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ABSTRACT. In 1980, van Dommelen and Shen provided a numerical simulation that predicts the
spontaneous generation of a singularity in the Prandtl boundary layer equations from a smooth initial
datum, for a nontrivial Euler background. In this paper we provide a proof of this numerical conjec-
ture by rigorously establishing the finite time blowup of the boundary layer thickness.
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1. Introduction

We consider the 2D Prandtl boundary layer equations for the unknown velocity field (u, v) =
(u(t, x, y), v(t, x, y)):

∂tu− ∂yyu+ u∂xu+ v∂yu = −∂xPE (1.1)
∂xu+ ∂yv = 0 (1.2)

u|y=0 = v|y=0 = 0 (1.3)

u|y→∞ = UE . (1.4)

The domain we consider is T × R+ = {(x, y) ∈ T × R : y ≥ 0}, with corresponding periodic
boundary conditions in x for all functions. The function UE = UE(t, x) is the trace at y = 0 of the
tangential component of the underlying Euler velocity field (uE , vE) = (uE(t, x, y), vE(t, x, y)),
and PE = PE(t, x) is the trace at y = 0 of the Euler pressure pE = pE(t, x, y). They obey the
Bernoulli equation

∂tU
E + UE∂xU

E = −∂xPE (1.5)

for x ∈ T and t ≥ 0, with periodic boundary conditions.
The goal of this paper is to prove the formation of finite time singularities in the Prandtl bound-

ary layer equations when the underlying Euler flow is not trivial, i.e., when UE 6= 0. For this
purpose, we consider the Euler trace

UE = κ sinx (1.6)

−∂xPE =
κ2

2
sin(2x) (1.7)

proposed by van Dommelen and Shen in [vDS80], where κ 6= 0 is a fixed parameter. These are
stationary solutions of the Bernoulli equation (1.5). Moreover, the functions UE and PE above
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arise as traces at y = 0 of the stationary 2D Euler solution

uE(x, y) = κ sinx cos y

vE(x, y) = −κ cosx sin y

pE(x, y) = −κ
2

4
(cos 2x+ cos 2y) .

It is clear that the function (uE , vE) described above is divergence free, obeys the boundary condi-
tion v(x, 0) = 0, and yields a stationary solution of the Euler equations in T× R+.

REMARK 1.1 (Numerical blowup is observed). The Lagrangian computation of van Domme-
len and Shen [vDS80] was revisited and improved by many groups in the past decades [Cow83,
CSW96, HH03, GSS09, GSSC14]. The consensus is that all the numerical experiments indi-
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FIG. I. The distortion of a typical Lagrangian grid with time 

do blow up, but in the Lagrangian description those balancing large terms are 
replaced by a single time derivative. Therefore, as will be substantiated by the 
numerical results to be presented, the solution is better behaved in Lagrangian coor- 
dinates than in Eulerian ones. 

The present work extends the earlier work by van Dommelen and Shen ] 131, in 
which the same case as presented here was calculated, but with different initial data, 

u(x, y, 0) =f(y) sin x, (5) 

where f(y) is the Hiemenz velocity profile [ 11, instead of the step function initial 
data of Eq. (3). From [ 131 we borrow Fig. 1, as it gives a beautiful picture of how the 
Lagrangian grid distorts with time and consequently, like a geometrical mapping, 

FIGURE 1. The distortion of a typical Lagrangian grid with time. The figure is
from in [vDS80, p. 127].

cate a singularity formation in finite time from a smooth initial datum. We refer to the recent
paper [CGSS15, Section 4.2] for a detailed discussion of the numerical singularity formation in the
Prandtl system.

The following is the main result of this paper:

THEOREM 1.2 (Finite time blowup for Prandtl). Consider the Cauchy problem for the Prandtl
equations (1.1)–(1.4), with boundary conditions at y =∞ matching (1.6)–(1.7), with κ 6= 0. There
exists a large class of initial conditions (u0, v0) which are real-analytic in x and y, such that the
unique real-analytic solution (u, v) to (1.1)–(1.4) blows up in finite time.
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REMARK 1.3 (Inviscid limit). For a real-analytic initial datum in the Navier-Stokes, Euler, and
Prandtl equations, it was shown in [SC98b] that the inviscid limit of the Navier-Stokes equations
is described to the leading order by the Euler solution outside of a boundary layer of thickness√
νt, and by the Prandtl solution inside the boundary layer (see also [Mae14] for initial vorticity

supported away from the boundary). Indeed, if any series expansion (in ν) of the Navier-Stokes
solution holds, then the leading order term near the boundary must be given by the Prandtl solution.
The result in [SC98b] states that the inviscid limit holds on a time interval on which the Prandtl
solution does not lose real-analyticity. Our result in Theorem 1.2 shows that this time interval
cannot be extended to be arbitrarily large, and thus the Prandtl expansion approach to the inviscid
limit should only be expected to hold on finite time intervals.

