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ABSTRACT. We address a question posed by Glatt-Holtz and Ziane in [GHZ09, Remark 2.1 (ii)],
regarding moments of strong pathwise solutions to the Navier-Stokes equations in a two-dimensional
bounded domain O. We prove that Eϕ(‖u(t)‖2H1(O)) < ∞ for any deterministic t > 0, where
ϕ(x) = log(1 + log(1 + x)). Such moment bounds may be used to study statistical properties of
the long time behavior of the equation. In addition, we obtain algebraic moment bounds on compact
subdomains O0 of the form Eϕε(‖u(t)‖2H1(O0)

) < ∞ , where ϕε(x) = (1 + x)(1−ε)/2, for any
deterministic t > 0 and any ε > 0.

1. INTRODUCTION

We consider the Navier-Stokes equation in a smooth bounded domainO ⊂ R2 with a multiplica-
tive white noise stochastic body force

du+ (u · ∇u+∇p− ν∆u− f)dt = g(u)dW, (1.1)
∇ · u = 0, (1.2)

u(0) = u0 (1.3)

and Dirichlet boundary condition

u = 0 on [0,∞)× ∂O. (1.4)

Here ν > 0 is the kinematic viscosity, f is a deterministic force, and g(u)dW is a cylindrical
Brownian motion, formally written as

∑
k gk(u)dWk with independent one dimensional Brownian

motions Wk and Lipschitz coefficients gk(u).
The mathematical literature on the stochastic Navier-Stokes equation (SNSE) is vast (see e.g.

the reviews [Kuk06, PR07, Fla08, KS12] and references therein). Starting with the work [BT73]
this subject has attracted a lot of interest, in part due to a number of difficulties which arise in the
well-posedness theory due to the stochastic term (such as a lack of compactness). Typically, two
notions of solutions are considered: martingale solutions [CG94, Cru89, FG95, MR04, Vio76], for
which the probabilistic basis is constructed along with the solution, and (probabilistically) strong
solutions [BF00, Bre00, BP00, CP97, DPD03, DPZ92, DGHT11, FR02, GHZ09, MR05], for which
the probability space is given in advance (we follow the convention of reffering to the later as
path-wise solutions). In this paper we consider pathwise solutions. In terms of regularity in x
and t, since here we are concerned with two-dimensional domains, it is natural to consider strong
solutions (from the deterministic point of view), i.e., solutions which evolve continuously in V
(= divergence free H1

0 (O)) and are square integrable in time with values in H2(O) ∩ V (see the
classical works [CF88, Lad92, Tem01] for details).
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In this paper we address the question posed by Glatt-Holtz and Ziane [GHZ09, Remark 2.1(ii)].
A strong pathwise solution (u, τ) of (1.1)–(1.4) (cf. Definition 2.1 below) obeys

E sup
t∈[0,τ ]

‖u(t)‖2V <∞

where τ is a maximal stopping time, which in the two-dimensional case satisfies P(τ < ∞) = 0.
The question raised in [GHZ09] is whether we have

E‖u(t)‖2V <∞ (1.5)

for any fixed deterministic time t > 0. That is, does theH1 norm of the solution have a finite second
moment for t > 0? We give a partial answer to this question, by showing that there exists a certain
finite moment of the H1 norm of the solution at any given deterministic time t.

Let ϕ : [0,∞) → [0,∞) be a strictly increasing C2 function, with ϕ(x) → ∞ as x → ∞. The
goal of this manuscript is to prove that there exits such function ϕ such that

Eϕ(‖u(t)‖2V ) <∞ (1.6)

for any deterministic t > 0, where u is a strong pathwise solution of the SNSE. The moment bound
(1.6) may be used to obtain higher regularity properties for the support of invariant measures to
(1.1)–(1.4) on a bounded domain [GHKVZ12].

We note that moment bounds for strong norms of the solution are notoriously difficult to obtain
in the case of a bounded domain due to a lack of cancellation in the nonlinear term in H1. See
e.g. [KS12]. On the contrary, in the case of a periodic domain we have that 〈B(u, u), Au〉 = 0, and
thus moment bounds in strong norms may be established. In fact, moments may be established for
high Sobolev, Gevrey-class, and even analytic norms (c.f. [BKL00, Mat02, Shi03, Oda06, KS12]
and references therein).

The main difficulty in obtaining moment bounds lies in estimating the nonlinear term B(u, u).
Note that as opposed to the periodic domain, on a bounded domain we do not have 〈B(u, u), Au〉 =
0. This is the sole term preventing one to prove (1.6) with ϕ(x) = x for any deterministic time
t > 0. We overcome this difficulty by using an idea from [Kuk01], and the logarithmically corrected
endpoint Sobolev inequality in 2D. Our observation is that moment bounds in the stochastic case
may be obtained by treating the nonlinear term similarly to the way it is treated in the deterministic
case when obtaining bounds on ‖∇u(t)‖L2 in terms of the Grashof number, for solutions on the
global attractor. These bounds in the deterministic case depend super-exponentially on the Grashof
number when the norm on the whole domain is considered [FP67, CF88], and algebraically on the
Grashof number when the norm on compact subdomains is considered [Kuk01]. In comparison, our
main result for the whole domain is that (1.6) holds forϕ(x) = log(1+log(1+x)). For compact sub-
domains O0 of O, if we replace the norm ‖u‖2V = ‖u‖2

H1
0 (O)

with ‖∇u‖2L2(O0), the estimate (1.6)

holds for algebraic ϕ’s, more precisely for ϕε(x) = (1 + x)(1−ε)/2 for ε > 0. Obtaining algebraic
moment bounds for ‖u(t)‖2V at deterministic times t remains open. The question posed in [GHZ09]
appears to be related to a long standing open problem of Foias and Prodi [FP67] (c.f. also [FMT88]),
of obtaining polynomial upper bounds in terms of the Grashof number for the H1

0 norm of solutions
in the Dirichlet case. We refer the reader to [CF85, CF88, FMT88, JT93] and references therein for
further aspects of this problem in the deterministic case.

