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ABSTRACT. We address the problem of local uniqueness of weak solutions to the Navier–Stokes system, with
the initial datum in a subspace ofBMO

−1(Rn). The existence and uniqueness of local mild solutions has
been proven by Koch and Tataru [KT]. We present a necessary and sufficient condition for two weak solutions
to evolve from the same initial datum, and for weak solutionsto be mild.
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1. INTRODUCTION

In this paper we address the uniqueness of solutions of the initial value problem for the Navier–Stokes
equations inRn × [0,∞)

∂tuk −∆uk + uj∂juk + ∂kp = 0, k = 1, . . . , n, (1.1)

∂juj = 0, (1.2)

with the initial datum

uk(·, 0) = u0k, k = 1, . . . , n. (1.3)

The unknowns are the velocity vector fieldu(x, t) ∈ R
n and the pressurep(x, t) ∈ R, with (x, t) ∈

R
n × [0,∞). The initial datum is divergence free and belongs to a space that we detail upon in Section2.
Fabes, Jones, and Riviere have proven in [FJR] that the Navier–Stokes system (1.1)–(1.3) with u0 ∈

Lp(Rn) has a unique local mild solution inLq(0, T ;Lp(Rn)) if n < p ≤ ∞ andn/p+2/q < 1. Moreover,
they showed that if2 ≤ p < ∞ and2 ≤ q ≤ ∞, thenu is weak solution of (1.1)–(1.3) if and only if u is a
mild solution, i.e.,

u(·, t) = et∆u0 +

∫ t

0
e(t−s)∆P∇ · (u⊗ u)ds, (1.4)

whereP denotes the Hopf–Leray projector, andet∆f denotes the solution of the heat equation with an initial
datumf .

The first author of the present paper considered in [Ku] the casep = ∞. It is well–known (cf. [S])
that uniqueness of weak solutions with bounded initial datum does not hold. In [Ku] it was shown that
two weak solutionsu and ũ evolve from the same initial datum if and only if̃u is obtained fromu by
means of a transform̃u(x, t) = u(x − Φ(t), t) + φ(t), whereφ ∈ L∞([0, T )), with limt→0 φ(t) = 0 and
Φ(t) =

∫ t
0 φ(s)ds. In particular, uniqueness holds when one imposes a growth restriction on the pressure

(cf. [GIKM, K, Ku]).
We recall the scaling invariance of the Navier–Stokes equations: If u(x, t) andp(x, t) solve (1.1)–(1.3)

with an initial datumu0(x), thenλu(λx, λ2t) andλ2p(λx, λ2t) also solve the equations, but with the initial
datumλu0(λx). Spaces that are invariant under the above transformationsare called critical spaces for the
Navier–Stokes equations.
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The existence and uniqueness of local mild solutions of the Navier–Stokes equations in the critical space
Ln(Rn) was proven by Kato in [Ka]. (For other existence results for the initial value problem also cf. [CF,
FK, L, W].) The existence and uniqueness in a critical Morrey space was obtained by Taylor in [T] (also
see Giga and Miyakawa [GM]). Koch and Tataru established in [KT] the existence and uniqueness of mild
solutions on[0, T ) for initial datum in the critical spaceBMO−1

T , extending those previous results. They
showed that there existsε > 0 such that for allT > 0, if

‖u0‖BMO−1

T
= sup

0<t<T
sup
x∈Rn

(
t−n/2

∫ t

0

∫

|y−x|<
√
t
|es∆u0(y)|2dyds

)1/2

< ε,

and ifu0 is divergence free, there exists a unique local mild solution u ∈ ET of (1.1)–(1.3) onR
n × [0, T ).

HereET is defined asu ∈ L2
uloc,xL

2
t (R

n × [0, T )) such that

‖u‖ET = sup
0<t<T

√
t‖u(·, t)‖L∞ + sup

x∈Rn

sup
0<t<T

(
t−n/2

∫ t

0

∫

|y−x|<
√
t
|u(y, s)|2dyds

)1/2

<∞.

Moreover, ifu0 belongs to the closure ofS(Rn) in BMO−1, denoted byVMO−1, there existsT > 0 and
a mild solutionu ∈ CT of (1.1)–(1.3) onR

n × [0, T ), where

CT = {v ∈ ET : lim
τ→0

‖v‖Eτ = 0}.

For further results on solutions evolving fromBMO−1
T initial datum see for instance [ADT, GPS, L] and

references therein.
In the present paper, we prove that ifu ∈ ET is a weak solution of (1.1)–(1.3), then there existsφ(t) ∈

L∞((0, T )), with limt→0 φ(t) = 0, such that̃u(x, t) = u(x−Φ(t), t)+φ(t) ∈ ET is a mild solution, where
Φ(t) =

∫ t
0 φ(s)ds. Our main result states that all weak solutionsu ∈ CT are obtained from the uniqueCT -

mild solution by the transgalilean transformationu 7→ ũ described above. We also give a natural necessary
and sufficient condition for a weak solution to be mild, and hence for weak solutions to be unique, in terms
of the pressure. This generalizes the results in [GIKM, K, Ku].