REMARK 1.4 (The case κ = 0). In the case of a trivial Euler flow UE and a trivial Euler
pressure PE , i.e., for κ = 0 in (1.6)–(1.7), the emergence of a finite time singularity for the Prandtl
equations was established in [EE97]. There, the initial datum is taken to have compact support in
y and be large in a certain nonlinear sense. It is shown that either the solution ceases to be smooth,
or that the solution along with its derivatives does not decay sufficiently fast as y → ∞. The proof
given in [EE97] does not appear to handle the case κ 6= 0 treated in this paper. Indeed, here the
initial datum does not need to have compact support in y and the pressure gradient is not trivial.
Moreover, it is shown in [GSS09, Appendix] that from the numerical point of view the structure of
the singularity for κ = 0 is different from the complex structure of the singularities in [vDS80].

REMARK 1.5 (Boundary layer separation and the displacement thickness). The displace-
ment thickness (cf. [Sch60, vDS80, CM07]) is defined as

δ∗(t, x) =

∫ ∞
0

(
1− u(t, x, y)

UE(t, x)

)
dy =

∫ ∞
0

(
1− u(t, x, y)

κ sin(x)

)
dy. (1.8)

Physically, it measures the effect of the boundary layer on the inviscid flow [CM07]. As long as
138 VAN DOMMELEN AND SHEN 
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FIG. 11. The variation of the displacement thickness with x, for various instants, 

TABLE II 

Computed Values of Several Variables for Various Gridsizes 

Gridsize 19 x 9 37x 17 73 x 33 145 x 65 

s at min(lgrad xi) for T= 1.5 2.002 1.954 1.943 1.939 

u at min(lgrad.ui) for T= 1.5 -.3 17 -.298 -.276 p.274 

T at separation 1.659 1.553 1.515 1.506 

T for zero wall shear at .Y = R -1’ .3264 .3231 .3220 

F” for x = E and T = 1.5 /I 

i i (-) indicates no value was determined. 

1.130 1.1 125 1.1122 

Indeed all calculations prior to the present one suffer from insufficient resolution in 
the x-direction to adequately resolve for the singularity. The present solution, 
however, has infinite resolution at the singularity because x is stationary.) 

One might be tempted to suppose that the differences between our and Cebeci’s 
solution, Figs. 8 and 9, are due to his insufficient resolution in x-direction. However, 

FIGURE 2. The variation of the displacement thickness δ∗(t, x) for various time
instants. The figure is from [vDS80, p. 138].
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δ∗(t, x) remains bounded, the Prandtl layer remains of thickness proportional to
√
ν, i.e., it remains

a Prandtl layer. In turn, if the displacement thickness develops a singularity in finite time, this
signals that a boundary layer separation has occurred, and after this point, the Prandtl expansion is
not expected to hold anymore (see also[Gre00, GGN14c, GGN14b, GGN14a]). For a proof of a
boundary layer separation for the stationary Prandtl equations, we refer to the recent paper [DM15].

The proof of Theorem 1.2 consists of showing that a Lyapunov functional G(t) blows up in
finite time. The functional G is defined by

G(t) =

∫ ∞
0

(κφ(t, y)− ∂xu(t, 0, y))w(y)dy

where w(y) is an L1 weight function and φ(t, y) is the solution of a nonhomogenous heat equation
(see (2.11) and (2.26) below for details). We note that the Lyapunov functional was built to emulate
a weighted in y version of κδ∗(t, x)|x=0. Indeed, as long as u is smooth near x = 0, we have that

κδ∗(t, 0) = lim
x→0

κδ∗(t, x) =

∫ ∞
0

(κ− ∂xu(t, 0, y)) dy.

REMARK 1.6 (More general Euler flows). The blowup result of Theorem 1.2 holds if the Euler
flow defined (1.6)–(1.7) is replaced by any smooth and odd function UE(x), upon defining PE to
equal −(UE(x))2/2, which is in turn even in x.

REMARK 1.7 (More general classes of initial conditions). We note that besides yielding the
local existence of solutions (cf. [SC98a]), the analyticity of the initial datum is not required for
proving Theorem 1.2. One may instead consider an initial datum that is merely Sobolev smooth
with respect to y, analytic with respect to x, and decays sufficiently fast as y → ∞ (cf. [CLS01,
KV13, IV15]). Alternatively Gevrey-class 7/4 regularity in xmay be considered [GVM13], whose
vorticity decays sufficiently fast with respect to y. On the other hand, in view of the oddness in
x of the boundary condition (1.6), we cannot consider initial datum which is in the Oleinik class
of monotone in y flows (uniformly with respect to x), although the local existence holds in this
class [Ole66, MW15, AWXY15]. The datum in [XZ15] is also not allowed in view of the boundary
conditions (1.6). The mixed analyticity near x = 0, and monotonicity away from the y-axis (of
different signs) may however be treated, using the local existence result in [KMVW14].

REMARK 1.8 (Ill-posedness for the Prandtl equations). The ill-posedness of the Prandtl equa-
tions was established at the linear level in [GVD10], and at the nonlinear level in [Gre00, GN11,
GVN12]. We note that these results do not imply the finite time blowup from a given initial datum.

