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ABSTRACT. We address the local well-posedness of the Prandtl boundary layer equations. Using a new change
of variables we allow for more general data than previously considered, that is, we require the matching at the
top of the boundary layer to be at a polynomial rather than exponential rate. The proof is direct, via analytic
energy estimates in the tangential variables.
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1. INTRODUCTION

One of the most challenging problems in mathematical fluid mechanics is the inviscid limit of the Navier-
Stokes equations on a domainΩ ∈ R

d with a boundary (cf. [5, 6, 17, 18, 24, 25, 26, 34, 35] and ref-
erences therein). Near the boundary of the domain, the main difficulty is due to the incompatibility in
boundary conditions between the Navier-Stokes equations (uNS = 0 on ∂Ω) and the Euler equations
(uE · n = 0 on ∂Ω, wheren is the outward unit normal), giving rise to the boundary layer separa-
tion. The foundations for the boundary layer theory were laid by Prandtl, who in [30] made the ansatz
uNS(x, ỹ, t) = (u(x, ỹ/

√
ν, t),

√
νw(x, ỹ/

√
ν, t)). Inserting this velocity field in the Navier-Stokes equa-

tions and sending the kinematic viscosityν to zero, oneformally obtains the Prandtl boundary layer equa-
tions for the unknown velocity field(u,

√
νw)

∂tu− ∂Y Y u+ u∂xu+ w∂Y u+ ∂xP = 0 (1.1)

∂xu+ ∂Y w = 0 (1.2)

∂Y P = 0 (1.3)

in H = {(x, Y ) ∈ R
2 : Y > 0}, whereY = ỹ/

√
ν is the normal variable in the boundary layer. For details

on the formal derivation of the Prandtl boundary layer equations we refer the reader to [4, 12, 9, 29, 30] and
references therein. For simplicity of the presentation, inthis paper we consider the two-dimensional setting,
but all the methods and results presented here extend to the three-dimensional case as well (cf. Remark3.3
below). The system (1.1)–(1.3) is supplemented with the no-slip and the no-influx boundaryconditions

u(x, Y, t)|Y =0 = 0 (1.4)

w(x, Y, t)|Y =0 = 0 (1.5)

for t > 0, and the matching conditions with the Euler flow asY → ∞, via the Bernoulli law

lim
Y→∞

u(x, Y, t) = U(x, t) (1.6)

∂xP (x, t) = −(∂t + U(x, t)∂x)U(x, t) (1.7)

for x ∈ R
2, t > 0, whereU(x, t) is the trace at̃y = 0 of the tangential component of the Euler flowuE.

Note that (1.3) and (1.7) determine∂xP onH. The Prandtl equations (1.1)–(1.7) are supplemented with an
initial condition

u(x, Y, t)|t=0 = u0(x, Y ) (1.8)
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in H, which satisfies the compatibility condition with the Eulerflow and the compatibility arising from the
boundary condition

u0(x, Y = 0) = 0, lim
Y→∞

u0(x, Y ) = U(x, t)|t=0. (1.9)

From the mathematical point of view, the two basic problems that have to be addressed for (1.1)–(1.8) are
the well/ill-posedness of the equations (cf. [8, 10, 11, 12, 16, 23, 28, 31, 37]), and the rigorous justification of
the singular asymptotics through which the equations were derived in the inviscid limit (cf. [14, 15, 31, 32]).
For a complete survey of the mathematical and numerical results on the Prandtl boundary layer equations,
we refer the reader to [4, 9, 11, 29].

In this paper we address the issue of local well-posedness ofthe Prandtl boundary layer equations. In
establishing such results the main difficulty is to control the loss of onex-derivative in the convection terms
of (1.1). Whether such a control is possible depends on the functional space in which we work in. In the
general Sobolev-space setting, the example of [10] exhibits a solution which develops a singularity in finite
time. Additionally, in [12, 15] it is proven that if one linearizes the system (1.1)–(1.7) about certain unstable
flows, the resulting linear equations are ill-posed in Sobolev spaces. These strong instability results were
used in [13] to prove that the full, nonlinear equations, cannot give rise to a Lipschitz continuous semigroup
in Sobolev spaces, suggesting that in order to obtain a well-posed problem one needs to work either in
function spaces that impose either more structure on the evolution, or in spaces which are smoother than the
Sobolev spaces.

The available well-posedness results for the Prandtl boundary layer equations fall in one of the two cate-
gories: monotonicity in theY variable (cf. [28, 29, 37]); or analyticity in thex variable, Sobolev regularity
in they variable, and exponential decay ofu(x, Y, t) − U(x, t) asY → ∞ (cf. [23, 31, 32]). Besides the
local well-posedness of (1.1)–(1.7) in the analytic setting, Sammartino and Caflisch [31, 32] also establish
(by using the abstract Cauchy-Kowalewski theorem [1]) the convergence of the Navier-Stokes solution to
the Euler solution plus the Prandtl solution in the inviscidlimit, locally in time, thereby fully justifying the
Prandtl equations in this setting.

The main result of this paper, Theorem3.1 below, is to give a new local well-posedness theorem in
spaces of real-analytic functions for the Prandtl boundarylayer equations. We emphasize that analyticity is
a suitable tool for studying the physics the inviscid limit via asymptotic expansions, as was shown in [32].
The main improvement is that our proof does not require thatu(x, Y, t) − U(x, t) decays exponentially as
Y → ∞, which is not physically justified. Instead, we only requirethat the matching between the Prandtl
solution and the Euler solution, at the top of the boundary layer, is given by a power law1/Y 1+ǫ, for some
ǫ > 0. This is achieved by a suitable change of variables in the normal coordinate (cf. (2.4)–(2.5) below).
At the cost of studying an elliptic problem (inY ) with variable coefficients (inx), in the reformulated
Prandtl equations (cf. (2.6)–(2.10) below) the linearY growth due to the boundary condition at the top of
the boundary layer is moved from the linear term onto the nonlinearity, which has faster decay withY since
it is quadratic. In addition, our proof is elementary, via direct higher order energy estimates, and does not
rely on the abstract Cauchy-Kowalewski theorem. The analytic norm which we use in this paper has a direct
analogue for the Euler and Navier-Stokes equations (cf. [21, 22]), making this proof more amenable for
studying the inviscid limit.

From the physical point of view a classical quantity in boundary layer theory is the displacement thick-
ness, which quantifies the effect of the boundary layer on theEuler flowuE , and is defined as (cf. [3, 7, 33])

δ1(x) =

∫ ∞

0

(

1− u(x, Y )

U(x)

)

dY. (1.10)

More precisely,δ1 is the “distance through which streamlines just outside theboundary layer are displaced
laterally by the retardation of fluid in the boundary layer” (cf. Batchelor [3, p. 311]). Therefore, the polyno-
mial matching of order1/Y 1+ǫ (for anyǫ > 0) considered in this paper is sharp, as any slower power-law
decay is inconsistent with the definition of the displacement thickness (1.10). Polynomial matching at the
top of the boundary layer, but for Oleinik-type data, was also considered in [27, 36].
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The paper is organized as follows. In Section2 we derive an equivalent formulation of the Prandtl
equations (more details are given in AppendixA). In Section3 we introduce the functional framework of
the paper, state the main result, Theorem3.1, and give the a priori estimates needed to prove it assuming
some a priori bounds on the nonlinear, linear, and force terms appearing in (2.6) below. Sections4, 5, and6
are devoted to the proof of Lemmas3.5, 3.6, and3.7respectively.

