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Abstract. For any regularity exponent β < 1/2, we construct non-conservative weak solutions to the 3D

incompressible Euler equations in the class C0
t (Hβ ∩L1/(1 − 2β)). By interpolation, such solutions belong to

C0
tB

s
3,∞ for s approaching 1/3 as β approaches 1/2. Hence this result provides a new proof of the flexible

side of the Onsager conjecture, which is independent from that of Isett [36]. Of equal importance is that

the intermittent nature of our solutions matches that of turbulent flows, which are observed to possess
an L2-based regularity index exceeding 1/3. Our proof builds on the authors’ previous joint work with

Buckmaster and Masmoudi [5], in which an intermittent convex integration scheme is developed for the
3D incompressible Euler equations. We employ a scheme with higher-order Reynolds stresses, which are

corrected via a combinatorial placement of intermittent pipe flows of optimal relative intermittency.
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1. Introduction

We consider the three-dimensional homogeneous incompressible Euler equations

∂tv + div (v ⊗ v) +∇p = 0 , (1.1a)

div v = 0 . (1.1b)

Here v(·, t) : T3 → R3 is the velocity and p(·, t) : T3 → R is the pressure, and we consider the system (1.1)
with periodic boundary conditions on T3 = [−π, π]3. Without loss of generality, the velocity is taken to
have zero mean, and the pressure is uniquely determined as the zero mean solution of −∆p = div div (v⊗v).
Smooth solutions v of the 3D Euler equations conserve their kinetic energy E(t) = 1

2

�
T3 |v(x, t)|2dx.

In this paper, we consider weak solutions v ∈ C0
t L

2 to (1.1). Since the Euler system is in divergence form
and we consider velocity fields of finite kinetic energy, the definition of weak solutions is the usual one. The
motivation for considering weak solutions is twofold. First, the Euler equations are expected to dynamically
produce singularities, even from smooth initial conditions. Second, matching the mathematical theory
with the physical properties of turbulent fluids necessitates the consideration of solutions with singularities.
Indeed, the Kolmogorov/Onsager theories of turbulence postulate that solutions to the 3D incompressible
Navier-Stokes equations, which represent a fully developed turbulent flow, exhibit anomalous dissipation of
kinetic energy in the infinite Reynolds number limit. This is an experimental fact [30, 29]. Hence, if the
3D Euler equations are to represent the inertial range of turbulence at very large Reynolds numbers, one is
forced to consider non-conservative solutions of (1.1), which thus must be weak solutions, not smooth ones.

The conservation of kinetic energy for weak solutions to (1.1) was considered by Onsager [41], who
predicted that “turbulent energy dissipation [...] could take place just as readily without the final assistance
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of viscosity [...] because the velocity field does not remain differentiable.” Based on the computation of the
energy flux through expanding Fourier domains, Onsager formulated a remarkable statement connecting the
regularity of a weak solution v to (1.1) and the validity of the energy conservation law. Onsager’s conjecture
asserted that any weak solution v ∈ C0

t C
s with s > 1/3 must conserve kinetic energy, whereas for any

s < 1/3 there exist dissipative weak solutions v ∈ C0
t C

s to the 3D Euler equations. The rigidity/flexibility
dichotomy expressed by the Onsager conjecture is the mathematical manifestation of an experimental fact
in hydrodynamic turbulence: Kolmogorov’s 4/5-law regarding third order structure functions [30, 29].

Due to the quadratic nature of the nonlinearity in (1.1), the Onsager exponent 1/3 is intimately connected
to an L3-based regularity scale, such as C0

tB
s
3,∞, where we recall that the Besov norm is given by ‖v‖Bsp,∞ =

‖v‖Lp +sup|z|>0 |z|−s‖v(·+z)−v(·)‖Lp , so that Cs(T3) ⊂ Bs3,∞(T3). Indeed, the rigidity part of the Onsager

conjecture was established by Constantin-E-Titi [18], who proved that any weak solution v ∈ L3
tB

s
3,∞∩C0

t L
2
x

of (1.1) must conserve kinetic energy if s > 1/3; see also the partial result [28] and the subsequent refinements
in [27, 13, 26]. Concerning the flexible part of the Onsager conjecture, after the paradoxical constructions
of Scheffer [42] and Shnirelman [43], a systematic approach towards the resolution of the conjecture was
proposed in the groundbreaking works [21, 23] of De Lellis and Székelyhidi Jr., who introduced L∞-convex
integration and C0-Nash iteration schemes to fluid dynamics. After a series of important partial results [3, 19],
a resolution of the flexible part of the Onsager conjecture was obtained by Isett [36] in the setting of weak
solutions with compact support in time. This was further refined by Buckmaster, De Lellis, Székelyhidi Jr.,
and the last author in [4], by constructing dissipative weak solutions v ∈ C0

t C
s to the 3D Euler equations, for

any s < 1/3. For a detailed account of the Onsager theory of ideal turbulence, and of the mathematical results
which turned the Onsager conjecture into the Onsager theorem, we refer the reader to [29, 44, 22, 24, 6, 8].

We note that the proofs of rigidity in [18, 27, 13, 26] identify the L3-based spaces B
1/3+
3,∞ and B

1/3
3,c0

, as the

borderline regularity spaces for ensuring that weak solutions conserve energy/have vanishing energy flux.
These spaces are known to be sharp, for instance in the case of a Burgers shock, which dissipates energy

and lies in B
1/3
3,∞. See also the incompressible 3D vector fields constructed in [28, 13, 14, 15, 9], which have a

nonzero flux at critical regularity. Moreover, the L3-based regularity scale matches the prediction made for
third order structure functions in the Kolmogorov theory of turbulence.

In contrast, the proofs of flexibility in [36, 4, 35] are in a certain sense “too strong,” since they construct

weak solutions in the L∞-based space C
1/3− (which implies the same result in B

1/3−
3,∞ ). However, from a

physics perspective there is something unnatural about the homogeneous in space solutions from [36, 4, 35]:
they do not match the observed inertial range intermittency of turbulent flows at large Reynolds number,
neither for low order structure functions, nor for high order structure functions. To be more precise, for p < 3,
the pth order inertial range structure function exponents ζp in fully developed turbulence have consistently
been observed to lie above the Kolmogorov predicted value of p/3. See e.g. [30, Figure 8.8], [12, Figures
4&5], [37, Figure 3], [34, Figure 3]. These measurements correspond (see also [6, 5] for details) to an Lp-
based regularity exponent of ζp/p > 1/3. Similarly, for p � 3, experiments and simulations show that the
inertial range structure function exponents ζp saturate (meaning, remain bounded) as p→∞. See e.g. [30,
Figure 8.8], [34, Figure 6], and the discussion in [34, Section D]. These measurements correspond to an
Lp-based regularity exponent of ζp/p→ 0 as p→∞, suggesting that the fully developed isotropic turbulent
solutions observed in experiments do not retain any positive Hölder exponent. The culprit is intermittency.

The main goal of this paper is to give a new proof of the flexible side of Onsager’s conjecture. We

construct weak solutions to the 3D Euler equation in the regularity class C0
t (H

1/2− ∩ L∞−) ⊂ C0
tB

1/3−
3,∞ ,

which are non-conservative and exhibit the inertial-range intermittency observed in turbulent flows.

Theorem 1.1 (Main result). Fix β ∈ (0, 1/2). For any divergence-free vstart, vend ∈ L2(T3) which have

zero mean, any T > 0 and any ε > 0, there exists a weak solution v ∈ C([0, T ];Hβ(T3) ∩ L
2−2β
1−2β (T3)) to the

3D Euler equations (1.1) such that ‖v(·, 0)− vstart‖L2(T3) ≤ ε and ‖v(·, T )− vend‖L2(T3) ≤ ε.

Note that as β → 1/2
−

, the Sobolev regularity index of the weak solutions in Theorem 1.1 converges
to 1/2, while the Lebesgue integrability index converges to ∞, explaining the notation C0

t (H
1/2− ∩ L∞−).

By interpolation, it follows that for any s < 1/3, we may choose β sufficiently close to 1/2 to ensure that
v ∈ C0

tB
s
3,∞, which is the Onsager regularity threshold (see Remark 2.7).
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Remark 1.2 (β-model). We point out that the Sobolev regularity statement in Theorem 1.1 corresponds
exactly to the predictions of the phenomenological model of turbulence known as the β-model, which was
introduced by Frisch, Sulem, and Nelkin [31]. Specifically, if one assumes that singularities concentrate on a
2-dimensional set, then the β-model predicts that the second order structure function exponent is 1, which
corresponds to H

1/2 regularity. Simple heuristic computations indicate that the solutions constructed in this
work do indeed concentrate on a two-dimensional set, which is also the prediction of Iyer, Sreenivasan, and
Yeung [34]. For a proof of energy conservation within the assumptions of the β-model, we refer to [25].

Remark 1.3 (Other flavors of flexibility). As in [5], we have chosen to state Theorem 1.1 in a way
that leaves the entire emphasis of the proof on the regularity of the weak solutions. In terms of flexibility,
Theorem 1.1 gives the existence of infinitely many non-conservative weak solutions of 3D Euler in the stated
regularity class, and moreover shows that the set of wild initial data is dense in the space of L2 periodic
functions of given mean. Using well-established techniques, see e.g. [3, 36, 4] and [5, Remarks 1.2, 3.6, 3.7],
we may alternatively establish other variants of flexibility for the 3D Euler equations (1.1) in the regularity
class C0

t (H
1/2− ∩ L∞−):

(a) If the functions vstart and vend in Theorem 1.1 are any two C∞ smooth stationary solutions of the 3D
Euler equations of zero mean, then we may take ε = 0. Since the function 0 and any smooth shear
flow are stationary solutions to (1.1), this implies the existence of nonzero weak solutions which have
compact support in time. Achieving this would require that we introduce a temporal cutoff in the convex
integration scheme, which essentially ensures that on temporal regions where a stress is already vanishing
identically, no further velocity increments need to be added; see [5, Equation (3.14)].

(b) One may modify the proof of Theorem 1.1 to show that any C∞ function e : [0, T ]→ (0,∞) is the kinetic
energy of a weak solution to the 3D Euler equations in the regularity class C0([0, T ];H

1/2−∩L∞−). This
implies flexibility within the class of dissipative solutions. Achieving this result would require adding a
few inductive assumptions in the convex integration scheme: we need to measure the distance between
the energy resolved at every step q 7→ q + 1 in the convex integration scheme, and the desired energy
profile, see e.g. [23, 3, 19, 4]. In particular, the energy pumped into the system due to higher order
stresses in every sub-step n 7→ n + 1 needs to be kept track of, and one also needs to keep track of the
amount of energy pumped on the support of each cutoff function, as was done in [7] for stress cutoffs.

1.1. Minimally technical outline of the proof. We now provide a sketch of the argument used to prove
Theorem 1.1, in order to highlight the most important components. We simultaneously aim to elide certain
technical details, while emphasizing the aspects of our argument which are distinct from recent well-known
convex integration arguments (see the comparisons in Subsections 1.2.1 and 1.2.2). Finally, while our proof
relies fundamentally on the technology developed in [5], it requires several new ingredients in order to ensure
that the solution v belongs to C0

t L
∞−; see Subsection 1.2.3.

As is customary in Nash-type convex integration schemes for the Euler equations (see e.g. [24, 6]), the
solution v of Theorem 1.1 will be constructed as a limit when q → ∞ of solutions vq : T3 × R → R3 to the

Euler-Reynolds system with a traceless symmetric stress R̊q : T3 × R→M3×3
symm

∂tvq + div (vq ⊗ vq) +∇pq = div R̊q , (1.2a)

div vq = 0 . (1.2b)

The pressure pq is uniquely defined by solving ∆pq = div div (R̊q−vq⊗vq), with
�
T3 pqdx = 0. The functions

vq and R̊q are assumed to oscillate at frequencies no larger than λq = a(bq), where a = a(β) is sufficiently
large and the superexponential growth rate b = b(β) is slightly larger than 1. Adhering to the convention
that all norms are measured uniformly in time, e.g. Lp refers to C0([0, T ];Lp(T3)), we posit that∥∥R̊q∥∥L1 ≤ δq+1 := λ−2β

q+1 ,
∥∥R̊q∥∥L∞− ≤ 1 . (1.3)

Thus R̊q → 0 in the L1 topology and is nearly summable in both W 1−,1 and L∞−. The quadratic nature of
the nonlinearity then leads us to posit furthermore that velocity increments wq = vq − vq−1 satisfy

‖wq‖L2 ≤ δ
1/2
q , ‖wq‖L∞− ≤ 1 , (1.4)

so that wq → 0 in L2 and is nearly summable in both H
1/2− and L∞−. The main inductive step on q asserts

the existence of a velocity increment wq+1 and stress R̊q+1 such that (1.2)–(1.4) hold with q 7→ q + 1.
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In order to construct non-conservative solutions with regularity above 1/3 on the L2-based Sobolev scale,
the results of [18] dictate that the weak solution must be intermittent – a term which is used here to mean
that the weak solution contains spatial concentrations, not just oscillations, and so it has a different regularity
index in an L2-based scale, versus an L∞-based scale. A first attempt to define the velocity increment wq+1

would then be as a sum of products of the form

a
(
R̊q,∇vq

)
Wq+1,rq,ξ , (1.5)

where a(R̊q,∇vq) oscillates at spatial frequency λq, and Wq+1,rq,ξ is a high-frequency intermittent pipe flow.

More specifically, Wq+1,rq,ξ is a shear flow supported in a thin tube of diameter λ−1
q+1 around a line parallel to

a unit vector ξ, which has been periodized to scale (λq+1rq)
−1, see Proposition 3.3. The parameter 0 < rq < 1

corresponds both to the measure of the support of the intermittent pipe flow (which is r2
q) and the effective

frequency support (which is [λq+1rq, λq+1]). As such, it is clear that rq quantifies the intermittent nature

of the velocity increment wq+1. The low-frequency function a(R̊q,∇vq) localizes the scheme in space and

time by zooming down to the scale λ−1
q , at which R̊q and vq may be treated as spatially homogeneous.

The “convex integration step” via which we construct wq+1 then consists of essentially independent local

iterative steps, which are predicated on the local size of R̊q and ∇vq. The timescale of a(R̊q,∇vq) is inversely
proportional to ‖∇vq‖L∞(supp a). Chebyshev’s inequality combined with the global inductive bounds on ∇vq
and R̊q then controls the sizes of the space-time sets on which each we initiate local iterative step.

At this stage in the argument, it is not clear how to choose the value of the intermittency parameter rq.

It turns out that in order to propagate both H
1/2− and L∞− bounds, there exists a unique optimal choice of

rq! To see this, we inspect the simplest error term in R̊q+1, namely the Nash error R̊Nash
q+1 , defined by solving

the equation

wq+1 · ∇vq = div R̊Nash
q+1 .

Using that ‖Wq+1,rq,ξ‖Lp ≈ r
2/p−1
q and ‖a(R̊q,∇vq)‖L2p ≈ ‖R̊q‖

1/2
Lp , and using the heuristic that the most

costly part of ∇vq is ∇wq, we find that∥∥div−1 (wq+1 · ∇vq)
∥∥
L1 . λ

−1
q+1 · δ

1/2
q+1rq · δ

1/2
q λq ,

∥∥div−1 (wq+1 · ∇vq)
∥∥
L∞
. λ−1

q+1 · r−1
q · r−1

q−1λq .

As b→ 1+ and β → 1/2
−

, matching the L1 bound for the stress requires rq . λ
−1/2
q+1 λ

1/2
q , while matching the

L∞ bound requires rq & λ
−1/2
q+1 λ

1/2
q ; see (8.55) and (8.56) for precise inequalities. Thus our choice of rq is

completely constrained by the simplest error term in the scheme. Since we shall always quantify rq in terms

of powers of the quotient of λ−1
q+1λq, we refer to this constraint on rq as the one-half rule for intermittency.

Of course, we must then show that the transport and oscillation errors, defined by solving the equations

div R̊trans
q+1 =

(
∂t + vq · ∇

)
wq+1 , div R̊osc

q+1 = div
(
R̊q + wq+1 ⊗ wq+1

)
,

also respect this one-half rule which is dictated by the Nash error.
Let us first consider the transport error. Recall cf. [24, 6] that Cα-based convex integration schemes for

the Euler equations essentially use global Lagrangian coordinate systems, predicated on global L∞ bounds
for ∇vq. Instead, as in [5] we are forced to implement local Lagrangian coordinate systems predicated on

the local L∞ bounds for ∇vq which are available on the support of a(R̊q,∇vq). Pre-composing the high-
frequency pipe flow Wq+1,rq,ξ with the local Lagrangian flow map then gives that the transport error obeys
bounds identical to those of the Nash error. Thus, we may expect the transport error to also respect the
one-half intermittency rule.

Unfortunately, the composition of Wq+1,rq,ξ with Lagrangian flow maps introduces an intersection problem
in the oscillation error: between neighboring cutoffs a and a′, it may be the case that

a
(
R̊q,∇vq

)
Wq+1,rq,ξ ⊗ a′

(
R̊q,∇vq

)
W′q+1,rq,ξ′ 6= 0 .

The main innovation in Isett’s proof of the Onsager conjecture [36] was a “gluing technique,” which solved
the intersection problem, but which required global L∞ bounds on ∇vq. The localized nature of our scheme,
combined with the inherently nonlocal nature of the Euler equations, appears to preclude the usage of a
gluing technique, in the spirit of [36, 4].

We instead solve the intersection problem directly, using the sparsity of the pipe flows. At an intuitive level,
the empty space in between neighboring pipes provides enough space for us to place new sets of intermittent
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pipes, which do not intersect the already existing ones. We refer to this as pipe dodging. However, if one
conceptualizes the spatial support of each a(R̊q,∇vq) as being a spheroid of diameter λ−1

q , then the one-
half rule for intermittency does not provide enough sparsity to solve this intersection problem. Indeed, [5,
Proposition 4.8] shows that pipe dodging on the support of such an isotropic cutoff requires a three-quarters
intermittency rule. We address this issue by anisotropically shrinking the diameter of the support of each
amplitude function a, in a ξ-dependent way. Specifically, if a(R̊q,∇vq, ξ) is to be multiplied by a pipe flow

parallel to ξ as in (1.5), then we extend the support of a(R̊q,∇vq, ξ) to length λ−1
q in the direction parallel to

ξ and (λq+1rq)
−1 in the direction perpendicular to ξ. We use the phrase relative intermittency to quantify

the aspect ratio of the support of a(R̊q,∇vq, ξ) and implement it technically via a set of checkerboard cutoffs.
We refer to Subsection 5.4 for a construction of these anisotropic checkerboard cutoffs, Proposition 3.8 for a
proof that the one-half rule provides sufficient relative intermittency to solve the intersection problem, and
Subsection 7.5 for the implementation of these two ingredients in the context of the oscillation error.

Since the characteristic length scale of R̊q and ∇vq is λ−1
q , one may expect that introducing the artificially

smaller length scale (λq+1rq)
−1 � λ−1

q will produce unnaturally larger error terms. The first place to look
for such a bad error term would be in the oscillation error terms which are given by

div−1

(
∇
(
a(R̊q,∇vq, ξ)2

)(
Id−−

�
T3

)
(Wq+1,rq,ξ ⊗Wq+1,rq,ξ)

)
. (1.6)

The first key insight is that the differential operator in the above expression is not the full gradient: it is
the directional derivative ξ · ∇, as Wq+1,rq,ξ is parallel to ξ. Hence, from the perspective of this error term,

the anisotropy of a(R̊q,∇vq, ξ) is essentially free, since in the direction of ξ the amplitude function a only
oscillates at frequency λq.

However, the error term in (1.6) presents other difficulties. Since this term inherits its minimum effective
frequency of λq+1rq from the mean-free part of Wq+1,rq,ξ ⊗Wq+1,rq,ξ, the leftover error terms in (1.6) live
at frequencies of absolute value in the range [λq+1rq, λq+1]. Simple heuristic estimates indicate that the

lowest frequency portion of these error terms is too large in L1 to be absorbed into R̊q+1, while the highest

frequency portion is too large in L∞ to be absorbed into R̊q+1. Rectifying the first issue requires identifying

higher order stresses R̊q,n living at intermediate frequencies λq,n ∈ [λq+1rq, λq+1], which are corrected by
corresponding higher order perturbations

wq+1,n = a
(
R̊q,n,∇vq, ξ

)
Wq+1,rq,n,ξ .

The minimum frequency of the increment wq+1,n, which equals λq+1rq,n, is defined to converge to λq+1 as n
approaches its maximum value of nmax. This allows the L1 stress estimates to just barely close. Rectifying
the second issue requires a non-trivial estimate (see Lemma 3.5) on the L∞ size of the frequency projected
squared pipe flow P[λq,n′−1,λq,n′ ]

(Wq+1,rq,n,ξ ⊗Wq+1,rq,n,ξ). Somewhat amazingly, this estimate respects the

one-half rule in the sense that the L∞− size of the resulting stress is exactly 1 if one chooses rq = λ
1/2
q λ
−1/2
q+1 .

We then correct the higher order stresses R̊q,n according to a generalization of the one-half rule; in other

words, the pipes Wq+1,rq,n,ξ used to correct R̊q,n, which lives at frequency λq,n ∈ [λq+1rq, λq+1], have

minimum frequency λ
1/2
q,nλ

1/2
q+1. This is again the minimum amount of intermittency needed to ensure higher

order pipe dodging, i.e., that pipes from overlapping cutoff functions a(R̊q,n,∇vq, ξ) and a′(R̊q,n′ ,∇vq, ξ′)
do not intersect. Thus, wq+1 is finally constructed as a sum of terms of the form a(R̊q,n,∇vq, ξ)Wq+1,rq,n,ξ,

which collectively obey the inductive bounds required of velocity increments, i.e. (1.4) with δ
1/2
q+1 replaced by

a suitable δ
1/2
q+1,n, and they also produce a stress R̊q+1 obeying (1.3).

In summary, in the iteration scheme described above, the one-half rule presents the Goldilocks amount
of intermittency needed to obtain both H

1/2− and L∞− bounds on the velocity. At a technical level, it
appears that the choice of parameters in this scheme is essentially fixed, by scaling: the Nash, transport,
and oscillation errors each impose exactly the same intermittency restrictions. Implementing the above
strategy rigorously is made cumbersome by the need to precise localize all parts of the argument on suitable
regions of space-time. This technically involved part of the proof is encoded in the design of cutoff functions,
recursively for the velocities and iteratively for the stresses, which effectively play the role of a joint Eulerian-
and-Lagrangian wavelet decomposition (see Section 5). This localization machinery was previously developed
in our earlier joint work with Buckmaster and Masmoudi [5], and this part of the argument can be used
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essentially out of the box. In this manuscript, we therefore just focus on the novel aspects of the intermittent
convex-integration/Nash iteration scheme.

1.2. Comparison and contrast with existing works.

1.2.1. Hölder schemes. The techniques in the present work share a number of generic features with the
construction of non-conservative solutions in Cαt,x for α < 1/3 in [36], and its subsequent optimizations
in [4] and [35]. Foremost among these features is the usage of some variation of Mikado/pipe flows rather
than Beltrami flows, an idea originating in [19] and used additionally in recent works such as [20, 32]. In
contrast with Beltrami flows, Mikado/pipe flows enjoy stability on the full Lipschitz timescale, which appears
necessary in order to reach sharp thresholds in the Nash and transport errors in both the intermittent and
homogeneous settings. In addition, we require the propagation of material derivative estimates for the stress,
as in the schemes in [3] and [40], since in the absence of a gluing step in the iteration, these bounds do not
come for free.

Implementation of these basic concepts, however, looks very different in the intermittent setting than in
the homogeneous setting. The most glaring difference is in the type of derivative estimates which must be
propagated on both the stress R̊q and the gradient of velocity ∇vq. Sharp material and spatial derivative
estimates for homogeneous schemes have typically only been required at very low order, perhaps one or two
material derivatives and three spatial derivatives. Furthermore, such estimates can always be made globally
due to the homogeneous character of the stress and velocity. In our setting, sharp material and spatial
derivative estimates have to be made both locally, and to essentially infinite order. As in [5], propagating
these estimates requires a careful construction of stress and velocity cutoffs, and a localized inverse divergence
operator for which derivative estimates on the input lead directly to corresponding estimates on the output.
We expect these tools to be widely applicable in problems which require sharp derivative estimates.

Furthermore, there are significant differences between the present work and [36, 4, 35] in the estimation of
nonlinear error terms. The most obvious difference is in the approaches used to solve the intersection problem.
The gluing technique in [36, 4] relied on a dynamic argument, which used classical stability properties of the

Euler equations to localize the stress R̊q to disjoint regions in time. Conversely, the pipe dodging technique
we use is predicated entirely on an optimal exploitation of the sparsity of intermittent pipe flows. While we
rely on sharp local information about the deformations of various pipes subjected to a background transport
velocity, the fact that the transport velocity field solves the Euler-Reynolds system is irrelevant.

Let us emphasize that our estimates on the error term in (1.6), which includes the nonlinear self-interaction
of intermittent pipe flows, are sharp in both L1 and L∞. This is in contrast to the estimates on the
corresponding nonlinear error term in the homogeneous setting, which are strong enough to allow for C

1/2

regularity, and thus offer no relevant regularity restriction.
Finally, one may draw a connection between our result and the problem of approximating a short em-

bedding of a Riemannian manifold by an isometric embedding, for which there is some evidence that C1,1/2

demarcates the sharp threshold between rigidity and flexibility [33, 24]. Our result realizes a version of this
“1/2 threshold”, but in the appropriate topology for a different PDE with a quadratic nonlinearity.

1.2.2. Intermittent schemes. The usage of intermittency in Nash-style iterative schemes originated in the
work of Buckmaster and the second author [7]. The fundamental idea is that an L2-normalized function with
significant spatial concentrations has an L1 norm which is much smaller than its L2 norm. The estimation
of linear error terms in L1 then relies crucially on this property. Intermittent building blocks have been used
to great effect in a number of works since; we refer for example to [17, 16, 10, 1, 11, 38], and to the reviews
[6, 8] and the references cited therein. The intermittent building block utilized in this paper was first used
by Modena and Székelyhidi in [39]. The estimation in L1 of the Nash and transport errors in our scheme
relies in part on the intermittency of the pipe flows, and in this limited sense, intermittency serves the same
purpose in our context as in other works.

Sparsity factors into our arguments in several other important ways which however distinguish the present
work from other intermittent schemes. We first point to the oscillation error, in which the sparsity of pipe
flows contributes favorably by providing the needed degrees of freedom to solve the intersection problem.
Secondly, and decidedly less favorably, intermittency serves to complicate any local or global L∞ estimates,
especially for the Lagrangian transport maps. As our previous joint work with Buckmaster and Masmoudi
[5] was the first example of a convex integration scheme which combined intermittency with transport maps,
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other intermittent convex integration schemes have generally not faced this difficulty; the only other exception
to this is joint work of the first author with Beekie for the α-Euler equations [1]. Third, the higher order
stresses are a feature only shared with [5], although it is conceivable that higher-order stresses could sharpen
the regularity estimates obtained in other intermittent Nash-style schemes. Finally, both the sharp L∞−

and H
1/2− require an almost geometric growth of frequencies, which again is a feature only shared with [5]

in the class of intermittent schemes, to the best of the authors’ knowledge.

1.2.3. The H
1/2− scheme in [5]. More specific comparisons and differences may be identified between the

present work and our previous paper joint with Buckmaster, Masmoudi [5]. At a conceptual level, the most
significant differences are the new constraints on the amount of intermittency which may be utilized. As
described earlier, simultaneously reaching the H

1/2− and L∞− thresholds in the Nash and transport error
terms requires a specific choice of the intermittency parameter rq. In [5], only a lower bound on intermittency

was required since the final solution also enjoyed H
1/2− regularity, but Lebesgue integrability only close to

L4. Similarly, enacting pipe dodging in the nonlinear error terms in [5] required only a minimum amount
of intermittency, and the self-interaction term in (1.6) was essentially impervious to the choice of rq. In
the current argument, the use of anistropy in the pipe dodging scheme improves the approach taken in [5],
while simultaneously preserving the size of the error term (1.6). Furthermore, analysis of this error term
utilizes the fact that intermittency may not affect the Lp norms of a function itself, but rather the Lp norms
of its derivatives. The simplest example of the latter concept is a one-dimensional shock, which is fully

intermittent in the sense that it lies in B
1/p
p,∞ for 1 ≤ p ≤ ∞, but has Lp norms of order 1 for all p.

At the technical level, there are a few noteworthy similarities and differences between [5] and the present
work. First, we are able to reuse the framework of the mollification argument, the appendix full of technical
lemmas on sums and iterates of operators, and the structure of the inverse divergence operator. The gener-
alizations required for each of these tools are simple, and merely require replacing every instance of L1 or
L2 norm in the previous arguments with an L∞ norm. Furthermore, all estimates related to flow maps (cf.
Corollary 5.10) and deformations of intermittent pipe flows (cf. Lemma 3.7) have been taken verbatim from
[5]. Next, the L2 inductive estimates on velocity increments and the L1 inductive estimates on the stress

R̊q match those from [5]. However, we now propagate sharp L∞ bounds on both velocity increments and
stresses, cf. (2.8b), (2.9b), and (2.10b). Small power losses in frequency in these estimates are encoded using
the parameter Cu. Since ΓCu

q → 1 as β → 1/2 (see (8.7) and (8.2a)), one may view these losses as a less than
crucial part of the scheme. On a related note, we are luckily able to reuse the construction of the velocity
and stress cutoff functions from [5]. However, while the old estimates deferred to the Sobolev inequality to
achieve lossy uniform bounds (see the bounds for the parameters imax in [5, Lemma 6.14] and jmax in [5,
Lemma 6.35]), the current argument appeals to the new, sharp, L∞ bounds which have been inductively
propagated (see Lemma 5.7 and Lemma 5.14).