REMARK 1.9 (Finite time blowup for the hyrdostatic Euler equations). Here we note certain
very interesting blowup results [CINT13, Won15] for the hydrostatic Euler equations (which has
many analogies with the Prandtl equations). These equations are set in a finite strip Ω = R× [0, h],
and have different boundary conditions (only v = 0 is imposed at the top and bottom bound-
aries). For these equations the local existence was established for convex [Bre99, MW12] or an-
alytic [KTVZ11] data, as well as for the combination thereof [KMVW14]. These equations are
at the same time severely unstable (i.e., ill-posed in Sobolev spaces) if convexity or analyticity is
absent [Ren09]. In [CINT13] and [Won15] the finite blowup of odd solutions is established, by
observing the behavior of ux = −wz . The main difference with [EE97] is the presence of the
pressure, which is quadratic in u (cf. [CINT13] for further details).

The paper is organized as follows. In Section 2 we give the proof of Theorem 1.2 assuming
certain properties of a boundary condition lift φ = φ(t, y) and of a weight function w = w(y).
Sections 3 and 4 are devoted to establishing these properties of φ and w respectively.
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2. Proof of Theorem 1.2

2.1. Local existence. As initial datum for the Prandtl equation we consider

u0(x, y) = κErf
(y

2

)
sinx+ ū0(x, y) (2.1)

where ū0(x, y) is a real-analytic function of x and y which is also odd with respect to x, and
Erf(z) = 2π−1/2

∫ z
0 exp(−z̄2)dz̄ is the Gauss error function. We assume that ū0 decays sufficiently

fast (at least at an integrable rates) as y →∞, and takes the value 0 at y = 0. Moreover, we assume
that

a0(y) = (−∂xū0)(0, y)

obeys

a0(y) > 0 for all y > 0

and that

G0 =

∫ ∞
0

a0(y)w(y)dy ≥ C̄κ,w (2.2)

where the weight w is as constructed in Section 4, and C̄κ,w ≥ 1 is a constant that depends on κ and
on the L1(R+) weight function w.

For instance, we may consider

ū0(x, y) = −Ay2 exp(−y2) sinx (2.3)

where A = A(κ,w) > 0 is a sufficiently large constant. This choice for ū0(x, y) yields that a0(y)
is a large constant multiple of ϕ(y) = y2 exp(−y2). The local in time existence of a unique real-
analytic solution of the Prandtl system (1.1)–(1.7) with initial datum given by (2.1)–(2.3) follows
from [SC98a].

We note though that the real-analyticity is not needed in the blowup proof. It is only used to
ensure that we have the local in time existence and uniqueness of smooth solutions. Much more
general classes of initial conditions ū0 may be considered as long as they are odd with respect to x,
the Cauchy problem is locally well-posed (cf. Remark 1.7 above), and (2.2) holds.

2.2. Restriction of Prandtl dynamics on the y-axis. Consider an initial datum u0(x, y) for
the Prandtl equations that is odd in x (such as the one defined in (2.1)). Note that the boundary
condition at y = 0 is homogenous and thus automatically odd in x, the boundary condition at
y = ∞ given by the Euler trace in (1.6) is also odd in x, and the derivative of the Euler pressure
trace (1.7) is odd in x as well. Therefore, the unique classical solution u(t, x, y) of (1.1)–(1.7) is
also odd in x. Hence, as long as the solution remains smooth we have

u(t, 0, y) = (∂yu)(t, 0, y) = (∂2xu)(t, 0, y) = 0. (2.4)

Physically, this symmetry freezes the Lagrangian paths emanating from the y-axis, introducing a
stable stagnation point in the flow. As in [EE97] (see also [CINT13, Won15]) this allows one to
consider the dynamics obeyed by the tangential derivative of u at x = 0, i.e.,

b(t, y) = −(∂xu)(t, x, y)|x=0.
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As long as the solution remains smooth (so that we may take traces at x = 0), using (2.4) one
derives that the equation obeyed by b(t, y) is

∂tb− ∂yyb− b2 + ∂−1y b ∂yb = −κ2 (2.5)

b|y=0 = 0 (2.6)

b|y→∞ = −κ. (2.7)

In (2.5) and throughout the paper, we denote the integration with respect to the vertical variable as

∂−1y ϕ(t, y) =

∫ y

0
ϕ(t, y′)dy′

for any function ϕ(t, y) which is integrable in y. In order to obtain (2.5), one applies −∂x to
(1.1) and then evaluates the resulting equation on the y-axis. Similarly, (2.7) follows upon taking a
derivative with respect to x of (1.6) and setting x = 0.

2.3. A shift of the boundary conditions. In order to homogenize the boundary condition at
y = ∞ when t = 0, we add to b a lift φ(t, y) defined as the solution of the nonhomogenous heat
equation

∂tφ− ∂yyφ = κ2 (2.8)

φ|y=0 = 0 (2.9)

φ|y→∞ = κ+ κ2t (2.10)

with an initial datum that we may choose, as long as it obeys compatible boundary conditions. We
consider

φ0(y) = κErf
(y

2

)
,

so that the solution of (2.8)–(2.10) is explicit

φ(t, y) = κErf

(
y√

4(t+ 1)

)

+ κ2t

(
y2

2t

(
Erf

(
y√
4t

)
− 1

)
+

(
Erf

(
y√
4t

)
+

y√
πt

exp

(
−y

2

4t

)))
. (2.11)

In Section 3 we prove a number of properties (such as φ ≥ 0 and that ∂yφ ≥ 0) of the function φ
defined in (2.11).

