THE DOMAIN OF ANALYTICITY OF SOLUTIONS TO THE THREE-DIMENSIONAL
EULER EQUATIONSIN A HALF SPACE

IGOR KUKAVICA AND VLAD VICOL

ABSTRACT. We address the problem of analyticity up to the boundaryobft®ns to the Euler equations in
the half space. We characterize the rate of decay of thearesticity radius of the solutiom(t) in terms

of exp f(f [[Vu(s)||Leeds, improving the previously known results. We also prove thesistence of the sub-
analytic Gevrey-class regularity for the Euler equationa half space, and obtain an explicit rate of decay of
the radius of Gevrey-class regularity.
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1. INTRODUCTION

The Euler equations on a half space for the velocity vectdd fi€x,¢) and the scalar pressure field
p(z,t), wherex € Q = {x € R? : 3 > 0} andt > 0, are given by

O+ (u-V)u+ Vp =0, in Q x (0,00), (E.1)
V-u=0,inQ x (0,00), (E.2)
u-n =0, ondN x (0, 00), (E.3)

wheren = (0,0, —1) is the outward unit normal t8Q = {x € R3 : 23 = 0}. We consider the initial value
problem associated t&(1)—(E.3) with a divergence free initial datum

u(0) = ug, in Q. (E.4)
The local existence and uniquenesgBf-solutions, withr > 3/2 + 1, on a maximal time intervdD, T)
holds (cf. 12, 15, 23, 32, 36]), andlimy 7, fOT || curl w(t)|| Lo dt = oo, if Ty < oo (cf. [6]); additionally the
persistence of > smoothness was proven by Foias, Frisch, and Teni&n |n this paper we address the
solutions of the Euler initial value problem evolving froeat-analytic and Gevrey-class initial datum (up to
the boundary), and characterize the domain of analytivitg.emphasize that the radius of real-analyticity
gives an estimate on the minimal scale in the fl@®, R5], and it also gives the explicit rate of exponential
decay of its Fourier coefficient4 §].

In a three dimensional bounded domain, the persistenceabytanity was proven by Bardos and Be-
nachour 8] by an implicit argument (see also Alinhac and Métivid})[ In [2, 7] the authors give an
explicit estimate on the radius of analyticity, but whichighes in finite time (independent 6f). How-
ever, the proof of persistency][can be modified to show that the radius of analyticity decalya rate
proportional to the exponential of a high Sobolev norm ofgbkition (see alsol]). On the three dimen-
sional periodic domain (or equivalently @) this is the same rate obtained by Levermore and Oliver in
[30], using the method of Gevrey-class regularity. This Fausesed method was introduced by Foias and
Temam [L8] to study the analyticity of the Navier-Stokes equationsr farther results on analyticity see
[1, 13, 16, 20, 21, 24, 25, 28, 29, 27, 33, 35]. Explicit and even algebraic lower bounds for the radius of
analyticity for dispersive equations were obtained by Bdsraijic, and Kalisch in9, 10] (see also$, 11]).

In [26] we have proven that in the periodic setting, orldfy the analyticity radius decays algebraically
in the Sobolev norm| curl u(t)| g-, with » > 7/2, and exponentially infg IVu(s)||L=, forall t < T.
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In the present paper we show that the algebraic dependenttee @obolev norm holds in the case when
the domain has boundaries (cf. Theorgry), thereby improving the previously known results. Theriiote
analyticity in the case of the half-space, for short timél@¢pendent of,), was treated in35]. We note that
the shear flow example of Bardos and THj (cf. [ 14, 38]) may be used to construct explicit solutions to the
three-dimensional Euler equations whose radius of awélyis decaying for all time.

Additionally we prove the persistence of sub-analytic @gvlass regularity up to the boundary (df8]
31]) for the Euler equations on the half space. To the best ofkoowledge this was only known for
the periodic domain cf.26, 30], but not for a domain with boundary. The methods bf3, 27, 39 rely
essentially on the special structure of the complex holgmiorfunctions, and do not apply to the non-
analytic Gevrey-class setting.

The presence of the boundary creates several difficultiésdh not arise in the periodic setting. In
particular we cannot use Fourier-based methods, nor carsevéhe vorticity formulation of the equations.
Instead we need to estimate the pressure, which satisfig8€pfthe elliptic Neumann problem

—Ap= ajui&uj, in Q x (0, OO), (P.2)

S—Z =(u-V)u-n=0,0n9d02 x (0,00), (P.2)
sincen = (0,0,—1), where the summation convention on repeated indices wakins@.1). In order
to close our argument we need to show that the pressure haaitie analyticity radius as the velocity,
and so we cannot appeal to the inductive argument of Lionsvéagenes 31]. Moreover, the nature of the
elliptic/hyperbolic boundary value problem imposes dartastrictions on the weights of the Sobolev norms
that comprise the analytic norm. The analytic norm we deftheSection3) respects the symmetries of the
problem and is adequate to account for the transfer of debgarising in the higher regularity estimates
for the pressure.