2. REFORMULATION OF THE PRANDTL BOUNDARY LAYER EQUATIONS

In this section we introduce a change of variablesY 7→ y andu 7→ v which homogenizes the boundary
condition atY = ∞ and removes the resulting high order terms. Denote byA(x, t) the unique real-analytic
solution of the initial value problem

∂tA(x, t) + U(x, t)∂xA(x, t) = A(x, t)∂xU(x, t) (2.1)

A(x, t)|t=0 = 1 (2.2)

on R × [0, T ], for someT > 0. The existence and uniqueness (in the class of real analyticfunctions) of
A(x, t) on [0, T ] follows from the classical Cauchy-Kowalewski theorem since the functionsU(x, t) and
∂xU(x, t) are assumed to be uniformly real-analytic on[0, T ], with radius of analyticity bounded from
below by someτE > 0. By possibly reducingT we may assume that1/2 ≤ A(x, t) ≤ 2 on R × [0, T ]
(this is possible sinceU and∂xU are inL∞(R × [0, T ])). Let the uniform radius of real-analyticity of the
functionA(x, t) be bounded from below by someτ∗ > 0, which depends onτE and the analytic norm onU
and∂xU on [0, T ]. It is convenient to introduce the real-analytic function

a(x, t) = logA(x, t), (2.3)

so that we have∂xA/A = ∂xa. Define the functions

φ(y) = 〈y〉−θ

and

Φ(y) =

∫ y

0
φ(ζ) dζ,

where

〈y〉 =
√

1 + y2,

andθ > 0 is a parameter to be determined. We make the change of variables

y = Y A(x, t) (2.4)

v(x, y, t) = u(x, Y, t)− (1− φ(y))U(x, t) (2.5)

Under this change of variables, the Prandtl system (1.1)–(1.8) reads

∂tv −A2∂yyv +N(v) + L(v) = F (2.6)

where we denoted

N(v) = v∂xv − ∂xW (v)∂yv + ∂xaW (v)∂yv (2.7)

W (v)(x, y) =

∫ y

0
v(x, ζ) dζ (2.8)

L(v) = ∂xW (v)∂yφU + ∂xv(1− φ)U + ∂yv (Φ∂xU − ∂xaΦU)−W (v)∂xa∂yφU + v(1− φ)∂xU
(2.9)

F = (φ(1− φ) + Φ∂yφ)U∂xU − ∂xa∂yφΦU
2 −A2∂yyφU − φ∂xP (2.10)
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(cf. AppendixA for details). The system (2.6)–(2.10) is supplemented with the boundary conditions

v(x, y, t)|y=0 = u(x, Y, t)|Y =0 − (1− φ(0))U(x, t) = 0 (2.11)

lim
y→∞

v(x, y, t) = lim
Y→∞

u(x, Y, t)− U(x, t) = 0 (2.12)

for all (x, t) ∈ R× [0,∞), and initial condition

v(x, y, t)|t=0 = v0(x, y) = u0(x, Y )− (1− φ(y))U0(x). (2.13)

The initial datum is assumed to satisfy the compatibility conditions arising from (2.11)–(2.12), and hence

v0(x, y)|y=0 = 0

lim
y→∞

v0(x, y) = 0.

Moreover, we assume thatv0 is analytic in thex variable, with uniform radius of analyticity at leastτ0 > 0.
Analyticity in x is also assumed for the trace of the tangential component of the Euler flowU(x, t), and
the pressure of the Euler flowP (x, t). In the two-dimensional case, if the initial data for the Euler flow is
real-analytic, it remains real-analytic for all time (cf. [2, 20, 21, 22]), and its radius of analyticity at timet is
bounded from below byC exp(− exp(Ct)), for some positive constantC depending on the initial data. In
the three-dimensional case the persistence of real-analyticity holds (cf. [2, 21, 22]), i.e., a solution remains
analytic as long as it is regular.

3. A PRIORI ESTIMATES

We shall consider thex-analytic norm withy-weight given by

ρ(y) = 〈y〉α

for someα > 0 to be fixed later. Namely, for a functionV (x, y) and a numberτ0 > 0 we denote

‖V ‖2Xτ0
=
∑

m≥0

‖ρ(y)∂m
x V (x, y)‖2L2(H)τ

2m
0 M2

m,

where the analytic weightsMm are defined as

Mm =
(m+ 1)r

m!
(3.1)

for somer > 0 to be determined. Ifv(x, y, t) andτ(t) havet-dependence, we similarly denote

‖v(t)‖2Xτ(t)
=
∑

m≥0

‖ρ(y)∂m
x v(x, y, t)‖2L2(H)τ(t)

2mM2
m. (3.2)

If the t dependence is clear from the context we will omit it. Since the weightρ(y) does not depend onx,
the analytic norm may also be written as

‖v‖2Xτ
=
∑

m≥0

‖ρv‖2
Ḣm

x

τ2mM2
m.

For a positive numberτ > 0 we writev ∈ Xτ if ‖v‖Xτ
< ∞. The main result of this paper is:

Theorem 3.1. Fix real numbersα > 1/2, θ > α + 1/2, andr > 1. Assume that the initial data for the
underlying Euler flow is uniformly real analytic, with radius of analyticity at leastτE > 0 and analytic
norm bounded byGE > 0. There existsτ0 = τ0(r, τE , GE) > 0 such that for allv0 ∈ Xτ0 there is
T∗ = T∗(r, α, θ, τE , GE , τ0, ‖v0‖Xτ0

) > 0 such that the initial value problem(2.6)–(2.13) has a unique
real-analytic solution on[0, T∗].

Remark 3.2. The above theorem shows that solutions may be constructed even if the initial datumv0 decays
only as〈y〉−α−1/2−ǫ for arbitraryα > 1/2 andǫ > 0 so thatv0〈y〉α ∈ L2

y([0,∞)). This improves on the
previous works [12, 23, 31, 32] which require the initial data for the Prandtl system to match the underlying
Euler flowexponentiallyatY = ∞.
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Remark 3.3. Although we have stated the main theorem in two dimensions, i.e. x ∈ R, the same theorem
holds in the three-dimensional casex ∈ R

2. The relevant modifications needed are to redefine‖v‖2Xτ
as

∑

m≥0

∑

|α|=m

‖ρ(y)∂α
x v(x, y, t)‖2L2(H)τ

2m(t)M2
m,

and to let the functionA(x, t) from the change of variables (2.4) solve the PDE

∂tA(x, t) + (U(x, t) · ∇x)A(x, t) = (A(x, t) · ∇x)U(x, t).

Other modifications, such as the different exponents in Agmon’s inequality, are straightforward.

Remark 3.4. The proof consists of a priori estimates which can be made formal via the standard Picard
iteration procedure. This is possible since we are working in spaces of real-analytic functions.

We now turn to the a priori estimates needed to prove Theorem3.1. From the definition (3.2), we have
formally

1

2

d

dt
‖v‖2Xτ

+ (−τ̇)‖v‖2Yτ
=
∑

m≥0

(

1

2

d

dt
‖ρv‖2

Ḣm
x

)

τ2mM2
m, (3.3)

where we omitted the time time dependence ofv andτ , and have denoted

‖v‖2Yτ
=
∑

m≥1

‖ρv‖2
Ḣm

x

τ2m−1mM2
m. (3.4)

The heart of the matter consists of estimating the term on theright side of (3.3) via Sobolev energy estimates.
We fix m ≥ 0, apply∂m

x to (2.6), multiply the resulting equality byρ2∂m
x v, and integrate it over the half

plane, to obtain

1

2

d

dt
‖ρ∂m

x v‖2L2 − 〈∂m
x (A2∂yyv), ρ

2∂m
x v〉 = 〈ρ∂m

x (F −N(v)− L(v)), ρ∂m
x v〉. (3.5)

In the dissipative term we use the Leibniz rule to distributethe derivative inx, and then integrate by parts in
y to obtain

1

2

d

dt
‖ρ∂m

x v‖2L2 + ‖Aρ∂y∂m
x v‖2L2

= −2〈A∂yρ∂m
x v,Aρ∂y∂

m
x v〉 −

m
∑

j=1

(

m

j

)

〈A−2∂j
x(A

2)Aρ∂y∂
m−j
x v,Aρ∂y∂

m
x v〉

− 2
m
∑

j=1

(

m

j

)

〈A−1∂j
x(A

2)A∂yρ∂y∂
m−j
x v, ρ∂m

x v〉+ 〈ρ∂m
x (F −N(v)− L(v)), ρ∂m

x v〉. (3.6)

The integration by parts iny is formally justified by introducing a smooth cut-off function η(y) such that
η ≡ 1 on0 ≤ y ≤ 1 andη ≡ 0 ony ≥ 2. For anyR > 0 we have (ignoringA(x, t) since it doesn’t depend
ony)

∫

u∂yyuρ(y)η(y/R) dy =

∫

∂yu∂yuρ(y)η(y/R) dy − 1

2

∫

u2∂yyρη(y/R) dy

− 1

R

∫

u2∂yρ(y)∂yη(y/R) dy − 1

2R2

∫

u2ρ(y)∂yyη(y/R) dy.

