
On the ill-posedness of active scalar equations with odd singular kernels

Igor Kukavica, Vlad Vicol, and Fei Wang

ABSTRACT. We consider active scalar equations with constitutive laws that are odd and very singular, in the
sense that the velocity field loses more than one derivative with respect to the active scalar. We provide an
example of such a constitutive law for which the equation is ill-posed: Either Sobolev solutions do not exist,
from Gevrey-class datum, or the solution map fails to be Lipschitz continuous in the topology of a Sobolev
space, with respect to Gevrey class perturbations in the initial datum. Monday 7th March, 2016.

1. Introduction

In this paper we address the well-posedness of the Cauchy problem for active scalar equations

∂tθ + u · ∇θ = 0 (1.1)
∇ · u = 0 (1.2)

θ(x, 0) = θ0(x) (1.3)

posed on T2 × [0,∞) = [−π, π]2 × [0,∞) with a certain constitutive law for the incompressible drift

u = Tθ,

to be specified precisely below (cf. (1.9) below). The datum θ0 and the solution θ are taken to have zero
mean on T2.

The study of active scalar equations of type (1.1)–(1.2) is motivated by several important fluid models:
When T = ∇⊥(−∆)−1, the system becomes the vorticity formulation of the 2D Euler equations; the
case T = ∇⊥(−∆)−1/2 corresponds to the surface quasi-geostrophic equation [1]; the constitutive law
T = ∂1∇⊥(−∆)−1 models flow in an incompressible porous medium with Darcy’s law [2]; while T =
∇⊥B, where B is a scalar bounded Fourier multiplier, appears in magneto-geostrophic dynamics [3]. The
well-posedness theory of active scalar equations (either inviscid or with fractional dissipation) has attracted
considerable attention in the last two decades. We refer the readers to [4, 5, 6, 1, 7, 8, 9, 2, 10, 11, 3, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23] and the references therein.

Recently, these equations have been considered with velocity fields determined by a singular constitutive
law (i.e., the map T : θ 7→ u is unbounded) which is also odd (by which we mean the corresponding Fourier
multiplier is an odd function of frequency). In particular, in [24] the authors considered the velocity field
given by

u = R⊥Λβθ, (1.4)

where β ∈ (0, 1], Λ =
√
−∆, R⊥ = ∇⊥Λ−1, and showed the local existence and uniqueness of solutions

for (1.1)–(1.3) with (1.4), in the Sobolev space H4. The two key ingredients in their proof were an estimate
for the commutator ‖[∂iΛs, g]f‖L2 and the identity∫

fAf g = −1

2

∫
f [A, g]f (1.5)
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which holds for smooth f, g, where A = ∂iΛ
β is an odd operator. This result was later sharpened in [12]

where the local existence was established in Hσ with σ > 2 + β, using an improved commutator estimate.
In contrast when the constitutive law is even and singular there are some ill-posedness results available

for these equations. In [25, 26], the authors established ill-posedness for even singular constitutive laws, i.e.,
for operators T that have an even and unbounded Fourier multiplier symbol. The main ingredients in these
works were a linear ill-posedness result (severe linear instability) in the spirit of [27, 28], and a classical
linear implies nonlinear ill-posedness argument [29, 30].

On the other hand, we are not aware of any ill-posedness result for (1.1)–(1.3) with an odd constitutive
law. This is due to the special cancellation property (1.5), which technically reduces the order of the consti-
tutive law by one. The main purpose of this paper is to establish an ill-posedness result for (1.1)–(1.3) with
an odd constitutive law

u = Tθ = R⊥ΛβMθ (1.6)

where 1 < β ≤ 2 and M is a zero-order, scalar, even Fourier multiplier operator with symbol m. That is,
M̂θ(k) = m(k)θ̂(k), where the specific Fourier multiplier symbol m we consider is given by

m(k) = k21|k|−2φ(k) (1.7)

for all k ∈ Z2
∗, where we define

φ(k) =

{
−1, k2 = ±1,

1, otherwise.
(1.8)