The paper is organized as follows. In Sectidme state our main result, Theoretnl In Section3
we prove the main theorem assuming two key estimates on teection term and the pressure term,
Lemma3.1 and Lemma3.2. Section4 contains the proof of the commutator estimate Lenfria and
lastly, the higher regularity estimates for the pressurktha proof of Lemm&.2are given in Sectioh.

2. MAIN THEOREMS

The following statement is our main theorem addressing tadytcity of the solution. Theorergd.2
below concerns the Gevrey class persistence.

Theorem 2.1. Fix r > 9/2. Letug € H"(Q2) be divergence-free and uniformly real-analyticiin Then
the unique solution(t) € C'(0,T,; H"(2)) of the initial value problem associated to the Euler equadio
(E.)—HE.4) is real-analytic for all timet < T, whereT,, € (0, co] denotes the maximal time of existence of
the H"-solution. Moreover, the uniform radius of space analyyiei(t) of u(t) satisfies

1 t

whereC > 0 is a constant that depends only epwhile Cy has additional dependence ap as described
in (3.11) below.

Remark 1. The lower boundZ.1) improves the rate of decay from Bardos and Benachgjwr a bounded
domain (which can be inferred to be proportionakip fot llu(s)||mrds), and it matches the rate of decay
we obtained in26] on the periodic domain.

Remark 2. The proof of Theorem2.1also works in the case of the half-plane (recall that in twoetisions
T, may be taken arbitrarily large, cf32, 37]) with the same lower bound on the radius of analyticity of
the solution. Since in two dimensiofi&/u(t)| - grows at a rate of exp(C't), for some positive constant
C, the estimate4.1) shows that the rate of decay of the analyticity radius iastiC exp(—C exp(Ct)),

for someC > 0. This recovers the two-dimensional rate of decay obtaine@drdos, Benachour and
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Zerner @] on a bounded domain and by the authors of this paper on the [28]. It would be interesting
if one could prove a similar lower bound ta.() but where the quantityot IVu(s)| L ds is replaced by

fot || curl u(s)||z ds. In particular, such an estimate would imply in two dimensidhat the radius of
analyticity decays as a single exponential in time.

Recall (cf. B1]) that a smooth functiorn is uniformly of Gevrey-class, with s > 1, if there exist
M, T > 0 such that

jof**
Tlal”

0%v(x)] < M (2.2)
for all z € Q and all multi-indicesae € Ng. Whens = 1 we recover the class of real-analytic functions,
and fors € (1,00) these functions ar€> smooth but might not be analytic. We call the constarih
(2.2 the radius of Gevrey-class regularity. The following trern shows the persistence of the Gevrey-class
regularity for the Euler equations in a half-space.

Theorem 2.2. Fix r > 9/2. Letuy be uniformly of Gevrey-classon 2, with s > 1, and divergence-free.
Then the uniquéi”-solutionu(t) of the initial value problentE.1)—(E.4) on [0, T,) is of Gevrey-class, for
all t < T, and the radius-(¢) of Gevrey-class regularity of the solution satisfies thedolound(2.1).

3. PROOFS OFTHEOREM 2.1 AND THEOREM 2.2

For a multi-indexa = (ay, as, a3) in N3, we denoten’ = (a1, ay). Define the Sobolev and Lipshitz
semi-normg - |, and| - |, o by

Ol = > Mo |02, (3.3)
|a|=m
and
V] 00 = Z Mal|0%v|| Lo,
|a|=m
where
all
M, = 9 (Faz) (3.4)
! o

The need for the binomial weight¥/,, in (3.3) shall be evident in Sectioh where we study the higher
regularity estimates associated with the Neumann probfed—(P.2. Fors > 1 and7 > 0, define the
space

Xr ={v e CF(Q) : |vllx, < oo},

where

o0 7m—3
lollx, = Y [Wln——s57-
T — 3)!
— (m —3)!s

Similarly letY; = {v € C*>(Q) : ||v||y, < oo}, where

)Tm—4

> (m—3
vy, =;Ivlmw

Remark 3. The above defined spaceés, and Y, can be identified with the classical Gevreyclasses
as defined in31]. On the full space or on the torus, the Gevreglasses can also be identified with
D((—A)"? exp (T(—A)Y/?9)) (cf. [18, 26, 30]).
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We shall prove Theorem.1 and?2.2 simultaneously by looking at the evolution equation in @gw
classes withs > 1. If ug is of Gevrey-class in 2, with s > 1, then there exists(0) > 0 such that
ug € X-(0), and moreover(0) can be chosen arbitrarily close to the uniform real-angitytiradius ofu,
respectively to the radius of Gevrey-class regularity. (¢} be the classicali"-solution of the initial value
problem g.1)—(E.4).