Letting

a(t, y) = b(t, y) + φ(t, y) (2.12)

the system (2.5)–(2.7) becomes

∂ta− ∂yya = (a− φ)2 − ∂−1y (a− φ) ∂y(a− φ) (2.13)

a|y=0 = 0 (2.14)

a|y→∞ = κ2t. (2.15)

The equation (2.13) is similar to the one obtained in [EE97] for κ = 0, except for two additional
terms on the right side: a forcing term

F (t, y) = φ(t, y)2 − ∂−1y φ(t, y) ∂yφ(t, y) (2.16)
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and a linear term

L[a](t, y) = −2a(t, y)φ(t, y) + ∂−1y φ(t, y) ∂ya(t, y) + ∂−1y a(t, y) ∂yφ(t, y). (2.17)

The forcing term is explicit in view of (2.11), while the linear operator L[a] has nice coefficients
given in terms of φ. With the notation (2.16)–(2.17), the evolution equation for a becomes

∂ta− ∂yya = a2 − ∂−1y a ∂ya+ L[a] + F (2.18)

a|y=0 = 0 (2.19)

a|y→∞ = κ2t. (2.20)

In order to prove Theorem 1.2, we show that the solution of (2.18)–(2.20) blows up in finite time
from a very large class of smooth initial data a0.

2.4. Minimum principle. The main purpose of shifting the function b up by φ is so that the
resulting function a obeys a positivity principle.

LEMMA 2.1. Assume that a0 = a(0, y) is such that a0(y) > 0 for all y ∈ (0,∞). Con-
sider a smooth solution a(t, y) of the initial value problem associated with (2.18)–(2.20) and initial
condition a0, on a time interval [0, T ]. Then we have that a(t, y) ≥ 0 for all y ≥ 0 and t ∈ [0, T ].

Before proving Lemma 2.1, we need to establish certain positivity properties concerning the
function φ.

LEMMA 2.2. Let φ(t, y) be as defined in (2.11) with κ > 0. Then we have that

φ(t, y) ≥ 0 (2.21)

φ(t, y) ≤ Cκ(1 + t) (2.22)

∂yφ(t, y) ≥ 0 (2.23)

∂yyφ(t, y) ≤ 0 (2.24)

for all t ≥ 0 and all y ≥ 0, where Cκ > 0 is a constant that depends only on κ. Moreover, the
inequality in (2.21) is strict for y > 0.

The proof of Lemma 2.2 is given in Section 3 below.

PROOF OF LEMMA 2.1. We argue by contradiction. Since the solution is classical on [0, T ]
and decays sufficiently fast as y →∞, in order to reach a strictly negative value in [0, T ]× (0,∞)
there must exist a first time t0 and an interior point y0 > 0, such that

a(t0, y0) = 0

a(t0, y) ≥ 0 for all y ∈ R+

(∂ta)(t0, y0) ≤ 0.

As is classical for the heat equation the contradiction arises by computing the time derivative of a
at the point (t0, y0) and showing that it is strictly positive, contradicting the minimality of t0. In
order to bound (∂ta)(t0, y0) from below we use (2.18). Since a(t0, ·) has a global minimum at the
interior point y0, we have

(∂ya)(t0, y0) = 0

(∂yya)(t0, y0) ≥ 0.

Since by assumption a(t0, y0) = 0, it follows that (∂yya + a2 − ∂−1y a ∂ya)(t0, y0) ≥ 0. More-
over, since φ is a non-negative non-decreasing function, we immediately obtain from (2.17) that
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L[a](t0, y0) ≥ 0. We conclude the proof by showing that F (t0, y0) > 0. Indeed, by (2.21) and
(2.24) we have that

∂yF = φ∂yφ− ∂−1y φ∂yyφ ≥ φ∂yφ =
1

2
∂y(φ

2)

and thus

F (t, y) =

∫ y

0
∂yF (t, ȳ)dȳ ≥ 1

2

∫ y

0
∂y(φ

2)(t, ȳ)dȳ =
1

2
(φ(t, y))2 > 0 (2.25)

whenever y > 0, in view of Lemma 2.2.
In order to fully justify this argument, we apply the proof to ã(t, y) = a(t, y) + ε and show that

ã(t, y) remains non-negative for every ε > 0. The latter requires the additional observation that

L[ε](t, y) = −2εφ(t, y) + εy∂yφ(t, y) = ε

∫ y

0
(ȳ∂yyφ(t, ȳ)− ∂yφ(t, ȳ)) dȳ ≤ 0

in view of Lemma 2.2. This concludes the proof of the minimum principle. �

2.5. Blowup of a Lyapunov functional. Motivated by the displacement thickness (cf. (1.8))
we consider the evolution of the weighted average of a(t, y) on R+. For a suitable weight w(y) to
be defined below and a non-negative solution a of (2.18)–(2.20), we define the Lyapunov functional

G(t) =

∫ ∞
0

a(t, y)w(y)dy. (2.26)

Note that since a ≥ 0 as long as a remains smooth (cf. Lemma 2.1) we have that

G(t) ≥ 0

for all t ≥ 0. Our goal is to establish an inequality of the type

dG
dt
≥ 1

C
G2 − C(1 + t)(1 + G) (2.27)

for a constant C ≥ 1. Choosing a suitable initial datum, we then conclude that G blows up in finite
time. The first step is to present the properties of the weight w in (2.26) which are needed in the
proof of (2.27).