Due to our choice ofρ one may passR → ∞ in the above equation, so that the last two terms on the right
side of the above identity vanish, justifying the integration by parts in (3.6). We recall thatρ(y) = 〈y〉α, and
hence

∂yρ(y) ≤ α〈y〉α−1 ≤ α

〈y〉ρ(y) ≤ αρ(y) (3.7)
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for all y ≥ 0. From (3.6) and (3.7), using‖A‖L∞ ≤ 2 and‖A−1‖L∞ ≤ 2 on [0, T ], we obtain

1

2

d

dt
‖ρ∂m

x v‖2L2 + ‖Aρ∂y∂m
x v‖2L2

≤ 4α‖ρ∂m
x v‖L2‖Aρ∂y∂m

x v‖L2 + 4
m
∑

j=1

(

m

j

)

‖∂j
x(A

2)‖L∞‖Aρ∂y∂m−j
x v‖L2‖Aρ∂y∂m

x v‖L2

+ 4α

m
∑

j=1

(

m

j

)

‖∂j
x(A

2)‖L∞‖Aρ∂y∂m−j
x v‖L2‖ρ∂m

x v‖L2 + |〈ρ∂m
x (F −N(v)− L(v)), ρ∂m

x v〉| .

(3.8)

Before estimating the force, linear, and nonlinear terms onthe right side of (3.8), we first check that the first
three terms on the right side of (3.8) can be suitably treated. Inserting the estimate (3.8) into (3.3), we obtain

1

2

d

dt
‖v‖2Xτ

+ (−τ̇)‖v‖2Yτ
+ ‖v‖2Zτ

≤ C
∑

m≥0

XmZm +
∑

m≥0

|〈ρ∂m
x (F −N(v)− L(v)), ρ∂m

x v〉| τ2mM2
m

+ C
∑

m≥1

m
∑

j=1

(

m

j

)

‖∂j
x(A

2)‖L∞Zm−j(Zm +Xm)τ jMmM−1
m−j

(3.9)

for some dimensional constantC > 0, where we have introduced the norm

‖v‖2Zτ
=
∑

m≥0

‖Aρ∂y∂m
x v‖2L2τ

2mM2
m,

and

Xm = ‖ρ∂m
x v‖L2τmMm (3.10)

Ym = ‖ρ∂m
x v‖L2τm−1/2m1/2Mm (3.11)

Zm = ‖Aρ∂y∂m
x v‖L2τmMm, (3.12)

so that we have conveniently

‖v‖2Xτ
=
∑

m≥0

X2
m (3.13)

‖v‖2Yτ
=
∑

m≥1

Y 2
m (3.14)

‖v‖2Zτ
=
∑

m≥0

Z2
m. (3.15)

In order to estimate∂j
x(A2) we assume that the Euler flowU does not blow up on[0, T ], and thatU(x, 0) is

a real-analytic function ofx. As a consequence of these two assumptions we have that for all t ∈ [0, T ] the
analyticity radius of the functionsU(·, t) and∂xU(·, t) are bounded from below by some strictly positive
constantτE (cf. [2, 21, 22]). More precisely, there exists a constantGE ≥ 1 such that

‖∂j
xU‖L∞([0,T ];L∞) + ‖∂j

x(∂xU)‖L∞([0,T ];L∞) ≤ GE
j!

τ jE
(3.16)

for all j ≥ 0. From the Cauchy-Kowalewski theorem we have that there exists 0 < τ∗ = τ∗(τE ,M, r) ≤
τE/2, andG ≥ 2GE such that

‖∂j
x(A

2)‖L∞([0,T ];L∞) ≤ G
1

τ j∗Mj

, (3.17)
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for all j ≥ 0, whereMj is as defined in (3.1). In fact, by possibly decreasingτ∗ and increasingG we may
also assume that

‖∂j
xa‖L∞([0,T ];L∞) ≤ G

1

τ j∗Mj

(3.18)

for all j ≥ 0. Therefore, inserting (3.17) into (3.9) we obtain

1

2

d

dt
‖v‖2Xτ

+ (−τ̇)‖v‖2Yτ
+ ‖v‖2Zτ

≤ C
∑

m≥0

XmZm +
∑

m≥0

|〈ρ∂m
x (F −N(v)− L(v)), ρ∂m

x v〉| τ2mM2
m

+ CG
∑

m≥1

m
∑

j=1

(

m

j

)

1

τ j∗Mj

Zm−j(Zm +Xm)τ jMmM−1
m−j

≤ C‖v‖Xτ
‖v‖Zτ

+
∑

m≥0

|〈ρ∂m
x (F −N(v)− L(v)), ρ∂m

x v〉| τ2mM2
m

+ CG
∑

m≥1

m
∑

j=1

(

τ

τ∗

)j

Zm−j(Zm +Xm)
m!Mm

j!Mj(m− j)!Mm−j
.

Note that by (3.1) we have

m!Mm

j!Mj(m− j)!Mm−j
=

(m+ 1)r

(j + 1)r(m− j + 1)r
≤ C (3.19)

for all 0 ≤ j ≤ m, for some sufficiently large constantC = C(r) > 0. Therefore, using the discrete Young
inequality

‖f · (g ∗ h)‖ℓ1 ≤ ‖f‖ℓ2‖g‖ℓ1‖h‖ℓ2 ,
and the assumption thatτ(t) is decreasing, withτ(0) = τ0 ≤ τ∗/2, we obtain

1

2

d

dt
‖v‖2Xτ

+ ‖v‖2Zτ
≤ C‖v‖Xτ

‖v‖Zτ
+
∑

m≥0

|〈ρ∂m
x (F −N(v)− L(v)), ρ∂m

x v〉| τ2mM2
m

+ CG‖v‖Zτ
(‖v‖Zτ

+ ‖v‖Xτ
)
∑

j≥1

(

τ0
τ∗

)j

≤ C‖v‖Xτ
‖v‖Zτ

+
∑

m≥0

|〈ρ∂m
x (F −N(v)− L(v)), ρ∂m

x v〉| τ2mM2
m

+ C0G
τ0

τ∗ − τ0
‖v‖Zτ

(‖v‖Zτ
+ ‖v‖Xτ

) (3.20)

for some fixed sufficiently large positive constantC0 = C0(r). Therefore, in order to absorb the‖v‖2Zτ
term

on the right side of the equation, we chooseτ0 = τ0(r, τ∗, G,C0) = τ0(r, τE , GE , C0) > 0 such that

C0G
τ0

τ∗ − τ0
≤ 1

4
, (3.21)

that isτ0 ≤ τ∗/(1 + 4C0G), and we immediately obtain from (3.20) and the Cauchy-Schwarz inequality
that

1

2

d

dt
‖v‖2Xτ

+ (−τ̇)‖v‖2Yτ
+

1

2
‖v‖2Zτ

≤ C1‖v‖2Xτ
+
∑

m≥0

|〈ρ∂m
x (F −N(v)− L(v)), ρ∂m

x v〉| τ2mM2
m,

(3.22)

for some positive constantC1 = C1(r). It is left to find suitable bounds for the the right side of (3.22). We
have the following lemmas.
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Lemma 3.5. Letα > 1/2. We have the estimate

N =
∑

m≥0

|〈ρ∂m
x (N(v)), ρ∂m

x v〉| τ2mM2
m ≤ Cτ−1‖v‖Zτ

(

‖v‖2Xτ
+ ‖v‖2Yτ

)

(3.23)

for some positive constantC depending onr > 1, the underlying Euler flow, andτ0.

Lemma 3.6. Letα > 1/2 andθ > 1 be such thatθ > α− 1/2. We have the bound

L =
∑

m≥0

|〈ρ∂m
x (L(v)), ρ∂m

x v〉| τ2mM2
m ≤ Cτ−1‖v‖Xτ

(‖v‖Xτ
+ ‖v‖Zτ

) + C‖v‖2Yτ
(3.24)

for some sufficiently large positive constantC depending onr, the analyticity radius and analytic norm of
the underlying Euler flow.

