ON THE LOCAL EXISTENCE OF ANALYTIC SOLUTIONSTO THE PRANDTL BOUNDARY
LAYER EQUATIONS

IGOR KUKAVICA AND VLAD VICOL

ABSTRACT. We address the local well-posedness of the Prandtl bouteger equations. Using a new change
of variables we allow for more general data than previouslystdered, that is, we require the matching at the
top of the boundary layer to be at a polynomial rather tharoegptial rate. The proof is direct, via analytic
energy estimates in the tangential variables.
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1. INTRODUCTION

One of the most challenging problems in mathematical fluidhmaics is the inviscid limit of the Navier-
Stokes equations on a doméih € R with a boundary (cf. %, 6, 17, 18, 24, 25, 26, 34, 35 and ref-
erences therein). Near the boundary of the domain, the miflioutty is due to the incompatibility in
boundary conditions between the Navier-Stokes equatiofis (= 0 on 92) and the Euler equations
(w? - n = 0 on 09, wheren is the outward unit normal), giving rise to the boundary ragepara-
tion. The foundations for the boundary layer theory werd lay Prandtl, who in 30] made the ansatz
uNS(z,,t) = (u(z, §//v,t),V/rw(z,i/\/v,t)). Inserting this velocity field in the Navier-Stokes equa-
tions and sending the kinematic viscosityo zero, ondormally obtains the Prandtl boundary layer equa-
tions for the unknown velocity fiel@u, /vw)

ou — Oyyu + ul,u +woyu + 0, P =0 (1.2)
Oyt + Oyw =0 (1.2)
OyP =0 a.3)

inH = {(x,Y) € R?: Y > 0}, whereY = §j//v is the normal variable in the boundary layer. For details
on the formal derivation of the Prandtl boundary layer eigmatwe refer the reader td,[12, 9, 29, 30] and
references therein. For simplicity of the presentationhis paper we consider the two-dimensional setting,
but all the methods and results presented here extend thréee-dimensional case as well (cf. Remark
below). The systeml(1)—(1.3) is supplemented with the no-slip and the no-influx boundanyditions

u(z,Y,t)ly=0 =0 (1.4)
w(z,Y,t)|ly=0 =0 (1.5)
for t > 0, and the matching conditions with the Euler flowYas— oo, via the Bernoulli law
lim u(z,Y,t) = Ul(z,t) (1.6)
Y —oo
3xp(95> t) = _(8t + U(l‘, t)azv)U(l'v t) (17)

for z € R?,t > 0, whereU(z, t) is the trace af = 0 of the tangential component of the Euler fla.
Note that (.3) and (L.7) determined, P on H. The Prandtl equationd ()—(1.7) are supplemented with an
initial condition

w(z, Y, t)|1=0 = uo(x,Y) (1.8)
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in H, which satisfies the compatibility condition with the Eullev and the compatibility arising from the
boundary condition

uO(£>Y = O) =0, Yhm uO(£>Y) = U(x>t)|t:0- (1.9)
—00

From the mathematical point of view, the two basic problenas have to be addressed farl)—(1.8) are
the well/ill-posedness of the equations (&.10, 11, 12, 16, 23, 28, 31, 37]), and the rigorous justification of
the singular asymptotics through which the equations werigell in the inviscid limit (cf. 14, 15, 31, 32)).

For a complete survey of the mathematical and numericaltsesn the Prandtl boundary layer equations,
we refer the reader tal[ 9, 11, 29].

In this paper we address the issue of local well-posedneizedPrandtl boundary layer equations. In
establishing such results the main difficulty is to conthal kboss of one:-derivative in the convection terms
of (1.1). Whether such a control is possible depends on the furatgpace in which we work in. In the
general Sobolev-space setting, the exampld @f ¢xhibits a solution which develops a singularity in finite
time. Additionally, in [L2, 15] it is proven that if one linearizes the systein1)—(1.7) about certain unstable
flows, the resulting linear equations are ill-posed in Sebapaces. These strong instability results were
used in [L3] to prove that the full, nonlinear equations, cannot gige itio a Lipschitz continuous semigroup
in Sobolev spaces, suggesting that in order to obtain apesid problem one needs to work either in
function spaces that impose either more structure on tHetemo, or in spaces which are smoother than the
Sobolev spaces.

The available well-posedness results for the Prandtl baynidyer equations fall in one of the two cate-
gories: monotonicity in th@” variable (cf. 8, 29, 37]); or analyticity in thex variable, Sobolev regularity
in the y variable, and exponential decayefz,Y,t) — U(z,t) asY — oo (cf. [23, 31, 32]). Besides the
local well-posedness ofL(1)—(1.7) in the analytic setting, Sammartino and Caflisah, [32] also establish
(by using the abstract Cauchy-Kowalewski theordi) fhe convergence of the Navier-Stokes solution to
the Euler solution plus the Prandtl solution in the invidaiit, locally in time, thereby fully justifying the
Prandtl equations in this setting.

The main result of this paper, Theorednl below, is to give a new local well-posedness theorem in
spaces of real-analytic functions for the Prandtl boundiygr equations. We emphasize that analyticity is
a suitable tool for studying the physics the inviscid limié asymptotic expansions, as was shown3#.[
The main improvement is that our proof does not require #iatY,t) — U(z,¢) decays exponentially as
Y — oo, which is not physically justified. Instead, we only requinat the matching between the Prandtl
solution and the Euler solution, at the top of the boundaygrais given by a power law/Y !¢, for some
e > 0. This is achieved by a suitable change of variables in thenabcoordinate (cf.4.4)—(2.5) below).

At the cost of studying an elliptic problem (iH) with variable coefficients (inx), in the reformulated
Prandtl equations (cf2(6)—(2.10) below) the lineay” growth due to the boundary condition at the top of
the boundary layer is moved from the linear term onto theineatity, which has faster decay withsince

it is quadratic. In addition, our proof is elementary, viaedt higher order energy estimates, and does not
rely on the abstract Cauchy-Kowalewski theorem. The aigatytrm which we use in this paper has a direct
analogue for the Euler and Navier-Stokes equations 2df. 22]), making this proof more amenable for
studying the inviscid limit.

