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ABSTRACT. We address the problem of analyticity up to the boundary of solutions to the Euler equations in
the half space. We characterize the rate of decay of the real-analyticity radius of the solutionu(t) in terms
of exp

∫ t

0
‖∇u(s)‖L∞ds, improving the previously known results. We also prove the persistence of the sub-

analytic Gevrey-class regularity for the Euler equations in a half space, and obtain an explicit rate of decay of
the radius of Gevrey-class regularity.
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1. INTRODUCTION

The Euler equations on a half space for the velocity vector field u(x, t) and the scalar pressure field
p(x, t), wherex ∈ Ω = {x ∈ R

3 : x3 > 0} andt ≥ 0, are given by

∂tu+ (u · ∇)u+∇p = 0, in Ω× (0,∞), (E.1)

∇ · u = 0, in Ω× (0,∞), (E.2)

u · n = 0, on∂Ω × (0,∞), (E.3)

wheren = (0, 0,−1) is the outward unit normal to∂Ω = {x ∈ R
3 : x3 = 0}. We consider the initial value

problem associated to (E.1)–(E.3) with a divergence free initial datum

u(0) = u0, in Ω. (E.4)

The local existence and uniqueness ofHr-solutions, withr > 3/2 + 1, on a maximal time interval[0, T∗)

holds (cf. [12, 15, 23, 32, 36]), andlimTրT∗

∫ T
0 ‖ curlu(t)‖L∞dt = ∞, if T∗ < ∞ (cf. [6]); additionally the

persistence ofC∞ smoothness was proven by Foias, Frisch, and Temam [17]. In this paper we address the
solutions of the Euler initial value problem evolving from real-analytic and Gevrey-class initial datum (up to
the boundary), and characterize the domain of analyticity.We emphasize that the radius of real-analyticity
gives an estimate on the minimal scale in the flow [22, 25], and it also gives the explicit rate of exponential
decay of its Fourier coefficients [18].

In a three dimensional bounded domain, the persistence of analyticity was proven by Bardos and Be-
nachour [3] by an implicit argument (see also Alinhac and Métivier [1]). In [2, 7] the authors give an
explicit estimate on the radius of analyticity, but which vanishes in finite time (independent ofT∗). How-
ever, the proof of persistency [3] can be modified to show that the radius of analyticity decaysat a rate
proportional to the exponential of a high Sobolev norm of thesolution (see also [1]). On the three dimen-
sional periodic domain (or equivalently onR3) this is the same rate obtained by Levermore and Oliver in
[30], using the method of Gevrey-class regularity. This Fourier based method was introduced by Foias and
Temam [18] to study the analyticity of the Navier-Stokes equations. For further results on analyticity see
[1, 13, 16, 20, 21, 24, 25, 28, 29, 27, 33, 35]. Explicit and even algebraic lower bounds for the radius of
analyticity for dispersive equations were obtained by Bona, Grujić, and Kalisch in [9, 10] (see also [8, 11]).

In [26] we have proven that in the periodic setting, or onR
3, the analyticity radius decays algebraically

in the Sobolev norm‖ curl u(t)‖Hr , with r > 7/2, and exponentially in
∫ t
0 ‖∇u(s)‖L∞ , for all t < T∗.
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In the present paper we show that the algebraic dependence onthe Sobolev norm holds in the case when
the domain has boundaries (cf. Theorem2.1), thereby improving the previously known results. The interior
analyticity in the case of the half-space, for short time (independent ofT∗), was treated in [35]. We note that
the shear flow example of Bardos and Titi [5] (cf. [14, 38]) may be used to construct explicit solutions to the
three-dimensional Euler equations whose radius of analyticity is decaying for all time.

Additionally we prove the persistence of sub-analytic Gevrey-class regularity up to the boundary (cf. [18,
31]) for the Euler equations on the half space. To the best of ourknowledge this was only known for
the periodic domain cf. [26, 30], but not for a domain with boundary. The methods of [1, 3, 27, 35] rely
essentially on the special structure of the complex holomorphic functions, and do not apply to the non-
analytic Gevrey-class setting.

The presence of the boundary creates several difficulties that do not arise in the periodic setting. In
particular we cannot use Fourier-based methods, nor can we use the vorticity formulation of the equations.
Instead we need to estimate the pressure, which satisfies (cf. [36]) the elliptic Neumann problem

−∆p = ∂jui∂iuj , in Ω× (0,∞), (P.1)

∂p

∂n
= (u · ∇)u · n = 0, on∂Ω× (0,∞), (P.2)

sincen = (0, 0,−1), where the summation convention on repeated indices was used in (P.1). In order
to close our argument we need to show that the pressure has thesame analyticity radius as the velocity,
and so we cannot appeal to the inductive argument of Lions andMagenes [31]. Moreover, the nature of the
elliptic/hyperbolic boundary value problem imposes certain restrictions on the weights of the Sobolev norms
that comprise the analytic norm. The analytic norm we define (cf. Section3) respects the symmetries of the
problem and is adequate to account for the transfer of derivatives arising in the higher regularity estimates
for the pressure.

The paper is organized as follows. In Section2 we state our main result, Theorem2.1. In Section3
we prove the main theorem assuming two key estimates on the convection term and the pressure term,
Lemma3.1 and Lemma3.2. Section4 contains the proof of the commutator estimate Lemma3.1, and
lastly, the higher regularity estimates for the pressure and the proof of Lemma3.2are given in Section5.

2. MAIN THEOREMS

The following statement is our main theorem addressing the analyticity of the solution. Theorem2.2
below concerns the Gevrey class persistence.

Theorem 2.1. Fix r > 9/2. Letu0 ∈ Hr(Ω) be divergence-free and uniformly real-analytic inΩ. Then
the unique solutionu(t) ∈ C(0, T∗;H

r(Ω)) of the initial value problem associated to the Euler equations
(E.1)–(E.4) is real-analytic for all timet < T∗, whereT∗ ∈ (0,∞] denotes the maximal time of existence of
theHr-solution. Moreover, the uniform radius of space analyticity τ(t) of u(t) satisfies

τ(t) ≥ 1

C0(1 + t)
exp

(

−C

∫ t

0
‖∇u(s)‖L∞ds

)

, (2.1)

whereC > 0 is a constant that depends only onr, whileC0 has additional dependence onu0 as described
in (3.11) below.