With the notations of Sectiohwe have ara priori estimate

d Ttm—?)
Elutt)lx, = 7Ot Hmwz( Ol ) a L 35

Fix m > 3. In order to estimatéd/dt)|u(t) |, for eachia| = m we applyd® on (E.1) and take thd.2-inner
product witho®u. We obtain

1d

2dt
On the second term on the left, we apply the Leibniz rule apdlr¢hat< u - VO“u, 0“u >= 0. For the
third term on the left of§.6) we note that since = (0,0, —1) andu-n = 0 onof2, we have thad®u-n = 0
for all « such thatws = 0. Together withV - « = 0 in €2 this implies thai< Vo“p, 0“u >= 0 whenever
as = 0. Using the Cauchy-Schwarz inequality and summing ¢wer= m we then obtain

d «
— B, . a—p3 leY
Flibs X5 (§)10%0 vl s X M9
|la|=m B<a,B£0 |lal=m,a3#0
Combined with 8.5), the above estimate shows that

—[|0%u[32+ < 0% (u - Vu), 0% > + < VO*p, 0%u >= 0. (3.6)

d
E”u(t)HXT(t) < 7(t )”u(t)HYT(t) +C+P, 3.7)

where the upper bound on the commutator term is given by
m—3

C= Z >y M < >|aﬁu \Coa %HLQW,

m=3 |a|=m B<a,8#0
and the upper bound on the pressure term is
P = Z Y M|Vl ( )
m=3 |a|=m,as#0
In order to estimat€ we use the following lemma, the proof of which is given in $mtd below.
Lemma 3.1. There exists a sufficiently large constant> 0 such that
C<C(C+Callully,),
where
C1 = [ul1,00|tls + [ul2,00|ul2 + T|ul2,00luls,
and

3/2

Co = Tlul1,00 + T2 |tl2,00 + T2|Ul3,00 + 7% ||ul x, -

The following lemma shall be used to estim@eThe proof is given in Sectiod below.
Lemma 3.2. There exists a sufficiently large constant> 0 such that
P < C (P14 Polully,),
where

Pr = |ul1,00luls + [ul,solulz + Tlula,ouls + 7% |uls,00|uls,
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and

3/2‘

Py = T‘ull,oo + 7'2’“‘2700 + 7'3’“‘3700 + 7 Jul|x, -

Letr > 9/2 be fixed. The Sobolev embedding theorem, the two lemmas abode3.7) imply
d .
Zlu®lix, o, < 7Oy, ) + Cllu®)Z-(1+7()?)
+ Cllu®)ll, gy (rOIFu® e + (@) + O ult) [ + 7O e x.,) . @8)
If 7(¢) decreases fast enough so that fol0adf ¢ < 7. we have

7(t) + Cr(O)Vu(®) [ + C(r(t) + 7(6)*) (@)l + C7(8)*?[|u(t)]| x
then @.8) implies that

0 <0, (3.9)

%Hu( Bllx,q < Clu@®|z-(1 +7(0)%),

and therefore

Ju()llx,y < lluollx, o) + Crio / (o) |20 ds — M (D)

forall 0 <t < T, whereCrg) = 1 + 7(0)2. SinceT must be chosen to be a decreasing function, a
sufficient condition for 8.9) to hold is that

#Ht) + O7(0) [Vu(t) | + Cr(t)*2 (Chyg)lu()lla + M (D)) <0, (3.10)

whereC;(O) = 7(0)"/2 4 7(0)3/2. For simplicity of the exposition we denote

610 = exp (0 [ I9u(s)u~ds)

where the constard@ > 0 is taken sufficiently large so thiu(t)||%, < |juo|/%-G(t). It then follows that
(3.10 is satisfied if we let