The identification of the error terms in Subsection 7.3 is very similar to that in [5], save for two differences.
The first difference is the elimination of the unnecessary parameter p from the scheme, which was used
to minimize the accumulation of small power losses in frequency which arise from the repeated cycles of
constructing higher order stresses and velocity increments. We instead minimize such losses by ensuring
that an error term which arrives at the higher order stress R̊q,n has endured at most ≈ log2 n previous cycles
of higher order stresses and increments. This requires a choice of nmax which is large enough to guarantee

that log2 nmax

nmax
� 1, cf. (8.2). Secondly, the identification and estimation of the divergence corrector errors

are no longer trivial, due to the anistropy of the checkerboard cutoff functions. However, we may again use
that the anistropy of a cutoff function is fundamentally related to the direction of the axis of the associated
pipe to ensure that divergence corrector bounds are satisfactory; see Subsection 7.6 for details.

Acknowledgements. MN thanks Hyunju Kwon and Vikram Giri for many stimulating discussions during
the special year on the h-principle at the Institute for Advanced Study. MN was supported by the NSF
under Grant DMS-1926686 while a member at the IAS. VV is grateful to Tristan Buckmaster for infinitely
many (for all practical purposes) discussions about convex integration, and for teaching him everything he
knows about this subject. VV was supported in part by the NSF CAREER Grant DMS-1911413. We thank
Theodore Drivas for references and many discussions about structure function exponents in turbulent flows.

2. Inductive bounds and the proof of the main theorem
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2.1. General notations. Throughout the paper, we shall say that the velocity field v solves the Euler-
Reynolds system with stress R̊, if (v, R̊) solve

∂tv + div (v ⊗ v) +∇p = div R̊, div v = 0 ,

for a uniquely defined zero mean pressure p. As already discussed in (1.2), for q ≥ 0 we consider a velocity

field vq which solves the Euler-Reynolds system with stress R̊q.
In order to avoid circumvent the derivative-loss problem [23], we use the space-time mollification operator

Pq,x,t defined in (4.1) below, to smoothen vq and define:

v`q := Pq,x,tvq , (2.1)

for all q ≥ 0. In particular, cf. (4.1) we have that spatial mollification is performed at scale λ̃−1
q (which is

just slightly smaller than λ−1
q ), while temporal mollification is done at scale τ̃q−1 (which is much smaller

than τq−1). Next, for all q ≥ 1, define

wq := vq − v`q−1
, uq := v`q − v`q−1

. (2.2)

For consistency of notation, define w0 = v0 and u0 = v`0 . Note that

uq = Pq,x,twq + (Pq,x,tv`q−1
− v`q−1

) (2.3)

so that we may morally think that uq = wq+ a small error term. We use the following notation for the
material derivative corresponding to the vector field v`q :

Dt,q := ∂t + v`q · ∇ . (2.4)

With this notation, we have that

Dt,q = Dt,q−1 + uq · ∇ =: Dt,q−1 +Dq . (2.5)

Remark 2.1 (Geometric upper bounds with two bases). For all n ≥ 0 we define

M (n,N∗, λ,Λ) := λmin{n,N∗}Λmax{n−N∗,0} .

This notation has the following consequence, which is used throughout the paper: if 1 ≤ λ ≤ Λ, then

M (a,N∗, λ,Λ)M (b,N∗, λ,Λ) ≤M (a+ b,N∗, λ,Λ) .

When either a or b are larger than N∗ the above inequality creates a loss; for a+ b ≤ N∗, it is an equality.

Remark 2.2 (All norms are uniform in time). Throughout this section, and the remainder of the
paper, we shall use the notation ‖f‖Lp to denote ‖f‖L∞t (Lp(T3)). That is, all Lp norms stand for Lp norms

in space, uniformly in time. Similarly, when we wish to emphasize a set dependence of an Lp norm, we write
‖f‖Lp(Ω), for some space-time set Ω ⊂ R× T3, to stand for ‖1Ω f‖L∞t (Lp(T3)).

2.2. Inductive estimates. The proof is based on propagating estimates for solutions (vq, R̊q) of the Euler-
Reynolds system (1.2), inductively for q ≥ 0. In order to state these bounds, we first need to fix a number of
parameters in terms of which these inductive estimates are stated. We start by picking a regularity exponent
β ∈ [1/3, 1/2), else the theorem is known cf. [36, 4], and a super-exponential rate parameter b ∈ (1, 3/2) such
that 2βb < 1. In terms of this choice of β and b, a number of additional parameters (nmax, . . .Nfin) are
fixed, whose precise definition is summarized for convenience in items (iii)–(xiii) of Section 8.1. Note that at
this point the parameter a∗(β, b) from item (xiv) in Section 8.1 is not yet fixed. With this choice, we then
introduce the fundamental q-dependent frequency and amplitude parameters from Section 8.2. We state
here for convenience the main q-dependent parameters defined in (8.15), (8.18), (8.17), (8.19), and (8.22):

λq = 2d(b
q) log2 ae ≈ λbq−1 , (2.6a)

δq = λ
β(b+1)
1 λ−2β

q , (2.6b)

τ−1
q = δ

1/2
q λqΓ

c0+11
q+1 , (2.6c)

Θq+1 = λq+1λ
−1
q ≈ λ(b−1)

q , (2.6d)

Γq+1 = ΘεΓ
q+1 ≈ λ(b−1)εΓ

q , (2.6e)
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where the constant c0 is defined by (8.5), and εΓ is chosen as in (8.6). Next, we define the n-dependent
frequency, intermittency, and amplitude parameters

λq,n ≈

{
λqΓ

6
q+1, n = 0

λ
1
2−

n
2(nmax+1)

q λ
1
2 + n

2(nmax+1)

q+1 , 1 ≤ n ≤ nmax

, (2.7a)

rq+1,n ≈ λ
1/2
q,nλ

−1/2
q+1 Γ−2

q+1 , (2.7b)

δq+1,n =


δq+1Γ−CR

q , n = 0

δq+1,0λ
1/2
q λ
−1/2
q+1 Γ14+Cb

q+1 , n = 1

δq+1,0λqλ
−1
q,n−1Γ13+Cb

q+1

(
Θ

1
2(nmax+1)

q+1 Γ9+Cb
q+1

)Υ(n)

, 2 ≤ n ≤ nmax

. (2.7c)

In the above display, δq+1,n is defined to account for small losses (the quantity in parentheses) raised to a
power Υ(n) (which is bounded independently of q, cf. (6.6) and (6.8)). Therefore one may adhere to the
heuristic that δq+1,n is roughly speaking equal to δq+1λqλ

−1
q,n. We refer also to (8.23) and (8.24), where the

precise meaning of ≈ in (2.7a)–(2.7b) is given.

Remark 2.3 (Usage of the symbols ≈, ., and choice of a). The ≈ symbols in (2.6) and (2.7) indicate
that the left side of the ≈ symbol lies between two (universal) constant multiples of the right side, see
e.g. (8.16). Throughout the paper we make frequent use of the symbol .. Any implicit constants indicated
by . are only allowed to depend on the parameters defined in Section 8.1, items (i)–(xiii). The implicit
constants in . are always independent of the parameters a and q, appearing in (2.6b). This allows us at
the end of the proof, cf. item (xiv) in Section 8.1 to choose a∗(β, b) to be sufficiently large so that for all
a ≥ a∗(β, b) and all q ≥ 0, the parameter Γq+1 appearing in (2.6e) is larger than all the implicit constants
in . symbols encountered throughout the paper. That is, upon choosing a∗ sufficiently large, any inequality
of the type A . B which appears in this manuscript, may be rewritten as A ≤ Γq+1B, for any q ≥ 0.

In order to state the inductive assumptions we use four large integers, defined precisely in Section 8.1.
For the moment we simply note that these fixed parameters are independent of q and satisfy the ordering

1� Ncut,t � Nind,t � Nind,v � Nfin .

The precise definitions and the meaning of the � symbol in are given in (8.9), (8.10), (8.11), and (8.14).

2.2.1. Primary inductive assumption for velocity increments. We make L2 and L∞ inductive assumptions
for uq′ = v`q′ − v`q′−1

at levels q′ strictly below q. For all 0 ≤ q′ ≤ q − 1 we assume that∥∥ψi,q′−1D
nDm

t,q′−1uq′
∥∥
L2 ≤ δ

1/2
q′ M

(
n, 2Nind,v, λq′ , λ̃q′

)
M
(
m,Nind,t,Γ

i
q′τ
−1
q′−1, τ̃

−1
q′−1

)
(2.8a)∥∥DnDm

t,q′−1uq′
∥∥
L∞(suppψi,q′−1)

≤ ΓCu

q′ Θ
1/2
q′ M

(
n, 2Nind,v, λq′ , λ̃q′

)
M
(
m,Nind,t,Γ

i+1
q′ τ

−1
q′−1, τ̃

−1
q′−1

)
(2.8b)

holds for all 0 ≤ n+m ≤ Nfin.
At level q, we assume that the velocity increment wq satisfies corresponding L2 and L∞ bounds∥∥ψi,q−1D

nDm
t,q−1wq

∥∥
L2 ≤ Γ−1

q δ
1/2
q λnqM

(
m,Nind,t,Γ

i−1
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
(2.9a)∥∥DnDm

t,q−1wq
∥∥
L∞(suppψi,q−1)

≤ ΓCu−1
q Θ

1/2
q λnqM

(
m,Nind,t,Γ

i
qτ
−1
q−1,Γ

−1
q τ̃−1

q−1

)
(2.9b)

for all 0 ≤ n,m ≤ 7Nind,v.

2.2.2. Inductive assumptions for the stress. For the Reynolds stress R̊q, we make L1 and L∞ inductive
assumptions ∥∥ψi,q−1D

nDm
t,q−1R̊q

∥∥
L1 ≤ Γ−CR

q δq+1λ
n
qM

(
m,Nind,t,Γ

i+1
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
(2.10a)∥∥DnDm

t,q−1R̊q
∥∥
L∞(suppψi,q−1)

≤ ΓCu
q λ

n
qM

(
m,Nind,t,Γ

i+2
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
(2.10b)

for all 0 ≤ n,m ≤ 3Nind,v.
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2.2.3. Inductive assumptions for the previous generation velocity cutoff functions. More assumptions are
needed in relation to the previous velocity perturbations and old cutoff functions. First, we assume that the
velocity cutoff functions form a partition of unity for q′ ≤ q − 1:∑

i≥0

ψ2
i,q′ ≡ 1 , and ψi,q′ψi′,q′ = 0 for |i− i′| ≥ 2 . (2.11)

Second, we assume that there exists an imax = imax(q′) > 0, which is bounded uniformly in q′ as

imax(q′) ≤ 1 + Cu +
1/2(b− 1) + βb

εΓ(b− 1)b
, (2.12)

such that for all q′ ≤ q − 1,

ψi,q′ ≡ 0 for all i > imax(q′) , and Γ
imax(q′)
q′+1 ≤ ΓCu

q′+1Θ
1/2
q′ δ
−1/2
q′ . (2.13)

Remark 2.4 (Products of non-commuting operators). The fact that space derivatives D (we do not
dinstinguish between ∂x1

, ∂x2
, ∂x3

, but rather denote them all withD) and time derivatives ∂t do not commute
with the material derivative Dt,q (see (2.4)), or with the directional derivative Dq (see (2.5)), requires that
we inductively propagate mixed derivative estimates for the velocity cutoff functions. An example of such a

mixed derivative is Dα1Dβ1

t,q . . . D
αkDβk

t,q for some multi-indices α = (α1, . . . , αk) and β = (β1, . . . , βk) where

α,β ∈ Nk0 . Throughout the paper, we will accordingly abbreviate these mixed derivative operators as

DαDβ
t,q :=

k∏
`=1

Dα`Dβ`
t,q , and DαDβ

q :=

k∏
`=1

Dα`Dβ`
q , (2.14)

whenever α,β ∈ Nk0 , and q ≥ 0.

For all 0 ≤ q′ ≤ q− 1 and 0 ≤ i ≤ imax we assume the following pointwise derivative bounds for the cutoff
functions ψi,q′ . For mixed space and material derivatives (recall the notation from (2.4), (2.14)) we assume

|DαDβ
t,q′−1ψi,q′ |

ψ
1−(|α|+|β|)/Nfin

i,q′

.M
(
|α|,Nind,v,Γq′λq′ ,Γq′ λ̃q′

)
M
(
|β|,Nind,t − Ncut,t,Γ

i+3
q′+1τ

−1
q′−1,Γ

−1
q′+1τ̃

−1
q′

)
(2.15)

for k ≥ 0 and α,β ∈ Nk0 with |α|+|β| ≤ Nfin. Lastly, we consider mixtures of space, material, and directional
derivatives (recall the notation from (2.5), (2.14)). With M,α,β and k as above, and with N ≥ 0, we assume

|DNDα
q′D

β
t,q′−1ψi,q′ |

ψ
1−(N+|α|+|β|)/Nfin

i,q′

.M
(
N,Nind,v,Γq′λq′ ,Γq′ λ̃q′

)
(Γi−c0q′+1τ

−1
q′ )|α|M

(
β,Nind,t − Ncut,t,Γ

i+3
q′+1τ

−1
q′−1,Γ

−1
q′+1τ̃

−1
q′

)
(2.16)

for all N + |α|+ |β| ≤ Nfin.
In addition to the above pointwise estimates for the cutoff functions ψi,q′ , we also assume that we have a

good L1 control. More precisely, we postulate that

‖ψi,q′‖L1 . Γ−2i+Cb
q′+1 where Cb =

4 + b

b− 1
(2.17)

holds for 0 ≤ q′ ≤ q − 1 and all 0 ≤ i ≤ imax(q′).

2.2.4. Secondary inductive assumptions for velocities. Next, for 0 ≤ q′ ≤ q − 1, 0 ≤ i ≤ imax, k ≥ 1, and
α,β ∈ Nk0 , we assume that the following mixed space-and-material derivative bounds hold∥∥DαDβ

t,q′−1uq′
∥∥
L∞(suppψi,q′ )

. (Γi+1
q′+1δ

1/2
q′ )M

(
|α|, 2Nind,v,Γq′λq′ , λ̃q′

)
M
(
|β|,Nind,t,Γ

i+3
q′+1τ

−1
q′−1,Γ

−1
q′+1τ̃

−1
q′

)
(2.18)

for |α|+ |β| ≤ 3Nfin/2 + 1,∥∥DαDβ
t,q′Dv`q′

∥∥
L∞(suppψi,q′ )

. (Γi+1
q′+1δ

1/2
q′ λ̃q′)M

(
|α|, 2Nind,v,Γq′λq′ , λ̃q′

)
M
(
|β|,Nind,t,Γ

i−c0
q′+1τ

−1
q′ ,Γ

−1
q′+1τ̃

−1
q′

)
(2.19)
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for |α|+ |β| ≤ 3Nfin/2, and∥∥DαDβ
t,q′v`q′

∥∥
L∞(suppψi,q′ )

. (Γi+1
q′+1δ

1/2
q′ λ

2
q′)M

(
|α|, 2Nind,v,Γq′λq′ , λ̃q′

)
M
(
|β|,Nind,t,Γ

i−c0
q′+1τ

−1
q′ ,Γ

−1
q′+1τ̃

−1
q′

)
(2.20)

for |α| + |β| ≤ 3Nfin/2 + 1. Lastly, for N ≥ 0 and N + |α| + |β| ≤ 3Nfin/2 + 1, we postulate that mixed
space-material-directional derivatives satisfy∥∥DNDα

q′D
β
t,q′−1uq′

∥∥
L∞(suppψi,q′ )

. (Γi+1
q′+1δ

1/2
q′ )|α|+1M

(
N + |α|, 2Nind,v,Γq′λq′ , λ̃q′

)
M
(
|β|,Nind,t,Γ

i+3
q′+1τ

−1
q′−1,Γ

−1
q′+1τ̃

−1
q′

)
(2.21a)

. (Γi+1
q′+1δ

1/2
q′ )M

(
N, 2Nind,v,Γq′λq′ , λ̃q′

)
(Γi−c0q′+1τ

−1
q′ )|α|M

(
|β|,Nind,t,Γ

i+3
q′+1τ

−1
q′−1,Γ

−1
q′+1τ̃

−1
q′

)
. (2.21b)

Remark 2.5. As shown in [5, Remark 3.4], (2.21b) automatically implies the bounds∥∥DNDM
t,q′uq′

∥∥
L∞(suppψi,q′ )

. (Γi+1
q′+1δ

1/2
q′ )M

(
N, 2Nind,v,Γq′λq′ , λ̃q′

)
M
(
M,Nind,t,Γ

i−c0
q′+1τ

−1
q′ ,Γ

−1
q′+1τ̃

−1
q′

)
(2.22)

for all N +M ≤ 3Nfin/2 + 1, while in a similar way, (2.16) implies that

|DNDM
t,q′ψi,q′ |

ψ
1−(N+M)/Nfin

i,q′

.M
(
N,Nind,v,Γq′λq′ ,Γq′ λ̃q′

)
M
(
M,Nind,t − Ncut,t,Γ

i−c0
q′+1τ

−1
q′ ,Γ

−1
q′+1τ̃

−1
q′

)
(2.23)

for all N +M ≤ Nfin.

2.3. Main inductive proposition. The main inductive proposition, which propagates the inductive esti-
mates in Section 2.2 from step q to step q + 1, is as follows.

Proposition 2.6. Fix β ∈ [1/3, 1/2) and choose b ∈ (1, 1/2β). Solely in terms of β and b, define the parameters
nmax, Cb, CR, c0, εΓ, Cu, α, Ncut,t, Ncut,x, Nind,t, Nind,v, Ndec, d, and Nfin, by the definitions in Section 8.1,
items (i)–(xiii). Then, there exists a sufficiently large a∗ = a∗(β, b) ≥ 1, such that for any a ≥ a∗, the
following statement holds for any q ≥ 0. Given a velocity field vq which solves the Euler-Reynolds system

with stress R̊q, define v`q , wq, and uq via (2.1)–(2.2). Assume that {uq′}q−1
q′=0 satisfies (2.8), wq obeys (2.9),

R̊q satisfies (2.10), and that for every q′ ≤ q−1 there exists a partition of unity {ψi,q′}i≥0 such that properties

(2.11)–(2.13) and estimates (2.15)–(2.21) hold. Then, there exists a velocity field vq+1, a stress R̊q+1, and a

partition of unity {ψi,q}q≥0, such that vq+1 solves the Euler-Reynolds system with stress R̊q+1, uq satisfies

(2.8) for q′ 7→ q, wq+1 obeys (2.9) for q 7→ q + 1, R̊q+1 satisfies (2.10) for q 7→ q + 1, and the ψi,q are such
that (2.11)–(2.21) hold when q′ 7→ q.

The proof of Proposition 2.6 takes up the bulk of the remaining part of the paper, cf. Sections 3–7. Here
we just give a road map of which proofs are contained in what sections:

• In Section 3, we recall the construction and important properties of intermittent pipe flows from [5].
We however prove a new estimate for squared pipe densities in Lemma 3.5, and an updated version
of the pipe dodging strategy in Proposition 3.8.

• In Section 4 we mollify the Euler-Reynolds system at level q, define v`q , and show that uq satisfies
(2.8) with q′ replaced by q. This argument requires few changes when compared to [5, Section 5].

• In Section 5 we construct the velocity cutoffs at level q, namely {ψi,q}i≥0, and show that the inductive
assumptions (2.11)–(2.21) hold for q′ replaced by q. This part of the argument is technically quite
involved, but we take advantage of the fact that it is identical to the proof in [5, Section 6], except
for the new bound for imax. The new bound on imax is the only place where the propagated L∞

bounds are required, and we give the full details of this part of the argument in Lemma 5.7.
• In Section 6, we present Proposition 6.1, which gives the existence of a pair (wq+1, R̊q+1) which

satisfies the remaining inductive bounds, namely (2.9) and (2.10), with q replaced by q + 1.
• In Section 7 we give the proof of Proposition 6.1, thereby concluding the proof of Proposition 2.6,

once a is taken sufficiently large with respect to (β, b), as in Section 8.1, item (xiv). This is the main
part of the proof, and it is substantially different from the corresponding argument in [5, Section 8].
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2.4. Proof of the main theorem. We conclude this section by showing how Proposition 2.6 implies
Theorem 1.1, upon potentially choosing a ≥ a∗ even larger, depending also on the functions vstart, vend, and
on the T, ε > 0 from the statement of Theorem 1.1. This argument is nearly identical to that in [5, Section

3.3]. We also give here the proof that the constructed solutions lie in C0
tB

1/3−
3,∞ , cf. Remark 2.7 below.

First, let a∗ = a∗(β, b) be as in Proposition 2.6, which holds for any a ≥ a∗. Second, construct the pair

(v0, R̊0), which solve the Euler-Reynolds system, exactly as in [5, Equations (3.30)–(3.31)]. In essence, v0 is

a temporal interpolation between mollified versions of vstart and vend, and R̊0 is the resulting error made in
the Euler equations (1.1) . Third, we define v−1 = v`−1

= u−1 ≡ 0, and we let ψ0,−1 ≡ 1 and ψi,−1 ≡ 0 for

all i ≥ 1. Lastly, it is convenient to denote τ−1
−1 = Γ0 := λεΓ0 , τ̃−1

−1 = Γ3
0 = λ3εΓ

0 , and Θ0 = λ0.
With these choices, we have already verified in [5, Section 3.3] that if a ≥ a∗ is taken to be sufficiently

large, depending also on vstart, vend, T, ε, then u−1 ≡ 0 satisfies (2.8a) (and trivially also (2.8b)), w0 = v0

obeys (2.9a), R̊0 satisfies (2.10a), and we have that (2.11)–(2.21) hold trivially. Thus it remains to show that

(v0, R̊0) obey the uniform estimates (2.8b) and (2.10b), which were not present in [5]. But these estimates

are easy to satisfy since both ΓCu−1
0 Θ

1/2
0 ≥ a

1/2, and ΓCu
0 = a

1
(b−1)(nmax+1) , may be made arbitrarily large,

upon choosing a to be sufficiently large.
As such, the inductive estimates (2.8)–(2.21) hold for the base case of the induction q = 0, and we may

inductively apply Proposition 2.6 for all q ≥ 1, to produce a sequence of velocity fields vq which solve

the Euler-Reynolds system with stress R̊q, and a sequence of velocity cutoff functions ψi,q, such that the
bounds (2.8)–(2.21) hold for all q ≥ 0. Then, by construction, we have that for any β′ < β, the series∑
q≥0(vq+1 − vq) =

∑
q≥0(wq+1 + (v`q − vq)) is absolutely summable in C0

tH
β′ , justifying the definition of

the limiting velocity field v = v0 +
∑
q≥0(vq+1 − vq) ∈ C0

tH
β′ . As R̊q → 0 in C0

t L
1, the function v is a weak

solution of the 3D Euler system (1.1) . Moreover, as was shown in [5, Section 3.3], the L2 distance between
v(·, 0) and vstart, respectively v(·, T ) and vend, is less than ε.

In order to conclude the proof of the theorem, we only need to show that v ∈ C0
t L

2−2β
1−2β . For this purpose,

note that we have the identity v = limq→∞ vq =
∑
q≥0 uq. Using the bounds on uq provided by (2.8) we

may sum over 0 ≤ i ≤ imax(q) using the partition of unity property (2.11), and use the definitions (8.2a)
and (8.7), to arrive at

‖uq‖L2 ≤ Cδ
1/2
q = λ

β(b+1)
2

1 λ−βq , and ‖uq‖L∞ ≤ CΓCu
q Θ

1
2
q ≈ Cλ

b−1
b ( 1

2 +εΓCu)
q ≤ Cλ

b−1
b ( 1

2 + b−1
4b )

q ,

where the constant C depends only on our upper bound for imax(q), and so only on β and b through (2.12).
Using Lebesgue interpolation, and the above established bounds, for p ∈ [2,∞) we obtain

‖uq‖Lp ≤ ‖uq‖
2
p

L2 ‖uq‖
1− 2

p

L∞ ≤ Cλ
β(b+1)
p

1 λ
− 2β

p +(1− 2
p ) b−1

b ( 1
2 + b−1

4b )
q , (2.24)

where the constant C ≥ 1 depends only on β and b. Thus, in order to ensure the absolute summability of
{uq}q≥0 in Lp, the exponent of λq appearing on the right side of (2.24) must be strictly negative. After a
short computation, we deduce that we must have

p < p∗(β, b) =: 2 +
8βb

(b− 1)(b(b− 1) + 2)
. (2.25)

At last, we may verify that 2−2β
1−2β < p∗(β, b) is equivalent to (b−1)(b(b−1)+2)

4b < 1−2β, which in turn is satisfied

whenever 2βb < 1 and β ∈ [1/3, 1/2). This concludes the proof of Theorem 1.1.

Remark 2.7 (L3-based Besov regularity). From (2.24) and (2.25), we deduce that for p ∈ [2, p∗(β, b)),

and in particular for p = 2−2β
1−2β , we have that ‖uq‖Lp ≤ Cλ

1
p

1 λ
−η(p,β,b)
q , for some η(p, β, b) > 0. We therefore

have that

‖uq‖B0
p,∞
≤ Cλ

1
p

1 λ
−η(p,β,b)
q , and ‖uq‖Bβ2,∞ ≤ ‖uq‖Bβ2,2 ≤ C ‖uq‖Hβ ≤ C ,

where the constant C > 0 is independent of q. By interpolation, we have that whenever s < βθ, where
θ = θ(p) ∈ (0, 1) is defined by solving

1

3
=

1− θ
p

+
θ

2
=⇒ θ =

2p− 6

3p− 6
, (2.26)

12



we have the bound

‖uq‖Bs3,∞ ≤ C ‖uq‖
1−θ
B0
p,∞
‖uq‖θBβ2,∞ ≤ Cλ

1
p

1 λ
−(1−θ)η(p,β,b)
q ,

for a constant C > 0 which is independent of q ≥ 0. Taking p = 2−2β
1−2β , we obtain from (2.26) that θ = 4β−1

3β ,

and so for any s < 4β−1
3 , we have that the series v =

∑
q≥0 uq is absolutely summable in C0

tB
s
3,∞, showing

that v ∈ C0
tB

s
3,∞. It is clear that by letting β be arbitrarily close to 1/2, the value of s may be taken

arbitrarily close to 1/3, the Onsager threshold.

3. Building blocks and pipe dodging

The main results in this section are Proposition 3.3 (which describes the intermittent pipe flows and their
properties), Lemma 3.5 (which gives a sharp bound for the L∞ norm of frequency truncated square of pipe
densities), and Proposition 3.8 (which gives the proof of the one-half relative intermittency rule for pipe
dodging). First, we recall from [19, Lemma 2.4] a version of the following geometric decomposition:

Proposition 3.1 (Choosing Vectors for the Axes). Let B1/2(Id) denote the ball of symmetric 3 × 3

matrices, centered at Id, of radius 1/2. Then, there exists a finite subset Ξ ⊂ S2 ∩ Q3, and smooth positive
functions γξ : C∞

(
B1/2(Id)

)
→ R for every ξ ∈ Ξ, such that for each R ∈ B1/2(Id), we have the identity

R =
∑
ξ∈Ξ

(γξ(R))
2
ξ ⊗ ξ. (3.1)

Additionally, for every ξ in Ξ, there exist vectors ξ′, ξ′′ ∈ S2 ∩ Q3 such that {ξ, ξ′, ξ′′} is an orthonormal
basis of R3, and there exists a least positive integer n∗ such that n∗ξ, n∗ξ

′, n∗ξ
′′ ∈ Z3, for every ξ ∈ Ξ.

We now recall [5, Proposition 4.3] and [5, Proposition 4.4] which rigorously construct the intermittent
pipe flows and enumerate the necessary properties.

Proposition 3.2 (Rotating, Shifting, and Periodizing). Fix ξ ∈ Ξ, where Ξ is as in Proposition 3.1.
Let r−1, λ ∈ N be given such that λr ∈ N. Let κ : R2 → R be a smooth function with support contained
inside a ball of radius 1/4. Then for k ∈ {0, ..., r−1 − 1}2, there exist functions κkλ,r,ξ : R3 → R defined in
terms of κ, satisfying the following additional properties:

(1) We have that κkλ,r,ξ is simultaneously
(

T3

λr

)
-periodic and

(
T3
ξ

λrn∗

)
-periodic. Here, by T3

ξ we refer to a

rotation of the standard torus such that T3
ξ has a face perpendicular to ξ.

‘1

(2) Let Fξ be one of the two faces of the cube
T3
ξ

λrn∗
which is perpendicular to ξ. Let Gλ,r ⊂ Fξ ∩ 2πQ3 be

the grid consisting of r−2-many points spaced evenly at distance 2π(λn∗)
−1 on Fξ and containing the

origin. Then each grid point gk for k ∈ {0, ..., r−1 − 1}2 satisfies(
suppκkλ,r,ξ ∩ Fξ

)
⊂
{
x : |x− gk| ≤ 2π (4λn∗)

−1}
. (3.2)

(3) The support of κkλ,r,ξ is a pipe (cylinder) centered around a
(

T3

λr

)
-periodic and

(
T3
ξ

λrn∗

)
-periodic line

parallel to ξ, which passes through the point gk. The radius of the cylinder’s cross-section is as in (3.2).
(4) We have that ξ · ∇κkλ,r,ξ = 0.

(5) For k 6= k′, suppκkλ,r,ξ ∩ suppκk′λ,r,ξ = ∅.
Proposition 3.3 (Construction and properties of shifted intermittent pipe flows). Fix a vector
ξ belonging to the set of rational vectors Ξ ⊂ Q3 ∩ S2 from Proposition 3.1, r−1, λ ∈ N with λr ∈ N, and
large integers 3Nfin and d. There exist vector fields Wk

ξ,λ,r : T3 → R3 for k ∈ {0, ..., r−1 − 1}2 and implicit
constants depending on Nfin and d but not on λ or r such that:

(1) There exists % : R2 → R given by the iterated Laplacian ∆dϑ =: % of a potential ϑ : R2 → R with
compact support in a ball of radius 1

4 such that the following holds. Let %kξ,λ,r and ϑkξ,λ,r be defined as

in Proposition 3.2, in terms of % and ϑ (instead of κ). Then there exists Ukξ,λ,r : T3 → R3 such that if

{ξ, ξ′, ξ′′} ⊂ Q3 ∩ S2 form an orthonormal basis of R3 with ξ × ξ′ = ξ′′, then we have

Ukξ,λ,r = −ξ′ λ−2dξ′′ · ∇∆d−1
(
ϑkξ,λ,r

)︸ ︷︷ ︸
=:ϕ′′kξ,λ,r

+ξ′′ λ−2dξ′ · ∇∆d−1
(
ϑkξ,λ,r

)︸ ︷︷ ︸
=:ϕ′kξ,λ,r

, (3.3)
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and thus

curlUkξ,λ,r = ξλ−2d∆d
(
ϑkξ,λ,r

)
= ξ%kξ,λ,r =: Wk

ξ,λ,r ,

and

ξ · ∇Wk
ξ,λ,r = ξ · ∇Ukξ,λ,r = 0 . (3.4)

(2) The sets of functions {Ukξ,λ,r}k, {%kξ,λ,r}k, {ϑkξ,λ,r}k, and {Wk
ξ,λ,r}k satisfy items 1–5 in Proposition 3.2.