For simplicity of notation, we denote by φ(i∇) the Fourier multiplier operator with symbol φ(k). We may
then rewrite (1.6)–(1.8) concisely as

u = −R⊥R2
1φ(i∇)Λβθ (1.9)

where we recall that β ∈ (1, 2] throughout this paper.
Our main result (Theorem 2.2 below) is to prove that the active scalar equation (1.1)–(1.3) with constitu-

tive law (1.9) is ill-posed in any Gevrey spaceGs with s > (4−β)/((β−1)(3−β)). Here, by ill-posedness
we mean that:

• either, given an initial datum θ0 inGs, there is no local in time Sobolev solution θ ∈ L∞t H
β/2+1+δ
x ,

where δ > 0 is arbitrary;
• or, the solution map θ0 → θ is not Lipschitz continuous in Hβ/2+1+δ, with respect to Gs pertur-

bations in the initial datum (see Definition 2.2 below).
We note that the condition β > 1 is strictly necessary for our result to hold. Indeed, for β ∈ (0, 1], by the

results in [24, 12], we know that for the system (1.1)–(1.3) and (1.9) we have local existence and uniqueness
in the Sobolev space Hσ with σ > 2 + β. Additionally, using the identity (1.5) and the aforementioned
commutator estimates, one may show that for β ∈ (0, 1] the equations are locally Lipschitz (Hβ/2+1, Hβ+3)
well-posed, in the sense of Definition 2.2 below. Thus, the requirement β ∈ (1, 2] in this paper is necessary
and sufficient.

The proof of our main result is in the spirit of the earlier Lipschitz ill-posedness works [25, 26] with the
main difference being that the eigenfunctions are constructed as sums of sines and cosines; this interplay
leads to an eigenvalue problem involving a continued fraction with all positive signs (cf. (3.11) below). Such
continued fractions require a different treatment than [25, 26] due to non-monotonicity of the corresponding
approximation sequence. Finally, we need a way to bound the Sobolev and Gevrey norms ensuring that the
L2 norm of the solutions grow arbitrarily fast in any short period of time.

The paper is organized as follows. In Section 2, we linearize the active scalar equation around a steady
solution and state our main linear and nonlinear results. In Section 3, we give the proof of the ill-posedness
in Sobolev spaces and Gevrey classes for the linear equation. Finally, in Section 4, we conclude the ill-
posedness for the non-linear problem in the corresponding Sobolev and Gevrey spaces using a perturbation
argument.
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2. The linearized problem and main results

Consider a scalar function of the form θ̄(x, t) = θ̄(x2), where θ̄(x2) is a real function in T with zero
mean. According to (1.9) we have that ū = T θ̄ = 0, in view of the differentiation with respect to x1 inherent
in T . Thus, any such θ̄ is a steady state of (1.1). We choose a particular function

θ̄(x2) = cos(x2) (2.1)

and consider the linearization of the nonlinear term in (1.1) around it. Denote the corresponding linear
operator by

Lθ = −ū · ∇θ − u · ∇θ̄ = R3
1φ(i∇)Λβθ ∂2θ̄

= − sin(x2) R3
1φ(i∇)Λβθ. (2.2)

We shall use the method of continued fractions (see e.g. [25, 27, 26, 28]) to prove that the operator L has a
sequence of eigenvalues whose positive real parts diverge to infinity (cf. Theorem 2.3 below).

In order to state our main results, we recall here the definition of the Gevrey-space Gs (cf. [31]).

DEFINITION 2.1 (Gevrey-space). A function θ ∈ C∞(R2) belongs to the Gevrey class Gs, where
s ≥ 1, if there exists a positive constant τ > 0, called the Gevrey-class radius, such that the Gsτ -norm is
finite, i.e.,

‖θ‖2Gsτ =
∑
k∈Z2

∗

|θ̂(k)|2|k|4e2τ |k|1/s <∞. (2.3)

With this definition, Gsτ = {θ ∈ C∞(T2) : ‖θ‖Gsτ < ∞} is an algebra for s ≥ 1, τ > 0, and we have
Gs =

⋃
τ>0G

s
τ .

