ON THE RADIUS OF ANALYTICITY OF SOLUTIONSTO THE THREE-DIMENSIONAL
EULER EQUATIONS

IGOR KUKAVICA AND VLAD VICOL

ABSTRACT. We address the problem of analyticity of smooth solutioref the incompressible Euler equa-
tions. If the initial datum is real-analytic, the soluti@ntains real-analytic as long §O§||Vu(», S)|| Lo ds <
oo. Using a Gevrey—class approach we obtain lower bounds oratties of space analyticity which depend
algebraically orexp fot [IVu(-, s)|| - ds. In particular, we positively answer a question posed byerewore
and Oliver in LO].

Proceedings of the American Mathematical Society. Voludie Nlumber 2 (2009), 669-677.

1. INTRODUCTION

The existence and uniquenessHf-solutions, forr > 3/2 + 1, of the three dimensional incompressible
Euler equations on a maximal time intenj@l7"), for someT’ € (0, oo}, is classical EB, Ka, MB, T]. Beale,
Kato, and MajdaBKM] proved that if the maximal time of existen@gis finite, the vorticityw satisfies
fOT llw(:,t)]| o« = oco. Intwo dimensions it is well-known (cfY]) that7" can be taken arbitrarily large.

It is common to write the initial value problem associatedh® Euler equations in terms of the vorticity
w = curlu

ow+u-Vw=w-Vu (1.2)
u=Kx*xw (1.2)
w(0) = wp = curluyg, (1.3)

where K is the Biot-Savart kernel. Here we work in the periodic seftithat isu andw are T3-periodic
functions with [, u = 0, whereT? = [0,27]>. The case of the whole space can be treated with minor
modifications.

In three dimensions, if the initial datum, is analytic, BardosB] and BenachourBe] obtained lower
bounds on the radius of analyticity of the solution that shnin finite time. In BB] they also proved
persistency, i.e. the solution remains analytic as longt @ists in a certain Holder-type space on the
complexified domain. The proof is an implicit argument whildies not yield an explicit rate of decay for the
radius of analyticity of the solution. In the two-dimensibase, using the absence of the vorticity stretching
term, Bardos, Benachour, and Zern8B[Z] established an explicit bound for the rate of decay of the
analyticity radius, which i€ exp(—C exp(Ct)), for a suitable positive constaat. The local propagation
of analyticity was considered by Baouendi and GoulaoBiG]| Alinhac and Metivier AM] and Le Bail
[Lb].

Using a Fourier space method, Levermore and Olil&][proved analyticity for a generalized Euler
equation in two dimensions. Their proof extends to higheratisions, and shows that the uniform analytic-
ity radius of the solution decays exponentially||u(-,t)|| -, wherer is large enough. In two dimensions,
this radius decays exponentially faster than the radiugindd by Bardos and Benachour. L{J, Remark
4] the authors pose the question of whether the Fourierdbamthod can be employed to recover the 2D-
rate obtained by Bardos, Benachour, and Zerner. We ansigagubstion positively. Moreover, in the case
of the 3D Euler equations, we obtain lower bounds on the ratkecay of the uniform space analyticity
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radius that depend only algebraically (-, )| ;- andexp(fot |Vu(-, s)|| ;- ds), improving previously
known results. The results hold for the non-analytic Gewlagses (cf. Remark 2 below).

The aforementioned Fourier space method, namely the Gelasy regularity, was introduced by Foias
and TemamBT] to prove analyticity of solutions for the Navier-Stokesiations. This technique is general
and has been applied to other equatidB&K1, BGK2, CTV, FTi, GK1, K1, LO, OT]. Analyticity in L?
for the Navier-Stokes equations was establishe®ikg, K2, L1, L2].

Section2 contains the statement and the proof of our main result. @t@fing are valid in any dimen-
siond > 2, but we only state the results far= 3. The core of the proof of Theoreth1is Lemma2.5,
whose proof is given in Sectidh

2. THE ANALYTICITY THEOREM
The following is our main theorem.

Theorem 2.1. If v is divergence-free, andy = curluy is real-analytic onT?, then the unique solution
w € C(0,T; H"(T?)), with~ > 7/2, to the vorticity equationgl.1)—(1.3) is real-analytic for allt < T,
whereT € (0, o] is the maximal time of existence. Furthermore, the unifquace analyticity radius ()
of the solutionw(-, t) satisfies:

7(t) > Cy exp <—C’2 /Ot [Vu(-, s)| 1o ds) (1 +t2)_1 , (2.1)

whereCy > 0 is a constant depending only enandC; > 0 has additional dependence an (cf. (2.6)
below).