From the physical point of view a classical quantity in boanydlayer theory is the displacement thick-
ness, which quantifies the effect of the boundary layer ofetier flow«”, and is defined as (cf3[ 7, 33))

51(z) = /0 h (1 - “&’Q) dy. (1.10)

More preciselyg; is the “distance through which streamlines just outsidebiinendary layer are displaced
laterally by the retardation of fluid in the boundary layeaf. Batchelor B, p. 311]). Therefore, the polyno-
mial matching of ordett /Y '*< (for anye > 0) considered in this paper is sharp, as any slower power-law
decay is inconsistent with the definition of the displacenthitkness {.10. Polynomial matching at the
top of the boundary layer, but for Oleinik-type data, wa® @gnsidered inZ7, 36].
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The paper is organized as follows. In Sectidnwe derive an equivalent formulation of the Prandtl
equations (more details are given in Appendix In Section3 we introduce the functional framework of
the paper, state the main result, Theorém and give the a priori estimates needed to prove it assuming
some a priori bounds on the nonlinear, linear, and forcesexppearing in4.6) below. Sectiongl, 5, and6
are devoted to the proof of Lemmass, 3.6, and3.7 respectively.

2. REFORMULATION OF THE PRANDTL BOUNDARY LAYER EQUATIONS

In this section we introduce a change of varialdtes+ y andu — v which homogenizes the boundary
condition atY” = oo and removes the resulting high order terms. Denotd fy, ¢) the unique real-analytic
solution of the initial value problem

O A(x,t) + Uz, t)0, Az, t) = A(z,t)0,U(z,t) (2.1)
A(wﬂt)‘tzo =1 (22)

onR x [0,7T], for someT > 0. The existence and uniqueness (in the class of real anélytations) of
A(z,t) on[0,T] follows from the classical Cauchy-Kowalewski theorem sitice functiond/(z,¢) and
0.U(z,t) are assumed to be uniformly real-analytic [On7"], with radius of analyticity bounded from
below by somery > 0. By possibly reducind” we may assume thay2 < A(x,t) < 2onR x [0,7]
(this is possible sinc& andd,U are inL>°(R x [0,77])). Let the uniform radius of real-analyticity of the
function A(z, t) be bounded from below by some > 0, which depends ong and the analytic norm ot
ando,U on [0, T]. Itis convenient to introduce the real-analytic function

a(z,t) =log A(x,t), (2.3)
so that we havé, A/A = 0,.a. Define the functions
d(y) = (y)™*
and
Y
o) = [ o) dc.
where

(y) = V1+y?%

andf > 0 is a parameter to be determined. We make the change of \esiabl

y=YA(x,t) (2.4)
v(,y,t) = u(z, Y, 1) = (1= ¢(y)U(z,1) (2.5)

Under this change of variables, the Prandtl systér)-{(1.8) reads
v — A%y v + N(v) + L(v) = F (2.6)

where we denoted

N(v) = v0,v — 0, W (v)0yv + OpaW (v)0yv (2.7)
W) = [ o) ac @)
L(v) = 0,W(v)0y¢U + 0,v(1 — ¢)U + 0yv (PO, U — 0,aPU) — W (v)0,a0y¢U + v(1 — gb)(‘?x((fz 0

F = (¢(1 — ¢) + ®0y¢) U0, U — 9,a0ydp®U? — A?0yy,¢U — $0, P (2.10)
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(cf. AppendixA for details). The systen2(6)—(2.10) is supplemented with the boundary conditions

v(z,y,t)|y=0 = u(z,Y,t)|y=0 — (1 — ¢(0))U(x,t) =0 (2.11)

yli_g)lo v(z,y,t) = Yh_l)n u(z,Y,t) = U(z,t) =0 (2.12)
for all (z,t) € R x [0, 00), and initial condition

U(x>y7t)|t=0 = U()(l',y) = UO(Z',Y) - (1 - qb(y))U(](l') (213)

The initial datum is assumed to satisfy the compatibilitpditions arising fromZ.11)—(2.12), and hence

vo(2, Y)ly=0 = 0

lim vo(z,y) = 0.

Y—00
Moreover, we assume thag is analytic in ther variable, with uniform radius of analyticity at least > 0.
Analyticity in z is also assumed for the trace of the tangential componeriteoEuler flowU (x,t), and
the pressure of the Euler floR(z,t). In the two-dimensional case, if the initial data for the &ulow is
real-analytic, it remains real-analytic for all time (c, RO, 21, 22]), and its radius of analyticity at timeis
bounded from below by’ exp(—exp(Ct)), for some positive constalt depending on the initial data. In

the three-dimensional case the persistence of real-aightolds (cf. 2, 21, 22)), i.e., a solution remains
analytic as long as it is regular.

3. A PRIORI ESTIMATES

We shall consider the-analytic norm withy-weight given by

p(y) = (y)*
for somea > 0 to be fixed later. Namely, for a functidri(z, y) and a number, > 0 we denote
IVIK,, = D eIV (@ )l 720" M,
m>0
where the analytic weightd/,,, are defined as

(m+ 1)
for somer > 0 to be determined. I6(x, y, t) andr(t) havet-dependence, we similarly denote
lo@)%, ., = D o) 0@, y, )72y (H)*" M. (3.2)
m>0

If the ¢ dependence is clear from the context we will omit it. Sinaewreightp(y) does not depend an,
the analytic norm may also be written as

ik, = 3 lovl3, a3,

m>0

For a positive number > 0 we writev € X if ||v]|x, < co. The main result of this paper is:

Theorem 3.1. Fix real numbersy > 1/2,0 > o + 1/2, andr > 1. Assume that the initial data for the
underlying Euler flow is uniformly real analytic, with radiwf analyticity at leastz > 0 and analytic
norm bounded by7r > 0. There existsy = 7(r,75,Gg) > 0 such that for alluy € X, there is
T = Ti(r,a,0,75,GE, 10, |[vol|x,,) > 0 such that the initial value probler{2.6)—(2.13 has a unique
real-analytic solution ono, 7%].

