AN INTERMITTENT ONSAGER THEOREM

MATTHEW NOVACK AND VLAD VICOL

ABSTRACT. For any regularity exponent 8 < 1/2, we construct non-conservative weak solutions to the 3D
incompressible Euler equations in the class C?(H*B nLYa- 20)). By interpolation, such solutions belong to
C?Bg’oo for s approaching 1/3 as 8 approaches 1/2. Hence this result provides a new proof of the flexible
side of the Onsager conjecture, which is independent from that of Isett [36]. Of equal importance is that
the intermittent nature of our solutions matches that of turbulent flows, which are observed to possess
an L%-based regularity index exceeding 1/3. Our proof builds on the authors’ previous joint work with
Buckmaster and Masmoudi [5], in which an intermittent convex integration scheme is developed for the
3D incompressible Euler equations. We employ a scheme with higher-order Reynolds stresses, which are
corrected via a combinatorial placement of intermittent pipe flows of optimal relative intermittency.
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1. INTRODUCTION

We consider the three-dimensional homogeneous incompressible Euler equations
0w +div(iv®v)+Vp=0, (1.1a)
dive =0. (1.1b)

Here v(-,t): T3 — R3 is the velocity and p(-,t): T3 — R is the pressure, and we consider the system (1.1)
with periodic boundary conditions on T3 = [—, 7]>. Without loss of generality, the velocity is taken to
have zero mean, and the pressure is uniquely determined as the zero mean solution of —Ap = divdiv (v ®wv).
Smooth solutions v of the 3D Euler equations conserve their kinetic energy £(t) = 3 [rs [v(z, t)|*dx.

In this paper, we consider weak solutions v € CPL? to (1.1). Since the Euler system is in divergence form
and we consider velocity fields of finite kinetic energy, the definition of weak solutions is the usual one. The
motivation for considering weak solutions is twofold. First, the Euler equations are expected to dynamically
produce singularities, even from smooth initial conditions. Second, matching the mathematical theory
with the physical properties of turbulent fluids necessitates the consideration of solutions with singularities.
Indeed, the Kolmogorov/Onsager theories of turbulence postulate that solutions to the 3D incompressible
Navier-Stokes equations, which represent a fully developed turbulent flow, exhibit anomalous dissipation of
kinetic energy in the infinite Reynolds number limit. This is an experimental fact [30, 29]. Hence, if the
3D Euler equations are to represent the inertial range of turbulence at very large Reynolds numbers, one is
forced to consider non-conservative solutions of (1.1), which thus must be weak solutions, not smooth ones.

The conservation of kinetic energy for weak solutions to (1.1) was considered by Omnsager [41], who
predicted that “turbulent energy dissipation [...] could take place just as readily without the final assistance
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of viscosity [...] because the velocity field does not remain differentiable.” Based on the computation of the
energy flux through expanding Fourier domains, Onsager formulated a remarkable statement connecting the
regularity of a weak solution v to (1.1) and the validity of the energy conservation law. Onsager’s conjecture
asserted that any weak solution v € CYC*® with s > 1/3 must conserve kinetic energy, whereas for any
s < 1/3 there exist dissipative weak solutions v € C?C* to the 3D Euler equations. The rigidity/flexibility
dichotomy expressed by the Onsager conjecture is the mathematical manifestation of an experimental fact
in hydrodynamic turbulence: Kolmogorov’s 4/5-law regarding third order structure functions [30, 29].

Due to the quadratic nature of the nonlinearity in (1.1), the Onsager exponent 1/3 is intimately connected
to an L3-based regularity scale, such as C} B3 ., where we recall that the Besov norm is given by [|v| Bs .=
[v]|r +supp =0 2] *lv(-+2) =v(-)||Lr, s that C*(T?) C Bj (T?). Indeed, the rigidity part of the Onsager
conjecture was established by Constantin-E-Titi [18], who proved that any weak solution v € L?Bg’oo nCYL?
of (1.1) must conserve kinetic energy if s > 1/3; see also the partial result [28] and the subsequent refinements
in [27, 13, 26]. Concerning the flexible part of the Onsager conjecture, after the paradoxical constructions
of Scheffer [42] and Shnirelman [43], a systematic approach towards the resolution of the conjecture was
proposed in the groundbreaking works [21, 23] of De Lellis and Székelyhidi Jr., who introduced L*°-convex
integration and C%-Nash iteration schemes to fluid dynamics. After a series of important partial results [3, 19],
a resolution of the flexible part of the Onsager conjecture was obtained by Isett [36] in the setting of weak
solutions with compact support in time. This was further refined by Buckmaster, De Lellis, Székelyhidi Jr.,
and the last author in [4], by constructing dissipative weak solutions v € CYC*® to the 3D Euler equations, for
any s < 1/3. For a detailed account of the Onsager theory of ideal turbulence, and of the mathematical results
which turned the Onsager conjecture into the Onsager theorem, we refer the reader to [29, 44, 22, 24, 6, §].

We note that the proofs of rigidity in [18, 27, 13, 26] identify the L3-based spaces B;/;: and B;{io, as the
borderline regularity spaces for ensuring that weak solutions conserve energy/have vanishing enérgy flux.
These spaces are known to be sharp, for instance in the case of a Burgers shock, which dissipates energy
and lies in B;/ io See also the incompressible 3D vector fields constructed in [28, 13, 14, 15, 9], which have a
nonzero flux at critical regularity. Moreover, the L3-based regularity scale matches the prediction made for
third order structure functions in the Kolmogorov theory of turbulence.

In contrast, the proofs of flexibility in [36, 4, 35] are in a certain sense “too strong,” since they construct
weak solutions in the L*°-based space C'/*~ (which implies the same result in B;/ ). However, from a
physics perspective there is something unnatural about the homogeneous in space solutions from [36, 4, 35]:
they do not match the observed inertial range intermittency of turbulent flows at large Reynolds number,
neither for low order structure functions, nor for high order structure functions. To be more precise, for p < 3,
the p*® order inertial range structure function exponents (p in fully developed turbulence have consistently
been observed to lie above the Kolmogorov predicted value of »/3. See e.g. [30, Figure 8.8], [12, Figures
4&5], [37, Figure 3], [34, Figure 3]. These measurements correspond (see also [6, 5] for details) to an LP-
based regularity exponent of ¢/p > 1/3. Similarly, for p > 3, experiments and simulations show that the
inertial range structure function exponents ¢, saturate (meaning, remain bounded) as p — co. See e.g. [30,
Figure 8.8], [34, Figure 6], and the discussion in [34, Section D]. These measurements correspond to an
LP-based regularity exponent of ¢r/p — 0 as p — oo, suggesting that the fully developed isotropic turbulent
solutions observed in experiments do not retain any positive Holder exponent. The culprit is intermittency.

The main goal of this paper is to give a new proof of the flexible side of Onsager’s conjecture. We
construct weak solutions to the 3D Euler equation in the regularity class C?(H'/*~ N L>~) C C’,?B;{;,
which are non-conservative and exhibit the inertial-range intermittency observed in turbulent flows.

Theorem 1.1 (Main result). Fiz 3 € (0,1/2). For any divergence-free vsart; Vend € L?(T?) which have

zero mean, any T > 0 and any € > 0, there exists a weak solution v € C([0,T]; H?(T3) N L%(T?’)) to the
3D Euler equations (1.1) such that [|v(-,0) — vstart|| 2 (qs) < € and [[v(-,T) = Venal|p2(pay < €.

Note that as § — 1/, the Sobolev regularity index of the weak solutions in Theorem 1.1 converges
to 1/2, while the Lebesgue integrability index converges to oo, explaining the notation CY(H'/>~ N L>7).
By interpolation, it follows that for any s < 1/3, we may choose § sufficiently close to 1/2 to ensure that
v € C?Bg,oo, which is the Onsager regularity threshold (see Remark 2.7).
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Remark 1.2 (8-model). We point out that the Sobolev regularity statement in Theorem 1.1 corresponds
exactly to the predictions of the phenomenological model of turbulence known as the S-model, which was
introduced by Frisch, Sulem, and Nelkin [31]. Specifically, if one assumes that singularities concentrate on a
2-dimensional set, then the S-model predicts that the second order structure function exponent is 1, which
corresponds to H'/? regularity. Simple heuristic computations indicate that the solutions constructed in this
work do indeed concentrate on a two-dimensional set, which is also the prediction of Iyer, Sreenivasan, and
Yeung [34]. For a proof of energy conservation within the assumptions of the S-model, we refer to [25].

Remark 1.3 (Other flavors of flexibility). As in [5], we have chosen to state Theorem 1.1 in a way
that leaves the entire emphasis of the proof on the regularity of the weak solutions. In terms of flexibility,
Theorem 1.1 gives the existence of infinitely many non-conservative weak solutions of 3D Euler in the stated
regularity class, and moreover shows that the set of wild initial data is dense in the space of L? periodic
functions of given mean. Using well-established techniques, see e.g. [3, 36, 4] and [5, Remarks 1.2, 3.6, 3.7],
we may alternatively establish other variants of flexibility for the 3D Euler equations (1.1) in the regularity
class CY(H'*~ N L>®7):

(a) If the functions vstart and venq in Theorem 1.1 are any two C° smooth stationary solutions of the 3D
Euler equations of zero mean, then we may take ¢ = 0. Since the function 0 and any smooth shear
flow are stationary solutions to (1.1), this implies the existence of nonzero weak solutions which have
compact support in time. Achieving this would require that we introduce a temporal cutoff in the convex
integration scheme, which essentially ensures that on temporal regions where a stress is already vanishing
identically, no further velocity increments need to be added; see [5, Equation (3.14)].

(b) One may modify the proof of Theorem 1.1 to show that any C°° function e: [0,T] — (0, o) is the kinetic
energy of a weak solution to the 3D Euler equations in the regularity class C°([0, T7; H'/>~ NL>~). This
implies flexibility within the class of dissipative solutions. Achieving this result would require adding a
few inductive assumptions in the convex integration scheme: we need to measure the distance between
the energy resolved at every step ¢ — ¢ + 1 in the convex integration scheme, and the desired energy
profile, see e.g. [23, 3, 19, 4]. In particular, the energy pumped into the system due to higher order
stresses in every sub-step n — n + 1 needs to be kept track of, and one also needs to keep track of the
amount of energy pumped on the support of each cutoff function, as was done in [7] for stress cutoffs.

1.1. Minimally technical outline of the proof. We now provide a sketch of the argument used to prove
Theorem 1.1, in order to highlight the most important components. We simultaneously aim to elide certain
technical details, while emphasizing the aspects of our argument which are distinct from recent well-known
convex integration arguments (see the comparisons in Subsections 1.2.1 and 1.2.2). Finally, while our proof
relies fundamentally on the technology developed in [5], it requires several new ingredients in order to ensure
that the solution v belongs to C L>~; see Subsection 1.2.3.

As is customary in Nash-type convex integration schemes for the Euler equations (see e.g. [24, 6]), the
solution v of Theorem 1.1 will be constructed as a limit when ¢ — oo of solutions v, : T3 x R — R? to the

Euler-Reynolds system with a traceless symmetric stress Io%q ‘T3 xR — Msg’yﬁm

Ovg + div (vg ® vg) + Vpg = div foiq , (1.2a)
divug = 0. (1.2b)

The pressure p, is uniquely defined by solving Ap, = divdiv (]:i’q — vy ®vy), with fqrs pedx = 0. The functions
v, and ]c%q are assumed to oscillate at frequencies no larger than \, = a(*"), where a = a(f) is sufficiently
large and the superexponential growth rate b = b(3) is slightly larger than 1. Adhering to the convention
that all norms are measured uniformly in time, e.g. LP refers to C°([0, T]; LP(T?)), we posit that

1Rall < 00s1 =220, || Rl e <1 (1.3)

Thus Ic%q — 0 in the L' topology and is nearly summable in both W= and L>~. The quadratic nature of
the nonlinearity then leads us to posit furthermore that velocity increments wq, = vq — v4—1 satisfy

lwgll e <6, llwgll - <1, (1.4)

so that w, — 0 in L? and is nearly summable in both H'”~ and L>~. The main inductive step on ¢ asserts

o

the existence of a velocity increment wq41 and stress Rqy; such that (1.2)—(1.4) hold with ¢ — ¢ + 1.
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In order to construct non-conservative solutions with regularity above 1/3 on the L?-based Sobolev scale,
the results of [18] dictate that the weak solution must be intermittent — a term which is used here to mean
that the weak solution contains spatial concentrations, not just oscillations, and so it has a different regularity
index in an L2-based scale, versus an L>-based scale. A first attempt to define the velocity increment w1
would then be as a sum of products of the form

a(éqavvq)wqﬂ,m,&: (1.5)

where a(}?q, Vu,) oscillates at spatial frequency A, and W1 ., ¢ is a high-frequency intermittent pipe flow.
More specifically, W, 1 ;.. ¢ is a shear flow supported in a thin tube of diameter )‘;+11 around a line parallel to
a unit vector £, which has been periodized to scale (A;1174) ", see Proposition 3.3. The parameter 0 < r, < 1
corresponds both to the measure of the support of the intermittent pipe flow (which is rg) and the effective
frequency support (which is [Ag4+17¢, Ag+1]). As such, it is clear that r, quantifies the intermittent nature
of the velocity increment wg41. The low-frequency function a(]qu, Vug) localizes the scheme in space and
time by zooming down to the scale )\;1, at which }?q and v, may be treated as spatially homogeneous.
The “convex integration step” via which we construct wg41 then consists of essentially independent local
iterative steps, which are predicated on the local size of R, and Vu,. The timescale of a(R,, Vv,) is inversely
proportional to ||Vvg|| e (suppa)- Chebyshev’s inequality combined with the global inductive bounds on Vv,
and ]o%q then controls the sizes of the space-time sets on which each we initiate local iterative step.

At this stage in the argument, it is not clear how to choose the value of the intermittency parameter r,,.
It turns out that in order to propagate both H'/2~ and L~ bounds, there exists a unique optimal choice of
r4! To see this, we inspect the simplest error term in éq+1, namely the Nash error éqNﬁﬁh, defined by solving
the equation

Wqt1 - Vg = div Rglfih .

Using that |[Wgy1,, ¢ller = rZ/rl and ||a(Ry, V)|l g2 ~ ||Rq||1L/§7 and using the heuristic that the most
costly part of Vv, is Vw,, we find that

||div - (wg+1 - v”q)HLl S ;Jil : 5;21771 ‘ 5;/2>‘<17 Hdiv - (Wg+1 ‘Vvq)HLoo S q_il 'T;1 'T11_—11>‘q'

Asb— 1% and B8 — /27, matching the L' bound for the stress requires r, < )\;i/f)\;/27 while matching the

~

completely constrained by the simplest error term in the scheme. Since we shall always quantify 7, in terms
of powers of the quotient of Aq_jl/\q, we refer to this constraint on r, as the one-half rule for intermittency.
Of course, we must then show that the transport and oscillation errors, defined by solving the equations

L> bound requires 4 2 )\q_;/f)\;/ *: see (8.55) and (8.56) for precise inequalities. Thus our choice of 7, is

div R;T?s = (8,5 + Vq * V)’qurl y div °2§f1 =div (j’%q + Wq41 ® ’LUq+1) y

also respect this one-half rule which is dictated by the Nash error.

Let us first consider the transport error. Recall cf. [24, 6] that C*-based convex integration schemes for
the Euler equations essentially use global Lagrangian coordinate systems, predicated on global L bounds
for Vv,. Instead, as in [5] we are forced to implement local Lagrangian coordinate systems predicated on
the local L*° bounds for Vv, which are available on the support of a(éq, Vuvg). Pre-composing the high-
frequency pipe flow W1 .-, ¢ with the local Lagrangian flow map then gives that the transport error obeys
bounds identical to those of the Nash error. Thus, we may expect the transport error to also respect the
one-half intermittency rule.

Unfortunately, the composition of W, 1 ;.. ¢ with Lagrangian flow maps introduces an intersection problem
in the oscillation error: between neighboring cutoffs ¢ and o', it may be the case that

a(Ry, Vog) Wi, ¢ ®d (Ry, Vo) Wiy, e 0.

The main innovation in Isett’s proof of the Onsager conjecture [36] was a “gluing technique,” which solved
the intersection problem, but which required global L> bounds on Vv,. The localized nature of our scheme,
combined with the inherently nonlocal nature of the Euler equations, appears to preclude the usage of a
gluing technique, in the spirit of [36, 4].
We instead solve the intersection problem directly, using the sparsity of the pipe flows. At an intuitive level,
the empty space in between neighboring pipes provides enough space for us to place new sets of intermittent
4



pipes, which do not intersect the already existing ones. We refer to this as pipe dodging. However, if one
conceptualizes the spatial support of each a(éq, Vug) as being a spheroid of diameter )\q’l, then the one-
half rule for intermittency does not provide enough sparsity to solve this intersection problem. Indeed, [5,
Proposition 4.8] shows that pipe dodging on the support of such an isotropic cutoff requires a three-quarters
intermittency rule. We address this issue by anisotropically shrinking the diameter of the support of each
amplitude function a, in a é&-dependent way. Specifically, if a(éq, Vg, €) is to be multiplied by a pipe flow
parallel to £ as in (1.5), then we extend the support of a(éq, Vg, &) to length )\q_l in the direction parallel to
¢ and (Ag+17¢) " in the direction perpendicular to £. We use the phrase relative intermittency to quantify
the aspect ratio of the support of a(lo%q7 Vg, €) and implement it technically via a set of checkerboard cutoffs.
We refer to Subsection 5.4 for a construction of these anisotropic checkerboard cutoffs, Proposition 3.8 for a
proof that the one-half rule provides sufficient relative intermittency to solve the intersection problem, and
Subsection 7.5 for the implementation of these two ingredients in the context of the oscillation error.

Since the characteristic length scale of ]O%q and Vuy, is )\q_l, one may expect that introducing the artificially
smaller length scale (Ag4174) " < A, will produce unnaturally larger error terms. The first place to look
for such a bad error term would be in the oscillation error terms which are given by

div ! (V <a(]-02q, Vvq,€)2) (Id _]{rf») (Wati,r,.e ®Wq+17rq,5)) . (1.6)

The first key insight is that the differential operator in the above expression is not the full gradient: it is
the directional derivative £ -V, as W1 ., ¢ is parallel to {. Hence, from the perspective of this error term,
the anisotropy of a(lo%q, Vg, €) is essentially free, since in the direction of £ the amplitude function a only
oscillates at frequency A,.

However, the error term in (1.6) presents other difficulties. Since this term inherits its minimum effective
frequency of A\;i17, from the mean-free part of Wy 1, ¢ ® Wyi1, ¢, the leftover error terms in (1.6) live
at frequencies of absolute value in the range [Ag4+17¢, Ag+1]- Simple heuristic estimates indicate that the
lowest frequency portion of these error terms is too large in L! to be absorbed into éq+1, while the highest
frequency portion is too large in L*>° to be absorbed into }O%QH. Rectifying the first issue requires identifying
higher order stresses éq’n living at intermediate frequencies Ag, € [Ag+17¢s Ag+1], which are corrected by
corresponding higher order perturbations

Wa+1,n = a(Rq,m vvq7§)WQ+17rq,n:§ .

The minimum frequency of the increment wqy1 5, which equals Ag4174r, is defined to converge to A\g41 as n
approaches its maximum value of 7,.,. This allows the L' stress estimates to just barely close. Rectifying
the second issue requires a non-trivial estimate (see Lemma 3.5) on the L size of the frequency projected
squared pipe flow ]P)[)\q,n,ilﬁ)\qyn,](Wq+1’rq,n,£ ®@Wyi1,r,.,.¢)- Somewhat amazingly, this estimate respects the

one-half rule in the sense that the L°°~ size of the resulting stress is exactly 1 if one chooses r, = /\(11/ 2/\,;_;/12.

We then correct the higher order stresses IiEq,n according to a generalization of the one-half rule; in other
words, the pipes Wy 1., ¢ used to correct Ry, which lives at frequency Agn € [)\q+17nq,)\q+1], have

minimum frequency 1( 31)\1/ ?.. This is again the minimum amount of intermittency needed to ensure higher
f AdnAgt1

order pipe dodging, i.e., that pipes from overlapping cutoff functions a(]a%qm7 Vg, €) and a’(]-oﬁq_,n/, Vg, &)
do not intersect. Thus, wgy is finally constructed as a sum of terms of the form a(Rgy ., Vg, &) Wyi1r, . ¢,
which collectively obey the inductive bounds required of velocity increments, i.e. (1.4) with 5;?1 replaced by

a suitable 6;&17”, and they also produce a stress ]iZqH obeying (1.3).

In summary, in the iteration scheme described above, the one-half rule presents the Goldilocks amount
of intermittency needed to obtain both H'2~ and L~ bounds on the velocity. At a technical level, it
appears that the choice of parameters in this scheme is essentially fixed, by scaling: the Nash, transport,
and oscillation errors each impose exactly the same intermittency restrictions. Implementing the above
strategy rigorously is made cumbersome by the need to precise localize all parts of the argument on suitable
regions of space-time. This technically involved part of the proof is encoded in the design of cutoff functions,
recursively for the velocities and iteratively for the stresses, which effectively play the role of a joint Eulerian-
and-Lagrangian wavelet decomposition (see Section 5). This localization machinery was previously developed
in our earlier joint work with Buckmaster and Masmoudi [5], and this part of the argument can be used
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essentially out of the box. In this manuscript, we therefore just focus on the novel aspects of the intermittent
convex-integration/Nash iteration scheme.

1.2. Comparison and contrast with existing works.

1.2.1. Holder schemes. The techniques in the present work share a number of generic features with the
construction of non-conservative solutions in Cy, for a0 < 1/3 in [36], and its subsequent optimizations
in [4] and [35]. Foremost among these features is the usage of some variation of Mikado/pipe flows rather
than Beltrami flows, an idea originating in [19] and used additionally in recent works such as [20, 32]. In
contrast with Beltrami flows, Mikado/pipe flows enjoy stability on the full Lipschitz timescale, which appears
necessary in order to reach sharp thresholds in the Nash and transport errors in both the intermittent and
homogeneous settings. In addition, we require the propagation of material derivative estimates for the stress,
as in the schemes in [3] and [40], since in the absence of a gluing step in the iteration, these bounds do not
come for free.

Implementation of these basic concepts, however, looks very different in the intermittent setting than in
the homogeneous setting. The most glaring difference is in the type of derivative estimates which must be
propagated on both the stress Io%q and the gradient of velocity Vv,. Sharp material and spatial derivative
estimates for homogeneous schemes have typically only been required at very low order, perhaps one or two
material derivatives and three spatial derivatives. Furthermore, such estimates can always be made globally
due to the homogeneous character of the stress and velocity. In our setting, sharp material and spatial
derivative estimates have to be made both locally, and to essentially infinite order. As in [5], propagating
these estimates requires a careful construction of stress and velocity cutoffs, and a localized inverse divergence
operator for which derivative estimates on the input lead directly to corresponding estimates on the output.
We expect these tools to be widely applicable in problems which require sharp derivative estimates.

Furthermore, there are significant differences between the present work and [36, 4, 35] in the estimation of
nonlinear error terms. The most obvious difference is in the approaches used to solve the intersection problem.
The gluing technique in [36, 4] relied on a dynamic argument, which used classical stability properties of the
Euler equations to localize the stress ]%q to disjoint regions in time. Conversely, the pipe dodging technique
we use is predicated entirely on an optimal exploitation of the sparsity of intermittent pipe flows. While we
rely on sharp local information about the deformations of various pipes subjected to a background transport
velocity, the fact that the transport velocity field solves the Euler-Reynolds system is irrelevant.

Let us emphasize that our estimates on the error term in (1.6), which includes the nonlinear self-interaction
of intermittent pipe flows, are sharp in both L' and L>. This is in contrast to the estimates on the
corresponding nonlinear error term in the homogeneous setting, which are strong enough to allow for C*/?
regularity, and thus offer no relevant regularity restriction.

Finally, one may draw a connection between our result and the problem of approximating a short em-
bedding of a Riemannian manifold by an isometric embedding, for which there is some evidence that C1'/2
demarcates the sharp threshold between rigidity and flexibility [33, 24]. Our result realizes a version of this
“1/> threshold”, but in the appropriate topology for a different PDE with a quadratic nonlinearity.

1.2.2. Intermittent schemes. The usage of intermittency in Nash-style iterative schemes originated in the
work of Buckmaster and the second author [7]. The fundamental idea is that an L?-normalized function with
significant spatial concentrations has an L' norm which is much smaller than its L? norm. The estimation
of linear error terms in L' then relies crucially on this property. Intermittent building blocks have been used
to great effect in a number of works since; we refer for example to [17, 16, 10, 1, 11, 38], and to the reviews
[6, 8] and the references cited therein. The intermittent building block utilized in this paper was first used
by Modena and Székelyhidi in [39]. The estimation in L' of the Nash and transport errors in our scheme
relies in part on the intermittency of the pipe flows, and in this limited sense, intermittency serves the same
purpose in our context as in other works.