(3) Wk
ξ,λ,r is a stationary, pressureless solution to the Euler equations.

(4) −
�
T3

Wk
ξ,λ,r ⊗Wk

ξ,λ,r = ξ ⊗ ξ

(5) For all n ≤ 3Nfin,∥∥∇nϑkξ,λ,r∥∥Lp(T3)
. λnr(

2
p−1),

∥∥∇n%kξ,λ,r∥∥Lp(T3)
. λnr(

2
p−1) (3.5)

and ∥∥∇nUkξ,λ,r∥∥Lp(T3)
. λn−1r(

2
p−1),

∥∥∇nWk
ξ,λ,r

∥∥
Lp(T3)

. λnr(
2
p−1). (3.6)

(6) Let Φ : T3 × [0, T ]→ T3 be the periodic solution to the transport equation

∂tΦ + v · ∇Φ = 0 , Φt=t0 = x , (3.7)

with a smooth, divergence-free, periodic velocity field v. Then

∇Φ−1 ·
(
Wk
ξ,λ,r ◦ Φ

)
= curl

(
∇ΦT ·

(
Ukξ,λ,r ◦ Φ

))
. (3.8)

(7) For P[λ1,λ2] a Littlewood-Paley projector, Φ as in (3.7), A = (∇Φ)−1, and for i = 1, 2, 3,[
∇ ·
(
AP[λ1,λ2] (Wξ,λ,r ⊗Wξ,λ,r) (Φ)AT

)]
i

= AjmP[λ1,λ2]

(
Wm
ξ,λ,rWl

ξ,λ,r

)
(Φ)∂jA

i
l

= Ajmξ
mξl∂jA

i
l P[λ1,λ2]

((
%kξ,λ,r

)2)
. (3.9)

Remark 3.4. In (3.9) and throughout the rest of the paper, for any interval I ⊂ R+ we use the notation

PI (3.10)

to denote the Fourier projection operator onto spatial frequencies ξ such that |ξ| ∈ I. When I = [λ,∞) we
abbreviate this projection as P≥λ, while for I = [0, λ], we abbreviate this projection as P≤λ.

In order to propagate sharp L∞ estimates for nonlinear error terms, we will require the following estimates
related to the mean-subtracted squared pipe densities.

Lemma 3.5. Let %kξ,λ,r :
(

T3

λr

)
→ R be defined as in Proposition 3.3. Let λ1, λ2 be given with λr ≤ λ1 < λ, λ2,

and set

ϑ =
(
λ−2

1 ∆
)−d P[λ1,λ2)

(
(%kξ,λ,r)

2 − 1
)
.

Then, for an arbitrary α ∈ (0, 1] and N ≤ 2Nfin, we have the estimates∥∥∥DNP[λ1,λ2)

((
%kξ,λ,r

)2 − 1
)∥∥∥

L∞
.

(
min(λ2, λ)

λr

)2

min(λ2, λ)N (3.11a)

∥∥DNϑ
∥∥
L∞
. λα

(
min(λ2, λ)

λr

)2

M (N, 2d, λ1,min(λ2, λ)) . (3.11b)

Remark 3.6. When λ2 � λ, we note that (3.11a) contains the nontrivial estimate∥∥∥P[λ1,λ2)

((
%ke3,λ,r

)2 − 1
)∥∥∥

L∞
.

(
λ2

λr

)2

� 1

r2
≈
∥∥∥(%ke3,λ,r)2 − 1

∥∥∥
L∞

,

which asserts that the L∞ norms of the Littlewood-Paley projections of the mean-subtracted pipe density
increase with respect to frequency from a minimum of 1 at λ2 = λr to r−2 at λ2 = λ.
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Proof of Lemma 3.5. For the sake of simplicity, we fix ξ = e3, and abbreviate Φ(x1, x2) = Φ = (%ke3,λ,r)
2−1.

Then we have from (3.10) that

P[λ1,λ2)Φ(x) =
∑

λ1≤|k|<λ2,

k∈λrZ2

Φ̂(k)eik·x . (3.12)

From (3.5), we may bound ∣∣Φ̂(k)
∣∣ . ‖Φ‖L1(T3) . ‖%e3,λ,r‖

2
L2 + 1 . 1 . (3.13)

A simple counting argument further yields that∣∣{λ1 ≤ |k| < λ2 : k ∈ λrZ2
}∣∣ . (λ2

λr

)2

. (3.14)

Then in the case λ2 ≤ λ, the bounds (3.12)-(3.14) give that∥∥DNP[λ1,λ2)Φ
∥∥
L∞
≤ λN2

∑
λ1≤|k|<λ2

k∈λrZ2

∣∣Φ̂(k)
∣∣ . λN2 (λ2

λr

)2

, (3.15)

which matches the desired bound in (3.11a). To prove (3.11a) in the case that λ2 > λ, we simply appeal to
the boundedness of P[λ1,λ2) on L∞ and (3.5).

In order to prove (3.11b), standard Littlewood-Paley arguments and the above bound for P[λ1,λ2)Φ in L∞

again give that

λ2d
1

∥∥DN∆−dP[λ1,λ2)Φ
∥∥
L∞
.


(

min(λ2, λ)

λr

)2

λαλ
2d−(2d−N)
1 if 0 ≤ N ≤ 2d(

min(λ2, λ)

λr

)2

λαλ2d
1 min(λ2, λ)N−2d if 2d + 1 ≤ N ≤ 2Nfin ,

where the factor of λα is used to absorb endpoint (p = ∞) losses, and α may be taken arbitrarily close to
zero at the cost of changing the implicit constants. Translating the above display to incorporate the notation
M (N, 2d, λ1,min(λ2, λ)) concludes the proof. �

We will require [5, Lemma 4.7], which lists the geometric properties of deformed intermittent pipe flows.

Lemma 3.7 (Control on Axes, Support, and Spacing). Consider a convex neighborhood of space
Ω ⊂ T3. Let v be an incompressible velocity field, and define the flow X(x, t) and inverse Φ(x, t) = X−1(x, t),
which solves

∂tΦ + v · ∇Φ = 0 , Φt=t0 = x .

Define Ω(t) := {x ∈ T3 : Φ(x, t) ∈ Ω} = X(Ω, t). For an arbitrary C > 0, let τ > 0 be a parameter such that

τ ≤
(
δ

1/2
q λqΓ

C+2
q+1

)−1
.

Furthermore, suppose that the vector field v satisfies the Lipschitz bound

sup
t∈[t0−τ,t0+τ ]

‖∇v(·, t)‖L∞(Ω(t)) . δ
1/2
q λqΓ

C
q+1 .

Let Wk
λq+1,r,ξ

: T3 → R3 be a set of straight pipe flows constructed as in Proposition 3.2 and Proposition 3.3

which are T3/λq+1r-periodic for λqλ
−1
q+1 ≤ r ≤ 1 and concentrated around axes {Ai}i∈I oriented in the vector

direction ξ for ξ ∈ Ξ. Then W := Wk
λq+1,r,ξ

(Φ(x, t)) : Ω(t)× [t0 − τ, t0 + τ ] satisfies the following conditions:

(1) We have the inequality

diam(Ω(t)) ≤
(
1 + Γ−1

q+1

)
diam(Ω) . (3.16)

(2) If x and y with x 6= y belong to a particular axis Ai ⊂ Ω, then

X(x, t)−X(y, t)

|X(x, t)−X(y, t)|
=

x− y
|x− y|

+ δi(x, y, t) (3.17)

where |δi(x, y, t)| < Γ−1
q+1.
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(3) Let x and y belong to a particular axis Ai ⊂ Ω. Denote the length of the axis Ai(t) := X(Ai ∩ Ω, t) in
between X(x, t) and X(y, t) by L(x, y, t). Then

L(x, y, t) ≤
(
1 + Γ−1

q+1

)
|x− y| . (3.18)

(4) The support of W is contained in a
(
1 + Γ−1

q+1

)
2π(4n∗λq+1)−1-neighborhood of the set⋃
i

Ai(t) . (3.19)

(5) W is “approximately periodic” in the sense that for distinct axes Ai, Aj with i 6= j, we have(
1− Γ−1

q+1

)
dist (Ai ∩ Ω, Aj ∩ Ω) ≤ dist (Ai(t), Aj(t)) ≤

(
1 + Γ−1

q+1

)
dist (Ai ∩ Ω, Aj ∩ Ω) . (3.20)

The following proposition is a variation on the statement and proof of [5, Proposition 4.8]. For simplicity,
we only consider ξ = e3. The generalization to other vectors ξ ∈ Ξ follows from incorporating a rotation
into the argument; for further details we refer to the final paragraph of the proof of [5, Proposition 4.8]. The
main difference in the new Proposition is that the set on which placements are made now has dimensions
(λq+1r2)−1 × (λq+1r2)−1 × (λq+1r1)−1 as opposed to (λq+1r1)−1 × (λq+1r1)−1 × (λq+1r1)−1 in [5].

Proposition 3.8 (Placing straight pipes which avoid bent pipes). Let λqλ
−1
q+1 ≤ r1 ≤ r2 ≤ 1 be such

that λq+1r2 ∈ N. Let Ω ⊂ T3 be a rectangular prism with the following properties:

(1) The longest axis of Ω is parallel to e3 and has length precisely (λq+1r1)−1.
(2) There exists a constant CΩ (bounded independently of q) such that the face of Ω which is perpendicular

to e3 is a square of side length precisely CΩ(Γ−1
q+1λq+1r2)−1.

(3) There exists a constant CP such that for any convex subset Ω′ ⊂ Ω with diam (Ω′) ≤ 2
√

3π (λq+1r2)
−1

,

there exist at most CPΓq+1 segments of deformed T3/λq+1r2-periodic pipes of length 4π (λq+1r2)
−1

. Here,
by “segments of deformed pipes,” we mean the objects constructed in Propositions 3.2 and 3.3 which
satisfy the conclusions (3.16)–(3.20) from Lemma 3.7 on Ω. Let P denote the union of the supports of
the deformed pipe segments.

Then, there exists a geometric constant C∗ ≥ 1 such that if

C∗C2
ΩCPΓ3

q+1r
2
2 ≤ r1 , (3.21)

then there exists a set of pipe flows Wk0

e3,λq+1,r2
: T3 → R3 which are T3/λq+1r2-periodic, concentrated to width

2π(4λq+1n∗)
−1 around axes with vector direction e3, satisfy the properties listed in Proposition 3.3, and

suppWk0

e3,λq+1,r2
∩ P ∩ Ω = ∅ . (3.22)

Proof of Proposition 3.8. The proof has been streamlined relative to the original version [5, Proposition
4.8], although the fundamental ideas remain unchanged. We divide the proof into three steps, in which we
count the number of segments of deformed pipe of length ≈ (λq+1r2)−1, then project each segment onto the

smallest face of Ω and cover it with squares of size ≈ λ−1
q+1, and finally use a pigeonhole argument and the

bound (3.21) to find a shift k0 satisfying (3.22).
Step 1: To count the number of deformed segments of pipe which may comprise P ∩ Ω, we appeal to

assumption (3) and volume considerations. The dimensions of Ω imply that Ω is composed of at most
C2

ΩΓ2
q+1 · r2r

−1
1 periodic cells of side length 2π(λq+1r2)−1. Applying (3) with each of these cells implies that

the number of distinct segments of pipe of length 4π(λq+1r2)−1 comprising P is at most

CPC2
ΩΓ3

q+1 · r2r
−1
1 .

Step 2: We now measure the size of the shadows of the deformed segments of pipe when projected onto
the face of Ω which is perpendicular to e3. First, the length constraint on the segments of deformed pipe
implies that the projection of any single segment onto the face of Ω which is perpendicular to e3 has length
at most 4π(λq+1r2)−1. Now consider the grid Gλq+1,r2 from Proposition 3.2, item (2). This grid contains

squares of diameter ≈ λ−1
q+1, each of which may contain part of the support of an e3-oriented periodic pipe

flow, or may be empty, depending on the choice of shift. Applying a covering argument using the above
derived length constraint and (3.19), we see that there exists a dimensional constant C∗ such that the number
of grid squares needed to cover the projection of a single segment is at most C∗r

−1
2 . Since the number of
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segments was bounded by CPC2
ΩΓ3

q+1 ·r2r
−1
1 from Step 1, we see that the total number of grid squares needed

to cover the projection of P is at most

CPC2
ΩΓ3

q+1 · r2r
−1
1 · C∗r−1

2 ≤ CPC2
ΩC∗Γ

3
q+1r

−1
1 .

Step 3: In order to conclude the proof, we appeal to a pigeonhole argument, made possible by the bound
from Step 2. Indeed, we have obtained an upper bound on the number of grid squares which are deemed
“occupied” by projections of deformed segments of pipe. Conversely, from Proposition 3.2, the number of
possible choices for the shifts k0 is r−2

2 . Applying assumption (3.21), we conclude by the pigeonhole principle

that there exists a “free” shift k0 such that none of the occupied squares intersect the support of Wk0

λq+1,r2,e3
.

Thus we have proven (3.22), concluding the proof of the lemma. �

4. Mollification

Let φ(ζ) : R → R be a smooth, C∞ function compactly supported in the set {ζ : |ζ| ≤ 1} which in
addition satisfies �

R
φ(ζ) dζ = 1,

�
R
φ(ζ)ζn = 0 ∀n = 1, 2, ...,Nind,v.

Let φ̃(x) : R3 → R be defined by φ̃(x) = φ(|x|). For λ, µ ∈ R, define

φ
(x)
λ (x) = λ3φ̃ (λx) , φ(t)

µ (t) = µφ(µt).

For q ∈ N, we will define the spatial and temporal convolution operators

Pq,x := φ
(x)

λ̃q
∗, Pq,t := φ

(t)

τ̃−1
q−1

∗, Pq,x,t := Pq,x ◦ Pq,t. (4.1)

Lemma 4.1 (Mollifying the Euler-Reynolds system). Let (vq, R̊q) solve the Euler-Reynolds system

(1.2), and assume that ψi,q′ , uq′ for q′ < q, wq, and R̊q satisfy (2.8a)–(2.21b). Then, we mollify (vq, R̊q) at

spatial scale λ̃−1
q and temporal scale τ̃q−1 (cf. the notation in (4.1)), and accordingly define

v`q := Pq,x,tvq and R̊`q := Pq,x,tR̊q . (4.2)

The mollified velocity v`q satisfies the Euler-Reynolds system with stress R̊`q +R̊comm
q , where the commutator

stress R̊comm
q satisfies the estimate (consistent with (2.10a) and (2.10b) at level q + 1)∥∥DNDM

t,qR̊
comm
q

∥∥
L∞
≤ Γ−1

q+1Γ−CR
q+1 δq+2λ

n
q+1M

(
m,Nind,t, τ

−1
q ,Γ−1

q τ̃−1
q

)
(4.3)

for all N,M ≤ 3Nind,v, and we have that∥∥DNDM
t,q−1(v`q − vq)

∥∥
L∞
≤ λ−2

q δ
1/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1Γi−1

q , τ̃−1
q−1Γ−1

q

)
(4.4)

for all N,M ≤ 3Nind,v. Furthermore, uq = v`q − v`q−1
satisfies the bound (2.8) with q′ replaced by q∥∥ψi,q−1D

NDM
t,q−1uq

∥∥
L2 ≤ δ

1/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t,Γ

i
qτ
−1
q−1, τ̃

−1
q−1

)
, (4.5a)∥∥DNDM

t,q−1uq
∥∥
L∞(suppψi,q−1)

≤ ΓCu
q Θ

1/2
q M

(
N, 2Nind,v, λq, λ̃q

)
M
(
M,Nind,t,Γ

i+1
q τ−1

q−1, τ̃
−1
q−1

)
, (4.5b)

for all N +M ≤ 2Nfin. Finally, R̊`q satisfies bounds which extend (2.10) to the mollified stress∥∥ψi,q−1D
NDM

t,q−1R̊`q
∥∥
L1 . Γ−CR

q δq+1M
(
N, 2Nind,v, λq, λ̃q

)
M
(
M,Nind,t,Γ

i+2
q τ−1

q−1, τ̃
−1
q−1

)
, (4.6a)∥∥DNDM

t,q−1R̊`q
∥∥
L∞(suppψi,q−1)

. ΓCu
q M

(
N, 2Nind,v, λq, λ̃q

)
M
(
M,Nind,t,Γ

i+3
q τ−1

q−1 , τ̃
−1
q−1

)
(4.6b)

for all N +M ≤ 2Nfin.

Proof of Lemma 4.1. The bounds in (4.3)–(4.5a), and also (4.6a), match those of [5, Lemma 5.1, equations
(5.3)–(5.5) and (5.7)], and so we omit the proofs. The only new estimates which would require a proof are
(4.5b) and (4.6b).

In order to give an idea of how to prove (4.5b), we follow the method of proof from [5] for (4.5a). When
either N ≥ 3Nind,v or M ≥ 3Nind,v, an even stronger bound than (4.5b) was previously established in [5,
Lemma 5.1, equation (5.6)]. Thus, we only need to consider (4.5b) for N,M ≤ 3Nind,v. We appeal to (2.3)
and split uq = Pq,x,twq +

(
Pq,x,tv`q−1 − v`q−1

)
. Since the good term (Pq,x,t− Id)v`q−1 was already estimated
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in L∞, cf. [5, equation (5.43)] with a stronger bound than that required by (4.5b), we can consider just the
main term Pq,x,twq. We split Pq,x,twq as Pq,x,twq = wq + (Pq,x,t − Id)wq. In view of (2.9b), which provides
a satisfactory bound on wq, we are only left with (Pq,x,t − Id)wq. However, this term was already estimated
in L∞ in [5, equations (5.33)–(5.35)], and so no new proof is required. Thus (4.5b) is satisfied.

The proof of (4.6b) utilizes the same methodology that produced bounds for Pq,x,twq from inductive
assumptions on wq. Specifically, the material derivative bounds have been relaxed by a factor of Γq (the
second Γq loss coming again from the fact that (4.6b) is estimated on the support of ψi,q−1), the spatial

derivative bounds have been relaxed from λq to λ̃q when N ≥ 2Nind,v, and the available number of estimates

on the un-mollified stress R̊q was much more than 2Nind,v, specifically 3Nind,v. We therefore omit any further
discussion and refer the reader to the proof of [5, Lemma 5.1]. �

5. Cutoffs

5.1. Velocity cutoff functions. For all q ≥ 1 and 0 ≤ m ≤ Ncut,t, we construct the following cutoff
functions. The specifics of the construction and the proof are contained in [5, Appendix A.2].

Lemma 5.1. For all q ≥ 1 and 0 ≤ m ≤ Ncut,t, there exist smooth cutoff functions ψ̃m,q, ψm,q : [0,∞) →
[0, 1] which satisfy the following.

(1) The function ψ̃m,q satisfies 1
[0, 14 Γ

2(m+1)
q ]

≤ ψ̃m,q ≤ 1
[0,Γ

2(m+1)
q ]

.

(2) The function ψm,q satisfies 1
[1, 14 Γ

2(m+1)
q ]

≤ ψm,q ≤ 1
[ 1
4 ,Γ

2(m+1)
q ]

.

(3) For all y ≥ 0, a partition of unity is formed as

ψ̃2
m,q(y) +

∑
i≥1

ψ2
m,q

(
Γ−2i(m+1)
q y

)
= 1 . (5.1)

(4) ψ̃m,q and ψm,q(Γ
−2i(m+1)
q ·) satisfy

supp ψ̃m,q(·) ∩ suppψm,q
(
Γ−2i(m+1)
q ·

)
= ∅ if i ≥ 2,

suppψm,q
(
Γ−2i(m+1)
q ·

)
∩ suppψm,q

(
Γ−2i′(m+1)
q ·

)
= ∅ if |i− i′| ≥ 2. (5.2)

(5) For 0 ≤ N ≤ Nfin, when 0 ≤ y < Γ
2(m+1)
q we have

|DN ψ̃m,q(y)| . (ψ̃m,q(y))1−N/NfinΓ−2N(m+1)
q .

For 1
4 < y < 1 we have

|DNψm,q(y)| . (ψm,q(y))1−N/Nfin ,

while for 1
4Γ

2(m+1)
q < y < Γ

2(m+1)
q we have

|DNψm,q(y)| . Γ−2N(m+1)
q (ψm,q(y))1−N/Nfin .

In each of the above inequalities, the implicit constants depend on N but not m or q.

Definition 5.2. Given i, j, q ≥ 0, we define

i∗ = i∗(j, q) = i∗(j) = min{i ≥ 0: Γiq+1 ≥ Γjq}.

Note that for j = 0, we have that i∗(j) = 0.
At stage q ≥ 1 of the iteration (by convention w0 = u0 = 0) and for m ≤ Ncut,t and jm ≥ 0, we define

h2
m,jm,q(x, t) :=

Ncut,x∑
n=0

Γ
−2i∗(jm)
q+1 δ−1

q

(
λqΓq

)−2n(
τ−1
q−1Γ

i∗(jm)+2
q+1

)−2m|DnDm
t,q−1uq(x, t)|2 . (5.3)

Definition 5.3 (Intermediate Cutoff Functions). Given q ≥ 1, m ≤ Ncut,t, and jm ≥ 0 we define
ψm,im,jm,q by

ψm,im,jm,q(x, t) = ψm,q+1

(
Γ
−2(im−i∗(jm))(m+1)
q+1 h2

m,jm,q(x, t)
)

(5.4)

for im > i∗(jm), while for im = i∗(jm),

ψm,i∗(jm),jm,q(x, t) = ψ̃m,q+1

(
h2
m,jm,q(x, t)

)
. (5.5)
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The intermediate cutoff functions ψm,im,jm,q are equal to zero for im < i∗(jm).

The indices im and jm were shown in see [5, Lemma 6.14] and [5, 6.27] to run up to some maximal values

imax and ĩmax, although in the present context, it will be necessary to propagate a much sharper bound on
imax; see Lemma 5.7. With this notation and in view of (5.1) and (5.2), it immediately follows that∑

im≥0

ψ2
m,im,jm,q =

∑
im≥i∗(jm)

ψ2
m,im,jm,q =

∑
{im : Γimq+1≥Γjmq }

ψ2
m,im,jm,q ≡ 1

for any m and for |im − i′m| ≥ 2,
ψm,im,jm,qψm,i′m,jm,q = 0.

Definition 5.4 (mth Velocity Cutoff Function). For q ≥ 1 and im ≥ 0, we inductively define the mth

velocity cutoff function

ψ2
m,im,q =

∑
{jm : im≥i∗(jm)}

ψ2
jm,q−1ψ

2
m,im,jm,q. (5.6)

In order to define the full velocity cutoff function, we use the notation

~i = {im}
Ncut,t

m=0 =
(
i0, ..., iNcut,t

)
∈ NNcut,t+1

0

to denote a tuple of non-negative integers of length Ncut,t + 1, and we shall denote

Ii =

{
~i ∈ NNcut,t+1

0 : max
0≤m≤Ncut,t

im = i

}
.

Definition 5.5 (Velocity cutoff function). For 0 ≤ i ≤ imax(q) and q ≥ 0, we inductively define the
velocity cutoff function ψi,q as follows. When q = 0, we let

ψi,0 =

{
1 if i = 0

0 otherwise.

Then, we inductively on q define

ψ2
i,q =

∑
Ii

Ncut,t∏
m=0

ψ2
m,im,q. (5.7)

for all q ≥ 1.

The sum used to define ψi,q for q ≥ 1 is over all tuples with a maximum entry of i. The number of such
tuples is q-independent since it has been demonstrated in [5, Lemma 6.14] that im ≤ imax(q) (which implies
i ≤ imax(q)), and imax(q) is bounded above independently of q.

For notational convenience, given an ~i as in the sum of (5.7), we shall denote

supp

Ncut,t∏
m=0

ψm,im,q =

Ncut,t⋂
m=0

supp (ψm,im,q) =: supp (ψ~i,q) .

In particular, we will frequently use that (x, t) ∈ supp (ψi,q) if and only if there exists~i ∈ NNcut,t+1
0 such that

max0≤m≤Ncut,t
im = i, and (x, t) ∈ supp (ψ~i,q).

Proposition 5.6. With the definitions of the velocity cutoff functions given in the previous subsection, the
inductive assumptions from (2.11) and (2.15)–(2.22) hold.

For the proof, see [5, Section 6]. We however must provide a new estimate for imax(q) in order to prove
(2.12) and (2.13), and we give the details in the following lemma.

Lemma 5.7 (Maximal i index in the definition of the cutoff). There exists imax = imax(q) ≥ 0,
determined by the formula (5.12) below, such that

ψi,q ≡ 0 for all i > imax (5.8)

and

Γimax
q+1 ≤ ΓCu

q+1Θ
1/2
q δ−

1/2
q (5.9)
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for all q ≥ 0. Moreover, assuming λ0 is sufficiently large, imax(q) is bounded uniformly in q as

imax(q) ≤ 1 + Cu +
1/2(b− 1) + βb

εΓ(b− 1)b
. (5.10)

Proof of Lemma 5.7. Assume i ≥ 0 is such that supp (ψi,q) 6= ∅. We will prove that Γiq+1 ≤ ΓCu
q+1Θ

1/2
q δ
−1/2
q .

From (5.7) it follows that for any (x, t) ∈ supp (ψi,q), there must exist at least one ~i = (i0, . . . , iNcut,t
) such

that max
0≤m≤Ncut,t

im = i, and with ψm,im,q(x, t) 6= 0 for all 0 ≤ m ≤ Ncut,t. Therefore, in light of (5.6), for each

such m there exists a maximal jm such that i∗(jm) ≤ im, with (x, t) ∈ supp (ψjm,q−1) ∩ supp (ψm,im,jm,q).
In particular, this holds for any of the indices m such that im = i. For the remainder of the proof, we fix
such an index 0 ≤ m ≤ Ncut,t.

If we have i = im = i∗(jm) = i∗(jm, q), since (x, t) ∈ supp (ψjm,q−1), then by the inductive assumption

(2.13), we have that jm ≤ imax(q − 1). Then using Γi−1
q+1 < Γjmq ≤ Γ

imax(q−1)
q and (2.13), we deduce that

Γiq+1 ≤ Γq+1Γimax(q−1)
q ≤ Γq+1ΓCu

q Θ
1/2
q−1δ

−1/2
q−1 ≤ ΓCu

q+1Θ
1/2
q δ−

1/2
q .

The last inequality above holds in light of the parameter inequality bεΓ + CuεΓ + 1/2b ≤ bCuεΓ + 1/2 + β,

which in turn follows from εΓ ≤ β/b. Thus, in this case Γiq+1 ≤ ΓCu
q+1Θ

1/2
q δ
−1/2
q indeed holds.

On the other hand, if i = im ≥ i∗(jm) + 1, by the definition of ψm,q+1 in (5.4), it follows that

|hm,jm,q(x, t)| ≥ (1/2)Γ
(m+1)(im−i∗(jm))
q+1 , and by the pigeonhole principle, there exists 0 ≤ n ≤ Ncut,x with

|DnDm
t,q−1uq(x, t)| ≥

1

2Ncut,x
Γ

(m+1)(im−i∗(jm))
q+1 Γ

i∗(jm)
q+1 δ

1/2
q (λqΓq)

n(τ−1
q−1Γ

i∗(jm)+2
q+1 )m

≥ 1

2Ncut,x
Γimq+1δ

1/2
q λnq (τ−1

q−1Γim+2
q+1 )m,

and we also know that (x, t) ∈ supp (ψjm,q−1). By (4.5b), the fact that Ncut,x ≤ 2Nind,v, and Ncut,t ≤ Nind,t,
we know that

|DnDm
t,q−1uq(x, t)| ≤ ΓCu

q Θ
1/2
q λnq (τ−1

q−1Γjm+1
q )m

≤ ΓCu
q Θ

1/2
q λnq (τ−1

q−1Γ
i∗(jm)+1
q+1 )m ≤ ΓCu

q Θ
1/2
q λnq (τ−1

q−1Γimq+1)m .

The proof is now completed, since the previous two inequalities and im = i imply that

Γiq+1 ≤ 2Ncut,xΓCu
q Θ

1/2
q δ−

1/2
q ≤ ΓCu

q+1Θ
1/2
q δ−

1/2
q . (5.11)

In view of the above inequality, the value of imax is chosen as

imax(q) = sup{i′ : Γi
′

q+1 ≤ ΓCu
q+1Θ

1/2
q δ−

1/2
q } . (5.12)

With this definition, if i > imax(q), then Γiq+1 > ΓCu
q+1Θ

1/2
q δ
−1/2
q , and as such supp (ψi,q) = ∅. To show that

imax(q) is bounded independently of q, note that

log(ΓCu
q+1Θ

1/2
q δ
−1/2
q )

log(Γq+1)
= Cu +

(1/2(b− 1) + βb) log(λq−1)

εΓ(b− 1) log(λq)
→ Cu +

1/2(b− 1) + βb

εΓ(b− 1)b
,

as q →∞. Thus, assuming λ0 is sufficiently large, the bound (5.10) holds. �

5.2. Temporal cutoff functions and flow maps. Let χ : (−1, 1)→ [0, 1] be a C∞ function which induces
a partition of unity according to ∑

k∈Z
χ2(· − k) ≡ 1 . (5.13)

Consider the translated and rescaled function

χ
(
tτ−1
q Γi−c0+2

q+1 − k
)
,

which is supported in the set of times t satisfying∣∣t− τqΓ−i+c0−2
q+1 k

∣∣ ≤ τqΓ−i+c0−2
q+1 ⇐⇒ t ∈

[
(k − 1)τqΓ

−i+c0−2
q+1 , (k + 1)τqΓ

−i+c0−2
q+1

]
. (5.14)

We then define temporal cut-off functions

χi,k,q(t) = χ(i)(t) = χ
(
tτ−1
q Γi−c0+2

q+1 − k
)
. (5.15)
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It is then clear that

|∂mt χi,k,q| . (Γi−c0+2
q+1 τ−1

q )m (5.16)

for m ≥ 0 and

χi,k1,q(t)χi,k2,q(t) = 0 (5.17)

for all t ∈ R unless |k1 − k2| ≤ 1. We define

χ(i,k±,q)(t) :=
(
χ2

(i,k−1,q)(t) + χ2
(i,k,q)(t) + χ2

(i,k+1,q)(t)
)1/2

,

which are cutoffs with the property that

χ(i,k±,q) ≡ 1 on supp (χ(i,k,q)).

