ON LOCAL UNIQUENESS OF WEAK SOLUTIONS TO THE NAVIER-STOKES S YSTEM
WITH BMO~! INITIAL DATUM

IGOR KUKAVICA AND VLAD VICOL

ABSTRACT. We address the problem of local uniqueness of weak sokitmthe Navier—Stokes system, with
the initial datum in a subspace &M O~'(R"). The existence and uniqueness of local mild solutions has
been proven by Koch and TatafiT]. We present a necessary and sufficient condition for twokvgetutions

to evolve from the same initial datum, and for weak solutitmise mild.
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1. INTRODUCTION

In this paper we address the uniqueness of solutions of tti@l walue problem for the Navier—Stokes
equations iR™ x [0, c0)

Opur, — Aup +ujOjup, +hp =0, k=1,...,n, (1.2)
Oju; =0, (1.2)

with the initial datum
up(-,0) =uog, k=1,...,n. (1.3)

The unknowns are the velocity vector fieldz,¢) € R™ and the pressurg(z,t) € R, with (z,t) €
R™ x [0, 00). The initial datum is divergence free and belongs to a spgeatente detail upon in Sectidh

Fabes, Jones, and Riviere have provenHdH that the Navier—Stokes systerh. )—(1.3) with uy €
LP(R™) has a unique local mild solution ib?(0, 7'; LP(R™)) if n < p < oo andn/p+2/q < 1. Moreover,
they showed that i2 < p < co and2 < g < oo, thenu is weak solution of 1.1)—(1.3) if and only if u is a
mild solution, i.e.,

t
u(-t) = ePug —I—/ APV - (1 @ u)ds, (1.4)
0
whereP denotes the Hopf—Leray projector, a#ié@ f denotes the solution of the heat equation with an initial
datumf.

The first author of the present paper consideredin] fthe casep = oo. It is well-known (cf. [])
that uniqueness of weak solutions with bounded initial ehatloes not hold. InKu] it was shown that
two weak solutions: andu evolve from the same initial datum if and onlyf is obtained fromu by
means of a transformi(x,t) = u(z — ®(t),t) + ¢(t), whereg € L>°([0,T)), with lim;_,o ¢(¢) = 0 and
O(t) = fot ¢(s)ds. In particular, uniqueness holds when one imposes a graethiction on the pressure
(cf. [GIKM, K, Ku]).

We recall the scaling invariance of the Navier—Stokes egust If u(x,t) andp(x,t) solve (.1)—(1.3)
with an initial datumug(z), thenlu(\z, A%t) and\?p(A\z, A\*t) also solve the equations, but with the initial
datumAug(Az). Spaces that are invariant under the above transformatiensalled critical spaces for the
Navier—Stokes equations.
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The existence and uniqueness of local mild solutions of thdét—Stokes equations in the critical space
L™(R™) was proven by Kato ina]. (For other existence results for the initial value praoblalso cf. CF,
FK, L, W].) The existence and uniqueness in a critical Morrey spa&e abtained by Taylor inT] (also
see Giga and Miyakawa&3M]). Koch and Tataru established iKT] the existence and uniqueness of mild
solutions on0, T) for initial datum in the critical spacBMO;l, extending those previous results. They
showed that there exists> 0 such that for alll’ > 0, if

1/2

¢

luoll garo-1 = sup sup t_n/2// ’€SAU0(y)‘2dyd3 <eg,
T 0<t<T z€R" 0 J|y—z|<vt

and ifuy is divergence free, there exists a unique local mild satutice £ of (1.1)—(1.3) onR™ x [0,T).
Here&r is defined ast € L2, . LZ(R™ x [0,7)) such that

uloc,x

1/2

t

lulle, = sup VE|u(-,t)||L~ + sup sup t—"/2// u(y, s)[*dyds < o0.
o<t<T 0 |y—m|<\ﬂ

reR™ 0<t<T

Moreover, ifug belongs to the closure &f(R") in BMO~!, denoted by MO, there existd" > 0 and
a mild solutionu € Cr of (1.1)—(1.3) onRR™ x [0, T), where

Cr = {v e : f}lg%) HngT = 0}.

For further results on solutions evolving froBﬁMO;l initial datum see for instanceAPT, GPS L] and
references therein.

