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ABSTRACT. We address the question of well-posedness in spaces of analytic functions for the Cauchy problem
for the hydrostatic incompressible Euler equations (inviscid primitive equations) on domains with boundary. By
a suitable extension of the Cauchy-Kowalewski theorem we construct a locally in time, unique, real-analytic
solution and give an explicit rate of decay of the radius of real-analyticity.
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1. INTRODUCTION

The literature on incompressible homogeneous geophysicalflows in the hydrostatic limit is vast, and
several models have been proposed both in the viscous and theinviscid case (cf. J.-L. Lions, Temam, and
Wang [13, 14, 15], P.-L. Lions [11], Pedloski [19], Temam and Ziane [27], and references therein). In the
present paper we consider the inviscid hydrostatic model which is classical in geophysical fluid mechanics;
see [19] and [11, Section 4.6], where the author raises the question of existence and uniqueness of solutions.
These equations are formally derived from the three-dimensional incompressible Euler equations for a fluid
between two horizontal plates, in the limit of vanishing distance between the plates [4, 5, 11]. The problem
is to find a velocity fieldu = (v1, v2, w) = (v, w), a scalar pressureP , and a scalar densityρ solving

∂tv + (v · ∇)v + w ∂zv +∇P + fv⊥ = 0, (1.1)

div v + ∂zw = 0, (1.2)

∂zP = −ρg, (1.3)

∂tρ+ (v · ∇)ρ+ w ∂zρ = 0, (1.4)

in D × (0, T ), for someT > 0. Here

D = M× (0, h) = {(x1, x2, z) = (x, z) ∈ R
3 : x ∈ M, 0 < z < h}

is a3-dimensional cylinder of heighth, whereM ⊂ R
2 is a smooth domain with real-analytic boundary.

We denote bydiv,∇, and∆ the corresponding2-dimensional operators acting onx = (x1, x2), while
∂z = ∂/∂z. Also, we letv⊥ = (v2,−v1) be the first two components ofu × e3, f is the strength of the
rotation, andg is the gravitational constant. It follows from (1.9) that the pressureP may be written in terms
of the densityρ and the horizontal pressurep(x, t) = P (x, 0, t)

P (x, z, t) = p(x, t)− gψ(x, z, t), (1.5)

where we have denoted

ψ(x, z, t) =

ˆ z

0
ρ(x, ζ, t) dζ, (1.6)
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for all (x, z) ∈ D andt ≥ 0. The hydrostatic Euler equations (1.1)–(1.4) may then be rewritten as

∂tv + (v · ∇)v + w ∂zv +∇p+ fv⊥ = g∇ψ, (1.7)

div v + ∂zw = 0, (1.8)

∂zp = 0, (1.9)

∂tρ+ (v · ∇)ρ+ w ∂zρ = 0, (1.10)

whereψ is obtained fromρ via (1.6). The boundary conditions for the top and bottomΓz = M × {0, h}
and the sideΓx = ∂M× (0, h) of the cylinderD are

w(x, z, t) = 0, onΓz × (0, T ), (1.11)
ˆ h

0
v(x, z, t) dz · n = 0, onΓx × (0, T ), (1.12)

wheren is the outward unit normal toM. Note that there is no evolution equation forw. Instead, the
incompressibility condition and (1.11) imply that

w(x, z, t) = −

ˆ z

0
div v(x, ζ, t) dζ, (1.13)

for all 0 < z < h, and0 < t < T , which combined again with (1.11) shows that the vertical average of
div v is zero, i.e.,

ˆ h

0
div v(x, z, t) dz = 0, (1.14)

for all x ∈ M and0 < t < T . We consider a real-analytic initial datum

v(x, z, 0) = v0(x, z), (1.15)

ρ(x, z, 0) = ρ0(x, z) (1.16)

in D, which satisfies the compatibility conditions arising from(1.12) and (1.14), namely
ˆ h