Next, we define the cutoffs χ̃i,k,q by

χ̃i,k,q(t) = χ̃(i)(t) = χ
(
tτ−1
q Γi−c0q+1 − Γ−c0q+1k

)
.

For comparison with (5.14), we have that χ̃i,k,q is supported in the set of times t satisfying∣∣t− τqΓ−i+c0
q+1 k

∣∣ ≤ τqΓ−i+c0
q+1 .

As a consequence of these definitions and a sufficiently large choice of λ0, if (i, k) and (i∗, k∗) satisfy
suppχi,k,q ∩ suppχi∗,k∗,q 6= ∅ and i∗ ∈ {i− 1, i, i+ 1}, then

suppχi,k,q ⊂ supp χ̃i∗,k∗,q. (5.18)

We can now make estimates regarding the flows of the vector field v`q on the support of a cutoff function.
The proofs of Lemma 5.8 and Corollary 5.10 are contained in [5, Section 6.4].

Lemma 5.8 (Lagrangian paths don’t jump many supports). Let q ≥ 0 and (x0, t0) be given. Assume
that the index i is such that ψ2

i,q(x0, t0) ≥ κ2, where κ ∈
[

1
16 , 1

]
. Then the forward flow (X(t), t) :=

(X(x0, t0; t), t) of the velocity field v`q originating at (x0, t0) has the property that ψ2
i,q(X(t), t) ≥ κ2/2 for all

t be such that |t− t0| ≤ (δ
1/2
q λqΓ

i+3
q+1)−1, which by (8.30) and (8.20) is satisfied for |t− t0| ≤ τqΓ−i+5+c0

q+1 .

Definition 5.9. We define Φi,k,q(x, t) := Φ(i,k)(x, t) to be the flows induced by v`q with initial datum at

time kτqΓ
−i
q+1 given by the identity, i.e.

(∂t + v`q · ∇)Φi,k,q = 0 , Φi,k,q(x, kτqΓ
−i
q+1) = x .

We will use DΦ(i,k) to denote the gradient of Φ(i,k). The inverse of the matrix DΦ(i,k) is denoted by(
DΦ(i,k)

)−1
, in contrast to DΦ−1

(i,k), which is the gradient of the inverse map Φ−1
(i,k).

Corollary 5.10 (Deformation bounds). For k ∈ Z, 0 ≤ i ≤ imax, q ≥ 0, and 2 ≤ N ≤ 3Nfin/2 + 1, we
have the following bounds on the support of ψi,q(x, t)χ̃i,k,q(t).∥∥DΦ(i,k) − Id

∥∥
L∞(supp (ψi,qχ̃i,k,q))

. Γ−1
q+1 (5.19a)∥∥DNΦ(i,k)

∥∥
L∞(supp (ψi,qχ̃i,k,q))

. Γ−1
q+1M

(
N − 1, 2Nind,v,Γqλq, λ̃q

)
(5.19b)∥∥(DΦ(i,k))

−1 − Id
∥∥
L∞(supp (ψi,qχ̃i,k,q))

. Γ−1
q+1 (5.19c)∥∥DN−1

(
(DΦ(i,k))

−1
)∥∥
L∞(supp (ψi,qχ̃i,k,q))

. Γ−1
q+1M

(
N − 1, 2Nind,v,Γqλq, λ̃q

)
(5.19d)∥∥DNΦ−1

(i,k)

∥∥
L∞(supp (ψi,qχ̃i,k,q))

. Γ−1
q+1M

(
N − 1, 2Nind,v,Γqλq, λ̃q

)
(5.19e)

Furthermore, we have the following bounds for 1 ≤ N +M ≤ 3Nfin/2:∥∥DN−N ′DM
t,qD

N ′+1Φ(i,k)

∥∥
L∞(supp (ψi,qχ̃i,k,q))

≤ λ̃Nq M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q , τ̃−1

q Γ−1
q+1

)
(5.19f)∥∥DN−N ′DM

t,qD
N ′(DΦ(i,k))

−1
∥∥
L∞(supp (ψi,qχ̃i,k,q))

≤ λ̃Nq M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q , τ̃−1

q Γ−1
q+1

)
(5.19g)

for all 0 ≤ N ′ ≤ N .
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5.3. Stress estimates and stress cutoff functions. Before giving the definition of the stress cutoffs, we
first note that we can upgrade the L1 and L∞ bounds for ψi,q−1D

KDM
t,q−1R̊`q available in (4.6a) and (4.6b),

respectively, to L1 and L∞ bounds for ψi,qD
KDM

t,qR̊`q . We claim that:

Lemma 5.11 (L1 and L∞ estimates for zeroth order stress). Let R̊`q be as defined in (4.2). For q ≥ 1
and 0 ≤ i ≤ imax(q) we have the estimates∥∥DKDM

t,qR̊`q
∥∥
L1(suppψi,q)

. Γ−CR
q δq+1M

(
K, 2Nind,v, λqΓq, λ̃q

)
M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(5.20a)∥∥DKDM

t,qR̊`q
∥∥
L∞(suppψi,q)

. ΓCu
q M

(
K, 2Nind,v, λqΓq, λ̃q

)
M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(5.20b)

for all K +M ≤ 3Nfin/2.

Proof of Lemma 5.11. The estimate in (5.20a) parallels that of [5, Lemma 6.28]; the ingredients in the proof
were the L1 bounds for the mollified stress, which are available from (4.6a) (see also [5, Lemma 5.1]), and
two lemmas regarding sums and iterates of operators. For the sake of clarity, we thus focus on the proof of
(5.20b), which follows the same strategy as the original proof of (5.20a). The only change is that we simply
substitute the L∞ bound furnished by (4.6b) for each instance of an L1 bound in the proof.

The first step is to apply [5, Lemma A.14], in fact Remark A.15, to the functions v = v`q−1
, f = R̊`q ,

with p = ∞, and on the domain Ω = supp (ψi,q−1). The bound [5, (A.50)] holds in view of the inductive

assumption (2.19) with q′ = q − 1, for the parameters Cv = Γi+1
q δ

1/2
q−1, λv = λ̃v = λ̃q−1, µv = Γi−c0q τ−1

q−1,

µ̃v = Γ−1
q τ̃−1

q−1, Nx = 2Nind,v, Nt = Nind,t, and for N◦ = 3Nfin/2. On the other hand, the assumption [5,

(A.51)] holds due to (4.6b), with the parameters Cf = ΓCu
q , λf = λq, λ̃f = λ̃q, Nx = 2Nind,v, µf = Γi+3

q τ−1
q−1,

µ̃f = τ̃−1
q−1, Nt = Nind,t, and N◦ = 2Nfin. We thus conclude from [5, Equation (A.54)] that∥∥DαDβ

t,q−1R̊`q
∥∥
L∞(supp (ψi,q−1))

. ΓCu
q M

(
|α|, 2Nind,v, λq, λ̃q

)
M
(
|β|,Nind,t,Γ

i+3
q τ−1

q−1, τ̃
−1
q−1

)
whenever |α|+ |β| ≤ 3Nfin/2. Here we have used that λ̃q−1 ≤ λq and that Γi+1

q δ
1/2
q−1λ̃q−1 ≤ Γi+3

q τ−1
q−1 ≤ τ̃−1

q−1

(in view of (8.30), (8.32), and (2.13)). In particular, the definitions of ψi,q in (5.7) and of ψm,im,q in (5.6)
imply that for all |α|+ |β| ≤ 3Nfin/2,∥∥DαDβ

t,q−1R̊`q
∥∥
L∞(supp (ψi,q))

. ΓCu
q M

(
|α|, 2Nind,v, λq, λ̃q

)
M
(
|β|,Nind,t,Γ

i+3
q+1τ

−1
q−1, τ̃

−1
q−1

)
. (5.21)

The second step is to apply [5, Lemma A.10] with B = Dt,q−1, A = uq · ∇, v = uq, f = R̊`q , p = ∞,

and Ω = supp (ψi,q). In this case DK(A + B)Mf = DKDM
t,qR̊`q , which is exactly the object that we need

to estimate in (5.20b). The assumption [5, (A.40)] holds due to (2.18) at level q (which holds due to

Proposition 5.6) with Cv = Γi+1
q+1δ

1/2
q , λv = Γqλq, λ̃v = λ̃q, Nx = 2Nind,v, µv = Γi+3

q+1τ
−1
q−1, µ̃v = Γ−1

q+1τ̃
−1
q ,

Nt = Nind,t, and N∗ = 3Nfin/2 + 1. The assumption [5, (A.41)] holds due to (5.21) with the parameters Cf =

ΓCu
q , λf = λq, λ̃f = λ̃q, Nx = 2Nind,v, µf = Γi+3

q+1τ
−1
q−1, µ̃f = τ̃−1

q−1, Nt = Nind,t, and N∗ = 3Nfin/2. The bound

[5, (A.44)] and the parameter inequalities Γi+1
q+1δ

1/2
q λ̃q ≤ Γi−c0−2

q+1 τ−1
q ≤ Γ−1

q+1τ̃
−1
q and Γi+3

q+1τ
−1
q−1 ≤ Γi−c0q+1 τ

−1
q

(which hold due to (8.31), (8.30), (8.32), and (2.13)) then directly imply (5.20b), concluding the proof. �

Remark 5.12 (L1 and L∞ estimates for higher order stresses). In order to verify the inductive

assumptions in (2.10a) and (2.10b) for the new stress R̊q+1, it will be necessary to consider a sequence of

intermediate objects R̊q,n indexed by n for 1 ≤ n ≤ nmax. For notational convenience, when n = 0, we define

R̊q,0 := R̊`q , and estimates on R̊q,0 are already provided by Lemma 5.11. For 1 ≤ n ≤ nmax, the higher

order stresses R̊q,n are defined in Section 7.1, specifically in (7.1). Note that the definition of R̊q,n is given

as a finite sum of sub-objects H̊n′

q,n for n′ ≤ n− 1 and thus requires induction on n. The definition of H̊n′

q,n is

contained in Section 7.3, specifically in (7.21). Estimates on H̊n′

q,n on the support of ψi,q are stated in (6.13a)

and (6.13b) and proven in Section 7.4. For the time being, we assume that R̊q,n is well-defined and satisfies∥∥DkDm
t,qR̊q,n

∥∥
L1(suppψi,q)

. δq+1,nλ
k
q,nM

(
m,Nind,t,Γ

i−cn
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(5.22)∥∥DkDm

t,qR̊q,n
∥∥
L∞(suppψi,q)

. ΓCu
q Γ

14Υ(n)
q+1 λkq,nM

(
m,Nind,t,Γ

i−cn
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(5.23)

for k +m ≤ Nfin,n.
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For the purpose of defining the stress cutoff functions, the precise definitions of the n-dependent parameters
δq+1,n, λq,n, Nfin,n, and cn present in (5.22) are not relevant. Note however that the definition for λq,n for
0 ≤ n ≤ nmax is given in (2.7a). Similarly, for 0 ≤ n ≤ nmax, δq+1,n is defined in (2.7c). Finally, note that
there are losses in the sharpness and order of the available derivative estimates in (5.22) and (5.23) relative
to (5.20a) and (5.20b). Specifically, the higher order estimates will only be proven up to Nfin,n, which is a
parameter that is decreasing with respect to n and defined in (8.29). For the moment it is only important to
note that Nfin,n � 14Nind,v for all 0 ≤ n ≤ nmax, which is necessary in order to establish (2.9a) and (2.10a)
at level q + 1. Similarly, there is a loss in the cost of sharp material derivatives in (5.22), as cn will be a
parameter which is decreasing with respect to n. When n = 0, we set cn = c0 so that (5.20a) is consistent
with (5.22). For 1 ≤ n ≤ nmax, cn is defined in (8.27).

For q ≥ 1, 0 ≤ i ≤ imax, and 0 ≤ n ≤ nmax, we keep in mind the bound (5.22) and define

g2
i,q,n(x, t) = 1 +

Ncut,x∑
k=0

Ncut,t∑
m=0

δ−2
q+1,n(Γq+1λq,n)−2k(Γi−cn+2

q+1 τ−1
q )−2m|DkDm

t,qR̊q,n(x, t)|2 . (5.24)

With this notation, for j ≥ 1 the stress cut-off functions are defined by

ωi,j,q,n(x, t) = ψ0,q+1

(
Γ−2j
q+1 gi,q,n(x, t)

)
, (5.25)

while for j = 0 we let

ωi,0,q,n(x, t) = ψ̃0,q+1

(
gi,q,n(x, t)

)
, (5.26)

where ψ0,q+1 and ψ̃0,q+1 are as in Lemma 5.1. The cutoff functions ωi,j,q,n defined above will be shown to
obey good estimates on the support of the velocity cutoffs ψi,q. An immediate consequence of (5.1) with
m = 0 is that for every fixed i, n, we have ∑

j≥0

ω2
i,j,q,n = 1 (5.27)

on T3 × R. Thus, {ω2
i,j,q,n}j≥0 is a partition of unity.

The following Corollary is quite similar to [5, Corollary 6.34]. In fact the method of proof of that Corollary

applies mutatis mutandis after replacing each instance of R̊q,n,p and λq,n,p with R̊q,n and λq,n, and so we
omit the proof.

Corollary 5.13 (L∞ estimates for the higher order stresses). For q ≥ 0, 0 ≤ i ≤ imax, 0 ≤ n ≤ nmax,
and α,β ∈ Nk0 we have∥∥DαDβ

t,qR̊q,n
∥∥
L∞(suppψi,qωi,j,q,n)

. Γ
2(j+1)
q+1 δq+1,n(Γq+1λq,n)|α|M

(
|β|,Nind,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
(5.28)

for all |α|+ |β| ≤ Nfin,n − 4.

The next Lemma provides estimate on the maximum value of j for which ψi,qωi,j,q,n may be non-zero.
While the proof is similar in spirit to [5, Lemma 6.35], we include the proof since propagating sharp L∞

estimates of the stress is one of the crucial new ideas in this paper.

Lemma 5.14 (Maximal j index in the stress cutoffs). Fix q ≥ 0 and 0 ≤ n ≤ nmax. There exists a
jmax = jmax(q, n) ≥ 1, which is bounded as

jmax(q, n) ≤ 1

2

(
2 +

Cu + 3

b
+

2βb2

εΓ(b− 1)

)
, (5.29)

such that for any 0 ≤ i ≤ imax(q), we have

ψi,q ωi,j,q,n ≡ 0 for all j > jmax.

Moreover, assuming that a = λ0 is sufficiently large, we have the bound

Γ
2jmax(q,n)
q+1 ≤ ΓCu

q δ
−1
q+1,nΓ

14Υ(n)+3
q+1 . (5.30)
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Proof of Lemma 5.14. We define jmax by

jmax = jmax(q, n) =
1

2

⌈
log(ΓCu

q δ
−1
q+1,n)Γ

14Υ(n)+2
q+1

log(Γq+1)

⌉
. (5.31)

To see that jmax may be bounded independently of q and n, we note that δ−1
q+1,n ≤ δ

−1
q+2, and thus

2jmax ≤ 1 +
Cu

b
+

log(δ−1
q+2)

log(Γq+1)
+ 14Υ(n) + 2→ 3 +

Cu

b
+

2βb2

εΓ(b− 1)
+ 14Υ(n) as q →∞ .

Thus, assuming that a = λ0 is sufficiently large, we obtain that

2jmax(q, n) ≤ 4 +
Cu

b
+

2βb2

εΓ(b− 1)
+ 14Υ(nmax) (5.32)

for all q ≥ 0 and 0 ≤ n ≤ nmax.
To conclude the proof of the Lemma, let j > jmax, as defined in (5.31), and assume by contradiction that

there exists a point (x, t) ∈ supp (ψi,qωi,j,q,n) 6= ∅. In particular, j ≥ 1. Then, by (5.24)–(5.25) and the
pigeonhole principle, we see that there exists 0 ≤ k ≤ Ncut,x and 0 ≤ m ≤ Ncut,t such that

|DkDm
t,qR̊q,n(x, t)| ≥

Γ2j
q+1√

8Ncut,xNcut,t

δq+1,n(Γq+1λq,n)k(Γi−cn+2
q+1 τ−1

q )m.

On the other hand, from (5.20b) and (5.23), we have that

|DkDm
t,qR̊q,n(x, t)| ≤ ΓCu+1

q Γ
14Υ(n)
q+1 Γq+1λ

k
q,n(Γi−cnq+1 τ

−1
q )m.

The above two estimates imply that

Γ2j
q+1 ≤ ΓCu+1

q Γ
14Υ(n)
q+1

√
8Ncut,xNcut,tδ

−1
q+1,n ≤ ΓCu+2

q Γ
14Υ(n)
q+1 δ−1

q+1,n,

which contradicts the fact that j > jmax, as defined in (5.31). �

The following two lemmas correspond to [5, Lemmas 6.36 and 6.38], respectively. As with Corollary 5.13,
the method of proof applies mutatis mutandis after dropping the unnecessary subscript p. We therefore refer
the reader to [5] for further details.

Lemma 5.15 (Derivative bounds for the stress cutoffs). For q ≥ 0, 0 ≤ n ≤ nmax, 0 ≤ i ≤ imax, and
0 ≤ j ≤ jmax, we have that

1suppψi,q |DNDM
t,qωi,j,q,n|

ω
1−(N+M)/Nfin

i,j,q,n

. (Γq+1λq,n)NM
(
M,Nind,t,Γ

i−cn+3
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
(5.33)

for all N +M ≤ Nfin,n − Ncut,x − Ncut,t − 4.

Lemma 5.16 (Lr norm of the stress cutoffs). Let q ≥ 0 and define ψi±,q =
(
ψ2
i−1,q + ψ2

i,q + ψ2
i+1,q

)1/2
.

Then for r ≥ 1 we have that

‖ωi,j,q,n‖Lr(suppψi±,q)
. Γ

−2j/r
q+1 (5.34)

holds for all 0 ≤ i ≤ imax, 0 ≤ j ≤ jmax, and 0 ≤ n ≤ nmax. The implicit constant is independent of i, j, q, n.

5.4. Anisotropic checkerboard cutoff functions. We construct anisotropic checkerboard cutoff func-
tions which are well-suited for intermittent pipe flows with axes parallel to e3. The construction for general
ξ ∈ Ξ follows by rotation. Consider a partition of T3 into the rectangular prisms defined using{

(x1, x2, x3) ∈ T3 : 0 ≤ x1, x2 ≤ CΓΓq+1 (λq+1rq+1,n)
−1
, 0 ≤ x3 ≤ 2πλ−1

q,n

}
(5.35)

and its translations by (
l1CΓΓq+1(λq+1rq+1,n)−1, l2CΓΓq+1(λq+1rq+1,n)−1, l32πλ−1

q,n

)
for

l1, l2 ∈ {0, . . . , CΓ/2πΓ−1
q+1λq+1rq+1,n − 1} , l3 ∈ {0, . . . , λq,n − 1} ,
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where CΓ ≥ 1 ensures that the prisms evenly partition [−π, π]3 and is bounded above independently of q.

Index these prisms by integer triples ~l = (l1, l2, l3). Let Xq,n,e3,~l be a C∞ partition of unity adapted to this

checkerboard of anisotropic rectangular prisms which satisfies∑
~l

(
Xq,n,e3,~l

)2
= 1 (5.36)

for any q and n. Specifically, we impose that spatial derivatives applied to cutoffs belonging to this partition
of unity cost ≈ Γq+1(λq+1rq+1,n)−1 in the x1 and x2 directions, and ≈ λ−1

q,n in the x3 direction, so that∥∥∂M1
1 ∂M2

2 ∂M3 χq,n,e3,~l
∥∥
L∞
.
(
λq+1rq+1,nΓ−1

q+1

)M1+M2
λMq,ñ

for M1,M2,M ≤ 3Nfin. Furthermore, for ~l,~l∗ such that

|l1 − l∗1| ≥ 2, |l2 − l∗2| ≥ 2, |l3 − l∗3| ≥ 2,

we impose that

Xq,n,e3,~l Xq,n,e3,~l∗ = 0 .

Incorporating rotations into the above construction, we may similarly produce cutoff functions Xq,n,ξ,~l sat-

isfying analogous properties for ξ ∈ Ξ. Note that if {ξ, ξ′, ξ′′} forms an orthonormal basis for R3, then∥∥(ξ′ · ∇)
M1 (ξ′′ · ∇)

M2 (ξ · ∇)Mχq,n,ξ,~l
∥∥
L∞
.
(
λq+1rq+1,nΓ−1

q+1

)M1+M2
λMq,ñ . (5.37)

Definition 5.17 (Anisotropic checkerboard cutoff function). Given q, ξ ∈ Ξ, 0 ≤ n ≤ nmax, i ≤ imax,
and k ∈ Z, we define

ζq,i,k,n,ξ,~l (x, t) = Xq,n,ξ,~l (Φi,k,q(x, t)) . (5.38)

These cutoff functions satisfy properties which we enumerate in the following lemma.

Lemma 5.18. The cutoff functions {ζq,i,k,n,ξ,~l}~l satisfy the following properties:

(1) The material derivative Dt,q(ζq,i,k,n,ξ,~l) vanishes.

(2) For each t ∈ R and all x = (x1, x2, x3) ∈ T3,∑
~l

(
ζq,i,k,n,ξ,~l (x, t)

)2
= 1 . (5.39)

(3) Let A = (∇Φi,k,q)
−1. Then we have the spatial derivative estimate∥∥DN1DM

t,q(ξ
`Aj`∂j)

N2ζq,i,k,n,ξ,~l
∥∥
L∞(suppψi,qχ̃i,k,q)

.
(
Γ−1
q+1λq+1rq+1,n

)N1
λN2
q,n

×M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q , τ̃−1

q Γ−1
q+1

)
. (5.40)

for all N1 +N2 +M ≤ 3Nfin/2 + 1.

(4) There exists an implicit dimensional constant Cχ independent of q, n, k, i, and ~l such that for all
(x, t) ∈ suppψi,qχ̃i,k,q, the support of ζq,i,k,n,ξ,~l (·, t) satisfies

diam(supp (ζq,i,k,n,ξ,~l (·, t))) . λ
−1
q,n . (5.41)

Proof of Lemma 5.18. The proof of (1) is immediate from (5.38). (5.39) follows from (1) and (5.36). To

verify (3), the only nontrivial calculations are those including the differential operator (ξ`Aj`∂j). Using the
Leibniz rule, the contraction

ξ`Aj`∂jζq,i,k,n,ξ,~l = ξ`Aj`(∂mXq,n,ξ,~l)(Φi,k,q)∂jΦ
m
i,k,q = ξm(∂mXq,n,ξ,~l)(Φi,k,q) ,

(5.37), and (5.19g) gives the desired estimate. The proof of (5.41) follows from the construction of Xq,n,ξ,~l
and the Lipschitz bound obeyed by ∇v`q on the support of ψi,q; see for example (3.16). �
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5.5. Definition of the cumulative cutoff function. Finally, combining the cutoff functions defined in
Definition 5.5, (5.25)–(5.26), and (5.15), we define the cumulative cutoff function by

ηi,j,k,q,n,ξ,~l (x, t) = ψi,q(x, t)ωi,j,q,n(x, t)χi,k,q(t)ζq,i,k,n,ξ,~l (x, t) .

Since the values of q and n are clear from the context and the values of ξ and ~l are irrelevant in many
arguments, we may abbreviate the above using any of

ηi,j,k,q,n,ξ,~l (x, t) = ηi,j,k,q,n,ξ(x, t) = η(i,j,k)(x, t) = ψ(i)(x, t)ω(i,j)(x, t)χ(i,k)(t)ζ(i,k)(x, t) .

It follows from (2.11) at level q, (5.27), (5.13), and (5.39) that for every (q, n, ξ) fixed, we have∑
i,j≥0

∑
k∈Z

∑
~l

ηi,j,k,q,n,ξ,~l
2(x, t) = 1 . (5.42)

The sum in i goes up to imax (defined in (5.12)), while the sum in j goes up to jmax (defined in (5.31)).
We conclude this section with support estimates on the cumulative cutoff functions ηi,j,k,q,n,ξ,~l.

Lemma 5.19. For r1, r2 ∈ [1,∞] with 1
r1

+ 1
r2

= 1 and any 0 ≤ i ≤ imax, 0 ≤ j ≤ jmax, and ξ ∈ Ξ, we have
that ∑

~l

∣∣∣supp (ηi,j,k,q,n,ξ,~l)
∣∣∣ . Γ

−2i+Cb
r1

+−2j
r2

+2

q+1 . (5.43)

Proof of Lemma 5.19. From (2.17) at level q and (5.34), we have that for each fixed time t,

|supp (ψi,q) ∩ supp (ωi,j,q,n)| ≤
∥∥∥(ψ2

i−1,q + ψ2
i,q + ψ2

i+1,q

)1/2 (
ω2
i,j−1,q,n + ω2

i,j,q,n + ω2
i,j+1,q,n

)1/2
∥∥∥
L1

. Γ
−2(i−1)+Cb

r1
q+1 Γ

−2(j−1)
r2

q+1 .

Using the fact that {ηq,i,k,n,ξ,~l}~l forms a partition of unity from (5.39) and 1
r1

+ 1
r2

= 1 gives the desired

estimate. �

6. Inductive propositions

6.1. Induction on q. The main claim of this section is an induction on q. Notice that the estimates in this
proposition match the inductive assumptions (2.9) and (2.10) at level q + 1.

Proposition 6.1 (Inductive Step on q). Given the velocity field v`q which solves the Euler-Reynolds

system with stress R̊`q + R̊comm
q , where v`q , R̊`q , and R̊comm

q satisfy the conclusions of Lemma 4.1 in addition

to (2.8a)–(2.21b), there exist vq+1 = v`q + wq+1 and R̊q+1 which satisfy the following:

(1) vq+1 solves the Euler-Reynolds system with stress R̊q+1.
(2) For all k,m ≤ 7Nind,v, we have∥∥ψi,qDkDm

t,qwq+1

∥∥
L2 ≤ Γ−1

q+1δ
1/2
q+1λ

k
q+1M

(
m,Nind,t,Γ

i−1
q+1τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(6.1a)∥∥DkDm

t,qwq+1

∥∥
L∞(suppψi,q)

≤ ΓCu−1
q+1 Θ

1/2
q+1λ

k
q+1M

(
m,Nind,t,Γ

i
q+1τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
. (6.1b)

(3) For all k,m ≤ 3Nind,v, we have∥∥ψi,qDkDm
t,qR̊q+1

∥∥
L1 ≤ Γ−CR

q+1 δq+2λ
k
q+1M

(
m,Nind,t,Γ

i+1
q+1τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(6.2a)∥∥DkDm

t,qR̊q+1

∥∥
L∞(suppψi,q)

≤ ΓCu
q+1λ

k
q+1M

(
m,Nind,t,Γ

i+2
q+1τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
. (6.2b)

6.2. Notations. The proof of Proposition 6.1 will be achieved through an induction with respect to ñ,
where 0 ≤ ñ ≤ nmax corresponds to the addition of the perturbation wq+1,ñ. We shall employ the notation:

(1) ñ - An integer taking values 0 ≤ ñ ≤ nmax over which induction is performed, indexing the component
wq+1,ñ of the velocity increment wq+1. We emphasize that the use of ñ at various points in statements
and estimates means that we are currently working on the inductive step at level ñ.

(2) n - An integer taking values 1 ≤ n ≤ nmax which correspond to the higher order stresses R̊q,n. Occa-

sionally, we shall use the notation R̊q,0 = R̊`q to streamline an argument. We emphasize that n will be
used at various points in statements and estimates to reference higher order objects in addition to those
at level ñ, and so will satisfy the inequality ñ ≤ n.
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(3) H̊n′

q,n - The component of R̊q,n originating from an error term produced by the addition of wq+1,n′ . The
parameter n′ will always be a subsidiary parameter used to reference objects created at or below the
level ñ that we are currently working on, and so will satisfy n′ ≤ ñ.

(4) P[q,n] - We use the spatial Littlewood-Paley projectors P[q,n] defined by

P[q,n] =


P[
λ

1/2
q λ

1/2
q+1Γq+1,λq,1

) if n = 1 ,

P[λq,n−1,λq,n) if 2 ≤ n ≤ nmax ,

P≥λq,nmax
if n = nmax + 1 ,

(6.3)

where P[λ1,λ2) is defined in Remark 3.4 as P≥λ1
P<λ2

. Errors which include the frequency projector

P[q,nmax+1] will be small enough to be absorbed into R̊q+1. We note that if 0 ≤ ñ ≤ nmax, then from

(2.7b), any T3

λq+1rq+1,ñ
-periodic function satisfies

f = −
�
T3

f + P≥λq+1rq+1,ñ
f = −

�
T3

f +

nmax+1∑
n=ñ+1

P[q,n]f . (6.4)

(5) In order to later deduce a useful refinement of (6.4), we set

r(ñ) =

{
0 if ñ = 0 ,
nmax+ñ

2 if 1 ≤ ñ ≤ nmax − 1 .
(6.5)

(6) In order to keep track of small losses related to the process of building a stress R̊q,ñ, corrector wq+1,ñ,

and new stresses R̊q,n for n > ñ, we define

Υ(n) =


0 if n = 0 ,

1 if 1 ≤ n ≤ nmax

2

k if 2k−1−1
2k−1 nmax < n ≤ 2k−1

2k
nmax

2 + dlog2(nmax)e if n = nmax .