In the present paper, we prove thauife r is a weak solution of(.1)—(1.3), then there exists(t) €
L>((0,T)), with lim;_,¢ ¢(¢) = 0, such thati(x, t) = u(x — ®(t),t) + ¢(t) € Ep is a mild solution, where
O(t) = fot ¢(s)ds. Our main result states that all weak solutioans Cr are obtained from the uniqu#r-
mild solution by the transgalilean transformation— u described above. We also give a natural necessary
and sufficient condition for a weak solution to be mild, anddefor weak solutions to be unique, in terms
of the pressure. This generalizes the result&GiKM, K, Kul.

Even though weak solutions i are bounded for positive time, the results iKu] do not apply here
since we are considering the uniqueness-at). We note that the criticality of the problem creates several
difficulties which do not arise in thé&* case Ku], including the definition of a weak solution and the
behavior of weak solutions @s— 0. A consequence of Lemnfalis that the class of weak solutions we
consider is contained in the class of weak solutionKn| | Thus, even when restricting the class of weak
solutions, we prove that uniqueness still fails.

The paper is organized as follows. In Sectibwe give the definition of a weak solution and state the
main theorems. SectioB contains the proof that a weak solution attains the initellg in the sense of
distributions, and that every mild solution is a weak soloti Lemma3.3 is the main ingredient of the
proofs of our main theorems. Both, Theor@m and Theoren2.2, are then proven at the end of Sectibn

2. MAIN RESULTS

The summation convention on repeated indices will be usediginout. We shall use the same notation
for scalars and vectors. In the followin@,denotes a sufficiently large, positive generic constanedding
only on n, while the additional dependence on a quantity will be repnéed by a lower index. Lastly,
lim;_,o denotedim;_,q .

Throughout this paper, fiX > 0 andug € BMO;1 such thatV - ug = 0 in D'(R™).

Definition. We say that. € &r is a weak solution of the initial value probleth.1)—«1.3) onR™ x [0,7)
if it is weakly divergence free and there exigts L} (R™ x (0, 7)) such that for alkp = (¢1,...,1,,) €
C(R™ x [0,7)):
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/(]i/pakibk = il_% /ET/pE?kwk. (2.1)

(i) Foranyk =1,...,n,we have

/OT/ ur(Opr + Api +uOtbn) + /Oi/pam =— /uok%(',O). (2.2)

Note that|u|, [ul> € L}, (R™ x [0,T)) for all u € &7, which shows that the first integral on the left of
(2.2) is well-defined. We shall refer to a weak/mild solution &f1)—(1.3) on R™ x [0, 7") with the initial
datumu simply as a weak/mild solution ¢fVSE),,, on[0, 7). Note that as opposed tBJR, we work in

D' instead ofS’. We now state our main result.

(i) The following limit exists

Theorem 2.1. A functionu € &r is a weak solution of NSE),, on [0,T) if and only if there exists
a mild solutionu € &7 of (NSE),, on [0,T), and a functionp = (é1,...,¢,) € L>((0,T")) with
lim;_,0 ¢(¢t) = 0, such that

u(z,t) = u(z — ®(t),t) + o(t),

where®(t) = fg o(s)ds.
Additionally, if u™™ andu® € Cr (or if |uM g, and ||[u(? |, are sufficiently small) are two weak
solutions of NSE),, on[0, T), then there exists as above such that'V (z,t) = v (z — ®(t),t) + ¢(t).

Note that by KT] and Lemma3.2below, ifug € VMO~!, the closure o§(R") in BMO~1, there exists
T > 0 and a weak solution € Cr of (NSE),, on[0,7T). The following natural condition guarantees the
uniqueness of weak solutions.

Theorem 2.2. There is at most one € £r which is a is a weak solution ¢fVSE),, on [0,7)) and for
which the associated pressysesatisfies

p(x,t) = of|z]), [x] — oo, (2.3)
fora.e.t € (0,7).

The proof of Theoren2.2 shows thatZ.3) may be replaced byp(-, )|/ 11 (z+q,) = o(|z|) as|z[ — oo
for a.e.t € (0,T"), wherez + ; represents the unit cube Rr* centered at. This is a weaker condition
on the pressure than iG]KM, K, Ku].

