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ABSTRACT. We address the problem of analyticity of smooth solutionsu of the incompressible Euler equa-
tions. If the initial datum is real–analytic, the solution remains real–analytic as long as

∫ t

0
‖∇u(·, s)‖

L∞ ds <

∞. Using a Gevrey–class approach we obtain lower bounds on theradius of space analyticity which depend
algebraically onexp

∫ t

0
‖∇u(·, s)‖

L∞ds. In particular, we positively answer a question posed by Levermore
and Oliver in [LO].
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1. INTRODUCTION

The existence and uniqueness ofHr-solutions, forr > 3/2 + 1, of the three dimensional incompressible
Euler equations on a maximal time interval[0, T ), for someT ∈ (0,∞], is classical [EB, Ka, MB, T]. Beale,
Kato, and Majda [BKM] proved that if the maximal time of existenceT is finite, the vorticityω satisfies∫ T
0 ‖ω(·, t)‖L∞ = ∞. In two dimensions it is well-known (cf. [Y]) thatT can be taken arbitrarily large.

It is common to write the initial value problem associated tothe Euler equations in terms of the vorticity
ω = curlu

∂tω + u · ∇ω = ω · ∇u (1.1)

u = K ∗ ω (1.2)

ω(0) = ω0 = curlu0, (1.3)

whereK is the Biot-Savart kernel. Here we work in the periodic setting, that isu andω areT3-periodic
functions with

∫
T3 u = 0, whereT3 = [0, 2π]3. The case of the whole space can be treated with minor

modifications.
In three dimensions, if the initial datumω0 is analytic, Bardos [B] and Benachour [Be] obtained lower

bounds on the radius of analyticity of the solution that vanish in finite time. In [BB] they also proved
persistency, i.e. the solution remains analytic as long as it exists in a certain Hölder-type space on the
complexified domain. The proof is an implicit argument whichdoes not yield an explicit rate of decay for the
radius of analyticity of the solution. In the two-dimensional case, using the absence of the vorticity stretching
term, Bardos, Benachour, and Zerner [BBZ] established an explicit bound for the rate of decay of the
analyticity radius, which isC exp(−C exp(Ct)), for a suitable positive constantC. The local propagation
of analyticity was considered by Baouendi and Goulaouic [BG], Alinhac and Metivier [AM] and Le Bail
[Lb].

Using a Fourier space method, Levermore and Oliver [LO] proved analyticity for a generalized Euler
equation in two dimensions. Their proof extends to higher dimensions, and shows that the uniform analytic-
ity radius of the solution decays exponentially in‖ω(·, t)‖Hr , wherer is large enough. In two dimensions,
this radius decays exponentially faster than the radius obtained by Bardos and Benachour. In [LO, Remark
4] the authors pose the question of whether the Fourier-based method can be employed to recover the 2D-
rate obtained by Bardos, Benachour, and Zerner. We answer this question positively. Moreover, in the case
of the 3D Euler equations, we obtain lower bounds on the rate of decay of the uniform space analyticity
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radius that depend only algebraically on‖ω(·, t)‖Hr andexp(
∫ t
0 ‖∇u(·, s)‖L∞ ds), improving previously

known results. The results hold for the non-analytic Gevreyclasses (cf. Remark3.2below).
The aforementioned Fourier space method, namely the Gevrey-class regularity, was introduced by Foias

and Temam [FT] to prove analyticity of solutions for the Navier-Stokes equations. This technique is general
and has been applied to other equations [BGK1, BGK2, CTV, FTi, GK1, K1, LO, OT]. Analyticity in Lp

for the Navier-Stokes equations was established in [GK2, K2, L1, L2].
Section2 contains the statement and the proof of our main result. The following are valid in any dimen-

siond ≥ 2, but we only state the results ford = 3. The core of the proof of Theorem2.1 is Lemma2.5,
whose proof is given in Section3.

2. THE ANALYTICITY THEOREM

The following is our main theorem.