Remark 3.2. The above theorem shows that solutions may be constructedfehe initial datunvy decays
only as(y)~*~'/2=¢ for arbitraryo > 1/2 ande > 0 so thatvy(y)* € L2([0, 0)). This improves on the
previous works 12, 23, 31, 32] which require the initial data for the Prandtl system to chahe underlying
Euler flowexponentiallyat Y = co.
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Remark 3.3. Although we have stated the main theorem in two dimensioasyic R, the same theorem
holds in the three-dimensional cases R?. The relevant modifications needed are to redejf'm%(T as

S ST )o@, 1) 2 gy T2 (M2,

m>0 |a|=m
and to let the functiom(z, t) from the change of variableg.¢) solve the PDE
O A(x,t) + (U(x,t) - Vy)A(z,t) = (A(z,t) - Vo )U(x,t).
Other modifications, such as the different exponents in Agsiaequality, are straightforward.

Remark 3.4. The proof consists of a priori estimates which can be madadbwia the standard Picard
iteration procedure. This is possible since we are workingpiaces of real-analytic functions.

We now turn to the a priori estimates needed to prove The@&émFrom the definition$.2), we have
formally

1d . 2 2 2m q 2
gl + Aol = 3 (gploel ) 0t @3
where we omitted the time time dependence ahdr, and have denoted
oIl = > lovl, r" tmdy,. (3.4)
m>1

The heart of the matter consists of estimating the term orighéside of 3.3) via Sobolev energy estimates.
We fix m > 0, apply 97 to (2.6), multiply the resulting equality by?07"v, and integrate it over the half
plane, to obtain
1d
2dt
In the dissipative term we use the Leibniz rule to distribihie derivative inz, and then integrate by parts in
y to obtain

pdul3e — (O (A%B,0). P2O) = (pO(F — N(v) — L(v)). pd'v). (3.5)

1d, . .
5 7 1P0% o[22 + 1| 4p0, 070|172
—2(Ad, pd™v, Apd,dv) Z( > AT2I(A%) Apd, v, Apd, 0 v)

_ 22 < ) A1 (A?) AD, p0, 0T I, pdTv) + (pd(F — N(v) — L(v)), pdv).  (3.6)

The integratlon by parts ig is formally justified by introducing a smooth cut-off funmti7(y) such that
n=1on0 <y <landn=0ony > 2. ForanyR > 0 we have (ignoringA(z, t) since it doesn’t depend

ony)

/ udyyup(y)n(y/R) dy = / Ayudyup(y)n(y/R) dy — % / w8y, pn(y/R) dy

— & [ oo/ Ry~ 5 [ ot)dntul R dy

Due to our choice of one may pas® — oo in the above equation, so that the last two terms on the right
side of the above identity vanish, justifying the integratby parts in 8.6). We recall thap(y) = (y)*, and

hence

ayp(y) < aly)*~ < %p(y) < ap(y) (3.7)
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for all y > 0. From 3.6) and @.7), using|| 4|z~ < 2 and||A~!||z~ < 2 0on[0,T], we obtain

1d

57l PoelEa + 11400, 7

< ooyl Al + 43 () WA e Al A0
7=1

+4aZ( >|!39 (A2) L 1 4p0y 0 0| 2| p0; 0l 12 + [ (F — N (v) = L(v)), pdi"v)]

(3.8)
Before estimating the force, linear, and nonlinear termtgherright side of 8.8), we first check that the first
three terms on the right side &.) can be suitably treated. Inserting the estimaté)(into (3.3), we obtain

1 d . m m m
5 dtHUHXT (=0l +olZ, < C Y XnZum+ D 1(pd(F — N(v) = L(v)), pdio)| 72" My,

m>0 m>0

+cC ZZ( VO = Zo (2 + X MM

m>1j=1
(3.9
for some dimensional constafit > 0, where we have introduced the norm
[vllZ, = 114pd, 07 v||7. 7™ M2,
m>0
and
X = ||p0 0] 27" My, (3.10)
Yo = |p0m 0| 2™V 2m 2 M, (3.11)
Zm = |[|Ap0y 0yt v|| 2™ My, (3.12)
so that we have conveniently
vl%, =Y X (3.13)
m>0
oIy, = > Y (3.14)
m>1
[l =" 2. (3.15)
m>0

In order to estimaté?(A2) we assume that the Euler fld#does not blow up ofd, T, and that (x, 0) is
a real-analytic function of.. As a consequence of these two assumptions we have that for &), 7] the
analyticity radius of the function&(-,¢) andd,U(-,t) are bounded from below by some strictly positive
constantrg (cf. [2, 21, 22]). More precisely, there exists a constént > 1 such that
. . 7!
102U L ((0,77;200) + 102.(02U) || Lo< (0, 77;2¢) < GE; (3.16)
E
for all j > 0. From the Cauchy-Kowalewski theorem we have that therdssXis. 7. = 7.(7g, M,r) <
T/2, andG > 2G g such that

) 1
(A2 oo r0.17: 100y < G——, 3.17
107.(A=) || oo (jo,77;100) < T (3.17)
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for all j > 0, where); is as defined in3.1). In fact, by possibly decreasing and increasing> we may
also assume that

' 1
10%all oo ([0,7);200) < GTJMJ- (3.18)
for all j > 0. Therefore, inserting3(17) into (3.9) we obtain
5 dtllvllx, (=Dl +11vl%, <C D" XmZm+ Y [pd(F = N(v) = L(v)), pd )| 7™ My,
m>0 m>0
+CGZZ< > Z—i(Z + X )TijMgl_j
m>1 j=1
< Cllollx, llollz. + |<p8;”(F — N(v) = L(v)), pd o) 7™ My,
m>0
m!M,
+CG < > i (Zm + Xm) - = .
S (5) Attt 5o
Note that by 8.1) we have
| r
m!M,, B (m+1) (3.19)

- - = — - <C
JIMi(m — j)\ My (G+1)"(m—j+1)"

for all 0 < j < m, for some sufficiently large constagt= C(r) > 0. Therefore, using the discrete Young
inequality

1 - (g Ml < [ fllezllgller 1alle2,
and the assumption thaft) is decreasing, with(0) = 79 < 7../2, we obtain

2dtll Ik, +llolZ, < Cllvlix, Ivllz, + D 1pdf (F = N(v) = L(v)), pdy'o)| 72" My,

m>0
T0 J
+ CGllollz, (Nollz, + o) 3 (2
j=1 NF
< Clollx. vllz + > [(pd (F — N(v) — L(v)), pdigv)| 7™M,
m>0