(6.6)

Υ(ñ) gives an upper bound on the number of steps in the induction on ñ it takes to produce the entire

error term R̊q,ñ. A consequence of (6.5) and (6.6) is that

n > r(ñ) =⇒ Υ(n) ≥ Υ(ñ) + 1 . (6.7)

To prove this, first consider the case n = nmax. Then for all 0 ≤ ñ ≤ nmax−1, we have that r(ñ) < nmax,
and so (6.7) should hold for all ñ < nmax. Since ñ < nmax, there exists a minimum value of k, say kñ,
such that ñ ≤ nmax − nmax

2kñ
, which implies that Υ(ñ) ≤ kñ. For k = dlog2(nmax)e+ 2, however, we have

that nmax− nmax

2k−1 ≥ nmax− 1
2 , and so it must be the case that kñ ≤ dlog2(nmax)e+ 1, which proves (6.7)

in the case n = nmax, and shows that

Υ(n) ≤ 2 + dlog2(nmax)e ∀n ≤ nmax . (6.8)

To prove (6.7) in the remaining cases, note that if ñ = 0, then n > r(0) =⇒ n ≥ 1 and so (6.7) holds.
If ñ = 1, then n > nmax+1

2 , and again (6.7) holds. Finally, if 2 ≤ ñ ≤ nmax − 1 and Υ(ñ) = k, then

n >
nmax + ñ

2
>
nmax + 2k−1−1

2k−1 nmax

2
=

2k − 1

2k
nmax =⇒ Υ(n) ≥ k + 1 .

(7) R̊ñq+1 - For any 0 ≤ ñ ≤ nmax − 1, this is any stress term which satisfies the estimates required of R̊q+1

and which has already been estimated at the ñth stage of the induction; that is, error terms arising from
the addition of wq+1,n′ for n′ ≤ ñ. We exclude R̊comm

q from R̊ñq+1, only absorbing it at the very end

when we define R̊q+1. Thus

R̊ñ+1
q+1 = R̊ñq+1 +

(
errors coming from wq+1,ñ+1 that also go into R̊q+1

)
. (6.9)

We adopt the convention that R̊−1
q+1 = 0.

(8) We adopt the convention that
∑−1
n=0 f(n) ≡

∑nmax

n=nmax+1 f(n) ≡ 0 denotes an empty summation.
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6.3. Induction on ñ. We split the verification of Proposition 6.1 using a sub-inductive procedure on the
parameter ñ. Note that summing (6.11a)-(6.12b) over 0 ≤ ñ ≤ nmax, appealing to (8.43) and (8.48), and
using the extra factor of Γ−1

q+1 to kill implicit constants, we have matched the desired bounds in (6.1a)-(6.2b).

Proposition 6.2 (Induction on ñ: From ñ − 1 to ñ for 0 ≤ ñ ≤ nmax). Under the assumptions of

Proposition 6.1 and Lemma 4.1, we let 0 ≤ ñ ≤ nmax be given, and let vq,ñ−1 = v`q +
ñ−1∑
n′=0

wq+1,n′ , R̊
ñ−1
q+1 ,

and H̊n′

q,n be given for 0 ≤ n′ ≤ ñ− 1 and ñ ≤ n ≤ nmax, such that the following are satisfied:

(1) vq,ñ−1 solves the Euler-Reynolds system with stress

1{ñ=0}R̊`q + R̊ñ−1
q+1 +

ñ−1∑
n′=0

nmax∑
n>r(n′)

H̊n′

q,n + R̊comm
q . (6.10)

(2) For all k +m ≤ Nfin,n′ − Ncut,t − Ncut,x − 2Ndec − 9 and 0 ≤ n′ ≤ ñ− 1,∥∥DkDm
t,qwq+1,n′

∥∥
L2(suppψi,q)

. δ
1/2
q+1,n′Γ

3
q+1λ

k
q+1M

(
m,Nind,t, τ

−1
q Γ

i−cn′+4
q+1 , τ̃−1

q Γ−1
q+1

)
(6.11a)∥∥DkDm

t,qwq+1,n′
∥∥
L∞(suppψi,q)

. Γ
Cu
2
q Γ

7Υ(n′)+ 7
2

q+1 r−1
q+1,n′λ

k
q+1M

(
m,Nind,t, τ

−1
q Γ

i−cn′+4
q+1 ,Γ−1

q+1τ̃
−1
q

)
. (6.11b)

(3) For all k,m ≤ 3Nind,v and 1 ≤ ñ ≤ nmax,∥∥ψi,qDkDm
t,qR̊

ñ−1
q+1

∥∥
L1 . Γ−CR−1

q+1 δq+2λ
k
q+1M

(
m,Nind,t,Γ

i+1
q+1τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(6.12a)∥∥DkDm

t,qR̊
ñ−1
q+1

∥∥
L∞(suppψi,q)

. ΓCu−1
q+1 λ

k
q+1M

(
m,Nind,t,Γ

i+1
q+1τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
. (6.12b)

(4) For 0 ≤ n′ ≤ ñ− 1, r(n′) < n ≤ nmax, and all k +m ≤ Nfin,n,∥∥DkDm
t,qH̊

n′

q,n

∥∥
L1(suppψi,q)

. δq+1,nλ
k
q,nM

(
m,Nind,t, τ

−1
q Γi−cnq+1 , τ̃

−1
q Γ−1

q+1

)
, (6.13a)∥∥DkDm

t,qH̊
n′

q,n

∥∥
L∞(suppψi,q)

. ΓCu
q Γ

14Υ(n)
q+1 λkq,nM

(
m,Nind,t, τ

−1
q Γi−cnq+1 , τ̃

−1
q Γ−1

q+1

)
. (6.13b)

Then if 0 ≤ ñ ≤ nmax − 1, there exists wq+1,ñ, R̊ñq+1, and H̊n′

q,n for 0 ≤ n′ ≤ ñ, such that (6.10)–(6.13b)

are satisfied with ñ − 1 replaced with ñ. If ñ = nmax, then there exists wq+1,nmax
and R̊q+1 such that

vq+1 := vq,nmax−1 +wq+1,nmax solves the Euler-Reynolds system with stress R̊q+1, and vq+1, wq+1, and R̊q+1

satisfy conclusions (6.1a)–(6.2b) from Proposition 6.1.

7. Proving the main inductive estimates

7.1. Definition of R̊q,ñ and wq+1,ñ. In this section we define the stresses R̊q,ñ and the perturbations wq+1,ñ

used to correct them. For 0 ≤ ñ ≤ nmax, we define

R̊q,ñ = 1{ñ=0}R̊`q +
∑

0≤n′≤ñ−1

H̊n′

q,ñ . (7.1)

In Subsection 7.3, we will show that H̊n′

q,ñ is zero in certain parameter regimes, although for the moment this

is irrelevant. Now for any fixed values of ñ, i, j, and k, we may define

Rq,ñ,j,i,k = ∇Φ(i,k)

(
δq+1,ñΓ2j+4

q+1 Id− R̊q,ñ
)
∇ΦT(i,k) . (7.2)

Let ξ ∈ Ξ be a vector from Proposition 3.1. For all ξ ∈ Ξ, we define the coefficient function aξ,i,j,k,q,ñ,~l by

aξ,i,j,k,q,ñ,~l := aξ,i,j,k,q,ñ := a(ξ) = δ
1/2
q+1,ñΓj+2

q+1ηi,j,k,q,ñ,ξ,~l γξ

(
Rq,ñ,j,i,k

δq+1,ñΓ2j+4
q+1

)
. (7.3)

From Corollary 5.13, we see that on the support of η(i,j,k) we have |R̊q,ñ| . Γ2j+2
q+1 δq+1,ñ, and thus by estimate

(5.19a) from Corollary 5.10, we have that∣∣∣∣∣ Rq,ñ,j,i,k

δq+1,ñΓ2j+4
q+1

− Id

∣∣∣∣∣ ≤ Γ−1
q+1 <

1

2

once λ0 is sufficiently large. Thus we may apply Proposition 3.1.
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The coefficient function a(ξ) is then multiplied by an intermittent pipe flow

∇Φ−1
(i,k)Wξ,q+1,ñ ◦ Φ(i,k),

where we have used Proposition 3.3 (with λ = λq+1 and r = rq+1,ñ) and the shorthand notation

Wξ,q+1,ñ = W(i,j,k,ñ,~l)
ξ,λq+1,rq+1,ñ

=: Ws
ξ,λq+1,rq+1,ñ

. (7.4)

The superscript s = (i, j, k, ñ,~l) indicates the placement of the intermittent pipe flow Wi,j,k,ñ,~l
ξ,q+1,ñ (cf. (2) from

Proposition 3.3), which depends on i, j, k, ñ, and ~l and is only relevant in Section 7.5. To ease notation, we
will suppress the superscript except in Section 7.5. We will also adopt the same notational conventions for
the potentials Uξ,q+1,ñ. Furthermore, (3.8) from Proposition 3.3 gives that we can now write the principal
part of the first term of the perturbation as

w
(p)
q+1,ñ =

∑
i,j,k

∑
~l

∑
ξ

a(ξ)curl
(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
:=
∑
i,j,k

∑
~l

∑
ξ

w(ξ) . (7.5)

The notation w(ξ) implicitly encodes all indices and thus will be a useful shorthand for the principal part of
the perturbation. To make the perturbation divergence free, we add

w
(c)
q+1,ñ =

∑
i,j,k

∑
~l

∑
ξ

∇a(ξ) ×
(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
=
∑
i,j,k

∑
~l

∑
ξ

w
(c)
(ξ) (7.6)

so that

wq+1,ñ = w
(p)
q+1,ñ + w

(c)
q+1,ñ =

∑
i,j,k

∑
~l

∑
ξ

curl
(
a(ξ)∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
. (7.7)

7.2. Estimates for wq+1,ñ. In this section, we verify (6.11a) and (6.11b). We first estimate the Lr norms of
the coefficient functions a(ξ). We have consolidated the proofs for each value of ñ into the following lemma.

Lemma 7.1. For N,N ′,M with N ′ = 0, 1 and N+N ′+M ≤ Nfin,ñ−Ncut,t−Ncut,x−4, and r, r1, r2 ∈ [1,∞]
with 1

r1
+ 1

r2
= 1, we have the following estimate.∥∥DNDM

t,q(ξ
`Aj`∂j)

N ′aξ,i,j,k,q,ñ,~l
∥∥
Lr
. |supp (ηi,j,k,q,ñ,ξ,~l)|

1/rδ
1/2
q+1,ñΓj+2

q+1

(
Γ−1
q+1λq+1rq+1,ñ

)N
× (Γq+1λq,ñ)

N ′M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.8)

In the case that r =∞, the above estimate gives that∥∥DNDM
t,q(ξ

`Aj`∂j)
N ′aξ,i,j,k,q,ñ,~l

∥∥
L∞
. Γ

Cu
2
q Γ

7Υ(ñ)+ 7
2

q+1

(
Γ−1
q+1λq+1rq+1,ñ

)N
× (Γq+1λq,ñ)

N ′M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.9)

Proof of Lemma 7.1. We first compute (7.8) for the case r =∞. Recalling estimate (5.28), we have that for
all N +M ≤ Nfin,ñ − 4,∥∥DNDM

t,qR̊q,ñ
∥∥
L∞(supp η(i,j,k))

. δq+1,ñΓ2j+2
q+1 (Γq+1λq,ñ)

NM
(
M,Nind,t, τ

−1
q Γi−cñ+2

q+1 , τ̃−1
q Γ−1

q+1

)
.

From Corollary 5.10, we have that for all N +M ≤ 3Nfin/2,∥∥DNDM
t,qDΦ(i,k)

∥∥
L∞(supp (ψi,qχi,k,q))

≤ λ̃Nq M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q , τ̃−1

q Γ−1
q+1

)
.

Thus from the Leibniz rule and definition (7.2), for N +M ≤ Nfin,ñ − 4,∥∥DNDM
t,qRq,ñ,j,i,k

∥∥
L∞(supp η(i,j,k))

. δq+1,ñΓ2j+4
q+1 (Γq+1λq,ñ)

NM
(
M,Nind,t, τ

−1
q Γi−cñ+2

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.10)

The above estimates allow us to apply [5, Lemma A.5] with N = N ′, M = M ′ so that N +M ≤ Nfin,ñ − 4,

ψ = γξ,, Γψ = 1, v = v`q , Dt = Dt,q, h(x, t) = Rq,ñ,j,i,k(x, t), Ch = δq+1,ñΓ2j+4
q+1 = Γ2, λ = λ̃ = λq,ñΓq+1,

µ = τ−1
q Γi−cñ+2

q+1 , µ̃ = τ̃−1
q Γ−1

q+1, and Nt = Nind,t. We obtain that for all N +M ≤ Nfin,ñ − 4,∥∥∥∥∥DNDM
t,qγξ

(
Rq,ñ,j,i,k

δq+1,ñ,p̃Γ
2j+4
q+1

)∥∥∥∥∥
L∞(supp η(i,j,k))

. (Γq+1λq,ñ)
NM

(
M,Nind,t, τ

−1
q Γi−cñ+2

q+1 , τ̃−1
q Γ−1

q+1

)
.
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From the above bound, definition (7.3), the Leibniz rule, estimate (2.23) at level q in conjunction with (8.35),
(5.19g), (5.16), (5.33), and (5.40), we obtain that for N +N ′ +M ≤ Nfin,ñ − Ncut,x − Ncut,t − 4,∥∥DNDM

t,q(ξ
`Aj`∂j)

N ′aξ,i,j,k,q,ñ,~l
∥∥
L∞
. δ

1/2
q+1,ñΓj+2

q+1(Γ−1
q+1λq+1rq+1,ñ)N

× (Γq+1λq,ñ)N
′
M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
.

Then, using (5.30) the above bound becomes (7.9). When r 6=∞, we use ‖f‖Lr ≤ ‖f‖L∞ |{supp f}|1/r and
the demonstrated bound for r =∞ to obtain (7.8) for the full range of r. �

An immediate consequence of Lemma 7.1 is that we have estimates for the velocity increments themselves.
These are summarized in the following corollary. The proofs for r 6= ∞ are analogous to those from [5,
Corollary 8.2] and therefore use Lemma A.1. We only note that the gap between the spatial derivative cost
of a(ξ) (λq+1rq+1,ñΓ−1

q+1 from Lemma 7.1) and the minimum frequency of Wξ,q+1,ñ (λq+1rq+1,ñ from (7.4)

and Proposition 3.3) is now only Γq+1, and so we need the inequality (8.37) in order to satisfy (A.2). The
assumption (A.1) follows from (8.58a). The estimates for r =∞ follow directly from (7.9) and (3.6).

Corollary 7.2. For N + M ≤ Nfin,ñ − Ncut,t − Ncut,x − 2Ndec − 8 and (r, r1, r2) ∈ {(1, 2, 2), (2,∞, 1)}, for
w(ξ) we have the estimates∥∥DNDM

t,qw(ξ)

∥∥
Lr
. |supp (ηi,j,k,q,ñ,ξ,~l)|

1/rδ
1/2
q+1,ñΓj+2

q+1(rq+1,ñ)
2
r−1

λNq+1M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
(7.11a)∥∥DNDM

t,qw(ξ)

∥∥
L∞
. r−1

q+1,ñλ
N
q+1Γ

Cu
2
q Γ

7Υ(ñ)+ 7
2

q+1 M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.11b)

For N +M ≤ Nfin,ñ − Ncut,t − Ncut,x − 2Ndec − 9 and (r, r1, r2) ∈ {(1, 2, 2), (2,∞, 1)}, we have that∥∥DNDM
t,qw

(c)
(ξ)

∥∥
Lr
.
λq+1rq+1,ñ

λq+1
|supp (ηi,j,k,q,ñ,ξ,~l)|

1/rδ
1/2
q+1,ñΓj+2

q+1(rq+1,ñ)
2
r−1

× λNq+1M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
(7.12a)∥∥DNDM

t,qw
(c)
(ξ)

∥∥
L∞
. r−1

q+1,ñ

λq+1rq+1,ñ

λq+1
Γ

Cu
2
q Γ

7Υ(ñ)+ 7
2

q+1 λNq+1M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
(7.12b)

Remark 7.3. Note that the above estimates verify the bounds (6.11a) and (6.11b) after summing on

(i, j, k, ñ, ξ,~l) and using (5.43) with r1 = ∞ and r2 = 2. Then from (7.5)–(7.7), (7.11a)–(7.12b), and the
parameter inequalities (8.25), (8.43), and (8.48), the bounds (6.1a) and (6.1b) follow after using the extra
factor of Γ−1

q+1 to absorb implicit constants.

7.3. Identification of error terms. Recall that vq,ñ−1 is divergence-free and is a solution to the Euler-

Reynolds system with stress given in (6.10). Now using the definition of R̊q,ñ from (7.1) for 0 ≤ ñ ≤ nmax,
we add wq+1,ñ as defined in (7.7), we have that vq,ñ := vq,ñ−1 + wq+1,ñ solves

∂tvq,ñ + div (vq,ñ ⊗ vq,ñ) +∇pq,ñ−1 = div
(
R̊ñ−1
q+1

)
+ div

(
ñ−1∑
n′=0

nmax∑
n>r(n′)

H̊n′

q,n

)
+ div R̊comm

q

+Dt,qwq+1,ñ + wq+1,ñ · ∇v`q + 2
∑

n′≤ñ−1

div (wq+1,n′ ⊗s wq+1,ñ)

+ div
(
wq+1,ñ ⊗ wq+1,ñ + R̊q,ñ

)
. (7.13)

Here we use the notation a⊗s b = 1
2 (a⊗ b+ b⊗ a). The first term on the right hand side is R̊ñ−1

q+1 , which for

ñ ≥ 1 satisfies the same estimates as R̊ñq+1 by (6.12a) and will thus be absorbed into R̊ñq+1. The second term,

save for the fact that the sum is over n′ ≤ ñ− 1 rather than n′ ≤ ñ and is therefore missing the terms H̊ ñ
q,n,

matches (6.10) at level ñ (i.e. replacing every instance of ñ − 1 with ñ). We apply the inverse divergence
operators from Proposition A.2 to the transport and Nash errors to obtain

Dt,qwq+1,ñ + wq+1,ñ · ∇v`q = div
(
(H+R∗)

(
Dt,qwq+1,ñ + wq+1,ñ · ∇v`q

))
+∇π,
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and these errors are absorbed into R̊ñq+1 or the new pressure. We will show in Section 7.5 that the interaction
of wq+1,ñ with previous terms wq+1,n′ is a Type 2 oscillation error so that

2
∑

0≤n′≤ñ−1

wq+1,n′ ⊗s wq+1,ñ = 0 . (7.14)

So to verify (6.10) at level ñ, only the analysis of last line of the right-hand side of (7.13) remains.

For a fixed ñ, throughout this section we will consider sums over indices (ξ, i, j, k,~l), where the direction
vector ξ takes on one of the finitely many values in Proposition 3.3, 0 ≤ i ≤ imax(q) indexes the velocity
cutoffs, 0 ≤ j ≤ jmax(q, ñ) indexes the stress cutoffs, the parameter k ∈ Z indexes the time cutoffs defined

in (5.15), and lastly, ~l ∈ N3
0 indexes the checkerboard cutoffs from Definition 5.17. For brevity of notation,

we denote sums over such indexes as ∑
ξ,i,j,k,~l

.

Moreover, we shall denote as ∑
6={ξ,i,j,k,~l}

the double-summation over indexes (ξ, i, j, k,~l) and (ξ∗, i∗, j∗, k∗,~l∗) which belong to the set{
(ξ, i, j, k,~l) , (ξ∗, i∗, j∗, k∗,~l∗) : ξ 6= ξ∗ ∨ i 6= i∗ ∨ j 6= j∗ ∨ k 6= k∗ ∨~l 6= ~l∗

}
.

We may now write out the self-interaction of wq+1,ñ as

div (wq+1,ñ ⊗ wq+1,ñ) =
∑

ξ,i,j,k,~l

div
(

curl
(
a(ξ)∇ΦT(i,k)Uξ,q+1,ñ

)
⊗ curl

(
a(ξ)∇ΦTi,kUξ,q+1,ñ

))
+

∑
6={ξ,i,j,k,~l}

div
(

curl
(
a(ξ)∇ΦT(i,k)Uξ,q+1,ñ

)
⊗ curl

(
a(ξ∗)∇ΦT(i∗,k∗)Uξ∗,q+1,ñ

))
=: divOñ,1 + divOñ,2. (7.15)

We will show that Oñ,2 is a Type 2 oscillation error so that

Oñ,2 = 0 . (7.16)

Splitting Oñ,1 gives

divOñ,1 =
∑

ξ,i,j,k,~l

div
((
a(ξ)∇Φ−1

(i,k)Wξ,q+1,ñ ◦ Φ(i,k)

)
⊗
(
a(ξ)∇Φ−1

(i,k)Wξ,q+1,ñ ◦ Φ(i,k)

))
+ 2

∑
ξ,i,j,k,~l

div
((
a(ξ)∇Φ−1

(i,k)Wξ,q+1,ñ ◦ Φ(i,k)

)
⊗s

(
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)))
+

∑
ξ,i,j,k,~l

div
((
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

))
⊗
(
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)))
:= div (Oñ,1,1 +Oñ,1,2 +Oñ,1,3) . (7.17)

The last two of these terms are divergence corrector errors and will therefore be absorbed into R̊ñq+1 and

estimated in Section 7.6. So the only terms which we have yet to identify from (7.13) are Oñ,1,1 and R̊q,ñ.

Recall cf. (7.4) that Wξ,q+1,ñ is periodized to scale (λq+1rq+1,ñ)
−1

. Using (6.4), we have that

Wξ,q+1,ñ ⊗Wξ,q+1,ñ = −
�
T3

Wξ,q+1,ñ ⊗Wξ,q+1,ñ +

nmax+1∑
n=ñ+1

P[q,n] (Wξ,q+1,ñ ⊗Wξ,q+1,ñ) .

Using (4) and (3.9) from Proposition 3.3 in combination with the above identity, and the convention that •
denotes the unspecified components of a vector field, we then split Oñ,1,1 as

div (Oñ,1,1) =
∑

ξ,i,j,k,~l

div
(
a2

(ξ)∇Φ−1
(i,k) (ξ ⊗ ξ)∇Φ−T(i,k)

)
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+
∑

ξ,i,j,k,~l

div

(
a2

(ξ)∇Φ−1
(i,k)

nmax+1∑
n=ñ+1

P[q,n](W⊗W)ξ,q+1,ñ(Φ(i,k))∇Φ−T(i,k)

)

= div
∑

ξ,i,j,k,~l

δq+1,ñΓ2j+4
q+1 η

2
(i,j,k)γ

2
ξ

(
Rq,ñ,j,i,k

δq+1,ñΓ2j+4
q+1

)
∇Φ−1

(i,k) (ξ ⊗ ξ)∇Φ−T(i,k)

+
∑

ξ,i,j,k,~l

∇a2
(ξ)∇Φ−1

(i,k)

nmax+1∑
n=ñ+1

P[q,n](W⊗W)ξ,q+1,ñ(Φ(i,k))∇Φ−T(i,k)

+
∑

ξ,i,j,k,~l

a2
(ξ)(∇Φ−1

(i,k))
α
θ

nmax+1∑
n=ñ+1

P[q,n](WθWγ)ξ,q+1,ñ(Φ(i,k))∂α(∇Φ−1
(i,k))

•
γ . (7.18)

By (3.1) from Proposition 3.1, identity (7.2), and (5.39), we obtain that∑
i,j,k,ξ

∑
~l

δq+1,ñΓ2j+4
q+1 η

2
i,j,k,q,ñ,ξ,~l

γ2
ξ

(
Rq,ñ,j,i,k

δq+1,ñΓ2j+4
q+1

)
∇Φ−1

(i,k) (ξ ⊗ ξ)∇Φ−T(i,k)

=
∑
i,j,k,ξ

δq+1,ñΓ2j+4
q+1 ψ

2
i,qω

2
i,j,q,ñχ

2
i,k,qγ

2
ξ

(
Rq,ñ,j,i,k

δq+1,ñΓ2j+4
q+1

)
∇Φ−1

(i,k) (ξ ⊗ ξ)∇Φ−T(i,k)

=
∑
i,j,k

ψ2
i,qω

2
i,j,q,ñχ

2
i,k,q

(
δq+1,ñΓ2j+4

q+1 Id− R̊q,ñ
)

= −R̊q,ñ + Id

(∑
i,j,k

ψ2
i,qω

2
i,j,q,ñχ

2
i,k,qδq+1,ñΓ2j+4

q+1

)
, (7.19)

where in the last equality we have appealed to the fact that η2
i,j,k forms a partition of unity, cf. (5.42). The

second term on the right hand side of (7.19) is a pressure term.
Returning to the second and third lines in (7.18), we first note that when ñ = 0, (2.7b) gives that

λq+1rq+1,0 = λ
1/2
q+1λ

1/2
q,nΓ−2

q+1 = λ
1/2
q+1λ

1/2
q Γq+1. Then from (6.3) and (7.4), for all 1 ≤ n ≤ nmax + 1, we

deduce that P[q,n] (Wξ,q+1,0 ⊗Wξ,q+1,0) 6= 0. Conversely, when 1 ≤ ñ ≤ nmax, for all n ≥ ñ + 1 such that

λq,n < λ
1/2
q+1λ

1/2
q,ñΓ−2

q+1, i.e. such that the maximal frequency of P[q,n] is less than the minimal frequency of

P6=0 (Wξ,q+1,ñ ⊗Wξ,q+1,ñ), we have that P[q,n] (Wξ,q+1,ñ ⊗Wξ,q+1,ñ) = 0. Using (2.7a), we write that

λ
1
2−

n
2(nmax+1)

q λ
1
2 + n

2(nmax+1)

q+1 < λ
1
2
q+1λ

1
4−

ñ
4(nmax+1)

q λ
1
4 + ñ

4(nmax+1)

q+1 Γ−2
q+1

⇔ λ
1
4 + ñ−2n

4(nmax+1)
q < λ

1
4 + ñ−2n

4(nmax+1)

q+1 Γ−2
q+1

⇔ 2εΓ <
1

4
+

ñ− 2n

4(nmax + 1)

⇔ 8εΓ(nmax + 1) < nmax + 1 + ñ− 2n

⇐ n ≤ nmax + ñ

2
,

1

2
− 4εΓ(nmax + 1) > 0 . (7.20)

The second inequality in the last line follows from (8.6a). Based on (7.20) and (6.5), we apply Proposition A.2

in the parameter regimes ñ = 0, 1 ≤ n ≤ nmax and 1 ≤ ñ ≤ nmax − 1, r(ñ) = nmax+ñ
2 < n ≤ nmax to define

H̊ ñ
q,n := H

( ∑
ξ,i,j,k

∇a2
(ξ)∇Φ−1

(i,k)P[q,n](Wξ,q+1,ñ ⊗Wξ,q+1,ñ)(Φ(i,k))∇Φ−T(i,k)

+
∑
ξ,i,j,k

a2
(ξ)(∇Φ−1

(i,k))
α
θ P[q,n](Wθ

ξ,q+1,ñW
γ
ξ,q+1,ñ)(Φ(i,k))∂α(∇Φ−1

(i,k))
•
γ

)
. (7.21)

The terms from (7.18) with P[q,nmax+1] will be absorbed into R̊ñq+1. We will show shortly that the terms H̊ ñ
q,n

in (7.21) are precisely the terms needed to make (7.13) match (6.10) at level ñ.
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Recall from (6.9) that R̊ñq+1 will include R̊ñ−1
q+1 in addition to error terms arising from the addition of

wq+1,ñ which are small enough to be absorbed in R̊q+1. Then to check (6.10), we return to (7.13) and use
(7.14), (7.15), (7.17), (7.18), (7.19), (7.20), (6.5), and (7.21) to write

∂tvq,ñ + div (vq,ñ ⊗ vq,ñ) +∇pq,ñ−1

= div R̊comm
q + div

( ñ−1∑
n′=0

nmax∑
n>r(n′)

H̊n′

q,n

)
+ div

(
R̊ñ−1
q+1

)
+Dt,qwq+1,ñ + wq+1,ñ · ∇v`q + div (Oñ,1,2 +Oñ,1,3) + div

(
Oñ,1,1 + R̊q,ñ

)
= div R̊comm

q + div

( ñ−1∑
n′=0

nmax∑
n>r(n′)

H̊n′

q,n

)

+ div

(
R̊ñ−1
q+1 + (H+R∗)

(
Dt,qwq+1,ñ + wq+1,ñ · ∇v`q

)
+Oñ,1,2 +Oñ,1,3

)
+∇π

+ div

[
(H+R∗)

( ∑
ξ,i,j,k,~l

∇a2
(ξ)∇Φ−1

(i,k)

nmax+1∑
n>r(ñ)

P[q,n](W⊗W)ξ,q+1,ñ(Φ(i,k))∇Φ−T(i,k)

)

+ (H+R∗)
( ∑
ξ,i,j,k,~l

a2
(ξ)(∇Φ−1

(i,k))
α
θ

nmax+1∑
n>r(ñ)

P[q,n](WθWγ)ξ,q+1,ñ(Φ(i,k))∂α(∇Φ−1
(i,k))

•
γ

)]
(7.22)

= div R̊comm
q + div

( ñ∑
n′=0

nmax∑
n>r(n′)

H̊n′

q,n

)
+ div R̊ñq+1 +∇π , (7.23)

where

R̊ñq+1 = R̊ñ−1
q+1 + (H+R∗)

(
Dt,qwq+1,ñ + wq+1,ñ · ∇v`q

)
+ (H+R∗)divOñ,1,2 +Oñ,1,3 + πId

+H
( ∑
ξ,i,j,k,~l

∇a2
(ξ)∇Φ−1

(i,k)P[q,nmax+1](W⊗W)ξ,q+1,ñ(Φ(i,k))∇Φ−T(i,k)

)

+H
( ∑
ξ,i,j,k,~l

a2
(ξ)(∇Φ−1

(i,k))
α
θ P[q,nmax+1](WθWγ)ξ,q+1,ñ(Φ(i,k))∂α(∇Φ−1

(i,k))
•
γ

)

+R∗
( ∑
ξ,i,j,k,~l

∇a2
(ξ)∇Φ−1

(i,k)

nmax+1∑
n>r(ñ)

P[q,n](W⊗W)ξ,q+1,ñ(Φ(i,k))∇Φ−T(i,k)

)

+R∗
( ∑
ξ,i,j,k,~l

a2
(ξ)(∇Φ−1

(i,k))
α
θ

nmax+1∑
n>r(ñ)

P[q,n](WθWγ)ξ,q+1,ñ(Φ(i,k))∂α(∇Φ−1
(i,k))

•
γ

)
. (7.24)

We emphasize that to obtain (7.23), we have used that the Type 2 oscillation errors from (7.14) and (7.16)
will be shown to vanish. The equality (7.23) completes the proof of (6.10) at level ñ.