Next we recall the definition of the Lipschitz well-posedness (cf. [26, 32]).

DEFINITION 2.2 (Locally Lipschitz (X,Y ) well-posedness). Let Y ⊆ X ⊆ Hβ/2+1+δ be Sobolev
spaces, where δ > 0 is arbitrary. We say that the Cauchy problem for the active scalar equation (1.1)–
(1.3) with (1.6) is locally Lipschitz (X,Y ) well-posed, if there exist continuous functions T,K : [0,∞)2 →
(0,∞), so that for every pair of initial data θ(1)(0, ·), θ(2)(0, ·) ∈ Y there exist unique solutions θ(1), θ(2) ∈
L∞(0, T ;X) of the initial value problem associated to (1.1)–(1.3) with (1.6), such that

‖θ(1)(t, ·)− θ(2)(t, ·)‖X ≤ K‖θ(1)(0, ·)− θ(2)(0, ·)‖Y (2.4)

for every t ∈ [0, T ], where T = T (‖θ(1)(0, ·)‖Y , ‖θ(2)(0, ·)‖Y ) and K = K(‖θ(1)(0, ·)‖Y , ‖θ(2)(0, ·)‖Y ).

The role of the space Hβ/2+1+δ in the above definition is to ensure that the ranges of the linear operator
L defined in (2.2), and that of the nonlinear operator in (1.1), defined as

N [θ] = Tθ · ∇θ,
lie in L2. Here, recall that u = Tθ is given by (1.9). More precisely, by the Sobolev embedding we have

‖Lθ‖L2 ≤ C‖θ‖Hβ ≤ C‖θ‖Hβ/2+1+δ (2.5)

and

‖N [θ]‖L2 = ‖Tθ · ∇θ‖L2 ≤ C‖θ‖2Hβ/2+1+δ (2.6)

for a sufficiently large constant C > 0. Note that we can set δ = 0 if β < 2. The role of the two-spaces
X and Y in Definition 2.2 is to allow the solution to lose regularity, as it is expected due to the derivative
losses of order β (from T ) and 1 (from∇) present in the nonlinearity.

The first main result in this paper asserts that singular odd active scalar equations are locally Lipschitz
ill-posed in Sobolev spaces.

THEOREM 2.1. Assume β ∈ (1, 2], let δ > 0, and define r = β/2 + 1 + δ. Then the system (1.1)–(1.3)
with (1.6) is locally Lipschitz (Hr, Hs) ill-posed for any s > r.
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In fact, in view of the bound (2.9), one may obtain a stronger ill-posedness result: The solution is not
well-posed in a class of Gevrey spaces.

THEOREM 2.2. Let β ∈ (1, 2], r = β/2 + 1 + δ for some δ > 0, and let s > (4− β)/(β − 1)(3− β).
Then the system (1.1)–(1.3) with (1.6) is locally Lipschitz (Hr, Gsτ ) ill-posed for τ > 0.

Both theorems above hold with δ = 0 in the case β < 2. The main ingredient in the proofs of Theo-
rems 2.1 and 2.2 is the following bound on the eigenvalues of the linearized operator L defined in (2.2).

THEOREM 2.3. The linearized operator L defined in (2.2) has a sequence of entire real-analytic eigen-
functions {θk}k≥1 with corresponding eigenvalues {λk}k≥1, such that

λk ≥ C−10 kβ−1 (2.7)

for all k ≥ 1, where C0 ≥ 10 is a universal constant. Moreover, we may normalize θk such that either one
of the following statements holds:

(a) Given s ≥ 0

‖θk‖Hs = 1 and ‖θk‖L2 ≥ C−1s k−s(4−β)/(3−β) (2.8)

for all k ≥ 1, where Cs ≥ 1 is a constant that depends only on s;
(b) given s ≥ 1 and τ > 0

‖θk‖Gsτ = 1 and ‖θk‖L2 ≥ C−1s,τ exp
(
−Cs,τk(4−β)/(s(3−β))

)
(2.9)

for all k ≥ 1, where Cs,τ ≥ 1 is a constant that depends only on s, τ .