Even though weak solutions inET are bounded for positive time, the results in [Ku] do not apply here
since we are considering the uniqueness att = 0. We note that the criticality of the problem creates several
difficulties which do not arise in theL∞ case [Ku], including the definition of a weak solution and the
behavior of weak solutions ast → 0. A consequence of Lemma3.1 is that the class of weak solutions we
consider is contained in the class of weak solutions in [Ku]. Thus, even when restricting the class of weak
solutions, we prove that uniqueness still fails.

The paper is organized as follows. In Section2 we give the definition of a weak solution and state the
main theorems. Section3 contains the proof that a weak solution attains the initial value in the sense of
distributions, and that every mild solution is a weak solution. Lemma3.3 is the main ingredient of the
proofs of our main theorems. Both, Theorem2.1and Theorem2.2, are then proven at the end of Section3.

2. MAIN RESULTS

The summation convention on repeated indices will be used throughout. We shall use the same notation
for scalars and vectors. In the following,C denotes a sufficiently large, positive generic constant depending
only on n, while the additional dependence on a quantity will be represented by a lower index. Lastly,
limt→0 denoteslimt→0+.

Throughout this paper, fixT > 0 andu0 ∈ BMO−1
T such that∇ · u0 = 0 in D′(Rn).

Definition. We say thatu ∈ ET is a weak solution of the initial value problem(1.1)–(1.3) onR
n × [0, T )

if it is weakly divergence free and there existsp ∈ L1
loc(R

n × (0, T )) such that for allψ = (ψ1, . . . , ψn) ∈
C∞
0 (Rn × [0, T )):
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(i) The following limit exists
∫ T

0+

∫
p∂kψk = lim

ε→0

∫ T

ε

∫
p∂kψk. (2.1)

(ii) For anyk = 1, . . . , n, we have
∫ T

0

∫
uk(∂tψk +∆ψk + uj∂jψk) +

∫ T

0+

∫
p∂kψk = −

∫
u0kψk(·, 0). (2.2)

Note that|u|, |u|2 ∈ L1
loc(R

n × [0, T )) for all u ∈ ET , which shows that the first integral on the left of
(2.2) is well-defined. We shall refer to a weak/mild solution of (1.1)–(1.3) onR

n × [0, T ) with the initial
datumu0 simply as a weak/mild solution of(NSE)u0 on [0, T ). Note that as opposed to [FJR], we work in
D′ instead ofS ′. We now state our main result.

Theorem 2.1. A functionu ∈ ET is a weak solution of(NSE)u0 on [0, T ) if and only if there exists
a mild solutionũ ∈ ET of (NSE)u0 on [0, T ), and a functionφ = (φ1, . . . , φn) ∈ L∞((0, T )) with
limt→0 φ(t) = 0, such that

u(x, t) = ũ(x− Φ(t), t) + φ(t),

whereΦ(t) =
∫ t
0 φ(s)ds.

Additionally, if u(1) and u(2) ∈ CT (or if ‖u(1)‖ET and ‖u(2)‖ET are sufficiently small) are two weak
solutions of(NSE)u0 on [0, T ), then there existsφ as above such thatu(1)(x, t) = u(2)(x−Φ(t), t)+φ(t).

Note that by [KT] and Lemma3.2below, ifu0 ∈ VMO−1, the closure ofS(Rn) inBMO−1, there exists
T > 0 and a weak solutionu ∈ CT of (NSE)u0 on [0, T ). The following natural condition guarantees the
uniqueness of weak solutions.

Theorem 2.2. There is at most oneu ∈ ET which is a is a weak solution of(NSE)u0 on [0, T ) and for
which the associated pressurep satisfies

p(x, t) = o(|x|), |x| → ∞, (2.3)

for a.e.t ∈ (0, T ).

The proof of Theorem2.2 shows that (2.3) may be replaced by‖p(·, t)‖L1(x+Q1) = o(|x|) as|x| → ∞
for a.e.t ∈ (0, T ), wherex + Q1 represents the unit cube inRn centered atx. This is a weaker condition
on the pressure than in [GIKM, K, Ku].

We recall the definition of thej-th Riesz-transformRj as the Fourier multiplieriξj/|ξ| (cf. [St, Chapter
3]). We shall denote the composition of the Riesz-transformsRi andRj byRij. It is well known thatRij is
a Calderón-Zygmund operator, and in particular it is bounded fromL∞ toBMO [F].

Remark 2.3. Several comments are in order to justify our definition of a weak solution of(NSE)u0 on
[0, T ):

(a) In the caseu0 ∈ Lp, where1 < p < ∞, a weak solution of (1.1)–(1.3) is commonly defined,
for instance in [FJR], as a divergence free vector fieldu ∈ Lq(0, T ;Lp(Rn)), such that for any
ψ ∈ S(Rn × [0, T )), with div(ψ(·, t)) = 0 for all 0 ≤ t < T , and for allk = 1, 2, . . . , n

∫ T

0

∫
uk(∂tψk +∆ψk + uj∂jψk) = −

∫
u0kψk(·, 0). (2.4)

If we allow u0(x) andu(x, t) not to decay at infinity, for instanceu0(x) = 1 for all x ∈ R
n, then

lettinguk(x, t) = 2 for all (x, t) ∈ R
n × (0, T ), we have that for anyψ as above

∫ T

0

∫
uk(∂tψk +∆ψk + uj∂jψk) = 0 = −

∫
u0kψk(·, 0).
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This is because for anyφ ∈ S(Rn) with div(φ) = 0, we have that
∫
φ = 0 (cf. [MS]). Thus, (2.4)

for divergence free test functionsψ would allow the constant function2 to be a weak solution of
(1.1)–(1.3) with the initial condition1.