() =G0~ <T(O)_1/2 - C/Ot (C;(O)Hu(S)HH" + M(s)) G(s)_lds> _1/2,

The lower boundZ.1) on the radius of analyticity stated in Theor&ni is then obtained by noting that
t
(07 4 0 / Ol lluts) e+ M (s)) Gs) s

e / roluollz + luollx. o + 5Crio ol ) ds
< Co(1+1)? (3.11)

and therefore

C
) > G P—=2L
r(t) > Gt T
The last inequality in3.11) above gives the explicit dependence(f on uy. This concludes tha priori
estimates that are used to prove Theofefn The proof can be made formal by considering an approximat-
ing solutionu(™, n € N, proving the above estimates fof*), and then taking the limit as — co. We
omit these details.
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4. THE COMMUTATOR ESTIMATE

Before we prove Lemma.1we state and prove two useful lemmas about multi-indexes yitl be used
throughout in Sectiond and5 below.

Lemma4.1. We have
a 1aee ||
MMz M g( > 4.12
(5ot < (i (442
for all o, B € N} with 8 < a.
Proof. Using 3.4) we have that
o —1a7-1 _ o]
(5 et ticz, = ()
and hence the left side o412 is bounded by

(150) ()
) =050)

for anyn, m > 0 such that: > 7 andm > j, which in turn we obtain by computing the coefficient in front
of 27 in the binomial expansions ¢f + z)"(1 + )™ and(1 + x)™*™. O

The lemma then follows from

The second lemma allows us to re-write certain double sunadvimg multi-indices.

Lemma4.2. Let{zy}\cnz and{yx} cnz be real numbers. Then we have

YD wyas=| D, s DT (4.13)

la|=m |B|=j,8<a |1Bl=3 Iyl=m—j
The proof of the above lemma is omitted: it consists of reelimlg of the terms on the left side of.(L3).
Now we proceed by proving the commutator estimate.

Proof of Lemma&.1 We have
C=>.2 Cnj
m=3 j=1
where we denoted
7_m—3 a
= By, . a—p

We now split the right side of the above equality into sevemgeaccording to the values ot andj, and
prove the following estimates. For loyy we claim

Z Cont < Clultoolulz + CTlul1 00lully, , (4.15)
m=3
Z Crma < Clulacoltlz + CT|uls.colulz + CT2|ul2.00|ully, , (4.16)

m=3
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for intermediatej, we have

[m/2]

SN Cong < O ullx, Nlully, (4.17)
m=6 j=3
[e%) m—3
> Cinj < CT2|ullx, [lully, (4.18)
m=7 j=[m/2]+1
and for highy,
> Com—2 < C7ul3.00|lully,, (4.19)
m=>5
> Conme1 < Cltlz00luls + CT2ul2,00]|ully, (4.20)
m=4
Z Conrm < Clul1 ooluls + OT|ul1 ool |ully, - (4.21)
m=3

Due to symmetry we shall only prové.(5—(4.17) and indicate the necessary modifications #118—

(4.20).
Proof of @.19: The Holder inequality,4.14), and Lemmat.limply that

Sln=3 % (Maloulee) (Macslor P Vulie) My ar 2, ()
m=3

la|=3]8|=1,6<a

PSS (Ml (Macstor vl I

m=4|a|=m |B|=1,<a

—1 -1 (6% 1
x Mo M; Ma_6<5>m_3 T

<Y X (Mal07ullis ) (Mool Vul 1)

|a[=3[8]=1,8<a

IS (M5110%ull.~)

m=4|aj=m |8/=1,<a
(m —3)rm—4

(m —3)!s
The first sum on the far right side 0f.22 can be estimated by

X <Ma_5\|8°‘_BVuHLz ) mm . (4.22)

-3

C|’LL|17OO|V’LL|2 S C’|u|1,oo|u|3.
Sincem > 4, Lemmad.2implies that the second term on the far right side/ofp) is bounded by

(m — 3)rm—4

3)'5 S CT‘uhyoo”uHYT7

[e.9]
Crlul1,00 Y [Vtulm-1

m=4 (m

concluding the proof 0f4.15).
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Proof of @.16: As in the proof of .15 above, we have

Zcmz<0 S (MploPule ) (Ma-pllo” P Vuls2)

|a|=3,4|8|=2,<c

—1a-1 [&
xMaMB Ma_ﬁ(ﬁ)

PO Y S (M) (Maslr vl B

m=5 |a|=m |B|=2,6<a

_ _ « 1
X Mo Mg M, (/3) T 3)872. (4.23)

Using Lemmad.2, the first sum on the right of4(23 can be estimated from above by
Clul2,00|Vuli + CTlul2,00 | Vula < Clulz oo|ulz + CT|ul2 oo |ul3.
On the other hand, sinee> 1, |5| = 2, and|a| = m > 5, we have by Lemmd.1that

