0
there exists some y € C{z} and m < deg f such that y(x) = y(z*/™).

Proof of Theorem A.2. See [2, Section 8.3]. (|

Lemma A.3 (Quartic Inversion). There exists a constant R > 0 and a nonempty open interval I containing
0 such that for all as € R*,ay € R there exists a function y(x) defined for x satisfying |aix\ < R3a§1 such
that

{(z,y) € R? : |a3z| < R3a3, agy € asl, —x + azy® + auy’ = 0} = {(z,y(x)) : la3z| < R3a3).

1/3

Furthermore, y(x) is an analytic function of x'/* satisfying the bounds

1/3_1/3 , 1.-5/3 _2/3 1_-3 2 —13/3 3 4/3
‘y(x) —a3'"x 34 303 Cagw /3 303 a4:c| Sag " ayx /

forall |a3x| < R3a§, with the constant in the inequality independent of a3, a4.

" Formal Laurent series are formal power series which allow for finitely many terms of negative degree, not to be confused with
the Laurent series in complex analysis, which may have infinitely many terms of negative degree but must converge in an annulus.
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Proof of Lemma A.3. The case where a4 = 0 is trivial, so we will prove our result in the case a4 € R*.
Define the recursive sequence cg := 1,

._ 1
Cp = E Cky ChyChsChy — 3 g Crmy CmsCrmiz s

ke(Zso)* me(Z>o)?
k1+ko+ks+ka=n—1 mi+ma+mz=n
1+k2+ksz+ka=n 0<m <no1

and define the formal power series § € R][z]],

plr) = (-1 gt

n=0

It is easy to check that yo(z) := 7(2'/3) is a Puiseux series solution to the algebraic equation —z+y3+ya =
0. It follows from A.2 that y must be convergent with some positive (possibly infinite) radius of convergence
R. Now pick any a3 € R*, a4 € R*. If we define

y(e) = By(ag Pasa’l?),
then it is easy to check that y solves —z + asy® + aqy* = 0.

Define the interval I to be the range of 7, thought of as a function on (— R, R) and define f(z,y) = —z+
asy® + asy®. Because O, f = —1 everywhere, we know that for each y € R the equation f(z,y) = 0 has
exactly one solution, =. Therefore, if (x, y) is a point such that |z| < a%aZSR:g, Y€ agazlf, and f(z,y) =
0, then there exists 2’ with |2'| < aja;®R? such that y(z') = y and since f(2/,y) = f(2',y(2)) = 0 we
conclude that z = 2’ and y = y(x).

The remaining expansion follows from the fact that c; = 1 and ca = 3, combined with the fact that the

power series y is convergent. (|
Theorem A.4. There exists universal constants C, Cy such that the following is true: Suppose that I C R
is an interval, xo € I, and 6 € C3Y(I) is such that L := ||030]|1, az € R*, and 6 has the Taylor
expansion

0(z) = 6o + ag(z — z0)* + aa(z)(x — z0)"*
at xo. Then for all x € I such that |0(x) — 0| < Cy Z—%, we have
(= z0) = az "*(0(x) — 00)"/* = Saz P as(2) (0(x) — 00)** + Loz as(x)*(9(x) — 60) + R(O — bo),
where R is a C%3 continuous function satisfying
[R(0 = 60)| < Caaz *Pas(@)>(B(x) — 00)*.
Proof of Theorem A.4. Assume without loss of generality that a3 > 0. We know that ag = (z — x9) (0 —

o — az(z — x0)3) is C2 away from z( and that

J2 0%0(t)(w—t)3 dt
(I4(l’) == 3(z—x0)%

for all x # xg. It follows from this formula that

las(x)| < % and  |0za4(x)] < % 1

for all z # x.
First define the function f : R x (I — z0) — R,
fly) == —x + asy’ + as(y + zo)y™.
Using our bounds on |a4| and |0a4|, we see that
Oyf(x,y) > y2(3a3 - %’yDa

4
f($7 %) > %% - |l‘|,
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flz,—%) < |a| — B%.

Therefore, if we define 4 = {|z| < 22 Z%} and B : {|y| < %3}, then for all z € A the function
f(x,) : B — R is strictly increasing and has a zero in the interior of B. It follows from Corollary 1.1

in [14] that there exists a unique continuous function » : A — B such that

{(z,y) € AX B: f(z,y) =0} = {(z,h(z)) : z € A}.
Now define the function F' : R? — R,

F(z,y,a) = —x + a3y® + ay™.

It is easy to check that if [a| < £ and |z| < 22 Z% then

OyF(z,y,a) > y*(3az — &ly), F(z,%,a) >0, and F(z,—%,a)<0.
Therefore, if A := {(a: a): |z| < 2 Z%, la| < £} and B := (-1 18%,18%) then for all (z,a) € A the
function F'(z,-,a) : B — Ris strictly increasing and contains a O in the interior of B. 1t follows from

Corollary 1.1 of [14] that there exists a unique H : A — B continuous such that

3a3

{(@,y.0): |2] < B3 |y < 189, || < & F(e,y,0) = 0} = {(2, H(x,a),a) : |z| < B, |a| < &),
Our prev10us lemma A.3 tells us that there exists a constants R, Cy > 0 independent of a3 or L such that
forall a| < &, |z] < R3(41)*7 7% we have

H(x,a) = a§1/3$1/3 - %ag_w?’a:vz/?’ + la_goﬂac + R(z,a),

where |R(z,a)| < 02a;13/3a3x4/3 Now suppose that |z| < 23 2{’; Then |h(z)| < 65 < 182 and

F(z, h(z), as(h(z) + x0)) = f(z, h(x)) =0
so h(z) = H(x,as(h(z))). It follows that if C; := min (23, (R4!)3) then we have

h(z) = ay P2t — Lag®Pag(h(x) + o) + Lazas(h(z) + zo)z + R(x, as(h(z) + a0))
=: a;1/3x1/3 - %a;5/3a4(h(:1:) + zo)x?/3 + %a§3a4(h(x) + z9)r + R(x)
forall |z| < C4 %% Our result now follows. O
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