7.4. Type 1 oscillation errors. Recall from (7.23) that there are two main categories of Type 1 oscillation
errors which arise from the addition of wq+1,ñ: the higher order stresses H ñ

q,n, which are defined and non-
vanishing in (7.21) in the parameter regimes ñ = 0, 1 ≤ n ≤ nmax and 1 ≤ ñ < nmax, r(ñ) < n ≤ nmax, and

the portions of R̊ñq+1, which are defined in the last four lines of (7.24). To estimate these error terms, we
will first analyze a single term of the form

(H+R∗)

( ∑
ξ,i,j,k,~l

∇a2
(ξ)∇Φ−1

(i,k)P[q,n](Wξ,q+1,ñ ⊗Wξ,q+1,ñ)(Φ(i,k))∇Φ−T(i,k)

+
∑

ξ,i,j,k,~l

a2
(ξ)(∇Φ−1

(i,k))
α
θ P[q,n](Wθ

ξ,q+1,ñW
γ
ξ,q+1,ñ)(Φ(i,k))∂α(∇Φ−1

(i,k))
•
γ

)
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=: On,ñ +O∗n,ñ , (7.25)

where • refers to the unspecified components of a vector field, and superscripts on Wξ,q+1,ñ refer to com-
ponents of vectors over which summation is performed. In the above display, we allow 0 ≤ ñ ≤ nmax and
r(ñ) < n ≤ nmax + 1, thus including both H ñ

q,n from (7.21) and all Type 1 error terms in (7.24).

Lemma 7.4. The terms On,ñ and O∗n,ñ defined in (7.25) satisfy the following estimates.

(1) For all error terms O∗n,ñ, which are the outputs of R∗, we have for all N,M ≤ 3Nind,v that∥∥DNDM
t,qO∗n,ñ

∥∥
L∞
≤ δq+2λ

N−1
q+1 τ

−M
q . (7.26)

(2) For 0 ≤ ñ ≤ nmax and n = nmax + 1, the high frequency, local part of the Type 1 errors satisfies∥∥DNDM
t,qOnmax+1,ñ

∥∥
L1(suppψi,q)

. Γ−CR−1
q+1 δq+2λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 ,Γ−1
q+1τ̃

−1
q

)
(7.27a)∥∥DNDM

t,qOnmax+1,ñ

∥∥
L∞(suppψi,q)

. ΓCu−1
q+1 λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 ,Γ−1
q+1τ̃

−1
q

)
(7.27b)

for all N,M ≤ 3Nind,v.
(3) For 0 ≤ ñ < nmax and r(ñ) < n ≤ nmax, the medium frequency, local part of the Type 1 errors satisfies∥∥DNDM

t,qOn,ñ
∥∥
L1(suppψi,q)

. δq+1,nλ
N
q,nM

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 ,Γ−1
q+1τ̃

−1
q

)
(7.28a)∥∥DNDM

t,qOn,ñ
∥∥
L∞(suppψi,q)

. ΓCu
q Γ

14Υ(n)
q+1 λNq,nM

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 ,Γ−1
q+1τ̃

−1
q

)
(7.28b)

for all N +M ≤ Nfin,n.

Remark 7.5. In order to verify (6.13a) for n′ = ñ and r(ñ) < n ≤ nmax, we first note that On,ñ = H̊ ñ
q,n,

and the inequality Γi−cñ+4
q+1 ≤ Γi−cnq+1 , holds from ñ ≤ n − 1 and (8.27). Then (7.28a) provides the desired

bound. (6.13b) follows similarly from (7.28b). The bound in (6.12a) follows from (7.26) and (7.27a), since
cñ ≥ 4 from (8.5) and (8.27). The bound in (6.12b) follows from (7.26) and (7.27b). Lastly, when ñ = nmax,
and hence n = nmax + 1, (7.26), (7.27a), and (7.27b) match (6.2a) and (6.2b).

Proof of Lemma 7.4. We use (1) from Proposition 3.3 and the notation A = (∇Φ)−1 to rewrite (7.25) as

(H+R∗)
( ∑
ξ,i,j,k,~l

P[q,n]

((
%ξ,λq+1,rq+1,ñ

)2)
(Φ(i,k))ξ

θξγ
(
A(i,k)

)α
θ

(
∂αa

2
(ξ)

(
A(i,k)

)•
γ

+ a2
(ξ)∂α

(
A(i,k)

)•
γ

))
.

Next, we must identify the functions and the values of the parameters which will be used in the application
of Proposition A.2. We first address the bounds required in (A.4), (A.5), and (A.6), which we can treat
simultaneously for items (1), (2), and (3). Afterwards, we split the proof into two parts. First, we set
n = nmax + 1 and prove (7.26), (7.27a), and (7.27b) for any value of ñ. Next, we consider 0 ≤ ñ < nmax and
r(ñ) < n ≤ nmax and prove (7.26) in the remaining cases, as we simultaneously prove (7.28a) and (7.28b).

Returning to (A.4), we will verify that this inequality holds with v = v`q , Dt = Dt,q = ∂t + v`q · ∇, and

N∗ = M∗ = bN]/2c, whereN ] = Nfin,ñ−Ncut,t−Ncut,x−5. In order to verify the assumptionN∗−d ≥ 2Ndec+4,

we use that Ndec and d satisfy (8.58a). We fix values of (i, j, k, ñ, ξ,~l) and set

G• = ξθξγ
(
A(i,k)

)α
θ

(
∂αa

2
(ξ)

(
A(i,k)

)•
γ

+ a2
(ξ)∂α

(
A(i,k)

)•
γ

)
. (7.29)

Note crucially that the differential operator falling on a2
ξ,i,j,k,q,ñ,~l

in the first term is precisely ξθ
(
A(i,k)

)α
θ
∂α,

which from (5.40) and (7.8) will obey a good bound. We now establish (A.4)–(A.6) with the parameter
choices

CG,1 = |supp (ηi,j,k,q,ñ,ξ,~l)|δq+1,ñλq,ñΓ2j+5
q+1 , CG,∞ = ΓCu

q Γ
14Υ(ñ)+8
q+1 λq,ñ , (7.30)

λ = λq+1rq+1,ñΓ−1
q+1, Mt = Nind,t, ν = τ−1

q Γi−cñ+4
q+1 , ν̃ = τ̃−1

q Γ−1
q+1, and λ′ = λ̃q.

To establish an L1 bound for the first term from (7.29), we appeal to Lemma 7.1, estimate (7.8) with
N ′ = 1, and (5.19g) to deduce that∥∥∥∥∥DNDM

t,q

(
ξθ
(
A(i,k)

)α
θ
∂αa

2
(ξ)

(
A(i,k)

)•
γ
ξγ
)∥∥∥∥∥

L1
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. |supp (ηi,j,k,q,ñ,ξ,~l)|δq+1,ñλq,ñΓ2j+5
q+1

(
Γ−1
q+1λq+1rq+1,ñ

)NM(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
(7.31)

holds for all N,M ≤ b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c. It is precisely at this point that we have used that
the differential operator ξθ(A(i,k))

α
θ ∂α costs only λq,ñΓq+1. For the L∞ bound on the same term, we argue

similarly except we apply estimate (7.9) to obtain∥∥∥∥∥DNDM
t,q

(
ξθ
(
A(i,k)

)α
θ
∂αa

2
(ξ)

(
A(i,k)

)•
γ
ξγ
)∥∥∥∥∥

L∞

. ΓCu
q Γ

14Υ(ñ)+8
q+1 λq,ñ

(
Γ−1
q+1λq+1rq+1,ñ

)NM(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.32)

For the second term from (7.29), we can appeal to (5.19g) and use that λ̃q ≤ λq,ñ for all ñ to deduce that
for N,M ≤ b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c, we have∥∥∥DNDM

t,q∂α
(
A(i,k)

)•
γ

∥∥∥
L∞(suppψi,qχ̃i,k,q)

. λN+1
q,ñ M

(
M,Nind,t, τ

−1
q Γi−c0+1

q+1 , τ̃−1
q Γ−1

q+1

)
.

Combining this with Lemma 7.1, estimate (7.8) in the case p = 1 and (7.9) in the case p = ∞ produces
identical bounds as for the first term and in the range N,M ≤ b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c. Adding
both estimates together shows that (A.4) has been satisfied for both p = 1,∞.

We set the flow in Proposition A.2 as Φ = Φi,k, which by definition satisfies Dt,qΦi,k = 0. Appealing to
(5.19b) and (5.19e), we have that (A.5) is satisfied. From (2.19) at level q, which follows from Proposition 5.6,
the choice of ν from earlier, and (8.30), we have that Dv = Dv`q satisfies the bound (A.6).

Proof of items (1) and (2) for 0 ≤ ñ ≤ nmax and n = nmax + 1. We first assume that ñ < nmax.
With the goal of verifying (i)–(iii) of Proposition A.2, we choose ζ, µ,Λ, ρ and % as

ζ = λq,nmax
, µ = λq+1rq+1,ñ , Λ = λq+1 ,

% = P[q,nmax+1]

((
%ξ,λq+1,rq+1,ñ

)2)
, ϑ = λ2d

q,nmax
∆−dP[q,nmax+1]

(
%2
ξ,λq+1,rq+1,ñ

)
, (7.33)

where we recall that %ξ,λq+1,rq+1,ñ
is defined in Propositions 3.2 and 3.3. We then have by definition that

(i) from Proposition A.2 is satisfied. By property (1) of Proposition 3.2, we have that the functions % and

ϑ defined in (7.33) are both periodic to scale (λq+1rq+1,ñ)
−1

, and so (ii) is satisfied. In the case p = 1, the
estimates in (A.7) follow with C∗,1 = 1 from standard Littlewood-Paley arguments (see also the discussion in
part (b) of [5, Remark (A.21)]) and item (5) from Proposition 3.3. In the case p =∞, the estimates follow
from Lemma 3.5, (3.11b) with the choices C∗,∞ = r−2

q+1,ñ, λ1 = λq,nmax
, λ2 = ∞, λ = λq+1, r = rq+1,ñ. We

recall from (8.36) the choice of α = εΓ
b−1
b , so that the loss λαq+1 gives exactly a loss of Γq+1. From (8.20),

(8.24), and the temporary assumption that ñ < nmax, we have that

λ̃q � λq+1rq+1,ñΓ−1
q+1 � λq+1rq+1,ñ ≤ λq,nmax

≤ λq+1,

and so (A.8) is satisfied. From (8.37) we have that

λ4
q+1 ≤

(
λq+1rq+1,ñ

2π
√

3Γ−1
q+1λq+1rq+1,ñ

)Ndec

=

(
Γq+1

2π
√

3

)Ndec

,

and so (A.9) is satisfied. Applying the estimate (A.11) for p = 1 with α as in (8.36), recalling the value

for CG,1 in (7.30), summing over i and using (2.11) at level q, summing over j, k, ξ, summing over ~l and
using (5.43) with r1 = ∞ and r2 = 2, and appealing to (8.38) and (8.40), we obtain that for N,M ≤
b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c − d,∥∥DNDM

t,qOn,ñ
∥∥
L1(suppψi,q)

. λNq+1δq+1,ñλq,ñΓ8
q+1λ

−1
q,nmax

M
(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. Γ−CR−1

q+1 δq+2λ
N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.34)

Applying the same steps but in the case p =∞ and using the parameter inequality (8.45) yields the bound∥∥DNDM
t,qOn,ñ

∥∥
L∞(suppψi,q)

. ΓCu
q Γ

14Υ(ñ)+9
q+1 λq,ñr

−2
q+1,ñλ

−1
q,nmax

λNq+1M
(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. ΓCu−2

q+1 λ
N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.35)
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in the same range of N,M . The proof is complete after using (8.58c), which gives that the range of derivatives
allowed in (7.34) and (7.35) is as much as is needed in (7.27a).

Following the parameter choices in [5, Remark A.19], we set N◦ = M◦ = 3Nind,v, and N ] = Nfin,ñ −
Ncut,t −Ncut,x − 5. From (8.58d), we have that the condition N◦ ≤ N]/4 is satisfied. The inequalities (A.13)
and (A.14) follow from the discussion in [5, Remark A.19]. The inequality in (A.15) follows from the choices
λ = λq+1rq+1,ñΓ−1

q+1, ζ = λq,nmax
≥ λq+1rq+1,ñΓ−1

q+1, (8.32), and (8.50). Having satisfied these assumptions,

we may now appeal to estimate (A.17) for p = ∞ and sum over all parameters (i, j, k, ξ,~l). Since ~l takes
at most λ3

q+1 values, i, and j are bounded independently of q, and k corresponds to a partition of unity in
time, we obtain (7.26) for the case ñ < nmax and n = nmax + 1.

Recall that we began this case with the temporary assumption that ñ < nmax. In the case ñ = nmax,
we have from (8.24) that λq+1rq+1,nmax > λq,nmax . Then we can set ζ = µ = λq+1rq+1,nmax and substitute
P≥λq+1rq+1,ñ

for P[q,nmax]. The only change is that (7.34) and (7.35) become stronger, since λq,nmax <
λq+1rq+1,nmax

, and so the desired estimates follow by arguing as before. We omit further details.
Proof of item (3) and of item (1) when 0 ≤ ñ < nmax and r(ñ) < n ≤ nmax. We set

ζ =

{
max {λq+1rq+1,ñ, λq,n−1} if 2 ≤ n ≤ nmax

λ
1/2
q+1λ

1/2
q Γq+1 if n = 1 ,

µ = λq+1rq+1,ñ , Λ = λq,n , (7.36)

and

% = P[q,n]

((
%ξ,λq+1,rq+1,ñ

)2)
, ϑ = ζ2d∆−dP[q,n]

(
%2
ξ,λq+1,rq+1,ñ

)
.

We then have by definition that (i) from Proposition A.2 is satisfied. By property (1) of Proposition 3.2, %

and ϑ are both periodic to scale (λq+1rq+1,ñ)
−1

, and so (ii) is satisfied. The estimates in (A.7) follow with
C∗,1 = 1 in the case p = 1 as before. In the case p = ∞, we appeal to Lemma 3.5, (3.11b) with λ1 = ζ,

λ2 = λq,n = Λ < λq+1, and r = rq+1,ñ to deduce that (A.7) holds with C∗,∞ =
(

λq,n
λq+1rq+1,ñ

)2

. We again set

α as in (8.36). From (8.24) and the condition that r(ñ) < n, we have that if n 6= 1, then

λ̃q ≤ λq+1rq+1,ñΓ−1
q+1 � λq+1rq+1,ñ ≤ max {λq+1rq+1,ñ, λq,n−1} ≤ λq,n ,

and so (A.8) is satisfied if n 6= 1. If n = 1, then it must be the case that ñ = 0, and so

λ̃q ≤ λq+1rq+1,0Γ−1
q+1 � λq+1rq+1,0 ≤ λq,1 .

From (8.37), the inequality λq,n ≤ λq+1, and the choices of µ and λ, we have that (A.9) is satisfied.
We now use the definition of CG,p in (7.30) and apply the estimate (A.11). In the case that p = 1 and

n = 1, then we must have ñ = 0, and so for all N,M ≤ b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c − d, we sum over

(i, j, k, ξ,~l) as before and obtain that∥∥DNDM
t,qO0,1

∥∥
L1(suppψi,q)

. Γ−CR
q δq+1λ̃qΓ

9
q+1

(
λ

1/2
q λ

1/2
q+1Γq+1

)−1
λNq,1M

(
M,Nind,t, τ

−1
q Γi−c0+4

q+1 , τ̃−1
q Γ−1

q+1

)
. δq+1,1λ

N
q,1M

(
M,Nind,t, τ

−1
q Γi−c0+4

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.37)

The inequality in the last line follows immediately from the definitions in (8.26). Alternatively, if n > 1,
then ζ−1 ≤ λ−1

q,n−1 from (7.36), and so if N,M ≤ b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c − d,∥∥DNDM
t,qOñ,n

∥∥
L1(suppψi,q)

. δq+1,ñλq,ñΓ8
q+1λ

−1
q,n−1λ

N
q,nM

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. δq+1,nλ

N
q,nM

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.38)

In the last inequality, we have used (8.42). After using (8.59), which gives b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c−
d ≥ Nfin,n for all ñ < n, we have achieved (7.28a).

In the case that p =∞ and n = 1, then we must have that ñ = 0, and so∥∥DNDM
t,qO0,1

∥∥
L∞(suppψi,q)

. ΓCu
q Γ9

q+1λq,0

(
λq,1

λq+1rq+1,0

)2 (
λq+1λqΓ

2
q+1

)−1/2

× λNq,1M
(
M,Nind,t, τ

−1
q Γi−c0+4

q+1 , τ̃−1
q Γ−1

q+1

)
. Γ9

q+1ΓCu
q λ

N
q,1M

(
M,Nind,t, τ

−1
q Γi−c0+4

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.39)
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To achieve the last line, we have appealed to (8.24) and the inequality
λ2
q,1

λ
3/2
q+1λ

1/2
q Γq+1

< 1, which is immediate

from a large choice of nmax. In the case that p =∞ and n ≥ 2, we have that∥∥DNDM
t,qOn,ñ

∥∥
L∞(suppψi,q)

. ΓCu
q Γ

14Υ(ñ)+9
q+1 λq,ñ

(
λq,n

λq+1rq+1,ñ

)2

λ−1
q,n−1

× λNq,nM
(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. ΓCu

q Γ
14Υ(ñ)+13
q+1

λ2
q,n

λq+1λq,n−1
λNq,nM

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. ΓCu

q Γ
14Υ(n)
q+1 λNq,nM

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.40)

To achieve the second inequality, we have used (8.24). To achieve the third inequality, we have used (8.39)
and (6.7). The estimates above are again valid in the range N,M ≤ b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c − d,
which from (8.59) completes the proof of (7.28b).

Following again the parameter choices in [5, Remark (A.19)], we set N◦ = M◦ = 3Nind,v, and N ] =
Nfin,ñ−Ncut,t−Ncut,x− 5. From (8.58d), we have that the condition N◦ ≤ N]/4 is satisfied. The inequalities
(A.13) and (A.14) follow from the discussion in [5, Remark (A.19)]. The inequality in (A.15) follows from the
choices λ = λq+1rq+1,ñΓ−1

q+1, ζ ≥ λq+1rq+1,ñ, (8.32), and (8.50). We then achieve the concluded estimate in

(A.17), which after summing as before gives (7.26) in the remaining cases 0 ≤ ñ < nmax, r(ñ) < n ≤ nmax. �

7.5. Type 2 oscillation errors. In order to show that the Type 2 errors identified in (7.14) and (7.15)
vanish, we will apply Proposition 3.8 on the support of a specific cutoff function

η = ηi,j,k,q,n,ξ,~l = ψi,qχi,k,qωi,j,q,nζq,i,k,n,ξ,~l

in order to place pipes parallel to ξ on supp η. We first collect several preliminary estimates in the first
subsubsection, mainly with the goal of verifying assumption (3) from Proposition 3.8, before applying Propo-
sition 3.8 in the second.

7.5.1. Preliminary estimates.

Lemma 7.6 (Keeping Track of Overlap). For every tuple (i, j, k, n), define the index set I as

I = I(i, j, k, n) =
{

(i∗, j∗, q, n∗) : n∗ ≤ n, ψi,qωi,j,q,nχi,k,qψi∗,qωi∗,j∗,q,n∗χi∗,k∗,q 6≡ 0
}
.

Then, the cardinality of I is bounded above by CηΓq+1, where Cη depends only on nmax, jmax, and dimensional
constants. In particular, Cη is independent of q.

Proof of Lemma 7.6. The proof proceeds similarly to the proof of [5, Lemma 8.6]. In fact it is somewhat
simpler, since the parameter p (see [5, equation (9.3)]) is no longer part of the scheme, and we are not
considering the checkerboard cutoffs ζq,i,k,n,ξ,~l yet, but will only incorporate them later. We thus give only

an idea of the proof. Once i is fixed, we first note that ψi,q may only overlap with ψi+1,q and ψi−1,q from
(2.11) at level q. The factor of Γq+1 in the upper bound for the cardinality of I comes from the fact that
the timescale of the χi+1,k∗,q’s on the support of ψi+1,q is faster by a factor of Γq+1 than the timescale of
the χi,k,q’s on the support of ψi,q. Considering then values of j and n introduces a dependence on jmax and
nmax which is nevertheless independent of q. �

Lemma 7.7. Let (x, t), (y, t) ∈ suppψi,q be such that ψ2
i,q(x, t) ≥ 1/4 and ψ2

i,q(y, t) ≤ 1/8. Then there exists
a geometric constant C∗ > 1 such that

|x− y| ≥ C∗ (Γqλq)
−1
. (7.41)

For the proof of Lemma 7.7, we refer to [5, Lemma 8.7].

Lemma 7.8. Consider cutoff functions

η := ηi,j,k,q,n,ξ,~l = ψi,qχi,k,qωi,j,q,nζq,i,k,n,ξ,~l,

η∗ := ηi∗,j∗,k∗,q,n∗,ξ∗,~l∗ = ψi∗,qχi∗,k∗,qωi∗,j∗,q,n∗ζq,i∗,k∗,n∗,ξ∗,~l∗ ,
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where (i∗, j∗, k∗, n∗) ∈ I(i, j, k, n), as defined in Lemma 7.6. Let t∗ ∈ suppχi∗,k∗,q be given. Assume
furthermore that ηη∗ 6≡ 0, which implies that ζq,i,k,n,ξ,~l ζq,i∗,k∗,n∗,ξ∗,~l∗ 6≡ 0. Then there exists a convex set

Ω := Ω(η, η∗, t∗) ⊂ T3 with diameter λ−1
q,nΓq+1 such that(

supp ζq,i,k,n,ξ,~l ∩ {t = t∗}
)
⊂ Ω ⊂ suppψi±,q .

Proof of Lemma 7.8. Let (x, t0) ∈ supp (ηη∗). Then there exists i′ ∈ {i−1, i, i+1} such that ψ2
i′,q(x, t0) ≥ 1

2 .

Consider the flow X(x, t) originating from (x, t0). Then for any t such that |t−t0| ≤ τqΓ−i+5+c0
q+1 , we can apply

Lemma 5.8 to deduce that ψ2
i′,q(t,X(x, t)) ≥ 1

4 . By the definition of χi∗,k∗,q, the fact that i∗ ∈ {i−1, i, i+1},
the existence of (x, t0) ∈ supp (χi,k,qχi∗,k∗,q), and the fact that t∗ ∈ suppχi∗,k∗,q, we in particular deduce
that ψ2

i′,q(t
∗, X(x, t∗)) ≥ 1

4 . Now, let y be such that

|X(x, t∗)− y| ≤ λ−1
q,nΓq+1 ≤ λ̃−1

q < C∗(Γqλq)−1

for C∗ given in (7.41), where we have used the definition of λq,n in (8.23). Then from Lemma 7.7, it cannot
be the case that ψ2

i′,q(y, t
∗) ≤ 1

8 , and so

y ∈ suppψi′,q ∩ {t = t∗} ⊂ suppψi±,q ∩ {t = t∗} . (7.42)

Since y is arbitrary, we conclude that the ball of radius Γq+1λ
−1
q,n is contained in suppψi±,q ∩ {t = t∗}. We

let Ω(η, η∗, t∗) to be precisely this ball. Since Dt,qζq,i,k,n,ξ,~l = 0 and (x, t0) ∈ supp ζq,i,k,n,ξ,~l, we have that

X(x, t∗) ∈ supp ζq,i,k,n,ξ,~l ∩ {t = t∗}. Then, recalling that the support of ζq,i,k,n,ξ,~l must obey the diameter

bound in (5.41) on the support of χ̃i,k,q, which contains the support of χi∗,k∗,q by (5.18), we conclude that

supp ζq,i,k,n,ξ,~l ∩ {t = t∗} ⊂ Ω . (7.43)

Combining (7.42) and (7.43) concludes the proof of the lemma. �

Lemma 7.9. As in Lemma 7.8, consider cutoff functions η and η∗ satisfying the conditions from Lemma 7.6
and the assumption ηη∗ 6≡ 0. Let t∗ ∈ suppχi∗,k∗,q be such that Φ∗ := Φ(i∗,k∗) is the identity at time t∗.
Using Lemma 7.8, define Ω := Ω(η, η∗, t∗). Define Ω(t) := Ω(η, η∗, t∗, t) := X∗(Ω, t), where X∗ is the inverse
of Φ∗. Then the following conclusions hold.

(1) For t ∈ suppχi,k,q,

supp η(·, t) ⊂ Ω(t) ⊂ suppψi±,q .

(2) Let W∗ ◦ Φ∗ := Wi∗,j∗,k∗,n∗,~l∗

ξ∗,q+1,n∗ ◦ Φ(i∗,k∗) be the intermittent pipe flow supported on η∗. Then W∗ ◦ Φ∗

satisfies the conclusion of Lemma 3.7 on the set Ω(t) for t ∈ suppχi,k,q.
(3) For I = I(i, j, k, n) defined as in Lemma 7.6, we denote

P :=
⋃
I

supp (ψi∗,qωi∗,j∗,q,n∗)
⋂⋃

~l∗,ξ∗

supp
(
ζq,i∗,k∗,n∗,ξ∗,~l∗W

i∗,j∗,k∗,n∗,~l
ξ∗,q+1,n∗ ◦ Φ(i∗,k∗)

) , (7.44)

which is precisely the union of the supports of all pipes living on cutoff functions indexed by tuples
belonging to I, which are however not restricted to the support of their corresponding time cutoffs
χi∗,k∗,q. Then there exists CP such that for any convex set Ω′ ⊂ T3 with diam(Ω′) ≤ (λq+1rq+1,n)−1

and any t ∈ suppχi,k,q, the set P∩ ({t} × Ω′) consists of at most CPΓq+1 segments of deformed pipes of
length (λq+1rq+1,n)−1.

Remark 7.10. The third item simply asserts that at stage n, there exists a geometric constant CP such
that in any (T/λq+1rq+1,n)3-periodic cell of diameter approximately (λq+1rq+1,n)−1, there exist at most CPΓq+1

segments of deformed pipes of length (λq+1rq+1,n)−1. This will later allow us to apply Proposition 3.8. The
factor of Γq+1 comes from the fact that overlapping time cutoffs χi,k,q and χi+1,k′,q have timescales which

differ by a factor of Γq+1, and that we have not restricted Wi∗,j∗,k∗,n∗,~l∗

ξ∗,q+1,n∗ to the support of its corresponding

time cutoff χi∗,k∗,q. Notice also that since choosing a shift moves a segment of pipe inside a (T/λq+1rq+1,ñ)3-
periodic cell but does not increase the number of such segments, the conclusion in (3) is independent of the
choice of placement. We may thus appeal to it in the next subsection in order to choose a placement.
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Proof of Lemma 7.9. The statement and proof are quite similar to the proof of [5, Lemma 8.9], and we refer
there for the proof of the first two claims. The only difference is contained in the third claim above, since
we have rephrased the way in which we count the number of deformed segments of pipe comprising W∗ ◦Φ∗

which may overlap with supp η. We remind the reader that a single “segment of deformed pipe” consists of
the support of W∗ ◦ Φ∗ restricted to a single (deformed) (T3/λq+1rq+1,n)−1-periodic cell. Then to prove the
third claim, we first fix a tuple (i∗, j∗, k∗, n∗) ∈ I and note that in any convex set Ω′ of diameter at most
(λq+1rq+1,n)−1, the conclusions of Lemma 3.7 and the construction of the checkerboard cutoff functions
implies that there exist at most finitely many ζq,i∗,k∗,n∗,ξ∗,~l∗ such that

ψi∗,qωi∗,j∗,q,n∗χi∗,k∗,qζq,i∗,k∗,n∗,ξ∗,~l∗ 6≡ 0 .

From the construction of W∗ ◦ Φ∗ in Proposition 3.3 and the fact that W∗ ◦ Φ∗ satisfies the conclusions of

Lemma 3.7 on suppχi,k,q, we then have that taking the union over just ~l∗ and ξ∗ in (7.44) allows for the
desired conclusion with a q-independent constant. Then applying Lemma (7.7) and taking the union over
the CηΓq+1 many tuples in I then provides the conclusion with a new constant CP multiplied by Γq+1. �

7.5.2. Applying Proposition 3.8.

Lemma 7.11. The Type 2 oscillation errors identified in (7.14) and (7.15) vanish.

Proof of Lemma 7.11. To show that the errors defined in (7.14) and (7.15) vanish, it suffices to show the
following: for any pairs of cutoff functions η = ηi,j,k,q,ñ,ξ,~l and η∗ = ηi∗,j∗,k∗,q,n∗,ξ∗,~l∗ where (i∗, j∗, n∗, k∗) ∈
I(i, j, k, n), we have that

ηi,j,k,q,ñ,ξ,~l ηi∗,j∗,k∗,q,n∗,ξ∗,~l∗

(
Wi,j,k,ñ,~l
ξ,q+1,ñ ◦ Φ(i,k) ⊗Wi∗,j∗,k∗,n∗,~l∗

ξ∗,q+1,n∗ ◦ Φ(i∗,k∗)

)
≡ 0 . (7.45)

The proof of this claim will proceed by fixing ñ, using the preliminary estimates, and applying Proposition 3.8.
Now, consider all cutoff functions ηi,j,k,q,ñ,ξ,~l utilized at stage ñ. We may choose an ordering of the

tuples (i, j, k, ξ,~l) at level ñ, which automatically provides orderings for the cutoff functions ηi,j,k,q,ñ,ξ,~l and

associated pipe flows Wi,j,k,ñ,~l
ξ,q+1,ñ ◦ Φ(i,k). To lighten the notation, we will abbreviate the newly ordered cutoff

functions as ηz and the associated intermittent pipe flows as (W ◦ Φ)z, where z ∈ N corresponds to the
ordering. We will apply Proposition 3.8 inductively on z ∈ N, according to the chosen ordering, so that
(7.45) holds.