« 1 - m 1 <c
B)(m—-4)m-3)3 " \2)(m—-4)(m-3) —
By Lemma4.2, the second sum on the right @f.23 is thus bounded by

—1a,—1
Mo M; Ma_ﬁ<

(m — 4)rm="
(m— D

or? Z |ul2,00[Vulim—2 < C7?fula,colully -

m=>5

This proves the desired estimate.
Proof of @.17): We first observe that the Holder inequality and the Sobwolequality give

187w - VO Pu| 12 < C[0Pu 11| A |35 |V 8Pl 2.

Therefore we can bound the right hand sidefbf.{) as follows

oo [m/2] oo [m/2] ~i=3 0 \ /4
Z Z Cmyj < Z Z Z <MBH86UHL2w> T3/2Aa,678
m=6 j=3 m=6 j=3 |a|=m |8|=j,8<a J )
j—1 3/4 ; m—j—3
] . s (m=j=2)r
X <M5||8 Aul| 2 G- 1)!S> (MQ_BHO Vul 2 mn—j -9 ;

where

L j— 3/ (5 — )13/ (m — j — 2)1°
Ay pe= MM 11 <a>(3 '
o pmemB\B (m—=3)*(m—j—2)

By Lemma4.1, we have that forn > 6 and3 < j < [m/2]
m\ (m—3\ ° 1
DU Yoy e —
o JI\i=1) (m—j—2)(j—1)¥/4(j —2)s/*

o —s+1
< C<m 3> ;
j—1 j1+5/2
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Sinces > 1 the above chain of inequalities gives thdt g, < C. Together with Lemma.2 and the
discrete Holder inequality this shows that

o [m/2] oo [m/2] _3 1/4 i—1 3/4
Z Z Cm] < CT3/2 Z Z <’ ‘] 8) <’AU‘]W>

m=6 j=3 m=6 j=3

y <|Vu|m—j( (;1 j_—j2zr;f;!—sj—3> .

The discrete Young and Holder inequalities then give

o0
SN Cny < O ullx, ully,

concluding the proof 0f4.17).
To prove 6.18—(4.21) we proceed as in the proofs af.(5—(4.17) above, with the roles gf andm — j
reversed. Instead of estimatifig®u - VO Pul| 12 with ||0°ul| = ||0% P Vu| ;> we instead bound

0% - VO Pul| 2 < (|0Pul| 2|0 PVul| poo.
We omit further details. This concludes the proof of Lem#rha O

5. THE PRESSURE ESTIMATE

In the proof of the Lemma&.2we need to use the following higher regularity estimate @nsiblution of
the Neumann problem associated to the Poisson equationeftralf-space.

Lemma 5.1. Assume thap is a smooth solution of the Neumann problem
—Ap =wvin{,

Ip

on

withv € C*°(€2). Then there is a universal constafit> 0 such that

t
st plz <C Y <s+ >”3%HL2, (5.24)
$,t€No,|B|=m—1 s
B'—a’'=(2s,2t)

=00ondf,

for anym > 1 and any multiindexy € Ng with |«| = m andas # 0. Additionally, ifas > 2 then

a s+t
CETPEI D SR Gy [P 5.25)

s,t€Ng,|B|=m—1
B'—a’=(2s+1,2t)

o s+t
L PRI SRR Gy [P (5.26)

s,t€Ng,|B|=m—1
B'—a’'=(2s,2t+1)

whereC > 0 is a universal constant.

We emphasize that the constanin the above lemma is independentcofindm. In (5.24) we have are
summing over the set

{BeN3: |3 =m—1, 3s,t € Ny such that?’ — o/ = (2s,2t)}

and similar conventions are used 45, (5.26), and throughout this section.
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Proof. In order to avoid repetition, we only prove.24) and indicate the necessary changes $02%) and
(5.26). Let A’ = 911 + 092 be the tangential Laplacian. Using induction/or Ny we obtain the identity

82k+2 Yty Z Yk=iy,

and upon applyin@s to the above equation

k
053 = By(~ A p = o (A,
j=0

Therefore givena| = m, with ag = 2k + 1 > 1, we have

k
030°p = 5F 20 p = (=AY p + Y ()R IO (011 + 9) T 00, (5.27)
j=0
and ifaz = 2k + 2 > 2, we have

k
030°p = 95F T30 p = 03(— A1 p + Y (= 1)FITHOT T (911 + 022)F 0% v, (5.28)
=0
Sincen = (0,0, —1), the functiong = (—A’)*9*'p satisfies the Neumann problem
~Ag=(—ANoYy  ingQ,
%
on
Using the classicalf>-regularity argument for the Neumann problem we then have
18]l 2 < Cll(=A 0 v]l e,