(b) The solutions constructed by Koch and Tataru (cf. [KT]) for u0 ∈ BMO−1
T , have the property that

the associated pressure is given byp = Rij(uiuj). Moreover, since
√
t u(x, t) ∈ L∞(Rn × [0, T ))

andRij mapsL∞ to BMO, we obtain thatsup0<t<T t ‖p(·, t)‖BMO < ∞. But this does not

guarantee thatp ∈ L1
loc(R

n× [0, T )), and therefore
∫ T
0

∫
p ·∇ψ is not assured to exist as a Lebesgue

integral. This explains the requirement (2.1).
(c) The following example suggests that

∫ T
0

∫
p · ∇ψ might not always exist in the Lebesgue sense.

Namely,uk(x, t) = t sin(1/t) andp(x, t) = −xk(sin(1/t)− (1/t) cos(1/t)) solve (1.1)–(1.3) with
initial datumu0(x) = 0. However, forψ ∈ C∞

0 (Rn × [0, T )) which does not vanish identically at
t = 0, one can readily verify that

∫ T
0

∫
|p∂kψk| = ∞.

3. PROOFS OFRESULTS

The following lemma shows how weak solutions behave as time converges to0.

Lemma 3.1. If u ∈ ET is a weak solution of(NSE)u0 on [0, T ), thenu(·, t) → u0 in D′(Rn) as t → 0.
Moreover, if the pressure associated tou is given byp = Rij(uiuj), then the convergence holds inS ′(Rn).

Using the explicit representation of the kernelKij one can prove (cf. [L, Proposition 11.1]) that for
f ∈ S(Rn) andi, j, k ∈ {1, . . . , n} we have

|Rij(∂kf)(x)| ≤ Cf
1

(1 + |x|)n+1
, (3.1)

whereCf can be taken

Cf =
∑

|α|≤n+1

‖(1 + |ξ|)∂αf̂(ξ)‖L1 +
∑

|α|≤n+2

‖∂αf̂‖L∞ . (3.2)

Proof of Lemma3.1. Since we are interested in the behavior ofu(·, t) as t → 0, and sinceBMOT1 ⊆
BMOT2 whenever0 < T2 ≤ T1, we may assume in this proof thatT ≤ 1. First we prove the lemma
for a generalp ∈ L1

loc(R
n × (0, T )). Let ϕ = (ϕ1, . . . , ϕn) ∈ D(Rn) be a fixed test function. Since√

t uk(x, t) ∈ L∞(Rn × [0, T )), we have that
∫
uk(·, t)ϕk ∈ L1([0, T )).

Fix τ ∈ (0, T/2) which is a point in the Lebesgue set of
∫
uk(·, t)ϕk. For each integerm ≥ 1/τ we define

a nonincreasing functionαm ∈ C∞
0 ([0, T )) by αm = 1 on [0, τ ] andαm = 0 on [τ + 1/m, 2τ ]. Let the

sequence{αm} also satisfy(1/m)‖α′
m‖L∞ < C, for allm ≥ 1/τ . Thenαm(t)ϕ(x) ∈ C∞

0 (Rn × [0, T )),
and according to (2.2) with ψk(x, t) = αm(t)ϕk(x), we have

∫ 2τ

0

∫
ukα

′
mϕk +

∫ 2τ

0

∫
ukαm(∆ϕk + uj∂jϕk) +

∫ 2τ

0+

∫
pαm∂kϕk = −

∫
u0kϕk. (3.3)

Note thatsupp α′
m ⊂ [τ, τ + 1/m] and

∫ 2τ
0 α′

m(t)dt = αm(2τ) − αm(0) = −1. The Lebesgue Differenti-
ation Theorem implies that

lim
m→∞

∫ 2τ

0

∫
uk(x, t)α

′
m(t)ϕk(x)dxdt = −

∫
uk(x, τ)ϕk(x)dx. (3.4)

Sendingm→ ∞ in (3.3) we obtain
∫
uk(x, τ)ϕk(x)dx−

∫
u0k(x)ϕk(x)dx =

∫ τ

0

∫
uk(∆ϕk + uj∂jϕk) +

∫ τ

0+

∫
p∂kϕk. (3.5)

To analyze the first term on the right of (3.5), note that
∫ τ

0

∫
|uk∆ϕk| ≤

∫ τ

0
‖uk(·, t)‖L∞‖∆ϕk‖L1dt ≤ Cϕ

√
τ ‖u‖Eτ . (3.6)
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Letting q = 1/
√
n andM ≥ q be the smallest number such thatsupp ϕ ⊆ [−M + q,M − q]n, we get
∫ τ