Sparsity factors into our arguments in several other important ways which however distinguish the present
work from other intermittent schemes. We first point to the oscillation error, in which the sparsity of pipe
flows contributes favorably by providing the needed degrees of freedom to solve the intersection problem.
Secondly, and decidedly less favorably, intermittency serves to complicate any local or global L> estimates,
especially for the Lagrangian transport maps. As our previous joint work with Buckmaster and Masmoudi
[5] was the first example of a convex integration scheme which combined intermittency with transport maps,
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other intermittent convex integration schemes have generally not faced this difficulty; the only other exception
to this is joint work of the first author with Beekie for the a-Euler equations [1]. Third, the higher order
stresses are a feature only shared with [5], although it is conceivable that higher-order stresses could sharpen
the regularity estimates obtained in other intermittent Nash-style schemes. Finally, both the sharp L~
and H'/2~ require an almost geometric growth of frequencies, which again is a feature only shared with [5]
in the class of intermittent schemes, to the best of the authors’ knowledge.

1.2.3. The H'*~ scheme in [5]. More specific comparisons and differences may be identified between the
present work and our previous paper joint with Buckmaster, Masmoudi [5]. At a conceptual level, the most
significant differences are the new constraints on the amount of intermittency which may be utilized. As
described earlier, simultaneously reaching the H'/2~ and L~ thresholds in the Nash and transport error
terms requires a specific choice of the intermittency parameter 4. In [5], only a lower bound on intermittency
was required since the final solution also enjoyed H />~ regularity, but Lebesgue integrability only close to
L*. Similarly, enacting pipe dodging in the nonlinear error terms in [5] required only a minimum amount
of intermittency, and the self-interaction term in (1.6) was essentially impervious to the choice of r,. In
the current argument, the use of anistropy in the pipe dodging scheme improves the approach taken in [5],
while simultaneously preserving the size of the error term (1.6). Furthermore, analysis of this error term
utilizes the fact that intermittency may not affect the LP norms of a function itself, but rather the L? norms
of its derivatives. The simplest example of the latter concept is a one-dimensional shock, which is fully
intermittent in the sense that it lies in B,l,{ to for 1 < p < oo, but has LP norms of order 1 for all p.

At the technical level, there are a few noteworthy similarities and differences between [5] and the present
work. First, we are able to reuse the framework of the mollification argument, the appendix full of technical
lemmas on sums and iterates of operators, and the structure of the inverse divergence operator. The gener-
alizations required for each of these tools are simple, and merely require replacing every instance of L' or
L? norm in the previous arguments with an L> norm. Furthermore, all estimates related to flow maps (cf.
Corollary 5.10) and deformations of intermittent pipe flows (cf. Lemma 3.7) have been taken verbatim from
[5]. Next, the L? inductive estimates on velocity increments and the L' inductive estimates on the stress
éq match those from [5]. However, we now propagate sharp L bounds on both velocity increments and
stresses, cf. (2.8b), (2.9b), and (2.10b). Small power losses in frequency in these estimates are encoded using
the parameter C,. Since I‘g" — 1as 8 — 1/2 (see (8.7) and (8.2a)), one may view these losses as a less than
crucial part of the scheme. On a related note, we are luckily able to reuse the construction of the velocity
and stress cutoff functions from [5]. However, while the old estimates deferred to the Sobolev inequality to
achieve lossy uniform bounds (see the bounds for the parameters ip.y in [5, Lemma 6.14] and jmax in [5,
Lemma 6.35]), the current argument appeals to the new, sharp, L> bounds which have been inductively
propagated (see Lemma 5.7 and Lemma 5.14).

The identification of the error terms in Subsection 7.3 is very similar to that in [5], save for two differences.
The first difference is the elimination of the unnecessary parameter p from the scheme, which was used
to minimize the accumulation of small power losses in frequency which arise from the repeated cycles of
constructing higher order stresses and velocity increments. We instead minimize such losses by ensuring
that an error term which arrives at the higher order stress Io%q,n has endured at most = log, n previous cycles
of higher order stresses and increments. This requires a choice of ny.x which is large enough to guarantee
that %ﬂ < 1, cf. (8.2). Secondly, the identification and estimation of the divergence corrector errors
are no lorféer trivial, due to the anistropy of the checkerboard cutoff functions. However, we may again use
that the anistropy of a cutoff function is fundamentally related to the direction of the axis of the associated
pipe to ensure that divergence corrector bounds are satisfactory; see Subsection 7.6 for details.
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2. INDUCTIVE BOUNDS AND THE PROOF OF THE MAIN THEOREM
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2.1. General notations. Throughout the paper, we shall say that the velocity field v solves the Fuler-
Reynolds system with stress R, if (v, R) solve

atv—&—div(U@U)—&—Vp:div]%, dive =0,

for a uniquely defined zero mean pressure p. As already discussed in (1.2), for ¢ > 0 we consider a velocity
field v, which solves the Euler-Reynolds system with stress fo%q.

In order to avoid circumvent the derivative-loss problem [23], we use the space-time mollification operator
Pyt defined in (4.1) below, to smoothen v, and define:

ve, = Pg.ztVq, (2.1)

q

for all ¢ > 0. In particular, cf. (4.1) we have that spatial mollification is performed at scale Xq_l (which is
just slightly smaller than )\q_l), while temporal mollification is done at scale 7,1 (which is much smaller
than 7,_1). Next, for all ¢ > 1, define

Wy i= Vg — Ve, Ug 1= Vg, — Vg, _, - (2.2)
For consistency of notation, define wg = vo and ug = vy,. Note that
g = Py a,twq + (Pgatve, . — Ve, 1) (2.3)

so that we may morally think that u, = wg+ a small error term. We use the following notation for the
material derivative corresponding to the vector field vy, :

Dy g =0+, - V. (2.4)

With this notation, we have that

Dig=Dig-1+uq-V=Dq1+D,. (2.5)
Remark 2.1 (Geometric upper bounds with two bases). For all n > 0 we define

M (n, Nu, A, A) i= Amin{nNe} gmax{n—N..0}
This notation has the following consequence, which is used throughout the paper: if 1 < X\ < A, then
M (a, N, A ) M (b, N, \, A) < M (a+b, N, A, A) .

When either a or b are larger than N, the above inequality creates a loss; for a + b < N,, it is an equality.

Remark 2.2 (All norms are uniform in time). Throughout this section, and the remainder of the
paper, we shall use the notation || f||;, to denote ||fHL§,O(Lp(T3)). That is, all LP norms stand for LP norms
in space, uniformly in time. Similarly, when we wish to emphasize a set dependence of an LP norm, we write
(£l o) for some space-time set 2 C R x T3, to stand for ||1q f||L§C(LP(T3)).

o

2.2. Inductive estimates. The proof is based on propagating estimates for solutions (v,, R,) of the Euler-
Reynolds system (1.2), inductively for ¢ > 0. In order to state these bounds, we first need to fix a number of
parameters in terms of which these inductive estimates are stated. We start by picking a regularity exponent
B € [1/3,1/2), else the theorem is known cf. [36, 4], and a super-exponential rate parameter b € (1,3/2) such
that 280 < 1. In terms of this choice of 8 and b, a number of additional parameters (nmax,---Ngn) are
fixed, whose precise definition is summarized for convenience in items (iii)—(xiii) of Section 8.1. Note that at
this point the parameter a.(3,b) from item (xiv) in Section 8.1 is not yet fixed. With this choice, we then
introduce the fundamental g-dependent frequency and amplitude parameters from Section 8.2. We state
here for convenience the main ¢-dependent parameters defined in (8.15), (8.18), (8.17), (8.19), and (8.22):

Ag = 2[00 legaal 5 3P (2.6a)

dg =N TN (2.6b)
Tt =6, A T (2.6¢)
Ogt1 = Agr1Agt ALY (2.6d)
Ty =07, m AP (2.6¢)
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where the constant cg is defined by (8.5), and er is chosen as in (8.6). Next, we define the n-dependent
frequency, intermittency, and amplitude parameters

N n=0 (2.72)
qn ~ At oy 2+2(nmx+1) ’ ’
)\ )\ 1 <n < npax

Tq+i,n = /\(11 Z)‘;;/frq_.kl ) (27b)
(5q+1I‘_ n=20
—1 44C
Og+1,n = Og-+1, 0)‘1/2/\q+/12Fé+J5 g n=1 . (2.7¢)

R E— T(n)
134C 2(nmax+1) T9+C
Sq1,0AAgn-1Lgit " <@q<(|*1 )Fqilb) 251 S Niax

In the above display, dg+1,, is defined to account for small losses (the quantity in parentheses) raised to a
power Y(n) (which is bounded independently of ¢, cf. (6.6) and (6.8)). Therefore one may adhere to the
heuristic that §441,, is roughly speaking equal to 5q+1)\q)\;111. We refer also to (8.23) and (8.24), where the
precise meaning of /2 in (2.7a)—(2.7b) is given.

Remark 2.3 (Usage of the symbols =, <, and choice of a). The = symbols in (2.6) and (2.7) indicate
that the left side of the = symbol lies between two (universal) constant multiples of the right side, see

g. (8.16). Throughout the paper we make frequent use of the symbol <. Any implicit constants indicated
by < are only allowed to depend on the parameters defined in Section 8.1, items (i)—(xiii). The implicit
constants in < are always independent of the parameters a and ¢, appearing in (2.6b). This allows us at
the end of the proof, cf. item (xiv) in Section 8.1 to choose a.(f,b) to be sufficiently large so that for all
a > a.(B,b) and all ¢ > 0, the parameter I';+1 appearing in (2.6e) is larger than all the implicit constants
in < symbols encountered throughout the paper. That is, upon choosing a. sufficiently large, any inequality
of the type A < B which appears in this manuscript, may be rewritten as A <I';4; B, for any ¢ > 0.

In order to state the inductive assumptions we use four large integers, defined precisely in Section 8.1.
For the moment we simply note that these fixed parameters are independent of ¢ and satisfy the ordering

1< Ncut,t < Nind,t < Nind,v < Ngy, -

The precise definitions and the meaning of the < symbol in are given in (8.9), (8.10), (8.11), and (8.14).

2.2.1. Primary inductive assumption for velocity increments. We make L? and L inductive assumptions
for ug = v, —we,_, at levels ¢ strictly below ¢. For all 0 < ¢’ < g — 1 we assume that

n m
qui,q’—lD Dt’q —

| D™Dy

S 51{2/\4 (na 2Nind,vv )\q’a Xq’) M (ma Nind,h ]-—‘q/’rq/ila ~q_/£1) (283)

. _
V1t | uppo 1y < TFO M (12N, Agrs Mg ) M (1 Ninae T3 701,72y ) - (2.8)

holds for all 0 < n +m < Ngj.
At level g, we assume that the velocity increment w, satisfies corresponding L? and L> bounds

Hd}z,q 1D th leHL2 SP 161/2)‘nM (m Nlndtyl—‘Z
|[D" Dy <TS1O2 A M (m, Nina g I

r;'74) (2.9a)

qg—1

r ') (2.9b)

Tg— 17
t,q— 1wq||L°C(supp1p1q 1) q q 1’

for all 0 < n,m < TNipd,v-

2.2.2. Inductive assumptions for the stress. For the Reynolds stress ]O%q, we make L' and L*> inductive
assumptions

[¥i,q-1D" D}y Ry||,+ < Ty 841 A0 M (1m0, Ning e, TiT 1,

HDnD??q—lé |

L) (2.10a)

Tg-1 Tg—1

Cuyn +2 -1 1=—1
|L°°(buppw1q 1) —F ‘A M(m det, Tq— 17F Tq— 1) (210b)

for all 0 < n,m < 3Njpd,v-



2.2.3. Inductive assumptions for the previous generation velocity cutoff functions. More assumptions are
needed in relation to the previous velocity perturbations and old cutoff functions. First, we assume that the
velocity cutoff functions form a partition of unity for ¢’ < ¢ — 1:

S Wiy =1,  and gy g =0 for |i—i|>2. (2.11)
i>0
Second, we assume that there exists an imax = imax(q’) > 0, which is bounded uniformly in ¢’ as
La(b—1)4 Bb

e (7)) < 1+ C, , 2.12
N (2.12)
such that for all ¢/ < q—1,

Yig =0 forall i>imax(q), and Féﬂ“i’;(q,) < Fqc)‘+19;{25;1/2. (2.13)

Remark 2.4 (Products of non-commuting operators). The fact that space derivatives D (we do not
dinstinguish between 0y, , Oz, , Oxs, but rather denote them all with D) and time derivatives d; do not commute
with the material derivative Dy 4 (see (2.4)), or with the directional derivative D, (see (2.5)), requires that
we inductively propagate mixed derivative estimates for the velocity cutoff functions. An example of such a
mized derivative is Do‘lijI .. DakDgz for some multi-indices a = (a1, ..., ax) and B = (B, ..., Br) where
a, 3 € N&. Throughout the paper, we will accordingly abbreviate these mixed derivative operators as

t,q>

k k
p>Dy, =[] b D}’ and  D*D?.=[[ D™D, (2.14)
=1 =1

whenever o, 3 € NE, and ¢ > 0.

Forall0<¢ <qg—1and 0 < i < iy, we assume the following pointwise derivative bounds for the cutoff

functions 1); .. For mixed space and material derivatives (recall the notation from (2.4), (2.14)) we assume
|DaDtB L 5y i+3 _—1 -1 ~—1
wli(lalilﬁ‘)/Nﬁn S M (|a|7 Nind,vy Fq/)\q/7rq/)\q/) M (|B|, Nind,t - Ncut,t7 ]‘—‘qf+17—q’717 Pq’+1Tq’ ) (2]_5)
9’

for k > 0 and «, B € N} with |a|+|B| < Ngy. Lastly, we consider mixtures of space, material, and directional

derivatives (recall the notation from (2.5), (2.14)). With M, «, 3 and k as above, and with N > 0, we assume
DN DD, 1|
1—(N+|e|+|B8])/Ngin
(L

g M (Nv Nind,V7 Fq/ )‘q’ ’ ]-—‘q’Xq’) (F;/_joqu_ll)‘a‘M (/67 Nind,t - Ncut,tv F;_/‘—Jfqu_/ila Fq_’itl/?q_/l> (216)

for all N + ||+ |8| < Ngp.
In addition to the above pointwise estimates for the cutoff functions v; 4, we also assume that we have a
good L' control. More precisely, we postulate that

W
o

+

||1/Ji,q/||L1 <1526 where Cp = —

~ g+l

(2.17)

(=

holds for 0 < ¢’ < ¢g—1and all 0 < i < ipax(q).

2.2.4. Secondary inductive assumptions for velocities. Next, for 0 < ¢’ < q¢—1, 0 < 7 < ipax, £ > 1, and
o, 3 € NE, we assume that the following mixed space-and-material derivative bounds hold

8
108, sl e
. (Féﬂlé(;{Q)M (\a\,QNindyaFQ’)‘q"X‘l') M (|ﬂ|, Nind,taF;jr—Esz;’ilaF;'}l-l?;’l) (2.18)

for |af +|B] < 3MNnf2+1,
anb
|D Dy, Dug,,

Lo (supp ¥; 4)

< (L2 )M (Ia, 2N, Ty A A ) M (181 N T Tk a7 ) (2.19)
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for |a| + | 3| < 3Nsin /2, and

anh
HD Dy 'w“| Lo (supp ¥, 47)
< (0,7 32)M (I, 2Ninavs TorAgrs Ag ) M (181, N Tt 7 T 7 (2.20)

for |a| 4 |B] < 3Nan/2 + 1. Lastly, for N > 0 and N + |a| + |8] < 3Nn/2 4+ 1, we postulate that mixed
space-material-directional derivatives satisfy

N na NG
HD Dy Dy (supp ¥, )
(r;++1151/2)|a‘+1/\/1 (N+|a| MNind.vs Ty Mgt g )M(w\,de,hr% ol T 1) (2.21a)

< (UL 6 M (N,2Nind,v,rq,Aq/,Xq,) (T 7l m (|5| Ninao, TH2, 7L q—/gﬁq—,l) . (2.21D)
Remark 2.5. As shown in [5, Remark 3.4], (2.21b) automatically implies the bounds

1/ N 4 —1 ~—
HDNDt q'ta’ HLoo(S,Jppw )~ (F;ﬂl(; M (N’QNind,Vqu“\qH)‘q/)M (M Nind,t, Iy +17'/1’Fq 3rl Tq 1)

(2.22)
for all N + M < 3Nsin/2 + 1, while in a similar way, (2.16) implies that

—IDNDM%’“ N, N T T\ M,N N il ol #1
P N NM( s Nind,v, Tgr Agr q')\q')M( s Nind,t = Neut,t, Tor 5375 D1 T ) (2.23)
7(1

for all N + M < Ngy.

2.3. Main inductive proposition. The main inductive proposition, which propagates the inductive esti-
mates in Section 2.2 from step q to step ¢ + 1, is as follows.

Proposition 2.6. Fiz 8 € [1/3,1/2) and choose b € (1,1/28). Solely in terms of B and b, define the parameters
Nmax;, Cb, Cr, €0, €r, Cu, @, Neusts Neus,x; Nindt, Nind,v, Ndec, d, and Ngyn, by the definitions in Section 8.1,
items (i)—(xiil). Then, there exists a sufficiently large ax = a«(B8,b) > 1, such that for any a > a., the
following statement holds for any q > 0. Given a velocity field vy which solves the Euler-Reynolds system
with stress Ry, define Vg, Wy, and ug via (2.1)~(2.2). Assume that {uq/}g,_:lo satisfies (2.8), wy obeys (2.9),
éq satisfies (2.10), and that for every " < q—1 there exists a partition of unity {1; ¢ }i>0 such that properties
(2.11)~(2.13) and estimates (2.15)—(2.21) hold. Then, there exists a velocity field vyy1, a stress ]c%q_H, and a
partition of unity {1; q}q>0, such that vgy1 solves the Euler-Reynolds system with stress ]iEq_H, uq satisfies
(2.8) for ¢’ — q, wgy1 obeys (2.9) for ¢ — q+1, Rq+1 satisfies (2.10) for ¢ — q+ 1, and the v; 4 are such
that (2.11)—(2.21) hold when ¢’ — q.

The proof of Proposition 2.6 takes up the bulk of the remaining part of the paper, cf. Sections 3-7. Here
we just give a road map of which proofs are contained in what sections:

e In Section 3, we recall the construction and important properties of intermittent pipe flows from [5].
We however prove a new estimate for squared pipe densities in Lemma 3.5, and an updated version
of the pipe dodging strategy in Proposition 3.8.

e In Section 4 we mollify the Euler-Reynolds system at level ¢, define v, , and show that u, satisfies
(2.8) with ¢’ replaced by g. This argument requires few changes when compared to [5, Section 5].

e In Section 5 we construct the velocity cutoffs at level ¢, namely {); ,}i>0, and show that the inductive
assumptions (2.11)—(2.21) hold for ¢’ replaced by ¢. This part of the argument is technically quite
involved, but we take advantage of the fact that it is identical to the proof in [5, Section 6], except
for the new bound for i,,,. The new bound on iy, is the only place where the propagated L
bounds are required, and we give the full details of this part of the argument in Lemma 5.7.

e In Section 6, we present Proposition 6.1, which gives the existence of a pair (wq+1,éq+1) which
satisfies the remaining inductive bounds, namely (2.9) and (2.10), with ¢ replaced by ¢ + 1.

e In Section 7 we give the proof of Proposition 6.1, thereby concluding the proof of Proposition 2.6,
once a is taken sufficiently large with respect to (3,b), as in Section 8.1, item (xiv). This is the main
part of the proof, and it is substantially different from the corresponding argument in [5, Section 8].
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2.4. Proof of the main theorem. We conclude this section by showing how Proposition 2.6 implies
Theorem 1.1, upon potentially choosing a > a. even larger, depending also on the functions vstart, Vend, and
on the T, e > 0 from the statement of Theorem 1.1. This argument is nearly identical to that in [5, Section
3.3]. We also give here the proof that the constructed solutions lie in C?B;{i;, cf. Remark 2.7 below.

First, let a, = a.(5,b) be as in Proposition 2.6, which holds for any a > a.. Second, construct the pair
(vo, Ro), which solve the Euler-Reynolds system, exactly as in [5, Equations (3.30)~(3.31)]. In essence, vg is
a temporal interpolation between mollified versions of vgiart and venq, and 1320 is the resulting error made in
the Euler equations (1.1) . Third, we define v_1 = v, , = u—1 =0, and we let o1 =1 and ¢, 1 = 0 for
all i > 1. Lastly, it is convenient to denote 771 = [g := A5, 7-; = T8 = A3, and Oy = \o.

With these choices, we have already verified in [5, Section 3.3] that if a > a, is taken to be sufficiently
large, depending also on vstart, Vend, Ts €, then u_; = 0 satisfies (2.8a) (and trivially also (2.8b)), wg = vg
obeys (2.9a), Ry satisfies (2.10a), and we have that (2.11)~(2.21) hold trivially. Thus it remains to show that
(vo, Ro) obey the uniform estimates (2.8b) and (2.10b), which were not present in [5]. But these estimates
are easy to satisfy since both Fg“_l@;h > a'?, and Fg” = am, may be made arbitrarily large,
upon choosing a to be sufficiently large.

As such, the inductive estimates (2.8)—(2.21) hold for the base case of the induction ¢ = 0, and we may
inductively apply Proposition 2.6 for all ¢ > 1, to produce a sequence of velocity fields v, which solve
the Euler-Reynolds system with stress Ic%q, and a sequence of velocity cutoff functions v; 4, such that the
bounds (2.8)—(2.21) hold for all ¢ > 0. Then, by construction, we have that for any 8 < f, the series
Y g>0(Vg1 — vg) = D2 s 0(wet1 + (ve, —vg)) is absolutely summable in CYH?' | justifying the definition of
the limiting velocity field v = vo + > 5 (vg+1 —vg) € COHP'. As f%q — 0in CYL', the function v is a weak
solution of the 3D Euler system (1.1) . Moreover, as was shown in [5, Section 3.3], the L? distance between
v(+,0) and vstart, respectively v(-, T) and vepnq, is less than e.

In order to conclude the proof of the theorem, we only need to show that v € CEL%. For this purpose,
note that we have the identity v = limg oo vy = >_ 5o uq. Using the bounds on ug provided by (2.8) we
may sum over 0 < i < 4,.x(q) using the partition of unity property (2.11), and use the definitions (8.2a)
and (8.7), to arrive at

luglye < CO2 =2y 278, and  fugll,. < CTSOF & CAg7 GHrG) < o) 7 G+
where the constant C' depends only on our upper bound for i,.x(g), and so only on 8 and b through (2.12).
Using Lebesgue interpolation, and the above established bounds, for p € [2, 00) we obtain

2 1-2 B+l 28 4 q_2yb-l 1l b-1
ligll o < IltgllZa luglly? < CA, 7 A » TOTP T BT (2.24)

where the constant C > 1 depends only on 8 and b. Thus, in order to ensure the absolute summability of
{ug}q>0 in LP, the exponent of \, appearing on the right side of (2.24) must be strictly negative. After a
short computation, we deduce that we must have
85b
b-1)bb-1)+2)"
(b=1)(b(b—1)+2)
4b

p < p«(B,b) =12+ (2.25)

At last, we may verify that f:gg < p«(B,b) is equivalent to < 1—24, which in turn is satisfied

whenever 26b < 1 and 8 € [1/3,1/2). This concludes the proof of Theorem 1.1.

Remark 2.7 (L3-based Besov regularity). From (2.24) and (2.25), we deduce that for p € [2,p.(3,D)),
1

and in particular for p = ?:gg, we have that |lugl|,, < C’/\f)\q_"(p’ﬁ’b), for some 7n(p, 8,b) > 0. We therefore
have that

1
luallsg < OMPAT®HD and  Jugllye < llugllg, < Cllutgllgs < C,

where the constant C' > 0 is independent of q. By interpolation, we have that whenever s < (6, where
0 = 0(p) € (0,1) is defined by solving
1 1-6 6 2p—6

- = — 9:
5=, 2 3 -6’

(2.26)



we have the bound

1
lugll gy < Cllugllpy’_ llugllps < CAF G (=020,

for a constant C' > 0 which is independent of ¢ > 0. Taking p = 22, we obtain from (2.26) that § = 4€ 7
and so for any s < 63 L we have that the series v = Zqzo Ugq 1S absolutely summable in C} B3 ., showing

that v € C’?Bgm. It is clear that by letting 8 be arbitrarily close to 1/2, the value of s may be taken
arbitrarily close to 1/3, the Onsager threshold.