HUHZT(HUHZT +vlx,) (3.20)

+ C()G

for some fixed sufficiently large positive constm = Cy(r). Therefore, in order to absorb tlhe||ZZT term
on the right side of the equation, we choage= To(r, Te, G, Cy) = 10(r, 71, GE, Cp) > 0 such that

<1 (3.21)

COG « — T0 4’

that isy < 7./(1 + 4CyG), and we immediately obtain fron8(20 and the Cauchy-Schwarz inequality
that

1d . 1 m m m
Sl + (<Al + S0l < Cullolk, + 3 o0 (F = N(v) = L(v), pOio)| 72" Mz,

m>0
(3.22)

for some positive constaidt; = C1(r). Itis left to find suitable bounds for the the right side 8f42). We
have the following lemmas.
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Lemma35. Leta > 1/2. We have the estimate
N'= 3 (pdi (N (), p o) 72" M, < CT71ollz, (oI, + I1ol13,) (3.23)
m>0

for some positive constanit depending om > 1, the underlying Euler flow, and,.

Lemma3.6. Leta > 1/2 and® > 1 be such that > o — 1/2. We have the bound
L= [(p0(L(v)), pdv)| 7" My, < C77 v, (v, + [lv]|z,) + Cllvl3, (3.24)
m>0
for some sufficiently large positive constantdepending orr, the analyticity radius and analytic norm of
the underlying Euler flow.
Lemma3.7. Leta > 1/2 andé > 1 be such that > « + 1/2. We have the bound
F =Y Upd'F, pd o) 7" My, < Cllv]|x, (3.25)
m>0
for a suitable constant’ > 0 depending on the underlying Euler flow, andd.
The proofs of Lemmas.5, 3.6, and3.7 are given in Sectiond, 5, and6 below. Assuming the above

three lemmas hold, we may conclude the a priori estimatedetet® prove the local existence of solutions
to (2.6)—(2.10. From (3.22—(3.25 and the Cauchy-Schwarz inequality we obtain

1d . 1
Sl + (CPllelR, + 50,
< C.(L+ T lk, +Corollz, loli, + Cullollx, +Culollf, + Cor ol o],
(3.26)

for some positive constardt, depending on the underlying Euler flow, andé. Let the analyticity radius
7(t) satisfy the differential inequality

7+ 20, +2C. 7 Y|z, <0 (3.27)
with initial datar(0) = 7. In particular it suffices to let
d
dt( ) + 4C, 1o + 4C4||v]|z, =0

which gives

t
T(t)2 = Tg — 4C*Tot - 40* / ||U(8)HZT(S) ds

1/2
2 4C, ot — AC, 1/ (/ lo()I%, ., ds > . (3.28)

The above estimate shows that at least for some shortfime 7. (C, 1o, [[vol| x,, ) we haver(t) > 7y /4
on [0, %], since by combining3.26) with (3.27) we have

1d

5 v, + 5lolZ, < C.(1+ 167 %) olk, +4Crg vl 2 o]k, + Cullvllx,

< Ci(1+ 1675 7)ol + _HUHZT + 1603 % [vllx, + Cullvllx,  (3.29)

on [0, 7], and therefore, if’, is chosen sufficiently small, we have

t
| )z, ds < 2l

This concludes the proof of the a priori estimates, provihgdrem3.1



LOCAL EXISTENCE FOR THE PRANDTL EQUATIONS 9

4. THE BOUND OF THE NONLINEAR TERM

In this section we prove Lemnta5. We first write the nonlinear term as
N =) [(pd N (), pd o) 72" My, < No + N1+ No + Ny (4.1)

m>0

where
No = [{(pN (v), pv)|
= {pdy(v0yv), pdy )| T2 My,

m>1

No =D [(p0F (9: W (v)0yv), pO; )| 7" M,
m>1

Ny =D [(p07 (0xaWV (v)0yv), pO"v) | 77 M.
m>1

The following lemmas shall be used throughout the rest optyer.
Lemmad4.l. Withp(y) = (y)“, wherea > 1/2, we have the bound

|05 ll e 12 < Ol ApB,D0]l12 (4.2)
for all integersk > 0, all t € [0, 7], and some positive constafit= C'(«).

Proof. For anyk > 0, the functiond*v vanishes ay = 0, and thus

Fv(z,y) = /88213:((1{— 881}(:EC)(C) dc.

Taking theL? norm in thex variable first, and then thb"O norm in they variable gives

105 0llpors < 1A o /0 1Ap()0,050(- )l 2p(C) " dC
< 20| Ap0, 0503 I 1z

since||A~!||L~ < 2. This concludes the proof of the lemmayif! € L?(]0,0)), which is ensured by
choosinga > 1/2. O

Using the Agmon inequality, Lemm@&alimplies
|9vllzze, < CllApd, 50, 14p0, 05 0l (4.3)

forall £ > 0.

Lemmad4.2. Withp(y) = (y)“, wherea > 1/2, we have the bound

O W ()| Lo 2 < CllpdyollLz (4.4)
for all integersk > 0, ¢t € [0,7], whereC = C’(a) is a sufficiently large constant.
Proof. We recall from 2.8) thatW (v fo v(z, ) d(. As in the proof of Lemmd.1, we estimate
95 ()92 < / Hak Oz de = [ 1p(©2Eu( )lanlc) ™ de

< / 168 W(- )12 p(¢) 1 dC
0

k —
< %ol z, llo™ 1z
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Hence, we obtain
|05W )]l 212 < Cla)llpdbollss
providedp—! € L?([0,00)). This is ensured by > 1/2 and the proof of the lemma is concluded. [
Using Agmon’s inequality in the variable, Lemmat.2implies
|05 W @)z, < Clipdkoll5 o050l (4.5)
for some positive constaidf. We now proceed by estimating the four terms on the far riglg ef (4.1).
4.1. Ny bound. The term\ is bounded using the Holder inequality as
No < llpvllzz (lpvdavll Lz + [|p0:W (0)0yvl| L2 + [ p0raW (v) 0yl 12)
< [lpvll 2 (HpavaLszHLoo + A7 |z | Apdyll 121105 W () | o

+ | AT o [0z al| oo | ApDyv] 2 IIW(v)HLw)-
We apply @.3), (4.5), and recall the notatior8(10—(3.12) to obtain
No < O (Xo¥i 2,2 20 + XoZoY! 2,2 + 70 X0 20 X0 PP