Fix ηz, and fix the associated index set I(z) = I(i, j, k, ñ). Since we are proving (7.45) iteratively, we
only need to consider the elements z′ ∈ I(z) such that n∗ < ñ, and ẑ ∈ I(z) such that n∗ = ñ and ẑ < z,
according to the aforementioned ordering.

We will apply Proposition 3.8 with the following choices. First, we recall that at the time tz at which Φz is
the identity, the cutoff function ηz contains a checkerboard cutoff function ζz which from (5.35) is adapted to
a rectangular prism of dimensions 2πλ−1

q,ñ in the direction of ξz, and CΓΓq+1(λq+1rq+1,ñ)−1 in the directions

perpendicular to ξz. Thus we can bound the dimensions of the support of the anistropic checkerboard cutoff
by 4πλ−1

q,ñ and 2CΓΓq+1(λq+1rq+1,ñ)−1, and we thus set

Ω = supp ζz ∩ {t = tz} , r1 =
λq,ñ

4πλq+1
, r2 = rq+1,ñ , CΩ = 2CΓ.

Recalling item 3 from Lemma 7.9, we choose the support of (W ◦ Φ)z|t=tz to have empty intersection with

P ∩ Ω , P as defined in (7.44) , (7.46)

and so by definition P satisfies item 3 from Proposition 3.8. Thus it remains to check (3.21). From the
definition of rq+1,ñ in (8.24), we have that

C∗C2
ΩCPΓ3

q+1r
2
2 = C∗C2

ΩCPΓ3
q+1r

2
q+1,ñ . C∗C2

ΩCPΓ3
q+1

λq,ñ
λq+1

Γ−4
q+1 < r1 (7.47)

if a is chosen sufficiently large so that Γ−1
q+1 can absorb the constants C∗, C2

Ω, CP and the implicit constant,

all of which are bounded independently of q. Therefore (3.21) is satisfied, and we may apply Proposition 3.8
to choose a placement for Wz which has empty intersection with P at time t = tz. This shows that at time
t = tz, Wz has empty intersection with all previously existing pipes which may be non-zero at any time
t ∈ suppχi,k,q but have been flowed to time t = tz. Finally, sinceDt,q(W◦Φ)z = Dt,q(W◦Φ)z′ = Dt,q(W◦Φ)ẑ,
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and P has been constructed to contain all pipes which are non-zero at any time t ∈ suppχi,k,q, (7.45) is
satisfied for all t ∈ suppχz, concluding the proof. �

7.6. Divergence corrector errors. In this subsection we estimate the stresses arising from the incompre-
sibility correctors, namely

div
(
w

(p)
q+1,ñ ⊗ w

(c)
q+1,ñ + w

(c)
q+1,ñ ⊗ w

(p)
q+1,ñ + w

(c)
q+1,ñ ⊗ w

(c)
q+1,ñ

)
.

Lemma 7.12. For all 0 ≤ ñ ≤ nmax, the divergence corrector errors (H+R∗)divOñ,1,2 and Oñ,1,3 identified
in (7.17) and the first line of (7.24), satisfy the bounds∥∥ψi,qDkDm

t,q

(
Oñ,1,3 + (H+R∗)divOñ,1,2

)∥∥
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q+1M
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i−cñ+4
q+1 τ−1
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)
(7.48a)∥∥DkDm

t,q
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Oñ,1,3 + (H+R∗)divOñ,1,2

)∥∥
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. ΓCu−1
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q+1M
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m,Nind,t,Γ

i−cñ+4
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
(7.48b)

for all k,m ≤ 3Nind,v.

Proof of Lemma 7.12. We first present the estimates for the stress Oñ,1,3 = w
(c)
q+1,ñ ⊗ w

(c)
q+1,ñ, which is also

given explicitly by the last line in (7.17). By the Leibniz rule, the estimate (7.12a) with (r, r1, r2) = (2,∞, 1),
and the fact that suppψi,q ∩ supp η(i′,j′,k′) 6= ∅ if and only if |i′ − i| ≤ 1, it follows that∥∥ψi,qDkDm

t,qOñ,1,3
∥∥
L1 . r

2
q+1,ñδq+1,ñΓ6

q+1λ
k
q+1M
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m,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
.

The bound (7.48a) for Oñ,1,3 now follows from the parameter inequality (8.52). Similarly, from (7.12b) it
follows that∥∥DkDm

t,qOñ,1,3
∥∥
L∞(suppψi,q)

. ΓCu
q Γ

14Υ(ñ)+7
q+1 λkq+1M
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q+1 , τ̃−1
q Γ−1
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)
.

The bound (7.48b) for Oñ,1,3 then follows from the inequality (8.54).

It thus remains to estimate (H+R∗)divOñ,1,2 = (H+R∗)div (w
(p)
q+1,ñ⊗w

(c)
q+1,ñ+w

(c)
q+1,ñ⊗w

(p)
q+1,ñ). Using

the second line of (7.17), we have
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(c)
q+1,ñ + w

(c)
q+1,ñ ⊗ w

(p)
q+1,ñ

)•
=

∑
ξ,i,j,k,~l

∂m
(
a(ξ)%(ξ) ◦ Φ(i,k)ξ

`
(
Am` ε•pr +A•` εmpr

)
∂pa(ξ)∂rΦ

s
(i,k)U

s
ξ,q+1,ñ ◦ Φ(i,k)

)
(7.49)

where εi1i2i3 is the Levi-Civita alternating tensor, we implicitly contract the repeated indices `,m, p, r, s, and
the • refers to the indices of the vectors on either side of the above display. The subtle point is that if the
derivative in ∇a(ξ) is not in a good direction, cf. Lemma 5.18, one seemingly obtains the wrong bound. As
such we use that {ξ, ξ′, ξ′′} is an orthonormal basis associated with the direction vector ξ with ξ × ξ′ = ξ′′,
and so ξnξ` + (ξ′)n(ξ′)` + (ξ′′)n(ξ′′)` = δn`, and decompose

∂pa(ξ) = ∂pΦ
n
(i,k)ξ

nξ`Aj`∂ja(ξ)︸ ︷︷ ︸
=:∂pa

good
(ξ)

+ ∂pΦ
n
(i,k)(ξ

′)n(ξ′)`Aj`∂ja(ξ) + ∂pΦ
n
(i,k)(ξ

′′)n(ξ′′)`Aj`∂ja(ξ)︸ ︷︷ ︸
=:∂pabad

(ξ)

, (7.50)

where we have also set A = A(i,k) = (∇Φ(i,k))
−1. Using this decomposition, we note that from Lemma 7.1,

the derivative of a(ξ) in the “good” term costs a factor of λq,ñΓq+1, whereas the derivatives landing on a(ξ)

in the “bad” terms cost a factor of λq+1rq+1,ñΓ−1
q+1 � λq,ñΓq+1.

In view of (7.8) and (7.9), we leave the part of (7.49) which contains ∇agood
(ξ) in divergence form and

simply move the resulting symmetric stress

(Ogood
ñ,1,2)m• :=

∑
ξ,i,j,k,~l

a(ξ)%(ξ) ◦ Φ(i,k)ξ
`
(
Am` ε•pr +A•` εmpr

)
∂pa

good
(ξ) ∂rΦ

s
(i,k)U

s
ξ,q+1,ñ ◦ Φ(i,k) , (7.51)

in R̊ñq+1, up to removing a trace term which is thrown into the pressure. This good part of Oñ,1,2 obeys

the same L1 and L∞ bounds as Oñ,1,3 above. To see this, we apply the L1 de-correlation estimate

from Lemma A.1, for p = 1, f = a(ξ)ξ
`(Am` ε•pr + A•` εmpr)∂pa

good
(ξ) ∂rΦ

s
(i,k), Φ = Φ(i,k), v = v`q , and
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ϕ = %(ξ)Usξ,q+1,ñ. In light of Proposition 3.3, Corollary 5.10, estimate (7.8), and definition (7.50), we have that

the assumptions of Lemma A.1 hold with the parameter choices Cf = δq+1,ñΓ7
q+1λq,ñ, λ = Γ−1

q+1rq+1,ñλq+1,

ν = Γi−cñ+4
q+1 τ−1

q , ν̃ = τ̃−1
q Γ−1

q+1, Nt = Nind,t, µ = λq+1rq+1,ñ = Γq+1λ, Cϕ = λ−1
q+1, ζ = ζ̃ = λq+1, Nx = 0,

and N◦ = Nfin,ñ − Ncut,t − Ncut,x − 5. By (8.58a) we have that N◦ ≥ 2Ndec + 4, and by (8.37) we have that

λ4
q+1 ≤ (Γq+1(2π

√
3)−1)Ndec , and so condition (A.2) is verified. Thus, from (A.3) we deduce the L1 estimate∥∥ψi,qDkDm
t,qO

good
ñ,1,2

∥∥
L1 . δq+1,ñΓ7

q+1λq,ñλ
−1
q+1λ

k
q+1M

(
m,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
.

The bound (7.48a) for Ogood
ñ,1,2 now follows from the parameter inequality (8.53), and the fact that Nfin,ñ −

Ncut,t − Ncut,x − 5 ≥ max{2Nind,t + 4 + 3Nind,v, 6Nind,v}, which is a consequence of (8.58a) and (8.58c).
Similarly, from Proposition 3.3, Corollary 5.10, estimate (7.9), and definition (7.50), we have the L∞ estimate∥∥DkDm

t,qO
good
ñ,1,2

∥∥
L∞(suppψi,q)

. r−2
q+1,ñΓCu

q Γ
14Υ(ñ)+8
q+1 λq,ñλ

−1
q+1λ

k
q+1M

(
m,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
.

The bound (7.48b) for Ogood
ñ,1,2 then follows from the parameter inequality (8.47).

Returning to (7.49), it remains to consider the bad part, coming from the second term in (7.50), namely∑
ξ,i,j,k,~l

∂m

(
a(ξ)%(ξ) ◦ Φ(i,k)ξ

`
(
Am` ε•pr +A•` εmpr

)
∂pa

bad
(ξ) ∂rΦ

s
(i,k)U

s
ξ,q+1,ñ ◦ Φ(i,k)

)
= V•1 + V•2 (7.52)

where V1 corresponds to the term containing Am` ε•pr, and V2 corresponds to the term containing A•` εmpr.
When we distribute the ∂m derivative in (7.52), we need to be careful that the derivative does not land on
the fast (at frequency λq+1) object %(ξ)Usξ,q+1,ñ.

Let us first handle V1. For this purpose, note that

ξ`Am` ∂m
(
(%(ξ)Usξ,q+1,ñ) ◦ Φ(i,k)

)
= ξ`Am` ∂mΦr(i,k)

(
∂r(%(ξ)Usξ,q+1,ñ)

)
◦ Φ(i,k)

=
(
ξ`∂`(%(ξ)Usξ,q+1,ñ)

)
◦ Φ(i,k)

= 0

because ξ · ∇ annihilates both %(ξ) and Uξ,q+1,ñ, from (3.4). Thus, by (7.52), the term V•1 becomes

V•1 =
∑

ξ,i,j,k,~l

∂m
(
a(ξ)ξ

`Am` ε•pr∂pa
bad
(ξ) ∂rΦ

s
(i,k)

) (
%(ξ)Usξ,q+1,ñ

)
◦ Φ(i,k) (7.53)

Notice that by the Piola identity, we have ∂m(a(ξ)ξ
`Am` ε•pr∂pa

bad
(ξ) ∂rΦ

s
(i,k)) = ξ`Am` ∂m(a(ξ)ε•pr∂pa

bad
(ξ) ∂rΦ

s
(i,k)),

and so the slow objects contain a derivative that costs the good factor of λq,ñΓq+1, and a derivative that
costs the bad factor of λq+1rq+1,ñ. We then apply the inverse divergence operator H + R∗ from Propo-
sition A.2, with the following choices: p = 1, G = ξ`Am` ∂m(a(ξ)ε•pr∂pa

bad
(ξ) ∂rΦ

s
(i,k)), % = %(ξ)Usξ,q+1,ñ,

Φ = Φ(i,k), v = v`q , and N∗ = M∗ = b 1
2 (Nfin,ñ−Ncut,t−Ncut,x−5)c. By (2.19), Corollary 5.10, and estimate

(7.8), assumption (A.4) holds for CG = δq+1,ñΓ7
q+1(Γ−1

q+1λq+1rq+1,ñ)λq,ñ, λ = λq+1rq+1,ñΓ−1
q+1, Nt = Nind,t,

ν = τ−1
q Γi−cñ+4

q+1 , and ν̃ = τ̃−1
q Γ−1

q+1, while assumptions (A.5)–(A.6) hold with λ′ = λ̃q. From Proposition 3.3

and standard Littlewood-Paley analysis, upon letting ζ = µ = λq+1rq+1,ñ, ϑ = (ζ−2∆)−d(%(ξ)Usξ,q+1,ñ),

Λ = λq+1, C∗ = λ−1
q+1, and α as in (8.36), we have that condition (A.7) is satisfied. With these chosen param-

eters, the condition (A.8) trivially holds, while condition (A.9) is equivalent to λ4
q+1 ≤ (Γq+1(2π

√
3)−1)Ndec ,

which in this case holds due to (8.37). Conditions (A.13)–(A.14) are verified for N◦ = M◦ = 3Nind,v and

Cv = Γimax+1
q+1 δ

1/2
q λ2

q ≤ ΓCu
q+1Θ

1/2
q λ2

q, in view of (2.1), (2.13), and (2.20), and (8.20)–(8.21). Lastly, the inequal-

ity (A.15) holds because d is taken to be sufficiently large to ensure (8.51). From (A.11) and (A.17) we
deduce the L1 bound∥∥ψi,qDkDm

t,q(H+R∗)V1

∥∥
L1

. δq+1,ñΓ8
q+1

(Γ−1
q+1λq+1rq+1,ñ)λq,ñ

(λq+1rq+1,ñ)λq+1
λkq+1M

(
m,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.54)

Since δq+1,ñΓ7
q+1λq,ñλ

−1
q+1 ≤ Γ−CR−1

q+1 δq+2 – see (8.53), and b 1
2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c − d ≥ 3Nind,v –

see (8.58c), the above bound is consistent with (7.48a).
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The L∞ estimate is obtained similarly. We again apply Proposition A.2 with the only parameters that

change being: p =∞, CG = ΓCu
q Γ

14Υ(ñ)+8
q+1 λq,ñ(Γ−1

q+1λq+1rq+1,ñ) – see (A.14), and C∗ = r−2
q+1,ñλ

−1
q+1 – see (3.5)

and (3.6). From (A.11) and (A.17) we obtain∥∥DkDm
t,q(H+R∗)V1

∥∥
L∞(suppψi,q)

. ΓCu
q Γ

14Υ(ñ)+9
q+1

(Γ−1
q+1λq+1rq+1,ñ)λq,ñr

−2
q+1,ñ

(λq+1rq+1,ñ)λq+1
λkq+1M

(
m,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
, (7.55)

Since ΓCu
q Γ

14Υ(ñ)+8
q+1 λq,ñr

−2
q+1,ñλ

−1
q+1 ≤ ΓCu−1

q+1 , see (8.47), the above bound is consistent with (7.48b).

It remains to consider the term V2 in (7.52). We distribute the ∂m derivative on either the slow or the
fast objects and decompose

V•2 =
∑

ξ,i,j,k,~l

∂m

(
a(ξ)%(ξ) ◦ Φ(i,k)ξ

`A•` εmpr∂pa
bad
(ξ) ∂rΦ

s
(i,k)U

s
ξ,q+1,ñ ◦ Φ(i,k)

)
=

∑
ξ,i,j,k,~l

(
∂m
(
ξ`A•` εmpr∂rΦ

s
(i,k)

)
a(ξ)∂pa

bad
(ξ) + ∂ma

good
(ξ) ξ`A•` εmpr∂pa

bad
(ξ) ∂rΦ

s
(i,k)

− a(ξ)ξ
`A•` εmpr∂m(∂pa

good
(ξ) )∂rΦ

s
(i,k)

) (
%(ξ)Usξ,q+1,ñ

)
◦ Φ(i,k)

+
∑

ξ,i,j,k,~l

a(ξ)ξ
`A•` εmpr∂pa

bad
(ξ) ∂rΦ

s
(i,k)∂m

(
(%(ξ)Usξ,q+1,ñ) ◦ Φ(i,k)

)
. (7.56)

In the second equality above we have used the identities εmpr∂m(∂pa
bad
(ξ) ) = −εmpr∂m(∂pa

good
(ξ) ), and that

εmpr∂ma
bad
(ξ) ∂pa

bad
(ξ) = 0. We first consider the terms in which the ∂m has not landed on functions related to

pipe densities. Similarly to the definition of V1 in (7.53), the slow functions in each term contain a derivative
that costs the good factor of λq,ñΓq+1, and a derivative that costs the bad factor of λq+1rq+1,ñ. As such,
when applying H + R∗ to the last line of (7.56), the resulting stress obeys exactly the same estimates as
(7.54) and (7.55).

Finally, we are left to consider the term on the last line of (7.56), in which the ∂m derivative lands on
the fast objects, at frequency λq+1. The key observation is that this term is in fact equal to 0! To see
this cancellation, we recall the identification of ∂pa

bad
(ξ) in (7.50), and we recall from (3.3) that Uξ,q+1,ñ =

−ξ′ϕ′′ξ,λq+1,rq+1,ñ
+ ξ′′ϕ′ξ,λq+1,rq+1,ñ

. With these identities, we have

a(ξ)ξ
`A•` εmpr∂pa

bad
(ξ) ∂rΦ

s
(i,k)∂m

(
(%(ξ)Usξ,q+1,ñ) ◦ Φ(i,k)

)
= a(ξ)ξ

`A•` εmpr∂pa
bad
(ξ) ∂rΦ

s
(i,k)∂mΦn∂n(%(ξ)Usξ,q+1,ñ) ◦ Φ(i,k) .

Note that from (7.50), that ∂pa
bad
(ξ) contains either a factor of ∂pΦ

k
(i,k)ξ

′
k or a factor of ∂pΦ

k
(i,k)ξ

′′
k . From (3.4),

we also have that

∂rΦ
s
(i,k)∂mΦn∂n(%(ξ)Usξ,q+1,ñ) = −∂rΦs(i,k)ξ

′
s∂mΦnξ′n

(
(ξ′ · ∇)

(
%(ξ)ϕ

′′
ξ,λq+1,rq+1,ñ

))
◦ Φ(i,k)

+ ∂rΦ
s
(i,k)ξ

′′
s ∂mΦnξ′n

(
(ξ′ · ∇)

(
%(ξ)ϕ

′
ξ,λq+1,rq+1,ñ

))
◦ Φ(i,k)

− ∂rΦs(i,k)ξ
′
s∂mΦnξ′′n

(
(ξ′′ · ∇)

(
%(ξ)ϕ

′′
ξ,λq+1,rq+1,ñ

))
◦ Φ(i,k)

+ ∂rΦ
s
(i,k)ξ

′′
s ∂mΦnξ′′n

(
(ξ′ · ∇)

(
%(ξ)ϕ

′′
ξ,λq+1,rq+1,ñ

))
◦ Φ(i,k) .

Thus, the expression εmpr∂pa
bad
(ξ) ∂rΦ

s
(i,k)∂mΦn∂n(%(ξ)Usξ,q+1,ñ) ◦Φ(i,k) equals the sum of eight terms, each of

which is of the type

εmpr∂pΦ
k
(i,k)ξ

(1)
k ∂rΦ

s
(i,k)ξ

(2)
s ∂mΦnξ(3)

n × (product of fast pipe densities or fast cutoffs) ◦ Φ(i,k)

where (ξ(1), ξ(2), ξ(3)) ∈ {ξ′, ξ′′}3. Since in each of these eight terms, at least two of the vectors in the tuple
(ξ(1), ξ(2), ξ(3)) are equal to each other, either to ξ′ or ξ′′, by the skew symmetry of the Levi-Civita symbol,
we must have

εmpr∂pΦ
k
(i,k)ξ

(1)
k ∂rΦ

s
(i,k)ξ

(2)
s ∂mΦnξ(3)

n = 0 .
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This proves that the last term on the right side of (7.56) is indeed equal to 0, concluding the proof. �

7.7. Transport errors.

Lemma 7.13. For all 0 ≤ ñ ≤ nmax, the transport error satisfies the following estimates for N,M ≤ 3Nind,v:

∥∥ψi,qDNDM
t,q ((H+R∗) (Dt,qwq+1,ñ))

∥∥
L1 . δq+2Γ−CR−1

q+1 λNq+1M
(
M,Nind,t, τ

−1
q Γi−cñ+5

q+1 ,Γ−1
q+1τ̃

−1
q

)
(7.57a)∥∥DkDm

t,q ((H+R∗) (Dt,qwq+1,ñ))
∥∥
L∞(suppψi,q)

. ΓCu−1
q+1 λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+5

q+1 ,Γ−1
q+1τ̃

−1
q

)
. (7.57b)

Proof of Lemma 7.13. Recall from the first line of (7.24) that the transport error is given by H+R∗ applied
to Dt,qwq+1,ñ, which we further expand as

Dt,qwq+1,ñ = Dt,q

( ∑
i,j,k,~l,ξ

curl
(
aξ,i,j,k,q,ñ,~l∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

))
=

∑
i,j,k,~l,ξ

Dt,q

(
a(ξ)∇Φ−1

(i,k)

)
Wξ,q+1,ñ ◦ Φ(i,k) +

∑
i,j,k,~l,ξ

(
Dt,q∇a(ξ)

)
×
(
∇Φ(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
+

∑
i,j,k,~l,ξ

∇a(ξ) ×
((
Dt,q∇Φ(i,k)

)
Uξ,q+1,ñ ◦ Φ(i,k)

)
(7.58)

Since the second two terms contain the corrector defined in (7.6), and the bounds for the corrector in (7.12a)
are stronger than that of the principal part of the perturbation, we shall completely estimate only the first
term and simply indicate the set-up for the second and third. Before applying Proposition A.2, recall that
the inverse divergence of (7.58) needs to be estimated on the support of a cutoff ψi,q in order to verify (7.57a)
and (7.57b). Recall that for all ñ, Dt,qwq+1,ñ has zero mean. Thus, although each individual term in the
final equality in (7.58) may not have zero mean, we can safely apply H and R∗ to each term and estimate
the outputs while ignoring the last term in (A.16).

We will apply Proposition A.2 to the first term with the following choices. Let p ∈ {1,∞}. We set v = v`q ,
and Dt = Dt,q = ∂t + v`q · ∇ as usual. We set N∗ = M∗ = b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c, with Ndec and
d satisfying (8.58a). We define

G = Dt,q(a(ξ)∇Φ−1
(i,k))ξ ,

with λ = Γ−1
q+1λq+1rq+1,ñ, ν = τ−1

q Γi−cñ+5
q+1 , Mt = Nind,t, ν̃ = τ̃−1

q Γ−1
q+1. In order to obtain the value of the

amplitude constant CG, which now depends on p, when p = 1 we use (7.8) with r = 1 and (5.19g), while
when p =∞ we use (7.9) and (5.19g), obtaining

CG,1 = |supp (ηi,j,k,q,ñ,ξ,~l)|δ
1/2
q+1,ñΓj+2

q+1τ
−1
q Γi−cñ+3

q+1 , (7.59a)

CG,∞ = Γ
Cu
2
q Γ

7Υ(ñ)+ 7
2

q+1 τ−1
q Γimax−cñ+4

q+1

≤ Γ
Cu
2
q Γ

Cu+7Υ(ñ)+9−cñ
q+1 τ−1

q Θ
1/2
q δ−

1/2
q ≤ Γ

Cu
2
q Γ

Cu+7Υ(nmax)+20+c0−cñ
q+1 Θ

1/2
q λq . (7.59b)

Note that we have used (8.33), (5.9), and (8.22) to simplify the above expressions. We have that

‖DNDM
t,qG‖Lp . CG,p

(
λq+1rq+1,ñΓ−1

q+1

)NM(
M,Nind,t − 1, τ−1

q Γi−cñ+4
q+1 , τ̃−1

q Γ−1
q+1

)
. CG,p

(
λq+1rq+1,ñΓ−1

q+1

)NM(
M,Nind,t, τ

−1
q Γi−cñ+5

q+1 , τ̃−1
q Γ−1

q+1

)
, (7.60)

for all N,M ≤ b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c after using (8.35), and so (A.4) is satisfied. We set Φ = Φi,k
and λ′ = λ̃q. Appealing as usual to Corollary 5.10 and (2.19) with q′ = q, which is valid from Proposition 5.6,
we have that (A.5) and (A.6) are satisfied.

Referring to (1) from Proposition 3.3, we set % = %ξ,λq+1,rq+1,ñ
and ϑ = ϑξ,λq+1,rq+1,ñ

. Setting ζ = λq+1,
we have that (i) is satisfied. Setting µ = λq+1rq+1,ñ and referring to (2) from Proposition 3.3, we have that

(ii) is satisfied. Setting Λ = ζ = λq+1, C∗,p = r
2
p−1

q+1,ñ, α as in (8.36), and referring to (3.5) and (3.6) from

Proposition 3.3, we have that (A.7) is satisfied. (A.8) is immediate from the definitions. Referring to (8.37),
we have that (A.9) is satisfied.
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After summing on (i, j, k, ñ, ξ,~l), using (2.11) at level q, and (5.43) with r1 = r2 = 2, we conclude from
(A.11) that for p = 1 and N,M ≤ b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)c − d,∥∥DNDM

t,q (H (Dt,qwq+1,ñ))
∥∥
L1(suppψi,q)

. δ
1/2
q+1,ñΓCb+9−cñ

q+1 τ−1
q rq+1,ñλ

−1
q+1λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+5

q+1 , τ̃−1
q Γ−1

q+1

)
. Γ−CR−1

q+1 δq+2λ
N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+5

q+1 , τ̃−1
q Γ−1

q+1

)
(7.61)

after also using (8.55) and (8.33). From (8.58c), these bounds are valid for all N,M ≤ 3Nind,v. Similarly,
for p =∞, we have∥∥DNDM

t,q (H (Dt,qwq+1,ñ))
∥∥
L∞(suppψi,q)

. Γ
Cu
2
q Γ

Cu+7Υ(nmax)+21+c0−cñ
q+1 Θ

1/2
q λqr

−1
q+1,ñλ

−1
q+1λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+5

q+1 , τ̃−1
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q+1

)
. ΓCu−1

q+1 λ
N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+5

q+1 , τ̃−1
q Γ−1

q+1

)
(7.62)

after also using (8.27) and (8.56).
To conclude the proof, we must still estimate the nonlocal (R∗) portion of the inverse divergence, and

the error terms coming from the divergence correctors. These error terms, however, obey stronger estimates
than the bounds in (7.61) and (7.62), and so we refer to the proof of [5, Lemma 8.12] for further details. �

7.8. Nash errors.

Lemma 7.14. For all 0 ≤ ñ ≤ nmax, the Nash errors satisfy the following estimates for N,M ≤ 3Nind,v:∥∥ψi,qDNDM
t,q

(
(H+R∗)

(
wq+1,ñ · ∇v`q

))∥∥
L1 . δq+2Γ−CR−1

q+1 λNq+1M
(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 ,Γ−1
q+1τ̃

−1
q

)
(7.63a)∥∥DkDm

t,q

(
(H+R∗) (wq+1,ñ · ∇v`q )

)∥∥
L∞(suppψi,q)

. ΓCu−1
q+1 λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 ,Γ−1
q+1τ̃

−1
q

)
.

(7.63b)

Proof of Lemma 7.14. Recall from the first line of (7.24) that the Nash error is given by H+R∗ applied to
wq+1,ñ · ∇v`q , which we further expand as

wq+1,ñ · ∇v`q =
∑

i,j,k,~l,ξ

curl
(
aξ,i,j,k,q,ñ,~l∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
· ∇v`q

=

( ∑
i,j,k,~l,ξ

∇a(ξ) ×
(

ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
+

∑
i,j,k,~l,ξ

a(ξ)∇Φ−1
(i,k)Wξ,q+1,ñ ◦ Φ(i,k)

)
· ∇v`q .

(7.64)

Due to the fact that the first term arises from the addition of the corrector defined in (7.6), and the fact
that the bounds for the corrector in (7.12a) are stronger than that of the principal part of the perturbation,
we shall only consider the second term. Note that the Nash error can be written as div (wq+1,ñ⊗ v`q ) and so
has zero mean. Thus, although each individual term in the final equality in (7.64) may not have zero mean,
we can safely apply H and R∗ to each term and estimate the outputs while ignoring the last term in (A.16).

We will apply Proposition A.2 to the second term with the following choices. We set v = v`q , and
Dt = Dt,q = ∂t + v`q · ∇ as usual. We set N∗ = M∗ = b1/2 (Nfin,ñ − Ncut,x − Ncut,t − 4)c, with Ndec and d
satisfying (8.58a). We define

G = a(ξ)∇Φ−1
(i′,k)ξ · ∇v`q

and set CG,1, CG,∞ to be equal to the quantities in (7.59), λ = Γ−1
q+1λq+1rq+1,ñ, ν = τ−1

q Γi−cñ+4
q+1 , Mt = Nind,t,

and ν̃ = τ̃−1
q Γ−1

q+1. Note that these choices match exactly the choices from the estimates on the transport

error. From (7.8) with r = 1 and r1 = r2 = 2, (5.19g), and (2.19) at level q, we have that for N,M ≤
b1/2 (Nfin,ñ − Ncut,x − Ncut,t − 4)c∥∥DNDM

t,qG
∥∥
L1 . CG,p

(
Γ−1
q+1λq+1rq+1,ñ

)NM (
M,Nind,t, τ

−1
q Γi+1

q+1, τ̃
−1
q Γ−1

q+1

)
, (7.65)
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and so (A.4) is satisfied. Note that we have used (8.30) when converting the δ
1/2
q λ̃q coming from (2.19) at level

q to a τ−1
q . Setting Φ = Φ(i,k) and λ′ = λ̃q, we have that (A.5) and (A.6) are satisfied as usual. The choices

of %, ϑ, ζ, µ, Λ, and C∗ are identical to those of the transport error (both terms contain Wξ,q+1,ñ ◦ Φ(i,k)),
and so we have that (i)-(ii), (A.7), (A.8), and (A.9) are satisfied as well. Since the bound (7.65) is identical
to that of (7.60), we obtain an estimate identical to (7.61) in the case p = 1. The case p = ∞ and the
estimates for the R∗ portion follows analogously to that for the first term from the transport error. We omit
further details. �

8. Parameters

The purpose of the first subsection is to define the q-independent parameters in order, beginning with
the regularity index β, and ending with the number a∗, which will be used to absorb every implicit constant
throughout the paper. Then in Section 8.2, we define the parameters which depend on q, as well as the
parameters which depend in addition on n. Section 8.3 contains, in no particular order, consequences of the
definitions made in the previous two sections which are necessary to close the estimates in the proof.