The article is organized as follows. In Section 2 we introduce the functional setting of the equa-
tions, state the definition of solutions, and present our main results, Theorem 2.2 and Theorem 2.3.
Section 3 contain the proof of Theorem 2.2, while Section 4 contains the proof of Theorem 2.3.
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2. FUNCTIONAL SETTING

For convenience, we recall the deterministic and probabilistic framework considered in [GHZ09].

2.1. Deterministic framework. As in [CF88, Tem01] we consider the classical spaces V = {u ∈
C∞0 (O) : div u = 0}, H is the closure of V in L2(O), and V is the closure of V in H1(O), which
may be identified as

H = {u ∈ L2(O) : ∇ · u = 0, u · n|∂O = 0}, V = {u ∈ H1
0 (O) : ∇ · u = 0}.

since the boundary of the bounded domain O is smooth throughout this work. We denote the inner
product on H by 〈·, ·〉 and the norm by ‖ · ‖H , while the norm on V is denoted by ‖ · ‖V . Let PH
be the Leray-Hopf projector of L2(O) onto H . We recall that for u ∈ L2(O), PHu = (1 −QH)u
where QHu = −∇π, and π ∈ H1(O) is a solution of the elliptic Neumann problem

−∆π = ∇ · u in O, ∇π · n = −u · n on ∂O.
Let

A = −PH∆

be the Stokes operator, with domainD(A) = V ∩H2(O). The dual of V = D(A1/2) with respect to
H is denoted by V ′ = D(A−1/2). In view of the Dirichlet boundary condition, there exists λ∗ > 0
such that the Poincaré inequality ‖u‖H ≤ λ∗‖u‖V holds. At last, denote the nonlinear term as the
bilinear operator mapping V × V to V ′ via

B(u, v) = PH(u · ∇v)

and recall that the cancellation property 〈B(u, v), v〉 = 0 holds for u, v ∈ V . The deterministic
force f is assumed to be bounded in time with values in H .

2.2. Stochastic framework. We briefly recall some aspects of the stochastic analysis in infinite
dimensions needed in this note cf. [DPZ92] (see also [DGHT11, GHZ09, Fla08, PR07]). Fix a
stochastic basis S = (Ω,F ,P, {Ft}t≥0,W), i.e., a complete probability space equipped with a
complete right-continuous filtration and a cylindrical Brownian motionW , defined on an auxiliary
separable Hilbert space U , adapted to this filtration. Fixing an orthonormal basis {ek}k≥1 for U ,
we may formally writeW(t, ω) =

∑
k ekWk(t, ω), where {Wk} is a sequence of independent one-

dimensional Brownian motions. This sum does not converge on U so one classically considers a
larger Hilbert space U0 = {u =

∑
k αkek : ‖u‖U0 <∞}, where ‖u‖2U0

=
∑

k k
−2α2

k; note that the
embedding U ⊂ U0 is Hilbert-Schmidt. Then,W ∈ C([0,∞);U0) almost surely c.f. [DPZ92].

Given a separable Hilbert space X , we denote by L2(U,X) the space of Hilbert-Schmidt opera-
tors from U to X , equipped with the norm ‖G‖2L2(U,X) =

∑
k ‖Gk‖2X . Here and throughout the pa-

per we denote Gk = gek. For an X-values predictable process G ∈ L2(Ω;L2
loc([0,∞);L2(U,X))

one may define the Itō stochastic integral∫ t

0
GdW :=

∑
k

∫ t

0
GkdWk, (2.1)

which lies in the space OX of X-valued square integrable martingales. In particular, we shall make
use of the Burkholder-Davis-Gundy inequality: For any p ≥ 1

E

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0
GdW

∥∥∥∥p
X

)
≤ CE

(∫ t

0
‖G‖2L2(U,X)

)p/2
(2.2)

for some C = C(p) > 0.
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2.3. Conditions on the noise. Given a pair of Banach spaces X and Y we denote by Lipu(X,Y )
the collection of continuous functions h : [0,∞)×X → Y which are sublinear

‖h(t, x)‖Y ≤ KY (1 + ‖x‖X) for all t ≥ 0, x ∈ X (2.3)

and Lipschitz

‖h(t, x)− h(t, y)‖Y ≤ KY ‖x− y‖X for all t ≥ 0, x, y ∈ X (2.4)

and some constant KY > 0 which is independent of t.
The noise term g(u)dW considered is as in [GHZ09], and is defined in terms of the map

g = {gk}k≥1 : [0,∞)×H → L2(U,H) (2.5)

such that

g ∈ Lipu(H,L2(U,H)) ∩ Lipu(V,L2(U, V )) ∩ Lipu(D(A), L2(U,D(A))). (2.6)

Assumption (2.6) may be written explicitly as

‖g(t, x)‖L2(U,D(Aj/2)) ≤ Kj(1 + ‖x‖D(Aj/2)), for j ∈ {0, 1, 2},
‖g(t, x)− g(t, y)‖L2(U,D(Aj/2)) ≤ Kj‖x− y‖D(Aj/2), for j ∈ {0, 1, 2}.