3. BUILDING BLOCKS AND PIPE DODGING

The main results in this section are Proposition 3.3 (which describes the intermittent pipe flows and their
properties), Lemma 3.5 (which gives a sharp bound for the L® norm of frequency truncated square of pipe
densities), and Proposition 3.8 (which gives the proof of the one-half relative intermittency rule for pipe
dodging). First, we recall from [19, Lemma 2.4] a version of the following geometric decomposition:

Proposition 3.1 (Choosing Vectors for the Axes). Let B, (Id) denote the ball of symmetric 3 x 3

matrices, centered at 1d, of radius /2. Then, there exists a finite subset = C S> N Q3, and smooth positive
functions v¢: C* (Biy,(Id)) — R for every & € E, such that for each R € Bij,(Id), we have the identity

R=> (v%(R Yewe. (3.1)

£eE

Additionally, for every & in =, there exist vectors &',€" € S2 N Q3 such that {£,£',€"} is an orthonormal
basis of R, and there exists a least positive integer n, such that n.&, &', n.&" € Z3, for every € € Z.

We now recall [5, Proposition 4.3] and [5, Proposition 4.4] which rigorously construct the intermittent
pipe flows and enumerate the necessary properties.

Proposition 3.2 (Rotating, Shifting, and Periodizing). Fiz £ € E, where E is as in Proposition 3.1.
Let v, X € N be given such that \r € N. Let 2 : R> — R be a smooth function with support contained
inside a ball of radius 1/a. Then for k € {0,...,r~1 — 1}2, there exist functions %’/\C,r,g : R = R defined in
terms of s, satisfying the following additional properties:

TN

3
(1) We have that %)\Tg s simultaneously ( ) -periodic and ( Te )-periodic. Here, by Tg we refer to a

rotation of the standard torus such that Tg has a face perpendicular to &.
‘1
3
(2) Let F¢ be one of the two faces of the cube Jfl which is perpendicular to €. Let Gy, C Fg N21Q3 be
the grid consisting of r~2-many points spaced evenly at distance 2m(An.)~' on F¢ and containing the
origin. Then each grid point gi. for k € {0,...,7—! — 1}? satisfies

(supp %];m,g NFe) C{a:|z—gi <2n (4)\n*)71}. (3.2)

AT

E 3
(3) The support of %]Af,r,s is a pipe (cylinder) centered around a (E{—i)-pem’odic and ( Te ) -periodic line

parallel to &, which passes through the point gi.. The radius of the cylinder’s cross-section is as in (3.2).

(4) We have that & -V, . = 0.

(5) For k #+ k', supp %l;,r,g N supp %I)f:r,g = 0.

Proposition 3.3 (Construction and properties of shifted intermittent pipe flows). Fiz a vector

€ belonging to the set of rational vectors = C Q* N'S? from Proposition 3.1, r~1, X € N with \r € N, and

large integers 3Ng, and d. There exist vector fields W’g’)\m : T3 — R3 for k € {0,...,r—1 — 1}? and implicit
constants depending on Ng, and d but not on A or r such that:

(1) There exists o : R?2 — R given by the iterated Laplacian A% =: o of a potential ¥ : R? — R with
compact support in a ball of radius l such that the following holds. Let gé“)\ , and ﬁ’g’A’r be defined as
in Proposition 3.2, in terms of o and 9 (instead of ). Then there exists IU5 A : T3 — R3 such that if
{£,€,¢"} C Q3N'S? form an orthonormal basis of R3 with & x & = &, then we have

UQA)T — _51 )\—Qdé-// . vAd—l (192)\,7~) _|_§// )\—ng/ . vAd—l (ﬁlg)\}r) \ (33)

11k —.plk
=9 =P
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and thus
curlUg  , = EX"2AY (0, ) = €0En, = WE
and
§- VWi, =& VUL, =0. (3.4)

(2) The sets of functions {U’g)\,r}k, {Q’g,)\,r}kf {ﬂ]g,A,r}b and {Wg,x,r}k satisfy items 1-5 in Proposition 3.2.
(3) W]g,/\w s a stationary, pressureless solution to the Euler equations.
(4) ]{rs W’g,)\,r ® W’g,,\,r =£®¢
(5) For allmn < 3Ngy,

1979 sl 1oy S An(5-1), 197 0 5| ooy S Anr(3-1) (3.5)
and
2 _ 2 _
19U sl sy S A1 (1) IV WE sl o sy S Anr(3-1), (3.6)

(6) Let ® : T3 x [0, T] — T? be the periodic solution to the transport equation
QO +v-VE=0, By =z, (3.7)
with a smooth, divergence-free, periodic velocity field v. Then
VO (W, 0®) =curl (VT (Uf,,0®)). (3.8)
(7) For Py, x,) a Littlewood-Paley projector, ® as in (3.7), A = (V®)~t, and fori=1,2,3,

[V' (A Pia,aa] (Wenr @ Wex ) (‘P)ATH = Al Pl (WZMWQ,,\J.) (®)0; A;

K3

) cm 7 2
= ALE"E ;AP ((6F0,)7) - (3.9)
Remark 3.4. In (3.9) and throughout the rest of the paper, for any interval I C R4 we use the notation
Py (3.10)

to denote the Fourier projection operator onto spatial frequencies & such that || € I. When I = [\, 00) we
abbreviate this projection as P>y, while for I = [0, A], we abbreviate this projection as P<j.

In order to propagate sharp L>° estimates for nonlinear error terms, we will require the following estimates
related to the mean-subtracted squared pipe densities.
Lemma 3.5. Let g’g)\ﬂﬂ : (g—i) — R be defined as in Proposition 3.3. Let A1, As be given with A\r < A1 < A, Mg,
and set
9= (A72A) By ((0Ea,)? = 1) -
Then, for an arbitrary o € (0,1] and N < 2Ng,, we have the estimates

in(Ag, A 2
HDNIP[/\h/\z) ((gé)\,r)Z - 1) HLOO S (Inln()\;)) mln()\Za /\)N (3'113’)
. 2
IDVO|, . S A (W) M (N, 2d, A1, min(Aa, \)) . (3.11b)

Remark 3.6. When )\ < A, we note that (3.11a) contains the nontrivial estimate

2
k 2 Ao Iy k 2
H]P)[)\L)\Q) ((Q%,A,r) - 1>HL<X> N (/\T) < =~ H(Qeg)\,’l‘) - 1HL°° ,

which asserts that the L> norms of the Littlewood-Paley projections of the mean-subtracted pipe density
increase with respect to frequency from a minimum of 1 at Ao = Ar to 772 at Ao = .
14



Proof of Lemma 3.5. For the sake of simplicity, we fix £ = e3, and abbreviate ®(x1,22) = & = (953,&7’)2 -1
Then we have from (3.10) that

Ppon®(@) = Y (ke (3.12)
)\1§|k|<)\2,
keArZ?
From (3.5), we may bound
z 2
[ (k)] S M@l s (pey S lleeanrllz +1 ST (3.13)
A simple counting argument further yields that
Ao\ 2
H{A <kl < Ag 0 ke MZ?}| S (Ai) ) (3.14)
Then in the case A2 < A, the bounds (3.12)-(3.14) give that
~ Ao\ 2
[IDNPp, sy @ e <A D [2(R)] S AY <Ai> , (3.15)
A1 <[k[< Az
keArZ?

which matches the desired bound in (3.11a). To prove (3.11a) in the case that Ay > A, we simply appeal to
the boundedness of Py, ,) on L> and (3.5).

In order to prove (3.11b), standard Littlewood-Paley arguments and the above bound for Py, y,y® in L*>°
again give that

. 2
<mm(;“)) ATAZ ) it 0<N<2d
T
)\%d HDNA_dP[Al,M)(I)HLOO N min(Az, A) ’
<)\2’) )\aAfd min(A27 )\)N72d if 2d+1<N <L 2Nﬁ117
r

where the factor of A% is used to absorb endpoint (p = co) losses, and a may be taken arbitrarily close to
zero at the cost of changing the implicit constants. Translating the above display to incorporate the notation
M (N, 2d, A1, min(Az, A)) concludes the proof. O

We will require [5, Lemma 4.7], which lists the geometric properties of deformed intermittent pipe flows.

Lemma 3.7 (Control on Axes, Support, and Spacing). Consider a convex neighborhood of space
Q C T3. Letv be an incompressible velocity field, and define the flow X (z,t) and inverse ®(z,t) = X ~1(x,1),
which solves

0P +v - VO =0, Dy, = 1.
Define Q(t) := {x € T3 : ®(x,t) € Q} = X(Q,t). For an arbitrary C > 0, let T > 0 be a parameter such that
T < (AT T
Furthermore, suppose that the vector field v satisfies the Lipschitz bound

sup [|Vo(, 8[| o)) S 8P ATy -
tG[to—T,t[)—‘rT]

Let W’/{qﬂ .
which are T/, . r-periodic for )\q)\qjl < r <1 and concentrated around axes {A;}icz oriented in the vector
direction & for € € =. Then W := W& (®(x,t)) : Qt) X [to — 7, to + 7] satisfies the following conditions:
(1) We have the inequality

: T3 — R3 be a set of straight pipe flows constructed as in Proposition 3.2 and Proposition 3.3

a+1,758

diam(Q(t)) < (1+T,};) diam(Q2). (3.16)

(2) If x and y with x # y belong to a particular azis A; C ), then
X(Z‘,t)—X(y,t) r—Y

X(z,t) — X (g, 1) |z —y +0i(z,y,t) (3.17)

where |0;(z,y,t)| < I‘;jl.
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(3) Let x and y belong to a particular axis A; C Q. Denote the length of the axis A;(t) := X(A; NQ,t) in
between X (x,t) and X (y,t) by L(x,y,t). Then

Lz,y,t) < (1+T. ) [z —y| . (3.18)

(4) The support of W is contained in a (1 + 1";_&1) 27 (4nuAgr1)” t-neighborhood of the set

U Ai(t). (3.19)

(5) W is “approzimately periodic” in the sense that for distinct axzes A;, A; with i # j, we have

(1T 1) dist (A4; N Q,A; NQ) < dist (A;(2), A;(1) < (14T, },) dist (A;NQ,A4;NQ). (3.20)

The following proposition is a variation on the statement and proof of [5, Proposition 4.8]. For simplicity,
we only consider £ = e3. The generalization to other vectors ¢ € E follows from incorporating a rotation
into the argument; for further details we refer to the final paragraph of the proof of [5, Proposition 4.8]. The
main difference in the new Proposition is that the set on which placements are made now has dimensions
(Ngr172) 7 % (Agar2) ™h X (Ag41r1) ™ as opposed to (Ag171) ™" X (Agg171) ™ X (Agar1) ™" in [5].

Proposition 3.8 (Placing straight pipes which avoid bent pipes). Let /\q>‘q_4}1 <ry <rg <1 be such
that Ag+1m2 € N. Let Q C T? be a rectangular prism with the following properties:

(1) The longest axis of Q is parallel to e and has length precisely (A\g+17m1) .

(2) There exists a constant Cq (bounded independently of q) such that the face of Q which is perpendicular
to ez 1s a square of side length precisely CQ(F;jl)\qug)_l.

(3) There exists a constant Cp such that for any convex subset Q' C Q with diam (') < 2v/37 ()\q+1r2)71,
there exist at most Cpl'y11 segments of deformed T°/x,1rs-periodic pipes of length 4m ()\q+1r2)_1. Here,
by “segments of deformed pipes,” we mean the objects constructed in Propositions 3.2 and 3.3 which
satisfy the conclusions (3.16)—(3.20) from Lemma 3.7 on Q. Let P denote the union of the supports of
the deformed pipe segments.

Then, there exists a geometric constant Cy, > 1 such that if
C.CHCPIE 15 <1y, (3.21)

then there exists a set of pipe flows W’;‘;)\ : T3 — R3 which are T° /x,11r2-periodic, concentrated to width

a+172
2m(4Xg+1ms) " around azes with vector direction es, satisfy the properties listed in Proposition 3.3, and

supp Who NPNQ=0. (3.22)

637/\q+177"2

Proof of Proposition 3.8. The proof has been streamlined relative to the original version [5, Proposition
4.8], although the fundamental ideas remain unchanged. We divide the proof into three steps, in which we
count the number of segments of deformed pipe of length &~ (A, 4172) "', then project each segment onto the
smallest face of Q and cover it with squares of size &~ )\;_&1, and finally use a pigeonhole argument and the
bound (3.21) to find a shift ky satisfying (3.22).

Step 1: To count the number of deformed segments of pipe which may comprise P N €2, we appeal to
assumption (3) and volume considerations. The dimensions of £ imply that Q is composed of at most
C3T2,, - rory " periodic cells of side length 2m(Ag+172) ™. Applying (3) with each of these cells implies that
the number of distinct segments of pipe of length 47 (A, +172) ™! comprising P is at most

213 -1
CpColy - rary .

Step 2: We now measure the size of the shadows of the deformed segments of pipe when projected onto
the face of Q which is perpendicular to e3. First, the length constraint on the segments of deformed pipe
implies that the projection of any single segment onto the face of 2 which is perpendicular to e3 has length
at most 4m(Ag4172)"". Now consider the grid Gy,,,,r, from Proposition 3.2, item (2). This grid contains
squares of diameter ~ /\q__&l, each of which may contain part of the support of an ez-oriented periodic pipe
flow, or may be empty, depending on the choice of shift. Applying a covering argument using the above
derived length constraint and (3.19), we see that there exists a dimensional constant C such that the number
of grid squares needed to cover the projection of a single segment is at most C,ry !, Since the number of
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segments was bounded by C pCS%Fg y1°Trery ! from Step 1, we see that the total number of grid squares needed
to cover the projection of P is at most

CpCaL3. - rory - Cury ' < CpCECTS 1!

Step 3: In order to conclude the proof, we appeal to a pigeonhole argument, made possible by the bound
from Step 2. Indeed, we have obtained an upper bound on the number of grid squares which are deemed
“occupied” by projections of deformed segments of pipe. Conversely, from Proposition 3.2, the number of
possible choices for the shifts kg is r2_ Applying assumption (3.21), we conclude by the pigeonhole principle
that there exists a “free” shift kg such that none of the occupied squares intersect the support of W/\ L iraes”
Thus we have proven (3.22), concluding the proof of the lemma. |

4. MOLLIFICATION

Let ¢(¢) : R — R be a smooth, C* function compactly supported in the set {¢ : |¢|] < 1} which in
addition satisfies

[o@ac=1 [ o0c =0 Vn =120 N
Let 5(:5) :R3 — R be defined by g(x) = ¢(|z|). For A\, u € R, define
V@) =20 0a),  o0(t) = polut).
For ¢ € N, we will define the spatial and temporal convolution operators

Pow = ¢§2)*, Poit = ¢%231*, Pyt i= Py © Pyi. (4.1)

Lemma 4.1 (Mollifying the Euler-Reynolds system). Let (vq,fo%q) solve the Euler-Reynolds system
(1.2), and assume that v; g, ug for ¢’ < q, wg, and Ry satisfy (2.8a)—(2.21b). Then, we mollify (vq, Rq) at
spatial scale )\;1 and temporal scale Tq—1 (cf. the notation in (4.1)), and accordingly define

= ,Pqﬂ'ytvq and éﬁ = Pq,l‘,téq . (42)

Vy q

q
The mollified velocity vy, satisfies the Euler-Reynolds system with stress ]O%zq +1°%g°mm, where the commutator
stress ]:i’gomm satisfies the estimate (consistent with (2.10a) and (2.10b) at level ¢+ 1)

DYDY < T by M (N7 T3 7 ) (43
for all N, M < 3Nina v, and we have that
< 2526, M (1 2Nina s Ags Ay ) M (s Ninaos T, ST 78T (44)
for all Ny, M < 3Ning,v. Furthermore, uq, = vy, — vg,_, satisfies the bound (2.8) with q' replaced by q

IDY D1 (ve, = vo)[ e

5,01 DN DM ug||,. < 552 M (n,2Nind,V7)\q,Xq) M (m, Nipa g, im0 L) (4.52)
DY DIt o1y S TS0 M (N, 2Nina Ags A ) M (M, Niwa,es Ty 7 7 ) (405D)

for all N + M < 2Ng,,. Finally, qu satisfies bounds which extend (2.10) to the mollified stress

ql’ql

[hiq 1 DX DM _ Ry, |2 S Ty R84 M (N,QNind’v7>\q7Xq) M (M, Nigay, T2 770) | (4.6a)

STEM (N, 2Nini s Ags Ag ) M (M, Niga b, T3 7,70 771 (4.6b)

||D th 1R€ ||L°°(supp¢1q 1) ~ q—11°"g—1

for all N + M < 2Ngy,.

Proof of Lemma 4.1. The bounds in (4.3)—(4.5a), and also (4.6a), match those of [5, Lemma 5.1, equations
(5.3)—(5.5) and (5.7)], and so we omit the proofs. The only new estimates which would require a proof are
(4.5b) and (4.6Db).

In order to give an idea of how to prove (4.5b), we follow the method of proof from [5] for (4.5a). When
either N > 3Njpa,y or M > 3Niq,v, an even stronger bound than (4.5b) was previously established in [5,
Lemma 5.1, equation (5.6)]. Thus, we only need to consider (4.5b) for N, M < 3Ninq,. We appeal to (2.3)
and split ug = Py o, twq + (’Pq’x’t’l}eq71 — ’quil). Since the good term (Pg 4.+ — Id)vgfh1 was already estimated
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in L, cf. [5, equation (5.43)] with a stronger bound than that required by (4.5b), we can consider just the
main term Py, ;wq. We split Py, 1wq as Py z iy = Wq + (Pyzr — Id)w,. In view of (2.9b), which provides
a satisfactory bound on wy, we are only left with (P .+ — Id)w,. However, this term was already estimated
in L* in [5, equations (5.33)—(5.35)], and so no new proof is required. Thus (4.5b) is satisfied.

The proof of (4.6b) utilizes the same methodology that produced bounds for P, . ,w, from inductive
assumptions on wy. Specifically, the material derivative bounds have been relaxed by a factor of I'; (the
second T'y loss coming again from the fact that (4.6b) is estimated on the support of v, ,_1), the spatial
derivative bounds have been relaxed from A, to Xq when N > 2Njnq v, and the available number of estimates

on the un-mollified stress ]D%q was much more than 2Ni,q v, specifically 3Ninq,. We therefore omit any further
discussion and refer the reader to the proof of [5, Lemma 5.1]. |

5. CUTOFFS

5.1. Velocity cutoff functions. For all ¢ > 1 and 0 < m < Ncyt ¢, We construct the following cutoff
functions. The specifics of the construction and the proof are contained in [5, Appendix A.2].

Lemma 5.1. For all ¢ > 1 and 0 < m < Neyt, there exist smooth cutoff functions Jm’q7¢m,q : [0,00) =
[0,1] which satisfy the following.

(1) The function Jm,q satisfies 1[0,%F§(m+1)] < zfljmyq < 1[07F3(m,+1)].
(2) The function V¥, 4 satisfies 1[1,%F3<m+1>] < WP < 1[%7113(77#1)].
(8) For all y >0, a partition of unity is formed as

W)+ > 2 (D2 y) =1, (5.1)

i>1
(4) T/)mq and Yo, (T 21(m+1)~) satisfy
SUPD Y g (+) N SUPD Y o (D217 FD) =0 if i > 2,
SUppP Ym q (F;Qi(m+1)~) N supp 7,/}m7q(11;2i/(m+1)~) =0 if |i—d]>2. (5.2)
(5) For 0 < N < Ngy, when 0 <y < Fg(mﬂ) we have
DN G ()] S (g (y)) =N/ N 2N (m ),
For%<y<1 we have
DN q(U)] S (g ()~
while for ir?,(m“) <y< Fg(mﬂ) we have
DNt g ()| S TG 2N (1 g (37)) '~/ Mom
In each of the above inequalities, the implicit constants depend on N but not m or q.
Definition 5.2. Given i,j,q > 0, we define
iv =i:(j,q) = i.(j) = min{i > 0: I}, > T7}.

Note that for j = 0, we have that i.(j) = 0.
At stage ¢ > 1 of the iteration (by convention wg = ug = 0) and for m < Nyt and j,, > 0, we define

cut x

204 (Jm) —2n, _ is (G )HF2\ —2M ) 1~ v
W2l Z D20t (A Tg) ™ (r 4TS 2) 2™ DD g ()2 (5.3)
Definition 5.3 (Intermediate Cutoff Functions). Given ¢ > 1, m < Newyy, and jn, > 0 we define
Umip jm.g VY
wm,im,jm,q(ﬂcat) Um a1 (1’\ 2(im — s (]m))(m-‘rl)h2 ,Jm,q(xvt)) (54)
for ipy > ix(Jm), while for iy = ix(jm),
Drm e (o) i (1) = g1 (R . o (@,1)) - (5.5)
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The intermediate cutoff functions ¥, i, j...q 0re equal to zero for iy, < isx(jm).

The indices 4, and j,, were shown in see [5, Lemma 6.14] and [5, 6.27] to run up to some maximal values
imax and ipa.x, although in the present context, it will be necessary to propagate a much sharper bound on
imax; see Lemma 5.7. With this notation and in view of (5.1) and (5.2), it immediately follows that

SECTUUEED STV SIS
mMytmJIm,q m,tm,JIm,q m,tm,Jm,q
i >0 im0 (Jrm) {im : rgg'rtlzrgm}
for any m and for |i,, — i, | > 2,
Vi m a Vi, Gmg = 0-

Definition 5.4 (m'" Velocity Cutoff Function). For ¢ > 1 and i,, > 0, we inductively define the m*®

velocity cutoff function
2 2 2
myim,g T Z Jm = 1M i g (5.6)
{Jm+ im 20x(Gm)}
In order to define the full velocity cutoff function, we use the notation
= . Neut, s - . Neut,t+1
7 = {Zm}m:td = (107...72Nwt7t) e Ny ot
to denote a tuple of non-negative integers of length Ncy¢ ¢ + 1, and we shall denote
I, = {;E Ng‘““°’°+1: max iy, = z} .
OSmSNcut,t

Definition 5.5 (Velocity cutoff function). For 0 < i < inax(q) and ¢ > 0, we inductively define the
velocity cutoff function v; 4 as follows. When q =0, we let

dio— {1 ifi=0

0 otherwise.

Then, we inductively on q define
Ncut,t

=22 11 Vi (5.7)
Z; m=0
for all g > 1.

The sum used to define v; 4 for ¢ > 1 is over all tuples with a maximum entry of ¢. The number of such
tuples is g-independent since it has been demonstrated in [5, Lemma 6.14] that 4., < imax(¢) (which implies
i <'imax(q)), and imax(q) is bounded above independently of q.

For notational convenience, given an 7 as in the sum of (5.7), we shall denote

Ncut,t Ncut,t
supp H wm,im,q = ﬂ supp (wm,imyq) =:supp (wz,q) .
m=0 m=0

In particular, we will frequently use that (z,t) € supp (¥; 4) if and only if there exists = Ny““t’tﬂ such that
MaxXo<m<Neus,s T, = 1, and (ZIJ, t) € supp (¢;,q)~

Proposition 5.6. With the definitions of the velocity cutoff functions given in the previous subsection, the
inductive assumptions from (2.11) and (2.15)—(2.22) hold.

For the proof, see [5, Section 6]. We however must provide a new estimate for imax(g) in order to prove
(2.12) and (2.13), and we give the details in the following lemma.

Lemma 5.7 (Maximal ¢ index in the definition of the cutoff). There exists imax = imax(q) > 0,
determined by the formula (5.12) below, such that

Yig =0 forall > imax (5.8)
and
Dimex <To4 0,26, (5.9)
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for all ¢ > 0. Moreover, assuming Ao is sufficiently large, imax(q) is bounded uniformly in q as
Y2(b—1) +Bb

j <1
imax(q) <14 Cy + e (b= 1)

(5.10)

Proof of Lemma 5.7. Assume ¢ > 0 is such that supp (¢; 4) # 0. We will prove that FfIH < I‘qcil@;/zéq_lh.

From (5.7) it follows that for any (x,t) € supp (¥i4), there must exist at least one 7 = (i, . . . s iNeue,, ) SUCh

that o max im =1, and with ¢, ;, 4(z,t) # 0 for all 0 < m < Ngyg . Therefore, in light of (5.6), for each

such m there exists a maximal j,, such that i.(jm,) < iy, with (z,t) € supp (¥j,,.q=1) N SUPP (Vi i, jm.qa)-
In particular, this holds for any of the indices m such that i,, = i. For the remainder of the proof, we fix
such an index 0 < m < Ngyg .-

If we have ¢ = ipm = ©x(fJm) = 1x(Jm, q), since (z,t) € supp (¢}, q—1), then by the inductive assumption

2.13), we have that jm < imax(¢ — 1). Then using I3 < IVm < imex (=1 and (2.13 , we deduce that
J g q+1 q q

—1

Fé+1 < Fq+1rflmax(q—1) < Fq+11“§“@;/315q7

¢ ST 0,70, .
The last inequality above holds in light of the parameter inequality ber + Cuer + 1/26 < bCuer + 1/2 + S,
which in turn follows from ep < 8/o. Thus, in this case T, ; < Fqcil@;/QélJ_l/z indeed holds.