0

∫
|ukuj∂jϕk| ≤

∑

k∈Zn,kq
√
τ∈[−M,M ]n

∫ τ

0

∫

|x−kq√τ |≤√
τ
|uk| |uj | |∂jϕk|

≤ C ‖∇ϕ‖L∞ τn/2
(
M√
τ

)n
‖u‖2Eτ ≤ Cϕ ‖u‖2Eτ . (3.7)

By the Dominated Convergence Theorem we also obtain that

lim
τ→0

∫ τ

0

∫
ukuj∂jϕk = 0, (3.8)

without making the assumption thatlimτ→0 ‖u‖Eτ = 0. Observe that the condition (i) in the definition of a
weak solution implies that for anyψ ∈ C∞

0 (Rn × [0, T ))

lim
τ→0

∫ τ

0+

∫
p∂kψk = 0. (3.9)

Indeed, by the definition of the limit in (2.1), for anyε > 0, there existsδ0 > 0 such that for any0 < δ2 <

δ1 < δ0, we have
∣∣∣
∫ δ1
δ2

∫
p∂kψk

∣∣∣ < 2ε, which proves (3.9). Now collecting (3.5)–(3.9) we obtain the desired

D′ convergence, along the Lebesgue set of
∫
uk(·, t)ϕk; namely,

lim
τ→0

∫
(uk(x, τ)− u0k(x))ϕk(x)dx

= lim
τ→0

∫ τ

0

∫
uk(∆ϕk + uj∂jϕk) + lim

τ→0

∫ τ

0+

∫
p∂kϕk = 0, (3.10)

where all the limits inτ are taken on the Lebesgue set. Choosing another suitable sequenceαm(t) ∈
C∞
0 ([0, T )) and proceeding as above, we prove the weak continuity ofuk in time, i.e., the continuity int

of
∫
uk(·, t)ϕk . This shows that the limit in (3.10) can be taken along any sequenceτ → 0 (not necessarily

along the Lebesgue set).
Now, assume thatp = Rij(uiuj), and letϕ = (ϕ1, . . . , ϕn) ∈ S(Rn). Fix a smooth radial function

θ ∈ D(Rn) that is identically1 in a neighborhood of the origin, with
∫
θ = 1. For anyR ∈ N and

x ∈ R
n, let θR(x) = θ(x/R). Also fix τ ∈ (0, T/2), an element in the intersection of the Lebesgue sets of∫

uk(·, t)ϕk and
∫
uk(·, t)θRϕk, forR ∈ N. Defineαm(t) be as above, and substituteαm(t)θR(x)ϕk(x) in

(2.2) to obtain
∫ 2τ

0

∫
ukα

′
mθRϕk +

∫
u0kθRϕk

=

∫ 2τ

0

∫
ukαm (∆(θRϕk) + uj∂j(θRϕk)) +

∫ 2τ

0+

∫
Rij(uiuj)αm∂k(θRϕk)

=

∫ 2τ

0

∫
ukαm (∆(θRϕk) + uj∂j(θRϕk)) +

∫ 2τ

0

∫
uiujαmRij (∂k(θRϕk)) . (3.11)

As in (3.5) we sendm→ ∞ and use the Lebesgue Differentiation Theorem to get
∫
u0kθRϕk −

∫
uk(·, τ)θRϕk

=

∫ τ

0

∫
uk (∆(θRϕk) + uj∂j(θRϕk)) +

∫ τ

0

∫
uiujRij (∂k(θRϕk)) . (3.12)

ForR ∈ N, similarly to (3.6), we have
∫ τ

0

∫
|uk∆((1− θR)ϕk)| ≤ C

√
τ‖u‖Eτ ‖∆((1− θR)ϕk)‖L1 , (3.13)
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which converges to0 asR→ ∞. We also have

lim
R→∞

∫ τ

0

∫
ukuj∂j((1 − θR)ϕk) = 0. (3.14)

The proof is similar to the pressure term , treated next. To bound the last term on the right of (3.12), we split
the space integral into cubes and use the decay rate given by (3.1) to obtain that forR ∈ N we have
∫ τ

0

∫
|uiujRij∂k((1− θR)ϕk)| ≤ C(1−θR)ϕ ‖u‖2Eτ

∑

k∈Zn

(
√
τ)n

(1 + |k|q√τ)n+1
≤ C(1−θR)ϕ ‖u‖2Eτ , (3.15)

whereC(1−θR)ϕ is given by (3.2). Using that‖f‖L1 ≤ C‖f‖1/2
L2 ‖|x|nf‖1/2

L2 holds forf ∈ S(Rn), and the
Hausdorff-Young Inequality, it is then easy to show thatϕ ∈ S(Rn) impliesC(1−θR)ϕ → 0 asR → 0. In
(3.15) we also used that

sup
0<τ<1

∑

k∈Zn

(
√
τ)n

(1 + |k|q√τ)n+1
≤ C, (3.16)

whereq = 1/
√
n as earlier. Let us now analyze the left side of (3.12). We first show that

lim
R→∞

∫
uk(x, τ)(1 − θR(x))ϕk(x)dx = 0.

