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ABSTRACT. We consider the inhomogeneous heat and Stokes equations on the half space and prove an instan-
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1. Introduction

We consider the Dirichlet problem for the inhomogeneous heat equation

∂tu−∆u = f, in Ω, (1.1)
u = 0, on ∂Ω, (1.2)

with the initial condition

u(x, 0) = u0(x), in Ω, (1.3)

posed in the half space

Ω =
{
x = (x1, . . . , xd) ∈ Rd : xd > 0

}
. (1.4)

Throughout the paper we denote by ∂̄ the vector of tangential derivatives ∂̄ = (∂1, . . . , ∂d−1).
In this paper we prove that from an initial datum of finite Sobolev regularity, the solution to (1.1)–(1.4)

instantly becomes real-analytic, jointly in space and time, with the analyticity radius which is uniform up to
the boundary of ∂Ω. The result holds under the assumption that the force is real-analytic in space-time. In
order to state the main result of the paper, we introduce first some notation. For r ≥ 1, define the index sets

B =
{

(i, j, k) : i, j, k ∈ N0, i+ j + k ≥ r
}
, Bc = N3

0\B. (1.5)

Fix T > 0, let 0 < ε̃, ε̄, ε ≤ 1, and define the sum

φ(u) =
∑
B

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂it∂

j
d∂̄

ku‖L2
x,t([0,T ]×Ω) +

∑
Bc

‖∂it∂
j
d∂̄

k‖L2
x,t([0,T ]×Ω)

= φ̄(u) + φ0(u).

(1.6)

We note that φ0(u) is the Hr−1([0, T ] × Ω) norm. In particular, it is well known (see e.g. [20, 5]) that
for smooth and compatible initial datum which vanishes on ∂Ω, for instance u0 ∈ H1

0 (Ω) ∩H2(r−1)(Ω) is
sufficient, and force f ∈ H2(r−2)+

t,x ((0, T )× Ω) we have that

φ0(u) . ‖u0‖H2(r−1)(Ω) + ‖f‖
H2(r−2)+ ((0,T )×Ω)

. (1.7)

The following is our main result.

THEOREM 1.1. Let T > 0 and r ≥ 1. Then there exist ε, ε̃, ε̄ ∈ (0, 1], which only depend on T, r, and d,
such that for any u0 ∈ H1

0 (Ω) ∩H2(r−1)(Ω) which satisfies the compatibility conditions, and f sufficiently
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smooth, the solution u of (1.1)–(1.3) satisfies the estimate

φ(u) . φ0(u) +
∑

i+j+k≥(r−2)+

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!

∥∥∥ti+j+k+2−r∂it∂
j
d∂̄

kf
∥∥∥
L2
x,t((0,T )×Ω)

+
∑

i+k≥(r−2)+

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!

∥∥∥ti+k+2−r∂it ∂̄
kf
∥∥∥
L2
x,t((0,T )×Ω)

+
∑
i≥r−1

(i+ 1)rεi+1

(i+ 1)!

∥∥ti+1−r∂itf
∥∥
L2
x,t((0,T )×Ω)

. (1.8)

Here we assume on f that the norms in (1.7) above and (1.8) below are finite.

REMARK 1.2. It is clear from the proof of Theorem 1.1 that the Gevrey-s regularization, jointly in space
and time, also follows. For this purpose, simply replace (i + j + k)! with ((i + j + k)!)s, where s > 1,
throughout the paper.

Combining (1.7) and (1.8), we conclude that for an initial datum u0 of finite Sobolev regularity, and
real-analytic force f , the solution u of (1.1)–(1.3) becomes real-analytic, jointly in space and time, for any
t ∈ (0, T ], with an analyticity radius that is uniform up to ∂Ω. This latter fact concerning the analyticity
radius which does not vanish as one approaches ∂Ω is the main result of the paper. For a direct method for
proving analyticity in the interior, see [1, 11].

The method used to prove Theorem 1.1 extends easily to the case of the inhomogeneous Stokes system
on the half space

∂tu−∆u+∇p = f, in Ω

∇ · u = 0, in Ω
(1.9)

with the Dirichlet boundary condition
u = 0, on ∂Ω. (1.10)

For T > 0, smooth and compatible initial datum u0, and sufficiently smooth force f , it is known (see
e.g. [25, Chapter III]) that φ0(u) is a priori bounded in terms of u0 and f , similarly to (1.7). With the
notation of Theorem 1.1 we have that

THEOREM 1.3. Let T > 0 and r ≥ 1. Then there exist ε, ε̃, ε̄ ∈ (0, 1], which only depend on T, r, and
d, such that for any sufficiently smooth u0 which satisfies compatibility conditions, and sufficiently smooth
f , the solution u of the Cauchy problem for (1.9)–(1.10) satisfies the estimate (1.8).