2.5.1. Properties of the weight function w. We consider a weight function w(y) such that:

w ∈W 2,∞(R+)

w ≥ 0

w|y=0 = w|y→∞ = 0

w ∈ L1(R+).

The weight is given by glueing two functions f and g, i.e.,

w(y) =

{
f(y), 0 ≤ y ≤ Q,
g(y), y ≥ Q,
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where Q > 0; the function f is such that

f(0) = 0 (2.28)

f ≥ 0, on [0, Q] (2.29)

f ′′ ≤ 0, on [0, Q] (2.30)

f ′′(y) ≥ −cff(y), for all y ∈ [0, Q], where cf > 0 (2.31)

yf ′(y) ≤ c̄ff(y), for all y ∈ [0, Q], where c̄f > 0 (2.32)

and the function g, which we extend to be defined on [M,∞) for some M ∈ (0, Q) obeys

lim
y→∞

g(y) = 0 = lim
y→∞

g′(y) (2.33)

g(y) > 0, for all y ≥M (2.34)

g′(y) < 0, for all y ≥M (2.35)

g′′(y) > 0, for all y ≥M (2.36)

g′(y)2

g(y)g′′(y)
≤ β < 1, for all y ≥ Q. (2.37)

Also letψ(z) be a smooth non-decreasing cutoff function such thatψ(z) = 0 for all z ≤ 0, ψ(z) = 1
for all z ≥ 1, and |ψ′(z)| ≤ 2 for all y ∈ (0, 1). Define the cutoff function

η(y) = ψ

(
y −M
Q−M

)
. (2.38)

Note that η vanishes identically on [0,M ] and equals 1 on [Q,∞). Its derivative localizes to [M,Q]
and obeys

0 ≤ η′(y) ≤ 2

Q−M
for all y ∈ (M,Q). Lastly, we require that the functions f and g obey the compatibility conditions

η(y)
g′(y)2

f(y)g′′(y)
≤ β < 1, for all y ∈ (M,Q) (2.39)

2η′(y)|g′(y)| ≤ η(y)g′′(y)− f ′′(y), for all y ∈ (M,Q). (2.40)

The construction of two functions f and g that obey the properties (2.28)–(2.40) listed above is
provided in Section 4. A sketch of the graph of the resulting weight w(y) is given in Figure 3 below.
Throughout paper, we shall denote derivatives of the functions w, f, g with primes, as they are only
functions of the variable y.

2.5.2. Evolution of the Lyapunov functional G. We use (2.18)–(2.20) and the boundary values
of w, given by (2.28) and (2.33), to deduce

d

dt
G =

∫ ∞
0

(
∂yya+ a2 − ∂−1y a ∂ya+ L[a] + F

)
wdy

= −
∫ ∞
0

∂yaw
′dy + 2

∫ ∞
0

a2wdy +

∫ ∞
0

a∂−1y aw′dy +

∫ ∞
0

L[a]wdy +

∫ ∞
0

Fwdy

≥
∫ ∞
0

aw′′dy + 2

∫ ∞
0

a2wdy − 1

2

∫ ∞
0

(∂−1y a)2w′′dy +

∫ ∞
0

L[a]wdy

= I1 + 2I2 −
1

2
I3 + I4. (2.41)
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FIGURE 3. Graph of the weight function w(y). The weight is a linear function on
[0, ε], a quadratic function on [ε,Q], and an shifted negative power of y on [Q,∞).

The above integrations by parts are justified by the fact that a andw are sufficiently smooth,w obeys
the Dirichlet boundary conditions, a and ∂−1y a vanish at y = 0, while ∂yw vanishes as y → ∞.
Here we have used that by (2.25) we have F (t, y) ≥ 0, which combined with w(y) ≥ 0 shows that
the forcing is non-negative. We now bound each of the terms in (2.41) separately.

2.5.3. Bound for I1. To bound I1 we use the convexity of w on [Q,∞) (cf. (2.36)) and the fact
that (2.31) holds. We deduce that

I1 ≥
∫ Q

0
af ′′ ≥ −cf

∫ Q

0
af ≥ −cfG. (2.42)

2.5.4. Bound for I2. By the Cauchy-Schwartz inequality, and denoting

c1 = ‖w‖L1(R+) <∞, (2.43)

we obtain

G =

∫ ∞
0

awdy =

∫ ∞
0

a
√
w
√
wdy ≤ ‖a

√
w‖L2‖

√
w‖L2 = c

1/2
1 I

1/2
2

and thus

I2 ≥
1

c1
G2. (2.44)
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2.5.5. Bound for I3. We proceed to bound the difficult term I3. Let η(y) be the cutoff function
defined in (2.38). First we have

I3 =

∫ ∞
0

(∂−1y a)2w′′

=

∫ ∞
0

η(∂−1y a)2w′′ +

∫ ∞
0

(1− η)(∂−1y a)2f ′′

≤
∫ ∞
0

η(∂−1y a)2g′′ +

∫ Q

M
η(∂−1y a)2(f ′′ − g′′) +

∫ Q

M
(1− η)(∂−1y a)2f ′′

= J +

∫ Q

M
(∂−1y a)2(f ′′ − ηg′′) (2.45)

where we have used (2.30) in the second to last step to bound∫ M

0
(1− η)(∂−1y a)2f ′′ ≤ 0.