For convenience we shall denote the norm on L2(U,H) by ‖·‖H, and the one on L2(U, V ) by ‖·‖V.
Given u ∈ L2(Ω;L2(0, T ;H)) and g as above, define as in (2.1) the stochastic integral

∫ t
0 g(u)dW ,

which is a well-defined H-valued Itō stochastic integral, that is predictable, and〈∫ t

0
g(u)dW, v

〉
=
∑
k

∫ t

0
〈gk(u), v〉dWk

holds for any v ∈ H .
Assumption (2.6) on the noise is quite general, and includes a wide class of examples, such as ad-

ditive noise, linear multiplicative noise, Nemytskii operators, and stochastically forced functionals
of the solution c.f. [GHZ09, GHV12].

2.4. Notion of solution. In this note we consider strong pathwise solutions, which are strong from
the PDE point of view, i.e., bounded in time with values in V and square integrable in time with
values inD(A), and strong from the probabilistic point of view (henceforth called pathwise to avoid
confusion), i.e., the driving noise and the filtration are given.

Definition 2.1. Fix a stochastic basis S, let g as in (2.6) be predictable, f ∈ L4(Ω;L∞([0,∞);H))
be predictable, and assume that the initial data u0 ∈ L4(Ω;V ) is F0 measurable. The pair (u, τ)
is called a pathwise strong solution of (1.1)–(1.4) if τ is a strictly positive stopping time, u(· ∧ τ) is
a predictable process in H such that

u(· ∧ τ) ∈ L2(Ω;C([0,∞);V ))

u1t≤τ ∈ L2(Ω;L2
loc([0,∞);D(A)))

and

〈u(t ∧ τ), v〉+

∫ t∧τ

0
〈νAu+B(u, u)− f, v〉dt = 〈u0, v〉+

∑
k

∫ t∧τ

0
〈gk(u), v〉dWk (2.7)
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holds for every v ∈ H . Additionally, (u, ξ) is called a maximal pathwise strong solution if ξ is a
strictly positive stopping time, and there exits τn → ξ increasing, such that (u, τn) is a local strong
solution and

sup
t∈[0,τn]

‖u‖2V +

∫ τn

0
‖Au‖2Hdt ≥ n

on the set {ξ <∞}. Such a solution is called global if P(ξ <∞) = 0.

In [GHZ09] it is shown that under the above hypotheses on g, f , and u0, there exists a maximal
pathwise strong solution (u, ξ) of (1.1)–(1.4), in both two and three dimensions. In addition, in the
two dimensional case the maximal solution (u, ξ) is global.

2.5. Results. Our main result regarding the whole domain concerns doubly-logarithmic moments.

Theorem 2.2. Fix a stochastic basis S , and let g, f, u0 be as Definition 2.1. Given a pathwise
strong global solution (u, τ) of (1.1)–(1.4) we have

E

(
sup
t∈[0,T ]

ϕ(‖u(·, t)‖2V )

)
≤M(T, ν, u0, f, g)

for any deterministic time T > 0, where

ϕ(x) = log(1 + log(1 + x))

and M is a function that depends on T, ν, u0, f , and g explicitly (cf. (3.21) below).

Note that ‖u‖V = ‖u‖H1(O) since u obeys the homogenous Dirichlet boundary condition. On
the other hand, once we restrict to a compact subdomain we may allow ϕ to be algebraic.

Theorem 2.3. Fix a stochastic basis S, and let g, f, u0 be as Definition 2.1. Let O0 ⊂ O be a
closed set, with 0 < d0 = dist(O0, ∂O), and let ε ∈ (0, 1/4) be arbitrary. Given a pathwise strong
global solution (u, τ) of (1.1)–(1.4) we have

E

(
sup
t∈[0,T ]

ϕε(‖∇u(·, t)‖2L2(O0))

)
≤Mε(T, d0, ν, u0, f, g)

for any deterministic time T > 0, where

ϕε(x) = (1 + x)
1−ε
2

and Mε is a function that depends on T, ν, d0, ε, u0, f , and g explicitly (cf. (4.29) below).

3. DOUBLE-LOGARITHMIC MOMENTS FOR THE WHOLE DOMAIN

In this section we give the proof of Theorem 2.2. We consider a maximal pathwise strong solution
(u, ξ) of (1.1)–(1.4), and let τ < ξ be a stopping time. First we shall consider a series of a priori
estimates on this solution, which we then make rigorous, and in the process pass from τ to an
arbitrary deterministic stopping time t.
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3.1. A priori estimates. From the infinite dimensional analogue of the Itō formula in H we obtain

d‖u‖2H + 2ν‖u‖2V dt =
(
2〈f, u〉+ ‖g(u)‖2H

)
dt+ 2〈g(u), u〉dW (3.1)

where we also used the cancellation property 〈B(u, u), u〉 = 0. Here 〈g(u), u〉dW is short hand
notation for

∑
k〈gk(u), u〉dWk. Integrating (3.1) from τa to t and taking a supremum over t ∈

[τa, τb], where τa and τb are stopping times, and then taking expected values, we obtain

E sup
[τa,τb]

‖u‖2H + 2νE
∫ τb

τa

‖u‖2V dt ≤ E‖u(τa)‖2H + 2E
∫ τb

τa

(
‖f‖V ′‖u‖V + ‖g(u)‖2H

)
dt

+ 2E sup
t∈[τa,τb]