0
v0(x, z) dz · n = 0, (1.17)

for all x ∈ ∂M, and
ˆ h

0
div v0(x, z) dz = 0, (1.18)

for all x ∈ M.
The existence and uniqueness of solutions to the hydrostatic Euler equations is an outstanding open prob-

lem (cf. P.-L. Lions [11]). The methods and results for hyperbolic systems cannot beapplied to (1.7)–(1.12)
in order to find a well-posed set of boundary conditions (cf. Oliger and Sündstrom [23]). The instability
results of Grenier [6, 5] and Brenier [4] suggest that the problem may be ill-posed in Sobolev spaces, in
analogy to the Prandtl equations. Recently, Renardy [20] proved that the linearization of the hydrostatic
Euler equations at specific parallel shear flows is ill-posedin the sense of Hadamard. The only local exis-
tence result available for the nonlinear problem was obtained in two-dimensions by Brenier [3] under the
assumptions of convexity ofv in thez-variable, constant normal derivative ofv onΓz, and of periodicity of
(v, w, p) in thex-variable.

The study of this system in spaces of analytic functions is the point of convergence of a number of
essential difficulties which we need to recall before we can properly describe the results in detail. For a given
system of partial differential equations, there is the issue of well-posedness in the sense of Hadamard [7]:
The objective here is to show that the system of partial differential equations supplemented with suitable
boundary (and possibly initial) conditions, possesses a unique solution in certain spaces, and that the solution
depends continuously on the data.
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When we are interested in spaces of analytic functions (in the space variables), two different issues can
be considered. The first one is when a well-posedness result has been proven in a suitable function space
(e.g. a Sobolev space) for a suitable initial-boundary value problem, and we wish to show that the solution
is analytic in space within the domainD, or possibly up to the boundary ofD (in which case the solution
extends beyondD). Pertaining to this type of approach are the results of Bardos and Benachour [2] for
the Euler equations (see also [9, 10, 16]), or Masuda [18] for the incompressible (viscous) Navier-Stokes
equations. The second issue would be to look for a Cauchy-Kowalewski-type of result. In such a case a
system of partial differential equations and a number of data are given, analytic, on a manifoldV. The
equations may permit to compute all the derivatives of the unknown functions, and hence the uniqueness of
an analytic solution in the neighborhood ofV follows. For the existence, the problem is to derive enough
a priori estimates showing that the Taylor series is convergent in a neighborhood ofV. Note that for some
equations no additional boundary condition, except the data given ofV, are necessary. For example one can
solve in this way the wave equationutt − uxx = 0, 0 < x < 1, for a short interval of time, without any
boundary condition foru at x = 0, 1. Much more elaborate Cauchy-Kowalewski-type results include the
results of Sammartino and Cafflish (cf. [24], see also [17] and references therein) for the dissipative Prandtl
boundary layer equations. In [24, 17], using the abstract Cauchy-Kowalewski theorem (cf. Asano[1]), the
authors prove the existence of a real-analytic solution. Wenote that due to the non-locality created by the
pressure it is challenging to verify that the assumptions ofthe abstract Cauchy-Kowalewski theorem hold
for the system (1.1)–(1.4).

In the case of the hydrostatic Euler equations (1.1)–(1.4) an additional fundamental set of difficulties
arises when we raise the question of well-posedness. Indeed, according to an old result of Oliger and
Sündstrom [23], revisited in Temam and Tribbia [26], the boundary value problem for these equations, as
well as for a number of other equations from geophysical fluidmechanics, cannot be well-posed inD×[0, T ]
for any set of local boundary conditions. The approach in [23] and [26] is the following: D = M× (0, h)
with M of the form(0, L1)×(0, L2). An expansion of this system is made in a suitable set of cosine and sine
functions in the vertical (z) direction. The boundary conditions which are needed for each moden depends
onn and they are thus of a nonlocal type. In that direction, a linearized system related to (1.1)–(1.4) has been
studied by Rousseau, Temam, and Tribbia [21, 22], and a result of well-posedness for this system has been
achieved using the linear semigroup theory. Note that in [21, 22] the boundary ofM = (0, L1)× (0, L2) is
not analytic.