The term J above is the leading term and it shall be bounded using integration by parts, which is
justified since g′ vanishes as y →∞. Since ∂−1y a|y=0, we obtain from (2.33) and (2.35) that

J =

∫ ∞
0

η(∂−1y a)2g′′

= −2

∫ ∞
0

ηa(∂−1y a)g′ −
∫ ∞
0

∂yη(∂−1y a)2g′

= 2

∫ ∞
0

ηa(∂−1y a)|g′|+
∫ ∞
0

∂yη(∂−1y a)2|g′|.

Further, recalling that η is supported on [M,∞), by appealing to (2.37) and (2.39) we get

J ≤ 2

(∫ ∞
0

η(∂−1y a)2g′′
)1/2(∫ ∞

0
ηa2

(g′)2

g′′

)1/2

+

∫ ∞
0

η′(∂−1y a)2|g′|

≤ 2
√
β

(∫ ∞
0

η(∂−1y a)2g′′
)1/2(∫ ∞

0
a2w

)1/2

+

∫ ∞
0

η′(∂−1y a)2|g′|

= 2
√
βJ1/2I

1/2
2 +

∫ ∞
0

η′(∂−1y a)2|g′|.

Using the inequality 2xy ≤ x2/2 + 2y2, we further estimate

J ≤ J

2
+ 2βI2 +

∫ ∞
0

η′(∂−1y a)2|g′|

which in turn yields

J ≤ 4βI2 + 2

∫ ∞
0

η′(∂−1y a)2|g′|. (2.46)

Combining (2.45) and (2.46), we obtain

I3 ≤ 4βI2 + 2

∫ Q

M
η′(∂−1y a)2|g′|+

∫ Q

M
(∂−1y a)2(f ′′ − ηg′′). (2.47)

By appealing to (2.40) we then arrive at the bound

I3 ≤ 4βI2 (2.48)
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which is a convenient estimate when β < 1.
2.5.6. Bound for I4. Consider

I4 =

∫ ∞
0

L[a]w = −2

∫ ∞
0

aφw +

∫ ∞
0

∂ya ∂
−1
y φw +

∫ ∞
0

∂yφ∂
−1
y aw. (2.49)

Using that (2.21)–(2.23) hold (cf. Lemma 2.2), upon integrating by parts in the second term on the
far right side of (2.49), we have that

I4 ≥ −3

∫ ∞
0

aφw −
∫ ∞
0

a ∂−1y φw′

≥ −3Cκ(1 + t)G −
∫ Q

0
a ∂−1y φ (w′)+

where (w′)+ = max{w′, 0}. In the last step we used that w is decreasing on [Q,∞). Since the
bounds (2.29), (2.32), and (2.22) hold on [0, Q], we arrive at

∂−1y φ(w′)+ ≤ yφ(Q)(w′)+ ≤ Cκ(1 + t)c̄fw

for y ∈ [0, Q]. We thus obtain

I4 ≥ −(3 + c̄f )Cκ(1 + t)G. (2.50)

2.5.7. The lower bound for the growth of the Lyapunov functional. Combining (2.41), (2.42),
(2.44), (2.48), and (2.50), with the assumption that β < 1, we arrive at

d

dt
G ≥ −cfG + 2I2(1− β)− (3 + c̄f )Cκ(1 + t)G

≥ −(cf + (3 + c̄f )Cκ)(1 + t)G +
2(1− β)

c1
G2

≥ −Cκ,w(1 + t)G +
1

Cκ,w
G2 (2.51)

for some sufficiently large positive constant Cκ,w ≥ 1, which only depends on the choice of κ and
the weight w. Note that β < 1 is essential here.

2.6. Conclusion of the proof of Theorem 1.2. Therefore, if we ensure that G0 = G|t=0 is
sufficiently large, the solution G(t) of (2.51) blows up in finite time. Quantitatively, it is sufficient
to let

G0 ≥ 4C2
κ,w. (2.52)

The condition (2.52) may be achieved by a smooth initial datum. For instance we may let a0(y) =
a(t, y)|y=0 be given by a large amplitude Gaussian bump, i.e., a0(y) = Aϕ(y), where ϕ is as in (2.3)
above, and A > 0 is sufficiently large. In view of Remark 1.7, more general classes of functions
ϕ(y) may be considered, including those with compact support in y (cf. [CLS01, KV13]).
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3. Properties of the boundary condition lift φ

It is easy to verify that the function φ defined in (2.11), i.e.,

φ(t, y) = κErf

(
y√

4(t+ 1)

)

+ κ2t

(
y2

2t

(
Erf

(
y√
4t

)
− 1

)
+

(
Erf

(
y√
4t

)
+

y√
πt

exp

(
−y

2

4t

)))
= κErf

(
y√

4(t+ 1)

)

+ κ2t

(
2z(t, y)2 (Erf (z(t, y))− 1) +

(
Erf (z(t, y)) +

2z(t, y)√
π

exp
(
−z(t, y)2

)))
(3.1)

obeys the non homogenous heat equation (2.8)–(2.10), with initial value φ0(y) = κErf(y/2), where
z(t, y) = y/

√
4t is the heat self-similar variable.