Remark2.2 The theorem remains valid in any dimensidp» 2, with the modification- > (d+4)/2. This
is due to the fact that faf = 2 the termw - Vu vanishes, and that fat > 4 the vorticity formulation of the
Euler equations is similar ta.(1)—(1.3).

Remark2.3. In dimension2, we can takel" arbitrarily large and therefore solutions remain analfdicall
time. In this casg{Vu(-, t)|| ;- increases with a rate at mastexp(C't) for some positive constat, while
lw(:,t)|| - increases with a rate at maStexp(C exp(Ct). This allows us to recover the 2D-rate of decay
given by Bardos, Benachour and ZerneBj, BBZ].

The functional setting for the present paper is as folloves.fixedr, 7 > 0 andm = 1, 2, 3, we define

D(A? e™m) = {w € H™(T?) : divw = 0,

2 ~
57l = @ T el < oo
kez3
where

Jolly = @ 3 (1-+ Pyl < oo,
kez3
is the periodic Sobolev space. For > 0 define the normed spac®s, C X, . by

3 3
2
Xpw = () DA™, ol = D e w|l7s
m=1

m=1
andY;.; = X, 11,2 .. Inthe following lemma we prove that the above defined specesist of real-analytic
functions.



ANALYTICITY OF SOLUTIONS TO THE EULER EQUATIONS 3

Lemma24. If w € X, forr > 0andr > 0, thenw is of Gevrey class (i.e., analytic), with uniform
space analyticity radius at least/3.

Proof. It is sufficient to show that}" e?7!¥I/3|&,.|? < oo (cf. [K1, LO]). This follows from

kez3
27(k|/3] ~ |2 2
S A2 < wllk,
kez3
a direct consequence of the triangle inequality and the maeamcondition. O

Similarly, one can show that,, , is equivalent to the subspag¥(v/—A)"e™v ~2) of the Gevrey class
which was used inO]. The following lemma is needed to prove Theorérh

Lemma 25. Letm = 1,2,3 andw € Y, ,, wherer > 7/2. If u = K x w, whereK is the periodic
Biot-Savart kernel, then

|(u- Vw, A%e%[\mw)‘ + |(w - Vu, A%ezmmw)‘

< C (7 IVull o + 72 @l + 72 lollx,, ) Il

Arm+1/2eTAmw‘

L2
+C (IVull g Iwllx, , + (1) [l ) [Ae™ ] o (2.2)
where the positive constaat depends only on.

We note that Lemma.5is an improvement of Lemma 8 in(]. In the first term on the right of2(2),
the lowest power of is paired with the better behaved quantjtyu| ; -, while ||lw|| ;. is paired withr2.
This implies algebraic, rather than exponential deperelefc(¢) on the H"-norm ofw.

We prove Theorem.1 by showing that if the initial datum is of Gevrey-claksthe solution remains in
this class as long as it exists. In the followiGgdenotes a generic positive constant depending. on

Proof of Theoren2.1. We note that if the initial daturay is real-analytic with radius of analyticity at least
AT(0), with A > 1, thenwy € H" and||e@V =2 wg||,, < oo (cf. [K1, LO]). Thereforewy € X, (o). We
now prove that for al) < ¢ < 7 the H"-solution of (L.1)—(1.3) satisfiesv(-,t) € X,. (), for an appropriate
function(¢). When no ambiguity arises, we suppress the time dependéncenulw ont.
By taking theL2-inner product of {.1) with A2"e?>™ =, wherem = 1,2, 3, we obtain
1d 2

2
S dr |

HA’,”n e Ame, 12

ATH /2mAm w‘

4|
L2
— (u- Vw, A2 e?my) 4 (w - Vu, A2 e2™Am ), (2.3)

The constan€ in Lemma2.5can be taken large enough so that-, t)||7;. < ||wol|7- g(t) forall 0 < ¢ <
T, whereg(t) = exp (C fot |Vu(-,s)| o0 ds). In order to conclude the proof, we sum over= 1,2, 3 in
(2.3) and use the estimate.@). We obtain

1d

2 2
s el <€ (IVull= lllx,, + @+ @l ) @l ,

+ (4 Cr I Vull o + C7 [l + C72 ol )
If 7is such that the second term on the right of the above is rvegaiienr is decreasing and
d
7 Wllx, . = ClIVul e llwllx,  + €1 +7(0) o7 -