Lemma 3.7. Letα > 1/2 andθ > 1 be such thatθ > α+ 1/2. We have the bound

F =
∑

m≥0

|〈ρ∂m
x F, ρ∂m

x v〉| τ2mM2
m ≤ C‖v‖Xτ

(3.25)

for a suitable constantC > 0 depending on the underlying Euler flow,α, andθ.

The proofs of Lemmas3.5, 3.6, and3.7 are given in Sections4, 5, and6 below. Assuming the above
three lemmas hold, we may conclude the a priori estimates needed to prove the local existence of solutions
to (2.6)–(2.10). From (3.22)–(3.25) and the Cauchy-Schwarz inequality we obtain

1

2

d

dt
‖v‖2Xτ

+ (−τ̇)‖v‖2Yτ
+

1

2
‖v‖2Zτ

≤ C∗(1 + τ−2)‖v‖2Xτ
+ C∗τ

−1‖v‖Zτ
‖v‖2Xτ

+ C∗‖v‖Xτ
+ C∗‖v‖2Yτ

+ C∗τ
−1‖v‖Zτ

‖v‖2Yτ

(3.26)

for some positive constantC∗ depending on the underlying Euler flow,α, andθ. Let the analyticity radius
τ(t) satisfy the differential inequality

τ̇ + 2C∗ + 2C∗τ
−1‖v‖Zτ

≤ 0 (3.27)

with initial dataτ(0) = τ0. In particular it suffices to let

d

dt
(τ2) + 4C∗τ0 + 4C∗‖v‖Zτ

= 0

which gives

τ(t)2 = τ20 − 4C∗τ0t− 4C∗

∫ t

0
‖v(s)‖Zτ(s)

ds

≥ τ20 − 4C∗τ0t− 4C∗t
1/2

(
∫ t

0
‖v(s)‖2Zτ(s)

ds

)1/2

. (3.28)

The above estimate shows that at least for some short timeT∗ = T∗(C∗, τ0, ‖v0‖Xτ0
) we haveτ(t) > τ0/4

on [0, T∗], since by combining (3.26) with (3.27) we have

1

2

d

dt
‖v‖2Xτ

+
1

2
‖v‖2Zτ

≤ C∗(1 + 16τ−2
0 )‖v‖2Xτ

+ 4C∗τ
−1
0 ‖v‖Zτ

‖v‖2Xτ
+C∗‖v‖Xτ

≤ C∗(1 + 16τ−2
0 )‖v‖2Xτ

+
1

4
‖v‖2Zτ

+ 16C2
∗τ

−2
0 ‖v‖4Xτ

+ C∗‖v‖Xτ
(3.29)

on [0, T∗], and therefore, ifT∗ is chosen sufficiently small, we have
∫ t

0
‖v(s)‖2Zτ(s)

ds ≤ 2‖v0‖Xτ0
.

This concludes the proof of the a priori estimates, proving Theorem3.1.
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4. THE BOUND OF THE NONLINEAR TERM

In this section we prove Lemma3.5. We first write the nonlinear term as

N =
∑

m≥0

|〈ρ∂m
x N(v), ρ∂m

x v〉| τ2mM2
m ≤ N0 +N1 +N2 +N3 (4.1)

where

N0 = |〈ρN(v), ρv〉|
N1 =

∑

m≥1

|〈ρ∂m
x (v∂xv), ρ∂

m
x v〉| τ2mM2

m

N2 =
∑

m≥1

|〈ρ∂m
x (∂xW (v)∂yv), ρ∂

m
x v〉| τ2mM2

m

N3 =
∑

m≥1

|〈ρ∂m
x (∂xaW (v)∂yv), ρ∂

m
x v〉| τ2mM2

m.

The following lemmas shall be used throughout the rest of thepaper.

Lemma 4.1. Withρ(y) = 〈y〉α, whereα > 1/2, we have the bound

‖∂k
xv‖L∞

y L2
x
≤ C‖Aρ∂y∂k

xv‖L2
x,y

(4.2)

for all integersk ≥ 0, all t ∈ [0, T ], and some positive constantC = C(α).

Proof. For anyk ≥ 0, the function∂k
xv vanishes aty = 0, and thus

∂k
xv(x, y) =

∫ y

0
∂y∂

k
xv(x, ζ) dζ =

1

A(x)

∫ y

0
A(x)ρ(ζ)∂y∂

k
xv(x, ζ)ρ(ζ)

−1 dζ.

Taking theL2 norm in thex variable first, and then theL∞ norm in they variable gives

‖∂k
xv‖L∞

y L2
x
≤ ‖A−1‖L∞

∫ ∞

0
‖Aρ(ζ)∂y∂k

xv(·, ζ)‖L2
x
ρ(ζ)−1 dζ

≤ 2‖Aρ∂y∂k
xv‖L2

x,y
‖ρ−1‖L2

y

since‖A−1‖L∞ ≤ 2. This concludes the proof of the lemma ifρ−1 ∈ L2([0,∞)), which is ensured by
choosingα > 1/2. �

Using the Agmon inequality, Lemma4.1 implies

‖∂k
xv‖L∞

x,y
≤ C‖Aρ∂y∂k

xv‖1/2L2
x,y

‖Aρ∂y∂k+1
x v‖1/2

L2
x,y

(4.3)

for all k ≥ 0.

Lemma 4.2. Withρ(y) = 〈y〉α, whereα > 1/2, we have the bound

‖∂k
xW (v)‖L∞

y L2
x
≤ C‖ρ∂k

xv‖L2
x,y

(4.4)

for all integersk ≥ 0, t ∈ [0, T ], whereC = C(α) is a sufficiently large constant.

Proof. We recall from (2.8) thatW (v)(x, y) =
∫ y
0 v(x, ζ) dζ. As in the proof of Lemma4.1, we estimate

‖∂k
xW (v)(·, y)‖L2

x
≤
∫ y

0
‖∂k

xv(·, ζ)‖L2
x
dζ =

∫ y

0
‖ρ(ζ)∂k

xv(·, ζ)‖L2
x
ρ(ζ)−1 dζ

≤
∫ ∞

0
‖ρ(ζ)∂k

xv(·, ζ)‖L2
x
ρ(ζ)−1 dζ

≤ ‖ρ∂k
xv‖L2

x,y
‖ρ−1‖L2

y
.
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Hence, we obtain

‖∂k
xW (v)‖L∞

y L2
x
≤ C(α)‖ρ∂k

xv‖L2
x,y

providedρ−1 ∈ L2([0,∞)). This is ensured byα > 1/2 and the proof of the lemma is concluded. �

Using Agmon’s inequality in thex variable, Lemma4.2 implies

‖∂k
xW (v)‖L∞

x,y
≤ C‖ρ∂k

xv‖
1/2
L2
x,y

‖ρ∂k+1
x v‖1/2

L2
x,y

(4.5)

for some positive constantC. We now proceed by estimating the four terms on the far right side of (4.1).

4.1. N0 bound. The termN0 is bounded using the Hölder inequality as

N0 ≤ ‖ρv‖L2 (‖ρv∂xv‖L2 + ‖ρ∂xW (v)∂yv‖L2 + ‖ρ∂xaW (v)∂yv‖L2)

≤ ‖ρv‖L2

(

‖ρ∂xv‖L2‖v‖L∞ + ‖A−1‖L∞‖Aρ∂yv‖L2‖∂xW (v)‖L∞

+ ‖A−1‖L∞‖∂xa‖L∞‖Aρ∂yv‖L2‖W (v)‖L∞

)

.

We apply (4.3), (4.5), and recall the notation (3.10)–(3.12) to obtain

N0 ≤ Cτ−1
(

X0Y1Z
1/2
0 Z

1/2
1 +X0Z0Y

1/2
1 Y

1/2
2 + τ3/4X0Z0X

1/2
0 Y

1/2
1

)

≤ Cτ−1
(

‖v‖Xτ
‖v‖Yτ

‖v‖Zτ
+ ‖v‖3/2Xτ

‖v‖1/2Yτ
‖v‖Zτ

)

(4.6)

for some positive constantC = C(α,G, τE , τ0).