The motivation for treating the inhomogeneous linear heat (1.1) and Stokes (1.9) equations comes from
the study of nonlinear semi-linear problems (i.e. f = f(t, x, u,∇u)) for the heat and Stokes equations on
domains with boundary, with Dirichlet boundary conditions. These nonlinear problems will be addressed in
our forthcoming work [4].

In the absence of boundaries, analytic and Gevrey-class regularization results are well-known, even
in the context of nonlinear problems (see e.g. [8] for the Navier-Stokes equations and [16, 21, 23] for
other models). On domains with boundary, analyticity up to the boundary was obtained in the fundamental
works [13, 14] (see also [9, 15]). These classical works achieve real-analyticity based on an an induction
scheme on the number of derivatives. In comparison, our proof is based directly on classical energy in-
equalities for the heat and Laplace equations on Ω. Moreover, Theorem 1.1 obtains the analyticity in the
time variable concomitantly. We believe that this transparent proof is going to be useful in establishing real-
analytic and Gevrey regularization results for PDEs with different types of boundary conditions for which
the methods of [8] work in the absence of boundaries. In fact, our motivation for the present paper comes
from the simplicity of the approach in [8] in the case when the boundaries are not present. For other works,
using the Gevrey regularity method of Foias and Temam, see [2, 3, 7, 22] (cf. [10, 17] for an alternative
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approach to analyticity in domains without the boundary, to [9, 12, 16, 18, 23] for some other results on
analyticity, and to [6] for some applications).

The main idea in the proof of (1.8) is to split the sum defining φ̄(u) into several sub-sums, and on each
one perform a derivative reduction estimate, as specified in Section 3. These estimates follow from the
classical maximal regularity of Laplace’s equation in Ω (cf. Section 2), and an energy estimate for solutions
to (1.1)–(1.3). These reduction estimates are used in Section 4 to conclude the proof of Theorem 1.1.

2. Preliminaries

We use the following notational agreement: If the domain in the Sobolev space is not indicated, it is
either Ω or Ω× (0, T ), where T > 0 is a fixed parameter, depending on the context. Also, definition (1.6),
the meaning of ∂̄k for k ∈ N0, is that∥∥∥∂it∂jd∂̄ku∥∥∥

L2
x,t

=
∑

α∈Nd−1
0 ,|α|=k

∥∥∥∂it∂jd∂αu∥∥∥
L2
x,t

.

We recall (cf. [19]) a simple statement on interpolation, which asserts that

‖∇u‖L2(Ω) . ‖u‖
1/2
L2(Ω)

‖u‖1/2
Ḣ2(Ω)

+ ‖u‖L2(Ω) (2.1)

holds for u ∈ H2(Ω). The proof uses a Sobolev extension operator and the interpolation inequality in Rd.
Besides (2.1), we shall also use the H2 regularity for Laplace’s equation

∆u = g, in Ω. (2.2)

For the problem (2.2), we have

‖u‖Ḣ2(Ω) . ‖g‖L2(Ω) +
∥∥∂̄u∥∥

Ḣ1(Ω)
+ ‖u‖L2(Ω) . (2.3)

If, in addition, u
∣∣
∂Ω

= 0, then we have

‖u‖Ḣ2(Ω) . ‖g‖L2(Ω) . (2.4)

The estimate (2.4) follows from the H2 inequality for the odd extension of u to Rd, while the bound (2.3)
follows from the H2 regularity for the problem (2.2) (cf. [19]), the trace theorem, and the interpolation
inequality (2.1) as follows

‖u‖H2 . ‖g‖L2 + ‖u‖H3/2(∂Ω) . ‖g‖L2 + ‖∂̄u‖H1/2(∂Ω) . ‖g‖L2 + ‖∂̄u‖H1

. ‖g‖L2 + ‖∂̄u‖Ḣ1 + ‖u‖H1 . ‖g‖L2 +
∥∥∂̄u∥∥

Ḣ1 + ‖u‖L2 + ‖u‖1/2
L2 ‖u‖

1/2

Ḣ2
.