By Gronwall’s inequality this implies

le0lx, ., < ) (ool ., + CO+70) [t g(s)as) = A @)
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A sufficient condition for the above to hold is that
74 O7 ||V poo + C7% 0]l r + CT?A(t) <0,

for all ¢ > 0. It suffices to set

+ -1
) =90 (7074 € [ (ot + A ) Mds) 25)
In particular, sincé|w(-, )% < ||wo|/3 9(t), we obtain
7(t) > g()™ (O + C"2) (2.6)
whereC’” = 2/7(0) and the constar®” depends om, 7(0), ||wol| 7+, and||wo | x O

,7(0) "

3. PROOF OFMAIN LEMMA

Before we start the proof of the Lemrdab, we introduce the operators

Af(z) =" [kl1 fac™ ",

keZ3

and

Hyf(x) =Y sgn(km)fre™, m=1,23,
keZ3

for all f € H'(T?). Here|k|; denotegk;| + |ka| + |k3|. The following L?-estimates follow directly from
Plancherel’'s theorem and the proofs are thus omitted.

Lemma3.l. Letw € X, -, forT > 0andr > 1. Then form = 1,2, 3 we have
1A wll 2 < AN w2 < Cllwllgr
and
[V HnAL ey < (AN e < Clall,,

Sinceu = K *w, an immediate consequence of the above is[tA& u||,, < [|AA} ul 2 < C [wl|g,
for a positive constant’.

Proof of Lemm&.5. Let m € {1,2,3}. In order to estimateé(u - Vw, A2 e>™An )|, we appeal to the
cancellation propertyu - VAT e™ mw, AT e™mw) = 0. Using Plancherel’'s theorem we obtain

(u- Vew, AZe2™Am ) = (4 - Vw, A2 e?™Amy) — (u- VAT e™m, AT e™hm )

= 1’(27{.)3 Z (‘lm‘TGTllml _ ‘km‘reﬂkm\)ﬁj -k wk’lm‘reﬂlm\d}l

Jj+k+1=0
=i@m)> > (il = [k [")eT a1 - e 1y e i
J+k+1=0
vi)? 3 (@ ey kGl e = Tk T, @)

j+k+1=0



ANALYTICITY OF SOLUTIONS TO THE EULER EQUATIONS 5

with j, k,1 € Z3. Recall thaty, = g = 0. The first term on the far right side of the above is rewritteimg
the mean value theorem as

Ti=ir2m)* Y (] = kml) (O tllm] + (1= O g )l )" = [k |")

j+k+1=0
v eT|k7n‘&j k @k|lm|T€T|lm|a)l
+irm)® Y (| = | ™l - & gl |77, (3.2)
Jj+k+1=0

for somed,, ., € (0,1). Sincej + k + [ = 0, we have
| (tm| = Fml) (O allin| + (1= O ) Ken)™™ = [kin] 1)
< Cljm*(|m|"2 + lkm|"%). (3.3)

The exponential factor is bounded @ < e 4 72|k, [>e71F=l, and|a; - k| < C|a;|k
constantC'. To estimate the second term on the right®®( we use the decomposition

1, for a positive

[Jm 4 K| — km| = jm sgn(km) + 2(Gm + km) SE0(Jm ) X {sgn(km+jm) sen(km)=—1} (3.4)

(A version of the latter identity was also used by LemariéuRset in [1, L2] for proving LP-analyticity
of solutions to the Navier-Stokes equations.) The first terthe decomposition3(4) is treated using the
Fourier inversion theorem. On the regi¢sgn (k. + jm)sgn(ky,) = —1} we have0 < |k;,| < |jn| and
thus in this regior}|lm| — k|| k|~ < Cljn|". We have thus proven

T <C S (Ul + L PRl 2) (e + 72k 2 i 1 o e )
j+k+1=0

+ C |(Omu - VHp AT my AT eTAm )|

< O (ol + 10uull o N, ) [|ATem™ e

(3.5)

+C72 [l gr ol , [ ArF /26l

L2’

In the second inequality we have appealed to the estimatesima3.1, » > 7/2, and|k,, |2 < |j|"/? +
|l,,|'/2. Returning to 8.1) we write T, as

T =i@n)? > (D <1 (fi] = [R])) [l 2T
j+k+1=0
X G -k Qp |l | 26Tl

i) Y ([l = V) |72 - e gl [T 2Ty

jHk4+1=0
+i(2m)> Y T[] = R ) (] = [ |77 1/2)eT

jHk4+1=0

X 1 -k QOp |l |7 2eTlm . (3.6)

The three terms on the right are treated as follows. Sjate- 1 — 2| < z2¢#l, for all z € R, and
|12 < C (|jm|"™Y2 + |km|"~1/2), we obtain that the first term is bounded by

Cr? wlx, , llwlly, , (3.7)