Remark 1. The lower bound (2.1) improves the rate of decay from Bardos and Benachour [3] on a bounded
domain (which can be inferred to be proportional toexp

∫ t
0 ‖u(s)‖Hrds), and it matches the rate of decay

we obtained in [26] on the periodic domain.

Remark 2. The proof of Theorem2.1also works in the case of the half-plane (recall that in two dimensions
T∗ may be taken arbitrarily large, cf. [32, 37]) with the same lower bound on the radius of analyticity of
the solution. Since in two dimensions‖∇u(t)‖L∞ grows at a rate ofC exp(Ct), for some positive constant
C, the estimate (2.1) shows that the rate of decay of the analyticity radius is at leastC exp(−C exp(Ct)),
for someC > 0. This recovers the two-dimensional rate of decay obtained by Bardos, Benachour and
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Zerner [4] on a bounded domain and by the authors of this paper on the torus [26]. It would be interesting
if one could prove a similar lower bound to (2.1) but where the quantity

∫ t
0 ‖∇u(s)‖L∞ ds is replaced by

∫ t
0 ‖ curl u(s)‖L∞ ds. In particular, such an estimate would imply in two dimensions that the radius of

analyticity decays as a single exponential in time.

Recall (cf. [31]) that a smooth functionv is uniformly of Gevrey-classs, with s ≥ 1, if there exist
M, τ > 0 such that

|∂αv(x)| ≤ M
|α|!s
τ |α|

, (2.2)

for all x ∈ Ω and all multi-indicesα ∈ N
3
0. Whens = 1 we recover the class of real-analytic functions,

and fors ∈ (1,∞) these functions areC∞ smooth but might not be analytic. We call the constantτ in
(2.2) the radius of Gevrey-class regularity. The following theorem shows the persistence of the Gevrey-class
regularity for the Euler equations in a half-space.

Theorem 2.2. Fix r > 9/2. Letu0 be uniformly of Gevrey-classs onΩ, with s > 1, and divergence-free.
Then the uniqueHr-solutionu(t) of the initial value problem(E.1)–(E.4) on [0, T∗) is of Gevrey-classs, for
all t < T∗, and the radiusτ(t) of Gevrey-class regularity of the solution satisfies the lower bound(2.1).

3. PROOFS OFTHEOREM 2.1 AND THEOREM 2.2

For a multi-indexα = (α1, α2, α3) in N
3
0, we denoteα′ = (α1, α2). Define the Sobolev and Lipshitz

semi-norms| · |m and| · |m,∞ by

|v|m =
∑

|α|=m

Mα‖∂αv‖L2 , (3.3)

and

|v|m,∞ =
∑

|α|=m

Mα‖∂αv‖L∞ ,

where

Mα =
|α′|!
α′!

=

(

α1 + α2

α1

)

. (3.4)

The need for the binomial weightsMα in (3.3) shall be evident in Section5 where we study the higher
regularity estimates associated with the Neumann problem (P.1)–(P.2). For s ≥ 1 andτ > 0, define the
space

Xτ = {v ∈ C∞(Ω) : ‖v‖Xτ
< ∞},

where

‖v‖Xτ
=

∞
∑

m=3

|v|m
τm−3

(m− 3)!s
.

Similarly letYτ = {v ∈ C∞(Ω) : ‖v‖Yτ
< ∞}, where

‖v‖Yτ
=

∞
∑

m=4

|v|m
(m− 3)τm−4

(m− 3)!s
.

Remark 3. The above defined spacesXτ and Yτ can be identified with the classical Gevrey-s classes
as defined in [31]. On the full space or on the torus, the Gevrey-s classes can also be identified with
D((−∆)r/2 exp (τ(−∆)1/2s)) (cf. [18, 26, 30]).
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We shall prove Theorems2.1 and2.2 simultaneously by looking at the evolution equation in Gevrey-s
classes withs ≥ 1. If u0 is of Gevrey-classs in Ω, with s ≥ 1, then there existsτ(0) > 0 such that
u0 ∈ Xτ(0), and moreoverτ(0) can be chosen arbitrarily close to the uniform real-analyticity radius ofu0,
respectively to the radius of Gevrey-class regularity. Letu(t) be the classicalHr-solution of the initial value
problem (E.1)–(E.4).

With the notations of Section2 we have ana priori estimate

d

dt
‖u(t)‖Xτ(t)

= τ̇(t)‖u(t)‖Yτ(t)
+

∞
∑

m=3

(

d

dt
|u(t)|m

)

τ(t)m−3

(m− 3)!s
. (3.5)

Fix m ≥ 3. In order to estimate(d/dt)|u(t)|m , for each|α| = m we apply∂α on (E.1) and take theL2-inner
product with∂αu. We obtain

1

2

d

dt
‖∂αu‖2L2+ < ∂α(u · ∇u), ∂αu > + < ∇∂αp, ∂αu >= 0. (3.6)

On the second term on the left, we apply the Leibniz rule and recall that< u · ∇∂αu, ∂αu >= 0. For the
third term on the left of (3.6) we note that sincen = (0, 0,−1) andu·n = 0 on∂Ω, we have that∂αu·n = 0
for all α such thatα3 = 0. Together with∇ · u = 0 in Ω this implies that< ∇∂αp, ∂αu >= 0 whenever
α3 = 0. Using the Cauchy-Schwarz inequality and summing over|α| = m we then obtain

d

dt
|u|m ≤

∑

|α|=m

∑

β≤α,β 6=0

Mα

(

α

β

)

‖∂βu · ∇∂α−βu‖L2 +
∑

|α|=m,α3 6=0

Mα‖∇∂αp‖L2 .