3.1. Proof of Lemma 2.2.

PROOF OF (2.23). First note that for t > 0 and y > 0, the function ∂yφ obeys the heat equation,
i.e., (∂t − ∂yy)(∂yφ) = 0. Using the exact formula (2.11) we obtain the initial and boundary values
for the quantity ∂yφ. Taking the y derivative of φ gives

∂yφ =
κ√
π〈t〉

exp

(
− y2

4〈t〉

)
+κ2

(
y

(
Erf

(
y√
4t

)
− 1

)
+

y2√
4πt

exp

(
−y

2

4t

)
+ t

(
2√
πt

exp

(
−y

2

4t

)
− y2

2t
√
πt

exp

(
−y

2

4t

)))
where 〈t〉 = t+ 1. Sending y → 0 and y →∞ we obtain

∂yφ|y=0 =
κ√
π〈t〉

+
2κ2
√
t√

π
> 0

∂yφ|y=∞ = 0

for all t > 0. Taking the limit t→ 0, we arrive at

∂yφ|t=0 =
κ√
π

exp

(
−y

2

4

)
≥ 0.

The fact ∂yφ(t, y) ≥ 0 for t, y ≥ 0 now follows from the parabolic maximum principle. For the
sake of completeness we repeat this classical argument. We consider the nonnegative C2 function

ρ(x) =

{
x4, x ≤ 0

0, x ≥ 0.
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Taking the t derivative of the quantity
∫∞
0 ρ(∂yφ(t, y))dy, upon integrating by parts in y and using

the boundary conditions for ∂yφ we arrive at

∂t

∫ ∞
0

ρ(∂yφ) dy =

∫ ∞
0

ρ′(∂yφ)∂t∂yφdy =

∫ ∞
0

ρ′(∂yφ)∂3yφdy

= −
∫ ∞
0

ρ′′(∂yφ)(∂2yφ)2 dy − ρ′(∂yφ|y=0)∂yyφ|y=0

= −
∫ ∞
0

ρ′′(∂yφ)(∂2yφ)2 dy ≤ 0,

from where we deduce that
∫∞
0 ρ(∂yφ(t, y)) dy = 0 for t ≥ 0 since

∫∞
0 ρ(∂yφ0(y)) dy = 0.

Therefore, we obtain ∂yφ(t, y) ≥ 0, concluding the proof. �

PROOF OF (2.21). Since φ(t, 0) = 0, for all t > 0, the non-negativity of φ follows from the
fundamental theorem of calculus and the above established monotonicity property ∂yφ ≥ 0. �

PROOF OF (2.22). The proof follows from (3.1) since

2z2 (Erf (z)− 1) + Erf(z) +
2√
π
z exp(−z2) ≤ C0

for all z ≥ 0, for some universal constant C0 > 0. We may then take Cκ = max{κ,C0κ
2}. �

PROOF OF (2.24). Taking the second derivative of φ defined in formula (2.11), we arrive at

∂yyφ =− κy√
4π〈t〉3

exp

(
− y2

4〈t〉

)
− κ2t

(
2y√
πt3

exp

(
−y

2

4t

)
− y3

4
√
πt5

exp

(
−y

2

4t

))
+ κ2

(
Erf

y√
4t
− 1 +

2y√
πt

exp

(
−y

2

4t

)
− y3

4
√
πt3

exp

(
−y

2

4t

))
. (3.2)

From this expression we get the initial and boundary values for ∂yyφ as

∂yyφ|y=0 = −κ2 ≤ 0, for t > 0

∂yyφ|y→∞ = 0, for t > 0,

∂yyφ|t=0 = − κy

2
√
π

exp

(
−y

2

4

)
≤ 0, for y > 0.

An argument similar to the one above shows that by the parabolic maximum principle we have
∂yyφ(t, y) ≤ 0 for all t, y ≥ 0. �

4. Construction of a weight function w for the Lyapunov functional

We fix Q = 1 and let r > 1 be a free parameter, to be chosen below. In terms of this r we
shall pick 1/2 < M = M(r) < 1, 0 < β = β(r) < 1, and B = B(r) > 1 so that the conditions
(2.28)–(2.40) hold.

Define the function f by

f(y) =
2B + r

Br
y − B + r

Br
y2 (4.1)

Therefore, f(0) = 0 and

f ′(y) =
2B + r

Br
− 2(B + r)

Br
y
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with

f ′′(y) = −2(B + r)

Br
.

It thus follows that f ∈ W 2,∞([0, 1]), f ≥ 0, and f ′′ ≤ 0 on (0, 1), so that (2.28)–(2.30) hold.
Moreover, (2.32) holds with c̄f = 1. Note however that (2.31) does not hold in a neighborhood of
the origin, since f(0) = 0. Instead, the function f defined in (4.1) needs to be modified in a small
neighborhood near the origin so that it is linear there (see Remark 4.1 below).

Next, we define

g(y) =
B

(y +B − 1)r

set initially for all y ≥ 1, but which is a well-defined function on y ≥ M as long as M + B > 1.
Note that r > 1 implies that (2.43) holds. We have that

g′(y) = − rB

(y +B − 1)r+1
< 0

and

g′′(y) =
r(r + 1)B

(y +B − 1)r+2
> 0.