We recall the definition of thg-th Riesz-transforn?; as the Fourier multiplieié; /|£| (cf. [St Chapter
3]). We shall denote the composition of the Riesz-transfoRinand R; by R;;. It is well known thatR;; is
a Calderon-Zygmund operator, and in particular it is baehfitom L>° to BM O [F].

Remark 2.3. Several comments are in order to justify our definition of akveolution of(NSE),, on
[0,7):
(@) In the caseiy € LP, wherel < p < oo, a weak solution of {.1)—(1.3) is commonly defined,
for instance in FJR, as a divergence free vector field e L%(0,7; LP(R™)), such that for any
P e S(R™ x [0,T)), with div(¢(-,t)) =0forall0 < ¢ < T,andforallk =1,2,...,n

T
/ /Uk(at¢k + Ay + uj0jy) = — /u0k¢k('70)' (2.4)
0

If we allow ug(z) andu(z,t) not to decay at infinity, for instancey(x) = 1 for all z € R”, then
letting uy (x,t) = 2 for all (x,t) € R™ x (0,T), we have that for any as above

T
/0 /uk(aﬂ/)k + Aty + u;050y) =0 = _/U0k¢k('>0)-
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This is because for any € S(R™) with div(¢) = 0, we have thaff ¢ = 0 (cf. [MS]). Thus, @.4)
for divergence free test functions would allow the constant functiod to be a weak solution of
(1.D—(1.3) with the initial conditionl.

(b) The solutions constructed by Koch and Tataru (€T]) for uo € BM O;l, have the property that
the associated pressure is givenpbyt R;j(u;u;). Moreover, since/t u(x,t) € L>=(R" x [0,T))
and R;; mapsL> to BM O, we obtain thasupy_,rt ||p(-,t)[|Bmo < oo. But this does not
guarantee that € L} (R" x [0,T)), and thereforqOTfp -V is not assured to exist as a Lebesgue
integral. This explains the requiremeft1).

(c) The following example suggests thﬁ?fp - Vi might not always exist in the Lebesgue sense.
Namely,uy(x,t) = tsin(1/t) andp(x,t) = —xx(sin(1/t) — (1/t) cos(1/t)) solve (.1)—(1.3) with
initial datumug(z) = 0. However, fory) € C§°(R™ x [0,7")) which does not vanish identically at
t = 0, one can readily verify thanOTf |pOpr| =

3. PROOFS OFRESULTS

The following lemma shows how weak solutions behave as tiongerges td).

Lemma 3.1. If u € &p is a weak solution of NSE),, on[0,7T), thenu(-,t) — ug in D’'(R™) ast — 0.
Moreover, if the pressure associateditds given byp = R;;(u;u;), then the convergence holds$y(R™).

Using the explicit representation of the kerrf€); one can prove (cf.L, Proposition 11.1]) that for
f € SMR") andi,j, k € {1,...,n} we have

1
. < S .
1Big(Ocf) @) < Cr o (3.1)
whereC'; can be taken
Cr= > 1@+ f©Ole+ D 10 fllc~. (32)
|o|<n+1 |or| <n+2

Proof of Lemm&.1 Since we are interested in the behaviorugf,¢) ast — 0, and sinceBMOr, C
BMOr, whenever) < T, < Ty, we may assume in this proof that < 1. First we prove the lemma
for a generap € L} (R" x (0,7)). Lety = (p1,...,n) € D(R™) be a fixed test function. Since
Vit ug(z,t) € L¥(R™ x [0,T)), we have thay ug (-, t)pr € Ll([O T)).