∣∣∣∣∫ t

τa

〈g(u), u〉dW
∣∣∣∣ . (3.2)

Applying the Burkholder-Davis-Gundy inequality, we bound the last term on the right of (3.2) as

E sup
t∈[τa,τb]

∣∣∣∣∫ t

τa

〈g(u), u〉dW
∣∣∣∣ ≤ CE(∫ τb

τa

‖g(u)‖2H‖u‖2Hdt
)1/2

≤ 1

4
E sup

[τa,τb]
‖u‖2H + CE

∫ τb

τa

‖g(u)‖2Hdt. (3.3)

Combining estimates (3.2)–(3.3), and using assumption (2.6) on g, we arrive at

E sup
[τa,τb]

‖u‖2H + νE
∫ τb

τa

‖u‖2V dt

≤ 2E‖u(τa)‖2H + 2ν−1E
∫ τb

τa

‖f‖2V ′dt+ CE
∫ τb

τa

‖g(u)‖2Hdt

≤ 2E‖u(τa)‖2H + 2ν−1E
∫ τb

τa

‖f‖2V ′dt+ CK0E
∫ τb

τa

(1 + sup
[τa,t]
‖u‖2H)dt. (3.4)

for any pair of stopping times τa < τb. The usual Grönwall inequality (or, equivalently Lemma 5.3
in [GHZ09]) then implies

E sup
[0,t]
‖u‖2H + νE

∫ t

0
‖u‖2V dτ ≤

(
2E‖u0‖2H + E

∫ t

0
(CK0 + 2ν−1‖f‖2V ′)

)
eCK0t (3.5)

for any time t. Estimate (3.5) will be used when choosing a specific ϕ. In (3.5) we can replace
ν−1‖f‖2V ′ with ‖f‖2H if we wish to avoid ν-dependence of the right side in this estimate.

Remark 3.1. If ‖g(u)‖2H ≤ K0(1 + ‖g(u)‖2αH ) with either α < 1, or for α = 1 but K0 � 1, then
we can use the Poincaré inequality in (3.4) and obtain a bound for the right side of (3.5) which is
bounded as t→∞. For example this is the case for additive noise.

We now turn to estimate ϕ(‖u‖2V ). The infinite dimensional version of the Itō formula yields

d‖u‖2V + 2ν‖Au‖2Hdt =
(
2〈f,Au〉 − 2〈B(u, u), Au〉+ ‖g(u)‖2V

)
dt+ 2〈g(u), Au〉dW. (3.6)

Using again the Itō formula, we obtain from (3.6) that

dϕ(‖u‖2V ) + 2νϕ′(‖u‖2V )‖Au‖2Hdt = ϕ′(‖u‖2V )
(
2〈f,Au〉 − 2〈B(u, u), Au〉+ ‖g(u)‖2V

)
dt

+ 2ϕ′′(‖u‖2V )
∑
k

〈gk(u), Au〉2dt+ T0dW (3.7)
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as long as ϕ is at least C2 in a neighborhood of [0,∞), where we have denoted

T0 = 2ϕ′(‖u‖2V )〈g(u), Au〉. (3.8)

Integrating (3.7) from 0 to τ , taking a supremum for τ ∈ [0, t], where t > 0 is arbitrary, and taking
expected values, we arrive at

E sup
[0,t]

ϕ(‖u‖2V ) + 2νE
∫ t

0
ϕ′(‖u‖2V )‖Au‖2Hdτ

≤ Eϕ(‖u0‖2V ) + E
∫ t

0
(T1 + T2 + T3 + T4)dτ + 2E sup

τ∈[0,t]

∣∣∣∣∫ τ

0
T0dW

∣∣∣∣ (3.9)

where, using (2.6) we have

T1 = 2ϕ′(‖u‖2V )|〈B(u, u), Au〉| (3.10)

T2 = 2ϕ′(‖u‖2V )|〈f,Au〉| ≤ 2ϕ′(‖u‖2V )‖f‖H‖Au‖H (3.11)

T3 = ϕ′(‖u‖2V )‖g(u)‖2V ≤ K1ϕ
′(‖u‖2V )(1 + ‖u‖2V ) (3.12)

T4 = 2|ϕ′′(‖u‖2V )|
∑
k

〈gk(u), Au〉2 ≤ 2K1|ϕ′′(‖u‖2V )| ‖u‖2V (1 + ‖u‖2V ). (3.13)

Combining (3.9)–(3.8) and applying the Burkholder-Davis-Gundy inequality on the T0 term

E sup
τ∈[0,t]

∣∣∣∣∫ τ

0
T0dW

∣∣∣∣ ≤ CE(∫ t

0
ϕ′(‖u‖2V )2‖g(u)‖2V‖u‖2V dτ

)1/2

we obtain

E sup
[0,t]

ϕ(‖u‖2V ) + νE
∫ t

0
ϕ′(‖u‖2V )‖Au‖2Hdτ

≤ Eϕ(‖u0‖2V ) + E
∫ t

0
T1dτ + ν−1E

∫ t

0
ϕ′(‖u‖2V )‖f‖2Hdτ

+ 2K1E
∫ t

0

(
ϕ′(‖u‖2V ) + ‖u‖2V ϕ′′(‖u‖2V )

)
(1 + ‖u‖2V )dτ

+ CK1E
(∫ t

0

(
ϕ′(‖u‖2V )(1 + ‖u‖2V )

)2
dτ

)1/2

. (3.14)