The above follows from the Dominated Convergence Theorem and
∫

|uk(x, τ)ϕk(x)|dxdt ≤ Cϕ‖u‖Eτ
1√
τ
.

We now prove that

lim
R→∞

∫
u0k(x)(1 − θR(x))ϕk(x)dx = 0. (3.17)

This follows by writingu0 = v0 + ∂ivi, for appropriate functionsvi ∈ BMOT for all i = 0, 1, . . . , n (cf.
[KT, L]). Sincev0 ∈ BMOT , we also have|v0| ∈ BMOT ; hence,

∫
|v0j(x)| |ϕj(x)|dx ≤ ‖ϕj‖L∞

∑

k∈Zn

∫

kT/2+[0,T/2]n
|v0j(x)|dx

≤ CT,ϕ
∑

k∈Zn

(1 + |k|) ‖v0‖BMOT

1

(1 + |k|)n+2
≤ Cϕ,T ‖v0‖BMOT

.

In the above we used thatϕ ∈ S and that the difference between the averages of|v0| on two cubesQ and
Q′ of volumeT , but whose centers are at distance|k| apart, is proportional to(1 + |k|) ‖v0‖BMOT

, with an
implicit constant depending onT . Similarly one can show that the terms with∂ivi have anR-independent
L1 bound, and hence (3.17) follows from the Dominated Convergence Theorem.

Collecting (3.12)-(3.17), we obtain by lettingR→ ∞ that
∫

(uk(x, τ)− u0k(x))ϕk(x)dx =

∫ τ

0

∫
uk (∆ϕk + uj∂jϕk) +

∫ τ

0

∫
uiujRij (∂kϕk) . (3.18)

Using similar bounds as before we note that
∫ τ

0

∫
|uk (∆ϕk + uj∂jϕk)|+

∫ τ

0

∫
|uiujRij (∂kϕk)| ≤ Cϕ(

√
τ + ‖u‖Eτ )‖u‖Eτ ,

and hence the Dominated Convergence Theorem implies that the right of (3.18) vanishes asτ → 0, along se-
quences in the above mentioned intersection of Lebesgue sets. We again prove the continuity of

∫
uk(·, t)ϕk

in the variablet and obtain the desiredS ′ convergence along any sequenceτ → 0, completing the proof of
the lemma. �
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We recall that the Hopf–Leray projector is given explicitlyby (Pf)k = fk + Rkjfj. This allows us to
write (1.4) in terms of the heat kernelG(x, t) = (4πt)−n/2e−|x|2/4t for all (x, t) ∈ R

n × (0,∞). Thus
u ∈ ET is a mild solution of(NSE)u0 on [0, T ) if

uk(x, t) = −
∫ t

0

∫
(δik +Rjk)∂jG(x− y, t− s)ui(y, s)uj(y, s)dyds +

∫
G(x− y, t)u0k(y)dy

= −
∫ t

0

∫
∂jG(x− y, t− s)uj(y, s)uk(y, s)dyds

−
∫ t

0+

∫
∂kG(x− y, t− s)p(y, s)dyds +

∫
G(x− y, t)u0k(y)dy (3.19)

for a.e.(x, t) ∈ R
n × [0, T ), wherep = Rij(uiuj). In Lemma3.2, using the decay rate of∂k(RijG(x, t))

at infinity (cf. [FJR]), we prove that every mild solution of(NSE)u0 on [0, T ) is also a weak solution, as
defined above, with the same initial datum.

Note that the functionu(x, t) = t, for all (x, t) ∈ R × [0, T ), is a weak solution of(NSE)0 on [0, T ),
but that the unique mild solution withu0(x) = 0 is u(x, t) = 0. Hence, a weak solution of(NSE)u0 on
[0, T ) need not be mild.

Lemma 3.2. If u ∈ ET is a mild solution of(NSE)u0 on [0, T ), thenu is also a weak solution of(NSE)u0
on [0, T ).

Proof of Lemma3.2. Let p = Rij(uiuj). Sincesup0<t<T
√
t ‖uk(·, t)‖L∞ < ∞, and sinceRij mapsL∞

to BMO, we havesup0<t<T t ‖p(·, t)‖BMO < ∞, and hencep ∈ L1
loc(R

n × (0, T )). We now need to
check thatp satisfies the condition (i) in the definition of a weak solution. For all0 < τ1 < τ2 < τ ≤ T and
ψ ∈ C∞

0 (Rn × [0, T )), by lettingq = 1/
√
n, we have

∣∣∣∣
∫ τ2

τ1

∫
p(x, t)∂kψk(x, t)dxdt

∣∣∣∣ ≤
∫ τ2

τ1

∫
|ui(x, t)uj(x, t)Rij(∂kψk)(x, t)dxdt| (3.20)

≤ Cψ
∑

k∈Zn

τn/2

(
τ−n/2

∫ τ

0

∫

|x−kq√τ |<√
τ
|u(x, t)|2dxdt

)
sup

|x−kq√τ |<√
τ

1

(1 + |x|)n+1

≤ Cψ‖u‖2Eτ
∑

k∈Zn

(
√
τ)n

(1 + |k|q√τ)n+1
.