Combined with (3.5), the above estimate shows that

d

dt
‖u(t)‖Xτ(t)

≤ τ̇(t)‖u(t)‖Yτ(t)
+ C + P, (3.7)

where the upper bound on the commutator term is given by

C =

∞
∑

m=3

∑

|α|=m

∑

β≤α,β 6=0

Mα

(

α

β

)

‖∂βu · ∇∂α−βu‖L2
τm−3

(m− 3)!s
,

and the upper bound on the pressure term is

P =

∞
∑

m=3

∑

|α|=m,α3 6=0

Mα‖∇∂αp‖L2
τm−3

(m− 3)!s
.

In order to estimateC we use the following lemma, the proof of which is given in Section 4 below.

Lemma 3.1. There exists a sufficiently large constantC > 0 such that

C ≤ C (C1 + C2‖u‖Yτ
) ,

where

C1 = |u|1,∞|u|3 + |u|2,∞|u|2 + τ |u|2,∞|u|3,
and

C2 = τ |u|1,∞ + τ2|u|2,∞ + τ3|u|3,∞ + τ3/2‖u‖Xτ
.

The following lemma shall be used to estimateP. The proof is given in Section5 below.

Lemma 3.2. There exists a sufficiently large constantC > 0 such that

P ≤ C (P1 + P2‖u‖Yτ
) ,

where

P1 = |u|1,∞|u|3 + |u|2,∞|u|2 + τ |u|2,∞|u|3 + τ2|u|3,∞|u|3,
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and

P2 = τ |u|1,∞ + τ2|u|2,∞ + τ3|u|3,∞ + τ3/2‖u‖Xτ
.

Let r > 9/2 be fixed. The Sobolev embedding theorem, the two lemmas above, and (3.7) imply

d

dt
‖u(t)‖Xτ(t)

≤ τ̇(t)‖u(t)‖Yτ(t)
+C‖u(t)‖2Hr(1 + τ(t)2)

+ C‖u(t)‖Yτ(t)

(

τ(t)‖∇u(t)‖L∞ + (τ(t)2 + τ(t)3)‖u(t)‖Hr + τ(t)3/2‖u(t)‖Xτ(t)

)

. (3.8)

If τ(t) decreases fast enough so that for all0 ≤ t < T∗ we have

τ̇(t) + Cτ(t)‖∇u(t)‖L∞ + C(τ(t)2 + τ(t)3)‖u(t)‖Hr + Cτ(t)3/2‖u(t)‖Xτ(t)
≤ 0, (3.9)

then (3.8) implies that

d

dt
‖u(t)‖Xτ(t)

≤ C‖u(t)‖2Hr(1 + τ(0)2),

and therefore

‖u(t)‖Xτ(t)
≤ ‖u0‖Xτ(0)

+ Cτ(0)

∫ t

0
‖u(s)‖2Hrds = M(t),

for all 0 ≤ t < T∗, whereCτ(0) = 1 + τ(0)2. Sinceτ must be chosen to be a decreasing function, a
sufficient condition for (3.9) to hold is that

τ̇(t) +Cτ(t)‖∇u(t)‖L∞ + Cτ(t)3/2
(

C ′
τ(0)‖u(t)‖Hr +M(t)

)

≤ 0, (3.10)

whereC ′
τ(0) = τ(0)1/2 + τ(0)3/2. For simplicity of the exposition we denote

G(t) = exp

(

C

∫ t

0
‖∇u(s)‖L∞ds

)

,

where the constantC > 0 is taken sufficiently large so that‖u(t)‖2Hr ≤ ‖u0‖2HrG(t). It then follows that
(3.10) is satisfied if we let

τ(t) = G(t)−1/2

(

τ(0)−1/2 + C

∫ t

0

(

C ′
τ(0)‖u(s)‖Hr +M(s)

)

G(s)−1ds

)−1/2

.

The lower bound (2.1) on the radius of analyticity stated in Theorem2.1is then obtained by noting that

τ(0)−1/2 + C

∫ t

0

(

C ′
τ(0)‖u(s)‖Hr +M(s)

)

G(s)−1ds

≤ τ(0)−1/2 + C

∫ t

0

(

C ′
τ(0)‖u0‖Hr + ‖u0‖Xτ(0)

+ sCτ(0)‖u0‖2Hr

)

ds

≤ C0(1 + t)2, (3.11)

and therefore

τ(t) ≥ G(t)−1/2 C0

1 + t
.

The last inequality in (3.11) above gives the explicit dependence ofC0 on u0. This concludes thea priori
estimates that are used to prove Theorem2.1. The proof can be made formal by considering an approximat-
ing solutionu(n), n ∈ N, proving the above estimates foru(n), and then taking the limit asn → ∞. We
omit these details.
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4. THE COMMUTATOR ESTIMATE

Before we prove Lemma3.1we state and prove two useful lemmas about multi-indexes, that will be used
throughout in Sections4 and5 below.

Lemma 4.1. We have
(

α

β

)

MαM
−1
β M−1

α−β ≤
(|α|
|β|

)

(4.12)

for all α, β ∈ N
3
0 with β ≤ α.

Proof. Using (3.4) we have that
(

α′

β′

)

MαM
−1
β M−1

α−β =

(|α′|
|β′|

)

,

and hence the left side of (4.12) is bounded by
(|α′|
|β′|

)(

α3

β3

)

.

The lemma then follows from
(

n

i

)(

m

j

)

≤
(

n+m

i+ j

)

,

for anyn,m ≥ 0 such thatn ≥ i andm ≥ j, which in turn we obtain by computing the coefficient in front
of xi+j in the binomial expansions of(1 + x)n(1 + x)m and(1 + x)m+n. �

The second lemma allows us to re-write certain double sums involving multi-indices.

Lemma 4.2. Let{xλ}λ∈N3
0

and{yλ}λ∈N3
0

be real numbers. Then we have

∑

|α|=m

∑

|β|=j,β≤α

xβyα−β =





∑

|β|=j

xβ









∑

|γ|=m−j

yγ



 . (4.13)

The proof of the above lemma is omitted: it consists of re-labeling of the terms on the left side of (4.13).
Now we proceed by proving the commutator estimate.