Arm+1/2eTAmw‘

L2’
The second term in the definition @h above is treated using the decompositiBd). Note that on the
region {sgn(k.,, + jm)sgn(k,) = —1} we have0 < |k,| < |jm] and0 < || < 2|jn|, and hence
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eTlFml <1 4 7|4, |e7ml. Therefore, the second term i8.6) is bounded by

Cr 3 Ll ™2+ TlimleT I g ] @] 72T Gy
GHk+1=0
+ C7|(Opu - VHmA:’n_lﬂeTAmw, ATmH/ZeTA"‘w)]

< Or|lwllfy [[Ame™ |l 2

(3.8)

A:r;i-l/2eTAmw‘

+ O(T [Vl oo + 72 [lwll 7o) Iy, ,

2’

Using e™l#ml < 1 + 7|k,,|e"*=l, the mean value theorem, and the triangle inequality, weinkhat the
third term on the right side of3(6) is bounded by

(3.9)

Arm+1/2eTAmw‘

2 A
OT wlzp [[ATe™mw]| 2 + CT2 [l g [y, ,

2
Collecting 3.7)—(3.9) and the estimate dfi;, we have proven that the tefifu- Vw, A2 e2™Am) | is bounded
by the right of @.2).

The vorticity stretching ternfw - Vu, A27e?™Am ) is treated similarly. We do not use the cancelation
property, but instead subtragt - VA” e™mu, A7 e™Amw) + (AT e™Amw - Vu, AT e mw). By Holder's
inequality and Lemm&.1we have

|(w - VAL eAmy, ATmeTA"‘w)‘ + ‘(A:’neTAmw - Vu, A’"meTAmw)‘

TAm
<OVl e llwlly, [ATe™ w2 s
for a positive constant’ depending only om. Thus in order to estimate the teii@ - Vu, A2 e2™Amw) itis
sufficient to bound
(w- Vu, AZ 2™ my) — (w - VAT e™my, AT e™mw) — (AT e™mw - Vu, AT e™mw)
=i(2m)* D (bl e — (T TR — | eI NN - B gLy (3.10)
j4k-+1=0

wherej, k, 1 € Z3. We rewrite the left side of{ 10 as

i2m)* D (™ = [gm|7) (™ — €Tl e g1 |y

J+k+1=0
+i(2m)3 Z (lm|” = Vo™ — |jm|r)€T|k7”|@j Kk @k|lm|r6—r\lm\wl
J+k-+1=0
+i@n)® Y gl (e = el kgl e Gy = Ty + Ty + T,
j+k+1=0

The above terms are estimated in absolute value as follolaesniean value theorem aatl < 1 + ze®, for
x >0, imply

[(tal” = L") (el = o) < O ([l il + |77l (3.11)
Combined withe®™ < 1 4 ze®, for all x > 0, and the triangle inequality3(11) gives

7] < Orllwllfy: [[Anem™ o] .

A:’n—l-l/2€TAmw‘

+ O (Wil + llwllx, ) lwlly, , Lo

Similarly, by the mean value theorem we have
[(lnl™ = [kl = Ll | < Climl (Gl + el "™) + Lim"-
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Sincee® < e + 2%, for all z > 0, the above implies

T 2
T2| < Cllwli

A e mw|| o+ CT2 wll g wlly,

Arm+1/2 eTAm W ‘

2’

The third termfg is bounded similarly to the first one, but instead ®f1(l), we use the estimaﬂeT”m\ —
eTliml| < C7|ky,|eTlimleTlFml | and obtain

T3] < O ||wll3

ATmeTAmw ‘ ‘ 12

Arm+1/2eTAmw‘

+ O (lwll g + llwllx, ) lwlly, .

2
This concludes the proof of the lemma. O

3 ,
Remark3.2 By working in X, s = (] D(AL,e™m), for s € (0,1), one can show that the radius of

Gevreys regularity (cf. FT, LO] for a d%fihition of the Gevrey classes) of the smooth sofuta(1.1)-(1.3)
satisfies the same lower bourigil) as in Theorem 2.1, given that the initial datum is of Gevriagss. As
in Foias and TemanHT] the proof carries over directly from the analytic case- 1 and relies on the fact
that fors < 1 we havelk + j|* < |k|® + |;j|®, and fors < 1 we additionally use

1
‘1—5 + ’km‘l—s’

whereC' is a positive constant depending only @nThe latter inequality is for instance used to estimate the
termT; defined in 8.6). Identity (3.4) still needs to be used in the Gevrey case.

i l® =k *] < Cl[lm] = k]| i
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