For the hydrostatic Euler equations (1.1)–(1.4) initial conditions need to be specified for the variables
v = (v1, v2) andρ, which are calledprognosticvariables in the language of geophysical fluid mechanics,
but P andw arediagnosticvariables, giving rise to another set of difficulties. At each instant of time,P
andw can be expressed as functions (nonlocal functionals) ofv andρ. Furthermore, as it appears below,
P is determined by the solution of an elliptic Neumann problem(cf. (7.24)–(7.25)) which introduces some
form of ellipticity in the system (1.1)–(1.4), which is otherwise essentially hyperbolic. The requirements
for solvability for this Neumann problem, lead us to introduce a novel side-boundary condition (cf. (1.12)).
Sincez-independent solutions to the 3D hydrostatic Euler equations (1.1)–(1.4) are solutions to the 2D
incompressible Euler equations, the natural boundary condition (1.12) is necessary.

After all the preliminaries, we can describe our result as a nonlocal Cauchy-Kowalewski-type of result
for the hydrostatic Euler equations (1.1)–(1.4). In the present paper we prove the existence and uniqueness
of solutions to the Cauchy problem (1.7)–(1.12) in the two-dimensional case (that is withM and(u, ρ, p)
independent ofx2), and the three-dimensional cases whereM is a half-plane or a periodic box. These results
were announced in the note [8]. The three dimensional case whenM is a generic bounded domain with
analytic boundary will be treated in a forthcoming paper. Note that this is not a boundary value problem.
Indeed we do not require an infinite set of boundary conditions on∂D, as seems to be required by the
results of [21, 22, 23, 26]. However, the Neumann problem needed for the determination of P destroys the
hyperbolic nature of the equations (and thus also the finite speed of propagation), and for the uniqueness
of solutions we cannot argue by unique continuation, but we rather employ methods which pertain to the
evolution problem. Furthermore, we obtain an explicit rateof decay in time of the radius of analyticity of
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the solution. To the best of our knowledge this is the first local well-posedness result for the hydrostatic
Euler equations in three dimensions, and in the absence of convexity, even in two dimensions.

Organization of the paper is as follows. Section2 contains the functional setting and the statements of
the main theorems. In Section3 we give thea priori estimates for the two-dimensional case. In Section4
we prove the derivation of the estimates for the velocity. The construction of solutions is given in Section5,
and the uniqueness is proven in Section6. Section7 contains the proof for the three-dimensional periodic
domain and for the half-space.

2. MAIN THEOREMS

In the following, α = (α1, α2, αz) ∈ N
3 and β = (β1, β2, βz) ∈ N

3 denote multi-indices, where
N = {0, 1, 2, . . .} is the set of all non-negative integers. The notation∂α = ∂α

′

x ∂
αz
z = ∂α1

x1
∂α2
x2
∂αz
z , where

α′ = (α1, α2) will be used throughout. We denote the homogeneous Sobolev semi-norms| · |m, form ∈ N,
by

|v|m =
∑

|α|=m

‖∂αv‖L2(D), (2.1)

where‖∂αv‖2L2 = ‖∂αv1‖
2
L2 + ‖∂αv2‖

2
L2 .

Remark 2.1. In the two-dimensional case, whenM = (0, 1)×R is independent ofx2, theL2 norms in the
definition of | · |m are considered only with respect tox1 andz, that is

‖∂αvi‖
2
L2(D) =

ˆ 1

0

ˆ h

0
|∂αvi(x, z)|

2 dz dx1,

for i ∈ {1, 2}.

We recall that a functionv(x, z) is real-analytic inx andz, with radius of analyticityτ if there exists
M > 0 such that

|∂αv(x, z)| ≤M
|α|!