A standard perturbation argument (see e.g. [29, 30]) then implies the ill-posedness (1.1)–(1.3) with the
constitutive law (1.9).

3. Proof of linear ill-posedness

PROOF OF THEOREM 2.3. Fix an integer k ≥ 1. We seek an eigenvalue-eigenfunction pair (λ, θ) =
(λk, θk) for L, with θ oscillating at frequency k with respect to x1, i.e., we are looking for θ of the form

θ(x1, x2) =− c1 sin(kx1) cos(x2) + sin(kx1)
∑

odd n≥3
cn cos(nx2) + cos(kx1)

∑
even n≥2

cn sin(nx2)

(3.1)

where the real coefficients {cn}n≥1 are to be determined. Using

φ(i∇)θ(x1, x2) = sin(kx1)
∑

odd n≥1
cn cos(nx2) + cos(kx1)

∑
even n≥2

cn sin(nx2)

we get

Lθ = k3 cos(kx1)
∑

odd n≥1
(n2 + k2)(β−3)/2cn cos(nx2) sin(x2)

− k3 sin(kx1)
∑

even n≥2
(n2 + k2)(β−3)/2cn sin(nx2) sin(x2)

= cos(kx1)
∑

odd n≥1
k3(n2 + k2)(β−3)/2cn

sin((n+ 1)x2)− sin((n− 1)x2)

2

+ sin(kx1)
∑

even n≥2
k3(n2 + k2)(β−3)/2cn

cos((n+ 1)x2)− cos((n− 1)x2)

2
. (3.2)

We introduce the positive coefficients

pn = pn,k = 2(n2 + k2)(3−β)/2k−3 (3.3)
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omitting the k dependence for ease of notation. Then for all n ≥ 1 we have

pn ≥ 2n3−βk−3, (3.4)

where by assumption 3− β ≥ 1. With (3.3) we simplify (3.2) as

Lθ = cos(kx1)
∑

even n≥2

(
cn−1
pn−1

− cn+1

pn+1

)
sin(nx2)−

c2
p2

sin(kx1) cos(x2)

+ sin(kx1)
∑

even n≥3

(
cn−1
pn−1

− cn+1

pn+1

)
cos(nx2). (3.5)

The equation λθ = Lθ thus becomes

− λc1 sin(kx1) cos(x2) + sin(kx1)
∑

odd n≥3
λcn cos(nx2) + cos(kx1)

∑
even n≥2

λcn sin(nx2)

= cos(kx1)
∑

even n≥2

(
cn−1
pn−1

− cn+1

pn+1

)
sin(nx2)−

c2
p2

sin(kx1) cos(x2)

+ sin(kx1)
∑

even n≥3

(
cn−1
pn−1

− cn+1

pn+1

)
cos(nx2). (3.6)

From (3.6) we obtain the recurrence relationship
cn−1
pn−1

− cn+1

pn+1
= λcn, n ≥ 2, (3.7)

c2
p2

= λc1, n = 1. (3.8)

Denoting

ηn =

(
cn
pn

)(
cn−1
pn−1

)−1
, n ≥ 2

the recurrence relation (3.7)–(3.8) becomes

1

ηn
− ηn+1 = λpn, n ≥ 2 (3.9)

η2 = λp1. (3.10)

A real number λ yields a solution of (3.9)–(3.10) if and only if it solves the continued fraction equation

λp1 =
1

λp2 +
1

λp3 + · · ·

. (3.11)

Note that here the coefficients {pn}n≥1 are given by (3.3), and that λ is the only unknown.
Next we show the existence of a solution λ > 0 of (3.11). For this purpose, we need to prove first that

the continued fraction on the right side of (3.11) converges (note that since the associated sequence is not
monotone, this is not immediately clear), and then establish that it defines a continuous function of λ on
(0,∞).