As earlier, the last sum in the above inequality is finite for any 0 < τ ≤ T , and (3.16) holds. Since the
above is satisfied for all0 < τ1 < τ2 < τ , the Dominated Convergence Theorem shows that the right term
of (3.20) converges to0 asτ → 0, and hence (2.1) holds. It remains to be shown thatu andp satisfy (2.2).
For this purpose, letψ ∈ C∞

0 (Rn × [0, T )). Using thatuk is given by (3.19), we can calculate∂tuk −∆uk
in D′(ε, T ). For any0 < ε < T we have

∫ T

ε

∫ (
uk(∂tψk +∆ψk + uj∂jψk) + p∂kψk

)
= −

∫
uk(·, ε)ψk(·, ε).

By uk ∈ ET , and by the previous discussion, the left side of the above equation is well–defined forε = 0.
Thus it remains to be shown thatlimε→0

∫
uk(·, ε)ψk(·, ε) =

∫
u0kψk(·, 0). We write

∣∣∣∣
∫
uk(·, ε)ψk(·, ε) −

∫
u0kψk(·, 0)

∣∣∣∣

≤
∫

|uk(·, ε)| |ψk(·, ε) − ψk(·, 0)| +
∣∣∣∣
∫

(uk(·, ε) − u0k(·))ψk(·, 0)
∣∣∣∣

≤ ‖u(·, ε)‖Eε ε−1/2‖ψk(·, ε) − ψk(·, 0)‖L1 +

∣∣∣∣
∫

(uk(·, ε) − u0k(·))ψk(·, 0)
∣∣∣∣ . (3.21)
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Sinceψk ∈ C∞
0 (Rn × [0, T )), the mean value theorem implies that the first term on the far right side of

(3.21) converges to0 asε → 0. To approximate the second term, use the definition ofuk(x, t) in (3.19), to
obtain

uk(x, ε)− u0k(x) =

∫
G(x− y, ε)u0k(y)dy − u0k(x)

+

∫ ε

0+

∫ (
∂kG(x− y, ε− s)p(y, s) + ∂jG(x− y, ε− s)uj(y, s)uk(y, s)

)
dyds. (3.22)

The proof of the lemma is complete if the right side of the above converges to0 in D′(Rn) asε→ 0. Since
p = Rij(uiuj) andmax{|∂jG(y, s)|, |∂kRijG(y, s)|} ≤ C/(|y| + √

s)n+1 (cf. [FJR]), we may split the
space integral into cubes and obtain that the second term in (3.22) converges in to0 asε→ 0. Moreover

∣∣∣∣
∫ (∫

G(x− y, ε)u0k(y)dy − u0k(x)

)
ψk(x, 0)dx

∣∣∣∣→ 0 asε→ 0,

since the heat semigroupeε∆ converges to the identity inS ′ asε→ 0, proving the lemma. �

The following lemma proves the first part of Theorem2.1.

Lemma 3.3. If u ∈ ET is a weak solution of(NSE)u0 on [0, T ), then there exists̃u ∈ ET , a mild solution
of (NSE)u0 on [0, T ), and a functionφ = (φ1, . . . , φn) ∈ L∞((0, T )), with limt→0 φ(t) = 0, such that

u(x, t) = ũ(x− Φ(t), t) + φ(t), (x, t) ∈ R
n × [0, T )

whereΦ(t) =
∫ t
0 φ(s)ds.

Moreover, ifu ∈ CT then ũ ∈ CT . A weak solutionu ∈ CT of (NSE)u0 on [0, T ) is a mild solution if
and only if the associated pressure satisfiesp = Rij(uiuj).

Proof of Lemma3.3. As in [Ku], we first prove that there exists a functionφ ∈ L∞((0, T ),Rn), with
limt→0 φ(t) = 0, such that

∂tuk −∆uk + ∂j(ujuk) + ∂kπ + φ′k(t) = 0 (3.23)

holds inD′(Rn × (0, T )), whereπ = Rij(uiuj).
Sinceu is a weak solution of(NSE)u0 on [0, T ), there existsp ∈ L1

loc(R
n × (0, T )) such that the

conditions (i) and (ii ) hold. In particular, taking the divergence of (2.2), and using that bothu andu0 are
divergence-free, we obtain that∆p = −∂j∂k(ujuk) = ∆π in D′(Rn × (0, T )). Let ph = p − π be
the harmonic component of the pressure. Following [Ku] one can show that for1 ≤ k ≤ n, ∂kph is a
distribution depending only ont, and hence (3.23) holds inD′(Rn × (0, T )) with ∂kph instead ofφ′k. We
therefore define

φk(t) =

∫
uk(x, t)β(x)dx −

∫
u0k(x)β(x)dx −

∫ t

0

∫
uk(x, s)∆β(x)dxds

−
∫ t

0

∫
uk(x, s)uj(x, s)∂jβ(x)dxds −

∫ t

0+

∫
π(x, s)∂kβ(x)dxds, t > 0 (3.24)

whereβ ∈ D(Rn) is fixed, with
∫
β = 1. We need to check thatlimt→0+ φk(t) = 0. As is in the proof of

Lemma3.1, the last three terms on the right hand side of (3.24) are bounded as

|φk(t)| ≤
∣∣∣∣
∫
uk(x, t)β(x)dx −

∫
u0k(x)β(x)dx

∣∣∣∣ + Cβ(
√
t+ ‖u‖Et)‖u‖Et .