It remains to estimate T1, the leading term in (3.14). Using the Hölder inequality and the Brézis-
Gallouët-Waigner inequality (see, e.g. [CF88, Tem01]) we may bound

T1 ≤ 2ϕ′(‖u‖2V )‖Au‖H‖u‖V ‖u‖L∞

≤ Cϕ′(‖u‖2V )‖Au‖H‖u‖2V
(

1 + log
‖Au‖2H
λ∗‖u‖2V

)1/2

. (3.15)

Moreover the inequality

aµ

(
1 + log

µ2

b2

)1/2

≤ εµ2 +
a2

ε
log

2a

εb
, (3.16)

which holds when a, ε > 0 and µ ≥ b (see, e.g. [FMT88, Kuk96]), when applied to (3.15) implies

T1 ≤
ν

2
ϕ′(‖u‖2V )‖Au‖2H + Cν−1ϕ′(‖u‖2V )‖u‖4V

(
1 + logCν−1‖u‖V

)
(3.17)
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for some positive constant C (that depends on λ∗). Finally, combining (3.14) and (3.17) yields

E sup
[0,t]

ϕ(‖u‖2V ) +
ν

2
E
∫ t

0
ϕ′(‖u‖2V )‖Au‖2Hdτ

≤ Eϕ(‖u0‖2V ) + ν−1E
∫ t

0
ϕ′(‖u‖2V )‖f‖2Hdτ

+ 2K1E
∫ t

0

(
ϕ′(‖u‖2V ) + ‖u‖2V ϕ′′(‖u‖2V )

)
(1 + ‖u‖2V )dτ

+ CK1E
(∫ t

0

(
ϕ′(‖u‖2V )(1 + ‖u‖2V )

)2
dτ

)1/2

+ Cν−1E
∫ t

0
ϕ′(‖u‖2V )‖u‖4V

(
1 + logCν−1‖u‖V

)
dτ. (3.18)

In order to control the last term in (3.18), recall that c.f. (3.5) we have a bound on νE
∫ t

0 ‖u‖
2
V dτ ,

and hence we need ϕ to satisfy

ϕ′(x) ≤ 1

x(1 + log x)
(3.19)

for x large. Therefore, we define ϕ : [0,∞)→ [0,∞) by

ϕ(x) = log(1 + log(1 + x)), (3.20)

which satisfies

0 ≤ ϕ′(x) =
1

(1 + x)(1 + log(1 + x))
.

Note that this function is smooth in a neighborhood of [0,∞). Upon bounding

|ϕ′′(x)| ≤ 2

(1 + x)2(1 + log(1 + x))

and using 1 + logCν−1x ≤ (1 + logCν−1)(1 + log(1 + x)), we obtain from (3.18) and (3.5) that

E sup
[0,t]

ϕ(‖u‖2V ) ≤ Eϕ(‖u0‖2V ) + ν−1E
∫ t

0
‖f‖2Hdτ + CK1E(t+ t1/2)

+ Cν−1(1 + logCν−1)

(
2E‖u0‖2H + E

∫ t

0
(CK0 + 2ν−1‖f‖2V ′)

)
eCK0t

=: M(t, ν, u0, f, g) (3.21)

for any time t > 0, where the dependence on g is through the constants K0 and K1 in (2.6).

Remark 3.2. Similarly to Remark 3.1, under stronger conditions on the growth of g, one may obtain
a t-independent bound for the right-side of (3.21). In particular, this is the case of additive noise.

3.2. Rigorous justification. We now turn to justifying the a priori estimates from Section 3.1.
From Theorem 4.2 in [GHZ09], we have that the maximal pathwise strong solution (u, ξ) is global
in time, i.e., P(ξ <∞) = 0.

Let ξn → ξ be an increasing sequence of stopping times which announces the maximal time ξ,
and let t > 0 be arbitrary. Since ϕ(x) ≤ x for all x ≥ 0, the estimate (3.21) — with t replaced by
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tn = ξn ∧ t — is fully justified for every n ≥ 1. Moreover, for any n ≥ 1, in view of (3.21) we
have M(tn, ν, u0, f, g) ≤M(t, ν, u0, f, g), so that we obtain an n-independent upper bound

sup
n≥1

(
E sup

[0,ξn∧t]
ϕ(‖u‖2V )

)
≤M(t, ν, u0, f, g). (3.22)

Note that since P(ξ <∞) = 0, we have ξn ∧ t→ t a.s. as n→∞.
Lastly, define an increasing sequence of sets Ωn ⊂ Ω by

Ωn = {ω ∈ Ω: ξn(ω) > t}

so that

lim
n→∞

|Ω− Ωn| → 0. (3.23)

From (3.22) we obtain

E

(
1Ωn sup

[0,ξn∧t]
ϕ(‖u‖2V )

)
≤ E

(
sup

[0,ξn∧t]
ϕ(‖u‖2V )

)
≤M(t, ν, u0, f, g) (3.24)

for any n ≥ 1, and in view of (3.23) and the monotone convergence theorem we have

E

(
1Ωn sup

[0,ξn∧t]
ϕ(‖u‖2V )

)
= E

(
1Ωn sup

[0,t]
ϕ(‖u‖2V )

)
→ E

(
sup
[0,t]

ϕ(‖u‖2V )

)
(3.25)

as n→∞. We conclude the proof of Theorem 2.2 by combining (3.24) and (3.25) to obtain

Eϕ(‖u(t)‖2V ) ≤M(t, ν, u0, f, g) (3.26)

for any deterministic time t > 0, with M defined by (3.21).