Proof of Lemma3.1. We have

C =

∞
∑

m=3

m
∑

j=1

Cm,j ,

where we denoted

Cm,j =
τm−3

(m− 3)!s

∑

|α|=m

∑

|β|=j,β≤α

Mα

(

α

β

)

‖∂βu · ∇∂α−βu‖L2 . (4.14)

We now split the right side of the above equality into seven terms according to the values ofm andj, and
prove the following estimates. For lowj, we claim

∞
∑

m=3

Cm,1 ≤ C|u|1,∞|u|3 + Cτ |u|1,∞‖u‖Yτ
, (4.15)

∞
∑

m=3

Cm,2 ≤ C|u|2,∞|u|2 + Cτ |u|2,∞|u|3 + Cτ2|u|2,∞‖u‖Yτ
, (4.16)
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for intermediatej, we have

∞
∑

m=6

[m/2]
∑

j=3

Cm,j ≤ Cτ3/2‖u‖Xτ
‖u‖Yτ

, (4.17)

∞
∑

m=7

m−3
∑

j=[m/2]+1

Cm,j ≤ Cτ3/2‖u‖Xτ
‖u‖Yτ

, (4.18)

and for highj,

∞
∑

m=5

Cm,m−2 ≤ Cτ3|u|3,∞‖u‖Yτ
, (4.19)

∞
∑

m=4

Cm,m−1 ≤ Cτ |u|2,∞|u|3 + Cτ2|u|2,∞‖u‖Yτ
, (4.20)

∞
∑

m=3

Cm,m ≤ C|u|1,∞|u|3 + Cτ |u|1,∞‖u‖Yτ
. (4.21)

Due to symmetry we shall only prove (4.15)–(4.17) and indicate the necessary modifications for (4.18)–
(4.21).

Proof of (4.15): The Hölder inequality, (4.14), and Lemma4.1imply that

∞
∑

m=3

Cm,1 =
∑

|α|=3

∑

|β|=1,β≤α

(

Mβ‖∂βu‖L∞

)(

Mα−β‖∂α−β∇u‖L2

)

MαM
−1
β M−1

α−β

(

α

β

)

+

∞
∑

m=4

∑

|α|=m

∑

|β|=1,β≤α

(

Mβ‖∂βu‖L∞

)

(

Mα−β‖∂α−β∇u‖L2

(m− 3)τm−4

(m− 3)!s

)

×MαM
−1
β M−1

α−β

(

α

β

)

1

m− 3
τ

≤ C
∑

|α|=3

∑

|β|=1,β≤α

(

Mβ‖∂βu‖L∞

)(

Mα−β‖∂α−β∇u‖L2

)

+ Cτ

∞
∑

m=4

∑

|α|=m

∑

|β|=1,β≤α

(

Mβ‖∂βu‖L∞

)

×
(

Mα−β‖∂α−β∇u‖L2
(m− 3)τm−4

(m− 3)!s

)

m

m− 3
. (4.22)

The first sum on the far right side of (4.22) can be estimated by

C|u|1,∞|∇u|2 ≤ C|u|1,∞|u|3.

Sincem ≥ 4, Lemma4.2implies that the second term on the far right side of (4.22) is bounded by

Cτ |u|1,∞
∞
∑

m=4

|∇u|m−1
(m− 3)τm−4

(m− 3)!s
≤ Cτ |u|1,∞‖u‖Yτ

,

concluding the proof of (4.15).
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Proof of (4.16): As in the proof of (4.15) above, we have

∞
∑

m=3

Cm,2 ≤ C
∑

|α|=3,4

∑

|β|=2,β≤α

τm−3
(

Mβ‖∂βu‖L∞

)(

Mα−β‖∂α−β∇u‖L2

)

×MαM
−1
β M−1

α−β

(

α

β

)

+ C

∞
∑

m=5

∑

|α|=m

∑

|β|=2,β≤α

(

Mβ‖∂βu‖L∞

)

(

Mα−β‖∂α−β∇u‖L2

(m− 4)τm−5

(m− 4)!s

)

×MαM
−1
β M−1

α−β

(

α

β

)

1

(m− 4)(m− 3)s
τ2. (4.23)

Using Lemma4.2, the first sum on the right of (4.23) can be estimated from above by

C|u|2,∞|∇u|1 + Cτ |u|2,∞|∇u|2 ≤ C|u|2,∞|u|2 +Cτ |u|2,∞|u|3.

On the other hand, sinces ≥ 1, |β| = 2, and|α| = m ≥ 5, we have by Lemma4.1that

MαM
−1
β M−1

α−β

(

α

β

)

1

(m− 4)(m− 3)s
≤
(

m

2

)

1

(m− 4)(m− 3)
≤ C.

By Lemma4.2, the second sum on the right of (4.23) is thus bounded by

Cτ2
∞
∑

m=5

|u|2,∞|∇u|m−2
(m− 4)τm−5

(m− 4)!s
≤ Cτ2|u|2,∞‖u‖Yτ

.

This proves the desired estimate.
Proof of (4.17): We first observe that the Hölder inequality and the Sobolev inequality give

‖∂βu · ∇∂α−βu‖L2 ≤ C‖∂βu‖1/4
L2 ‖∆∂βu‖3/4

L2 ‖∇∂α−βu‖L2 .

Therefore we can bound the right hand side of (4.17) as follows

∞
∑

m=6

[m/2]
∑

j=3

Cm,j ≤
∞
∑

m=6

[m/2]
∑

j=3

∑

|α|=m

∑

|β|=j,β≤α

(

Mβ‖∂βu‖L2
τ j−3

(j − 3)!s

)1/4

τ3/2Aα,β,s

×
(

Mβ‖∂β∆u‖L2
τ j−1

(j − 1)!s

)3/4(

Mα−β‖∂α−β∇u‖L2
(m− j − 2)τm−j−3

(m− j − 2)!s

)

,

where

Aα,β,s = MαM
−1
β M−1

α−β

(

α

β

)

(j − 3)!s/4(j − 1)!3s/4(m− j − 2)!s

(m− 3)!s(m− j − 2)
.