The estimate (2.3) follows from the ε-Young inequality.

3. Derivative reduction

In this section we give the proofs of the normal, tangential, and time derivative reduction estimates
which are the main ingredients in the proof of Theorem 1.1.

Let u be a smooth solution of (1.1)–(1.3). Throughout this section we require that the nonnegative
integers i, j, k obey i+ j + k ≥ r.

3.1. Normal derivative reduction. For j ≥ 2 we claim that

‖ti+j+k−r∂it∂
j
d∂̄

ku‖L2
x,t

. ‖ti+j+k−r∂i+1
t ∂j−2

d ∂̄ku‖L2
x,t

+ ‖ti+j+k−r∂it∂
j−1
d ∂̄k+1u‖L2

x,t
+ ‖ti+j+k−r∂it∂

j−2
d ∂̄k+2u‖L2

x,t

+ ‖ti+j+k−r∂it∂
j−2
d ∂̄ku‖L2

x,t
+ ‖ti+j+k−r∂it∂

j−2
d ∂̄kf‖L2

x,t
. (3.1)
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This inequality allows us to reduce the number of vertical derivatives (∂d) in the Gevrey (analytic) norm.
On the other hand, for j = 1 and k ≥ 1 we have

‖ti+1+k−r∂it∂d∂̄
ku‖L2

x,t
. ‖ti+1+k−r∂i+1

t ∂̄k−1u‖L2
x,t

+ ‖ti+1+k−r∂it ∂̄
k−1f‖L2

x,t
, (3.2)

while for j = 1 and k = 0, we claim

‖ti+1−r∂it∇u‖L2
x,t
. ‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+ ‖ti+1−r∂itu‖L2 + ‖ti+1−r∂itf‖L2
x,t

(3.3)

whenever i ≥ r. The remainder of this subsection contains the proofs of (3.1)–(3.3).

PROOF OF (3.1). We first use (1.1) to compute

∆(ti+j+k−r∂it∂
j−2
d ∂̄ku) = ti+j+k−r∂it∂

j−2
d ∂̄k∆u

= ti+j+k−r∂i+1
t ∂j−2

d ∂̄ku− ti+j+k−r∂it∂
j−2
d ∂̄kf. (3.4)

Using the H2-regularity estimate (2.3), we get

‖ti+j+k−r∂it∂
j
d∂̄

ku‖L2 ≤ ‖ti+j+k−r∂it∂
j−2
d ∂̄ku‖Ḣ2

. ‖ti+j+k−r∂i+1
t ∂j−2

d ∂̄ku‖L2 + ‖ti+j+k−r∂it∂
j−2
d ∂̄kf‖L2

+ ‖ti+j+k−r∂it∂
j−2
d ∂̄k+1u‖Ḣ1 + ‖ti+j+k−r∂it∂

j−2
d ∂̄ku‖L2 .

and (3.1) follows. �

PROOF OF (3.2). Let k ≥ 1. First, set j = 2 in (3.4) and replace k with k − 1. We obtain

∆(ti+1+k−r∂it ∂̄
k−1u) = ti+1+k−r∂it ∂̄

k−1∆u

= ti+1+k−r∂i+1
t ∂̄k−1u− ti+1+k−r∂it ∂̄

k−1f.

Since ∂it ∂̄
k−1u

∣∣
∂Ω

= 0, we may apply (2.4) to this equation, leading to

‖ti+1+k−r∂it∂d∂̄
ku‖L2 ≤ ‖ti+1+k−r∂it ∂̄

k−1u‖Ḣ2

. ‖ti+1+k−r∂i+1
t ∂̄k−1u‖L2 + ‖ti+1+k−r∂it ∂̄

k−1f‖L2 ,

and we obtain (3.2). �

PROOF OF (3.3). First, we have

∆(ti+1−r∂itu) = ti+1−r∂it∆u = ti+1−r∂i+1
t u− ti+1−r∂itf.