4. ALGEBRAIC MOMENTS FOR COMPACT SUBDOMAINS

In this section we give the proof of Theorem 2.3. LetO0 be an arbitrary compact subset ofO (no
regularity assumption on O0), and denote d0 = dist(O0, ∂O) > 0. Our goal is to estimate

E sup
t∈[0,T ]

ϕ
(
‖∇u(·, t)‖2L2(O0)

)
in terms of ν, T, u0, f, g, and d0, for any deterministic time T > 0, where ϕ is an algebraic, increas-
ing function, which is C2 in a neighborhood of [0,∞).

Let η(x) be a cutoff function adapted to (O0,O), i.e., η ∈ C∞0 (R2) such that

0 ≤ η ≤ 1, supp(η) ⊂ O, η ≡ 1 on O0, |∇η| ≤ Cd−1
0

where C > 0 is some constant. First, we estimate moments of the vorticity w = ∇⊥ · u on O0, i.e.,

E sup
[0,T ]

(
ϕ(‖η2w‖2L2(O))

)
for some C2 smooth, positive, increasing, unbounded (at infinity) function ϕ, to be chosen below.

Recall that the unique maximal pathwise strong solution (u, ξ) (c.f. Definition 2.1) constructed
in [GHZ09] obeys

E sup
t∈[0,τ ]

‖u‖2V + E
∫ τ

0
‖Au‖2Hdt <∞ (4.1)
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for any τ < ξ, and the solution is global P(ξ < ∞) = 0. Let τn → ξ be a sequence of stopping
times announcing the maximal (stopping) time of existence, and let τ = T ∧ τn. We have by (4.1)
that

1t≤τη
2w ∈ L2(Ω;C([0,∞);H)) ∩ L2(Ω;L2([0,∞);V ). (4.2)

In order to study the vorticity formulation of (1.1), observe that

∇⊥ · PHv = ∇⊥ · v −∇⊥ · QHv = ∇⊥ · v, (4.3)

and therefore ∇⊥ · Au = −∆w and ∇⊥ · B(u, u) = u · ∇w in the two-dimensional case. Here
we use the standard notation for the 2D curl operator∇⊥ · v = (−∂2, ∂1) · (v1, v2) = ∂1v2 − ∂2v1.
Upon applying the curl operator to the Navier-Stokes equation we thus formally obtain that

dw + (u · ∇w − ν∆w − F )dt = G(u)dW (4.4)

holds, where we denoted

F = ∇⊥ · f

and

G(u) = ∇⊥ · g(u).

Then, using the Itō product rule we have

d(η2w) + η2(u · ∇w − ν∆w − F )dt = η2G(u)dW (4.5)

which is an equation in V ′. Equivalently, in order to prove (4.5) consider v = ∇⊥(η2ṽ) with
ṽ ∈ H1, in the weak formulation (2.7), integrate by parts, and use (4.3). If (4.5) were an equation
in H , by the infinite dimensional Itō lemma we could directly conclude

d‖η2w‖2L2 = −2〈η2w, η2(u · ∇w − ν∆w − F )〉dt
+ ‖η2G(u)‖2L2(U,L2)dt+ 2〈η2w, η2G(u)〉dW. (4.6)

Instead, in order to justify (4.6) we proceed as follows. Let Pn be the nth Galerking projection
operator, onto the space spanned by the first n eigenfunction of A. Then, from (4.5) we obtain that

dPn(η2w) + Pn
(
η2(u · ∇w − ν∆w − F )

)
dt = Pn(η2G(u))dW

holds in H , and we may apply the Itō lemma to conclude

d‖Pn(η2w)‖2L2 = −2〈Pn(η2w), Pn
(
η2(u · ∇w − ν∆w − F )

)
〉dt

+ ‖Pn
(
η2G(u)

)
‖2L2(U,L2)dt+ 2〈Pn

(
η2w), Pn(η2G(u)

)
〉dW, (4.7)

which is understood as usual in the time-integrated sense. In view of the a priori regularity (4.2),
we may now pass n→∞ in each term of the time-integrated version of (4.7) and obtain (4.6).

Upon integrating by parts, we have

−2〈η2w, η2(u · ∇w)〉 = 4

∫
O
η3u · ∇ηw2 (4.8)

and as usual

−2〈η2w,−νη2∆w〉 = −2ν‖η2∇w‖2L2 − 8ν

∫
O
η2wη∇η · ∇w. (4.9)
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Then, in view of (4.8) and (4.9), the identity (4.6) may be written as

d‖η2w‖2L2 = −2ν‖η2∇w‖2L2dt+ 2〈η2w,F + 2ηwu · ∇η − 4νη∇η · ∇w〉dt
+ ‖η2G(u)‖2L2(U,L2)dt+ 2〈η2w, η2G(u)〉dW. (4.10)

Since ϕ is assumed to be C2 in a neighborhood of [0,∞), we may apply the Itō lemma one more
time to obtain

dϕ(‖η2w‖2L2)

= −2νϕ′(‖η2w‖2L2)‖η2∇w‖2L2dt

+ 2ϕ′(‖η2w‖2L2)
(
〈η2w,F 〉+ 2〈η2w, ηwu · ∇η〉 − 4ν〈η2w, η∇η · ∇w〉

)
dt

+ ϕ′(‖η2w‖2L2)‖η2G(u)‖2L2(U,L2)dt+ 8ϕ′′(‖η2w‖2L2)
∑
k

〈η2w, η2∇⊥ · gk(u)〉2dt

+ 2ϕ′(‖η2w‖2L2)〈η2w, η2G(u)〉dW. (4.11)