By Lemma4.1, we have that form ≥ 6 and3 ≤ j ≤ [m/2]

Aα,β,s ≤ C

(

m

j

)(

m− 3

j − 1

)−s 1

(m− j − 2)(j − 1)s/4(j − 2)s/4

≤ C

(

m− 3

j − 1

)−s+1 1

j1+s/2
.
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Sinces ≥ 1 the above chain of inequalities gives thatAα,β,s ≤ C. Together with Lemma4.2 and the
discrete Hölder inequality this shows that

∞
∑

m=6

[m/2]
∑

j=3

Cm,j ≤ Cτ3/2
∞
∑

m=6

[m/2]
∑

j=3

(

|u|j
τ j−3

(j − 3)!s

)1/4(

|∆u|j
τ j−1

(j − 1)!s

)3/4

×
(

|∇u|m−j
(m− j − 2)τm−j−3

(m− j − 2)!s

)

.

The discrete Young and Hölder inequalities then give

∞
∑

m=6

[m/2]
∑

j=3

Cm,j ≤ Cτ3/2‖u‖Xτ
‖u‖Yτ

,

concluding the proof of (4.17).
To prove (4.18)–(4.21) we proceed as in the proofs of (4.15)–(4.17) above, with the roles ofj andm− j

reversed. Instead of estimating‖∂βu · ∇∂α−βu‖L2 with ‖∂βu‖L∞‖∂α−β∇u‖L2 we instead bound

‖∂βu · ∇∂α−βu‖L2 ≤ ‖∂βu‖L2‖∂α−β∇u‖L∞ .

We omit further details. This concludes the proof of Lemma3.1. �

5. THE PRESSURE ESTIMATE

In the proof of the Lemma3.2we need to use the following higher regularity estimate on the solution of
the Neumann problem associated to the Poisson equation for the half-space.

Lemma 5.1. Assume thatp is a smooth solution of the Neumann problem

−∆p = v in Ω,

∂p

∂n
= 0 on∂Ω,

with v ∈ C∞(Ω). Then there is a universal constantC > 0 such that

‖∂3∂αp‖L2 ≤ C
∑

s,t∈N0,|β|=m−1
β′−α′=(2s,2t)

(

s+ t

s

)

‖∂βv‖L2 , (5.24)

for anym ≥ 1 and any multiindexα ∈ N
3
0 with |α| = m andα3 6= 0. Additionally, ifα3 ≥ 2 then

‖∂1∂αp‖L2 ≤ C
∑

s,t∈N0,|β|=m−1
β′−α′=(2s+1,2t)

(

s+ t

s

)

‖∂βv‖L2 , (5.25)

‖∂2∂αp‖L2 ≤ C
∑

s,t∈N0,|β|=m−1
β′−α′=(2s,2t+1)

(

s+ t

s

)

‖∂βv‖L2 , (5.26)

whereC > 0 is a universal constant.

We emphasize that the constantC in the above lemma is independent ofα andm. In (5.24) we have are
summing over the set

{β ∈ N
3
0 : |β| = m− 1, ∃s, t ∈ N0 such thatβ′ − α′ = (2s, 2t)}

and similar conventions are used in (5.25), (5.26), and throughout this section.
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Proof. In order to avoid repetition, we only prove (5.24) and indicate the necessary changes for (5.25) and
(5.26). Let∆′ = ∂11 + ∂22 be the tangential Laplacian. Using induction onk ∈ N0 we obtain the identity

∂2k+2
3 p = (−∆′)k+1p−

k
∑

j=0

∂2j
3 (−∆′)k−jv,

and upon applying∂3 to the above equation

∂2k+3
3 p = ∂3(−∆′)k+1p−

k
∑

j=0

∂2j+1
3 (−∆′)k−jv.

Therefore given|α| = m, with α3 = 2k + 1 ≥ 1, we have

∂3∂
αp = ∂2k+2

3 ∂α′

p = (−∆′)k+1∂α′

p+

k
∑

j=0

(−1)k−j+1∂2j
3 (∂11 + ∂22)

k−j∂α′

v, (5.27)

and ifα3 = 2k + 2 ≥ 2, we have

∂3∂
αp = ∂2k+3

3 ∂α′

p = ∂3(−∆′)k+1∂α′

p+

k
∑

j=0

(−1)k−j+1∂2j+1
3 (∂11 + ∂22)

k−j∂α′

v. (5.28)

Sincen = (0, 0,−1), the functiong = (−∆′)k∂α′

p satisfies the Neumann problem

−∆g = (−∆′)k∂α′

v in Ω,

∂g

∂n
= 0 on∂Ω.

Using the classicalH2-regularity argument for the Neumann problem we then have

‖∆′g‖L2 ≤ C‖(−∆′)k∂α′

v‖L2 ,

and

‖∂3∆′g‖L2 ≤ C‖∂3(−∆′)k∂α′

v‖L2 ,

for a positive universal constantC. Combining the above estimates with (5.27), (5.28), and the identity

(∂11 + ∂22)
mw =

m
∑

s=0

(

m

s

)

∂2s
1 ∂2m−2s

2 w,

we obtain

‖∂3∂αp‖L2 ≤ C

k
∑

j=0

‖∂2j
3 (∂11 + ∂22)

k−j∂α′

v‖L2

≤ C

k
∑

j=0

k−j
∑

s=0

(

k − j

s

)

‖∂2s+α1
1 ∂2k−2j−2s+α2

2 ∂2j
3 v‖L2 (5.29)

if α3 = 2k + 1 ≥ 1, and

‖∂3∂αp‖L2 ≤ C

k
∑

j=0

‖∂2j+1
3 (∂11 + ∂22)

k−j∂α′

v‖L2

≤ C

k
∑

j=0

k−j
∑

s=0

(

k − j

s

)