For n ∈ {2, 3, · · · } and m ∈ {0, 1, 2, 3, · · · }, define

Fn,m(λ) =
1

λpn +
1

· · ·+ 1
λpn+m

.
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It is clear that Fn,m(λ) > 0 for λ ∈ (0,∞). From the identity

Fn,m(λ) =
1

λpn + Fn+1,m−1(λ)

valid for n ∈ {2, 3, 4, · · · } and m ∈ {1, 2, 3, · · · }, we deduce

Fn,m+1(λ)− Fn,m(λ) =
1

λpn + Fn+1,m(λ)
− 1

λpn + Fn+1,m−1(λ)

=
Fn+1,m−1(λ)− Fn+1,m(λ)

(λpn + Fn+1,m(λ))(λpn + Fn+1,m−1(λ))

from where we obtain

|Fn,m+1(λ)− Fn,m(λ)| ≤ 1

(λpn)2
|Fn+1,m(λ)− Fn+1,m−1(λ)|.

Using induction on m and the bound

|Fl,1(λ)− Fl,0(λ)| =

∣∣∣∣∣ 1

λpl + 1
λpl+1

− 1

λpl

∣∣∣∣∣ ≤ 1

λ3p2l pl+1

which is valid for all l ≥ 2, we obtain

|Fn,m+1(λ)− Fn,m(λ)| ≤ 1

(λpn)2
1

(λpn+1)2
· · · 1

(λpn+m−1)2
1

λ3p2n+mpn+m+1

=
1

λ2m+3pn+m+1(pnpn+1 . . . pn+m)2

≤ k6m+9

22m+3λ2m+3

(
(n− 1)!2

(n+m)!(n+m+ 1)!

)3−β

where used (3.4) in the last inequality. Hence,

|F2,m+l(λ)− F2,m(λ)| ≤
l−1∑
j=0

k6m+6j+9

22m+2j+3λ2m+2j+3

(
1

(2 +m+ j)!(3 +m+ j)!

)3−β
.

Since 3−β ≥ 1, the sequence F2,m(λ) is uniformly Cauchy on every compact subset of (0,∞). Therefore,
as m→∞ the sequence F2,m(λ) converges uniformly on compact subsets to a continuous function

F2(λ) =
1

λp2 +
1

λp3 + · · ·

.

Since

F2(λ) ≤ 1

λp2
(3.12)

we moreover have limλ→∞ F2(λ) = 0. The function

G(λ) = F2(λ)− λp1 (3.13)

is continuous on (0,∞) and satisfies

lim
λ→∞

G(λ) = −∞. (3.14)

On the other hand, we have the lower bound

G(λ) = F2(λ)− λp1 ≥
1

λp2 + 1
λp3

− λp1 =
1− λ2p1p2 − p1

p3

λp2 + 1
λp3

. (3.15)
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Since p3 > p1, it follows that there exists λ0 > 0, such that

G(λ0) > 0. (3.16)

From (3.14), (3.16), and the intermediate value theorem, we conclude that there exists λ = λk ∈ (λ0,∞)
such that

G(λk) = 0 (3.17)

providing a solution of (3.11). Note that (3.15) and (3.17) imply

0 ≥ 1− λ2kp1p2 −
p1
p3

(3.18)

providing a lower bound

λk ≥
√

1− p1/p3√
p1p2

.

Recalling (3.3), we obtain

λk ≥
k3
√

1− (1− 8/(9 + k2))(3−β)/2

2(4 + k2)(3−β)/2

for all k ≥ 1. An explicit computation shows that

lim
k→∞

1

kβ−1

k3
√

1− (1− 8/(9 + k2))(3−β)/2

2(4 + k2)(3−β)/2

 =
√

3− β ≥ 1

for any β ∈ (1, 2]. Using a careful estimate of the object in parentheses above, we further obtain

λk ≥ C−1kβ−1 (3.19)

for any k ≥ 1 and any β ∈ (1, 2], where C ≥ 1 is a constant (independent of β in this range). In particular,
λk →∞ as k →∞ at least as fast as the power law kβ−1.