3/2 1/2
<o (Il lelly: ollz, + oIS 1ol ol 2, ) (4.6)
for some positive constaidt = C(«, G, 7, 70).
4.2. N1 bound. In order to boundVi, we use the Leibniz rule and the Cauchy-Schwarz inequaliget

352 0 () ooz ol ol g, @)

m>1 j=0

For0 < j < [m/2] we bound (using the Holder inequality}.p), and the Agmon inequality in the
variable)

lpdwd =7 ol 2 < [|0%0]| oo [|p05 T o 2
i nl/2 i 1/2 —j
< C|| Apd, DIl 7 1| Ap0, 05 ol| 21107410 2, (4.8)

and similarly, for[m/2] + 1 < 7 < m, we have
8m—j+1

lpd 07+ 0] 21107 | e
< Cllpd3v ] 121 4p0, 07012 Apd, O 20| 17, (4.9)
for some sufficiently large constaét= C(«, G). Inserting é.8) and @.9) into (4.7) we obtain

(m/2]

M,
N <Ot~ 1/2 Zl/2 1/2 Y it1Ym <m> m
mz>1 ;) Zitn=; 3) MM My jir(m — j+ 1)1/2m1/2

- M,
+ O V22 Yo <<m> . )
%j:[n%:zm s o MMl/2 M1/2 (j—|—1)1/2m1/2
(4.10)

m—j+1""m—j+2

Using the definition §.1) of the analytic weightg/,,,, we may bound
<m> M,, - (m+1)"5Y2(m —j+1)
37 MM M1 (m — j + 1)12m1/2 — (G + 17 (m = j + )7 (m — j + 1)2m!/2
< C(] + 1)1/2_7" (411)
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forall 0 < j < m/2, and similarly

<m> M,, - (m 4+ 1)"(m — j 4 2)3/2
MMY2 . MY G DY2mt2 T G DT m = G D7+ 1) m
<C(m—j+ 1)V (4.12)

forallm/2 < j < m, and some positive constafit= C'(r) > 0. From @.10), (4.11), and @.12) we obtain

N <Oy Z 2} 2 Yo Yo (G + 1)V

m>1 j=0
+ Ol Z Z YZrlrL/2j+IZrln/Ej+2Ym(m —j+ D (4.13)
m>1 j=[m/2)+

Using (@.13 and the discrete Young and Holder inequalities
1 - (g B)ller < Cllflleellgller Pl e2, (4.14)

with f, = Y3, gr = Zl/2Z;fl(k + 1)Y/2=7 hj, = Y}, for the first term on the right side o#(13 and

respectivelyfy, = Yx, gx = Z;le,ifz(kJr 1)1/2=" b, =Y, for the second term on the right side df13),
we obtain

N < CT7 2] 2, w12 (4.15)

providedr — 1/2 > 1/2,i.e.,r > 1, so that{k'/277}3° | € (2.

4.3. N5 bound. In order to boundVs, we write

N3 Z( )Hpc‘V“W( )0, 2| 00l 2 72 M2,
m>1 j=0
[m/2]

< Z Z < >||A 1||L00H61+1W( )HLooHApaya;”—jv||L2Hpa;nv||L27_2m]\4731
m>1 j=0

m j m—j m m
£ (M) Wl lo0,08 ol 0l @16)

Using (4.5), we obtain

[m/2]
c) Z ( )W“vumHpaﬂ“vnl”||Apaya;?—fvnmupa;%nmmM,i
m>1 j=

D ( )Hpaf“vuqupa o= |42 Ap8, 0= ]| 2 | pr o] e M2,
m>1 j:[m/2]+1
(4.17)
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Using the notation3.10—(3.12) the above inequality may be rewritten as

[m/2]
M
W A () g )
m>1 j=0 ’ ! J MjlﬁMjlﬁMm_j(j+ 1)1/2m1/2

- M
+Or 2NN Yz 2 Y <<m> -~ >
m>1 j=[m/2]+1 r J Mj+1M5£jM1/2 (j + DY2mH/2
(4.18)

m—j+1

whereC = C(«,r,G) is a sufficiently large constant. Using the explicit defonitiof M, in (3.1), we
bound

Mm 1) (4 1 3/2
<m> 1/2 5 r1/2 : < = (TJ:/Z) J +' : Ty 1/2 S C(j+2)1/2_r (4.19)
I M35 Mo Mo (5 + 1)1/2m1/2 (1+1) (m—j+1)m

forall0 < j <m/2, and

My, D7+ 1)(m —j+1)1/2
(ﬂ?) - < .(mt ) (J{r )(ﬂ: . J+1/)2 < Clm— j+ 1)1
3) My M2 M2 G+ 1)Y2ma2 T ()T m =g+ 175+ 1) m
(4.20)
forall m/2 < j < m,whereC = C(r) is a positive constant. We have thus proven that
[m/2]
No < Cr7 V2N N Y Y 2 Yo+ D)V
m>1 j=0
— ~ 1/2 ,1/2 . —r
+Or 2NN Yz 2 Yi(m — 1) (4.21)
m>1 j=[m/2]+1
and so by the discrete Holder and Young inequalities,4ci.4) we obtain
No < CT7 V2ol z, ol13, (4.22)

as long ag > 1, for some positive constait = C(7y, o, r, 75, G) > 0.