Fix 7 € (0,7"/2) which is a point in the Lebesgue setfig (-, t)¢x. Foreachintegen > 1/7 we define
a nonincreasing function,,, € C5°([0,7")) by v, = 1 0n [0, T] anda,, = 0on[r + 1/m,27]. Let the
sequencd a,, } also satisfy(l/m)HamHLoo < C,forallm > 1/7. Thenay, (t)p(x) € CG°(R™ x [0,T)),
and according toZ.2) with ¢ (z,t) = an(t)er(x), we have

2T 2T 2T
/ /Ukam90k+/ /ukam Ay, + u;05pk) / /pamawk = —/uoWk- (3.3)

Note thatsupp o/, C [7,7 + 1/m)] andf (t)dt = am(27) — ., (0) = —1. The Lebesgue Differenti-

ation Theorem |mpI|es that

nﬁ}i_r)n(w ZT/ ug(z, t)ag, (t)or (x)dxdt = /uk(ﬂj,T)ng(lL')d:L'. (3.4)

Sendingm — oo in (3.3) we obtain

/uk(va)@k(m)dm —/UOk(iﬂ)sﬁk(ﬂf)dﬂf = /OT/uk(A% + u;0;0k) +/0:/p5k30k- (3.5)

To analyze the first term on the right &.6), note that

/0 / Ay < /0 i (- D)l [ Agiladt < Con/T Jlulle, (3.6)

m
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Lettingg = 1/y/nandM > ¢ be the smallest number such thapp ¢ C [-M + ¢, M — q]", we get

//|ukuj8j<,0k| < // |kl |us] 10;0k]
0 |e—kav/7|<vT

keZn kq\/_e [—M,M]"
n M
< CI9pl= 2 (1) Iull, < ol 37)

By the Dominated Convergence Theorem we also obtain that

ll_)l%/o /ukuj(?jgpk =0, (3.8)

without making the assumption thiain - o ||u|ls, = 0. Observe that the condition) (n the definition of a
weak solution implies that for any € C5°(R"™ x [0,7))

lim / / POk = 0. (3.9)

Indeed, by the definition of the limit ir2(1), for anye > 0, there exist9, > 0 such that for any < d, <
01 < dg, We have‘ f(f;f pawk( < 2¢, which proves .9). Now collecting 8.5—(3.9) we obtain the desired
D’ convergence, along the Lebesgue sef af. (-, t)x; namely,

hm (ur(z, 7) — uor(x)) pr(x)dx

= hm/ /uk (App +u;050r) + hm/ /p@kcpk =0, (3.10)

where all the limits inr are taken on the Lebesgue set. Choosing another suitablerssgy,, (t) <
cse(lo, )) and proceeding as above, we prove the weak continuity, oh time, i.e., the continuity ir
of [‘ug(-,t)pk. This shows that the limit in3 10 can be taken along any sequence: 0 (not necessarily
along the Lebesgue set).

Now, assume that = R;;(u;u;), and lety = (¢1,...,¢,) € S(R™). Fix a smooth radial function
9 € D(R™) that is identicallyl in a neighborhood of the origin, witlf # = 1. For anyR € N and
T € R” letOr(x) = H(x/R) Also fix 7 € (0,7'/2), an element in the intersection of the Lebesgue sets of
[ (-, t)or and [ ug (-, t)0rex, for R € N. Definea,,(t) be as above, and substitute, (t)0z(z) ¢y () in
(2.2 to obtain

2T
/ /uka/m@RsOk +/u0k9R<Pk
0

- /:T/ g (A(Orer) + u;0j(Orpr)) + /OjT/ R;j(uinj)ou Ok (Orepr)

27 27
- /0 [ e (Ao + 0y 6ron)) + /0 [ty @ona)). @10

As in (3.5 we sendn — oo and use the Lebesgue Differentiation Theorem to get

/u0k9R90k - /Uk('ﬂ')eRSDk
= /T/ u (A(Orer) + w0 (0rek)) +/T/uz'usz'j (O (OrpR)) - (3.12)
0 0

For R € N, similarly to (3.6), we have

/0 T [ 108 = 0)0] < CVTulle, 1A = Or)en)s (3.13)
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which converges t0 as R — oco. We also have

lim /OT/ uru;0;((1 — Or)er) = 0. (3.14)

R—o0

The proof is similar to the pressure term , treated next. Tmddhe last term on the right a3.(12), we split
the space integral into cubes and use the decay rate givehDyd obtain that forkR € N we have

! (vV7)" 2
|uju; RijOk (1 — OR)pr)| < Cp— |2 E < Cp— llullz_, (3.15)
/o / gt (1-0r)e &r = (1 + |k|qy/T)" ! (1-0r)p Er

whereC(1_g,,), is given by 8.2). Using that|| f|| 1 < C‘|]f|]1L/22 H\x]"fulL/f holds for f € S(R™), and the
Hausdorff-Young Inequality, it is then easy to show that S(R") impliesC(;_g,), — 0asR — 0. In
(3.15 we also used that

(V7)"
sup <, (3.16)
0<r<1 S, (1 + |k|Q\/7_')n+1

whereq = 1/4/n as earlier. Let us now analyze the left side ®flQ). We first show that

lim [ ug(z,7)(1 — Or(x))ek(x)dz = 0.