Theorem 2.1. If u0 is divergence-free, andω0 = curlu0 is real-analytic onT3, then the unique solution
ω ∈ C(0, T ;Hr(T3)), with r > 7/2, to the vorticity equations(1.1)–(1.3) is real-analytic for allt < T ,
whereT ∈ (0,∞] is the maximal time of existence. Furthermore, the uniform space analyticity radiusτ(t)
of the solutionω(·, t) satisfies:

τ(t) ≥ C1 exp

(
−C2

∫ t

0
‖∇u(·, s)‖L∞ ds

)(
1 + t2

)−1
, (2.1)

whereC2 > 0 is a constant depending only onr, andC1 > 0 has additional dependence onω0 (cf. (2.6)
below).

Remark2.2. The theorem remains valid in any dimensiond ≥ 2, with the modificationr > (d+4)/2. This
is due to the fact that ford = 2 the termω · ∇u vanishes, and that ford ≥ 4 the vorticity formulation of the
Euler equations is similar to (1.1)–(1.3).

Remark2.3. In dimension2, we can takeT arbitrarily large and therefore solutions remain analyticfor all
time. In this case‖∇u(·, t)‖L∞ increases with a rate at mostC exp(Ct) for some positive constantC, while
‖ω(·, t)‖Hr increases with a rate at mostC exp(C exp(Ct). This allows us to recover the 2D-rate of decay
given by Bardos, Benachour and Zerner [BB, BBZ].

The functional setting for the present paper is as follows. For fixedr, τ ≥ 0 andm = 1, 2, 3, we define

D(Λr
meτΛm) =

{
ω ∈ Hr(T3) : div ω = 0,

∥∥Λr
meτΛmω

∥∥2
L2 = (2π)3

∑

k∈Z3

|km|2re2τ |km||ω̂k|2 < ∞
}
,

where

Hr(T3) =

{
ω(x) =

∑

k∈Z3

ω̂ke
ik·x : ω̂0 = 0, ω̂k = ω̂−k,

‖ω‖2Hr = (2π)3
∑

k∈Z3

(1 + |k|2)r|ω̂k|2 < ∞
}
,

is the periodic Sobolev space. Forr, τ ≥ 0 define the normed spacesYr,τ ⊂ Xr,τ by

Xr,τ =

3⋂

m=1

D(Λr
meτΛm), ‖ω‖2Xr,τ

=

3∑

m=1

∥∥Λr
meτΛmω

∥∥2
L2 ,

andYr,τ = Xr+1/2,τ . In the following lemma we prove that the above defined spacesconsist of real-analytic
functions.
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Lemma 2.4. If ω ∈ Xr,τ for r ≥ 0 and τ > 0, thenω is of Gevrey class1 (i.e., analytic), with uniform
space analyticity radius at leastτ/3.

Proof. It is sufficient to show that
∑

k∈Z3

e2τ |k|/3|ω̂k|2 < ∞ (cf. [K1, LO]). This follows from

∑

k∈Z3

e2τ |k|/3|ω̂k|2 ≤ ‖ω‖2Xr,τ
,

a direct consequence of the triangle inequality and the mean-zero condition. �

Similarly, one can show thatXr,τ is equivalent to the subspaceD((
√
−∆)reτ

√
−∆) of the Gevrey class1

which was used in [LO]. The following lemma is needed to prove Theorem2.1.

Lemma 2.5. Let m = 1, 2, 3 and ω ∈ Yr,τ , wherer > 7/2. If u = K ∗ ω, whereK is the periodic
Biot-Savart kernel, then

∣∣(u · ∇ω,Λ2r
me2τΛmω)

∣∣+
∣∣(ω · ∇u,Λ2r

me2τΛmω)
∣∣

≤ C
(
τ ‖∇u‖L∞ + τ2 ‖ω‖Hr + τ2 ‖ω‖Xr,τ

)
‖ω‖Yr,τ

∥∥∥Λr+1/2
m eτΛmω

∥∥∥
L2

+ C
(
‖∇u‖L∞ ‖ω‖Xr,τ

+ (1 + τ) ‖ω‖2Hr

) ∥∥Λr
meτΛmω

∥∥
L2 , (2.2)

where the positive constantC depends only onr.