=0 on of2.

and
105Ag| 2 < Cll05(=A)* 0] 2,
for a positive universal constant. Combining the above estimates withZ7), (5.29, and the identity

(811 + 822)m,w _ Z <S>a%s 2m— 2sw’

s=0
we obtain

1850°p)| .2 <CZH (D11 + D22)F 70 0| 2

]:

- k—1 e .
("7 aierage- e (5.29
if ag=2k+12>1,and

1030“p]| 2 < CZ 10371 (D11 4 Da2) 7 0% 0| 2
7=0
<C) < s ]> |97 +en gt TR R ) (5.30)

§=0 s=0
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if ag = 2k+2 > 2. To simplify (5.29 above, let = k—j—s > 0andf = (2s+aq,2k—2j—2s4a9,2j) =
(25 + 1,2t + ag, a3 — 1 — 25 — 2t) € N3. Since|a| = m andag = 2k + 1, we havel 3| = m — 1, and by
re-indexing the sums5(29 can be re-written as

o s+t
PRI SER (o [ P

5,t€Np,|Bl=m—1
B'—a’'=(2s,2t)

The above estimate also holds tey = 2k +2 with the substitutiors = (2s+aq, 2k —2j—2s+ag,2j+1),
thereby simplifying the upper bouné.80), and concluding the proof ob(24).
To prove 6.25 we proceed as above and obtain

1810%pl| 2 = (|07 1052 05F 2 p]| 12

k k—j
<0y

k—7 94 ;
< ]) ||91a1+2s+1 92a2+2k 2j—2s 9§]UHL2 (53])
j=0

=0

»

if a3 =2k +2>2,and
19107 plz= = 107+ 05205 pll
S C Z Z < > Hale+28+18§£2+2k—2‘]—286§7+1vHL2 (532)
7=0s=0

if ag = 2k+3 > 3. In(5.3) welett = k—j—s >0ands = (a1 + 2s + 1,a9 + 2t,2j) =
(1 + 25 + 1,00 + 2t, 3 — 2 — 25 — 2t), sinceas = 2k + 2 and|a| = m. Similarly in (5.32 we let
B = (a1 +2s+ 1,0 +2t,2j + 1) = (a1 +2s + 1,00 + 2t, 03 — 2 — 25 — 2t), Sinceas = 2k + 3
and|a| = m. The above substitutions and re-indexing pro¥29. Upon permuting the first and second
coordinates, this also proves.26). O

Remark 4. We note that Lemma&.1 does not give an estimate f40,0“p|| ;> and|[020%p|| .2 if as = 1.
In this case we note that the functign= 9% p satisfies the Neumann problem
—Ag=0  inQ,
9y

— = Q.
I 0 onod

The classical 2-regularity argument then gives

1010°pll 2 = 1101050 pll 2 < 0% vl 2,
and

1020°pll 2 = 1102050 pll 12 < C[|0% vl 2,
for a positive universal constant > 0.

We note that Lemma@&.lis different from the classical higher regularity estinsafef. [19, 31, 36]) for the
Neumann problem in the fact that the constann (5.24—(5.26) does not increase witt. The dependence
onm is encoded in the sums with binomial weights on the right sid®.24)—(5.26).

The following lemma shows that only a factorsafis lost in the above higher regularity estimates if each
|0%v]| .2 term is paired with a proper binomial weight. This explaihe tlefinition of the homogeneous
Sobolev norms - |,,, in (3.3).

Lemma5.2. There exists a positive universal constahsuch that

161/2] [2/2)
B+ B2 —25=2t\ (s+t B1 + B2
2 Z( B - 2s >< 5 >§0m< b ) 5:33)

s=0 t=0
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for anym > 3 and any multi-index3 = (31, 2, m — 1 — 31 — B2) € N3. Additionally, if3; > 1 we have

[(B1—1)/2] [B2/2]
Z Z <51+52—28—1—2t><S+t>Scm<51-|-52>7 (5.34)

=0 =0 ﬁ1—28—1 S 1

while if 55 > 1 we have

(81/2] [(B2—1)/2]
Z Z <51 + 525:382; 2t — 1) <8 ;i- t> <Cm <51;-152>7 (5.35)

whereC' is a universal constant.
We note that in particular the constaritis independent of, and 5.