R—o00

The above follows from the Dominated Convergence Theorein an

1
/|uk(x,7)<pk(:£)|dacdt < ()@Hun&ﬁ'

We now prove that

Rlim uok(x)(1 — Or(x))pk(z)dx = 0. (3.17)
— 00
This follows by writinguy = vg + 0;v;, for appropriate functions; € BMOr foralli = 0,1,...,n (cf.
[KT, L]). Sincevy € BMOr, we also havévy| € BMOr; hence,
[ sl ey @ide < oyl S [ o0 ()|
pezn JKT/2+[0,7/2]

1
<Cry gz;(l + [k) H’UOHBMOTW < CyrllvollBros -
In the above we used that € S and that the difference between the averaggsgfon two cubes) and
Q' of volumeT', but whose centers are at distafkpapart, is proportional t6l + |k|) ||vo|| Baro,, with an
implicit constant depending ofi. Similarly one can show that the terms withy; have anR-independent
L' bound, and henc&(17) follows from the Dominated Convergence Theorem.
Collecting 8.12-(3.17), we obtain by letting? — oo that

/(Ulc(ﬂfﬁ) —uor(z)) pr(z)dr = /OT/ ug (Apr, + u;0j01) + /OT/ uu; Rij (Orpr) - (3.18)

Using similar bounds as before we note that

/0 / g (Agpx, + u;B08)| + /0 / st Rig (Oon)| < Col/T + [lulle)ulle,

and hence the Dominated Convergence Theorem implies thegtht of (3.18 vanishes as — 0, along se-
quences in the above mentioned intersection of LebesgsieWetagain prove the continuity ¢fuy (-, t)¢x
in the variablet and obtain the desiref’ convergence along any sequence; 0, completing the proof of
the lemma. O
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We recall that the Hopf-Leray projector is given explicily (Pf), = fr + Rx;f;. This allows us to
write (1.4) in terms of the heat kern&k(z, t) = (4mt)~"/2¢~1#1*/4 for all (x,t) € R™ x (0,00). Thus
u € Er is a mild solution of NSE),,, on[0,T) if

// di + Rjr)0;G(x — — s)u;(y, s)u;(y, )dyds+/G x —y, ugk(y)dy
_//ajG(‘T_yat_S)uj(yas)uk(yas)dyds
/J@kG x—y,t—3s)p(y,s dyds+/G x —y, ugk(y)dy (3.19)

fora.e.(z,t) € R" x [0,7T), wherep = R;;(u;u;). In Lemma3.2, using the decay rate ok, (R;;G(x,t))
at infinity (cf. [FIR), we prove that every mild solution ¢fVSE),, on[0,7) is also a weak solution, as
defined above, with the same initial datum.

Note that the functionu(z,t) = ¢, for all (z,¢) € R x [0,7), is a weak solution of N.SE), on [0,7),
but that the unique mild solution witla, (z) = 0 is u(z,t) = 0. Hence, a weak solution ¢fVSE),, on
[0,T") need not be mild.

Lemma 3.2. If u € & is a mild solution of NSE),,, on [0, T'), thenu is also a weak solution ¢fiVSE),,,
on[0,T).