Having found a root λ = λk of (3.11), we next need to estimate the size of the coefficients cn defining
θ in (3.1), and verify that they decay sufficiently fast so that θ is real-analytic. The function

Fn(λ) =
1

λpn +
1

λpn+1 + · · ·

,

obeys the recurrence relationship

Fn(λ) =
1

λpn + Fn+1(λ)
,

or equivalently.

Fn+1(λ) = −λpn +
1

Fn(λ)
. (3.20)

Since also

F2(λk) = λkp1, (3.21)

by the definition of λk, we get, comparing the recurrence relations (3.9)–(3.10) for ηn and (3.20)–(3.21) for
Fn(λk), that

Fn(λk) = ηn.
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Using cn = (pn/pn−1)cn−1ηn for n ≥ 2 and

Fn(λk) ≤
1

λkpn
, n ≥ 2

we get

cn = ηn · · · η2
pn c1
p1

= Fn(λk) · · ·F2(λk)
pn c1
p1

≤ 1

λkpn

1

λkpn−1
· · · 1

λkp2

pn c1
p1

=
c1

λn−1k pn−1 . . . p1

showing rapid convergence of cn to 0. Without loss of generality we choose

c1 = 1.

Then, by (3.4) and (3.19) we have

cn ≤ Cn
(

1

kβ−1

)n−1 (k3)n−1

((n− 1)!)3−β
≤ n2Cn

(
k4−β

)2
(n!)β−3 (3.22)

for all k, n ≥ 1. Furthermore, using n! ≥ (n/C)n for a sufficiently large C, we obtain

cn ≤ n2 exp
(
n log

(
Ck4−βnβ−3

))
(3.23)

for all β ∈ (1, 2] and n, k ≥ 1. In particular, for any τ > 0, we see that for

n ≥ n(τ, k, β) := Ce4τk(4−β)/(3−β), (3.24)

where C is sufficiently large, it holds that

cn ≤ (n2 + k2) exp
(
−2τ(n2 + k2)1/2

)
.

Using (3.1), we see that for ` = (`1, `2) ∈ Z2, we have

|θ̂k(`)|2 =

{
c2n, `1 = ±k, `2 = ±n,
0, |`1| 6= k.

Therefore,

‖θk‖2G1
τ

=
∑
n≥1

c2n(k2 + n2)2 exp
(

2τ(k2 + n2)1/2
)

≤
n(τ,k,β)∑
n=1

(k2 + n2)4 exp

(
2τ(k2 + n2)1/2 + 2n log

(
Ck4−β

n3−β

))
+

∑
n>n(τ,k,β)

(n2 + k2)4 exp
(
−2τ(n2 + k2)1/2

)
<∞

which shows that the function θk whose Fourier series n-th coefficients is cn, is in fact entire real-analytic.
Next, we provide a proof of (2.8). For s ≥ 0, recalling (3.24) we estimate

‖θk‖2Hs =
∑
n≥1

(n2 + k2)sc2n

≤ 2sn(1, k, β)2s
n(1,k,β)∑
n=1

c2n +
∑

n>n(1,k,β)

(n2 + k2)s+2 exp
(
−2(n2 + k2)1/2

)
≤ Csk2s(4−β)/(3−β)‖θk‖2L2 + Cs exp

(
−k(4−β)/(3−β)

)
≤ 2Csk

2s(4−β)/(3−β)‖θk‖2L2 (3.25)
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where Cs > 0 is a sufficiently large constant that depends only on s, and is independent of β ∈ (1, 2]; we
have also used ‖θk‖2L2 ≥ 1, which follows from c1 = 1. Since the equation Lθk = λkθk is linear, we may
renormalize θk to have the unit Hs norm. Then, upon multiplying both sides of (3.25) with this constant,
we obtain (2.8).