We note that Lemma2.5 is an improvement of Lemma 8 in [LO]. In the first term on the right of (2.2),
the lowest power ofτ is paired with the better behaved quantity‖∇u‖L∞ , while ‖ω‖Hr is paired withτ2.
This implies algebraic, rather than exponential dependence of τ(t) on theHr-norm ofω.

We prove Theorem2.1 by showing that if the initial datum is of Gevrey-class1, the solution remains in
this class as long as it exists. In the followingC denotes a generic positive constant depending onr.

Proof of Theorem2.1. We note that if the initial datumω0 is real-analytic with radius of analyticity at least
λτ(0), with λ > 1, thenω0 ∈ Hr and

∥∥eτ(0)
√
−∆ω0

∥∥
Hr < ∞ (cf. [K1, LO]). Thereforeω0 ∈ Xr,τ(0). We

now prove that for all0 ≤ t < T theHr-solution of (1.1)–(1.3) satisfiesω(·, t) ∈ Xr,τ(t), for an appropriate
functionτ(t). When no ambiguity arises, we suppress the time dependence of τ andω on t.

By taking theL2-inner product of (1.1) with Λ2r
me2τΛmω, wherem = 1, 2, 3, we obtain

1

2

d

dt

∥∥Λr
meτΛmω

∥∥2
L2 = τ̇

∥∥∥Λr+1/2
m eτΛmω

∥∥∥
2

L2

− (u · ∇ω,Λ2r
me2τΛmω) + (ω · ∇u,Λ2r

me2τΛmω). (2.3)

The constantC in Lemma2.5can be taken large enough so that‖ω(·, t)‖2Hr ≤ ‖ω0‖2Hr g(t) for all 0 ≤ t <

T , whereg(t) = exp
(
C
∫ t
0 ‖∇u(·, s)‖L∞ ds

)
. In order to conclude the proof, we sum overm = 1, 2, 3 in

(2.3) and use the estimate (2.2). We obtain

1

2

d

dt
‖ω‖2Xr,τ

≤ C
(
‖∇u‖L∞ ‖ω‖Xr,τ

+ (1 + τ) ‖ω‖2Hr

)
‖ω‖Xr,τ

+
(
τ̇ + Cτ ‖∇u‖L∞ + Cτ2 ‖ω‖Hr + Cτ2 ‖ω‖Xr,τ

)
‖ω‖2Yr,τ

.

If τ is such that the second term on the right of the above is negative, thenτ is decreasing and

d

dt
‖ω‖Xr,τ

≤ C ‖∇u‖L∞ ‖ω‖Xr,τ
+ C(1 + τ(0)) ‖ω‖2Hr .

By Gronwall’s inequality this implies

‖ω(·, t)‖Xr,τ(t)
≤ g(t)

(
‖ω0‖Xr,τ(0)

+ C(1 + τ(0))

∫ t

0
‖ω(·, s)‖2Hr g(s)

−1ds

)
= A(t). (2.4)
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A sufficient condition for the above to hold is that

τ̇ + Cτ ‖∇u‖L∞ + Cτ2 ‖ω‖Hr + Cτ2A(t) ≤ 0,

for all t ≥ 0. It suffices to set

τ(t) = g(t)−1

(
τ(0)−1 + C

∫ t

0
(‖ω(·, s)‖Hr +A(s)) g(s)−1ds

)−1

. (2.5)

In particular, since‖ω(·, t)‖2Hr ≤ ‖ω0‖2Hr g(t), we obtain

τ(t) ≥ g(t)−1
(
C ′ + C ′′t2

)−1
, (2.6)

whereC ′ = 2/τ(0) and the constantC ′′ depends onr, τ(0), ‖ω0‖Hr , and‖ω0‖Xr,τ(0)
. �

3. PROOF OFMAIN LEMMA

Before we start the proof of the Lemma2.5, we introduce the operators

Λf(x) =
∑

k∈Z3

|k|1f̂keix·k,

and

Hmf(x) =
∑

k∈Z3

sgn(km)f̂ke
ix·k, m = 1, 2, 3,

for all f ∈ H1(T3). Here|k|1 denotes|k1| + |k2| + |k3|. The followingL2-estimates follow directly from
Plancherel’s theorem and the proofs are thus omitted.