Using that theH1 norm may be interpolated as in (2.1), and applying theH2 regularity estimate (2.4), which
may be used since ∂itu

∣∣
∂Ω

= 0, we get

‖ti+1−r∂itu‖Ḣ1 . ‖ti+1−r∂itu‖
1/2

Ḣ2
‖ti+1−r∂itu‖

1/2
L2 + ‖ti+1−r∂itu‖L2

.
(
‖ti+1−r∂i+1

t u‖L2 + ‖ti+1−r∂itf‖L2

)1/2 ‖ti+1−r∂itu‖
1/2
L2 + ‖ti+1−r∂itu‖L2

. ‖ti+1−r∂i+1
t u‖1/2

L2 ‖ti+1−r∂itu‖
1/2
L2 + ‖ti+1−r∂itf‖L2 + ‖ti+1−r∂itu‖L2 .

The inequality (3.3) then follows. �
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3.2. Tangential derivative reduction. In order to reduce the number of tangential derivatives, for k ≥
2 we claim that

‖ti+k−r∂it ∂̄ku‖L2
x,t
. ‖ti+k−r∂i+1

t ∂̄k−2u‖L2
x,t

+ ‖ti+k−r∂it ∂̄k−2f‖L2
x,t
, (3.5)

while for k = 1, we use

‖ti+1−r∂it ∂̄u‖L2
x,t
. ‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+ ‖ti+1−r∂itu‖L2 + ‖ti+1−r∂itf‖L2
x,t

(3.6)

for all i ≥ r.

PROOF OF (3.5). We first set j = 2 in (3.4) and obtain

∆(ti+2+k−r∂it ∂̄
ku) = ti+2+k−r∂it ∂̄

k∆u

= ti+2+k−r∂i+1
t ∂̄ku− ti+2+k−r∂it ∂̄

kf.

Since ti+2+k−r∂it ∂̄
ku vanishes on ∂Ω, we have by (2.4)

‖ti+2+k−r∂it ∂̄
k+2u‖L2 ≤ ‖ti+2+k−r∂it ∂̄

ku‖Ḣ2

. ‖ti+2+k−r∂i+1
t ∂̄ku‖L2 + ‖ti+2+k−r∂it ∂̄

kf‖L2

for k ≥ 0. The bound (3.5) follows upon replacing k + 2 with k. �

PROOF OF (3.6). This inequality is obtain by replacing ∇ with ∂̄ in the inequality (3.3). �

3.3. The time derivative reduction. Here we claim that for all i ≥ r + 1 we have

‖ti−r∂itu‖L2
x,t
. (i− r)‖ti−1−r∂i−1

t u‖L2
x,t

+ ‖ti−r∂i−1
t f‖L2

x,t
. (3.7)

PROOF OF (3.7). For the system (1.1), we have the energy inequality

‖∂tu‖L2
x,t

+ ‖∇u‖L2
x

∣∣
t=T
. ‖∇u‖L2

x

∣∣
t=0

+ ‖f‖L2
x,t
, (3.8)

which is obtained by testing (1.1) with ∂tu (which obeys the homogeneous Dirichlet boundary condition
(1.3)). We apply the estimate (3.8) to the equation

∂t(t
i−r∂i−1

t u)−∆(ti−r∂i−1
t u) = (i− r)ti−1−r∂i−1

t u+ ti−r∂i−1
t f.

If i ≥ r + 1, then ti−r∂i−1
t u

∣∣
t=0

= 0, so that the initial value term in (3.8) vanishes, and we obtain

‖∂t(ti−r∂i−1
t u)‖L2 . ‖(i− r)ti−1−r∂i−1

t u‖L2 + ‖ti−r∂i−1
t f‖L2 .

The inequality (3.7) now follows from the product rule. �

4. Proof of Theorem 1.1

With the notation of (1.6), our goal is to establish an inequality of the type

φ̄(u) ≤ Cφ0(u) +
1

2
φ(u) + C ‖f‖ (4.1)

where ‖f‖ denotes a suitable (semi)-norm of f . Adding φ0(u) to both sides of the above estimate, and
absorbing the φ(u)/2 term on the left side yields

φ(u) . φ0(u) + ‖f‖

which concludes the proof, in view of (1.7) and the assumed regularity of the force f .
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We split the sum φ̄(u) according to the values of i, j, and k, so that the inequalities in Section 3 may be
applied. Recall the definition of B in (1.5). We split the first sum in (1.6) as

φ̄(u) =
6∑
`=1

S` where S` =
∑
B`

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂it∂

j
d∂̄

ku‖L2
x,t
, ` = 1, . . . , 6,

and

B1 = {(i, j, k) ∈ B : j ≥ 2}
B2 = {(i, j, k) ∈ B : j = 1, k ≥ 1}
B3 = {(i, j, k) ∈ B : j = 1, k = 0}
B4 = {(i, j, k) ∈ B : j = 0, k ≥ 2}
B5 = {(i, j, k) ∈ B : j = 0, k = 1}
B6 = {(i, j, k) ∈ B : j = 0, k = 0}.