On the other hand, if ¢ = ¢, > i.(jn) + 1, by the definition of ¥, q4+1 in (5.4), it follows that

| g (@, 8)| > (1/2)11((;:?1)(%71'*(%))7 and by the pigeonhole principle, there exists 0 < n < Nyt x with

" 1 A1) (im —in (i )) e (Gim) 51/2 n(——1 Tix(jm)+2ym
|D Dt,qfluq(x7t)| Z 2N ¢ Ft(]+1 )( (] ))Fq+({ )53]/ ()\CIFQ) (qulqui{ ) )
cut,x
I i o —1 pim+2ym
= 2Ncut xFq+15q/2/\g(Tq—1Fq+1 "™

and we also know that (z,t) € supp (¢}, q—1). By (4.5b), the fact that Neusx < 2Nind,v, and Neuet < Ninajt,
we know that

Gt -1 Jm
ID"Dy,_yug(x,t)| < TS0\ (7, Tim 1y

STEO A (AT ™ < TGO A (r ATy )™

—1%g+1 —1%g+1
The proof is now completed, since the previous two inequalities and i,, = 7 imply that
i C, - C, -
T}y < 2Ny (L5020 12 <TGy 026,72 (5.11)
In view of the above inequality, the value of i,,x is chosen as
. . i’ Cu _
Zmax(q) = sup{z/ : F;L]-‘,-l S Fq+1@¢11/25q 1/2} . (512)

With this definition, if ¢ > imax(g), then I}, ; > ngle);/Qé;l/Q, and as such supp (¢; 4) = 0. To show that
imax(q) is bounded independently of ¢, note that

log(T2,040, ") _ L (b= 1)+ B log\r) |, Ylb—1)+ Bb
log(T'g+1) ’ er(b —1)log(Aq) ’ er(b—1)b '
as ¢ — 0o. Thus, assuming )\ is sufficiently large, the bound (5.10) holds. O

5.2. Temporal cutoff functions and flow maps. Let x : (—1,1) — [0, 1] be a C* function which induces
a partition of unity according to

Y-k =1. (5.13)
kez
Consider the translated and rescaled function

X (tr ' TS — k)

which is supported in the set of times t satisfying

|t — 7D %k| <m0 = te[(k—Drl 3% (k+ D7 I 1% . (5.14)

We then define temporal cut-off functions

Xika(t) = X()(t) = x (tr; 'TL 9% — k) (5.15)
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It is then clear that

107" Xi kgl S Ty 27 ™ (5.16)
for m > 0 and
Xik1,q(E)Xi kg (1) = 0 (5.17)

for all ¢ € R unless |k; — ka| < 1. We define

1/2
X(ikt,q) (1) = (X%i,kq,q) (t) + X%i,k,q) (t) + X%i,kJrl,q) ®) ",
which are cutoffs with the property that

Il
[t

X (i,k=+,q) on sSupp (X(Lk,q))'

Next, we define the cutoffs x; x4 by
Xika(t) = Xy (t) = x (75 ' T33F = T £5k)
For comparison with (5.14), we have that X; » 4 is supported in the set of times ¢ satisfying

—1+co —i+co
|t — TquJrl k| < Tqu+1 .

As a consequence of these definitions and a sufficiently large choice of Ao, if (i,k) and (i*, k*) satisfy
SUPD Xi,k,q N SUPP Xi* k+,q # 0 and ¢* € {i — 1,4,i+ 1}, then
SUPP Xi,k,g C SUDPP Xi* k* q- (5.18)
We can now make estimates regarding the flows of the vector field vy, on the support of a cutoff function.
The proofs of Lemma 5.8 and Corollary 5.10 are contained in [5, Section 6.4].
Lemma 5.8 (Lagrangian paths don’t jump many supports). Let g > 0 and (xo,to) be given. Assume
that the index i is such that V7 (xo,t0) > k*, where k € [{5,1]. Then the forward flow (X(t),t) :=
(X (xo,t05t),t) of the velocity field vy, originating at (xo,to) has the property that w?’q(X(t),t) > w*/2 for all

t be such that [t —to| < (5;/2>\qrzf)1)’1, which by (8.30) and (8.20) is satisfied for |t — to] < Tqu_Jiﬁ"‘c",

Definition 5.9. We define ®; . 4(x,t) := @1y (x,t) to be the flows induced by v, with initial datum at
time kTqF;f_l given by the identity, i.e.

(8,5 + ’qu . V)(I)i7k7q = O7 ‘I’i,k7q($, kTqu__f_l) =Xx.

We will use D®; xy to denote the gradient of ®(; ;). The inverse of the matrix D®; ) is denoted by

(DCID(M))A, in contrast to Dé(_ilk), which is the gradient of the inverse map @61,6).

Corollary 5.10 (Deformation bounds). For k € Z, 0 < i < imax, ¢ > 0, and 2 < N < 3Nmn/fo + 1, we
have the following bounds on the support of ; q(x,t)Xi k,q(t)-

HD(I)(NC) - IdHLoc(supp (Wi.q%ika)) S Fq_-i{l (5.19a)
1DV D610 g sy S Tt M (N = 1, 2Ning0 T, g ) (5.19b)
||(D‘I>(i,k))71 - Id||L°°(supp (Yi.qXik.q)) S F;il (5.19¢)
1D (D200 ™) o s (01 = Tt M (N = 12N, Ty Ay ) (5.19d)
1Y@ | g 0y S DM (V= 1 2Ni s TAgs ) (5.19€)
Furthermore, we have the following bounds for 1 < N 4+ M < 3Nsin/2:
DY DD 0 ) < 38 M O N D 7 0 (5190
DY D DN (D619) ™ e upp 1 < A M (M Ninats Ty 7 7 Toch) (5-19)

for all0 < N’ < N.
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5.3. Stress estimates and stress cutoff functions. Before giving the definition of the stress cutoffs, we
first note that we can upgrade the L' and L™ bounds for ; ;1 D* DM | Ry, available in (4.6a) and (4.6b),

respectively, to L' and L> bounds for v; ,D¥ D%I}D%gq. We claim that:

Lemma 5.11 (L! and L™ estimates for zeroth order stress). Let ]o%gq be as defined in (4.2). Forq>1
and 0 < i <'imax(q) we have the estimates

HDKDMRK |lL1(supp1/u,q) N F;CR(S‘IHM (K’2Nind"”>‘qrqax‘1) M (M’ Nind’t’FZJrclo (;1 I‘qul? 1) (5.20a)

IS DR, o gy S TEM (I 2Nina v AT, Ay ) M (M, N, 207, Ty 77 (5.20b)
for all K + M < 3Nsin /2,

Proof of Lemma 5.11. The estimate in (5.20a) parallels that of [5, Lemma 6.28]; the ingredients in the proof
were the L' bounds for the mollified stress, which are available from (4.6a) (see also [5, Lemma 5.1]), and
two lemmas regarding sums and iterates of operators. For the sake of clarity, we thus focus on the proof of
(5.20b), which follows the same strategy as the original proof of (5.20a). The only change is that we simply
substitute the L bound furnished by (4.6b) for each instance of an L' bound in the proof.

The first step is to apply [5, Lemma A.14], in fact Remark A.15, to the functions v = vy, _,, f = é@q,
with p = 0o, and on the domain Q = supp (¢;,4—1). The bound [5, (A. 50)] holds in view of the inductive

assumption (2 19) with ¢’ = ¢ — 1, for the parameters C, = I‘”’ld /2 Ao = Ap = Xq,l, Ly = l"Z Cor -

q—1 q— 17
fo = L 7, L, Ny = 2Njaw, N = Nina,¢, and for N = 3me/2 On the other hand, the assumption [5,
(A.51)] holds due to (4.6b), with the parameters C;y =T'c*, Ay = Aq, )\f = )\ , Ny = 2Ning,v, oy = I‘fIJFSTq:ll,

fp = 77__11, N¢ = Ning ¢, and Ny = 2Ng,,. We thus conclude from [5, Equation (A.54)] that
C Y ) 3 71
thq— 1RZ ||L°°(bupp(wzq 1)) ST (lal’QNind’v’)\q’/\q) (18], Nina., g7, 7 a— 1)

whenever |« + |3| < 3Nan/2. Here we have used that Xq_l < )\, and that Fé‘l‘ldq/_zlxq_l < TiH3r q L < ~q_11

(in view of (8.30), (8.32), and (2.13)). In particular, the definitions of v 4 in (5.7) and of ¢m,zm,q in (5.6)
imply that for all |a| + |3 < 3Niin /2,

|D>D}

1D B, anp (r.9y S T M (1] 2Nina s Ags Ag ) M (1Bl Nina o TiE 720 7 ) - (5:21)

The second step is to apply [5, Lemma A.10] with B = D; 41, A =uy -V, v = ug, f = ]o%zq, p = 00,
and Q = supp (¢;4). In this case DX(A + B)YM f = DKD%]]%%, which is exactly the object that we need
to estimate in (5.20b). The assumption [5, (A.40)] holds due to (2.18) at level ¢ (which holds due to
Proposition 5.6) with C, = T%416,/%, Ay = oA, A = Ay No = 2Ninas pto = Dit3rt i, = T, L7,
N = Ninga ¢, and N, = 3N /2 + 1. The assumption [ (A. 41)] holds due to (5.21) with the parameters C; =
l"g“, Ar = Ag, )\f = )\q, Ny = 2Nina,v, pf = I”HT Ty By = (P 17 N; = Nipa g, and N, = 3Nsin /2. The bound
[5, (A.44)] and the parameter inequalities I‘f]fld /2)\ < I" o2 (PR Fq+17'7 and I‘Ziﬁ q_l I‘;Jff (.
(which hold due to (8.31), (8.30), (8.32), and (2.13)) then directly imply (5.20b), concluding the proof O
Remark 5.12 (L' and L>™ estimates for higher order stresses). In order to verify the inductive
assumptions in (2. lOa) and (2.10b) for the new stress éq.l.l, it will be necessary to consider a sequence of
intermediate objects Rq,n indexed by n for 1 < n < nyax. For notational convenience, when n = 0, we define
Rq 0= Rg , and estimates on Rq o are already provided by Lemma 5.11. For 1 < n < Tmax; the higher
order stresses wan are defined in Section 7.1, specifically in (7.1). Note that the definition of qun is given
as a finite sum of sub-objects H g‘/n for n’ < n —1 and thus requires induction on n. The definition of H "l is
contained in Section 7.3, specifically in (7.21). Estimates on H” on the support of ¢, 4 are stated in (6. 13a)

and (6.13b) and proven in Section 7.4. For the time being, we assume that Rq n 18 well-defined and satisfies

|D*Dy, fi’quLl(suppwi S 0g, n A QM (m, Nina e, Tip Sy T 7 ) (5.22)
lle oq nllLoc(bupp»LpL ) ~ FC F;i{("))\k M (ma Nind,t7F;+(:107—71 Fqil? 1) (523)

for k +m < Ngpn.
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For the purpose of defining the stress cutoff functions, the precise definitions of the n-dependent parameters
3¢+1,ns Agn> Nfinn, and ¢, present in (5.22) are not relevant. Note however that the definition for A, for
0 <1 < Nmax is given in (2.7a). Similarly, for 0 < n < Nmax, 041, is defined in (2.7¢). Finally, note that
there are losses in the sharpness and order of the available derivative estimates in (5.22) and (5.23) relative

o (5.20a) and (5.20b). Specifically, the higher order estimates will only be proven up to Ngy, n, which is a
parameter that is decreasing with respect to n and defined in (8.29). For the moment it is only important to
note that Ngn n > 14Ny v for all 0 < n < npax, which is necessary in order to establish (2.9a) and (2.10a)
at level ¢ + 1. Similarly, there is a loss in the cost of sharp material derivatives in (5.22), as ¢, will be a
parameter which is decreasing with respect to n. When n = 0, we set ¢, = ¢ so that (5.20a) is consistent
with (5.22). For 1 < n < Npax, Cn is defined in (8.27).

For ¢ > 1,0 <4 <'ipmax, and 0 < n < npax, we keep in mind the bound (5.22) and define

C\lt x Cut t

gzqn T, t =1 + Z Z 6q+1n q+1)‘q, ) Qk(FZJrcln—i_QTq_l) 2m‘DkDZLq‘éq,n(x7t)|2 . (524)
k=0 m=0

With this notation, for j > 1 the stress cut-off functions are defined by

Wigian(@t) = Vo1 (Dot gin(@.1)) (5.25)

while for j = 0 we let
@500 (@:8) = Po.041 (910 (@,1) ) (5.26)

where 1 q4+1 and {/;O,qul are as in Lemma 5.1. The cutoff functions w; j q.n defined above will be shown to
obey good estimates on the support of the velocity cutoffs ¢; ,. An immediate consequence of (5.1) with
m = 0 is that for every fixed i, n, we have

Wi =1 (5.27)

CVE/BL
320

on T? x R. Thus, {w?; ,,,};>0 is a partition of unity.

The following Corollary is quite similar to [5, Corollary 6. 34] In fact the method of proof of that Corollary
applies mutatis mutandis after replacing each instance of Rq n,p and Mg, p With R n and Agp, and so we
omit the proof.

Corollary 5.13 (L*> estimates for the higher order stresses). Forq¢ >0, 0 <i < ipax, 0 <1 < Npax,
and o, B € NE we have

> 2(5+1 i—Cn 2 — 1 ~—
HDQDEQRQ)"HLOO(suppwi‘qwi‘j,q,n) SJ Fqul )6Q+1an<rq+1AQ:n)|alM <|16|7 Nind,t7Fq+1 * 1 1—‘q-‘,-l q 1) (528)

for all |a| 4+ |B] < Ngpn — 4.
The next Lemma provides estimate on the maximum value of j for which ; qw; ; q,» may be non-zero.

While the proof is similar in spirit to [5, Lemma 6.35], we include the proof since propagating sharp L
estimates of the stress is one of the crucial new ideas in this paper.

Lemma 5.14 (Maximal j index in the stress cutoffs). Fiz ¢ > 0 and 0 < n < nyax. There exists a
Jmax = Jmax(q,n) = 1, which is bounded as

. 1 C,+3 28b?
max\4» S -2 529
mes(avn) < 5 (24 224 2 (5.29)
such that for any 0 < i < imax(q), we have
¢i,q Wi,j,q,n =0 fO’)“ all ] > jmax'
Moreover, assuming that a = g is sufficiently large we have the bound
2Jmax(q,n — 14T n)+3
romexlem) < plug 1) prTm s, (5.30)
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Proof of Lemma 5.14. We define jyax by

_ 14T(n)+2
IOg(FC 5q+1 n) q+1 (5 31)
log(I'g+1) . .

. . 1
Jmax = Jmax(Q7n) = 5

To see that j,.x may be bounded independently of ¢ and n, we note that (5q 10 S0 _&2, and thus

. C,  log(0,}2) Cy 28b°
Vjmax < 14 —% + —2F22 4 gy 2534 44
Jmax < 1+ - +10g(rqﬂ)+ (n)+2 =3+~ Ly

Thus, assuming that a = Aq is sufficiently large, we obtain that
C 28b?

2.max ) §4 — /17 1N 14T max . 2
s (0,7) 4 50+ T LT () (5.32)

+147(n) as q— 0.

forall g > 0 and 0 < n < nyax.

To conclude the proof of the Lemma, let j > jinax, as defined in (5.31), and assume by contradiction that
there exists a point (z,t) € supp (¢; qwi jqn) # 0. In particular, j > 1. Then, by (5.24)—(5.25) and the
pigeonhole principle, we see that there exists 0 < k < Neyyx and 0 < m < Neye,¢ such that

T
. - i—Cn+2 —
| DD Ry (2,)| 2 ——=tee=0g 41,0 (Tg12q,n) (T 7 7, )™

= RN . N _ q+1 q
8Ncut,chut,t

On the other hand, from (5.20b) and (5.23), we have that

T(n i—Cn _—
IDF DI Ry (2, 8)] < TSHITIT T 0 (i -tym

The above two estimates imply that

T2, < TSHTE /BN xNewn o0y, < TSH20E o

g+1 g+1 q+1,n>

which contradicts the fact that j > jmax, as defined in (5.31). O
The following two lemmas correspond to [5, Lemmas 6.36 and 6.38], respectively. As with Corollary 5.13,

the method of proof applies mutatis mutandis after dropping the unnecessary subscript p. We therefore refer
the reader to [5] for further details.

Lemma 5.15 (Derivative bounds for the stress cutoffs). For ¢ >0, 0 <n < nyax, 0 <@ < ipax, and
0 < j < Jmax, we have that

N M
1supp¢i,q|D Dy qwi j.qm
1—(N+M)/Ngin

%,7,4,m

fOT all N + M S Nﬁn,n - Ncut,x - Ncut,t —4.

S (Fq+1)‘Q,n)NM (M7 Nind,t7FZ+(:1n+3 -t Fq_&1~(1_1) (533)

Lemma 5.16 (L" norm of the stress cutoffs). Let ¢ > 0 and define ¢+ 4 = (V7 Lg TV, + wz—i—l,q)
Then for r > 1 we have that

—2j /p
lwi.ganll L upp s o) S Taed (5.34)

holds for all 0 < i < imax, 0 < J < Jmax, and 0 < n < npax. The implicit constant is independent of i, j,q,n

5.4. Anisotropic checkerboard cutoff functions. We construct anisotropic checkerboard cutoff func-
tions which are well-suited for intermittent pipe flows with axes parallel to e3. The construction for general
¢ € = follows by rotation. Consider a partition of T? into the rectangular prisms defined using

{(1‘1,3?2,.733) S T3 :0< Ty, T < CFFq+1 (/\q—i-qu—i-l,n)_l s 0<z3< 277/\;;} (535)
and its translations by

(ZICFFQ-H (/\q+17’q+1,n)717 12CrT g1 (/\q+1rq+1,n) 32T, n)

for

il €{0,...,Crfanl L A gqargann — 1}, I3 €{0,..., A — 1},
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where Cr > 1 ensures that the prisms evenly partition [—m,7]* and is bounded above independently of g.
Index these prisms by integer triples I = (I1,12,13). Let Xq s i be a C°° partition of unity adapted to this
checkerboard of anisotropic rectangular prisms which satisfies

S (XD =1 (5.36)

l

for any g and n. Specifically, we impose that spatial derivatives applied to cutoffs belonging to this partition
of unity cost = Fq+1()\q+17“q+1,n)_1 in the x; and z, directions, and ~ A~! in the x5 direction, so that

q,n
My My oM —1 \Mi+Mz y pp
||81 10y 203 Xq’n’es’l_.HLoc < ()‘q+17"q+1,nrq+1) e )‘q,ﬁ

for My, My, M < 3Ng,. Furthermore, for l_:l_;‘ such that

we impose that
=0.

X .
gn,es,l “Tgn,es,l

Incorporating rotations into the above construction, we may similarly produce cutoff functions Xq ne. Sat-

isfying analogous properties for £ € Z. Note that if {£,¢’,£”} forms an orthonormal basis for R?, then

M M. _1 \Mi+M
1€ ) (€)Y X edllie S Aarrrgrinlgd) AR (5.37)
Definition 5.17 (Anisotropic checkerboard cutoff function). Given ¢, £ € Z, 0 < n < npax, ¢ < imax,
and k € Z, we define
Cq,i,k,n,{,f(m7 t) = Xq,n,&,f(@i>k7q(m? t)) . (538)

These cutoff functions satisfy properties which we enumerate in the following lemma.

Lemma 5.18. The cutoff functions {Cq,i7k,n,£,f}f satisfy the following properties:
(1) The material derivative Dy (G, ;. o ) vanishes.
(2) For eacht € R and all x = (w1, 32,23) € T3,

2
Z(Cq,i,k,n,g,f(xvt)) =1. (5.39)
r
(3) Let A= (V®;4)"". Then we have the spatial derivative estimate

||1)N1 D%I(ngzaj)I\b Cq7i7k,nvf7fHL"°(Supp Vi qXi,k,q) S (Fq_il/\q—i_qu-’_l’n)

X M (M, Ninae, 03971 70T 0) - (5.40)

N1 Ny
)\Q»n

for all Ny + No + M < 3Nen/o 4 1.
(4) There ezists an implicit dimensional constant C, independent of q, n, k, i, and | such that for all
(%,1) € SUPP Yi,qXi,k,q: the support of ¢, . 7 (-,t) satisfies

diam(supp (€, 1 e 1 (+1) S Mgl (5.41)

Proof of Lemma 5.18. The proof of (1) is immediate from (5.38). (5.39) follows from (1) and (5.36). To
verify (3), the only nontrivial calculations are those including the differential operator (€°A470;). Using the
Leibniz rule, the contraction

ggA-zaqu,i,k,n,ﬁ,f: fZA; (8qu,n,§,f)(q)i,kﬂ)ajq);?k,q = gm(aqu,nygf)((I)i,k,q) )

(5.37), and (5.19g) gives the desired estimate. The proof of (5.41) follows from the construction of X, . -
and the Lipschitz bound obeyed by Vv, on the support of ¢; 4; see for example (3.16). (]
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5.5. Definition of the cumulative cutoff function. Finally, combining the cutoff functions defined in
Definition 5.5, (5.25)—(5.26), and (5.15), we define the cumulative cutoff function by

ni,j7k7q,n75j(x7 t) = tiq(@, twijgn(, t)Xi,k,q(t)Cq ik, g ] r(@,t).

Since the values of ¢ and n are clear from the context and the values of £ and [ are irrelevant in many
arguments, we may abbreviate the above using any of

N jmamed (T ) = Migkane (1) = 0 (2, 1) = Yy (@, Dwig) (@, DX a0 ()0 (2, 1) -
It follows from (2.11) at level ¢, (5.27), (5.13), and (5.39) that for every (gq,n,§) fixed, we have
DD Mghagmer (T:8) =1. (5.42)
ij>0kEZ |

The sum in ¢ goes up to imax (defined in (5.12)), while the sum in j goes up to jmax (defined in (5.31)).
We conclude this section with support estimates on the cumulative cutoff functions n

BN RN
Lemma 5.19. Forry,ry € [1,00] wzth —|— = =1and any 0 < i < imax, 0 < J < Jmax, and & € =, we have
that v
b2 40
Z‘supp ”kqngl)’ Lot S (5.43)

Proof of Lemma 5.19. From (2.17) at level ¢ and (5.34), we have that for each fixed time ¢,

2 2 2 /2
|supp (¥i,4) N supp (Wi j,g,n)| < H P Tl Ui q) (@i jmtam + Wijan T Wiit1,0m) .
—2(i=1)+4C,  —2(j—1)
f, 1—‘qul ! I‘q+12

Using the fact that {n,,, . .7}y forms a partition of unity from (5.39) and % + % = 1 gives the desired
estimate. 0

6. INDUCTIVE PROPOSITIONS

6.1. Induction on ¢q. The main claim of this section is an induction on ¢. Notice that the estimates in this
proposition match the inductive assumptions (2.9) and (2.10) at level ¢ + 1.

Proposition 6.1 (Inductive Step on q). Given the velocity field ve, which solves the Euler-Reynolds
system with stress }D%gq +]O%;°mm, where vy, f?gq, and égomm satisfy the conclusions of Lemma 4.1 in addition
0 (2.8a)(2.21b), there exist vg41 = Ve, + Wqy1 and éq+1 which satisfy the following:

(1) vg41 solves the Euler-Reynolds system with stress }D?(H_l.
(2) For all k,m < TNipg,v, we have

sz quDanwq+1HL2 ]-—‘qul(S /2 +1M (m de tvrq+17_1 Fqil?_l) (61&)
HDth qwq+1HL°°(supp'L[)L ) = Fgfll(atlz/jl)‘kﬂ/\/l (m Ning tqu+1T qul?—l) : (6.1b)
(8) For all k,m < 3Nipg,v, we have
[¢3,q DX DY Ry ] 1 < TS dga iy M (my Nina e, TH 7, T 7 ) (6.2a)
HDanL q+1HL°° (supp ¥i,q) — F§+1A‘Z+1M (m det’Fl-‘rlT_l Fq-‘il;_l) : (62b)

6.2. Notations. The proof of Proposition 6.1 will be achieved through an induction with respect to 7,
where 0 <7 < npax corresponds to the addition of the perturbation wg41 5. We shall employ the notation:

(1) n - An integer taking values 0 < 7 < myax over which induction is performed, indexing the component
Wqt1,5 of the velocity increment wq41. We emphasize that the use of 7 at various points in statements
and estimates means that we are currently working on the inductive step at level n.