Lemma 3.1. Letω ∈ Xr,τ , for τ ≥ 0 andr ≥ 1. Then form = 1, 2, 3 we have

‖Λr
mω‖L2 ≤

∥∥ΛΛr−1
m ω

∥∥
L2 ≤ C ‖ω‖Hr ,

and
∥∥∇HmΛr−1

m eτΛmω
∥∥
L2 ≤

∥∥ΛΛr−1
m eτΛmω

∥∥
L2 ≤ C ‖ω‖Xr,τ

.

Sinceu = K ∗ω, an immediate consequence of the above is that
∥∥Λr+1

m u
∥∥
L2 ≤ ‖ΛΛr

mu‖L2 ≤ C ‖ω‖Hr ,
for a positive constantC.

Proof of Lemma2.5. Let m ∈ {1, 2, 3}. In order to estimate|(u · ∇ω,Λ2r
me2τΛmω)|, we appeal to the

cancellation property(u · ∇Λr
meτΛmω,Λr

meτΛmω) = 0. Using Plancherel’s theorem we obtain

(u · ∇ω,Λ2r
me2τΛmω) = (u · ∇ω,Λ2r

me2τΛmω)− (u · ∇Λr
meτΛmω,Λr

meτΛmω)

= i(2π)3
∑

j+k+l=0

(|lm|reτ |lm| − |km|reτ |km|)ûj · k ω̂k|lm|reτ |lm|ω̂l

= i(2π)3
∑

j+k+l=0

(|lm|r − |km|r)eτ |km|ûj · k ω̂k|lm|reτ |lm|ω̂l

+ i(2π)3
∑

j+k+l=0

(eτ |lm| − eτ |km|)|lm|rûj · k ω̂k|lm|reτ |lm|ω̂l = T1 + T2, (3.1)
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with j, k, l ∈ Z
3. Recall that̂ω0 = û0 = 0. The first term on the far right side of the above is rewritten using

the mean value theorem as

T1 = ir(2π)3
∑

j+k+l=0

(|lm| − |km|)
(
(θm,k,l|lm|+ (1− θm,k,l)|km|)r−1 − |km|r−1

)

× eτ |km|ûj · k ω̂k|lm|reτ |lm|ω̂l

+ ir(2π)3
∑

j+k+l=0

(|lm| − |km|)|km|r−1eτ |km|ûj · k ω̂k|lm|reτ |lm|ω̂l, (3.2)

for someθm,k,l ∈ (0, 1). Sincej + k + l = 0, we have
∣∣(|lm| − |km|)

(
(θm,k,l|lm|+ (1− θm,k,l)|km|)r−1 − |km|r−1

)∣∣

≤ C|jm|2(|jm|r−2 + |km|r−2). (3.3)

The exponential factor is bounded aseτ |km| ≤ e + τ2|km|2eτ |km|, and|ûj · k| ≤ C|ûj ||k|1, for a positive
constantC. To estimate the second term on the right of (3.2) we use the decomposition

|jm + km| − |km| = jm sgn(km) + 2(jm + km) sgn(jm)χ{sgn(km+jm) sgn(km)=−1}. (3.4)

(A version of the latter identity was also used by Lemarié-Rieusset in [L1, L2] for proving Lp-analyticity
of solutions to the Navier-Stokes equations.) The first termin the decomposition (3.4) is treated using the
Fourier inversion theorem. On the region{sgn(km + jm) sgn(km) = −1} we have0 ≤ |km| ≤ |jm| and
thus in this region

∣∣|lm| − |km|
∣∣ |km|r−1 ≤ C|jm|r. We have thus proven

|T1| ≤ C
∑

j+k+l=0

(|jm|r + |jm|2|km|r−2)(e+ τ2|km|2eτ |km|)|ûj ||k|1|ω̂k||lm|reτ |lm||ω̂l|

+ C |(∂mu · ∇HmΛr−1
m eτΛmω,Λr

meτΛmω)|

≤ C
(
‖ω‖2Hr + ‖∂mu‖L∞ ‖ω‖Xr,τ

)∥∥Λr
meτΛmω

∥∥
L2

+ Cτ2 ‖ω‖Hr ‖ω‖Yr,τ

∥∥∥Λr+1/2
m eτΛmω

∥∥∥
L2

. (3.5)