Let 0 ≤ τa < τb. We integrate (4.11) from τa to t, take a supremum over t ∈ (τa, τb), and take
expected values; we obtain

E sup
[τa,τb]

ϕ(‖η2w‖2L2) + 2νE
∫ τb

τa

ϕ′(‖η2w‖2L2)‖η2∇w‖2L2dt

≤ Eϕ(‖ηw(τa)‖2L2) + 2E
∫ τb

τa

(T1 + T2 + T3 + T4 + T5) dt+ E sup
t∈[τa,τb]

∣∣∣∣∫ t

τa

T6dW
∣∣∣∣ ,

(4.12)

where we denoted

T1 = 2ϕ′(‖η2w‖2L2)|〈η2w,F 〉|
T2 = 4ϕ′(‖η2w‖2L2)|〈η2w, ηwu · ∇η〉|
T3 = 8νϕ′(‖η2w‖2L2)|〈η2w, η∇η · ∇w〉|
T4 = ϕ′(‖η2w‖2L2)‖η2G(u)‖2L2(U,L2)

T5 = 8ϕ′′(‖η2w‖2L2)
∑
k

〈η2w, η2∇ · gk(u)〉2

T6 = 2ϕ′(‖η2w‖2L2)〈η2w, η2G(u)〉.

Let ε ∈ (0, 1/4) be arbitrary. We now choose ϕ such that

x1+εϕ′(x2) ≤ 1 (4.13)

for large x, a condition which is clearly satisfied by the function

ϕ(x) = (1 + x)
1−ε
2 (4.14)

which is also C2 smooth on (−1,∞). The above chosen ϕ additionally satisfies

0 < ϕ′(x2) ≤ 1, x2|ϕ′′(x2)| ≤ 1, (4.15)

bounds which will come in handy later. Having chosen ϕ, we turn to estimating the terms on the
right side of (4.12).
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We first bound the most interesting term T2, which corresponds to the nonlinear term. From
Hölder and (4.13) we have

T2 ≤ Cd−1
0 ϕ′(‖η2w‖2L2)‖η2w‖L2‖ηwu‖L2

≤ Cd−1
0

(
‖η2w‖1+ε

L2 ϕ
′(‖η2w‖2L2)

) 1
1+ε
(
ϕ′(‖η2w‖2L2)

) ε
1+ε

(∫
O
η2w2u2

)1/2

≤ Cd−1
0

(
ϕ′(‖η2w‖2L2)

) ε
1+ε ‖η2w‖

1
2

L
2(1+ε)
1−3ε

‖w‖
1
2

L2‖u2‖
1
2

L
1+ε
2ε
. (4.16)

We now use the Gagliardo-Nirenberg inequality

‖h‖Lp ≤ CO,p‖h‖
2
p

L2‖∇h‖
p−2
p

L2 (4.17)

which holds in two dimensions for all p ∈ [2,∞), and h ∈ H1
0 (O). Since both u and η2w belong

to H1
0 (O), using (4.17) we may bound

‖u‖
L

1+ε
ε
≤ C‖u‖

2ε
1+ε

L2 ‖∇u‖
1−ε
1+ε

L2 (4.18)

and

‖η2w‖
L

2(1+ε)
1−3ε

≤ C‖η2w‖
1−3ε
1+ε

L2

(
‖η2∇w‖

4ε
1+ε

L2 + d
− 4ε

1+ε

0 ‖∇u‖
4ε
1+ε

L2

)
(4.19)

where the constant C depends on ε (and blows up as ε → 0), but is independent of ν and d0.
Inserting the estimates (4.18) and (4.19) into the bound (4.16) yields

T2 ≤ Cd−1
0

(
ϕ′(‖η2w‖2L2)‖η2∇w‖2L2

) ε
1+ε ‖u‖

2ε
1+ε

L2 ‖∇u‖
2(1−ε)
1+ε

L2 + Cd
− 1+3ε

1+ε

0 ‖u‖
2ε
1+ε

L2 ‖∇u‖
2

1+ε

L2

≤ ν

2
ϕ′(‖η2w‖2L2)‖η2∇w‖2L2 + Cd−1−ε

0 ν−ε‖u‖2εL2‖∇u‖2(1−ε)
L2 + Cd

− 1+3ε
1+ε

0 ‖u‖
2ε
1+ε

L2 ‖∇u‖
2

1+ε

L2

≤ ν

2
ϕ′(‖η2w‖2L2)‖η2∇w‖2L2 + νd−1

0 ‖∇u‖
2
L2 + Cd−3

0 ν−
1
ε ‖u‖2L2 . (4.20)

Bounding the remaining terms on the right side of (4.12) is direct. Upon integrating by parts and
applying the Hölder inequality we have

T1 ≤ Cϕ′(‖η2w‖2L2)‖f‖L2

(
‖η2∇w‖L2 + d−1

0 ‖w‖L2

)
≤ ν

2
ϕ′(‖η2w‖2L2)‖η2∇w‖2L2 + Cν−1(1 + d−2

0 )‖f‖2L2 + ν‖∇u‖2L2 (4.21)

where C > 0 is a constant which is independent of d0 and ν. Similarly,

T3 ≤ Cd−1
0 νϕ′(‖η2w‖2L2)‖η2∇w‖L2‖ηw‖L2

≤ ν

2
ϕ′(‖η2w‖2L2)‖η2∇w‖2L2 + Cd−2

0 ν‖∇u‖2L2 . (4.22)