4.2. N1 bound. In order to boundN1, we use the Leibniz rule and the Cauchy-Schwarz inequality to get

N1 ≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j
xv∂

m−j+1
x v‖L2‖ρ∂m

x v‖L2τ2mM2
m. (4.7)

For 0 ≤ j ≤ [m/2] we bound (using the Hölder inequality, (4.2), and the Agmon inequality in thex
variable)

‖ρ∂j
xv∂

m−j+1
x v‖L2 ≤ ‖∂j

xv‖L∞‖ρ∂m−j+1
x v‖L2

≤ C‖Aρ∂y∂j
xv‖

1/2
L2 ‖Aρ∂y∂j+1

x v‖1/2
L2 ‖ρ∂m−j+1

x v‖L2 , (4.8)

and similarly, for[m/2] + 1 ≤ j ≤ m, we have

‖ρ∂j
xv∂

m−j+1
x v‖L2 ≤ ‖ρ∂j

xv‖L2‖∂m−j+1
x v‖L∞

≤ C‖ρ∂j
xv‖L2‖Aρ∂y∂m−j+1

x v‖1/2
L2 ‖Aρ∂y∂m−j+2

x v‖1/2
L2 , (4.9)

for some sufficiently large constantC = C(α,G). Inserting (4.8) and (4.9) into (4.7) we obtain

N1 ≤ Cτ−1/2
∑

m≥1

[m/2]
∑

j=0

Z
1/2
j Z

1/2
j+1Ym−j+1Ym

(

(

m

j

)

Mm

M
1/2
j M

1/2
j+1Mm−j+1(m− j + 1)1/2m1/2

)

+ Cτ−1/2
∑

m≥1

m
∑

j=[m/2]+1

YjZ
1/2
m−j+1Z

1/2
m−j+2Ym

(

(

m

j

)

Mm

MjM
1/2
m−j+1M

1/2
m−j+2(j + 1)1/2m1/2

)

.

(4.10)

Using the definition (3.1) of the analytic weightsMm, we may bound
(

m

j

)

Mm

M
1/2
j M

1/2
j+1Mm−j+1(m− j + 1)1/2m1/2

≤ (m+ 1)rj1/2(m− j + 1)

(j + 1)r(m− j + 1)r(m− j + 1)1/2m1/2

≤ C(j + 1)1/2−r (4.11)
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for all 0 ≤ j ≤ m/2, and similarly

(

m

j

)

Mm

MjM
1/2
m−j+1M

1/2
m−j+2(j + 1)1/2m1/2

≤ (m+ 1)r(m− j + 2)3/2

(j + 1)r(m− j + 1)r(j + 1)1/2m1/2

≤ C(m− j + 1)1/2−r (4.12)

for all m/2 ≤ j ≤ m, and some positive constantC = C(r) > 0. From (4.10), (4.11), and (4.12) we obtain

N1 ≤ Cτ−1/2
∑

m≥1

[m/2]
∑

j=0

Z
1/2
j Z

1/2
j+1Ym−j+1Ym(j + 1)1/2−r

+ Cτ−1/2
∑

m≥1

m
∑

j=[m/2]+1

YjZ
1/2
m−j+1Z

1/2
m−j+2Ym(m− j + 1)1/2−r. (4.13)

Using (4.13) and the discrete Young and Hölder inequalities

‖f · (g ∗ h)‖ℓ1 ≤ C‖f‖ℓ2‖g‖ℓ1‖h‖ℓ2 , (4.14)

with fk = Yk, gk = Z
1/2
k Z

1/2
k+1(k + 1)1/2−r, hk = Yk+1 for the first term on the right side of (4.13) and

respectivelyfk = Yk, gk = Z
1/2
k+1Z

1/2
k+2(k+1)1/2−r , hk = Yk for the second term on the right side of (4.13),

we obtain

N1 ≤ Cτ−1/2‖v‖Zτ
‖v‖2Yτ

, (4.15)

providedr − 1/2 > 1/2, i.e.,r > 1, so that{k1/2−r}∞k=1 ∈ ℓ2.

4.3. N2 bound. In order to boundN2, we write

N2 ≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j+1
x W (v)∂y∂

m−j
x v‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤
∑

m≥1

[m/2]
∑

j=0

(

m

j

)

‖A−1‖L∞‖∂j+1
x W (v)‖L∞‖Aρ∂y∂m−j

x v‖L2‖ρ∂m
x v‖L2τ2mM2

m

+
∑

m≥1

m
∑

j=[m/2]+1

(

m

j

)

‖∂j+1
x W (v)‖L∞

y L2
x
‖ρ∂y∂m−j

x v‖L2
yL

∞

x
‖ρ∂m

x v‖L2τ2mM2
m (4.16)

Using (4.5), we obtain

N2 ≤ C
∑

m≥1

[m/2]
∑

j=0

(

m

j

)

‖ρ∂j+1
x v‖1/2

L2 ‖ρ∂j+2
x v‖1/2

L2 ‖Aρ∂y∂m−j
x v‖L2‖ρ∂m

x v‖L2τ2mM2
m

+ C
∑

m≥1

m
∑

j=[m/2]+1

(

m

j

)

‖ρ∂j+1
x v‖L2‖Aρ∂y∂m−j

x v‖1/2
L2 ‖Aρ∂y∂m−j+1

x v‖1/2
L2 ‖ρ∂m

x v‖L2τ2mM2
m.

(4.17)
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Using the notation (3.10)–(3.12) the above inequality may be rewritten as

N2 ≤ Cτ−1/2
∑

m≥1

[m/2]
∑

j=0

Y
1/2
j+1Y

1/2
j+2Zm−jYm

(

(

m

j

)

Mm

M
1/2
j+1M

1/2
j+2Mm−j(j + 1)1/2m1/2

)

+ Cτ−1/2
∑

m≥1

m
∑

j=[m/2]+1

Yj+1Z
1/2
m−jZ

1/2
m−j+1Ym

(

(

m

j

)

Mm

Mj+1M
1/2
m−jM

1/2
m−j+1(j + 1)1/2m1/2

)

(4.18)

whereC = C(α, r,G) is a sufficiently large constant. Using the explicit definition of Mm in (3.1), we
bound
(

m

j

)

Mm

M
1/2
j+1M

1/2
j+2Mm−j(j + 1)1/2m1/2

≤ (m+ 1)r(j + 1)3/2

(j + 1)r+1/2(m− j + 1)rm1/2
≤ C(j + 2)1/2−r (4.19)

for all 0 ≤ j ≤ m/2, and
(

m

j

)

Mm

Mj+1M
1/2
m−jM

1/2
m−j+1(j + 1)1/2m1/2

≤ (m+ 1)r(j + 1)(m− j + 1)1/2

(j + 1)r(m− j + 1)r(j + 1)1/2m1/2
≤ C(m− j + 1)1/2−r

(4.20)

for all m/2 ≤ j ≤ m, whereC = C(r) is a positive constant. We have thus proven that

N2 ≤ Cτ−1/2
∑

m≥1

[m/2]
∑

j=0

Y
1/2
j+1Y

1/2
j+2Zm−jYm(j + 1)1/2−r

+ Cτ−1/2
∑

m≥1

m
∑

j=[m/2]+1

Yj+1Z
1/2
m−jZ

1/2
m−j+1Ym(m− j + 1)1/2−r (4.21)

and so by the discrete Hölder and Young inequalities, cf. (4.14) we obtain

N2 ≤ Cτ−1/2‖v‖Zτ
‖v‖2Yτ

(4.22)

as long asr > 1, for some positive constantC = C(τ0, α, r, τE , G) > 0.

4.4. N3 bound. It is left to boundN3. In this term a slight complication arises since we need to take higher
derivatives of∂xa. In order to deal with this we use (3.18), and recall thatτ ≤ τ0 ≪ τ∗ < τE. From the
Leibniz rule, (3.18), and (4.5), we get

N3 ≤
∑

m≥1

m
∑

j=0

j
∑

k=0

(

m

j

)(

j

k

)

‖∂k+1
x a‖L∞‖∂j−k

x W (v)ρ∂y∂
m−j
x v‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤ C
∑

m≥1

m
∑

j=0

j
∑

k=0

m!

(m− j)!(j − k)!(k + 1)r
‖A−1‖L∞‖∂j−k

x W (v)‖L∞

× ‖Aρ∂y∂m−j
x v‖L2‖ρ∂m

x v‖L2τ2m−k−1M2
m

≤ C
∑

m≥1

m
∑

j=0

j
∑

k=0

m!