(2) n - An integer taking values 1 < n < ny,.x which correspond to the higher order stresses f%q,n. Occa-
sionally, we shall use the notation }D%qp = }D%gq to streamline an argument. We emphasize that n will be
used at various points in statements and estimates to reference higher order objects in addition to those
at level n, and so will satisfy the inequality n < n.
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3)

(4)

(8)

H ;L/n - The component of ]o%q,n originating from an error term produced by the addition of wgy1,,/. The
parameter n’ will always be a subsidiary parameter used to reference objects created at or below the
level 1 that we are currently working on, and so will satisfy n’ < n.

Pg,n) - We use the spatial Littlewood-Paley projectors P, ,,; defined by

P[A;/2>\2fqu+lﬁq‘1) lf n = 1 y
Plgn) = Pixgn i Agm) if 2 <n < npax, (6.3)
P~ ifn=nmax+1,

—7'q;Mmax
where P, y,) is defined in Remark 3.4 as P>y, P.,,. Errors which include the frequency projector
Pl nmar+1] will be small enough to be absorbed into }o%qH. We note that if 0 < n < nyax, then from

(2.7b), any %—periodic function satisfies
q q s
Nmax+1
f= - FHPo s f = - F+ D Pyl (6.4)
n=n-+1

In order to later deduce a useful refinement of (6.4), we set

_ 0 .f~207
o =0 (6.5)
Pt f ] <7< My — 1

In order to keep track of small losses related to the process of building a stress }?qﬁ, corrector W17,

o

and new stresses R, ,, for n > n, we define

0 ifn=0,
1 if 1 < < fmax

T(n) = g 2 o (6.6)
k if 5= Nmax <N < 55 Nmax

2 4 [logs(Nmax)] i 7 = Nmax -

Y (n) gives an upper bound on the number of steps in the induction on 7 it takes to produce the entire
error term R, 5. A consequence of (6.5) and (6.6) is that

n > r(n) = T(n)>7Tm)+1. (6.7)
To prove this, first consider the case n = nyax. Then for all 0 < 71 < nyax — 1, we have that 7() < nmax,

and so (6.7) should hold for all T < nyax. Since . < Nuyax, there exists a minimum value of k, say kg,
such that 72 < npax — 92, which implies that T(n) < k7. For k = [logs(nmax)] + 2, however, we have

n
Mmax

that Nmax — 522 > Nmax — %, and so it must be the case that ki < [logy(nmax)] + 1, which proves (6.7)
in the case n = npyax, and shows that

T(n) <2+ [logs(nmax) ] Vn < Nmax - (6.8)

To prove (6.7) in the remaining cases, note that if » = 0, then n > 7(0) = n > 1 and so (6.7) holds.
If i = 1, then n > ™maxtl and again (6.7) holds. Finally, if 2 <7 < npax — 1 and Y(7) = k, then

k—1
n M Nmax + 2g=rn 2k —1
n> ma);"‘ > max ;k T Mmax o Nmax — T(n) >k+1.

]?ig 1 - For any 0 <7 < npyay — 1, this is any stress term which satisfies the estimates required of }G%QH
and which has already been estimated at the n'" stage of the induction; that is, error terms arising from
the addition of wyy1,, for n’ < n. We exclude Ro™™ from Ry, only absorbing it at the very end

when we define ]D%qul. Thus

Rgill = éfjﬂ + (errors coming from wg41 5741 that also go into éq+1) . (6.9)

We adopt the convention that ]O%q__&l =0.
We adopt the convention that Z;io f(n) = Y lmex (n) = 0 denotes an empty summation.

N=Nmax+1



6.3. Induction on n. We split the verification of Proposition 6.1 using a sub-inductive procedure on the
parameter n. Note that summing (6.11a)-(6.12b) over 0 < i < npax, appealing to (8.43) and (8.48), and
using the extra factor of Fq_jl to kill implicit constants, we have matched the desired bounds in (6.1a)-(6.2b).

Proposition 6.2 (Induction on n: From 1 — 1 to n for 0 < 71 < nyax). Under the assumptions of
n—1

Proposition 6.1 and Lemma 4.1, we let 0 <1 < npax be given, and let vy 51 = ve, + E Wat1,n/ 5 Rq+1 s

and Hg,n be given for 0 <n’ <n—1 and 1 < n < nyayx, such that the following are satzsﬁed.

(1) vy m—1 solves the Euler-Reynolds system with stress

Mmax

17- O}Rg +Rq+1 + Z Z +égomm. (6.10)

n’=0n>r(n’)

(2) For all k+m < Nfnn — Newtt — Neut,x — 2Ngec —9 and 0 <n/ <n —1,

k /2 3 k i—cytd ~—1
HD D?qquan’HLz(suppwi,q) S 5q+1 n'rq+1>‘q+lM (m,de t) g 1—‘q+1 1 Tq 1—‘q+1) (6'113)
k T(n)+L 1 k i—cn+4 1 ~—1
HD Dglqwq+17”'HLoo(suppw ) NF ; Fq-&-l 2rq+17n')‘q+l'/\/l (m,de ) Tq Fq-&-l Fq+1 q ) : (6'11b)
(8) For all k,m < 3Ning,y and 1 <7 < nyax,
Cr—1 il 1 el e
[ i,g DE D REH| 0 S TS 0ga2 A Ly M (my Nia e, TH 71 T 7Y (6.12a)
kD Cu—1y i -1 p-1 =1
|D* Dy Ry HL°° (suppng) > L1 A b1 M (M Ninae, T 7 L T 7Y (6.12b)
(4) For0<n’ <n—1, r(n') <n < nmax, and all k+m < Ngy n,
k ym n k i—Cp ~—1p—
HD Dy H n||L1(5upp1/)lq) S Og+1,nAg M (m,de ) Tq Fq+cl’ q I‘q+1) ) (6.13a)
kprym rrn C,p14Y(n) yk
1D Dy i | e suppe oy S DT M (1m0, Nina e 7 T35 7 T ) (6.13b)

Then if 0 < 1 < Nmax — 1, there exists wyi1 5, }?gﬂ, and H” for 0 < n' <n, such that (6.10)—(6.13b)
are satisfied with n — 1 replaced with . If N = Nmax, then there exists weti,n,,. and Rq+1 such that

Vg1 = Vg mmax—1 + Wat1,nma SOlEs the Euler-Reynolds system with stress ]-qu+1, and vgi1, Wey1, and Io%q_H
satisfy conclusions (6.1a)—(6.2b) from Proposition 6.1.

7. PROVING THE MAIN INDUCTIVE ESTIMATES

7.1. Definition of éq,ﬁ and wg41 5. In this section we define the stresses ]D%qﬁ and the perturbations wgy1 5
used to correct them. For 0 < 71 < nyax, we define

Rym = l{ﬁ:()}Réq + Z Hg,ﬁ . (7.1)
0<n/<m—1

In Subsection 7.3, we will show that H ”~ is zero in certain parameter regimes, although for the moment this

is irrelevant. Now for any fixed values of n, 1, j, and k, we may define

r2i+4
Ry = VO (S0 aTok 1 = Ry ) VOF (7.2)
Let £ € = be a vector from Proposition 3.1. For all £ € =, we define the coefficient function Qe ik il by
R ~
— R rit2 q:1,3,5,k
Ueijkygml "= Higk.an == A = 6q+1 L g1 kg, 7.6,0 V6 (5 F2J+4> . 7:3)
q+1,n+ g+1

From Corollary 5.13, we see that on the support of 7; ; ) we have |]i2q15| < Fiﬁi%qﬂﬁ, and thus by estimate

(5.19a) from Corollary 5.10, we have that

Rq n,J,i,k
——bon . [d
6 1—\2]+4

q+1,nt g+1

-1
g+1 < 2

once g is sufficiently large. Thus we may apply Proposition 3.1.
28



The coefficient function a) is then multiplied by an intermittent pipe flow
V(I)(_Z k) Wg q+1,7 o (I)(z k)»

where we have used Proposition 3.3 (with A = A\j41 and 7 = rgy; 5) and the shorthand notation

We gpim = WEPFHPD oy : (7.4)

&, >\q+17rq+1 7 EAg+1:Tg+1,7
The superscript s = (i, j, k, ﬁ,f) indicates the placement of the intermittent pipe flow Wéjqilﬁ 75 (cf. (2) from
Proposition 3.3), which depends on i, j, k, 7, and ['and is only relevant in Section 7.5. To ease notation, we
will suppress the superscript except in Section 7.5. We will also adopt the same notational conventions for
the potentials Ug¢ g117. Furthermore, (3.8) from Proposition 3.3 gives that we can now write the principal
part of the first term of the perturbation as

+1 5 Z Z Z a(gcurl (V(I)(l wyUe,g+1, © (i, k)) Z Z Z we (7.5)
5.k [ ik T

The notation we) implicitly encodes all indices and thus will be a useful shorthand for the principal part of
the perturbation. To make the perturbation divergence free, we add

W= ZZW(@ x (V0L U1 0 Piny) = D ZZ“’( (7.6)

iJ,k T iJ,k T
so that
We+1,n = wz(zi)l,n 221 i Z Z Z curl (“(E)V‘D(z mUeq+1,7 © P, k)) (7.7)

gk T

7.2. Estimates for wy; 7. In this section, we verify (6.11a) and (6.11b). We first estimate the L™ norms of
the coefficient functions a(¢). We have consolidated the proofs for each value of 7 into the following lemma.

Lemma 7.1. For N, N', M with N' = 0,1 and N+ N'4+M < Ngy, 5 —Neut,t —News,x —4, and r, 71,72 € [1,00]
with i + i =1, we have the following estimate.

1/r g1/ j+2 (-1 N
e 5 |Supp (771',77 k,q, 7€, l)' / 6qjl nF?H-l (Fq+1)‘q+qu+l ﬁ)

X (Fq+1>\q,ﬁ) M (M7 Nlnd 6 Tq Fj]+(:1n+3,~q_11—‘q+l) (78)

| DN DM (8470,

€7i,j7k7qﬁ,l‘

In the case that r = oo, the above estimate gives that

'7T(n)-|—2 1 N
E i,5,k,q,n l||Loc ~ F Fqul (Fq+1Aq+1rq+17”)

X (DgsaAg)™ M (M, Nipa, 7, T2, 7T ) - (7.9)

Proof of Lemma 7.1. We first compute (7.8) for the case r = co. Recalling estimate (5.28), we have that for
all N+ M < Ngpw —4,

NP M B 2j+2 N i—cat2 ~— 17—
HD Dtquq’ﬁHL“’(SLlpp'r](iJ’k)) S 5q+1»ﬁrqil Tg41Aqm)” M (M’ Nind,t, T, q Fq+c1 ' Tq 111q+1)
From Corollary 5.10, we have that for all N + M < 3Nan /2,

|DY D} Do <M (M N, Ty 7 T

IDY DY (€ A70,)™

(i,k)HLoo(supp (wi,qu,k,q))
Thus from the Leibniz rule and definition (7.2), for N + M < Ng, 5 —

7

N i—Cgx ~
DN DM Ry S Sl (o) M (M N, 7, s, 7000 ) - (7.10)

Z’kHL“ (suPP n¢i,5,%)) ™ ' Tq
The above estimates allow us to apply [5, Lemma A.5] with N = N, M = M’ so that N + M < Ng, 5 — 4,
V=", Iy =1, v=1, Dy = Dy g, h(z,t) = Ryzjin(2,t), Ch = dg11, nfszl =T% A= X = Agilg+1
= r*lrgflﬁz, fi=7,"T,}, and Ny = Ninqc. We obtain that for all N + M < Ngy 5 —

R

N M q,n,,%,k

DN DM e (5 FM)
q+1,7,pt g4+1

7

N T at2 ~— -
5 (FfH-l)‘qﬁ) M (MaNlnd ts T q Fq+c1 + 5 q 1Fq+1> .

Leo (supp 0, j,k))
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From the above bound, definition (7.3), the Leibniz rule, estimate (2.23) at level ¢ in conjunction with (8.35),
(5.19g), (5.16), (5.33), and (5.40), we obtain that for N + N’ + M < Ngu 5 — Neug,x — Newt,t — 4,
| DV DM (°A)0,)N

/2 J+2 -1 \N
aﬁ,id,k,qﬁ,fHLm S 5q+1,ﬁrq+1(Fq+1/\(l+1rq+1vn)

% (Cqpidq ) M (M, Nipao 7y T2, 71T )
Then, using (5.30) the above bound becomes (7.9). When r # oo, we use || f||,» < || f|l.~ |{supp f}|"/" and
the demonstrated bound for r = oo to obtain (7.8) for the full range of r. O

An immediate consequence of Lemma 7.1 is that we have estimates for the velocity increments themselves.
These are summarized in the following corollary. The proofs for r # oo are analogous to those from [5,
Corollary 8.2] and therefore use Lemma A.1. We only note that the gap between the spatial derivative cost
of ag) ()\q+1rq+1’ﬁF;+11 from Lemma 7.1) and the minimum frequency of We 115 (Aq+17¢41,7 from (7.4)
and Proposition 3.3) is now only I';11, and so we need the inequality (8.37) in order to satisfy (A.2). The
assumption (A.1) follows from (8.58a). The estimates for r = co follow directly from (7.9) and (3.6).

Corollary 7.2. For N + M < N5 — Neut,t — Newtx — 2Naec — 8 and (r,7m1,72) € {(1,2,2),(2,00,1)}, for
w(ey we have the estimates

N M 1/r sl j+2 214N —1pi—ca+3 =—1p—1
HD Dt,qw(£)| Lr 5 |Supp (ni}j7k,qﬁ’§f>| / 5qf1’ﬁré+1<rq+l,ﬁ>r )\q+1M (M7 Nind,taTq 11—‘;_:,_61 y Tyq 1Fq+1)
(7.11a)
- G T+ 5 i3 ~—1pe
IDY DMwie) | S Tt aAmia T Tyt M (M N Tos 2 7 T ) (7.11b)
For N+ M < Ngp i — Neut,t — Neut,x — 2Naec — 9 and (r,7r1,7r2) € {(1,2,2),(2,00,1)}, we have that
N M, (c) Ag+1Tq+1,7 1/, ¢1/2 i+ 2.4
HD Dtvqw(f)’ L S A1 |supp (ni,j,k,q,ﬁ,g,f)l / 6q+1,ﬁré+1(rq+l,ﬁ)
—1pi—cst+3 ~—17—
AR M (M N, 7 T2, 71T L ) (7.12a)
NpM, (0) 1 AgHTgrLE S R TT@E)+E  N i d3 ~—1pe1
||D l)lfvfluj(g)||LOo Srq-‘rl,ﬁ A qu Fq-‘,—l 2>‘q+1'/\/l M7Nind,ta7—q F';+c1 » Tq Fq+1 (712b)

g+1

Remark 7.3. Note that the above estimates verify the bounds (6.11a) and (6.11b) after summing on
(1,7,k,m,&,1) and using (5.43) with 7 = oo and ro = 2. Then from (7.5)—(7.7), (7.11a)—(7.12b), and the
parameter inequalities (8.25), (8.43), and (8.48), the bounds (6.1a) and (6.1b) follow after using the extra

factor of Fq__il to absorb implicit constants.

7.3. Identification of error terms. Recall that v,7_1 is divergence—freoe and is a solution to the Euler-
Reynolds system with stress given in (6.10). Now using the definition of R, 5 from (7.1) for 0 < 7 < nyax,
we add wg41,7 as defined in (7.7), we have that v, 5 1= vg7-1 + Wyt1,7 solves
n—1 Mmax
Ovgs + div (Vg5 © vg5) + Vpga-1 = div (fzj;f) +div (Z > ﬁ;;) + div Reem™
n’=0n>r(n’)

+ Dt qWgt1,n + Wat1,i - Vg, + 2 Z div (wg41,n ®s Wy+1,7)

n/<n—1
+ div (’wq+1ﬁ ® Wyy1,7 + éq7ﬁ) . (7.13)

Here we use the notation a ®sb = 2(a ® b+ b®a). The first term on the right hand side is R?_:ll, which for
n > 1 satisfies the same estimates as Ry, ; by (6.12a) and will thus be absorbed into Ry, ;. The second term,
save for the fact that the sum is over n’ < 7 — 1 rather than n’ <7 and is therefore missing the terms H ;n,
matches (6.10) at level n (i.e. replacing every instance of n — 1 with n). We apply the inverse divergence
operators from Proposition A.2 to the transport and Nash errors to obtain

Dy qwgi1,n + Wet1,m - Vg, = div ((H +R7) (Dt,qwtﬁrlﬁ tT Wet17 - qu)) + Vm,
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and these errors are absorbed into R’Z 1 or the new pressure. We will show in Section 7.5 that the interaction
of wg41,7 with previous terms wg41,, is a Type 2 oscillation error so that

2 ) weprw @ e =0. (7.14)
0<n’<n—1

So to verify (6.10) at level 7, only the analysis of last line of the right-hand side of (7.13) remains.

—

For a fixed 7, throughout this section we will consider sums over indices (,1, j, k, 1), where the direction
vector £ takes on one of the finitely many values in Proposition 3.3, 0 < i < i.x(q) indexes the velocity
cutoffs, 0 < j < jmax(q,n) indexes the stress cutoffs, the parameter k € Z indexes the time cutoffs defined
in (5.15), and lastly, e N} indexes the checkerboard cutoffs from Definition 5.17. For brevity of notation,
we denote sums over such indexes as

>

€i,5.k,0

>

#{€,4,5,k, 0}

the double-summation over indexes (&, 1, j, k,f) and (£*,4%, j*, k*, l_;*) which belong to the set
{6001 (€8 5 W ) s €A € Vi ATV £ VR AR VAT
We may now write out the self-interaction of wq41 7 as

div (Wgt1,5 ® Wey1,5) = Z div (curl (a(g)VQak)Ug’q_Hﬁ) ® curl (a(g)VQZkU&qHﬁ))

Moreover, we shall denote as

gkl
+ Z div (curl (a(g)Vé(Ti,k)Ug,qHﬁ) ® curl (a(g*)VqD%;*,k*)Ug*’qHﬁ))
#{&,.,k,0}
=:div Oz ,1 + div O3 2. (7.15)
We will show that O 2 is a Type 2 oscillation error so that

Oz2=0. (7.16)
Splitting Oz 1 gives

divOss = Y div ((a<s>V‘I>&,1k>Ws,q+1,ﬁ 0 D(i ) ® (ae) VO We g1, © ‘I’u,k)))
&gk,
+2 3 div ((a@ VOG5 Weaqrim 0 Pi) @ (Va x (VOF 4y Ueaiiino Pin)) )
&gk,
+ Y div ((Vag x (VOF g Uearin © 2)) © (Vg x (VOF 1y Ui 0 P)) )
gkl
= div (057171 + 057172 + 057173) . (717)

The last two of these terms are divergence corrector errors and will therefore be absorbed into R? 1 and
estimated in Section 7.6. So the only terms which we have yet to identify from (7.13) are Oz 11 and éq’ﬁ.
Recall cf. (7.4) that W¢ ;11 5 is periodized to scale (/\q+1rq+1ﬁ)_1. Using (6.4), we have that

Nmax+1

Wegi1,7 @ We g7 :]{rs Wegr1n ® Wegria+ D Pim Wegrra ® Wegiia) -

n=n+1

Using (4) and (3.9) from Proposition 3.3 in combination with the above identity, and the convention that e
denotes the unspecified components of a vector field, we then split Oz 1,1 as

div (O51) = Y div (aé)v%}k) (E®¢) vqﬂTk))
IXRN
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Nmax+1
+ ) div <a(5 VO L D Pl (WO We g1 (R(ik) VO, k)>
£,z,j,k,l n=n+1

; R,
. 25+4 7,71,k — —
= div Z 5q+1,ﬁf‘qﬂ U(Qi,j,k)’YgQ <5 i ]2]+4> V‘P(i}k) (E®¢) V(I)(i,jl;)

Eigk, a1l
Nmax—+1
-1 —
+ ) VaigVeRh D P (W Weg1m(Pur) Ve,
§,i,j,k,f n=n-+1
Nmax—+1
— 0 —
+ Y aly(VO)E D Pl (WIW)e g1 5 (Rii))0a (VL) - (7.18)
{,i,j,k,f n=n+1

By (3.1) from Proposition 3.1, identity (7.2), and (5.39), we obtain that

R,
j+4_ 2 i,k 1 -T
Do D dqwal il s 1k (5112]+4> V&) (E®E) Ve,
ig.kE T g+1,nt g+1

. R, ~ ..
_ _p2j+4,,2 2 2 2 q,1,5,%,k -
= E : 041, L1 VigWij.q.mXi kg Ve <5 2j+4> zk) (€®8) Vq’(z k)

RN a+1algh
2 2 2 2 +4
=D Ul Xi kg (5q+1 AT Td - R, )
irj.k
2j+4
= Rq 7+ Id(z 7/}1 ,q z,],q,an k q5q+1 nrqil > 5 (719)

3,5,k

where in the last equality we have appealed to the fact that 77227 ;. forms a partition of unity, cf. (5.42). The
second term on the right hand side of (7.19) is a pressure term.

Returning to the second and third lines in (7.18), we first note that when n = 0, (2.7b) gives that
A+17g1,0 = MM Tgt = MM Tar1. Then from (6.3) and (7.4), for all 1 < n < nyax + 1, we
deduce that P ,,) (We g41,0 ® We g11,0) # 0. Conversely, when 1 < 7 < npax, for all n > 7+ 1 such that
Agn < /\;{il)\;/iF;H, i.e. such that the maximal frequency of P, is less than the minimal frequency of

Po (We 11,5 @ We g41.5), we have that Pjg ) (We g41.5 @ We g11.5) = 0. Using (2.7a), we write that

1

i 1+ L+

2 2(7"m'1x+1) 2 2(7"m'1x+1) 2 4<"m'1x+1) 1 4<"m'1x+1) 2
¥ AL <A Ay ;2

n—2n n—2n

er m _
PN )\; a( F1) <>\4 a( +)]:\qul
& 2p<ip_nTm

c Sy mmen

US4 A(nmax + 1)
& 8er(Nmax + 1) < Mmax + 1+ 7 —2n

max n 1

= ngni;”, 5~ 4er(tmax + 1) > 0. (7.20)

The second inequality in the last line follows from (8.6a). Based on (7.20) and (6.5), we apply Proposition A.2
in the parameter regimes 7= 0,1 <n < npax and 1 <7 < npax — 1,7(0) = M < 1 < Nmax to define

Hyp = H( D Vi VO Pl (We g1 @ Wegi13) (200 V)
£)i7j)k

+ D 4l (VO 6Pl (WE g1 a WY 1 72)(P(6.0)0a (V)5 ) (7.21)
&,1,7,k

The terms from (7.18) with Prg ,, . 4] will be absorbed into Rq 1. We will show shortly that the terms H ;ﬁn
in (7.21) are precisely the terms needed to make (7.13) match (6.10) at level 7.
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Recall from (6.9) that Rq 1 will include RZ +11 in addition to error terms arising from the addition of

Wqt1,7 which are small enough to be absorbed in Rg:1. Then to check (6.10), we return to (7.13) and use
(7.14), (7.15), (7.17), (7.18), (7.19), (7.20), (6.5), and (7.21) to write

Ovg,m + div (vg7 ® vq ﬁ) + Vpg -1

Mmax

= div Rcomm + div ( Z Z ) + div (R;L_Hl)

=0n>r(n’)

+ Dt gwqi1m + Wiz - Vg, +div (Og 10 + Og 1 3) + div (Oﬁ,l,l + Rq,ﬁ)

= div Rcomm + div ( Z ”sz‘ H; n)

=0n>r(n’)

+ div <Rq+1 + (H+ R*) (De,qwqi1,i + wgs1,n - Vo) + Orp2 + 05,1,3) +Vr

Nmax+1
+div[(H+R* ( D Vai Vo, Y P (W W)e ga(®im) Ve[ k)>

&gk, n>r(n)
nmdx+1
+(H+ R*)< S @ (V)8 Y Pl (WOW)e g1, (R0.0)0a (VL)Y )] (7.22)
5 i3,k 0 n>r(n)
= div Re™™ 4 div ( > > H > +divRl | + Vr, (7.23)
=0n>r(n’)

where

o?+1 Rqul + (H + R*) (Dt’q’wq_;'_lﬁ + wq—i—l,ﬁ . vaq) + (H + R*)dlv Oﬁl’g + O»’,‘L71,3 + 7TId

+H ( > Vaiy VO Pyt (W E W)£7q+l,ﬁ(q)(i»k))vq)(i£))

&gkl
+H( D 4l (VO )8 Pl a1 (WOW)e 411 55 (R (i 1)) D (V‘I’(zlm).)
XN N
Nmax+1
R( 3 Ve vl M P[q,n](Wé@W)s,q+1ﬁ(‘1’<i,k>)w’&£))
ik, n>r(7)
Nmax+1
+R*( D i (VOL)E D Plaml(WW)e gi1.3(P(i.k)) O (v@@b)') (7.24)
ikl n>r (i)

We emphasize that to obtain (7.23), we have used that the Type 2 oscillation errors from (7.14) and (7.16)
will be shown to vanish. The equality (7.23) completes the proof of (6.10) at level 7.