The above sums are bounded according to (3.1), (3.2), (3.3), (3.5), (3.6), and (3.7), respectively.

4.1. The S1 term. We start with S1, which may be estimated using (3.1) as

S1 .
∑
B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂i+1

t ∂j−2
d ∂̄ku‖L2

x,t

+
∑
B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂it∂

j−1
d ∂̄k+1u‖L2

x,t

+
∑
B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂it∂

j−2
d ∂̄k+2u‖L2

x,t

+
∑
B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂it∂

j−2
d ∂̄ku‖L2

x,t

+
∑
B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂it∂

j−2
d ∂̄kf‖L2

x,t
.

By relabeling, we obtain

S1 .
∑

(i−1,j+2,k)∈B1

(i+ j + k + 1)rεi−1ε̃j+2ε̄k

(i+ j + k + 1)!
‖ti+j+k+1−r∂it∂

j
d∂̄

ku‖L2
x,t

+
∑

(i,j+1,k−1)∈B1

(i+ j + k)rεiε̃j+1ε̄k−1

(i+ j + k)!
‖ti+j+k−r∂it∂

j
d∂̄

ku‖L2
x,t

+
∑

(i,j+2,k−2)∈B1

(i+ j + k)rεiε̃j+2ε̄k−2

(i+ j + k)!
‖ti+j+k−r∂it∂

j
d∂̄

ku‖L2
x,t

+
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂it∂

j
d∂̄

ku‖L2
x,t

+
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂it∂

j
d∂̄

kf‖L2
x,t
.
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Therefore, since t ≤ T , we get

S1 .
T ε̃2

ε

∑
(i−1,j+2,k)∈B1

(i+ j + k + 1)rεiε̃j ε̄k

(i+ j + k + 1)!
‖ti+j+k−r∂it∂

j
d∂̄

ku‖L2
x,t

+
ε̃

ε

∑
(i,j+1,k−1)∈B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂it∂

j
d∂̄

ku‖L2
x,t

+
ε̃2

ε2

∑
(i,j+2,k−2)∈B1

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+j+k−r∂it∂

j
d∂̄

ku‖L2
x,t

+ T 2ε̃2
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j ε̄k

(i+ j + k + 2)!
‖ti+j+k−r∂it∂

j
d∂̄

ku‖L2
x,t

+ ε̃2
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂it∂

j
d∂̄

kf‖L2
x,t
,

and thus

S1 .

(
T ε̃2

ε
+
ε̃

ε
+
ε̃2

ε2
+ T 2ε̃2

)
φ(u)

+ ε̃2
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂it∂

j
d∂̄

kf‖L2
x,t
.

(4.2)

4.2. The S2 term. Next, we use (3.2) to treat S2 (note that j = 1 and k ≥ 1) and write

S2 .
∑
B2

(i+ 1 + k)rεiε̃ε̄k

(i+ 1 + k)!
‖ti+1+k−r∂i+1

t ∂̄k−1u‖L2
x,t

+
∑
B2

(i+ 1 + k)rεiε̃ε̄k

(i+ 1 + k)!
‖ti+1+k−r∂it ∂̄

k−1f‖L2
x,t

and then, by relabeling,

S2 .
∑

(i−1,j,k+1)∈B2

(i+ 1 + k)rεi−1ε̃ε̄k+1

(i+ 1 + k)!
‖ti+1+k−r∂it ∂̄

ku‖L2
x,t

+
∑

(i,j,k+1)∈B2

(i+ 2 + k)rεiε̃ε̄k+1

(i+ 2 + k)!
‖ti+2+k−r∂it ∂̄

kf‖L2
x,t
.