4.4. N3 bound. Itis left to bound\j. In this term a slight complication arises since we needke tagher
derivatives 0f0,a. In order to deal with this we us&.(9, and recall that < 79 < 7. < 7. From the
Leibniz rule, 8.18), and @.5), we get

J .
m j— m—j m m
Mo < 3050 (") (1) 108 al om0 (010,05 ol 0 ol 7 0

m.J
<O G A el

% [|Apdy 07 0| 2 || pdy v | o™ DM,

m J |
m: i~k 11/2 k41 1/2
L OO B0 D g7y oar v L M o a2

x || Apdy 00| 2] pO v || 2 TR M, (4.23)
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for some constant’ = C(G, g, 79) > 0 that depends on the analyticity radius and analytic nornhef t
underlying Euler flow. Using the notation introduced :11(0—(3.12), the above estimate becomes

N3 <Ct~ 3/4 Z Z ZX1/2 1/i+1 m— ijFm,j,k (424)
m>1 j=0 k=0
for some positive constadt = C(G, 75, 19), Where
m! M,,
— _ . (4.25)
J (m—PIJ —k)! (k + 1)TM1/2MJ-1£?€+1(] — k4 1)Y4AM,, ]m1/2

Using the explicit definition of\Z,,,, we obtain that
(m+1)7( — k+1)Y/*
(k+1)r( —k+1)r(m—j+1)rmb/?
. (m+1)"
T k+ )G —k+ 1) (m—j+1)rml/4
{ (k+1)7 M4, j<m/2
<C

Fm,j,k < C

(k+ 1)1/, j=m/2,k < j/2 (4.26)
(m—j+1)7"" Y j>m/2,k > j/2,

for some positive constaidt = C(r). If » > 1 it then follows from @.24), (4.26), and the discrete Holder
and Young inequalities that

Ny < T3]\ ol 2, Ioll5? (4.27)
for some positive constaidf. Lastly, combining 4.6), (4.159, (4.22), and @.27) we obtain
3/2 1/2 1/2 3/2
N < Crollz, (lollx, lolly, + Il 2 + o, + el 1)3)

< Gt ollz, (loli%, + llvl1%,) (4.28)
for some positive constardit depending o > 1, the underlying Euler flow, and,. This concludes the
bounds on the nonlinear term.

5. THE BOUND OF THE LINEAR TERM
In this section we bound
L= |lpd L) r2llpdf vl 27" M7, < Lo+ L1+ Lo+ L3+ La+ L5 + Lg (5.1)

m>0
where by £2.9) we have
L(v) = 0, W (v)0y¢U + 0,v(1 — ¢)U + 0yvP0,U — 0,vP0aU — W (v)0y¢p0ralU + v(1 — ¢)0, U
=Li+ Lo+ L3+ L4+ L5+ Lg, (5.2)
and where we denoted

Li= Y P07 Lill 2 llpd ol| 27" M, (5.3)
m>1
foreachi € {1,...,6} and
Lo = [lpL(v)|[ 2]l pv]| L2 (5.4)

From (3.16—(3.18 and the Leibniz rule, we may prove that the functiéis, ¢), 9,U (-, t), andd a(-,t)U (-, t)
have radius of analyticity at least > 0 on [0, 7], i.e., upon possibly increasing we have

G
Tk M,

*

10EU || oo 0.1 (R)) + 105 (02U || oo (o172 (R)) + 105 (0wal) || oo (0,17 Lo (R)) < (5.5)
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for all k > 0. Recalling from 8.21) thatr, was chosen to satisfy. /(1 + CoG) > 79 > 7, we may write

1
<3 (5.6)
forall t € [0,7]. Also, note that we have),¢(y)| /{y)?*1, and sincep(y) = (y)@, we havepd, ¢ €

(y)] <
L2([0,00)) ifand only if 0 > o — 1/2. Lastly,® € L;°([0,00)) whenever > 1.

5.1. £y bound. Using the Holder inequality and Lemrda2, we have

Lo < Cllpvl|r2 (HamW(U)HLgoLg‘|pay¢‘|L§||UHLg° + 1p0zv] 2|1 = @l Lge U] Lge
+ [pA3y 0 2 | A7 Lee 191 2o 102U || oo + [1pADy vl L2 [| A~ | oo | @[] 5o | O al | Lo
W @)l 22 100,623 950U 222 + llovllz2 1 = @502V )
< Cr7 X0 (X1 + Zy + Xo)
< Cr Y, (lollx, + llollz.) (5.7)
for some positive constaiit = C(r, GG, 7..). Here we used > « —1/2 > 0, so thatl — ¢, ® € L;° and

POy @ € LZ.

5.2. £ bound. In order to bound

Li=Y " Npd(0:W (v)9y0U)|| 2 |00 vl 27" My,

m>1

we use the Leibniz rule and the Holder inequality to obtain

L=y Z( VIO W) 21100, 511020 o9 a7 2,

m>1 j=0

From Lemmad.2and £.5), after recalling the notatiorB(10—(3.12), we obtain

1
ey (7 Y002 N0

m>1j=0 Mp,—;
m—j m M2
s 0d Yjs1Ym m . 5.8
,;;) o < > <<J‘>Mj+1<j+1)1/2Mmm1/2Mm_j> (5-8)

Using the definition of\/,,, we may bound

<m> M2 - m! M, J
) Mja(§ + DV2Mypm 2 My = 1M (m = )\ Mo, (5 + 1)1/2ml1/2

<C  (5.9)

for someC = C(r) > 0, forall 0 < 5 < m. Since by 6.6) we haver/7,. < 1/2, (5.8) and the above
estimate and give

Ly<Cy ZYJHY - < Cul3, (5.10)

m>1 j=0

for some constant’ = C'(G, r) > 0, by using the discrete Young and Holder inequalities.
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5.3. £5 bound. From the Leibniz rule and the Holder inequality we have
L2 = 3 10 @01 = )2l p02 o] om0,

m>1

<> Z < >ilpaj+lvllmill = Bllzge 107 U | e |5 v | L2 7™ M, (5.11)

m>1 j=0
From (.5) and the above estimate we obtain

1
L2206 X 3 (1) 1002 lls 0ol 0

m>1 j=0 Mm J
m= m M?
<0G Yii1Yn < > << > , o > (5.12)
W;gzo " ) Mji1(j + 1) 2Mym* 2 My,
which boundsZ, from above exactly by the right side d.8) and we obtain
Ly < Cllul¥, (5.13)

for some constant’ = C'(G,r) > 0.
5.4. L3 bound. As above, from the Leibniz rule and the Holder inequality aléain
Ly =Y |lpd (9, v0,U)| 2l pdi vl 127" My,

m>1

<y Z ( )iipa BB I | 12 || pT || 2 T2 M2,

m>1 j=0

<2y Z( )HApa 050 2| @] o2 109 (B, U) || oo || p0 vl | 272 M2, (5.14)
m>1 j=0

since||1/A|z= < 20n[0,T]. Inserting estimatex(5), into the bound%.14) above, we get
1

L3<CGY Z ( >HAp8 a]’l)iimiM

m>1 j=0 m—j

i T\ [ (m M,,
ey mnn(Z) (7)) (519

Recall that we haven! M, /(j!M;(m — j)!M,,—;) < C by (3.19, and therefore the estimatg.{5 com-
bined with the discrete Young and Holder inequalities give

lpdi vl 2 7™ My,

L3<C ) Z ZiXmsm— < Cllollx, IIvl|z, (5.16)

m>1 j=0

for some positive constaiit = C'(r, G).