Proof. Due to symmetry we only give the proof di.33). Estimates§.34) and 6.35 are provermutatis-
mutandi First we recall that given,, v € N3, with v < «, we have

()= ()
< )
gl vl
Using the above inequality we get

(81/2] [B2/2] 1
P1+Pa —2s =2t (s+1t\ (B1+ B2
Sy (MR 08”)

s=0 t=0
2 2] 2 2
355 (AR GO IES Sh STOU
s=0 =0 r—s b s=0 1=0
The lemma is then proven if we find a constéhsuch that
[81/2] [B2/2] -1
s+t
>3 (1) e,
s=0 t=0

Without loss of generality we may assume that3, > 4. We split the above sum into

(81/2] [B2/2] 1 [82/2] -1 —1  [1/2] -1 -1
s+t t t+1 S s+1
Sy () =) () 20 ()

s=0 =0 =0 s=0
(81/2] [B2/2] -1
s+
x> ()
s=2 t=2
=T+ 15+ T3. (5.36)
It is clear that
Ty + Ty, < C(B1 + Bo). (5.37)

We estimatél; by appealing to the Stirling estimate (c84, p. 200])
7/8 T "
¢ ﬁ(e) <n.<e\/ﬁ<e)

slt! st 1 1
< /8, | .
(s+1)! s+t (1+s/t)(1+1t/s)*

This implies
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Thus we obtain

(81/2] [B2/2] 1
T3 < C t————. 5.38
= Z:; ; VT sy (5.38)

Sinces > 2, the Binomial Theorem implies

s 2
(5 2 () ()
s 2 s
and by 6.38 we have

(81/2] [B2/2] [81/2] ©
T;<C > Z\f <c| > 1 (Zm>§0ﬁ1.
t=2

s=2 t=2 s=2
Sincef; + B2 < m — 1, the above inequality5(36), and 6.37) complete the proof of the lemma. O

Proof of Lemma3.2. First, note that since satisfies the elliptic Neumann problef )—(P.2 we may use
Lemmab.1to estimate higher derivatives 8fp as

o +t
> My|osdplle<C > > Ma<s )Haﬁ(auk@kul)ﬂg

|ar|=m,a3#0 |or|= ma;;é()stENo,\m m—1
B'—a’'=(2s,2t)
By re-indexing the terms in the parenthesis, the right sfdeeabove inequality may be re-written as

[81/2] [B2/2]

I <ﬁ1+ﬁ2—2s 2t> <S+t>\\85(8uk8kul)|m

|B]=m—1 s=0 =0
Using the estimatex(33 of Lemma5.2we bound the above expression by
Cm Y Mg||0° (Dupdeus)|| 2
|8]=m—1
and therefore

i( > Maaa) i
all030 PIL2 | T o\1s
m=3 \ |a|=m,a37#0 (m 3)

& m—3
B8, , mr

< cn;’ w;_l M310° @rurdu)ll e 7o (5.39)

On the other hand, higher derivativesiap are estimated using the decomposition
> M0d°plre = > Malldd%plre+ D> Mall010%p] 2. (5.40)

|a|=m, 370 |o]=m,a3=1 |a|=m,az>2
By Remark4, the first term on the right 055(40 is bounded by
C Y MloY @)l =C Y Mpll0” (Qundyui)| - (5.41)
lal=m,az=1 |B|=m—1,83=0

Using estimateX.25), the second term on the right side 6f40) is estimated by

c > Ma<8jt>”35 (OsurOrui) || 2

la|l=m,az>2 | s,t€Np,|B|=m—1
B —a’=(2s+1,2t)
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By re-indexing the above expression equals

[(B-1)/2] [B2/2
Bi—1+4 P2 —2s =2\ (s+1\ 5
c ¥ oy > (CTIAITCT e eaae

|Bl=m—1,1>1 s=0 =0
and using %.34) it is bounded from above by
Cm > Mg|0” (Oiuxdpui)| 12
|B‘:m_175121
Therefore, by%.40), (5.41), and 6.42), we have

o) 7_m—3
Z( Z MaalaapLQ)Mq

m=3 \ |a|=m,a37#0

o] m
<C Z Z Mﬁﬂc‘)ﬁ(&ukakui)\\ﬂm'

m=3 |§|=m—1
By symmetry, we also get

00 7_m—3

Z Z M [020%pl| L2 (m—3)

m=3 \ |a|=m,a37#0 )