Therefore, we obtain

S2 .
T ε̄ε̃

ε

∑
(i−1,j,k+1)∈B2

(i+ 1 + k)rεiε̄k

(i+ 1 + k)!
‖ti+k−r∂it ∂̄ku‖L2

x,t

+ ε̃ε̄
∑

(i,j,k+1)∈B2

(i+ k + 2)rεiε̄k

(i+ k + 2)!
‖ti+k+2−r∂it ∂̄

kf‖L2
x,t

from where

S2 .
T ε̄ε̃

ε
φ(u) + ε̃ε̄

∑
(i,j,k+1)∈B2

(i+ k + 2)rεiε̄k

(i+ k + 2)!
‖ti+k+2−r∂it ∂̄

kf‖L2
x,t
. (4.3)
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4.3. The S3 term. For S3, we use (3.3) and write (note that j = 1 and k = 0)

S3 .
∑

(i,j,k)∈B3

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+
∑

(i,j,k)∈B3

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itu‖L2

x,t
+

∑
(i,j,k)∈B3

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itf‖L2

x,t

which implies by the Cauchy-Schwartz inequality that

S3 .
T 1/2ε̃

ε1/2

 ∑
(i−1,j,k)∈B3

irεi

i!
‖ti−r∂itu‖L2

x,t

1/2 ∑
(i,j,k)∈B3

(i+ 1)rεi

(i+ 1)!
‖ti−r∂itu‖L2

x,t

1/2

+ T ε̃
∑

(i,j,k)∈B3

(i+ 1)rεi

(i+ 1)!
‖ti−r∂itu‖L2

x,t
+ ε̃

∑
(i,j,k)∈B3

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
.

Thus we get

S3 .

(
T 1/2ε̃

ε1/2
+ T ε̃

)
φ(u) + ε̃

∑
(i,j,k)∈B3

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
. (4.4)

4.4. The S4 term. Using (3.5) for S4 (note that j = 0 and k ≥ 2), we have

S4 .
∑

(i,j,k)∈B4

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+k−r∂i+1

t ∂̄k−2u‖L2
x,t

+
∑

(i,j,k)∈B4

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+k−r∂it ∂̄k−2f‖L2

x,t
.

By relabeling, we have

S4 .
∑

(i−1,j,k+2)∈B4

(i+ j + k + 1)rεi−1ε̄k+2

(i+ j + k + 1)!
‖ti+k+1−r∂it ∂̄

ku‖L2
x,t

+
∑

(i,j,k+2)∈B4

(i+ j + k + 2)rεiε̄k+2

(i+ j + k + 2)!
‖ti+k+2−r∂it ∂̄

kf‖L2
x,t

and thus

S4 .
ε̄2T

ε

∑
(i−1,j,k+2)∈B4

(i+ j + k + 1)rεiε̄k

(i+ j + k + 1)!
‖ti+k−r∂it ∂̄ku‖L2

x,t

+ ε̄2
∑

(i,j,k+2)∈B4

(i+ j + k + 2)rεiε̄k

(i+ j + k + 2)!
‖ti+k+2−r∂it ∂̄

kf‖L2
x,t
.

We obtain

S4 .
ε̄2T

ε
φ(u) + ε̄2

∑
(i,j,k+2)∈B4

(i+ j + k + 2)rεiε̄k

(i+ j + k + 2)!
‖ti+k+2−r∂it ∂̄

kf‖L2
x,t
. (4.5)
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4.5. The S5 term. For S5 (note that j = 0 and k = 1), we use (3.6) and write

S5 .
∑

(i,j,k)∈B5

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+
∑

(i,j,k)∈B5

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itu‖L2

x,t
+

∑
(i,j,k)∈B5

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti+1−r∂itf‖L2

x,t
.

We again relabel and use the Cauchy-Schwartz inequality to deduce

S5 .
T 1/2ε̄

ε1/2

 ∑
(i−1,j,k)∈B5

irεi

i!
‖ti−r∂itu‖L2

x,t

1/2 ∑
(i,j,k)∈B5

(i+ 1)rεi

(i+ 1)!
‖ti−r∂itu‖L2

x,t

1/2

+ T ε̄
∑

(i,j,k)∈B5

(i+ 1)rεi

(i+ 1)!
‖ti−r∂itu‖L2

x,t
+ ε̄

∑
(i,j,k)∈B5

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
.

We conclude

S5 .