5.5. £4 bound. Similarly to (56.14) we obtain

LYy ( ) 408,001 211 52 105 (9200 | 3= 190 vl 27" M- (5.17)
m>1 j=0
Using (6.5) to bound||9;"~ j(axaU)HL;o, and .19 to treat the combinatorial remainder, we conclude that
L4 < Cllvllx, (vl . (5.18)

for some positive constadt = C(r, G).
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5.6. L5 bound. In order to boundC5 we use the Leibniz rule and Holder inequalities and obtain

L5 =Y [|p02 (W (0)3y¢0,aU)| 2 | pOiol| 272" M2,
m>1
<> Z( )WW )220 221109y 81112 107 (gl | 1O 0| 272" M2, (5.19)
m>1 j=0

Using Lemmad.2and 6.5), estimate %.19 implies

1
£<06Y Y (% Yo2vlzo gyl ol

m>1 j=0 Mo
m=Im M,,
< — . .
CGZZXX ( > <<j>Mij—j> 5-20)
m>1 j=0
From 3.19), (5.6), the discrete Young and Holder inequalities, and the alestimate, we have
= 1
L5 <C ;Z;XijW < Ollv|%. (5.21)
m>1 j=

for some positive constaiit = C'(r, G).
5.7. Lg bound. Asin (5.19, we have the bound
Lo =) 107 (v(1 = 0)0:U) | 210y vl 27" My,

m>1
< Z ( )Hpaﬂvumul = 0l 1057 (uU) | |95 vl 1272 M3, (5.22)
m>1 j=0
From @.19, (5.5), and 6.6), similarly to (5.21) we obtain

L < C|v%. (5.23)

for some positive constaiit = C'(r, G).
We summarize the bounds on the linear tefrby collecting the upper bounds dé.()), (5.10), (5.13,
(5.16, (5.198, (5.21), and 6.23), as
L <O Hollx, (lvllx, + llvllz) + Clloll3, (5.24)

for some sufficiently large positive constaritdepending omr, the analyticity radius and analytic norm of
the underlying Euler flow.

6. THE BOUND ON THE FORCE TERM

In this section we bound
F = Z (pO F, pdfv)| 72" M, < Fy + Fo + Fs + Fu
m>0
where by 2.10 we have
F = (¢(1 — ¢) + ®0yp) U U — 9,¢dpalU? — 8,y pA*U — ¢80, P = Fy + Fy + F3 + F4
and we have denoted
Fi= Y 0 Eill 2|l pd vl 2" M, (6.1)
m>0

foralli € {1,...,4}. To simplify the analysis, as irb(5), from (3.16)—(3.18) and the Leibniz rule we may
assume that the functiod$(-, )0, U (-, t), Oza(-, ) U>(-,t), A%(-,t)U(-,t), andd, P(-,t) are real-analytic
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for all t € [0, T, with uniform analyticity radius bounded from below by That is, by possibly increasing
G we may assume that

G
7’3 j

forall j > 0 and allt € [0, 7. Here)M; is as defined in3.1), and for allt € [0, 7] we additionally have

102 (U0:U) 2 + 1104(02aU?) || 2 + 104(A*U)l| 2 + 10405 P) 2 < (6.2)

ﬂ < l (6.3)
Ty 2
6.1. F; bound. From the definition ofF; (cf. (6.1)) and the Holder inequality we have
F <> (oo = 0)llzg + 000,013 ) 105 (UOD) | 2 |0 vl 27" M2, (6.4)

m>0
In order to bound theig-terms we first note that
Ipé(t = )z < llpdllzz 1 — 6l < C(a,0) (6.5)

aslong ag(y)p(y) = 1/(y)?~* € L2,i.e.,ifwe impose tha > a+1/2. Similarly, as long a8 > a—1/2
we havepd, ¢ € L?, and if additionallyd > 1, we haved e LCy’O so that

120,612 < 00yl @]l < C(a,0). (6.6)
Combining 6.2)—(6.6) we obtain
1 m 2m A 12 T " 1
< < — < — )
Fi < CGmZ:O =T m||p8m |22 M2, < CGmZ:O <T> X < CGmZ;O o Xm  (8.7)

so that from the discrete Cauchy-Schwartz inequality wehav
F1 < C|vllx, (6.8)

for some sufficiently large constaGt= C'(G, «,0) > 0.

6.2. 7> bound. We obtain from the Holder inequality that
Fo=>_ 05 (0y¢®0:alU)| 12| pdy | 27" M},

m>0

< > 10yl 2 e 105 (D2 al®) | oz || p0y vl L2 7™ My, (6.9)

m>0
Assuming that) > « — 1/2 andf > 1, we have
100yl L2 [ @]l Lge < Cla,0)

and therefore, by using(2)—(6.3) we obtain similarly to §.7) that

1 1
Fr < CG PO || 272 ME < CG Y — X, (6.10)
7—m 7\1 2m

m>0 * m>0
Thus we obtain by the Cauchy-Schwarz inequality that
Fo < CHUHXT (6.11)

for some sufficiently large constaGt= C'(G, «,0) > 0.



18 IGOR KUKAVICA AND VLAD VICOL

6.3. F3 bound. In order to boundF; we observe that

2
P(1)yydy) = (4)° <0<2 )ty 0 <y>12+9)

so that

1P()Byydu)] < 62 + e><y>2ﬁ

for all y > 0. Therefore, if) > o — 3/2 we have thapd,,¢ € LZ([O, o0)), and hence similarly to5(8) we
obtain

Fs < > 190y @l 105 (A0 2 190y ol 27> My, < Cllo]|x, (6.12)

m>0

for some positive constaidt = C(G, «, #). In the above estimate we also uséd?f and ©.3).