(m− j)!(j − k)!(k + 1)r
‖ρ∂j−k

x v‖1/2
L2 ‖ρ∂j−k+1

x v‖1/2
L2

× ‖Aρ∂y∂m−j
x v‖L2‖ρ∂m

x v‖L2τ2m−k−1M2
m (4.23)
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for some constantC = C(G, τE , τ0) > 0 that depends on the analyticity radius and analytic norm of the
underlying Euler flow. Using the notation introduced in (3.10)–(3.12), the above estimate becomes

N3 ≤ Cτ−3/4
∑

m≥1

m
∑

j=0

j
∑

k=0

X
1/2
j−kY

1/2
j−k+1Zm−jYmΓm,j,k (4.24)

for some positive constantC = C(G, τE , τ0), where

Γm,j,k =
m!

(m− j)!(j − k)!
· Mm

(k + 1)rM
1/2
j−kM

1/2
j−k+1(j − k + 1)1/4Mm−jm1/2

. (4.25)

Using the explicit definition ofMm, we obtain that

Γm,j,k ≤ C
(m+ 1)r(j − k + 1)1/4

(k + 1)r(j − k + 1)r(m− j + 1)rm1/2

≤ C
(m+ 1)r

(k + 1)r(j − k + 1)r(m− j + 1)rm1/4

≤ C







(k + 1)−r−1/4, j ≤ m/2

(k + 1)−r−1/4, j ≥ m/2, k ≤ j/2

(m− j + 1)−r−1/4, j ≥ m/2, k ≥ j/2,

(4.26)

for some positive constantC = C(r). If r > 1 it then follows from (4.24), (4.26), and the discrete Hölder
and Young inequalities that

N3 ≤ Cτ−3/4‖v‖1/2Xτ
‖v‖Zτ

‖v‖3/2Yτ
(4.27)

for some positive constantC. Lastly, combining (4.6), (4.15), (4.22), and (4.27) we obtain

N ≤ Cτ−1‖v‖Zτ

(

‖v‖Xτ
‖v‖Yτ

+ ‖v‖3/2Xτ
‖v‖1/2Yτ

+ ‖v‖2Yτ
+ ‖v‖1/2Xτ

‖v‖3/2Yτ

)

≤ Cτ−1‖v‖Zτ

(

‖v‖2Xτ
+ ‖v‖2Yτ

)

(4.28)

for some positive constantC depending onr > 1, the underlying Euler flow, andτ0. This concludes the
bounds on the nonlinear term.

5. THE BOUND OF THE LINEAR TERM

In this section we bound

L =
∑

m≥0

‖ρ∂m
x L(v)‖L2‖ρ∂m

x v‖L2τ2mM2
m ≤ L0 + L1 + L2 + L3 + L4 + L5 + L6 (5.1)

where by (2.9) we have

L(v) = ∂xW (v)∂yφU + ∂xv(1 − φ)U + ∂yvΦ∂xU − ∂yvΦ∂xaU −W (v)∂yφ∂xaU + v(1− φ)∂xU

= L1 + L2 + L3 + L4 + L5 + L6, (5.2)

and where we denoted

Li =
∑

m≥1

‖ρ∂m
x Li‖L2‖ρ∂m

x v‖L2τ2mM2
m (5.3)

for eachi ∈ {1, . . . , 6} and

L0 = ‖ρL(v)‖L2‖ρv‖L2 . (5.4)

From (3.16)–(3.18) and the Leibniz rule, we may prove that the functionsU(·, t), ∂xU(·, t), and∂xa(·, t)U(·, t)
have radius of analyticity at leastτ∗ > 0 on [0, T ], i.e., upon possibly increasingG we have

‖∂k
xU‖L∞([0,T ];L∞(R)) + ‖∂k

x(∂xU)‖L∞([0,T ];L∞(R)) + ‖∂k
x(∂xaU)‖L∞([0,T ];L∞(R)) ≤

G

τk∗Mk
(5.5)
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for all k ≥ 0. Recalling from (3.21) thatτ∗ was chosen to satisfyτ∗/(1 + C0G) ≥ τ0 ≥ τ , we may write

τ(t)

τ∗
≤ 1

2
(5.6)

for all t ∈ [0, T ]. Also, note that we have|∂yφ(y)| ≤ C/〈y〉θ+1, and sinceρ(y) = 〈y〉α, we haveρ∂yφ ∈
L2
y([0,∞)) if and only if θ > α− 1/2. Lastly,Φ ∈ L∞

y ([0,∞)) wheneverθ > 1.

5.1. L0 bound. Using the Hölder inequality and Lemma4.2, we have

L0 ≤ C‖ρv‖L2

(

‖∂xW (v)‖L∞

y L2
x
‖ρ∂yφ‖L2

y
‖U‖L∞

x
+ ‖ρ∂xv‖L2‖1 − φ‖L∞

y
‖U‖L∞

x

+ ‖ρA∂yv‖L2‖A−1‖L∞

x
‖Φ‖L∞

y
‖∂xU‖L∞

x
+ ‖ρA∂yv‖L2‖A−1‖L∞

x
‖Φ‖L∞

y
‖∂xaU‖L∞

x

+ ‖W (v)‖L∞

y L2
x
‖ρ∂yφ‖L2

y
‖∂xaU‖L∞

x
+ ‖ρv‖L2‖1− φ‖L∞

y
‖∂xU‖L∞

x

)

≤ Cτ−1X0 (X1 + Z0 +X0)

≤ Cτ−1‖v‖Xτ
(‖v‖Xτ

+ ‖v‖Zτ
) , (5.7)

for some positive constantC = C(r,G, τ∗). Here we usedθ > α − 1/2 > 0, so that1 − φ,Φ ∈ L∞
y and

ρ∂yφ ∈ L2
y.

5.2. L1 bound. In order to bound

L1 =
∑

m≥1

‖ρ∂m
x (∂xW (v)∂yφU)‖L2‖ρ∂m

x v‖L2τ2mM2
m,

we use the Leibniz rule and the Hölder inequality to obtain

L1 ≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖∂j+1
x W (v)‖L∞

y L2
x
‖ρ∂yφ‖L2

y
‖∂m−j

x U‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m.

From Lemma4.2and (5.5), after recalling the notation (3.10)–(3.12), we obtain

L1 ≤ CG
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j+1
x v‖L2

1

τm−j
∗ Mm−j

‖ρ∂m
x v‖L2τ2mM2

m

≤ CG
∑

m≥1

m
∑

j=0

Yj+1Ym

(

τ

τ∗

)m−j ((m

j

)

M2
m

Mj+1(j + 1)1/2Mmm1/2Mm−j

)

. (5.8)

Using the definition ofMm we may bound
(

m

j

)

M2
m

Mj+1(j + 1)1/2Mmm1/2Mm−j
≤ m!Mm

j!Mj(m− j)!Mm−j

j

(j + 1)1/2m1/2
≤ C (5.9)

for someC = C(r) > 0, for all 0 ≤ j ≤ m. Since by (5.6) we haveτ/τ∗ ≤ 1/2, (5.8) and the above
estimate and give

L1 ≤ C
∑

m≥1

m
∑

j=0

Yj+1Ym
1

2m−j
≤ C‖u‖2Yτ

(5.10)

for some constantC = C(G, r) > 0, by using the discrete Young and Hölder inequalities.
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5.3. L2 bound. From the Leibniz rule and the Hölder inequality we have

L2 =
∑

m≥1

‖ρ∂m
x (∂xv(1 − φ)U)‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j+1
x v‖L2‖1− φ‖L∞

y
‖∂m−j

x U‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m. (5.11)

From (5.5) and the above estimate we obtain

L2 ≤ CG
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j+1
x v‖L2

1

τm−j
∗ Mm−j

‖ρ∂m
x v‖L2τ2mM2

m

≤ CG
∑

m≥1

m
∑

j=0

Yj+1Ym

(

τ

τ∗

)m−j ((m

j

)

M2
m

Mj+1(j + 1)1/2Mmm1/2Mm−j

)

(5.12)

which boundsL2 from above exactly by the right side of (5.8) and we obtain

L2 ≤ C‖u‖2Yτ
(5.13)

for some constantC = C(G, r) > 0.