7.4. Type 1 oscillation errors. Recall from (7.23) that there are two main . categories of Type 1 oscillation
errors which arise from the addition of wq41 7: the higher order stresses H, gn, which are defined and non-
vanishing in (7. 21) in the parameter regimes 7 = 0,1 <1 < Nyax and 1 <0 < Npax, 7(M) < 1 < Npax, and
the portions of Rq 11, which are defined in the last four lines of (7.24). To estimate these error terms, we
will first analyze a single term of the form

(H +R¥) ( D Vi VO Pl (We g1 © Wegi1.5) (R ) VO
&gk,

2 -1 \ao 0 —1 e
+ “(s)(W’(i,m)e?’[q,n](Waqﬂﬁwg,qﬂ,ﬁ)(‘I’u,k))aa(w’(i,k))w)
&gkl
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= Ops + OF (7.25)

n,mn
where o refers to the unspecified components of a vector field, and superscripts on We 441 7 refer to com-
ponents of vectors over which summation is~performed. In the above display, we allow 0 < 1 < nyay and
r(n) <n < Npax + 1, thus including both H;',, from (7.21) and all Type 1 error terms in (7.24).
Lemma 7.4. The terms Op 5 and O,  defined in (7.25) satisfy the following estimates.
(1) For all error terms O} ~, which are the outputs of R*, we have for all N, M < 3Nij,q . that

N M % N-1_—M
HD Dt,qon,ﬁHLoo < 6Q+2)\q+1 Tg - (7.26)
(2) For 0 <7 < npmax and n = Nmax + 1, the high frequency, local part of the Type 1 errors satisfies
—Cr—1 i td 1 ~—
IDY DOt 1 1 upp 1y S Tt Bar2Agia M (M, Nina e, 75 TG4 oL 7 1) (7.27a)

N M Co—1\N —lpi—cit+4 p—1 ~—1
DN DY O, e app iy S Tt A M (M, N 7, o T 7 (7.27b)

for all N, M < 3Nipq. .
(8) For 0 <N < Nimax and 7(n) < n < Numax, the medium frequency, local part of the Type 1 errors satisfies

N M N Api—citd =1 ~—1

HD DtvqonvﬁHLl(suppwiyq) SJ(SQ‘H-;nAq,nM (M? Nind,t;Tq Fq_;,_l ;Fq+17—q ) (7283.)
NpM Cupl4Y(n) N —1pi—ci+4 p—1 ~—1

1PN D0l e upp oy S Ta Tan A M (M, Nina,o, 7y Ti55 4 T L 7 ) (7.28b)

for all N + M < Ngp n.

Remark 7.5. In order to verify (6.13a) for n’ = 1 and r(n) < n < Nyax, we first note that O, 5 = ﬁgn,
and the inequality I‘f;rcl“""l < I‘f;cf‘ , holds from 7 < n — 1 and (8.27). Then (7.28a) provides the desired
bound. (6.13b) follows similarly from (7.28b). The bound in (6.12a) follows from (7.26) and (7.27a), since
¢y > 4 from (8.5) and (8.27). The bound in (6.12b) follows from (7.26) and (7.27b). Lastly, when 7 = npyax,

and hence 1 = nymax + 1, (7.26), (7.27a), and (7.27b) match (6.2a) and (6.2b).
Proof of Lemma 7.4. We use (1) from Proposition 3.3 and the notation A = (V®)~! to rewrite (7.25) as

(H+R") ( > Pt ((@enrnrarnn)’) @am)E€ (Aawm)y (Gatley (Aum)’ + afeyda (Au,/c));)) :
€ig.k,

Next, we must identify the functions and the values of the parameters which will be used in the application
of Proposition A.2. We first address the bounds required in (A.4), (A.5), and (A.6), which we can treat
simultaneously for items (1), (2), and (3). Afterwards, we split the proof into two parts. First, we set
N = Nmax + 1 and prove (7.26), (7.27a), and (7.27b) for any value of 7. Next, we consider 0 < 7 < Nyax and
r(n) <mn < Npmax and prove (7.26) in the remaining cases, as we simultaneously prove (7.28a) and (7.28Db).

Returning to (A.4), we will verify that this inequality holds with v = v, , Dy = Dy g = 0y + v, - V, and
N, = M, = |N*/2], where N* = Nfin 5—Neut,t —Neut,x—5. In order to verify the assumption N, —d > 2Ngec+4,

—

we use that Nge. and d satisfy (8.58a). We fix values of (i, 7, k, 7, £, 1) and set
° 6 « L] [ ]
G* = £ 57 (A(i,k))g (aaaé) (A(i,k)),y + a%g)aa (A(i,k)),y) . (7.29)

zij ki fin the first term is precisely &7 (A(i,k)>g Ours

which from (5.40) and (7.8) will obey a good bound. We now establish (A.4)—(A.6) with the parameter
choices

Note crucially that the differential operator falling on a

IR W Cooo = TOTLN TSN & (7.30)

Cor = [supp (0, 45 ei q+1

A= Agr1rgrralyty, My = Nipay, v =7, TG 0= 77101, and X = ),
To establish an L' bound for the first term from (7.29), we appeal to Lemma 7.1, estimate (7.8) with

N’ =1, and (5.19g) to deduce that

HDND 2 (67 (A Daley (Ain) S €7)

Lt
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2j+5 (-1 N —1pi—cat+d ~—1p—1
5|supp(ni’j}k’qﬁ)&f)|6q+17,~1)\q7,~1fqﬂ_1 (T i1 Ag417q+1,7) M(M,Nind’t,rq | TR Fq+1) (7.31)

holds for all N, M < [1/2(Ngp 5 — Neus,t — Neue,x — 5)]. It is precisely at this point that we have used that
the differential operator gO(A(i,k))gaa costs only A\ 7I'g4+1. For the L°° bound on the same term, we argue
similarly except we apply estimate (7.9) to obtain

DYDY, (¢ (Auw); daale (Aim)€)

LQ()
14T (7)+8 _ N lpi—catd ~— 1
ST ™ N (Tl Aenireria) M (M, Ninde: 7y Tor T 07, 1qu1) : (7.32)

For the second term from (7.29), we can appeal to (5.19g) and use that Xq < Ag5 for all n to deduce that
for N, M < |'/2(Ngp s — Neut,t — Neut,x — )], we have

. SANFIM (M, Nigaye, 7, T 70T )

HDND%‘%(A(Z'JC)) an g “q+1 g q+1)'

Lo (supp ¥i,qXi,k,q)
Combining this with Lemma 7.1, estimate (7.8) in the case p = 1 and (7.9) in the case p = oo produces
identical bounds as for the first term and in the range N, M < |!/2(Ngn s — Neut.t — Neut,x — 5)]. Adding
both estimates together shows that (A.4) has been satisfied for both p = 1, co.

We set the flow in Proposition A.2 as ® = ®; ;, which by definition satisfies D; ,®; , = 0. Appealing to
(5.19b) and (5.19e), we have that (A.5) is satisfied. From (2.19) at level ¢, which follows from Proposition 5.6,
the choice of v from earlier, and (8.30), we have that Dv = Duy, satisfies the bound (A.6).

Proof of items (1) and (2) for 0 < 71 < Nypax and n = nyax + 1. We first assume that 7 < ngpax-
With the goal of verifying (i)—(iii) of Proposition A.2, we choose ¢, u, A, p and o as

€= Agnmax » B= Ag41Tq+1,7 5 A=A+,

2 d —d
0= ]P)[qv"maxJ"l] ((Qéﬂ)‘tfrl*"‘tfrl,ﬁ) ) ) 19 = )\;nmaxA P[Qvnmax"t‘l] (ng)‘q+l1rq+1,ﬁ) ) (733)

where we recall that o¢ ., r,.,, is defined in Propositions 3.2 and 3.3. We then have by definition that
(i) from Proposition A.2 is satisfied. By property (1) of Proposition 3.2, we have that the functions ¢ and
9 defined in (7.33) are both periodic to scale ()\q+17'q+1,7"1)71, and so (ii) is satisfied. In the case p = 1, the
estimates in (A.7) follow with C, ; = 1 from standard Littlewood-Paley arguments (see also the discussion in
part (b) of [5, Remark (A.21)]) and item (5) from Proposition 3.3. In the case p = oo, the estimates follow
from Lemma 3.5, (3.11b) with the choices Cy oo = rqflﬁ, A= Agnmax> A2 = 00, A = Agy1,7 = Tgy1,5. We
recall from (8.36) the choice of @ = 5pl”T1, so that the loss AJ,; gives exactly a loss of I'yy1. From (8.20),
(8.24), and the temporary assumption that 7 < nmax, we have that

Xq < )‘q+17"q+1ﬁrq_i1 L Ag+1Tg41m < Aq,
and so (A.8) is satisfied. From (8.37) we have that

Ndec N cc
A4 L < Ag+1Tq+1,7 _ (Fq+1 ) ‘
R YAV P VIRt 27/3

and so (A.9) is satisfied. Applying the estimate (A.11) for p = 1 with « as in (8.36), recalling the value

S Aq-i-lv

Mmax

for Cg1 in (7.30), summing over ¢ and using (2.11) at level ¢, summing over j,k, £, summing over [ and
using (5.43) with r; = oo and ro = 2, and appealing to (8.38) and (8.40), we obtain that for N, M <
|_1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,x - 5)J - d,
N M N 8 y—1 —1pi—cs+d ~—1p—1
HD Dt,qO"ﬁHLl(suppzp,-,q) S At190+1Ag il 11 M (M7Nind’t’7q 1—‘q—kcl Tq 1—‘q—kl)
ST 82 M (M N, 7 Tip 7 T ) (7.34)
Applying the same steps but in the case p = oo and using the parameter inequality (8.45) yields the bound
NpMen CulaT(m)+9y -2 - N ) —1pi—cg+4 ~—1p—1
HD DLQO"’”HL“’(suppwi’q) g Fq Fq+1 )\q!nrq+1,ﬁ)\%”max)\q+1'/\/l (M’ Nlnd,tqu Fq+1 ’Tq Fq-i-l)
Cy— - i—Ci+4 ~— -
STS2AN M (M, Nina,i, 75 TS+ 71T ;l) . (7.35)
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in the same range of N, M. The proof is complete after using (8.58¢), which gives that the range of derivatives
allowed in (7.34) and (7.35) is as much as is needed in (7.27a).

Following the parameter choices in [5, Remark A.19], we set N, = M, = 3Njpq,, and Nt = Nfnz —
Neut,t — Neut,x — b. From (8.58d), we have that the condition N, < N*/4 is satisfied. The inequalities (A.13)
and (A.14) follow from the discussion in [5, Remark A.19]. The inequality in (A.15) follows from the choices
A= )\q+1rq+1ﬁ1“q]}1, C=Agnmax > )\q+1rq+17ﬁ1";_&1, (8.32), and (8.50). Having satisfied these assumptions,
we may now appeal to estimate (A.17) for p = co and sum over all parameters (i, j, k, £, f) Since [ takes
at most )\2 41 values, 4, and j are bounded independently of ¢, and % corresponds to a partition of unity in
time, we obtain (7.26) for the case T < npax and 1 = Nyax + 1.

Recall that we began this case with the temporary assumption that n < npgax. In the case 1 = npax,
we have from (8.24) that Agr17¢+1,nmu > Aq, Then we can set ( = ft = Ag417¢g+1,nm., and substitute

Mmax *

P>xpiirgirn 08 Prgn..)- The only change is that (7.34) and (7.35) become stronger, since Agn,.. <
Ag+1Tg+1,nmax» a0d so the desired estimates follow by arguing as before. We omit further details.
Proof of item (3) and of item (1) when 0 <71 < nyax and r(n7) < n < Nypax. We set
max {A\g417g+1.7, Agn—1} I 2 <n < npax
1/2 1/2 . n = /\q+17”q+17ﬁ 5 A = )\q,n 3 (736)
A1 T+ if n=1,

and

2 d A —d
0="Pyn ((957>\q+1ﬂ"q+1,ﬁ) ) ) U= <2 A Prg,n) (92>\q+1,rq+1,ﬁ> )

We then have by definition that (i) from Proposition A.2 is satisfied. By property (1) of Proposition 3.2, g
and ¢ are both periodic to scale (Aq+1rq+1ﬁ)7l, and so (ii) is satisfied. The estimates in (A.7) follow with
Ci1 = 1 in the case p = 1 as before. In the case p = oo, we appeal to Lemma 3.5, (3.11b) with Ay = (,

Ao = Agn = A < Agy1, and r = rg4q 5 to deduce that (A.7) holds with Cy o = ( Agn

Ag1Tg4+1,7

a as in (8.36). From (8.24) and the condition that r(n) < n, we have that if n # 1, then

2
) . We again set

Ag < /\q+qu+1,ﬁrq_i1 K Agi1Tgr1a < max {Ag417g417 Agn-1} < Agn s
and so (A.8) is satisfied if n # 1. If n = 1, then it must be the case that 7 = 0, and so

Y 1
Ag S Ag1Tgt1,0l g1 K Ag1Tg41,0 < Ag1 -

From (8.37), the inequality Ay, < Agt1, and the choices of u and A, we have that (A.9) is satisfied.
We now use the definition of Cg,, in (7.30) and apply the estimate (A.11). In the case that p = 1 and
n =1, then we must have n = 0, and so for all N, M < [1/2(Ngn 5 — Neut,t — Newt,x — 5)] — d, we sum over

—

(4,4, k,&,1) as before and obtain that

N M —C Y 19 1/2y1/2 -1\~ —1pi—co+d ~—1p—1
HD Dt,qOOJ ||L1(Supp¢i,q) ,S Fq R(;(H-l)‘(qu—‘rl ()‘q/qu+1Fq+1) )‘q,lM (M7 Nind,ta Tq Fq+clo )y Tq Fq+1)
S Ogr 1 AT M (M Niga e, 7 'TR9 71T ) (7.37)

The inequality in the last line follows immediately from the definitions in (8.26). Alternatively, if n > 1,
then (™' < AL | from (7.36), and so if N, M < |1/2(Ngn5 — News,t — Newtx — 5) | — d,

q,n—1

N M ) _ ) T8 -1 N . —1lpi—citd ~—1p-1
||D Dt,qon,nHLl(Supp%‘q)S6q+1,n/\q,nrq+1/\q,n—l)‘q,nM (MaNlnd7t7Tq Fq+1 ' Tq F(1+1)

5 6q+1,n)\¢11\an (M7 Nind,t7 Tq_lFZI_EE_Hla /7\:;11—‘;_&1) . (738)
In the last inequality, we have used (8.42). After using (8.59), which gives [1/2 (Ngn 5 — Neus,t — Neue,x — 5)] —
d > Ngyp , for all 7 < n, we have achieved (7.28a).

In the case that p = co and n = 1, then we must have that 7 = 0, and so

Ag,1 ? 2\l
(Aq+1)\qu+1)
q+1Tq+1,0
X AgaM (M, Ning e, 7 a0 77T )
Cy —1pi—co+4 ~—1p—
ST LT A M (M, Ninay, 7, ' T390 7T L) (7.39)

q
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2

To achieve the last line, we have appealed to (8.24) and the inequality ﬁ
)\q+l>\‘1 1—‘qul

from a large choice of nyax. In the case that p = co and n > 2, we have that

2
147 (n)+9 )\q,n —
rér Ao 7 ( A
1 q,n 1
47 Aq+17g+1,7 q "

< 1, which is immediate

| DN DM O

A

nﬁHLw(supp Yi,q)

N i—cx+4 ~—1
x AN M (M,det, P A FqH)

A

7 A T,
FguF14T( )+137AN M (MaNlnd ty T q FZ T _1Fq+l)

q+1 q+1)\qn 1 q+1 » Tq
T(n i—C ~— —
STOTITMAN A (M,det, T R 1rq+1) . (7.40)

To achieve the second inequality, we have used (8.24). To achieve the third inequality, we have used (8.39)
and (6.7). The estimates above are again valid in the range N, M < [1/2 (Ngy 5 — Neut,t — News,x — 5)] — d,
which from (8.59) completes the proof of (7.28Db).

Following again the parameter choices in [5, Remark (A.19)], we set No = M, = 3Njuq.y, and N¥ =
Nfin& — Neut,t — Newt,x — 5. From (8.58d), we have that the condition N, < N*/4 is satisfied. The inequalities
(A.13) and (A.14) follow from the discussion in [5, Remark (A.19)]. The inequality in (A.15) follows from the
choices A = )\q+1rq+1ﬁlﬂqf4}1, ¢ > Ag+17g+1,7, (8.32), and (8.50). We then achieve the concluded estimate in
(A.17), which after summing as before gives (7.26) in the remaining cases 0 < 7 < Npax, (1) < 1 < Npax. O

7.5. Type 2 oscillation errors. In order to show that the Type 2 errors identified in (7.14) and (7.15)
vanish, we will apply Proposition 3.8 on the support of a specific cutoff function

0= kgn.ed = ViaXikaWiganCy i komel

in order to place pipes parallel to £ on supp7n. We first collect several preliminary estimates in the first
subsubsection, mainly with the goal of verifying assumption (3) from Proposition 3.8, before applying Propo-
sition 3.8 in the second.

7.5.1. Preliminary estimates.
Lemma 7.6 (Keeping Track of Overlap). For every tuple (i,j,k,n), define the index set T as
T =12, j k,n) = {(i*, 5% ¢, n"): n* < n, i qwijqnXikqWic qWis 5= qn X k=g 7 0} -

Then, the cardinality of T is bounded above by C,I'q41, where C,, depends only on Nmax, Jmax, and dimensional
constants. In particular, C,, is independent of q.

Proof of Lemma 7.6. The proof proceeds similarly to the proof of [5, Lemma 8.6]. In fact it is somewhat
simpler, since the parameter p (see [5, equation (9.3)]) is no longer part of the scheme, and we are not
considering the checkerboard cutoffs C el vets but will only incorporate them later. We thus give only
an idea of the proof. Once i is fixed, we ﬁrst note that ; ;, may only overlap with ;1 , and ;_ 4 from
(2.11) at level g. The factor of 'y in the upper bound for the cardinality of Z comes from the fact that
the timescale of the x;i1,x+,4’s on the support of ;11 4 is faster by a factor of I';;; than the timescale of
the x4 k,q’s on the support of 1; ;. Considering then values of j and n introduces a dependence on jiax and
Nmax Which is nevertheless independent of q. O

Lemma 7.7. Let (2,t), (y,t) € supp ;4 be such that ¢ (x,t) > 1/a and 7 (y,t) < 1/s. Then there exists
a geometric constant C, > 1 such that

[ —y| > C. (TgAg) - (7.41)
For the proof of Lemma 7.7, we refer to [5, Lemma 8.7].
Lemma 7.8. Consider cutoff functions

M= gl = ViaXidkaWigianSy i ko,

* —
= Mo e g qon 6% T = Yix gXix k> qWir j* q,n* Cq,i*,k*,n*,g*,f*’
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where (i*,5*,k*,n*) € Z(i,j,k,n), as defined in Lemma 7.6. Let t* € supp X« i+q be given. Assume
furthermore that nn* % 0, which implies that Cq,i,k,n,g,FCq,i*,k*,n*,g*,f* % 0. Then there exists a conver set
Q:=Q(n,n*,t*) C T with diameter A, T g1 such that

(supp Cq,i,k,n,g,fm {t= t*}) C Q C supp Yt q -

Proof of Lemma 7.8. Let (z,t0) € supp (nn*). Then there exists ¢’ € {i—1,4,4+1} such that wiz/yq(x?t()) >
Consider the flow X (z,t) originating from (z,ty). Then for any ¢ such that [t —t¢| < TqI‘q_ﬂ'E"*'C”, we can apply
Lemma 5.8 to deduce that ¢7 (¢, X (z,t)) > 1. By the definition of ;- = 4, the fact that i* € {i—1,i,i+1},
the existence of (x,t9) € supp (Xi,k,qXi* k*.q), and the fact that t* € supp x+ g+ 4, We in particular deduce
that 97  (t*, X (,t*)) > §. Now, let y be such that

1
5

[ X (2, t") —y| < A;}LFtHl < Xgl < C*(Fqurl

for C, given in (7.41), where we have used the definition of Ay, in (8.23). Then from Lemma 7.7, it cannot
be the case that wl%vq(y,t*) < %, and so

y esuppy o N{t =t"} Csuppix N {t =t"}. (7.42)

Since y is arbitrary, we conclude that the ball of radius I'q4; )\;}L is contained in supp ¥+ , N {t = t*}. We
let Q(n,n*,t*) to be precisely this ball. Since Dt1q<q,i,k,n,§,f =0 and (z,tp) € supp Cq,z‘,k,n,g,fv we have that
X (z,t*) € supp Cqﬂ.’k’n’&fﬁ {t = t*}. Then, recalling that the support of Cq,i,k,n,g,f must obey the diameter
bound in (5.41) on the support of X; x4, Which contains the support of x;- k- 4 by (5.18), we conclude that

SUPP G, ;e st =11 C Q. (7.43)
Combining (7.42) and (7.43) concludes the proof of the lemma. 0

Lemma 7.9. Asin Lemma 7.8, consider cutoff functions nn and n* satisfying the conditions from Lemma 7.6
and the assumption qn* # 0. Let t* € supp X« k,q be such that ®* := ;- vy is the identity at time t*.
Using Lemma 7.8, define Q := Q(n,n*,t*). Define Q(t) := Q(n,n*,t*,t) .= X*(Q, 1), where X* is the inverse
of ®*. Then the following conclusions hold.

(1) Fort € supp Xi k.qs
suppn(+,t) C 2(t) C suppix,q -

(2) Let W* o &* := Wéﬂ;ﬁﬂl 0 @« iy be the intermittent pipe flow supported on n*. Then W* o &~
satisfies the conclusion of Lemma 3.7 on the set Q(t) for t € supp Xi k,q-

(3) For T =1I(i,j,k,n) defined as in Lemma 7.6, we denote

P.= U supp ('(/)i*,qwi*,j*7q7n*) ﬂ U supp (Cq7i*7k*,n*,&*,f"wz*,{1+1,nz o Cp(i*’k*)> > (744)
z e

which is precisely the union of the supports of all pipes living on cutoff functions indexed by tuples
belonging to I, which are however not restricted to the support of their corresponding time cutoffs
Xi* k*,q- Then there exists Cp such that for any convex set Q' C T3 with diam(Q') < ()\q+1rq+17n)’1
and any t € SUpp Xi k,q, the set PN ({t} x Q) consists of at most Cpl'yr1 segments of deformed pipes of
length (Ag+17g+1.0) -

Remark 7.10. The third item simply asserts that at stage n, there exists a geometric constant Cp such
that in any (T/Ag+17e41,.)>-periodic cell of diameter approximately (Ag+17q+1,,) ', there exist at most CpI'y41
segments of deformed pipes of length (A\;417¢+1,,) " !. This will later allow us to apply Proposition 3.8. The
factor of I';11 comes from the fact that overlapping time cutoffs x; x4 and Xit1,x,¢ have timescales which
?{H]fn"*l to the support of its corresponding
time cutoff x;« = 4. Notice also that since choosing a shift moves a segment of pipe inside a (T/A,417441,7)%-
periodic cell but does not increase the number of such segments, the conclusion in (3) is independent of the
choice of placement. We may thus appeal to it in the next subsection in order to choose a placement.
38
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Proof of Lemma 7.9. The statement and proof are quite similar to the proof of [5, Lemma 8.9], and we refer
there for the proof of the first two claims. The only difference is contained in the third claim above, since
we have rephrased the way in which we count the number of deformed segments of pipe comprising W* o *
which may overlap with supp”n. We remind the reader that a single “segment of deformed pipe” consists of
the support of W* o ®* restricted to a single (deformed) (T°/x,41rq11.,) " !-periodic cell. Then to prove the
third claim, we first fix a tuple (i*,j*,k*,n*) € Z and note that in any convex set )’ of diameter at most
(Ag+17g+1.n) "1, the conclusions of Lemma 3.7 and the construction of the checkerboard cutoff functions
implies that there exist at most finitely many Cq,i*,k*,n*,g*,f* such that
¢i*,qwi*,j*,q,n*Xi*,k*,q q,i*,k*,n*,&*,f* 5_'5 0.