Using the fact thatu(·, t) → u0 in D′(Rn) ast → 0, and the Dominated Convergence Theorem as in (3.8),
we obtain the desired convergence ofφ.
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Defineũ(x, t) = u(x− Φ(t), t) + φ(t) andp̃(x, t) = π(x−Φ(t), t). We claim that̃u is a weak solution
with the associated pressurep̃. The fact that̃u ∈ ET follows from

‖ũ‖Eτ ≤ ‖u‖Eτ + C(
√
τ + τ)‖φ‖L∞ + C‖u‖2Eτ sup

0<t<τ
N(t), (3.25)

whereN(t) ≤ C
(
1 +

√
t‖φ‖L∞

)n
is the number of balls of radius

√
t necessary to cover the ball of radius√

t+ t‖φ(t)‖L∞ . Note that ifu ∈ CT all terms on the right of (3.25) vanish asτ → 0, proving that̃u ∈ CT .
After a short verification, we check thatũ and p̃ satisfy condition (ii ) of the definition of a weak solution.
Condition (i) is satisfied bỹp = Rij(ũiũj) due to Lemma3.2. This proves our claim, and by Lemma3.1
we can conclude that̃u attains the initial value inS ′.

Following the arguments in [FJR] and [Ku] we now show that̃u is actually a mild solution, proving the
first claim in the lemma. Letθ ∈ D(Rn) be identically1 in a neighborhood of0. ForR > 0 andy ∈ R

n let
θR(y) = θ(y/R). Also fix α ∈ C∞(R) such that0 ≤ α ≤ 1, α′ ≥ 0, α(s) = 0 for s ≤ 1 andα(s) = 1 for
2 ≤ s. For a fixed(x, t) ∈ R

n × [0, T ) and for anyε > 0, define

ψ(y, s) = α
(s
ε

)
α

(
t− s

ε

)
θR(y)G(x − y, t− s),

for any(y, s) ∈ R
n × [0, T ). Sincesupp (α(s/ε)α((t − s)/ε)) ∈ (ε, t − ε) andα(s/ε)α((t − s)/ε) = 1

for s ∈ (2ε, t − 2ε), we haveψ ∈ D(Rn × (0, T )). Moreover, lettingR → ∞, we obtainθR(y) → 1 for
everyy ∈ R

n; usingψ as a test function in (2.2), we have

1

ε

∫ T

0

∫
ũk(y, s)α

′
(s
ε

)
α

(
t− s

ε

)
G(x− y, t− s)dyds

− 1

ε

∫ T

0

∫
ũk(y, s)α

(s
ε

)
α′
(
t− s

ε

)
G(x− y, t− s)dyds

−
∫ T

0

∫
ũk(y, s)ũj(y, s)α

(s
ε

)
α

(
t− s

ε

)
∂jG(x− y, t− s)dyds

−
∫ T

0+

∫
p̃k(y, s)α

(s
ε

)
α

(
t− s

ε

)
∂kG(x− y, t− s)dyds = 0. (3.26)

We analyze the behavior of the first term on the left side of (3.26). For t ≥ 4ε this term equals

(1/ε)

∫ 2ε

ε

∫
ũk(y, s)α

′ (s/ε)G(x− y, t− s)dyds.

Since(1/ε)
∫ 2ε
ε α′(s/ε)ds = 1, we re-write this term as

1

ε

∫ 2ε

ε
α′
(s
ε

)∫
ũk(y, s) (G(x− y, t− s)−G(x− y, t)) dyds

+
1

ε

∫ 2ε

ε
α′
(s
ε

)∫
(ũk(y, s)− u0k(y))G(x− y, t)dyds +

∫
u0k(y)G(x− y, t)dy. (3.27)

The first term in the above expression can be bounded as

1

ε

∫ 2ε

ε
α′
(s
ε

)
‖ũk(·, s)‖L∞‖G(x− ·, t− s)−G(x− ·, t)‖L1ds

≤ 1

ε

∫ 2ε

ε
α′
(s
ε

)
‖ũ‖C2ε

1√
s
‖G(·, t − s)−G(·, t)‖L1ds.

Using the mean value theorem we check thatlims→0(1/
√
s)‖G(·, t− s)−G(·, t)‖L1 = 0. The Dominated

Convergence Theorem implies that right side of the last inequality converges to0 asε→ 0. The second term
in (3.27) vanishes asε→ 0 since by Lemma3.1 ũ(·, s) → u0 in S ′(Rn), while clearlyG(·, t) ∈ S(Rn) for
all t > 0.
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Note that asε→ 0, we have(1/ε)α(s/ε)α′((t− s)/ε) → δt andα(s/ε)α((t− s)/ε) → χ(0,t) in D′(R).
By letting ε→ 0 in (3.26), for k = 1, . . . , n, and a.e.(x, t) ∈ R

n × [0, T ), we have

ũk(x, t) +

∫ t

0

∫
ũk(y, s)ũj(y, s)∂jG(x− y, t− s)dyds

+

∫ t

0+

∫
p̃k(y, s)∂kG(x− y, t− s)dyds−

∫
u0k(y)G(x − y, t)dy = 0.