,7_m—3

=C Z Z Mg|0”(0; Ukakuz)HL2w~

m=3|B|l=m—1
Combining 6.39), (5.43, (5.44), and the Leibniz rule we obtain

7><CZ 3 MﬁuaB(aukakuZ)HLz( -<C ZZ g
=3 j=0

m=3 |8|=m—1

where

m—3

mT

IB\ m—1|y|=j,y<B

(5.42)

(5.43)

(5.44)

(5.45)

We split the right side of.45) into seven terms according to the valuesofnd;. For low j, we claim

o
> Pmo < Clulicoluls + Orlulysollully,

m=3

[ee]
Y P < Clulzeolulz + C7lulz,00luls + C7°[ula,oollully,

m=3

o0
D Pz < C72[ulsccluls + C7%uls oo lully,
m=5
for intermediatej, we have
o [m/2—1

Y0 D Py < CPullx, |lully,

m=8 j=3

oo  m—3
Yo D Py <O ullx, llully,

m=6 j=[m/2]

(5.46)

(5.47)

(5.48)

(5.49)

(5.50)
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and for highj, we claim

o0

> Prnm—a < Clula,coltls + C72|ulz,o0lully, (5.51)
m=4

o0

> Pt < Clulyooluls + Crluly oo llully, (5.52)
m=3

The above estimates are proven similarly4dlf)—(4.21) in the proof of Lemm&.1 Due to symmetry we
have presented there the proofs of the estimates wheren — j. For completeness of the exposition we
provide the proofs off.50—(5.52), where we haven — j < j.

Proof of 6.50: We proceed as in the proof of.(L7) in Section4. First, the Holder and Sobolev inequal-
ities imply that

107 Dguy, - OOy 12 < C| Dyu|| 2107 By || 54| AOP Do |24

Therefore,
(j —2)r 3
)DIDIETS Sl D SRR DI CTA Nttt
m=6 j=[m/2] m=6 j=[m/2] |B|l=m~—1 |v|=j,y<B
m—j—3 1/4
Ma_18°70 ; -
x < B ’YH kU ||L2(m—j—3)'s>
5 Tm—j—l 3/4 3/2
- .
X <MB—7HA8 akuZHLz (m i 1)!S> T 85,%5,
where

o = 2)15(m — 5 — 3)15/%(m — j — 1)135/4
Borys = Moy "My, <’v> (G —2)(m -3

By Lemmad4.1we have that forn > 6 and[m /2] < j <m —3

B <C<m—1> <m—3>_S m
e = j i=2) (G—2)(m—j— 1) (m—j— 2

§0<”7_3>1 “m— gy,

since (") < C("7}), whenj > m/2. Therefore,B;, . < C; hence, by Lemmé.2and the discrete
Holder inequality, we have

oo  m—3 oo  m—3 Fm—j—3 1/4
Z Z PmJ < 07-3/2 Z Z <‘8}.€Uz‘m—j_1m>

m=6 j=[m/2) m=6 j=[m/2)

Fm—j—1 3/4 j—2)ri—3
X <\A3kui]m_j—1m> <‘3zuk‘3ﬁ> .

The discrete Young and Holder inequalities then give

Z Z Prny < CT32||ulx, Jully,

m=6 j=[m/?]

concluding the proof off.50).
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Proof of 6.51): As above we use the Holder inequality and obtain

m—3

mem <Y 2 ()it vl

m=4|8|=m—1|y|=m—2,7<8

<or Y ST 00l 10° Oy | Lo
|B]=3 |v|=2,v<8

oo m—>5
L O Z Z Z (Mv\\m@ukllm h)

m=5 |Bl=m—1|y|=m—2,y<p
ETI —-1 (P
Using Lemmat.1, Lemma4.2, ands > 1, this shows that the far right side of the above chain of iadéities
is bounded by

mr™m o

(m —4)!s

< O7lul2,00luls + CT2[ul2,00lull v,

o0
O7|0iuk|2|Oktti] 1,00 + OT?|Okuil 1,00 Z |05k | m—2

m=>5

thereby proving %.51).
Proof of 6.52: By the Holder inequality we have

m—3
Z Prmm-1 < Z Y Msl|o%0; Uk”mHakquLwW
m=3 |B|=m~1 '
0 m—4
mT

m=4

< Clufcoluls + Clu1 colully-,

which gives the desired estimate. By symmetry, we may sityifgove 6.46—(5.49), but in these cases we
apply the Holder inequality as

10705 - 0PV Oui| 12 < ||07 Osug || oo ||0° Y Ois]| 2,

that is we reverse the roles paindm — j. We omit further details. This concludes the proof of Lenfia
O
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