6.4. F4 bound. Similarly to (6.8), it follows from p¢ € LZ([O, o0)) wheneved > a+1/2, (6.2), and 6.3
that

Fiu < Clv||x, (6.13)

for some positive constadt = C(G, «, ).
Combining the estimate$ ), (6.11), (6.12), and €.13 we obtain that also

F<CO|v|x. (6.14)

for a suitable constartt’ > 0 depending on the underlying Euler flow,andé.

APPENDIXA. DETAILS REGARDING THE CHANGE OF VARIABLES

Here we provide details on how the Prandtl equatidn$)€(1.8) become the systen2 ©)—(2.10), under
the change of variable® @)—(2.5). First, in order to use the assumptiof,Y) — U(z) — 0 asY — oo
for everyx € R, we substitute

a(z,Y,t) = u(z,Y,t) — U(z,t) (A1)
(2, Y, 1) = —0, /Y a(x, ¢, 1) de. (A.2)
0

From the incompressibility conditiori(2), the boundary conditionl(5), and the substitutionsi\(1)—(A.2)
we obtain

Y
w(z,Y) = —am/ u(z, () d¢ = =Y 0,U + w(x,Y).
0

Therefore, {.1) now reads
ou — Y0, Udyt — Oyyu + udyt + woyu + (Udya + ud,U) = -0 U — U0, U — 9, P =0 (A.3)

since(U, P) is the trace of a solution to the Euler equations. The boyndanditions foru are

U(z,Y,t)ly=0 = —Ul(z,t) (A.4)
Jim_i(r,Y,1) =0, (A.5)

The formulation A.3)—(A.5) was successfully used id,[23, 31, 32] to obtain a local in time analytic
solution of the Prandtl equations which vanishes expoalytsY — oo. The need for this exponential
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decay is due to the teriid,. U0y u on the left side of A.3). In order to obtain solutions which decay only
algebraically for larg&” we introduce the second change of variables

y=YA(x,t) (A.6)
o(x, y,t) = u(z, Y, 1) (A.7)
w(z,y,t) = w(x,Y,t) (A.8)

where A(z,t) > 0 is a real-analytic function of® x [0,77], to be determined (cfA(19)—(A.20) below).
Note that the change of variables.6)—(A.8) does not change the boundary conditions as we still have (we
used here thatl(z,t) > 0)

5($ayat)|y=0 = —U(ﬂj‘,t) (Ag)
lim o(z,y,t) =0 (A.10)
Y—00
for all z € R andt > 0. By the chain rule, fromA.6)—(A.7) we obtain
A
By = 0,7 + y‘z’; 0,0 (A.11)
Oyt = Adyv (A.12)
Dyy it = A%0yy0 (A.13)
Oyl = Oy0 + @ayﬁ (A.14)
The incompressibility conditiod, @ + dyw = 0 now reads
A
0,5+ Y% A5 5 4 49,5 — 0.

Using thatw(z, 0,t) = w(z,0,t) = 0, the above relation implies
- 1 YO A(x,t) 0z Az, t) Y _
w(z,y,t) = 8/ (x,C,t) dC—i x,y,t —l—i/vx,gt d¢
)= ) (O ey fy 100
and after denotlng

Yy
W) pnt) = [ ol G.t) e (A.15)
0
the definition ofw becomes
_ 1 _ yaxA — a{EA —
W= —ZOIW(U) — Tl + yE W (). (A.16)

Combining the identitiesA.11)—(A.14) with (A.3) and (@.16), we obtain the evolution equation for

o + L2 yat YN 9,5 — A28,,0 — yd,Ud, T + b <8xv + yaTzAayv>
— <8xW(v) + y%iA@ — aZAW(v)> 0y + U1 + %Ua@ﬁ) +00,U = 0,

which may be rewritten as

_ _ O 0, A
00 — A28yyv +y <7 — 0. U+ " U> 0yv
OpA_ o _ I
+ 00,0 — 0, W (0)0yv + —— I W (0)0,v + Ud,v + 10, U = 0. (A.17)
We have made the change of variabtés— y such that for a suitable choice of the functidfr, t) we have
A
%A — 0,U + 0 =0. (A.18)

A A



20 IGOR KUKAVICA AND VLAD VICOL

Indeed, lettingA(z, t) be the a solution of the initial value problem

A+ U0, A = A0, U (A.19)
A(z,0) =1 (A.20)
onR x [0, 7], we have that4.18) holds, and therefore’(17) becomes
A
O — A2y v + 00,0 — O, W (0)9y0 + 8A W ()80 + Ud,v + 09,U = 0. (A.21)

We note that the sinc& (z,t) (and hence also,U(x,t)) is a real-analytic function, we obtain from the
Cauchy-Kowalewski theorem that i is sufficiently small, there exists a unique real-analytituson
A(z,t) to (A.19—(A.20). Using characteristics, one may solve fbfz, t) explicitly in terms of the flow
map associated to the transport equatipA + U0, A = 0, and it is not hard to check that by possibly
reducing?’ we haveA(x,t) > 1/2 onR x [0, 7. The third change of variables

v(x,y,t) =0(z,y,t) + o(y)U(x,t) (A.22)

whereo(y) = 1/(y)? for somed > 0, is made so that the boundary termsvait bothY = 0 andY = oo
vanish, that is

v(x, Y, t)’yZO =0
yan;o v(z,y,t) =0
forall (z,t) € R x [0,T]. Using (A.21), the evolution equation satisfied byis
v — @O U — A% (Byyv — Oyy@U) + (v — @U) (9pv — 0, U) — (0, W (v) — @0, U) (v — Oy U )

+ E?ZA (W(v) = ®U) (Oyv — 0yoU) + U(0pv — $0,U) + (v — ¢U)0,U = 0,
which after a short computation may be rewritten as
v — A?0yv + N(v) + L(v) = F, (A.23)
where
N(v) = v0,v — 0, W (v)dyv + OpaW (v)0yv (A.24)
L(v) = 0, W (v)0y¢U + 0,v(1 — ¢)U + Oyv <<I>8xU - 82A<1>U> - W(v)%ayQSU + (1 — ¢)0,U
(A.25)
F = (¢(1 — ¢) + ®0y0) U, U — %ayqsch? — A20,,0U — $0, P (A.26)

A
and®(y) = [; ¢(¢) d¢.
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