Proof of Lemma.2. Letp = R;j(usuj). Sincesupy,cr vVt |ug(-,t)||r < oo, and sinceR;; mapsL>
to BMO, we havesupy,.rt ||p(,t)||Bmo < oo, and hence € L} (R™ x (0,T)). We now need to
check thap satisfies the condition)(in the definition of a weak solution. For d@ll< 7 < 7o < 7 < T and
P e C° (R" T)), by lettingg = 1/+/n, we have

p(x, t)Optr (2, t) dwdt‘ / /\uZ z, t)uj(x, t)Rij (Okr) (z, t)dzdt]| (3.20)

1
<C 7"/2 T_”/2// lu(x, t)|*drdt sup —_—
> ( 0 Jjo—kayFl<yT o—kgy/r<yr (L [zt

kezn

<Ol W

= wHuH&— kz (1 + |k7|(]\/?)n+1

ezr

As earlier, the last sum in the above inequality is finite foy 8 < 7 < 7', and (.16 holds. Since the
above is satisfied for all < 7 < 7 < 7, the Dominated Convergence Theorem shows that the right ter
of (3.20) converges td asT — 0, and henced.1) holds. It remains to be shown thatandp satisfy @.2).
For this purpose, lep € C§°(R™ x [0,7)). Using thatuy, is given by 8.19, we can calculat®,uy, — Auy
inD'(e,T). Forany0 < e < T'we have

T
/ /(Uk(aﬂ/}k + Atpy + u;051y) + pOiy) = — /uk('7€)¢k(’,€)-

By u;, € &p, and by the previous discussion, the left side of the abouvaten is well-defined for = 0.
Thus it remains to be shown thin. o [ uy (-, €)Yk (- €) = [ uoktr(-,0). We write

‘/uk(.,s)wk(.,e) - /uom(-,o)

g/mmmwm@—muw+Vwm@—mmwmm\

< lu-e)lle. e vk (- €) = (-, 0) |2 + ‘/(uk(‘ve) - uOk(-))%(wO)' : (3.21)
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Sinceyy, € C§°(R™ x [0,T)), the mean value theorem implies that the first term on theidét side of
(3.21) converges td ass — 0. To approximate the second term, use the definition¢%:, ¢) in (3.19), to
obtain

s (2,2) — uon(a) = [ Gl ~ .ok )y ~ won(z)
€
+ J (06G(a v~ )p(w.5) + G — v — shu(y, ey, s) ) dyds.  (3.22)
0
The proof of the lemma is complete if the right side of the aowenverges t6 in D'(R") ase — 0. Since

p = Rij(uu;) andmax{|9;G(y, 5|, |0 RijG(y, 5)|} < C/(ly| + v/3)"*+* (cf. [FIR), we may split the
space integral into cubes and obtain that the second ter&4f) Converges in t® ass — 0. Moreover

‘/ (/ Gz —y,e)uon(y)dy — u%(ﬂﬁ)) Yp(x,0)dw

— 0ase — 0,

since the heat semigroup™ converges to the identity i§’ ase — 0, proving the lemma. O

The following lemma proves the first part of Theor@m.

Lemma 3.3. If u € &r is a weak solution of NSE),, on[0,T), then there exists € £, a mild solution
of (NSE),, on[0,T"), and a functionp = (¢1,...,¢,) € L>((0,7)), withlim;_,o ¢(¢) = 0, such that

u(z,t) = u(z — ®(t),t) + o(t), (z,t) e R" x [0,T)

where®(t) = fg o(s)ds.
Moreover, ifu € Cr thenu € Cr. A weak solution: € Cr of (NSE),, on[0,7") is a mild solution if
and only if the associated pressure satisfies R;;(u;u;).

Proof of Lemma&.3. As in [Ku], we first prove that there exists a functien € L>°((0,7"),R™), with
limy_,0 ¢(¢) = 0, such that

Ayug — Auy + 9;(ujug) + O + ¢ (t) =0 (3.23)

holds inD'(R™ x (0,7")), wherer = R;;(u;u;).

Sincewu is a weak solution of NSE),, on [0,T), there existy € L} (R" x (0,T)) such that the
conditions {) and (i) hold. In particular, taking the divergence &%), and using that botla andw, are
divergence-free, we obtain thé&tp = —09;0(u;u;) = Amin D'(R™ x (0,7T)). Letp, = p — 7 be
the harmonic component of the pressure. Followidg][one can show that fot < k < n, Oypp, IS a
distribution depending only ofy and hence3.23 holds inD’(R™ x (0,7")) with dxp;, instead ofg),. We
therefore define