Thus, the properties (2.33)–(2.36) hold for this function g. Moreover,

g′(y)2

g(y)g′′(y)
=

r

r + 1
< 1

for all y > 0. This verifies that condition (2.37) holds for any β ∈ [r/(r + 1), 1).
Note that at y = Q = 1 we have

f(1) = B1−r = g(1)

and

f ′(1) = −rB−r = g′(1)

and thus f and g may be glued together at Q = 1 to yield a W 2,∞ function on R.
In order to assure that (2.39) holds, it is sufficient to verify that

r

r + 1
ψ

(
y −M
1−M

)
g(y) ≤ βf(y) (4.2)

holds for all y ∈ [M, 1], where r/(r + 1) < β < 1 is arbitrary. The condition (4.2) holds automati-
cally with

β =
2r + 1

2r + 2

if we ensure that

sup
y∈[M,1]

g(y)

f(y)
≤ 2r + 1

2r
. (4.3)

In view of the continuity of the above functions, (4.3) holds if we choose M ∈ (0, 1) sufficiently
close to 1. We need though to be more precise on this choice of M . Indeed, (4.3) holds for y ∈
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[M, 1] if we impose that

Br+1

(y +B − 1)r
≤ 2r + 1

2r
y ((2B + r)− (B + r)y)

which is a consequence of

Br+1

(M +B − 1)r
≤ 2r + 1

2r
MB.

Assuming that 1−M ≤ 1/(4r + 2), the above follows from

1

(1− (1−M)/B)r
≤ 4r + 1

4r

which holds provided that (
4r

4r + 1

)1/r

≤ 1− 1−M
B

.

The last condition may be written as

1−M ≤ B

(
1−

(
4r

4r + 1

)1/r
)
. (4.4)

Therefore, (4.4) holds if we choose

1−M = min

{
1

4r + 2
, B

(
1−

(
4r

4r + 1

)1/r
)}

=
1

4r + 2
(4.5)

as long as

B ≥ 1

(4r + 2)
(

1− ((4r)/(4r + 1))1/r
) . (4.6)

This ensures the validity of the condition (4.2), and thus also (2.39) holds.
We finally verify that (2.40) holds, or equivalently

2

1−M
ψ′
(
y −M
1−M

)
rB

(y +B − 1)r+1
≤ ψ

(
y −M
1−M

)
r(r + 1)B

(y +B − 1)r+2
+

2(B + r)

Br
. (4.7)

Since |ψ′| ≤ 2 and φ ≥ 0, the above condition holds on [M, 1] once we ensure that

4

1−M
rB

(y +B − 1)r+1
≤ 2(B + r)

Br

which is implied by

Br+1

(M +B − 1)r+1
≤ (1−M)(B + r)

2r
.

The above condition holds if we take B sufficiently large, depending only on r. More precisely,
since M obeys (4.5), letting B obey (4.6) and also

B ≥ 2r(4r + 2)

(
4r + 1

4r

)(r+1)/r

, (4.8)

we complete the proof of (4.7).
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In summary, the conditions (2.28)–(2.40), except for (2.31), are obeyed once we set

r = 2

β =
5

6
< 1

M =
9

10
< Q = 1

B = 50.

4.1. Condition (2.31). In order to ensure that (2.31) holds, we need to tweak the functions f
and g defined above. Let 0 < ε < 1/2 be a small parameter, to be determined. We then have

f(ε) =
2B + r

Br
ε− B + r

Br
ε2 > 0

f ′(ε) =
2B + r

Br
− 2(B + r)

Br
ε > 0.

Therefore, we can extend f(y) by the linear function

hε(y) = f ′(ε)(y − ε) + f(ε)

=

(
2B + r

Br
− 2(B + r)

Br
ε

)
(y − ε) +

(
2B + r

Br
ε− B + r

Br
ε2
)

on the interval [−yε, ε], where

yε =
f(ε)

f ′(ε)
− ε ≥ 0.

Note that hε(−yε) = 0, hε(ε) = f(ε), and h′ε(ε) = f ′(ε). Therefore, glueing hε with f at y = ε,
and then f with g at y = Q = 1, yields a W 2,∞ function

wε(y) =


hε(y), y ∈ [−yε, ε]
f(y), y ∈ [ε, 1]

g(y), y ≥ 1

which obeys all the properties (2.28)–(2.40), but on the interval [−yε,∞) instead of [0,∞). Here
we used that ε is sufficiently small so that ε ≤ M/4. Also, (2.31) holds trivially on [−yε, ε) since
on this interval h′′ε(y) = 0 ≥ −hε(y). Then in view of the continuity of f ′′ and f , and the fact that
f only vanishes at y = 0, on the compact [ε, 1] we have that |f ′′(y)|/f(y) ≤ cf for some constant
cf ≥ 1.

Therefore, to complete the construction of the weight function w, let

w(y) = wε(y + yε)

for a fixed 0 < ε � 1, where the values of Q and M are themselves shifted by yε. In view of
the smoothness of all parameters on ε this is possible without affecting (2.37)–(2.39), upon slightly
increasing the value of β (so that it remains < 1).
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