‖∂2s+α1
1 ∂2k−2j−2s+α2

2 ∂2j+1
3 v‖L2 (5.30)
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if α3 = 2k+2 ≥ 2. To simplify (5.29) above, lett = k−j−s ≥ 0 andβ = (2s+α1, 2k−2j−2s+α2, 2j) =
(2s+α1, 2t+α2, α3 − 1− 2s− 2t) ∈ N

3
0. Since|α| = m andα3 = 2k+1, we have|β| = m− 1, and by

re-indexing the sums, (5.29) can be re-written as

‖∂3∂αp‖L2 ≤ C
∑

s,t∈N0,|β|=m−1
β′−α′=(2s,2t)

(

s+ t

s

)

‖∂βv‖L2 ,

The above estimate also holds forα3 = 2k+2 with the substitutionβ = (2s+α1, 2k−2j−2s+α2, 2j+1),
thereby simplifying the upper bound (5.30), and concluding the proof of (5.24).

To prove (5.25) we proceed as above and obtain

‖∂1∂αp‖L2 = ‖∂α1+1
1 ∂α2

2 ∂2k+2
3 p‖L2

≤ C

k
∑

j=0

k−j
∑

s=0

(

k − j

s

)

‖∂α1+2s+1
1 ∂α2+2k−2j−2s

2 ∂2j
3 v‖L2 (5.31)

if α3 = 2k + 2 ≥ 2, and

‖∂1∂αp‖L2 = ‖∂α1+1
1 ∂α2

2 ∂2k+3
3 p‖L2

≤ C
k
∑

j=0

k−j
∑

s=0

(

k − j

s

)

‖∂α1+2s+1
1 ∂α2+2k−2j−2s

2 ∂2j+1
3 v‖L2 (5.32)

if α3 = 2k + 3 ≥ 3. In (5.31) we let t = k − j − s ≥ 0 andβ = (α1 + 2s + 1, α2 + 2t, 2j) =
(α1 + 2s + 1, α2 + 2t, α3 − 2 − 2s − 2t), sinceα3 = 2k + 2 and |α| = m. Similarly in (5.32) we let
β = (α1 + 2s + 1, α2 + 2t, 2j + 1) = (α1 + 2s + 1, α2 + 2t, α3 − 2 − 2s − 2t), sinceα3 = 2k + 3
and|α| = m. The above substitutions and re-indexing prove (5.25). Upon permuting the first and second
coordinates, this also proves (5.26). �

Remark 4. We note that Lemma5.1 does not give an estimate for‖∂1∂αp‖L2 and‖∂2∂αp‖L2 if α3 = 1.
In this case we note that the functiong = ∂α′

p satisfies the Neumann problem

−∆g = ∂α′

v in Ω,

∂g

∂n
= 0 on∂Ω.

The classicalH2-regularity argument then gives

‖∂1∂αp‖L2 = ‖∂1∂3∂α′

p‖L2 ≤ C‖∂α′

v‖L2 ,

and

‖∂2∂αp‖L2 = ‖∂2∂3∂α′

p‖L2 ≤ C‖∂α′

v‖L2 ,

for a positive universal constantC > 0.

We note that Lemma5.1is different from the classical higher regularity estimates (cf. [19, 31, 36]) for the
Neumann problem in the fact that the constantC in (5.24)–(5.26) does not increase withm. The dependence
onm is encoded in the sums with binomial weights on the right sideof (5.24)–(5.26).

The following lemma shows that only a factor ofm is lost in the above higher regularity estimates if each
‖∂βv‖L2 term is paired with a proper binomial weight. This explains the definition of the homogeneous
Sobolev norms| · |m in (3.3).

Lemma 5.2. There exists a positive universal constantC such that
[β1/2]
∑

s=0

[β2/2]
∑

t=0

(

β1 + β2 − 2s− 2t

β1 − 2s

)(

s+ t

s

)

≤ Cm

(

β1 + β2
β1

)

(5.33)
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for anym ≥ 3 and any multi-indexβ = (β1, β2,m− 1− β1 − β2) ∈ N
3
0. Additionally, ifβ1 ≥ 1 we have

[(β1−1)/2]
∑

s=0

[β2/2]
∑

t=0

(

β1 + β2 − 2s− 1− 2t

β1 − 2s− 1

)(

s+ t

s

)

≤ Cm

(

β1 + β2
β1

)

, (5.34)

while if β2 ≥ 1 we have

[β1/2]
∑

s=0

[(β2−1)/2]
∑

t=0

(

β1 + β2 − 2s− 2t− 1

β1 − 2s

)(

s+ t

s

)

≤ Cm

(

β1 + β2
β1

)

, (5.35)

whereC is a universal constant.

We note that in particular the constantC is independent ofm andβ.

Proof. Due to symmetry we only give the proof of (5.33). Estimates (5.34) and (5.35) are provenmutatis-
mutandi. First we recall that givenα, γ ∈ N

3
0, with γ ≤ α, we have
(

α

γ

)

≤
(|α|
|γ|

)

.

Using the above inequality we get

[β1/2]
∑

s=0

[β2/2]
∑

t=0

(

β1 + β2 − 2s − 2t

β1 − 2s

)(

s+ t

s

)(

β1 + β2
β1

)−1

≤
[β1/2]
∑

s=0

[β2/2]
∑

t=0

(

β1 + β2 − s− t

β1 − s

)(

β1 + β2
β1

)−1

≤
[β1/2]
∑

s=0

[β2/2]
∑

t=0

(

s+ t

s

)−1

.

The lemma is then proven if we find a constantC such that

[β1/2]
∑

s=0

[β2/2]
∑

t=0

(

s+ t

s

)−1

≤ C(β1 + β2).