Pr(t) :/“k($7t)5($)dw - /U(Jk(x)ﬁ(x)dx - /Ot/ ug(x, s)AB(x)dxds
- /Ot/ ur(, 8)u; (7, 5)9; 8 (w)dwds - /Oj/ (@, 5)0kB(x)dads, t >0 (3.24)

where € D(R™) is fixed, with [ 3 = 1. We need to check théitm,; .o ¢x(t) = 0. As is in the proof of
Lemmas3.1, the last three terms on the right hand side3o24{) are bounded as

or(t)] < \ / ui (e, ) (@) d — / wor(2)B(2)dz| + Co(VE + [[ulle,llulle,-

Using the fact thati(-, t) — uo in D'(R™) ast — 0, and the Dominated Convergence Theorem a8.i§),(
we obtain the desired convergencegof
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Defineu(z,t) = u(x — ®(t),t) + ¢(t) andp(x,t) = n(xz — ®(t),t). We claim thatz is a weak solution
with the associated pressuyieThe fact that: € Er follows from
e, < lulle. + C(/T + )6l + Cllullz, sup N(2), (3.25)

whereN (t) < C (1 + \/ZHquLoo)" is the number of balls of radiug? necessary to cover the ball of radius

Vt+t||p(t)| L. Note that ifu € Cr all terms on the right of3.25) vanish as- — 0, proving thati € Cr.
After a short verification, we check thatandp satisfy condition i) of the definition of a weak solution.
Condition () is satisfied byp = R;;(u;u;) due to LemmeB.2. This proves our claim, and by Lemn3al
we can conclude that attains the initial value i&’.

Following the arguments irfJR and [Ku] we now show that: is actually a mild solution, proving the
first claim in the lemma. Led € D(R™) be identicallyl in a neighborhood of. For R > 0 andy € R" let
Or(y) = 0(y/R). Also fixa € C*°(R) suchthad < a <1, &' >0, a(s) = 0fors < 1anda(s) = 1 for
2 < s. For afixed(z,t) € R™ x [0,T) and for anye > 0, define

v =a (%) (“22) erGa - gt - )

forany(y,s) € R" x [0,T"). Sincesupp (a(s/e)a((t —s)/e)) € (e,t —e) anda(s/e)a((t — s)/e) =1
for s € (2¢,t — 2¢), we havey € D(R" x (0,7")). Moreover, lettingkR — oo, we obtainfdr(y) — 1 for
everyy € R"™; usingy as a test function inX 2), we have

é/OT/ﬂk(y,s)a’ (g) o <t ; S) G(z — y,t — s)dyds
_ é /OT/ (Y, 5)a (g) o (t - 8) Gz — y,t — s)dyds
_ /OT/ ur(y, 8)u;(y, s)o G) a (t ; 8) 9;G(x —y,t — s)dyds

- /Oi/ﬁk(y, s)a G) o (t ; S) oGz —y,t — s)dyds = 0. (3.26)

We analyze the behavior of the first term on the left side3dtf). For¢ > 4e this term equals

2e
(1/5)/ /ﬂk(y,s)a’ (s/e) G(x — y,t — s)dyds.

o/ (s/e)ds = 1, we re-write this term as

2
5

Since(1/¢)
1 s

L Tl (2) [ ) O . )~ Gl 1) s

3

1 [ S ~
+- / o (2) / (i (y, s) — uok(y)) Gl — y, t)dyds + / wr(y)Gla —y,0dy.  (3.27)
13
The first term in the above expression can be bounded as

1 2e s _
‘/ o (2) a9l |Gla =t = 5) = Gla— - 1) | ads

3

1 (% ,/s\ - 1
2o (E) ez G et = 5) = G0l

IN

€

Using the mean value theorem we check that_,o(1/+/s)||G(-,t —s) — G(-,t)||z1 = 0. The Dominated
Convergence Theorem implies that right side of the lastinéty converges t0 ase — 0. The second term
in (3.27) vanishes as — 0 since by Lemma&.1%(-, s) — ug in S’(R™), while clearlyG(-,t) € S(R") for
allz > 0.
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Note that ag — 0, we have(1/s)a(s/e)d/ ((t —s)/e) — & anda(s/e)a((t —s)/) = X(0,) IN D'(R).
By lettinge — 0in (3.26), fork = 1,...,n,and a.e(z,t) € R" x [0,7T), we have

t
(1) + / / Ty, )7 (. 8)0;G (& — . t — )dyds
0

t
+ / / By, $)OkGlx — y,t — s)dyds — / wor (9) Gl — y, 1)y = 0.
0+

We showed earlier that = R;;(u;u;); thusw is a mild solution. Mild solutions are unique i (cf. [KT],
[L]); hence a weak solution € Cr is mild if and only if the associated pressuyrsatisfiesp = R;;(u;u;),
proving the lemma. O