In the second inequality we have appealed to the estimates inLemma3.1, r > 7/2, and|km|1/2 ≤ |jm|1/2+
|lm|1/2. Returning to (3.1) we writeT2 as

T2 = i(2π)3
∑

j+k+l=0

(
eτ(|lm|−|km|) − 1− τ(|lm| − |km|)

)
|lm|r−1/2eτ |km|

× ûj · k ω̂k|lm|r+1/2eτ |lm|ω̂l

+ i(2π)3
∑

j+k+l=0

τ(|lm| − |km|)|km|r−1/2eτ |km|ûj · k ω̂k|lm|r+1/2eτ |lm|ω̂l

+ i(2π)3
∑

j+k+l=0

τ(|lm| − |km|)(|lm|r−1/2 − |km|r−1/2)eτ |km|

× ûj · k ω̂k|lm|r+1/2eτ |lm|ω̂l. (3.6)

The three terms on the right are treated as follows. Since|ex − 1 − x| ≤ x2e|x|, for all x ∈ R, and
|lm|r−1/2 ≤ C

(
|jm|r−1/2 + |km|r−1/2

)
, we obtain that the first term is bounded by

Cτ2 ‖ω‖Xr,τ
‖ω‖Yr,τ

∥∥∥Λr+1/2
m eτΛmω

∥∥∥
L2

. (3.7)

The second term in the definition ofT2 above is treated using the decomposition (3.4). Note that on the
region {sgn(km + jm) sgn(km) = −1} we have0 ≤ |km| ≤ |jm| and0 ≤ |lm| ≤ 2|jm|, and hence
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eτ |km| ≤ 1 + τ |jm|eτ |jm|. Therefore, the second term in (3.6) is bounded by

Cτ
∑

j+k+l=0

|jm|r+1/2(1 + τ |jm|eτ |jm|)|ûj ||k|1|ω̂k||lm|r+1/2eτ |lm||ω̂l|

+ Cτ |(∂mu · ∇HmΛr−1/2
m eτΛmω,Λr+1/2

m eτΛmω)|
≤ Cτ ‖ω‖2Hr

∥∥Λr
meτΛmω

∥∥
L2

+ C(τ ‖∇u‖L∞ + τ2 ‖ω‖Hr) ‖ω‖Yr,τ

∥∥∥Λr+1/2
m eτΛmω

∥∥∥
L2

. (3.8)

Using eτ |km| ≤ 1 + τ |km|eτ |km|, the mean value theorem, and the triangle inequality, we obtain that the
third term on the right side of (3.6) is bounded by

Cτ ‖ω‖2Hr

∥∥Λr
meτΛmω

∥∥
L2 + Cτ2 ‖ω‖Hr ‖ω‖Yr,τ

∥∥∥Λr+1/2
m eτΛmω

∥∥∥
L2

. (3.9)

Collecting (3.7)–(3.9) and the estimate onT1, we have proven that the term|(u·∇ω,Λ2r
me2τΛmω)| is bounded

by the right of (2.2).
The vorticity stretching term(ω · ∇u,Λ2r

me2τΛmω) is treated similarly. We do not use the cancelation
property, but instead subtract(ω · ∇Λr

meτΛmu,Λr
meτΛmω) + (Λr

meτΛmω · ∇u,Λr
meτΛmω). By Hölder’s

inequality and Lemma3.1we have
∣∣(ω · ∇Λr

meτΛmu,Λr
meτΛmω)

∣∣+
∣∣(Λr

meτΛmω · ∇u,Λr
meτΛmω)

∣∣

≤ C ‖∇u‖L∞ ‖ω‖Xr,τ

∥∥Λr
meτΛmω

∥∥
L2 ,

for a positive constantC depending only onr. Thus in order to estimate the term(ω · ∇u,Λ2r
me2τΛmω) it is

sufficient to bound

(ω · ∇u,Λ2r
me2τΛmω)− (ω · ∇Λr

meτΛmu,Λr
meτΛmω)− (Λr

meτΛmω · ∇u,Λr
meτΛmω)