(
T 1/2ε̄

ε1/2
+ T ε̄

)
φ(u) + ε̄

∑
(i,j,k)∈B5

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
. (4.6)

4.6. The S6 term. Lastly, for S6 (note that j = k = 0), we use (3.7) and write

S6 .
∑

(i,j,k)∈B6

(i− r)(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti−1−r∂i−1

t u‖L2
x,t

+
∑

(i,j,k)∈B6

(i+ j + k)rεiε̃j ε̄k

(i+ j + k)!
‖ti−r∂i−1

t f‖L2
x,t

=
∑

(i+1,j,k)∈B6

ir(i− r + 1)εi+1

(i+ 1)!
‖ti−r∂itu‖L2

x,t
+

∑
(i+1,j,k)∈B6

(i+ 1)rεi+1

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t

whence

S6 . εφ(u) + ε
∑

(i+1,j,k)∈B6

(i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
. (4.7)

4.7. Conclusion of the proof. Combining the φ̄ bounds (4.2), (4.3), (4.4), (4.5), (4.6), and (4.7), we
conclude

φ̄(u) .

(
T (ε̃2 + ε̄2)

ε
+
ε̃

ε
+
ε̃2

ε2
+ T 2ε̃2 +

T ε̄ε̃

ε
+
T 1/2(ε̃+ ε̄)

ε1/2
+ T (ε̃+ ε̄) + ε

)
φ(u) + φ0(u)

+
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂it∂

j
d∂̄

kf‖L2
x,t

+
∑

(i,j,k+1)∈B2

(i+ k + 2)rεiε̃ε̄k+1

(i+ k + 2)!
‖ti+2+k−r∂it ∂̄

kf‖L2
x,t

+
∑

(i,j,k)∈B3

(i+ 1)rεiε̃

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
+

∑
(i,j,k+2)∈B4

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!
‖ti+k+2−r∂it ∂̄

kf‖L2
x,t

+
∑

(i,j,k)∈B5

(i+ 1)rεiε̄

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
+

∑
(i+1,j,k)∈B6

(i+ 1)rεi+1

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
. (4.8)
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Denote by C the implicit dimensional constant in the . symbol in (4.8). Let T > 0 be arbitrary. First,
choose a sufficiently small ε = ε(C) > 0 such that

ε ≤ 1

6C
. (4.9)

Next, we choose a sufficiently small ε̄ = ε̄(ε, T, C) = ε̄(T,C) > 0 such that

T ε̄2

ε
+
T 1/2ε̄

ε1/2
+ T ε̄ ≤ 1

6C
. (4.10)

Finally, choose ε̃ = ε̃(ε̄, ε, T, C) = ε̃(T,C) > 0 such that

T ε̃2

ε
+
ε̃

ε
+
ε̃2

ε2
+ T 2ε̃2 +

T ε̄ε̃

ε
+
T 1/2ε̃

ε1/2
+ T ε̃ ≤ 1

6C
. (4.11)

For convenience, in addition to (4.9)–(4.11) we may also ensure that

ε̃ ≤ ε̄ ≤ ε ≤ 1. (4.12)

Upon reorganizing the terms in (4.8), the choices (4.9)–(4.12) imply that

φ̄(u) ≤ 1

2
φ(u) + Cφ0(u) + C

∑
(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂it∂

j
d∂̄

kf‖L2
x,t

+ C

ε̃ε̄ ∑
(i,j,k+1)∈B2

+ε̄2
∑

(i,j,k+2)∈B4

((i+ k + 2)rεiε̄k

(i+ k + 2)!
‖ti+2+k−r∂it ∂̄

kf‖L2
x,t

)

+ C

ε̃ ∑
(i,j,k)∈B3

+ε̄
∑

(i,j,k)∈B5

+ε
∑

(i+1,j,k)∈B6

((i+ 1)rεi

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t

)

+ C
∑

(i,j+2,k)∈B1

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂it∂

j
d∂̄

kf‖L2
x,t

≤ 1

2
φ(u) + Cφ0(u) + 2C

∑
i+j+k≥(r−2)+

(i+ j + k + 2)rεiε̃j+2ε̄k

(i+ j + k + 2)!
‖ti+j+k+2−r∂it∂

j
d∂̄

kf‖L2
x,t

+ 2C
∑

i+k≥(r−2)+

(i+ k + 2)rεiε̄k+2

(i+ k + 2)!
‖ti+k+2−r∂it ∂̄

kf‖L2
x,t

+ 3C
∑

i≥(r−1)+

(i+ 1)rεi+1

(i+ 1)!
‖ti+1−r∂itf‖L2

x,t
. (4.13)

The estimate (4.13) is precisely the desired bound (4.1), thereby completing the proof of the a priori esti-
mates. These a priori estimate may be made rigorous by working with truncated sums in φ̄(u), such that
i+ 2j + 2k ≤ N , which is allowed by parabolic regularity, and passing N →∞. We omit further details.