5.4. L3 bound. As above, from the Leibniz rule and the Hölder inequality weobtain

L3 =
∑

m≥1

‖ρ∂m
x (∂yvΦ∂xU)‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂y∂j
xvΦ∂

m−j+1
x U‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤ 2
∑

m≥1

m
∑

j=0

(

m

j

)

‖Aρ∂y∂j
xv‖L2‖Φ‖L∞

y
‖∂m−j

x (∂xU)‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m (5.14)

since‖1/A‖L∞

x
≤ 2 on [0, T ]. Inserting estimate (5.5), into the bound (5.14) above, we get

L3 ≤ CG
∑

m≥1

m
∑

j=0

(

m

j

)

‖Aρ∂y∂j
xv‖L2

1

τm−j
∗ Mm−j

‖ρ∂m
x v‖L2τ2mM2

m

≤ CG
∑

m≥1

m
∑

j=0

ZjXm

(

τ

τ∗

)m−j ((m

j

)

Mm

MjMm−j

)

. (5.15)

Recall that we havem!Mm/(j!Mj(m − j)!Mm−j) ≤ C by (3.19), and therefore the estimate (5.15) com-
bined with the discrete Young and Hölder inequalities gives

L3 ≤ C
∑

m≥1

m
∑

j=0

ZjXm
1

2m−j
≤ C‖v‖Xτ

‖v‖Zτ
(5.16)

for some positive constantC = C(r,G).

5.5. L4 bound. Similarly to (5.14) we obtain

L4 ≤ 2
∑

m≥1

m
∑

j=0

(

m

j

)

‖Aρ∂y∂j
xv‖L2‖Φ‖L∞

y
‖∂m−j

x (∂xaU)‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m. (5.17)

Using (5.5) to bound‖∂m−j
x (∂xaU)‖L∞

x
, and (3.19) to treat the combinatorial remainder, we conclude that

L4 ≤ C‖v‖Xτ
‖v‖Zτ

(5.18)

for some positive constantC = C(r,G).
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5.6. L5 bound. In order to boundL5 we use the Leibniz rule and Hölder inequalities and obtain

L5 =
∑

m≥1

‖ρ∂m
x (W (v)∂yφ∂xaU)‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖∂j
xW (v)‖L∞

y L2
x
‖ρ∂yφ‖L2

y
‖∂m−j

x (∂xaU)‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m. (5.19)

Using Lemma4.2and (5.5), estimate (5.19) implies

L5 ≤ CG
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j
xv‖L2

1

τm−j
∗ Mm−j

‖ρ∂m
x v‖L2τ2mM2

m

≤ CG
∑

m≥1

m
∑

j=0

XjXm

(

τ

τ∗

)m−j ((m

j

)

Mm

MjMm−j

)

. (5.20)

From (3.19), (5.6), the discrete Young and Hölder inequalities, and the above estimate, we have

L5 ≤ C
∑

m≥1

m
∑

j=0

XjXm
1

2m−j
≤ C‖v‖2Xτ

(5.21)

for some positive constantC = C(r,G).

5.7. L6 bound. As in (5.19), we have the bound

L6 =
∑

m≥1

‖ρ∂m
x (v(1 − φ)∂xU)‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j
xv‖L2‖1− φ‖L∞

y
‖∂m−j

x (∂xU)‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m. (5.22)

From (3.19), (5.5), and (5.6), similarly to (5.21) we obtain

L6 ≤ C‖v‖2Xτ
(5.23)

for some positive constantC = C(r,G).
We summarize the bounds on the linear termL by collecting the upper bounds of (5.7), (5.10), (5.13),

(5.16), (5.18), (5.21), and (5.23), as

L ≤ Cτ−1‖v‖Xτ
(‖v‖Xτ

+ ‖v‖Zτ
) + C‖v‖2Yτ

(5.24)

for some sufficiently large positive constantC depending onr, the analyticity radius and analytic norm of
the underlying Euler flow.

6. THE BOUND ON THE FORCE TERM

In this section we bound

F =
∑

m≥0

|〈ρ∂m
x F, ρ∂m

x v〉| τ2mM2
m ≤ F1 + F2 + F3 +F4

where by (2.10) we have

F = (φ(1− φ) + Φ∂yφ)U∂xU − ∂yφΦ∂xaU
2 − ∂yyφA

2U − φ∂xP = F1 + F2 + F3 + F4

and we have denoted

Fi =
∑

m≥0

‖ρ∂m
x Fi‖L2‖ρ∂m

x v‖L2τ2mM2
m (6.1)

for all i ∈ {1, . . . , 4}. To simplify the analysis, as in (5.5), from (3.16)–(3.18) and the Leibniz rule we may
assume that the functionsU(·, t)∂xU(·, t), ∂xa(·, t)U2(·, t), A2(·, t)U(·, t), and∂xP (·, t) are real-analytic
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for all t ∈ [0, T ], with uniform analyticity radius bounded from below byτ∗. That is, by possibly increasing
G we may assume that

‖∂j
x(U∂xU)‖L2

x
+ ‖∂j

x(∂xaU
2)‖L2

x
+ ‖∂j

x(A
2U)‖L2

x
+ ‖∂j

x(∂xP )‖L2
x
≤ G

τ j∗Mj

(6.2)

for all j ≥ 0 and allt ∈ [0, T ]. HereMj is as defined in (3.1), and for allt ∈ [0, T ] we additionally have

τ(t)

τ∗
≤ 1

2
. (6.3)

6.1. F1 bound. From the definition ofF1 (cf. (6.1)) and the Hölder inequality we have

F1 ≤
∑

m≥0

(

‖ρφ(1 − φ)‖L2
y
+ ‖ρΦ∂yφ‖L2

y

)

‖∂m
x (U∂xU)‖L2

x
‖ρ∂m

x v‖L2τ2mM2
m. (6.4)

In order to bound theL2
y-terms we first note that

‖ρφ(1− φ)‖L2
y
≤ ‖ρφ‖L2

y
‖1− φ‖L∞

y
≤ C(α, θ) (6.5)

as long asρ(y)φ(y) = 1/〈y〉θ−α ∈ L2
y, i.e., if we impose thatθ > α+1/2. Similarly, as long asθ > α−1/2

we haveρ∂yφ ∈ L2
y, and if additionallyθ > 1, we haveΦ ∈ L∞

y so that

‖ρΦ∂yφ‖L2
y
≤ ‖ρ∂yφ‖L2

y
‖Φ‖L∞

y
≤ C(α, θ). (6.6)

Combining (6.2)–(6.6) we obtain

F1 ≤ CG
∑

m≥0

1

τm∗ Mm
‖ρ∂m

x v‖L2τ2mM2
m ≤ CG

∑

m≥0

(

τ

τ∗

)m

Xm ≤ CG
∑

m≥0

1

2m
Xm (6.7)

so that from the discrete Cauchy-Schwartz inequality we have

F1 ≤ C‖v‖Xτ
(6.8)

for some sufficiently large constantC = C(G,α, θ) > 0.

6.2. F2 bound. We obtain from the Hölder inequality that

F2 =
∑

m≥0

‖ρ∂m
x (∂yφΦ∂xaU

2)‖L2‖ρ∂m
x v‖L2τ2mM2

m

≤
∑

m≥0

‖ρ∂yφ‖L2
y
‖Φ‖L∞

y
‖∂m

x (∂xaU
2)‖L2

x
‖ρ∂m

x v‖L2τ2mM2
m. (6.9)

Assuming thatθ > α− 1/2 andθ > 1, we have

‖ρ∂yφ‖L2
y
‖Φ‖L∞

y
≤ C(α, θ)

and therefore, by using (6.2)–(6.3) we obtain similarly to (6.7) that

F2 ≤ CG
∑

m≥0

1

τm∗ Mm
‖ρ∂m

x v‖L2τ2mM2
m ≤ CG

∑

m≥0

1

2m
Xm. (6.10)

Thus we obtain by the Cauchy-Schwarz inequality that

F2 ≤ C‖v‖Xτ
(6.11)

for some sufficiently large constantC = C(G,α, θ) > 0.
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6.3. F3 bound. In order to boundF3 we observe that

ρ(y)∂yyφ(y) = 〈y〉α
(

θ(2 + θ)
y2

〈y〉4+θ
− θ

1

〈y〉2+θ

)

so that

|ρ(y)∂yyφ(y)| ≤ θ(2 + θ)
1

〈y〉2+θ−α

for all y ≥ 0. Therefore, ifθ > α− 3/2 we have thatρ∂yyφ ∈ L2
y([0,∞)), and hence similarly to (6.8) we

obtain

F3 ≤
∑

m≥0

‖ρ∂yyφ‖L2
y
‖∂m

x (A2U)‖L2
x
‖ρ∂m

x v‖L2τ2mM2
m ≤ C‖v‖Xτ

(6.12)

for some positive constantC = C(G,α, θ). In the above estimate we also used (6.2) and (6.3).