Note that we have ‖η2G(u)‖2L2(U,L2) ≤ Cη‖g(u)‖2V. From (2.3) with k = 1, we then estimate

T4 ≤ C‖g(u)‖2V ≤ K1(1 + ‖∇u‖2L2). (4.23)

Next, using (4.15) we also bound

T5 ≤ C‖η2w‖2L2ϕ
′′(‖η2w‖2L2)‖g(u)‖2V ≤ CK1(1 + ‖∇u‖2L2). (4.24)



MOMENTS FOR STRONG SOLUTIONS OF 2D STOCHASTIC NAVIER-STOKES IN A BOUNDED DOMAIN 13

Lastly, the Burkholder-Davis-Gundy inequality, (2.3), and (4.13) imply

2E sup
t∈[τa,τb]

∣∣∣∣∫ t

τa

T6dW
∣∣∣∣ ≤ CE(∫ τb

τa

ϕ′(‖η2w‖2L2)2‖η2w‖2L2‖η2G(u)‖2L2(U,L2)dt

)1/2

≤ CE
(∫ τb

τa

K1(1 + ‖∇u‖2L2)dt

)1/2

. (4.25)

Thus, by combining (4.12) with (4.20)–(4.25) we obtain

E sup
[τa,τb]

ϕ(‖η2w‖2L2) +
ν

2
E
∫ τb

τa

ϕ′(‖η2w‖2L2)‖η∇w‖2L2dt

≤ Eϕ(‖η2w(τa)‖2L2) + Cν(1 + d−2
0 )E

∫ τb

τa

‖∇u‖2L2dt

+ Cν−1/εd−3
0 E

∫ τb

τa

‖u‖2L2dt+ Cν−1(1 + d−2
0 )E

∫ τb

τa

‖f‖2L2dt

+ CE
(∫ τb

τa

K1(1 + ‖∇u‖2L2)dt

)1/2

+ CK1E
∫ τb

τa

(1 + ‖∇u‖2L2)dt (4.26)

for a suitable constant C > 0, which may depend on O and ε, but is independent of ν and d0.
It is left to combine (4.26) with (3.5), which gives

E sup
[τa,τb]

‖u‖2H + 2νE
∫ τb

τa

‖u‖2V ≤
(

2E‖u(τa)‖2H + E
∫ τb

τa

(CK0 + 2ν−1‖f‖2V ′)
)
eCK0(τb−τa).

Therefore, recalling that η ≡ 1 on O0 and setting τa = 0, τb = T , we get

E sup
[0,T ]

ϕ(‖w‖2L2(O0)) +
ν

2
E
∫ T

0
ϕ′(‖η2w‖2L2)‖η∇w‖2L2dt

≤ 2Eϕ(‖u0‖2V ) + Cν−1(1 + d−2
0 )E

∫ T

0
‖f‖2Hdt+ CK1(1 + T )

+ C
(
d−2

0 + ν−1/εd−3
0 T + CK1ν

−1
)(

2E‖u0‖2H + E
∫ T

0
(CK0 + 2ν−1‖f‖2V ′)

)
eCK0T

=: M̃ε(T, d
−1
0 , ν, u0, f, g). (4.27)

Bounds on ϕ(‖∇u‖2L2(O0)) now follow from the concavity of ϕ, and the next lemma.

Lemma 4.1. Let O0 ⊂ O be a compact subset and let d0 = dist(O0, ∂O). Let O1 be open such
that O0 ⊂ O1 ⊂ O, dist(O0, ∂O1) ≥ d0/4, and dist(O1, ∂O) ≥ d0/4. Then we have

‖∇u‖2L2(O0) ≤ C‖w‖
2
L2(O1) + Cd−2

0 ‖u‖
2
L2(O1) (4.28)

for some positive universal constant C.

This lemma follows from a covering argument and the classical interior H2 estimate for−∆w =
ψ in a ball, where u = ∇⊥ψ. Note that no smoothness is assumed on the set O0. We refer to
[Kuk01, Lemma 4.1] for a proof.
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At last, since ϕ is concave, ϕ(x) ≤ Cx, and ϕ(0) ≥ 0, from (4.27) and (4.28) we have that

E sup
[0,T ]

ϕ(‖∇u‖2L2(O0)) ≤ CE sup
[0,T ]

ϕ(‖w‖2L2(O1)) + CE sup
[0,T ]

ϕ(Cd−2
0 ‖u‖

2
L2(O1))

≤ CM̃ε(T, d
−1
0 , ν, u0, f, g)

+ Cd−2
0

(
2E‖u0‖2H + E

∫ T

0
(CK0 + 2ν−1‖f‖2V ′)

)
eCK0T

=: Mε(T, d
−1
0 , ν, u0, f, g) (4.29)

which concludes the proof of Theorem 2.3, modulo an argument similar to that in Section 3.2.
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et Marie Curie, Paris.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN CALIFORNIA

E-mail address: kukavica@usc.edu

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY

E-mail address: vvicol@math.princeton.edu


	1. Introduction
	2. Functional setting
	2.1. Deterministic framework
	2.2. Stochastic framework
	2.3. Conditions on the noise
	2.4. Notion of solution
	2.5. Results

	3. Double-logarithmic moments for the whole domain
	3.1. A priori estimates
	3.2. Rigorous justification

	4. Algebraic moments for compact subdomains
	Acknowledgements

	References