Without loss of generality we may assume thatβ1, β2 ≥ 4. We split the above sum into

[β1/2]
∑

s=0

[β2/2]
∑

t=0

(

s+ t

s

)−1

≤
[β2/2]
∑

t=0

(

t

0

)−1

+

(

t+ 1

1

)−1

+

[β1/2]
∑

s=0

(

s

s

)−1

+

(

s+ 1

s

)−1

+

[β1/2]
∑

s=2

[β2/2]
∑

t=2

(

s+ t

s

)−1

= T1 + T2 + T3. (5.36)

It is clear that

T1 + T2 ≤ C(β1 + β2). (5.37)

We estimateT3 by appealing to the Stirling estimate (cf. [34, p. 200])

e7/8
√
n
(n

e

)n
< n! < e

√
n
(n

e

)n
.

This implies

s!t!

(s + t)!
≤ e9/8

√

st

s+ t

1

(1 + s/t)t
1

(1 + t/s)s
.
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Thus we obtain

T3 ≤ C

[β1/2]
∑

s=2

[β2/2]
∑

t=2

√
t

1

(1 + t/s)s
. (5.38)

Sinces ≥ 2, the Binomial Theorem implies
(

1 +
t

s

)s

≥ 1 +

(

s

2

)(

t

s

)2

,

and by (5.38) we have

T3 ≤ C

[β1/2]
∑

s=2

[β2/2]
∑

t=2

√
t
1

t2
≤ C





[β1/2]
∑

s=2

1





(

∞
∑

t=2

1

t3/2

)

≤ Cβ1.

Sinceβ1 + β2 ≤ m− 1, the above inequality, (5.36), and (5.37) complete the proof of the lemma. �

Proof of Lemma3.2. First, note that sincep satisfies the elliptic Neumann problem (P.1)–(P.2) we may use
Lemma5.1 to estimate higher derivatives of∂3p as

∑

|α|=m,α3 6=0

Mα‖∂3∂αp‖L2 ≤ C
∑

|α|=m,α3 6=0

∑

s,t∈N0,|β|=m−1
β′−α′=(2s,2t)

Mα

(

s+ t

s

)

‖∂β(∂iuk∂kui)‖L2 .

By re-indexing the terms in the parenthesis, the right side of the above inequality may be re-written as

∑

|β|=m−1

[β1/2]
∑

s=0

[β2/2]
∑

t=0

(

β1 + β2 − 2s − 2t

β1 − 2s

)(

s+ t

s

)

‖∂β(∂iuk∂kui)‖L2 .

Using the estimate (5.33) of Lemma5.2we bound the above expression by

Cm
∑

|β|=m−1

Mβ‖∂β(∂iuk∂kui)‖L2

and therefore
∞
∑

m=3





∑

|α|=m,α3 6=0

Mα‖∂3∂αp‖L2





τm−3

(m− 3)!s

≤ C

∞
∑

m=3

∑

|β|=m−1

Mβ‖∂β(∂iuk∂kui)‖L2
mτm−3

(m− 3)!s
. (5.39)

On the other hand, higher derivatives of∂1p are estimated using the decomposition
∑

|α|=m,α3 6=0

Mα‖∂1∂αp‖L2 =
∑

|α|=m,α3=1

Mα‖∂1∂αp‖L2 +
∑

|α|=m,α3≥2

Mα‖∂1∂αp‖L2 . (5.40)

By Remark4, the first term on the right of (5.40) is bounded by

C
∑

|α|=m,α3=1

Mα‖∂α′

(∂iuk∂kui)‖L2 = C
∑

|β|=m−1,β3=0

Mβ‖∂β (∂iuk∂kui)‖L2 . (5.41)

Using estimate (5.25), the second term on the right side of (5.40) is estimated by

C
∑

|α|=m,α3≥2











∑

s,t∈N0,|β|=m−1
β′−α′=(2s+1,2t)

Mα

(

s+ t

s

)

‖∂β (∂iuk∂kui)‖L2











.
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By re-indexing the above expression equals

C
∑

|β|=m−1,β1≥1

[(β−1)/2]
∑

s=0

[β2/2]
∑

t=0

(

β1 − 1 + β2 − 2s − 2t

β1 − 2s − 1

)(

s+ t

s

)

‖∂β (∂iuk∂kui)‖L2 ,

and using (5.34) it is bounded from above by

Cm
∑

|β|=m−1,β1≥1

Mβ‖∂β (∂iuk∂kui)‖L2 . (5.42)

Therefore, by (5.40), (5.41), and (5.42), we have

∞
∑

m=3





∑

|α|=m,α3 6=0

Mα‖∂1∂αp‖L2





τm−3

(m− 3)!s

≤ C

∞
∑

m=3

∑

|β|=m−1

Mβ‖∂β(∂iuk∂kui)‖L2

mτm−3

(m− 3)!s
. (5.43)

By symmetry, we also get

∞
∑

m=3





∑

|α|=m,α3 6=0

Mα‖∂2∂αp‖L2





τm−3

(m− 3)!s

≤ C
∞
∑

m=3

∑

|β|=m−1

Mβ‖∂β(∂iuk∂kui)‖L2
mτm−3

(m− 3)!s
. (5.44)

Combining (5.39), (5.43), (5.44), and the Leibniz rule we obtain

P ≤ C
∞
∑

m=3

∑

|β|=m−1

Mβ‖∂β(∂iuk∂kui)‖L2
mτm−3

(m− 3)!s
≤ C

∞
∑

m=3

m−1
∑

j=0

Pm,j , (5.45)

where

Pm,j =
mτm−3

(m− 3)!s

∑

|β|=m−1

∑

|γ|=j,γ≤β

Mβ

(

β

γ

)

‖∂γ∂iuk · ∂β−γ∂kui‖L2 .