From the construction of W* o ®* in Proposition 3.3 and the fact that W* o ®* satisfies the conclusions of
Lemma 3.7 on supp X;,k,q, we then have that taking the union over just I* and &* in (7.44) allows for the
desired conclusion with a g-independent constant. Then applying Lemma (7.7) and taking the union over
the C)I'y+1 many tuples in Z then provides the conclusion with a new constant Cp multiplied by I';y;. O

7.5.2. Applying Proposition 3.8.
Lemma 7.11. The Type 2 oscillation errors identified in (7.14) and (7.15) vanish.
Proof of Lemma 7.11. To show that the errors defined in (7.14) and (7.15) vanish, it suffices to show the

following: for any pairs of cutoff functions n = Nijhagmel and n* = L where (i*, 7%, n* k*) €
Z(i, 4, k,n), we have that
,],k,nl Gk n f* _
Mogaiied Mo ke 0o (Wenrins © @ @ WELE T 0 @ 1)) 0. (7.45)

The proof of this claim will proceed by fixing 72, using the preliminary estimates, and applying Proposition 3.8.

Now, consider all cutoff functions Mi i kgiel utilized at stage n. We may choose an ordering of the

tuples (i, 7, k, & J) at level n, which automatically provides orderings for the cutoff functions 7, ikl and
associated pipe flows Wz’j -]T-ln Ly ®(; 1) To lighten the notation, we will abbreviate the newly ordered cutoff

functions as 7, and the associated intermittent pipe flows as (W o ®),, where z € N corresponds to the
ordering. We will apply Proposition 3.8 inductively on z € N, according to the chosen ordering, so that
(7.45) holds.

Fix 7., and fix the associated index set Z(z) = Z(i,j,k,n). Since we are proving (7.45) iteratively, we
only need to consider the elements z’ € Z(z) such that n* < 7, and Z € Z(z) such that n* =7 and z < z,
according to the aforementioned ordering.

We will apply Proposition 3.8 with the following choices. First, we recall that at the time ¢, at which ®, is
the identity, the cutoff function 7, containb a checkerboard cutoff function ¢, which from (5.35) is adapted to
a rectangular prism of dimensions 27r)\ ~ in the direction of &, and CrI'g11(Ag417g+1,7) " in the directions
perpendlcular to &,. Thus we can bound the dimensions of the support of the anistropic checkerboard cutoff
by 477)\(175 and 2CrT 41 (Ag+17g+1.7) ', and we thus set
g7

q,
P T2 =Tyl Ca = 2Cr.
q+1

Q=supp(. N{t=t.}, r =
Recalling item 3 from Lemma 7.9, we choose the support of (W o ®),|;—; to have empty intersection with
PNQ, P as defined in (7.44), (7.46)

and so by definition P satisfies item 3 from Proposition 3.8. Thus it remains to check (3.21). From the
definition of rgyq 5 in (8.24), we have that

A n +—
< C, CQCPF & q+1 <7 (747)

C.CACPT3, 713 = C.CACPTS, 1?2 P

q+1,n ~
if a is chosen sufficiently large so that Fq__&l can absorb the constants C, CQ, Cp and the implicit constant,
all of which are bounded independently of q. Therefore (3.21) is satisfied, and we may apply Proposition 3.8
to choose a placement for W, which has empty intersection with P at time ¢ = ¢,. This shows that at time
t = t,, W, has empty intersection with all previously existing pipes which may be non-zero at any time
t € supp Xi,k,q but have been flowed to time t = ¢,. Finally, since D; o(Wo®), = D; ((Wo®), = Dy (Wod)s,
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and P has been constructed to contain all pipes which are non-zero at any time ¢ € supp xi kg, (7.45) is
satisfied for all ¢t € supp x., concluding the proof. O

7.6. Divergence corrector errors. In this subsection we estimate the stresses arising from the incompre-
sibility correctors, namely

; (p) (¢) (e) (p) (c) (¢)
div (wqil,ﬁ ® wq+1,ﬁ + wq+1ﬁ ® wq;il,ﬁ + qurl,ﬁ ® qurlﬁ) N

Lemma 7.12. For all 0 < 1 < Nimax, the divergence corrector errors (H+R*)div Og 1.2 and O 1 3 identified
in (7.17) and the first line of (7.24), satisfy the bounds
400D DR (O 10+ (H 4 ROV Ora) 1 T 8, aM M (1 N Ty T 71
(7.48a)

< PCui—1yk ) i—cg+d_—1 p—1 ~—1
HLoo(suppwi,q)NFqul AgraM (M, Nina,e, U 77 T 7y

(7.48D)

|D*Dy (0513 + (H + R*)div Oz.1.2)

for all k,m < 3Njnav.

Proof of Lemma 7.12. We first present the estimates for the stress Oz 13 = wéﬁlﬁ ® wfﬁglﬁ, which is also

given explicitly by the last line in (7.17). By the Leibniz rule, the estimate (7.12a) with (r,71,72) = (2, 00, 1),
and the fact that suppv; q N supp e ;v k) # 0 if and only if |i" — 4| <1, it follows that
||wi’quDZLqOﬁ’l73HLl 5 r2+1755q+1ﬁI‘g+1>\’(§+1M (m, Nind,t, T, 1I‘Z+Cl + ' Tq quil) .

The bound (7.48a) for Oz 1,3 now follows from the parameter inequality (8.52). Similarly, from (7.12b) it
follows that

k Cup 1Y () +7y k —lpi—ca+4 ~—1p—1
|D* D0 Lol ™ A M (my Ninae, 75 ' T 07, T )

The bound (7.48b) for Oy 13 then follows from the inequality (8.54).
It thus remains to estimate (H +R*)div Op 12 = (H+R*)div (wfﬁ)l,ﬁ ® wgi)lﬁ + w((ﬁglﬁ ® wfﬁr)lﬁ). Using
the second line of (7.17), we have

n,1,3 ||L<>° (supp ¥i,q) S

div (0, - @ w, -+, ouw® )"

q+1,n q+1,n q+1,n q+1,n
= D Omlae g © P (AT €opr + Almpr) Opa(e) 0%, 1 UZ 4150 Ry (7.49)
Eigk,l

where €;,4,i, is the Levi-Civita alternating tensor, we implicitly contract the repeated indices ¢, m, p,r, s, and
the e refers to the indices of the vectors on either side of the above display. The subtle point is that if the
derivative in Va ) is not in a good direction, cf. Lemma 5.18, one seemingly obtains the wrong bound. As
such we use that {£,£’,£"} is an orthonormal basis associated with the direction vector & with & x & = ¢”,
and so ¢ 4 (€)™ (&) + (€M)™(€7)* = 6™, and decompose

Bpage) = Op®y, 1) E"E A Dja(e) + 0p BT, 1) () (€) AJD a0y + DT, 1y (€)(6") AJDjae) , (7.50)
. good —. bad
=i0pQe BGG)

where we have also set A = A(; ) = (V(b(i)k))_l. Using this decomposition, we note that from Lemma 7.1,
the derivative of a(¢) in the “good” term costs a factor of A\; 7I'+1, whereas the derivatives landing on a )
in the “bad” terms cost a factor of )‘q+1rq+lﬁr;&1 > Agallg1-

In view of (7.8) and (7.9), we leave the part of (7.49) which contains Vag,) 4 in divergence form and
simply move the resulting symmetric stress

ood me m ° ood S S
(O™ = D a0t © PemE (A7 copr + Afempr) 0paley 0: DY, 1)UL 117 © Do) (7.51)
E,iygik,l
in R? 1, up to removing a trace term which is thrown into the pressure. This good part of Oz, obeys
the same L' and L*™ bounds as Op 13 above. To see this, we apply the L' de-correlation estimate
from Lemma A.1, for p = 1, f = a()&" (AT €apr + Azempr)é)pa%gfd&@ak), b = Dy, v = v, and
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= 0(6)U{ 4117+ Inlight of Proposition 3.3, Corollary 5.10, estimate (7.8), and definition (7.50), we have that
the assumptions of Lemma A.1 hold with the parameter choices Cy = §g441 51 Z-&-l)‘q A= rqiquJ’,l’ﬁ)\q_i_l,
v = F;+cf’+47517 V= 7—711—\_4»13 Ny = Ninags = Ag417g41,5 = Dgrai, Co = A}, ( = (= Ag+1, Ny =0,
and No = Ngn 5 — Neue,t — Neut,x — 5. By (8.58a) we have that N > 2Ngec + 4 and by (8.37) we have that

Apy1 < (Dgq1(2my/3)71)Naee -and so condition (A.2) is verified. Thus, from (A.3) we deduce the L' estimate
- — i—cyg+4 ~—
’W%ﬁquDm OgoszLl ~ 5Q+1»5F5+1)‘qﬁ)‘qi1)‘§+1/\4 (m, Nind,t, 7 11ﬂq+1 i quil) :

The bound (7.48a) for O£ (; now follows from the parameter inequality (8.53), and the fact that Ng, 5 —
Neut,t — Neutx — 5 > max{2Nina,t + 4 + 3Nind,v, 6Nina,v}, which is a consequence of (8.58a) and (8.58¢c).
Similarly, from Proposition 3.3, Corollary 5.10, estimate (7.9), and definition (7.50), we have the L estimate

k 7ym 1800 < -2 C, 147 (n)+8 1 —1pi—cg+4 -1 1
| D* Dy, 08 12HL°° (suppee) S Tarral g Dot Ag )\q+1)\q+1M m,Ninda,t, 7y Dor 7, T ) -

The bound (7.48b) for @2 then follows from the parameter inequality (8.47).
Returning to (7.49), it remains to consider the bad part, coming from the second term in (7.50), namely

Y Om (“(5)9 0 D(; ) (A7 €apr + Al empr) Dpa(ey 0r s 1y U2 g 417 © P, k)) =Vi+V3 (7.52)
&,1,59,k, T
where V; corresponds to the term containing Aj}*espr, and Vo corresponds to the term containing A ey,
When we distribute the 9, derivative in (7.52), we need to be careful that the derivative does not land on
the fast (at frequency Ag4+1) object 0)U¢ g11.7-
Let us first handle V. For this purpose, note that
EAT Om ((0©)UE gi17) © i) = E AT Om®Y, 1y (0r(06) UL 415)) © Pii)

= (€"0u(0©) U2 g41.7)) © Plik)

=0
because ¢ - V annihilates both g(¢) and Ug 4117, from (3.4). Thus, by (7.52), the term V7 becomes
Z 6m a(§)§ A;”e.prapa(g) 8T(I>fi’k)) (Q(E)Uz,qul,ﬁ) o q)(i,k:) (7.53)

€i,5.k,0

Notice that by the Piola identity, we have 9y, (a(e)&" A €apr Oy a da D 1) = ELAT O, (ae) €apr Oy a 8 D 1)
and so the slow objects contain a derivative that costs the good factor of AjzI'¢+1, and a derlvatlve that
costs the bad factor of A\g4+17q4+1,7. We then apply the inverse divergence operator H + R* from Propo-
sition A.2, with the following choices: p = 1, G = £€A;”8m(a(g)e.prapa?g)darfbfi’k)), 0 = 0eU¢ ;117
Q= d; k), v=1,and N, = M, = L%(Nﬁnﬁ — Neut,t — News,x —5)]. By (2.19), Corollary 5.10, and estimate
(7.8), assumption (A.4) holds for Cg = Gq11,5T0 4 1 (Ty i Ag17qr1,m)Agis A = Agrargs1aly 1, Ne = Ninay,
’1F;+°1“+4 and U = ?;W‘;jh while assumptions (A.5)—(A.6) hold with X = Xq. From Proposition 3.3
and standard Littlewood-Paley analysis, upon letting ( = p = Agyirg+1,3, ¥ = (C’zA)*d(g(g)U;qHﬁ),
A=Xrg41,C = )\qj}l, and « as in (8.36), we have that condition (A.7) is satisfied. With these chosen param-
eters, the condition (A.8) trivially holds, while condition (A.9) is equivalent to A7, < (Dgy1(2my/3) 1) Naee,
which in this case holds due to (8.37). Conditions (A.13)—(A.14) are verified for N, = M, = 3Njuq, and

Cy = Dimsctl2\2 < TS ©,/°A2, in view of (2.1), (2.13), and (2.20), and (8.20)(8.21). Lastly, the inequal-
ity (A.15) holds because d is taken to be sufficiently large to ensure (8.51). From (A.11) and (A.17) we

deduce the L' bound
i, DD} (H + R*)V

V=T,

=
(Fq+1/\q+1Tq+1,ﬁ)>‘q n
(Ag+17Tg+1,7) Agt1

,S 6q+1 nrg

S A M (m Nina i, 7 TG 5 1Fq+1) . (7.54)

’ q

Since dg1,707 4 Agadgts < qul '5g42 — see (8.53), and |1 (Nang — Newst — Newtx — 5)] — d > 3Ninay —
see (8.58¢), the above bound is consistent with (7.48a).
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The L estimate is obtained similarly. We again apply Proposition A.2 with the only parameters that

change being: p = 00, Cq = FEUFéiﬁ(ﬁHs)\qﬁ(F;jl)\q+1rq+1,ﬁ) —see (A.14), and C, = T;fl n>\;+1 see (3.5)
and (3.6). From (A.11) and (A.17) we obtain
k *
|D*D (1 + R*) Vlum(suppwlq)
Do A1 g1 7)) Ag. il
C, 14T(n)+9( q+1 q+1"q+1,n)"q,n q+1n k i—cgt+d ~—1p—
S TaTen (Aq+17g+1.50) Ag1 Ao M (m Ninaser 73 o7 F‘?“) ’ (7.55)

Since I‘C I‘14T(")+8)\q7nrq+1 n)\;+11 < I‘qCJrl , see (8.47), the above bound is consistent with (7.48b).

It remains to consider the term Vs in (7.52). We distribute the 9,, derivative on either the slow or the
fast objects and decompose

bad
Z Om ( a()2() © (i) & AT empr Opa(Ey' 0, B 1)Uz g1 7 © ‘I)(i»k))

£,1,7,k, T
ood ba.
= Z ( (geAeﬁmpra (I)(l k))a(§)3 (1(5) +a g EeAgempra (1( da q)(l k)
£ig k0
YY) d s s
= a(6)§" AL €mprOm (Opaliey )8T¢(i,k)) (0 U g+1.7) © iy
+ 3 a8 AL empr0pal3 0,07, 10 0m ((0(6)Us gy1.5) © Plink)) - (7.56)
gk,
In the second equality above we have used the identities €,,p,rOm (9, a'gg)d) = empram(apa%‘) d)7 and that

emmama?g)dapa‘gg)d = 0. We first consider the terms in which the 9,, has not landed on functions related to
pipe densities. Similarly to the definition of V7 in (7.53), the slow functions in each term contain a derivative
that costs the good factor of A\;zI'¢4+1, and a derivative that costs the bad factor of Agy17441,7. As such,
when applying H + R* to the last line of (7.56), the resulting stress obeys exactly the same estimates as
(7.54) and (7.55).

Finally, we are left to consider the term on the last line of (7.56), in which the 9,, derivative lands on
the fast objects, at frequency As41. The key observation is that this term is in fact equal to 0! To see
this cancellation, we recall the identification of O a(g) in (7.50), and we recall from (3.3) that Ug g417 =

—E O npirirarin TE Pen 1mgrn- With these identities, we have
a(6)§"Af €mpr Oy a( 0, (I)(z ) Om (2 Ut g1,5) © ik
= a(e)§" A emprOpa (S 0.0, 1 Om®" O (0(6) U 4417) © Pik) -

Note that from (7.50), that 0, aba) contains either a factor of 9 <I>( 1§k or a factor of 8p<I>’(“i’k)§]’c’. From (3.4),
we also have that

Or (b(z k amq)nan(Q(E)UZ,qul,ﬁ) = _arq)fi,k)fgamq)ngz ((5 V) ( 905 Ag41,Tq+1, ,L)) © (I)(i,k)
+ 0r®; 1) 6 Om®"E,, ((5’ V) (Q(g)%,xqﬂ,rqﬂﬁ)) ° ik
o a"(bfivk)ggamq)ngx ((6” ) V) (Q(ﬁ)@g«\qﬂﬁwl‘ﬁ)) © (b(ivk)

+ Oy q’éz k)f//a ‘I’nfﬁ ((f V) ( )905 Agt1sTgrt. i )) 0P 1 -

Thus, the expression €,,,0p a(gda <I>51 k)amfl)"(“)n(g(g)Ug’qH ) 0 ®(; ry equals the sum of eight terms, each of
which is of the type

EmprOp ‘IJ(Z k)g,(cl)8T¢fi’k)§§2)3mq>"§£3) x (product of fast pipe densities or fast cutoffs) o ®(; 1)

where (5(1) 5(2),5(3)) € {¢,¢"}3. Since in each of these eight terms, at least two of the vectors in the tuple
(€M £ €B)) are equal to each other, either to & or &, by the skew symmetry of the Levi-Civita symbol,
we must have

€mp7"a (I)(z k)gk 8 (I)(z k)§s2)6mq)n££z3)
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This proves that the last term on the right side of (7.56) is indeed equal to 0, concluding the proof. O
7.7. Transport errors.

Lemma 7.13. For all0 < 7. < npyax, the transport error satisfies the following estimates for N, M < 3Nipq -

1.4 DY DI (H + R7) (Duguogsni) | 1 S Gl AN M (M, Nipag 7y T4, T 7, )

L1~ q
(7.57a)
DD, (4 R*) (Degtqi i) | o gy S TS AN M (M Ny 7 Ty 540, T 7 1) - (7.57D)

Proof of Lemma 7.13. Recall from the first line of (7.24) that the transport error is given by H 4+ R* applied
to Dy qWq+1,5, Which we further expand as

Dy qwai1,5 = Dt,q( z curl (ag,i7j7k,q,ﬁ7qu)g;,k)Uf;q+1,’ﬁ o <I>(i7k))>

i3,k €
= Y Dra (a9 VOl ) Wearino®in + D (DuaVagg) x (VeumUeaiii o Oi)
i3,k € 0.9,k L€
+ Y Vagy x ((DrgVeir) Ue g1 o i) (7.58)
i,5,k,0LE

Since the second two terms contain the corrector defined in (7.6), and the bounds for the corrector in (7.12a)
are stronger than that of the principal part of the perturbation, we shall completely estimate only the first
term and simply indicate the set-up for the second and third. Before applying Proposition A.2, recall that
the inverse divergence of (7.58) needs to be estimated on the support of a cutoff ¢; 4 in order to verify (7.57a)
and (7.57b). Recall that for all n, Dy qwy4+1,5 has zero mean. Thus, although each individual term in the
final equality in (7.58) may not have zero mean, we can safely apply H and R* to each term and estimate
the outputs while ignoring the last term in (A.16).

We will apply Proposition A.2 to the first term with the following choices. Let p € {1,00}. We set v = vy,
and Dy = Dy g = Oy + vy, - V as usual. We set N, = M, = [1/2(Ngn s — Neut,t — Neut,x — 5)J, with Ngec and
d satisfying (8.58a). We define

G = Dy q(a@) V)¢,
with A = T 5 Agargsna, v = 75 T F %, My = Ningy, 7 = 7, 'T,};. In order to obtain the value of the
amplitude constant Cg, which now depends on p, when p = 1 we use (7.8) with » = 1 and (5.19g), while
when p = 0o we use (7.9) and (5.19g), obtaining

_ Y2 2 —lpi-cat3
CG,l - |Supp (771'7]'7]@,%5757[)|5q+17ﬁrq+17—q I‘qul ’ (7'593)
S TY () +F 1 imax—ca+d
Come = TE T ot
c ~ c
B CHTY(R)+9—ci _—1l/2c—1/ S 1Cu+7Y (Nmax)+20+co—cz o 1/2
<TF T4 T 106 < TR T 0./2), . (7.59b)

Note that we have used (8.33), (5.9), and (8.22) to simplify the above expressions. We have that

N M -1\ —1pi—ca+4 =—1p-1
IDY DGl s S Cap (asrrasnalyts) " M (M, Nipay = 1,7 T+, 77T )

_ N 1yi—C~ ~1—
SCap Agrrrgrial ) M (M7Nind,ta7' T 1Fq+11), (7.60)

q Tq
for all N, M < |1/2(Ngn,s — Neus,t — Neut,x — D) | after using (8.35), and so (A.4) is satisfied. We set & = ®; ;,
and \ = Xq. Appealing as usual to Corollary 5.10 and (2.19) with ¢’ = ¢, which is valid from Proposition 5.6,
we have that (A.5) and (A.6) are satisfied.
Referring to (1) from Proposition 3.3, we set 0 = 0¢ 2,1, rys1.2 a0 0 = Ve A oy oy 0 Setting ¢ = Agya,
we have that (i) is satisfied. Setting 1 = A\g417¢4+1,5 and referring to (2) from Proposition 3.3, we have that
2

(ii) is satisfied. Setting A = ¢ = Aj41, Cip = r;r_llﬁ, a as in (8.36), and referring to (3.5) and (3.6) from
Proposition 3.3, we have that (A.7) is satisfied. (A.8) is immediate from the definitions. Referring to (8.37),
we have that (A.9) is satisfied.
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=

After summing on (i, j, k,n,&,1), using (2.11) at level ¢, and (5.43) with r; = ro = 2, we conclude from
(A.11) that for p=1and N, M < |1/2(Ngn 5 — Neus,t — Neusx — 5)] —d,

HDND%; (H (Dt,qwg+1,7)) ||L1

(supp i.q)
/2 Cp+9—cg,_—1 y—1 \N a5 ~— 11
S0 AT g A AR M (M Niga o 7, T 5,7, T )
—Cr—1 N —1pi—cg45 ~—1p—1
Srqﬂ 5q+2>\q+1M (MaNind,t;Tq Fqﬂ ' Tq I‘qﬂ) (7.61)

after also using (8.55) and (8.33). From (8.58c), these bounds are valid for all N, M < 3Nj,q. Similarly,
for p = oo, we have

||DND£]\7/{1 (H (Dt1qwq+1’ﬁ)) HLOO(supp Yiq)

Cy .
3 CutTY (Nmax)+21+co—ci 1 /2 -1 -1 \N —1pi—ci+5 ~—1p—1
2 u n

ST T "0 A i g r 1 Ag M (M Nina e, 7, Ty 70 7 T

5 I—\Cu—l)\N M (M, Nind,tyT_lri_Cﬁ+5 a‘:—ll—wfl

g+1 “q+1 q “gtl >'gq q+1) (7'62)

after also using (8.27) and (8.56).

To conclude the proof, we must still estimate the nonlocal (R*) portion of the inverse divergence, and
the error terms coming from the divergence correctors. These error terms, however, obey stronger estimates
than the bounds in (7.61) and (7.62), and so we refer to the proof of [5, Lemma 8.12] for further details. O

7.8. Nash errors.
Lemma 7.14. For all 0 <7 < npax, the Nash errors satisfy the following estimates for N, M < 3Nipg,v:
* —Cr— —1pi—cgtd -1 ~—
Hwi,qDND%J ((H +RY) (wq-i-lﬁ ’ qu)) HLl S Og2lgif 1)‘51\f+1'/\/t (M’ Nina.t, 7 1I‘qucl i ’I‘qiqu 1)
(7.63a)
<TSTIAN M (M, de,t,T—lri‘cﬁ“,FJjI?f) .

|‘L°°(3upp¢i,q)"“ g+1 g+l q *gq+l
(7.63b)

Proof of Lemma 7.14. Recall from the first line of (7.24) that the Nash error is given by H + R* applied to
Wyt1,7 © Vg, which we further expand as

wr1 - Vo, = ) curl <“£,z‘,j,k,q,ﬁqu’5,k)U&qﬂﬁ © ‘I’(iv’“)) Vo,

|D*Dy, (K + R*) (wgs1,7 - Vvg,))

ik L€
= ( > Vag < (8f 1 Ueqriao®en) + Y. 6oV e O‘P(i,k>> Vo, -
RANNS igkolg

(7.64)

Due to the fact that the first term arises from the addition of the corrector defined in (7.6), and the fact
that the bounds for the corrector in (7.12a) are stronger than that of the principal part of the perturbation,
we shall only consider the second term. Note that the Nash error can be written as div (wq41,7 ® ve,) and so
has zero mean. Thus, although each individual term in the final equality in (7.64) may not have zero mean,
we can safely apply H and R* to each term and estimate the outputs while ignoring the last term in (A.16).