6.4. F4 bound. Similarly to (6.8), it follows fromρφ ∈ L2
y([0,∞)) wheneverθ > α+1/2, (6.2), and (6.3)

that

F4 ≤ C‖v‖Xτ
(6.13)

for some positive constantC = C(G,α, θ).
Combining the estimates (6.8), (6.11), (6.12), and (6.13) we obtain that also

F ≤ C‖v‖Xτ
(6.14)

for a suitable constantC > 0 depending on the underlying Euler flow,α andθ.

APPENDIX A. DETAILS REGARDING THE CHANGE OF VARIABLES

Here we provide details on how the Prandtl equations (1.1)–(1.8) become the system (2.6)–(2.10), under
the change of variables (2.4)–(2.5). First, in order to use the assumptionu(x, Y ) − U(x) → 0 asY → ∞
for everyx ∈ R, we substitute

ũ(x, Y, t) = u(x, Y, t) − U(x, t) (A.1)

w̃(x, Y, t) = −∂x

∫ Y

0
ũ(x, ζ, t) dζ. (A.2)

From the incompressibility condition (1.2), the boundary condition (1.5), and the substitutions (A.1)–(A.2)
we obtain

w(x, Y ) = −∂x

∫ Y

0
u(x, ζ) dζ = −Y ∂xU + w̃(x, Y ).

Therefore, (1.1) now reads

∂tũ− Y ∂xU∂Y ũ− ∂Y Y ũ+ ũ∂xũ+ w̃∂Y ũ+ (U∂xũ+ ũ∂xU) = −∂tU − U∂xU − ∂xP = 0 (A.3)

since(U,P ) is the trace of a solution to the Euler equations. The boundary conditions forũ are

ũ(x, Y, t)|Y =0 = −U(x, t) (A.4)

lim
Y→∞

ũ(x, Y, t) = 0. (A.5)

The formulation (A.3)–(A.5) was successfully used in [4, 23, 31, 32] to obtain a local in time analytic
solution of the Prandtl equations which vanishes exponentially asY → ∞. The need for this exponential
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decay is due to the termY ∂xU∂Y ũ on the left side of (A.3). In order to obtain solutions which decay only
algebraically for largeY we introduce the second change of variables

y = Y A(x, t) (A.6)

v̄(x, y, t) = ũ(x, Y, t) (A.7)

w̄(x, y, t) = w̃(x, Y, t) (A.8)

whereA(x, t) > 0 is a real-analytic function onR × [0, T ], to be determined (cf. (A.19)–(A.20) below).
Note that the change of variables (A.6)–(A.8) does not change the boundary conditions as we still have (we
used here thatA(x, t) > 0)

v̄(x, y, t)|y=0 = −U(x, t) (A.9)

lim
y→∞

v̄(x, y, t) = 0 (A.10)

for all x ∈ R andt ≥ 0. By the chain rule, from (A.6)–(A.7) we obtain

∂tũ = ∂tv̄ +
y∂tA

A
∂yv̄ (A.11)

∂Y ũ = A∂yv̄ (A.12)

∂Y Y ũ = A2∂yy v̄ (A.13)

∂xũ = ∂xv̄ +
y∂xA

A
∂y v̄ (A.14)

The incompressibility condition∂xũ+ ∂Y w̃ = 0 now reads

∂xv̄ +
y∂xA

A
∂yv̄ +A∂yw̄ = 0.

Using thatw̄(x, 0, t) = w̃(x, 0, t) = 0, the above relation implies

w̄(x, y, t) = − 1

A(x, t)
∂x

∫ y

0
v̄(x, ζ, t) dζ − y∂xA(x, t)

A2(x, t)
v̄(x, y, t) +

∂xA(x, t)

A2(x, t)

∫ y

0
v̄(x, ζ, t) dζ

and after denoting

W (v̄)(x, y, t) =

∫ y

0
v̄(x, ζ, t) dζ, (A.15)

the definition ofw̄ becomes

w̄ = − 1

A
∂xW (v̄)− y∂xA

A2
v̄ +

∂xA

A2
W (v̄). (A.16)

Combining the identities (A.11)–(A.14) with (A.3) and (A.16), we obtain the evolution equation forv̄

∂tv̄ +
y∂tA

A
∂yv̄ −A2∂yy v̄ − y∂xU∂yv̄ + v̄

(

∂xv̄ +
y∂xA

A
∂yv̄

)

−
(

∂xW (v̄) +
y∂xA

A
v̄ − ∂xA

A
W (v̄)

)

∂y v̄ + U∂xv̄ +
y∂xA

A
U∂y v̄ + v̄∂xU = 0,

which may be rewritten as

∂tv̄ −A2∂yy v̄ + y

(

∂tA

A
− ∂xU +

∂xA

A
U

)

∂yv̄

+ v̄∂xv̄ − ∂xW (v̄)∂y v̄ +
∂xA

A
W (v̄)∂y v̄ + U∂xv̄ + v̄∂xU = 0. (A.17)

We have made the change of variablesY 7→ y such that for a suitable choice of the functionA(x, t) we have

∂tA

A
− ∂xU +

∂xA

A
U = 0. (A.18)
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Indeed, lettingA(x, t) be the a solution of the initial value problem

∂tA+ U∂xA = A∂xU (A.19)

A(x, 0) = 1 (A.20)

onR× [0, T ], we have that (A.18) holds, and therefore (A.17) becomes

∂tv̄ −A2∂yyv̄ + v̄∂xv̄ − ∂xW (v̄)∂y v̄ +
∂xA

A
W (v̄)∂y v̄ + U∂xv̄ + v̄∂xU = 0. (A.21)

We note that the sinceU(x, t) (and hence also∂xU(x, t)) is a real-analytic function, we obtain from the
Cauchy-Kowalewski theorem that ifT is sufficiently small, there exists a unique real-analytic solution
A(x, t) to (A.19)–(A.20). Using characteristics, one may solve forA(x, t) explicitly in terms of the flow
map associated to the transport equation∂tA + U∂xA = 0, and it is not hard to check that by possibly
reducingT we haveA(x, t) ≥ 1/2 onR× [0, T ]. The third change of variables

v(x, y, t) = v̄(x, y, t) + φ(y)U(x, t) (A.22)

whereφ(y) = 1/〈y〉θ for someθ > 0, is made so that the boundary terms ofv at bothY = 0 andY = ∞
vanish, that is

v(x, y, t)|y=0 = 0

lim
y→∞

v(x, y, t) = 0

for all (x, t) ∈ R× [0, T ]. Using (A.21), the evolution equation satisfied byv is

∂tv − φ∂tU −A2 (∂yyv − ∂yyφU) + (v − φU)(∂xv − φ∂xU)− (∂xW (v)− Φ∂xU) (∂yv − ∂yφU)

+
∂xA

A
(W (v)− ΦU) (∂yv − ∂yφU) + U(∂xv − φ∂xU) + (v − φU)∂xU = 0,

which after a short computation may be rewritten as

∂tv −A2∂yyv +N(v) + L(v) = F, (A.23)

where

N(v) = v∂xv − ∂xW (v)∂yv + ∂xaW (v)∂yv (A.24)

L(v) = ∂xW (v)∂yφU + ∂xv(1 − φ)U + ∂yv

(

Φ∂xU − ∂xA

A
ΦU

)

−W (v)
∂xA

A
∂yφU + v(1− φ)∂xU

(A.25)

F = (φ(1− φ) + Φ∂yφ)U∂xU − ∂xA

A
∂yφΦU

2 −A2∂yyφU − φ∂xP (A.26)

andΦ(y) =
∫ y
0 φ(ζ) dζ.
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