We split the right side of (5.45) into seven terms according to the values ofm andj. For lowj, we claim
∞
∑

m=3

Pm,0 ≤ C|u|1,∞|u|3 + Cτ |u|1,∞‖u‖Yτ
(5.46)

∞
∑

m=3

Pm,1 ≤ C|u|2,∞|u|2 + Cτ |u|2,∞|u|3 + Cτ2|u|2,∞‖u‖Yτ
(5.47)

∞
∑

m=5

Pm,2 ≤ Cτ2|u|3,∞|u|3 + Cτ3|u|3,∞‖u‖Yτ
(5.48)

for intermediatej, we have

∞
∑

m=8

[m/2]−1
∑

j=3

Pm,j ≤ Cτ3/2‖u‖Xτ
‖u‖Yτ

(5.49)

∞
∑

m=6

m−3
∑

j=[m/2]

Pm,j ≤ Cτ3/2‖u‖Xτ
‖u‖Yτ

(5.50)
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and for highj, we claim

∞
∑

m=4

Pm,m−2 ≤ Cτ |u|2,∞|u|3 +Cτ2|u|2,∞‖u‖Yτ
(5.51)

∞
∑

m=3

Pm,m−1 ≤ C|u|1,∞|u|3 + Cτ |u|1,∞‖u‖Yτ
. (5.52)

The above estimates are proven similarly to (4.15)–(4.21) in the proof of Lemma3.1. Due to symmetry we
have presented there the proofs of the estimates wherej ≤ m − j. For completeness of the exposition we
provide the proofs of (5.50)–(5.52), where we havem− j < j.

Proof of (5.50): We proceed as in the proof of (4.17) in Section4. First, the Hölder and Sobolev inequal-
ities imply that

‖∂γ∂iuk · ∂β−γ∂kui‖L2 ≤ C‖∂γ∂iuk‖L2‖∂β−γ∂kui‖1/4L2 ‖∆∂β−γ∂kui‖3/4L2 .

Therefore,

∞
∑

m=6

m−3
∑

j=[m/2]

Pm,j ≤ C

∞
∑

m=6

m−3
∑

j=[m/2]

∑

|β|=m−1

∑

|γ|=j,γ≤β

(

Mγ‖∂γ∂iuk‖L2
(j − 2)τ j−3

(j − 2)!s

)

×
(

Mβ−γ‖∂β−γ∂kui‖L2
τm−j−3

(m− j − 3)!s

)1/4

×
(

Mβ−γ‖∆∂β−γ∂kui‖L2

τm−j−1

(m− j − 1)!s

)3/4

τ3/2Bβ,γ,s,

where

Bβ,γ,s = MβM
−1
γ M−1

β−γ

(

β

γ

)

m(j − 2)!s(m− j − 3)!s/4(m− j − 1)!3s/4

(j − 2)(m− 3)!s
.

By Lemma4.1we have that form ≥ 6 and[m/2] ≤ j ≤ m− 3

Bβ,γ,s ≤ C

(

m− 1

j

)(

m− 3

j − 2

)−s m

(j − 2)(m− j − 1)s/4(m− j − 2)s/4

≤ C

(

m− 3

j − 2

)1−s

(m− j)−s/2,

since
(m−1

j

)

≤ C
(m−3
j−2

)

, whenj ≥ m/2. Therefore,Bβ,γ,s ≤ C; hence, by Lemma4.2 and the discrete
Hölder inequality, we have

∞
∑

m=6

m−3
∑

j=[m/2]

Pm,j ≤ Cτ3/2
∞
∑

m=6

m−3
∑

j=[m/2]

(

|∂kui|m−j−1
τm−j−3

(m− j − 3)!s

)1/4

×
(

|∆∂kui|m−j−1
τm−j−1

(m− j − 1)!s

)3/4 (

|∂iuk|j
(j − 2)τ j−3

(j − 2)!s

)

.

The discrete Young and Hölder inequalities then give

∞
∑

m=6

m−3
∑

j=[m/2]

Pm,j ≤ Cτ3/2‖u‖Xτ
‖u‖Yτ

,

concluding the proof of (5.50).
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Proof of (5.51): As above we use the Hölder inequality and obtain
∞
∑

m=4

Pm,m−2 ≤
∞
∑

m=4

∑

|β|=m−1

∑

|γ|=m−2,γ≤β

Mβ

(

β

γ

)

‖∂γ∂iuk‖L2‖∂β−γ∂kui‖L∞

mτm−3

(m− 3)!s

≤ Cτ
∑

|β|=3

∑

|γ|=2,γ≤β

‖∂γ∂iuk‖L2‖∂β−γ∂kui‖L∞

+ Cτ2
∞
∑

m=5

∑

|β|=m−1

∑

|γ|=m−2,γ≤β

(

Mγ‖∂γ∂iuk‖L2
mτm−5

(m− 4)!s

)

×
(

Mβ−γ‖∂β−γ∂kui‖L∞

)

MβM
−1
γ M−1

β−γ

(

β

γ

)

1

(m− 3)s
.

Using Lemma4.1, Lemma4.2, ands ≥ 1, this shows that the far right side of the above chain of inequalities
is bounded by

Cτ |∂iuk|2|∂kui|1,∞ + Cτ2|∂kui|1,∞
∞
∑

m=5

|∂iuk|m−2
mτm−5

(m− 4)!s

≤ Cτ |u|2,∞|u|3 + Cτ2|u|2,∞‖u‖Yτ
,

thereby proving (5.51).
Proof of (5.52): By the Hölder inequality we have

∞
∑

m=3

Pm,m−1 ≤
∞
∑

m=3

∑

|β|=m−1

Mβ‖∂β∂iuk‖L2‖∂kui‖L∞

mτm−3

(m− 3)!s

≤ C|∂iuk|2 ‖∂kui‖L∞ + Cτ ‖∂kui‖L∞

∞
∑

m=4

|∂iuk|m−1
mτm−4

(m− 3)!s

≤ C|u|1,∞|u|3 + Cτ |u|1,∞‖u‖Yτ
,

which gives the desired estimate. By symmetry, we may similarly prove (5.46)–(5.49), but in these cases we
apply the Hölder inequality as

‖∂γ∂iuk · ∂β−γ∂kui‖L2 ≤ ‖∂γ∂iuk‖L∞‖∂β−γ∂kui‖L2 ,

that is we reverse the roles ofj andm− j. We omit further details. This concludes the proof of Lemma3.2.
�
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