5. Derivative reduction for the Stokes problem and the proof of Theorem 1.3

The proof of Theorem 1.3 is identical to the proof of Theorem 1.1, except that the derivative reduction
estimates in Section 3 need to be adapted to the case of the Stokes system (1.9). To avoid redundancy, for
the Stokes system we only present the arguments for these reduction estimates.

The reductions are mainly based on two H2 inequalities. Namely, for the stationary Stokes system

−∆u+∇p = g

∇ · u = 0,
(5.1)
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we have

‖u‖Ḣ2(Ω) + ‖p‖Ḣ1 . ‖g‖L2(Ω) +
∥∥∂̄u∥∥

Ḣ1(Ω)
+ ‖u‖L2(Ω) . (5.2)

If also (1.10) holds, i.e. u
∣∣
∂Ω

= 0, then the above estimate becomes

‖u‖Ḣ2(Ω) . ‖g‖L2(Ω) . (5.3)

5.1. Normal derivative reduction for the Stokes operator. In all the inequalities next, we require
i+ j + k ≥ r. We first claim

‖ti+j+k−r∂it∂
j
d∂̄

ku‖L2
x,t

+ ‖ti+j+k−r∂it∂
j−1
d ∂̄kp‖L2

. ‖ti+j+k−r∂i+1
t ∂j−2

d ∂̄ku‖L2
x,t

+ ‖ti+j+k−r∂it∂
j−1
d ∂̄k+1u‖L2

x,t
+ ‖ti+j+k−r∂it∂

j−2
d ∂̄k+2u‖L2

x,t

+ ‖ti+j+k−r∂it∂
j−2
d ∂̄ku‖L2

x,t
+ ‖ti+j+k−r∂it∂

j−2
d ∂̄kf‖L2

x,t
, j ≥ 2 (5.4)

which allows us to reduce the number of vertical derivatives (∂d) in the Gevrey (analytic) norm. On the
other hand, for j = 1, we have

‖ti+1+k−r∂it∂d∂̄
ku‖L2

x,t
+ ‖ti+1+k−r∂it ∂̄

kp‖L2
x,t

. ‖ti+1+k−r∂i+1
t ∂̄k−1u‖L2

x,t
+ ‖ti+1+k−r∂it ∂̄

k−1f‖L2
x,t
, k ≥ 1.

(5.5)

For j = 1 and k = 0, we claim

‖ti+1−r∂it∇u‖L2
x,t
. ‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+ ‖ti+1−r∂itu‖L2 + ‖ti+1−r∂itf‖L2
x,t
, i ≥ r.

(5.6)

5.2. Tangential derivative reduction for the Stokes operator. In order to reduce the number of tan-
gential derivatives, we claim

‖ti+k−r∂it ∂̄ku‖L2
x,t

+ ‖ti+k−r∂it ∂̄k−1p‖L2
x,t

. ‖ti+k−r∂i+1
t ∂̄k−2u‖L2

x,t
+ ‖ti+k−r∂it ∂̄k−2f‖L2

x,t
, k ≥ 2

(5.7)

while for k = 1, we use a special case (replace∇ with ∂̄) of the inequality (5.6):

‖ti+1−r∂it ∂̄u‖L2
x,t
. ‖ti+1−r∂itu‖

1/2

L2
x,t
‖ti+1−r∂i+1

t u‖1/2
L2
x,t

+ ‖ti+1−r∂itu‖L2 + ‖ti+1−r∂itf‖L2
x,t
, i ≥ r.

(5.8)

5.3. Time derivative reduction for the Stokes operator. Here we have

‖ti−r∂itu‖L2
x,t
. (i− r)‖ti−1−r∂i−1

t u‖L2
x,t

+ ‖ti−r∂i−1
t f‖L2

x,t
, i− 1 ≥ r. (5.9)

The proofs of the inequalities (5.4)–(5.9) are the same as for those in Section 3, except that instead of
appealing to (2.3)–(2.4), we use (5.2)–(5.3). Moreover, the energy inequality (3.8) is the same for the Stokes
system, since∇ · u = 0. Further details are omitted.
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