Proof of Theoren2.1 Letu € Er be a weak solution of NSE),,, on[0,7"). By Lemma3.3, there exists a
mild solutionu € Er given byu(z,t) = u(z + ®(t),t) — ¢(t), for a suitablep € L>((0,7)). Conversely,
if w € & is a mild solution of( NSE),, on [0,7T), then by Lemm&B.2, this is a weak solution, and the
functionu(x,t) = u(x — ®(t),t) + ¢(t) € Er is also a weak solution afVSE),, on[0,T"), proving the
first statement of the theorem.

Let u() andu® € Cr be two weak solutions of NSFE),, on [0,7). By Lemma3.3 there exist mild
solutionsz¥) € Cr of (NSE),, on[0,T), and functionsp( € L>((0,T))) with lim;_,o ¢) = 0, such
thatu® (z,t) = 0 (z — &0 (1), 1) + ¢ (¢t), fori = 1,2.

We claim thatu) = % a.e. inR™ x [0, 7). This is known (cf. ADT]), but we sketch the proof to
emphasize the necessity@f) € Cr (or that||u(||¢,. is sufficiently small) fori = 1,2. DenoteB (u,v) =
[y e®=APY - (u @ v)ds. ThenaW (-, t) — a?(-,t) = B@W,a® — a®) + B — a®,u?). For
7€ (0,7), by [KT] we have that| B(u,v)||e, < Collulle,||v|e,, and hence

Ja® — @@ e, < Co (@D e, + @ |le, ) [0 - @, (3.28)

Sincelim, o [[a® ||e, = 0, fori = 1,2, we can fixr such thatCy (|[a™M |, + |[a®|e,) < 1/2. Then
(3.28 shows thati(") andu(® agree or0, 7). Fort > 7 we haveu” (-, t) € L> fori = 1,2, and hence
aM (1) =@ (., t)on[r,T) (cf. [FIR).

Thus lettingp(t) = ¢™M(t) — ¢ (t), we obtain thatiV) (z,t) = u® (z — ®(t),t) + $(t), concluding
the proof of the Theorem. O

Proof of Theoren2.2. By Theorem?.1, in order to show that a weak solutianc &7 of (NSE),,, on[0,T")
iS unique, it suffices to prove that the functigfr) constructed in Lemma.3is identically0 on [0, T").

We write 7 = R;j(u;u;) andp, = p — w. It was shown earlier thaf\p;, = 0 in D'(R") and that
7(-,t) € BMO for a.e.t > 0. We denoter + @); the unit cube centered atin R”. It then follows that for

a.e.t > 0and|z| > 1,
[l [ it
+Q1 1

This shows that|7(-,t)[| 1 (z+@,) = o(|z|), as|z| — oo, for a.e.t € (0,7). Moreover,p = o(|z|), as
|z| — oo implies||p(-,?)|| 21 (z4@,) = o(|z]), as|z| — oo, and hence for a.¢.€ (0,7") we have

< Ctlog |z|.

”ph('at)”Ll(x-l-Qﬂ = ”p('7t) - 77('7t)HL1(x+Q1) - 0("%’)7 as ‘x’ — 0. (329)
The proof of Theoren2.1implies thatdy.p, = #}.(t) in D'(R™ x (0,T)), which implies
pr = (1) + f, (3.30)

where f € D'(R" x (0,7)) is a distribution of time. Based on the fact that = p — R;;(uu;) €
L} (R™ x (0,T)) we obtaing),(t), f € L}, (R" x (0,7)) for k = 1,2,...,n. From @.29 and @.30) it

follows that¢, (t) = 0 for a.e.t € (0,T), and sincdim,_, ¢5(t) = 0, we obtaing,(t) = 0 fort € (0,T),
concluding the proof of the theorem. O
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