8.1. Definitions and hierarchy of the parameters. The parameters in our construction are chosen as:

(i) Choose an L2 regularity index β ∈ [1/3, 1/2); in light of [4, 36], there is no reason to take β < 1/3.
(ii) Choose b ∈ (1, 3/2) sufficiently small such that

2βb < 1 . (8.1)

(iii) With β and b chosen, we may now designate a number of parameters:

(a) The parameter nmax, which denotes the total number of higher order stresses R̊q,n, is defined as
the smallest integer such that

2

nmax + 1
<

(b− 1)2

2b
(8.2a)

2βb+
3 + dlog2 nmaxe

2(nmax + 1)
<

1

2
+

nmax

2(nmax + 1)
. (8.2b)

Notice that the second inequality is possible since 2βb < 1.
(b) The parameter Cb appearing in (2.17) to quantify ‖ψi,q‖L1 is defined as

Cb =
b+ 4

b− 1
. (8.3)

(c) The exponent CR is a small parameter used to estimate the Reynolds stress, cf. (2.10a), and then
absorb geometric constants in the construction. It is defined as

CR = 10b+ 1 . (8.4)

(iv) The parameter c0, which is first introduced in (2.16) and utilized in Sections 6 and 7 to control small
losses in the sharp material derivative estimates, is defined in terms of nmax as

c0 = 4nmax + 5 . (8.5)

(v) The parameter εΓ > 0, which is used in (8.19) to quantify the finest frequency scale between λq and
λq+1 utilized throughout the scheme, is defined as any real number such that

εΓ300(nmax + 1)(dlog2 nmaxe) < b− 1 (8.6a)

7εΓ(2 + dlog2 nmaxe+ 22 + 4nmax) <
b− 1

2b
− 3

2(b− 1)(nmax + 1)
(8.6b)

εΓ (5 + (2 + dlog2 nmaxe)(9 + Cb)) <
1

2
− 2 + dlog2 nmaxe

nmax
(8.6c)

εΓ

(
CR

(
b− 1

b

)
+ 15 + 9(3 + dlog2(nmax)e)

)
<

1

2

(
1 +

nmax

nmax + 1

)
− 2βb− 3 + dlog2 nmaxe

2(nmax + 1)
(8.6d)

εΓ

(
1

2
Cb + c0 + 10 +

1

2
CR

)
< 1− 2βb (8.6e)
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εΓ (7 + CR + nmax(8 + Cb)) <
1− 2β

10
(8.6f)

2bεΓ(c0 + 7) < 1− β . (8.6g)

We note that the right-hand side of (8.6b) is positive from (8.2a) and the right-hand sides of (8.6c)
and (8.6d) are positive from (8.2b).

(vi) The parameter Cu is defined as

Cu =
1

εΓ(b− 1)(nmax + 1)
. (8.7)

(vii) The parameter α > 0 from the L1 loss of the inverse divergence operator is now defined as

α =
εΓ(b− 1)

2b
. (8.8)

(viii) The parameters Ncut,t and Ncut,x are used in Section 5 in order to define the velocity and stress cutoff
functions; see (5.3), (5.7), and (5.24). These large integers are chosen solely in terms of b and εΓ as

1

2
Ncut,x = Ncut,t =

⌈
3b

εΓ(b− 1)
+

15b

2

⌉
. (8.9)

(ix) The parameter Nind,t, which is the number of sharp material derivatives propagated on stresses and
velocities in Sections 2 through 7, is chosen as the smallest integer for which we have

Nind,t =

⌈
4

εΓ(b− 1)

⌉
Ncut,t . (8.10)

(x) The parameter Nind,v, whose primary role is to quantify the number of sharp spatial derivatives prop-
agated on the velocity increments and stresses, cf. (2.8a) and (2.10a), is chosen as the smallest integer
for which we have the bound

4bNind,t + 8 + b(CR + 3)εΓ(b− 1) + 2β(b3 − 1) < εΓ(b− 1)Nind,v . (8.11)

(xi) The value of the decoupling parameter Ndec, which is used in the Lp decorrellation conditions (A.2)
and (A.9), is chosen as the smallest integer for which

Ndec >
8b

(b− 1)εΓ
. (8.12)

(xii) The parameter d, which is used in the inverse divergence operator of Proposition A.2 to count the order
of a parametrix expansion, is chosen as the smallest integer for which we have

(d− 1)εΓ(b− 1) > b(6 + 13Nind,v) + 2βb2 + (2 + dlog2 nmaxe)
(

b− 1

2(nmax + 1)
+ εΓ(b− 1)(9 + Cb)

)
. (8.13)

(xiii) The value of Nfin, which is introduced in Section 2 and used to quantify the highest order derivative
estimates utilized throughout the scheme is chosen as the smallest integer such that

3

2
Nfin > (2Ncut,t + Ncut,x + 14Nind,v + 2d + 2Ndec + 12)2nmax+1 . (8.14)

(xiv) Having chosen all the previous parameters in items (i)–(xiii), there exists a sufficiently large parameter
a∗ ≥ 1, which depends on all the parameters listed above (which recursively means that a∗ = a∗(β, b)),
and which allows us to choose a an arbitrary number in the interval [a∗,∞). While we do not give a

formula for a∗ explicitly, it is chosen so that a
(b−1)εΓ
∗ is at least twice larger than all the implicit constants

in the . symbols throughout the paper; note that these constants only depend on the parameters in
items (i)–(xiii) — never on q — which justifies the existence of a∗.

8.2. Definitions of the q-dependent parameters.
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8.2.1. Parameters which depend only on q. For q ≥ 0, we define the fundamental frequency parameter as

λq = 2

⌈
(bq) log2 a

⌉
. (8.15)

Definition (8.15) gives that λq is an integer power of 2, and that we have the bounds

a(bq) ≤ λq ≤ 2a(bq) and
1

3
λbq ≤ λq+1 ≤ 2λbq (8.16)

for all q ≥ 0. Throughout the paper, if there exists a universal constant C > 0 such that C−1A ≤ B ≤ CA,
we say that A ≈ B. In particular, the above reads λq ≈ a(bq) and λq+1 ≈ λbq. It will be convenient to denote
the quotient of two consecutive frequency parameters by

Θq+1 = λq+1λ
−1
q ≈ λb−1

q . (8.17)

The fundamental amplitude parameter is defined in terms of λq by

δq = λ
(b+1)β
1 λ−2β

q . (8.18)

We now introduce a parameter which is defined in terms of the parameter εΓ from (8.6) and used repeatedly
to mean “a tiny power of the frequency parameter”:

Γq+1 = ΘεΓ
q+1 . (8.19)

In order to cap off our derivative losses, we need to mollify in space and time using the operators described
in Section 4. This is done in terms of the following space and time parameters:

λ̃q = λqΓ
5
q+1 (8.20)

τ̃−1
q = τ−1

q λ̃3
qλ̃q+1 . (8.21)

While τ̃q is used for mollification and thus for rough material derivative bounds, the fundamental temporal
parameter used in the paper for sharp material derivative bounds is

τq =
(
δ

1/2
q λ̃qΓ

c0+6
q+1

)−1
. (8.22)

Note that besides depending on the parameters introduced in (i)–(xiv), the parameters introduced above
only depend on q, but are independent of n. We note that the definitions of the parameters listed so far in
this subsection have not been changed from the definitions used in [5].

8.2.2. Parameters which depend on q and n. The rest of the parameters depend on both q and n. We start
by defining the frequency parameter λq,n and the intermittency parameter rq+1,n by

λq,n =

{
2d(1+6(b−1)εΓ) log2 λqe, n = 0

2d(
1
2−

n
2(nmax+1)

) log2 λq+( 1
2 + n

2(nmax+1)
) log2 λq+1e, 1 ≤ n ≤ nmax

, (8.23)

rq+1,n = λ−1
q+12d

1
2 log2 λq,n+ 1

2 log2 λq+1−2 log2 Γq+1e (8.24)

for 0 ≤ n ≤ nmax. In particular, (8.23) shows that λq,n is a power of 2, with λq,0 ≈ λqΓ
6
q+1 and λq,n ≈

λ
1
2−

n
2(nmax+1)

q λ
1
2 + n

2(nmax+1)

q+1 for 1 ≤ n ≤ nmax. Similarly, (8.24) shows that λq+1rq+1,n is an integer power of

2, and we have λq+1rq+1,ñ ≈ λ
1/2
q+1λ

1/2
q,ñΓ−2

q+1. A consequence of these approximations are the inequalities

r−2
q+1,ñ ≤ 2

λq+1

λq
= 2Θq+1 , r2

q+1,ñ ≤ 2Γ−4
q+1

λq,ñ
λq+1

. (8.25)

We recall from (2.7c) that the stresses R̊q,n for 0 ≤ n ≤ nmax will be measured in terms of

δq+1,n =



δq+1Γ−CR
q , n = 0

δq+1,0
λ̃q

λ
1/2
q λ

1/2
q+1

Γ9
q+1, n = 1

δq+1,0
λ̃q

λq,n−1
Γ8
q+1

(
Θ

1
2(nmax+1)

q+1 Γ9
q+1

)Υ(n)

, 2 ≤ n ≤ nmax .

(8.26)

The function Υ(n) is defined in (6.6) to quantify the number of steps required to produce R̊q,n. As each step
accumulates negligible losses, which correspond to the quantity in parentheses above, one may adhere to the
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heuristic that δq+1,n is roughly speaking equal to
δq+1λq
λq,n

. We remark that each of the parameters defined so

far in this subsubsection has a new definition compared to that of [5].
Conversely, the following three parameters remain unchanged when compared to [5]. For 1 ≤ n ≤ nmax,

we define cn in terms of c0 by

cn = c0 − 4n . (8.27)

For n = 0, we set

Nfin,0 =
3

2
Nfin, (8.28)

while for 1 ≤ n ≤ nmax, we define Nfin,n inductively on n by using (8.28) and the formula

Nfin,n =

⌊
1

2
(Nfin,n−1 − Ncut,t − Ncut,x − 6)− d

⌋
. (8.29)

8.3. Inequalities and consequences of the parameter definitions. Due to (8.15) we have that Γq+1 ≥
(1/2)bεΓλ

(b−1)εΓ
q ≥ (1/2)bεΓλ

(b−1)εΓ
0 ≥ (1/2)a

(b−1)εΓ
∗ . As was already mentioned in item (xiv), we have chosen

a∗ to be sufficiently large so that a
(b−1)εΓ
∗ is at least twice larger than all the implicit constants appearing in

all . symbols throughout the paper. Therefore, for any q ≥ 0, we may use a single power of Γq+1 to absorb
any implicit constant in the paper: an inequality of the type A . B may be rewritten as A ≤ Γq+1B.

From the definition (8.22) of τq and (8.27), which gives that cn is decreasing with respect to n, we have
that for all 0 ≤ n ≤ nmax,

Γcn+6
q+1 δ

1/2
q λ̃q ≤ τ−1

q . (8.30)

Using the definitions (8.18), (8.19), (8.20), and (8.22), and writing out everything in terms of λq−1, we have

τ−1
q−1Γ3+c0

q+1 ≤ τ−1
q . (8.31)

From the definition of τ̃q, it is immediate that

τ−1
q λ̃4

q ≤ τ̃−1
q ≤ τ−1

q λ̃3
qλ̃q+1 . (8.32)

From the definitions (8.5) of c0 and (8.27) of cn, we have that for all 0 ≤ n ≤ nmax,

− cn + 4 ≤ −1. (8.33)

Next, we a list a few consequences of the fact that Nind,v � Nind,t, as specified in (8.11). First, we note from
(8.32) that

τ̃−1
q−1τq−1 ≤ λ̃3

q−1λ̃q ≤ λ4
q (8.34)

where in the second inequality we have used that εΓ ≤ 3
20b .

The fact that Nind,t is taken to be much larger than Ncut,t, as expressed in (8.10), implies when combined
with (8.34) the following bound, which is also used in Section 5:(

τq τ̃
−1
q

)Ncut ≤ Γ
Nind,t

q+1 (8.35)

for all q ≥ 1. The parameter α in (8.8) is chosen as such in order to ensure that

λαq+1 ≈ Γq+1. (8.36)

for all q ≥ 0. We note that the previous seven inequalities only involve parameters which have not changed
when compared to [5].

Next, we list a number of parameter inequalities which are not the same as those in [5]. Our choice of

Ndec in (8.12) and the assumption that a is chosen sufficiently large so that Γ
1/2
q+1 > 2π

√
3 yields

λ4
q+1 ≤

(
Γq+1

2π
√

3

)Ndec

⇐=
8b

(b− 1)εΓ
< Ndec . (8.37)
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We need a number of new inequalities to manage the Type 1 oscillation errors. The first of these is

δq+1,ñλq,ñΓ8
q+1 ≤


Γ−CR
q δq+1λ̃qΓ

9
q+1

(
Θ

1
2(nmax+1)

q+1 Γ9
q+1

)ñ)

if ñ = 0, 1

Γ−CR
q δq+1λ̃qΓ

9
q+1

(
Θ

1
2(nmax+1)

q+1 Γ9
q+1

)Υ(ñ)+1

if 2 ≤ ñ ≤ nmax

. (8.38)

If ñ = 0, then the inequality follows from (8.26), (8.20), (8.23), and (6.6). If ñ = 1, the inequality follows
from the aforementioned inequalities and the equality

λq,1

λ
1/2
q λ

1/2
q+1

=
λq,ñ
λq,ñ−1

=
λq+1

λq,nmax

= Θ
1

2(nmax+1)

q+1 , (8.39)

which holds for 2 ≤ ñ ≤ nmax. Finally, if 2 ≤ ñ ≤ nmax, we use the aforementioned inequalities in conjunction
with (8.39). Next, we claim that for all 0 ≤ ñ ≤ nmax,

Γ−CR
q δq+1λ̃qΓ

9
q+1

(
Θ

1
2(nmax+1)

q+1 Γ9
q+1

)Υ(ñ)+1

λ−1
q,nmax

≤ Γ−CR−1
q+1 δq+2 . (8.40)

The above inequality is a consequence of (6.8) and

2βb(b− 1) + (b− 1)εΓ

(
−CR

(
1

b
− 1

)
+ 15 + 9(3 + dlog2(nmax)e)

)
+ (3 + dlog2 nmaxe)

b− 1

2(nmax + 1)

<
b− 1

2
+

nmax

2(nmax + 1)
(b− 1) , (8.41)

which in turn follows from (8.2b) and (8.6d). Finally, we claim that for n such that n > r(ñ), as defined in
(6.5), and n > 2,

δq+1,ñλq,ñΓ9
q+1λ

−1
q,n−1 ≤ δq+1,n . (8.42)

If ñ = 0, 1, the inequality follows from the definitions of λq,0 and λq,1 in (8.23), the definition of the δq+1,n’s
in (8.26), and (6.6), which guarantees that Υ(n) ≥ 1 for n ≥ 2. In the case 2 ≤ ñ ≤ nmax, the inequality
follows from the aforementioned inequalities combined with (8.39) and the fact that for n > r(ñ), (6.7) gives
that Υ(n) ≥ Υ(ñ) + 1.

The amplitudes of the higher order corrections wq+1,n,p must meet the inductive assumptions stated in
(2.9a). Towards this end, we claim that for all 0 ≤ ñ ≤ nmax,

δ
1/2
q+1,ñΓ5

q+1 ≤ δ
1/2
q+1 . (8.43)

Indeed, the case ñ = 0 follows from the definition of CR in (8.4), while the case ñ ≥ 1 is a consequence of
the definition (8.26) and the inequality

εΓ(b− 1) (5 + (2 + dlog2 nmaxe)(9 + Cb)) + (b− 1)
2 + dlog2 nmaxe

nmax
<
b− 1

2
, (8.44)

which in turn is a consequence of (8.2b) and (8.6c).
We will also need that

ΓCu
q Γ

14Υ(ñ)+13
q+1 λq,ñr

−2
q+1,ñλ

−1
q,nmax

≤ ΓCu−2
q+1 . (8.45)

The above inequality is a consequence of (2.7a), (8.39), and

εΓ

(
Cu

b
+ 14 (2 + dlog2 nmaxe) + 20− Cu

)
+

1

2(nmax + 1)
< 0 , (8.46)

which holds due to the choice of Cu in (8.7) and (8.6a). The inequality (8.45) then immediately implies that

ΓCu
q Γ

14Υ(ñ)+13
q+1 λq,ñr

−2
q+1,ñλ

−1
q+1 ≤ ΓCu−2

q+1 . (8.47)

We claim now that Cu satisfies

Γ
Cu
2
q Γ

7Υ(ñ)+7/2
q+1 r−1

q+1,ñ ≤ ΓCu−2
q+1 Θ

1/2
q+1 . (8.48)

We may verify this by using (8.25), the definition of Cu in (8.7), and the inequalities

Cu

2b
+ 7(2 + dlog2 nmaxe) + 4 ≤ Cu − 2 , ⇐= 1− 1

2b
> εΓ(b− 1)(nmax + 1)(7dlog2 nmaxe+ 20) , (8.49)
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the second of which follows from (8.6a).
Next, we claim that due to our choice of d, we have

λ̃qλq+1

(
Θ

1
2(nmax+1)

q+1 Γ9+Cb
q+1

)Υ(ñ)

λq+1

(
Γ−1
q+1λq+1rq+1,ñ

λq+1rq+1,ñ

)d−1 (
λ4
q+1

)3Nind,v ≤ δq+2

λ10
q+1

, (8.50)

and

(δq+1,ñΓCb+5
q+1 rq+1,ñλq,ñλq+1)

(
Γ−1
q+1λq+1rq+1,ñ

λq+1rq+1,ñ

)(d−1) (
λ4
q+1

)3Nind,v ≤ δq+2

λ10
q+1

. (8.51)

The bound (8.50) follows from (8.13) and (8.34), while (8.51) follows from (8.50) and the parameter inequality

δq+1,ñΓCb+5
q+1 rq+1,ñλq,ñλq+1 ≤ λ̃qλ2

q+1 .
For estimating the stresses emerging from the divergence correctors, we shall need the bound

r2
q+1,ñδq+1,ñΓ13

q+1 ≤ Γ−CR−1
q+1 δq+2 , (8.52)

which follows from (8.25), (8.38), and (8.40) and implies that

δq+1,ñΓ9
q+1λq,ñλ

−1
q+1 = r2

q+1,ñΓ13
q+1δq+1,ñ ≤ Γ−CR−1

q+1 δq+2 . (8.53)

We furthermore need that

ΓCu
q Γ

14Υ(ñ)+7
q+1 ≤ ΓCu

q Γ
14Υ(nmax)+7
q+1 ≤ ΓCu−1

q+1 , (8.54)

which in turn follows from Cu ≥ b
b−1 (8 + 14Υ(nmax)), which is a consequence of (8.6a) and (6.8).

In order to estimate the transport and Nash errors in L1 in Sections 7.7 and 7.8, we claim that

ΓCb+4
q+1 δ

1/2
q+1,ñτ

−1
q rq+1,ñλ

−1
q+1 ≤ Γ−CR−1

q+1 δq+2 . (8.55)

In order to verify (8.55), we note that by (8.18), (8.19), (8.22), (8.24), (8.26), the definition of Cb in (8.3),
and the previously established parameter inequalities (8.38) and (8.40), the left side of (8.55) is bounded
from above by

ΓCb+c0+13
q+1 (δq+1,ñλq,ñ)

1/2(δqλq)
1/2λ

1/2
q λ
−3/2
q+1

≤ ΓCb+c0+13
q+1 (Γ−Cb−9−CR

q+1 λq+1δq+2)
1/2(δq+2λq+1λ

2βb−1
q+1 λ1−2β

q )
1/2λ

1/2
q λ
−3/2
q+1

≤ Γ
1
2Cb+c0+10+ 1

2CR

q+1 λ(βb+β−1)(b−1)
q (Γ−CR−1

q+1 δq+2) .

Thus, (8.55) holds since εΓ( 1
2Cb + c0 + 10 + 1

2CR) + 2βb < 1, in view of (8.1) and (8.6e). To estimate the
transport and Nash errors in L∞, we finally need that

Γ
Cu
2
q Γ

Cu+7Υ(nmax)+21+4ñ
q+1 Θ

1/2
q λqr

−1
q+1,ñλ

−1
q+1 ≤ ΓCu−1

q+1 , (8.56)

which follows from the definition of Cu in (8.7), (8.25), and (8.6b).
In Remark 2.7, have have used that

lim
(β,b)→(1/2−,1+)

2βb

(b− 1)(CuεΓ + 1/2)
+ 2→∞ (8.57)

which is a consequence of the choice of Cu in (8.7).
We conclude this section by verifying a few inequalities concerning the parameter Nfin,n, which counts the

number of available space-plus-material derivative for the residual stress R̊q,n. This verification is the same
as in [5, Section 9.3]. For all 0 ≤ n ≤ nmax we require that

Nind,t, 2Ndec + 4 ≤ b1/2 (Nfin,n − Ncut,t − Ncut,x − 5)c − d , (8.58a)

14Nind,v ≤ Nfin,n − Ncut,t − Ncut,x − 2Ndec − 9 , (8.58b)

6Nind,v ≤ b1/2 (Nfin,n − Ncut,t − Ncut,x − 6)c − d , (8.58c)

6Nind,v ≤ b1/4 (Nfin,n − Ncut,t − Ncut,x − 7)c . (8.58d)

for all 0 ≤ n ≤ nmax. Additionally for 0 ≤ ñ < n ≤ nmax, we require that

b1/2 (Nfin,ñ − Ncut,t − Ncut,x − 6)c − d ≥ Nfin,n (8.59)
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holds. The inequality (8.59) is a direct consequence of the recursive formula (8.29) and of the fact that the
sequence Nfin,n is monotone decreasing with respect to n. Using (8.28) and (8.29) one may show that

Nfin,n ≥ 2−nNfin,0 − (2d + Ncut,t + Ncut,x + 8) .

Noting that the bounds (8.58) are most restrictive for n = nmax, they now readily follow from (8.14).

Appendix A. Auxiliary lemmas

A.1. Lp decorrelation. In order to estimate the perturbation in Lp spaces as well as terms appearing in
the Reynolds stress we will need a combination of [5, Lemma A.7] and [5, Remark A.9], which we recall next.

Lemma A.1 (Lp decorrelation with flows). Let p ∈ {1, 2}, and fix integers N◦ ≥ Ndec ≥ 1. Suppose
f : R3 × R→ R and let Φ: R3 × R→ R3 be a vector field advected by an incompressible velocity field v, i.e.
DtΦ = (∂t + v · ∇)Φ = 0. Denote by Φ−1 the inverse of the flow Φ, which is the identity at a time slice
which intersects the support of f . Assume that for some λ, ν, ν̃ ≥ 1 and Cf > 0 the functions f satisfies∥∥DNDM

t f
∥∥
Lp
. CfλNM (M,Nt, ν, ν̃)

for all N +M ≤ N◦, and that Φ, and Φ−1 are bounded as∥∥DN+1Φ
∥∥
L∞(supp f)

+
∥∥DN+1Φ−1

∥∥
L∞(supp f)

. λN

for all N ≤ N◦. Lastly, suppose that ϕ is (T/µ)3-periodic, and that there exist parameters ζ̃ ≥ ζ ≥ µ and
Cϕ > 0 such that ∥∥DNϕ

∥∥
Lp
. CϕM

(
N,Nx, ζ, ζ̃

)
(A.1)

for all 0 ≤ N ≤ N◦. If the parameters

λ ≤ µ ≤ ζ ≤ ζ̃
satisfy

ζ̃4
(
2π
√

3λµ−1
)Ndec ≤ 1 , (A.2)

and we have
2Ndec + 4 ≤ N◦ ,

then the bound ∥∥DNDM
t (f ϕ ◦ Φ)

∥∥
Lp
. CfCϕM

(
N,Nx, ζ, ζ̃

)
M (M,Mt, ν, ν̃) (A.3)

holds for N +M ≤ N◦ and M ≤ N◦ − 2Ndec − 4.

A.2. Inversion of the divergence. Given a vector field Gi, a zero mean periodic function % and an
incompressible flow Φ, our goal in this section is to write Gi(x)%(Φ(x)) as the divergence of a symmetric
tensor. For this purpose, we use [5, Proposition A.18].

Proposition A.2 (Intermittency-friendly inverse divergence). Fix an incompressible vector field v
and denote its material derivative by Dt = ∂t + v · ∇. Fix integers N∗ ≥ M∗ ≥ 1. Also fix Ndec, d ≥ 1 such
that N∗ − d ≥ 2Ndec + 4, and p ∈ {1,∞}.

Let G be a vector field and assume there exists a constant CG > 0 and parameters λ, ν ≥ 1 such that∥∥DNDM
t G

∥∥
Lp
. CGλNM (M,Mt, ν, ν̃) (A.4)

for all N ≤ N∗ and M ≤M∗.
Let Φ be a volume preserving transformation of T3, such that

DtΦ = 0 and ‖∇Φ− Id‖L∞(suppG) ≤ 1/2 .

Denote by Φ−1 the inverse of the flow Φ, which is the identity at a time slice which intersects the support of
G. Assume that the velocity field v and the flow functions Φ and Φ−1 satisfy the following bounds∥∥DN+1Φ

∥∥
L∞(suppG)

+
∥∥DN+1Φ−1

∥∥
L∞(suppG)

. λ′N (A.5)∥∥DNDM
t Dv

∥∥
L∞(suppG)

. νλ′NM (M,Mt, ν, ν̃) , (A.6)

for all N ≤ N∗, M ≤M∗, and some λ′ > 0.
Lastly, let %, ϑ : T3 → R be two zero mean functions with the following properties:
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(i) there exists d ≥ 1 and a parameter ζ ≥ 1 such that %(x) = ζ−2d∆dϑ(x)
(ii) there exists a parameter µ ≥ 1 such that % and ϑ are (T/µ)3-periodic

(iii) there exists parameters Λ ≥ ζ, C∗ ≥ 1, and α ∈ (0, 1], such that∥∥DNϑ
∥∥
Lp
. C∗ΛαM (N, 2d, ζ,Λ) (A.7)

for all 0 ≤ N ≤ Nfin.

If the above parameters satisfy

λ′ ≤ λ� µ ≤ ζ ≤ Λ , (A.8)

where by � in (A.8) we mean that

Λ4
(
2π
√

3λµ−1
)Ndec ≤ 1 , (A.9)

then, we have that

G % ◦ Φ = div (H (G% ◦ Φ)) +∇P + E. (A.10)

where the traceless symmetric stress H(G% ◦ Φ) and the scalar pressure P are supported in suppG, and for
any fixed α ∈ (0, 1) they satisfy∥∥DNDM

t H (G% ◦ Φ)
∥∥
Lp

+
∥∥DNDM

t P
∥∥
Lp
. CGC∗ζ−1ΛαM (N, 1, ζ,Λ)M (M,Mt, ν, ν̃) (A.11)

for all N ≤ N∗ − d and M ≤M∗. The implicit constants depend on N,M,α but not G, %, or Φ. Lastly, for
N ≤ N∗ − d and M ≤M∗ the error term E in (A.10) satisfies∥∥DNDM

t E
∥∥
Lp
. CGC∗λdζ−dΛα+NM (M,Mt, ν, ν̃) . (A.12)

We emphasize that the range of M in (A.11) and (A.12) is exactly the same as the one in (A.4), while the
range of permissible values for N shrank from N∗ to N∗ − d.

Lastly, let N◦,M◦ be integers such that 1 ≤ M◦ ≤ N◦ ≤ M∗/2. Assume that in addition to the bound
(A.6) we have the following global lossy estimates∥∥DN∂Mt v

∥∥
L∞(T3)

. Cvλ̃Nq τ̃−Mq (A.13)

for all M ≤M◦ and N +M ≤ N◦ +M◦, where

Cvλ̃q . τ̃−1
q , and λ′ ≤ λ̃q ≤ Λ ≤ λq+1 . (A.14)

If d is chosen large enough so that

CGC∗Λ
(
λζ−1

)d−1 (
1 + τq max{τ̃−1

q , ν̃, CvΛ}
)M◦ ≤ δq+2λ

−10
q+1 , (A.15)

then we may write

E = div (R∗(G% ◦ Φ)) +

 
T3

G% ◦ Φdx , (A.16)

where R∗(G% ◦ Φ) is a traceless symmetric stress which satisfies∥∥DNDM
t R∗ (G% ◦ Φ)

∥∥
Lp
≤ δq+2λ

N−10
q+1 τ−Mq (A.17)

for N ≤ N◦ and M ≤M◦.

For p = 1, Proposition A.2 is taken as is from [5, Proposition A.17]. For the proof of Proposition A.2 in
the case p =∞, the proof of [5, Proposition A.17] applies mutatis mutandis, after replacing each instance of
an Lp bound for p 6=∞ in the proof with an L∞ bound. In fact, the condition (A.9) involving the parameter
Ndec is technically irrelevant in the case p =∞, since L∞ is an algebra.
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[19] S. Daneri and L. Székelyhidi, Jr. Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equa-

tions. Arch. Rational Mech. Anal., 224(2):471–514, 2017.
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[22] C. De Lellis and L. Székelyhidi, Jr. The h-principle and the equations of fluid dynamics. Bull. Amer. Math. Soc. (N.S.),

49(3):347–375, 2012.
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