We will apply Proposition A.2 to the second term with the following choices. We set v = v , and
D = Dy g = 0t + vy, - V as usual. We set N, = M, = [1/2(Ngn 7 — Neus,x — Neut,e —4) ], with Ngec and d
satisfying (8.58a). We define

G =a) VP )& Vo,

and set Ca,1, Ca,00 t0 be equal to the quantities in (7.59), A = P;ﬁl)\q+17aq+17ﬁ7 V= th_l].—‘f];clﬁ—"_él, M; = Nind 1,

and v = 7. 11“;1. Note that these choices match exactly the choices from the estimates on the transport
error. From (7.8) with » = 1 and r; = ro = 2, (5.19g), and (2.19) at level ¢, we have that for N, M <
|_1/2 (Nﬁn,ﬁ - Ncut,x - Ncut,t - 4)J

HDND%JGHU S Cop (F;jl)‘qﬂqurlﬁ)N M (M’ Nind»thrz_lrgillvFrz_lrc;il) ) (7.65)
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and so (A.4) is satisfied. Note that we have used (8.30) when converting the 5;/2Xq coming from (2.19) at level
qto a7, . Setting ® = ®(; ) and N = Xq, we have that (A.5) and (A.6) are satisfied as usual. The choices
of 0, 9, ¢, p, A, and C, are identical to those of the transport error (both terms contain We ;117 0 ®(; 1)),
and so we have that (i)-(ii), (A.7), (A.8), and (A.9) are satisfied as well. Since the bound (7.65) is identical
to that of (7.60), we obtain an estimate identical to (7.61) in the case p = 1. The case p = oo and the
estimates for the R* portion follows analogously to that for the first term from the transport error. We omit

further details. O

8. PARAMETERS

The purpose of the first subsection is to define the ¢-independent parameters in order, beginning with
the regularity index 3, and ending with the number a,, which will be used to absorb every implicit constant
throughout the paper. Then in Section 8.2, we define the parameters which depend on ¢, as well as the
parameters which depend in addition on n. Section 8.3 contains, in no particular order, consequences of the
definitions made in the previous two sections which are necessary to close the estimates in the proof.

8.1. Definitions and hierarchy of the parameters. The parameters in our construction are chosen as:
(i) Choose an L? regularity index 3 € [1/3,1/2); in light of [4, 36], there is no reason to take 8 < 1/3.
(ii) Choose b € (1,3/2) sufficiently small such that
26b < 1. (8.1)

iii i and b chosen, we may now designate a number of parameters:
iii) With 8 and b ch designat ber of t
(a) The parameter nmax, which denotes the total number of higher order stresses Ry ., is defined as
the smallest integer such that

2 _ (-1

8.2
Nmax T 1 2b ( a)
3+ [logZ nm"LX—| 1 Nmax
264+ ————————— < = ————. 8.2b
o e + 1) 2 2t 4 1) (8.20)
Notice that the second inequality is possible since 28b < 1.
(b) The parameter C; appearing in (2.17) to quantify |[1); 4|/, is defined as
b+4
Cp=—. 8.3
s (83

(¢) The exponent Cg is a small parameter used to estimate the Reynolds stress, cf. (2.10a), and then
absorb geometric constants in the construction. It is defined as

Cr=10b+1. (8.4)

(iv) The parameter cg, which is first introduced in (2.16) and utilized in Sections 6 and 7 to control small
losses in the sharp material derivative estimates, is defined in terms of ny.x as

Co = 4Nmax + 5. (85)

(v) The parameter ep > 0, which is used in (8.19) to quantify the finest frequency scale between A, and
Ag+1 utilized throughout the scheme, is defined as any real number such that

er300(nmax + 1)([logy nmax|) <b—1 (8.6a)

b—1 3
2 1 22 +4 — .

Ter(2 + [10gs Nmax | + 22 + 4nmax) < 5 50— D £ 1) (8.6b)
1 2+l max

r 5+ (2+ [10gs imax )9+ 1)) < 5 — % (8.6¢)

b—1 1 Tmax 3+ [logs Nmax |
er (CR ( 5 ) +15+9(3 + flogz(nmaxﬂ)> <3 (1 + — 1) 2/3b (e + 1) (8.6d)
1 1
Er <2Cb +co+ 10+ 2CR> <1-—20b (8.66)
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(vi)

(vii)

(viii)

(xii)

(d— 1ep(b—1) > b(6 + 13Nipay) + 280 + (2 + [logy Nmax ) <

(xiii)

(xiv)

1-2
er (7 + Cr + nmaX(S + Cb)) < 10 s (86f)

2ber(co+7) <1—5. (8.6g)

We note that the right-hand side of (8.6b) is positive from (8.2a) and the right-hand sides of (8.6¢)
and (8.6d) are positive from (8.2b).
The parameter C, is defined as

1
Cy, = . 8.7
Er(b — 1)(nmax + 1) ( )
The parameter o > 0 from the L' loss of the inverse divergence operator is now defined as
er (b — 1)
=— 8.8
a 55 (8.8)

The parameters Ncyt ¢ and Neye,x are used in Section 5 in order to define the velocity and stress cutoff

functions; see (5.3), (5.7), and (5.24). These large integers are chosen solely in terms of b and er as
B 1

€I‘(b — 1) 2

1

7Ncut,x = Ncut,t = ’V

- (8.9)

The parameter Ninq¢, which is the number of sharp material derivatives propagated on stresses and
velocities in Sections 2 through 7, is chosen as the smallest integer for which we have

4

Nipat = | ————
.t [sp(b—n

—‘ Ncut,t- (810)
The parameter Ninq,y, whose primary role is to quantify the number of sharp spatial derivatives prop-
agated on the velocity increments and stresses, cf. (2.8a) and (2.10a), is chosen as the smallest integer
for which we have the bound

4bNipa s + 8 + b(Cr + 3)er (b — 1) +28(b* — 1) < er(b— 1)Nipa,v - (8.11)
The value of the decoupling parameter Ngec, which is used in the LP decorrellation conditions (A.2)
and (A.9), is chosen as the smallest integer for which

Nawe > ¢ 8b (8.12)

b— 1)61’* '
The parameter d, which is used in the inverse divergence operator of Proposition A.2 to count the order
of a parametrix expansion, is chosen as the smallest integer for which we have

b—-1

S e DO+ G ) L (513)

The value of Ngy, which is introduced in Section 2 and used to quantify the highest order derivative
estimates utilized throughout the scheme is chosen as the smallest integer such that

3
SNan > (2Newt,t + Newsx + 14Nina,v +2d + 2Naee + 12)2mmex L (8.14)

Having chosen all the previous parameters in items (i)—(xiii), there exists a sufficiently large parameter
as > 1, which depends on all the parameters listed above (which recursively means that a, = a.(5,0)),
and which allows us to choose a an arbitrary number in the interval [a.,00). While we do not give a
formula for a, explicitly, it is chosen so that aibil)gr is at least twice larger than all the implicit constants
in the < symbols throughout the paper; note that these constants only depend on the parameters in

items (i)—(xiii) — never on ¢ — which justifies the existence of a..

8.2. Definitions of the ¢-dependent parameters.
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8.2.1. Parameters which depend only on q. For ¢ > 0, we define the fundamental frequency parameter as
A = 2] 0 10m2a] (8.15)
Definition (8.15) gives that A, is an integer power of 2, and that we have the bounds
a q 1
a®) <\, <2a®)  and gAZ < Agp1 < 2X (8.16)

for all ¢ > 0. Throughout the paper, if there exists a universal constant C' > 0 such that C1A4 < B < CA,
we say that A ~ B. In particular, the above reads A\, ~ a®) and Agt1 = )\Z. It will be convenient to denote
the quotient of two consecutive frequency parameters by

Ogi1 = Agr1d, R AL (8.17)
The fundamental amplitude parameter is defined in terms of A, by
§g = AP\ (8.18)

We now introduce a parameter which is defined in terms of the parameter er from (8.6) and used repeatedly
to mean “a tiny power of the frequency parameter”:

Tyi1 =07, (8.19)

In order to cap off our derivative losses, we need to mollify in space and time using the operators described
in Section 4. This is done in terms of the following space and time parameters:

A= A5 (8.20)
Ty =T A g (8.21)
While 7, is used for mollification and thus for rough material derivative bounds, the fundamental temporal
parameter used in the paper for sharp material derivative bounds is

7o = (62T (8.22)
Note that besides depending on the parameters introduced in (i)—(xiv), the parameters introduced above
only depend on ¢, but are independent of n. We note that the definitions of the parameters listed so far in
this subsection have not been changed from the definitions used in [5].

8.2.2. Parameters which depend on q and n. The rest of the parameters depend on both ¢ and n. We start
by defining the frequency parameter A, , and the intermittency parameter rq41,, by

2[(1+6(b_1)5F) log, Aq.l , n=20
= n n 8.23
@7 ol G- s 082 At Gt gm0 Al <<y (8.23)
Tg+1,n = )‘_-l}IQI—% 10gy Ag,n+3 1085 Ag1—2log, Tgi1] (824)
’ q

for 0 < 1 < Nax. In particular, (8.23) shows that Ay, is a power of 2, with Ago & A8, and A\, =~

1_ n 14 T L. . .
Ag Clrmaxtd /\(12_~_12(’“”“‘?“‘+1> for 1 < n < npax. Similarly, (8.24) shows that A\j4174+1,, is an integer power of

2, and we have Agy17g417 = )\;/_il/\l/ 22 . A consequence of these approximations are the inequalities

q,n q+1-
A o7
“2 _<9ldtl _ 99 2 <or d fen 8.25
Tq+1,7L = )‘q q+1 Tq-i—l,n = q+1 )\qul ( )

We recall from (2.7¢) that the stresses ]:Bq,n for 0 < n < npmax will be measured in terms of

Jq+105 ", n=0
A
Sq+1,0 77 Lot n=1
Sgtim = a )‘q/j)‘q{il at o (8.26)
A S "
6Q+1,0)\ . 1F2+1 ( ;illlnax+l)rg+1> ’ 2 <n< Nmax -
qn—

The function Y (n) is defined in (6.6) to quantify the number of steps required to produce ]D%qyn. As each step
accumulates negligible losses, which correspond to the quantity in parentheses above, one may adhere to the
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heuristic that 6411, is roughly speaking equal to 6“/\:71:‘“. We remark that each of the parameters defined so
far in this subsubsection has a new definition compared to that of [5].

Conversely, the following three parameters remain unchanged when compared to [5]. For 1 < n < nyax,
we define ¢, in terms of ¢y by

Ch =Co—4n. (8.27)
For n = 0, we set
3
Nﬁn,O = §Nﬁn» (828)
while for 1 <n < npax, we define Ngj, , inductively on n by using (8.28) and the formula
1
Nﬁn,n - \‘2 (Nﬁn,n—l - Ncut,t - Ncut,x - 6) - dJ . (829)

8.3. Inequalities and consequences of the parameter definitions. Due to (8.15) we have that I';11 >

(1/2)17”)\((;)_1)EF > (1/2)ber )\éb_l)sr > (1/2)aib_1)er. As was already mentioned in item (xiv), we have chosen
ax to be sufficiently large so that aibil)sr is at least twice larger than all the implicit constants appearing in
all < symbols throughout the paper. Therefore, for any ¢ > 0, we may use a single power of I';41 to absorb
any implicit constant in the paper: an inequality of the type A < B may be rewritten as A < T'gy1B.

From the definition (8.22) of 7, and (8.27), which gives that c, is decreasing with respect to n, we have

that for all 0 < n < nyax,

Te0s, 20 <77t (8.30)
Using the definitions (8.18), (8.19), (8.20), and (8.22), and writing out everything in terms of A\;_1, we have
T AT <t (8.31)

From the definition of 7, it is immediate that
TN < T < N N (8.32)
From the definitions (8.5) of cg and (8.27) of c,, we have that for all 0 < n < npyax,
e t+4< -1 (8.33)

Next, we a list a few consequences of the fact that Nipgv > Ning ¢, as specified in (8.11). First, we note from
(8.32) that

Ty iTam1 S A A <A (8.34)
where in the second inequality we have used that ep < Qioz)'

The fact that Ninq ¢ is taken to be much larger than Nyt ¢, as expressed in (8.10), implies when combined
with (8.34) the following bound, which is also used in Section 5:

(Tq?l;l)Ncuc < Fs—i:{l.t (835)

for all ¢ > 1. The parameter « in (8.8) is chosen as such in order to ensure that
Agi1 ~ Loy (8.36)

for all ¢ > 0. We note that the previous seven inequalities only involve parameters which have not changed
when compared to [5].
Next, we list a number of parameter inequalities which are not the same as those in [5]. Our choice of

Ngee in (8.12) and the assumption that a is chosen sufficiently large so that F;/_il > 274/3 yields

A< Dyar ) o — _ 8 <N (8.37)
q+1 = 27‘[‘\/§ (b — 1)€F dec - .
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We need a number of new inequalities to manage the Type 1 oscillation errors. The first of these is
c ~ 1 )
— 2(nmax+1 : =~
| I D Y <@qj_1 * )FZ—H if n=0,1
(8.38)

8
5q+1,ﬁ)‘q,ﬁFq+1 < _ . Y (7)+1
| DD (@;ﬁ’flm“ F2+1) if 2 <7< ngax

If n = 0, then the inequality follows from (8.26), (8.20), (8.23), and (6.6). If n = 1, the inequality follows
from the aforementioned inequalities and the equality

Mi A Aen s
L fen — @ (8.39)
AN At A

which holds for 2 < n < npax. Finally, if 2 < n < nyax, we use the aforementioned inequalities in conjunction
with (8.39). Next, we claim that for all 0 <7 < ngpax,

_ 1 T(n)+1
| E PP (@;f;"ax“)rgH) Aghns ST 0g40 (8.40)
The above inequality is a consequence of (6.8) and
1 b—-1
26b(b—1)+ (b — 1)er (—CR (b - 1) +154+9(3 + |—1Og2(nmax)-|)) + (3 + [logy Nmax |) 2 + 1)
b—1 max
< +—— b-1), (8.41)

2 2(Nmax + 1)

which in turn follows from (8.2b) and (8.6d). Finally, we claim that for n such that n > r(n), as defined in
(6.5), and n > 2,

5q+1,ﬁ)‘q,ﬁrg+1>‘;}%1 < gt1n - (8.42)

If 7 = 0,1, the inequality follows from the definitions of A\, and A, 1 in (8.23), the definition of the d411,,'s
in (8.26), and (6.6), which guarantees that Y(n) > 1 for n > 2. In the case 2 < 1 < Nyax, the inequality
follows from the aforementioned inequalities combined with (8.39) and the fact that for n > r(n), (6.7) gives
that Y(n) > T(n) + 1.

The amplitudes of the higher order corrections wg1,n,, must meet the inductive assumptions stated in
(2.9a). Towards this end, we claim that for all 0 <77 < npyax,

1 1
5q/+21,ﬁrg+1 < 6q{il - (8.43)

Indeed, the case n = 0 follows from the definition of Cg in (8.4), while the case 7 > 1 is a consequence of
the definition (8.26) and the inequality

2+ [logy Nmax | < b—1

er(b—1) (54 (2 + [logy nmax])(9+ Cp)) + (b — 1) - 5 (8.44)
which in turn is a consequence of (8.2b) and (8.6¢).
We will also need that -
Jl4T(7)+13 - - Cum
Fg F‘]“’l( )\q’ﬁrquﬁAq}Lmax S Fq+12 : (845)
The above inequality is a consequence of (2.7a), (8.39), and
C, 1
U 4142+ [Mogy nmax]) + 20 — C S 8.46
£p<b+ (2 + [logy Nmax|) + u>+2(nmax+1)< (8.46)
which holds due to the choice of C, in (8.7) and (8.6a). The inequality (8.45) then immediately implies that
LAY (7)+13 - - Com
Fg I‘qul( : )‘qyﬁrqfl,ﬁ)‘qjl = I‘q+12' (8.47)
We claim now that C, satisfies
S AT+ —241
Ly Fqugn)—&- /27114&1,% < Fqcu+12@q/+21 : (8.48)

We may verify this by using (8.25), the definition of C, in (8.7), and the inequalities

Cy 1
5% + 72+ [loggnmax]) +4<Cy—2, <= 1- %> er(b — 1)(nmax + 1)(7[1ogs Mmax | +20), (8.49)
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the second of which follows from (8.6a).
Next, we claim that due to our choice of d, we have

1 T(n) | R S\t
Y Inmax+1D) Tm9+C q+1 q+1Tq+1,7 4 3Nind,v 5q+2
AgAg+1 (9q+1 Fq+11’) A | T ——— | () <0 (8.50)
q+1"g+1,n q+1
and
- (d=1)
Tl hoqr = ) 0
Cp45 g+17\g+17g+1,n 4 3Nind,v q+2
Og+1al 41 Ter1aAg A1) | — ———— (Ag+1) S S (8.51)
q+1"q+1,n q+1

The bound (8.50) follows from (8.13) and (8.34), while (8.51) follows from (8.50) and the parameter inequality

Cyp+5 5y
‘5q+1ﬁrqr{ Tar1adgitgr1 < AgAhyy -
For estimating the stresses emerging from the divergence correctors, we shall need the bound

ravaderalgtn S T 0gen, (8.52)
which follows from (8.25), (8.38), and (8.40) and implies that
5q+1,ﬁrg+1)‘qﬁ)‘;+11 = 7"3+1,5F¢11115q+1,ﬁ < F¢1_+C1R_15q+2' (8~53)
We furthermore need that
Fgur(llﬁ(ﬁ)w < Fguréﬁ(nmax)w < Fqci? , (8.54)

which in turn follows from C, > 727 (8 4 14T (nyax)), which is a consequence of (8.6a) and (6.8).
In order to estimate the transport and Nash errors in L' in Sections 7.7 and 7.8, we claim that

Cp+4 ¢1/2 -1 -1 —Cr—1
Dett6 2 ama rariadgts STt g4 (8.55)

In order to verify (8.55), we note that by (8.18), (8.19), (8.22), (8.24), (8.26), the definition of C, in (8.3),
and the previously established parameter inequalities (8.38) and (8.40), the left side of (8.55) is bounded
from above by

FCb+CO+13(6q+1,ﬁ>\q,ﬁ)1/2 (5q/\q)1/2>\1/2)\—3/2

q+1 q 7q+1
Cp+co+13 —Cp—9—C 1 2B8b—14y1-28\1/2y1/2y —3/2
< Fqilco (Fquij R)‘q+16q+2) /2(5q+2)‘q+1)‘qi1 )‘q B) /2>\q/2>\q+/1
3Co+co+10+5Cr y (Bb+8—1)(b—1) (—Cr—1
S D A { U By SO B

Thus, (8.55) holds since er(3Cy + ¢ + 10 + £Cg) + 28b < 1, in view of (8.1) and (8.6e). To estimate the
transport and Nash errors in L>°, we finally need that
S ot TY (M )21 H4T N1/0y _ Com
g Dot Y (rmes) O Nt At <TS!, (8.56)
which follows from the definition of C, in (8.7), (8.25), and (8.6b).
In Remark 2.7, have have used that

26b
lim +2 = 8.57
(B,0)=(1/2—,1+4) (b — 1)(Cyer + 1/2) (8:57)
which is a consequence of the choice of C, in (8.7).
We conclude this section by verifying a few inequalities concerning the parameter Ngj, 5, which counts the
number of available space-plus-material derivative for the residual stress R, . This verification is the same
as in [5, Section 9.3]. For all 0 < n < npyax we require that

Nind,¢, 2Ndec +4 < [1/2 (Nfin,n — Neut,t — Newt,x — 5)] —d, (8.58a)
14Nind,v < Nfinn — Neut,t — Neut,x — 2Ndec — 9, (8.58b)
6Nindv < [1/2 (Ngn,n — Neut,t — Neurx — 6)] — d, (8.58¢)
6Nind,v < [1/4(Ngnn — Neut,t — Newe,x — 7)] - (8.58d)
for all 0 < n < npax. Additionally for 0 < n < n < nyax, we require that
L1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,x - G)J —d> Nﬁn,n (8~59)

50



holds. The inequality (8.59) is a direct consequence of the recursive formula (8.29) and of the fact that the
sequence Ngy, n is monotone decreasing with respect to n. Using (8.28) and (8.29) one may show that
Nﬁn,n > 2_nNﬁn,O - (2d + Ncut,t + Ncut,x + 8) .

Noting that the bounds (8.58) are most restrictive for n = nmyax, they now readily follow from (8.14).

APPENDIX A. AUXILIARY LEMMAS

A.1. L? decorrelation. In order to estimate the perturbation in LP spaces as well as terms appearing in
the Reynolds stress we will need a combination of [5, Lemma A.7] and [5, Remark A.9], which we recall next.

Lemma A.1 (LP decorrelation with flows). Let p € {1,2}, and fiz integers No > Ngee > 1. Suppose
FR3xR =R and let &: R? x R = R3 be a vector field advected by an incompressible velocity field v, i.e.
Di® = (0; +v-V)® = 0. Denote by ®~ ' the inverse of the flow ®, which is the identity at a time slice
which intersects the support of f. Assume that for some A\,v,v > 1 and Cy > 0 the functions f satisfies

|IDNDM £, S CPAN M (M, Ny, v, v)

~

for all N + M < N,, and that ®, and ®~' are bounded as

N+1 N+1g-1 N
HD (I)HLOO( ) + HD ® HLOO(suppf) ’S A
for all N < N,. Lastly, suppose that ¢ is (T/u)®-periodic, and that there exist parameters 62 ¢ > p and

Cy > 0 such that

supp f

|06l S CaM (N, N2 6.) (A1)
for all0 < N < N,. If the parameters B
ASpu<(C<(
satisfy
CemvBa YN <1, (A.2)

and we have
2Ndec + 4 S No )
then the bound

IDY DY (f 9o @), S CCM (N, Nay €, C) M (M, My, v, ) (A3)
holds for N + M < N, and M < Ny — 2Ngec — 4.

A.2. Inversion of the divergence. Given a vector field G, a zero mean periodic function ¢ and an
incompressible flow ®, our goal in this section is to write G*(x)o(®(x)) as the divergence of a symmetric
tensor. For this purpose, we use [5, Proposition A.18].

Proposition A.2 (Intermittency-friendly inverse divergence). Fiz an incompressible vector field v
and denote its material derivative by Dy = 0y + v - V. Fiz integers N, > M, > 1. Also fix Ngec,d > 1 such
that Ny, —d > 2Ngec + 4, and p € {1,00}.

Let G be a vector field and assume there exists a constant Cg > 0 and parameters \,v > 1 such that

|[DVNDMG||,, S CaAN M (M, My, v,v) (A4)

for all N < N, and M < M,.
Let ® be a volume preserving transformation of T3, such that

D=0 and  [|V® —1d| guppcy < V2

Denote by @~ the inverse of the flow ®, which is the identity at a time slice which intersects the support of
G. Assume that the velocity field v and the flow functions ® and ®~! satisfy the following bounds

||DN+1(I)||L°°(suppG) + HDN—H(I)_lHL‘X’(suppG) S’ A (A5)
WﬂD%Dwm%wﬂngmwquJ@%m, (A.6)

for all N < N,, M < M,, and some X' > 0.
Lastly, let 0,9: T3 = R be two zero mean functions with the following properties:
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(i) there exists d > 1 and a parameter ¢ > 1 such that o(x) = (~24AYY(x)
(ii) there exists a parameter u > 1 such that o and ¥ are (T/u)3-periodic
(iii) there exists parameters A > (, Cx > 1, and a € (0, 1], such that

DY, £ CA“M (N, 2d,¢, A) (A7)
for all0 < N < Ngy.
If the above parameters satisfy

N<A<pu<(<A, (A.8)

where by < in (A.8) we mean that
A 2rvBA YN <1 (A.9)

then, we have that

Goo®=div (H(Goo®))+VP+E. (A.10)

where the traceless symmetric stress H(Go o ®) and the scalar pressure P are supported in supp G, and for
any fized o € (0,1) they satisfy

< CaCul PAYM (N, 1,¢,A) M (M, My, v,7) (A.11)

~

ID¥ D H (Geo @), + | DY DI P,

for all N < N, —d and M < M,. The implicit constants depend on N, M, a but not G, o, or ®. Lastly, for
N < N, —d and M < M, the error term E in (A.10) satisfies

|DVNDME||,, S CaCA ¢ IATN M (M, My, v,v) . (A.12)

We emphasize that the range of M in (A.11) and (A.12) is exactly the same as the one in (A.4), while the
range of permissible values for N shrank from N, to N, —d.

Lastly, let No, M, be integers such that 1 < M, < N, < M, /2. Assume that in addition to the bound
(A.6) we have the following global lossy estimates

HDNa,waHLm(W) S CvXéV?JM (A.13)

for all M < M, and N + M < N, + M,, where

Corg S770 and N <X <A< A1 (A.14)

qn~ 'q

If d is chosen large enough so that
CaCh (AN (1 4+ ymax{7; 1,7, CAN ™ < 6,400, 10 (A.15)

then we may write

E =div (R*(Ggo ®)) + Goo ®dz, (A.16)
T3

where R*(Go o @) is a traceless symmetric stress which satisfies

[DVNDMR* (Goo®@)||,, < dguad)i"0r, M (A.17)

for N < N, and M < M,.

For p = 1, Proposition A.2 is taken as is from [5, Proposition A.17]. For the proof of Proposition A.2 in
the case p = oo, the proof of [5, Proposition A.17] applies mutatis mutandis, after replacing each instance of
an LP bound for p # oo in the proof with an L*> bound. In fact, the condition (A.9) involving the parameter
Ngec is technically irrelevant in the case p = oo, since L* is an algebra.
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