= i(2π)3
∑

j+k+l=0

(|lm|reτ |lm| − |km|reτ |km| − |jm|reτ |jm|)ω̂j · k ûk|lm|reτ |lm|ω̂l, (3.10)

wherej, k, l ∈ Z
3. We rewrite the left side of (3.10) as

i(2π)3
∑

j+k+l=0

(|lm|r − |jm|r)(eτ |lm| − eτ |km|)ω̂j · k ûk|lm|reτ |lm|ω̂l

+ i(2π)3
∑

j+k+l=0

(|lm|r − |km|r − |jm|r)eτ |km|ω̂j · k ûk|lm|reτ |lm|ω̂l

+ i(2π)3
∑

j+k+l=0

|jm|r(eτ |lm| − eτ |jm|)ω̂j · k ûk|lm|reτ |lm|ω̂l = T̃1 + T̃2 + T̃3.

The above terms are estimated in absolute value as follows. The mean value theorem andex ≤ 1 + xex, for
x ≥ 0, imply

∣∣∣(|lm|r − |jm|r)(eτ |lm| − eτ |km|)
∣∣∣ ≤ Cτ(|km|r|jm|+ |km||jm|r)eτ |jm|eτ |km|. (3.11)

Combined withex ≤ 1 + xex, for all x ≥ 0, and the triangle inequality, (3.11) gives

|T̃1| ≤ Cτ ‖ω‖2Hr

∥∥Λr
meτΛmω

∥∥
L2

+ Cτ2(‖ω‖Hr + ‖ω‖Xr,τ
) ‖ω‖Yr,τ

∥∥∥Λr+1/2
m eτΛmω

∥∥∥
L2

.

Similarly, by the mean value theorem we have

|(|lm|r − |km|r)− |jm|r| ≤ C|jm|(|jm|r−1 + |km|r−1) + |jm|r.



ANALYTICITY OF SOLUTIONS TO THE EULER EQUATIONS 7

Sinceex ≤ e+ x2ex, for all x ≥ 0, the above implies

|T̃2| ≤ C ‖ω‖2Hr

∥∥Λr
meτΛmω

∥∥
L2 + Cτ2 ‖ω‖Hr ‖ω‖Yr,τ

∥∥∥Λr+1/2
m eτΛmω

∥∥∥
L2

.

The third termT̃3 is bounded similarly to the first one, but instead of (3.11), we use the estimate|eτ |lm| −
eτ |jm|| ≤ Cτ |km|eτ |jm|eτ |km|, and obtain

|T̃3| ≤ Cτ ‖ω‖2Hr

∥∥Λr
meτΛmω

∥∥
L2

+ Cτ2(‖ω‖Hr + ‖ω‖Xr,τ
) ‖ω‖Yr,τ

∥∥∥Λr+1/2
m eτΛmω

∥∥∥
L2

.

This concludes the proof of the lemma. �

Remark3.2. By working in Xr,τ,s =
3⋂

m=1
D(Λr

meτΛ
s
m), for s ∈ (0, 1), one can show that the radius of

Gevrey-s regularity (cf. [FT, LO] for a definition of the Gevrey classes) of the smooth solution to (1.1)-(1.3)
satisfies the same lower bound (2.1) as in Theorem 2.1, given that the initial datum is of Gevrey classs. As
in Foias and Temam [FT] the proof carries over directly from the analytic cases = 1 and relies on the fact
that fors ≤ 1 we have|k + j|s ≤ |k|s + |j|s, and fors < 1 we additionally use

||lm|s − |km|s| ≤ C ||lm| − |km|| 1

|lm|1−s + |km|1−s
,

whereC is a positive constant depending only ons. The latter inequality is for instance used to estimate the
termT2 defined in (3.6). Identity (3.4) still needs to be used in the Gevrey case.
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B. C. Bardos,Analycité de la solution de l’équation d’Euler dans un ouvert deR
n, C. R. Acad. Sci. Paris283 (1976),

255–258.
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BGK1. J.L. Bona, Z. Grujić, and H. Kalisch,Algebraic lower bounds for the uniform radius of spatial analyticity for the general-
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