The proof of (2.9) is similar. Given s ≥ 1 and τ > 0 we have

‖θk‖2Gsτ =
∑
n≥1

c2n(k2 + n2)2 exp
(

2τ(k2 + n2)1/2s
)

≤ n(2τ, k, β)4 exp
(

4τ(n(2τ, k, β))1/s
) n(2τ,k,β)∑

n=1

c2n

+
∑

n>n(2τ,k,β)

(k2 + n2)4 exp
(

2τ(k2 + n2)1/(2s) − 4τ(n2 + k2)1/2
)

≤ 2Cs,τ exp
(
Cs,τk

(4−β)/(s(3−β))
)
‖θk‖2L2 (3.26)

where we have also used that c1 = 1.
In order to conclude the proof we renormalize θk to have unit Gsτ norm, and then multiply both sides of

(3.26) with this constant we obtain (2.9). �

4. Proof of nonlinear Lipschitz ill-posedness

PROOF FOR THEOREM 2.1. The proof of the above theorem follows directly from Theorem 2.3 and a
classical perturbative argument (see, e.g. [25, 26, 32, 29, 30]), so we only give here a sketch of these details.

Fix θ
(1)
0 (x2) = θ(1)(x2, t) = cos(x2) a steady state of the system (1.1)–(1.3) with (1.6). Clearly

‖θ(1)0 ‖Hs = 1. For ε ∈ (0, 1], let θ(2,ε)0 (x) = θ
(1)
0 (x2) + εψ0(x) where ψ0(x) is a smooth function such that

‖ψ0(x)‖Hs = 1, to be determined below. We have ‖θ(2,ε)0 ‖Hs ≤ 2 for all ε ∈ (0, 1].
If the system (1.1)–(1.3) with (1.6) would be locally Lipschitz well posed, then there would exist

T0,K0 > 0 (uniform in ε), such that the family of solutions θ(2,ε)(x, t) ∈ L∞(0, T ;Hr) of (1.1)–(1.3)
with (1.6) with the initial datum θ

(2,ε)
0 (x) obey

sup
t∈[0,T0]

‖θ(2,ε)(t)− θ(1)0 ‖Hr ≤ K0‖θ(2,ε)0 − θ(1)0 ‖Hs = K0ε (4.1)

for all ε ∈ (0, 1]. We define

ψε(x, t) = ε−1
(
θ(2,ε)(x, t)− θ(1)0

)
,

to be the ε-perturbation of θ(2,ε) about θ(1)0 . In view of (4.1) we have that ψε is uniformly bounded in
L∞(0, T ;Hr), with the bound

sup
t∈[0,T0]

‖ψε(t)‖Hr ≤ K0. (4.2)

The equation obeyed by ψε is

∂tψε = Lψε−εN [ψε]

so that by (2.5)–(2.6) we have that ∂tψε is uniformly bounded in L∞(0, T ;L2). Thus, Aubin–Lions lemma
ψε → ψ in L2(0, T ;L2), where ψ ∈ L∞(0, T ;Hr) with a bound inherited from (4.2), solves the equation

∂tψ = Lψ, ψ(0) = ψ0.
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In order to conclude the proof, let ψ0(x) = θk(x), where θk is an eigenfunction of L as constructed in
Theorem 2.3, with eigenvalue λk, and we choose k large enough such that

exp
(
T0k

β−1/(2C0)
)

Csks(4−β)/(3−β)
≥ 2K0

where C0 is the constant from (2.7), and Cs is the constant from (2.8). Then using (2.8) we obtain that

‖ψ(T0/2)‖L2 = exp(λkT0/2)‖ψ0‖L2 ≥ 2K0

which contradicts (4.2) since r > 0, thereby concluding the proof. �

PROOF OF THEOREM 2.2. The proof is the same as the proof of Theorem 2.1, except that the eigen-
function ψ0 = θk is normalized to have a unit Gsτ norm, and we pick k large enough so that

exp(T0k
β−1/(2C0))

Cs,τ exp(Cs,τk(4−β)/(s(3−β)))
≥ 2K0,

where C0 is the constant from (2.7), and Cs,τ is the constant from (2.9). Finding such a values of k uses the
restriction on s. Using (2.9) we then obtain that ‖ψ(T0/2)‖L2 ≥ 2K0 which yields a contradiction. �
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