We showed earlier that̃p = Rij(ũiũj); thusũ is a mild solution. Mild solutions are unique inCT (cf. [KT],
[L]); hence a weak solutionu ∈ CT is mild if and only if the associated pressurep satisfiesp = Rij(uiuj),
proving the lemma. �

Proof of Theorem2.1. Let u ∈ ET be a weak solution of(NSE)u0 on [0, T ). By Lemma3.3, there exists a
mild solutionũ ∈ ET given byũ(x, t) = u(x+Φ(t), t)− φ(t), for a suitableφ ∈ L∞((0, T )). Conversely,
if ũ ∈ ET is a mild solution of(NSE)u0 on [0, T ), then by Lemma3.2, this is a weak solution, and the
functionu(x, t) = ũ(x − Φ(t), t) + φ(t) ∈ ET is also a weak solution of(NSE)u0 on [0, T ), proving the
first statement of the theorem.

Let u(1) andu(2) ∈ CT be two weak solutions of(NSE)u0 on [0, T ). By Lemma3.3 there exist mild
solutionsũ(i) ∈ CT of (NSE)u0 on [0, T ), and functionsφ(i) ∈ L∞((0, T )) with limt→0 φ

(i) = 0, such
thatu(i)(x, t) = ũ(i)(x− Φ(i)(t), t) + φ(i)(t), for i = 1, 2.

We claim thatũ(1) = ũ(2) a.e. inRn × [0, T ). This is known (cf. [ADT]), but we sketch the proof to
emphasize the necessity ofũ(i) ∈ CT (or that‖u(i)‖ET is sufficiently small) fori = 1, 2. DenoteB(u, v) =∫ t
0 e

(t−s)∆
P∇ · (u ⊗ v)ds. Thenũ(1)(·, t) − ũ(2)(·, t) = B(ũ(1), ũ(1) − ũ(2)) + B(ũ(1) − ũ(2), ũ(2)). For

τ ∈ (0, T ), by [KT] we have that‖B(u, v)‖Eτ ≤ C0‖u‖Eτ ‖v‖Eτ , and hence

‖ũ(1) − ũ(2)‖Eτ ≤ C0

(
‖ũ(1)‖Eτ + ‖ũ(2)‖Eτ

)
‖ũ(1) − ũ(2)‖Eτ . (3.28)

Sincelimτ→0 ‖ũ(i)‖Eτ = 0, for i = 1, 2, we can fixτ such thatC0

(
‖ũ(1)‖Eτ + ‖ũ(2)‖Eτ

)
≤ 1/2. Then

(3.28) shows that̃u(1) andũ(2) agree on[0, τ). For t ≥ τ we haveũ(i)(·, t) ∈ L∞ for i = 1, 2, and hence
ũ(1)(·, t) = ũ(2)(·, t) on [τ, T ) (cf. [FJR]).

Thus lettingφ(t) = φ(1)(t) − φ(2)(t), we obtain that̃u(1)(x, t) = ũ(2)(x − Φ(t), t) + φ(t), concluding
the proof of the Theorem. �

Proof of Theorem2.2. By Theorem2.1, in order to show that a weak solutionu ∈ ET of (NSE)u0 on [0, T )
is unique, it suffices to prove that the functionφ(t) constructed in Lemma3.3is identically0 on [0, T ).

We write π = Rij(uiuj) andph = p − π. It was shown earlier that∆ph = 0 in D′(Rn) and that
π(·, t) ∈ BMO for a.e.t > 0. We denotex+Q1 the unit cube centered atx in R

n. It then follows that for
a.e.t > 0 and|x| > 1,

∣∣∣∣
∫

x+Q1

|π(·, t)| −
∫

Q1

|π(·, t)|
∣∣∣∣ ≤ Ct log |x|.

This shows that‖π(·, t)‖L1(x+Q1) = o(|x|), as |x| → ∞, for a.e.t ∈ (0, T ). Moreover,p = o(|x|), as
|x| → ∞ implies‖p(·, t)‖L1(x+Q1) = o(|x|), as|x| → ∞, and hence for a.e.t ∈ (0, T ) we have

‖ph(·, t)‖L1(x+Q1) = ‖p(·, t) − π(·, t)‖L1(x+Q1) = o(|x|), as |x| → ∞. (3.29)

The proof of Theorem2.1implies that∂kph = φ′k(t) in D′(Rn × (0, T )), which implies

ph = xkφ
′
k(t) + f, (3.30)

wheref ∈ D′(Rn × (0, T )) is a distribution of time. Based on the fact thatph = p − Rij(uiuj) ∈
L1
loc(R

n × (0, T )) we obtainφ′k(t), f ∈ L1
loc(R

n × (0, T )) for k = 1, 2, . . . , n. From (3.29) and (3.30) it
follows thatφ′k(t) = 0 for a.e.t ∈ (0, T ), and sincelimt→0 φk(t) = 0, we obtainφk(t) = 0 for t ∈ (0, T ),
concluding the proof of the theorem. �
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