τ |α|
,

for all (x, z) ∈ D andα ∈ N
3, where|α| = α1 +α2 +αz. Forr ≥ 0 andτ > 0 fixed, we define the spaces

of real-analytic functions

Xτ =

{

v ∈ C∞(D) :

ˆ h

0
v|Γx

dz · n = 0,

ˆ h

0
div v dz = 0, ‖v‖Xτ

<∞

}

, (2.2)

where

‖v‖Xτ
=

∞
∑

m=0

|v|m
(m+ 1)rτm

m!
. (2.3)

Similarly, denote

Yτ = {v ∈ Xτ , ‖v‖Yτ
<∞} , (2.4)

where the semi-norm‖ · ‖Yτ
is given by

‖v‖Yτ
=

∞
∑

m=1

|v|m
(m+ 1)rτm−1

(m− 1)!
. (2.5)

We writeρ ∈ Xτ if ρ ∈ C∞(D) and‖ρ‖Xτ
< ∞, andρ ∈ Yτ if ρ ∈ Xτ and‖ρ‖Yτ

< ∞. For ease of
notation, let

‖(v, ρ)‖Xτ
= ‖v‖Xτ

+ ‖ρ‖Xτ
,
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and similarly

‖(v, ρ)‖Yτ
= ‖v‖Yτ

+ ‖ρ‖Yτ
.

Using the Sobolev embedding theorem it is clear from (2.3) that ifv ∈ Xτ thenv is real-analytic with radius
of analyticity τ . Conversely, ifv is real-analytic with radius of analyticityτ (and satisfies the boundary
conditions), thenv ∈ Xτ ′ for any τ ′ < τ andr ≥ 0, since

∑

m≥0m
r+2(τ ′/τ)m < ∞. Moreover, we

have the estimate‖v‖Xτ
≤ ‖v‖L2(D) + τ‖v‖Yτ

, and for anyε > 0 we haveXτ+ε ⊂ Yτ since‖v‖Yτ
≤

(eτ ln(1 + ε/τ))−1‖v‖Xτ+ε
.

The following theorem is our main result for dimension two.

Theorem 2.2. Let the functionsu, p, ρ be independent ofx2, and letr ≥ 2. Assume thatv0 and ρ0 are
real-analytic with radius of analyticity strictly larger thanτ0, and suppose thatv0 satisfies the compatibility
conditions(1.17)–(1.18). Then there existsT∗ = T∗(r, g, τ0, ‖(v0, ρ0)‖Xτ0

) > 0, and a unique real-analytic
solution(v(t), ρ(t)) of the initial value problem associated with(1.7)–(1.12) with radius of analyticityτ(t),
such that

‖(v(t), ρ(t))‖Xτ(t)
+ Cg

ˆ t

0
eg(t−s) ‖(v(s), ρ(s))‖Yτ(s)

ds

+ C‖(v0, ρ0)‖Xτ0
egt

ˆ t

0

(

1 + τ−2(s)
)

‖(v(s), ρ(s))‖Yτ(s)
ds ≤ ‖(v0, ρ0)‖Xτ0

egt, (2.6)

for all t ∈ [0, T∗), whereC = C(D) is a fixed positive constant. Moreover, the radius of analyticity of the
solution,τ : [0, T∗) 7→ R+, may be computed explicitly from(3.26) below.

In the three-dimensional case, the boundary condition (1.12) allows us to find the pressure implicitly as the
solution of an elliptic Neumann problem (cf. (7.24)–(7.25)). The classical higher-regularity estimates (cf. J.-
L. Lions and Magenes [12], Temam [25]) may not be used to prove that the pressure has the same radius of
analyticity as the velocity, preventing the estimates fromclosing. To overcome this obstacle we introduce
a new analytic norm which combinatorially encodes the transfer of normal to tangential derivatives in the
pressure estimate. The following theorem treats the case whenM is a half-plane, or the periodic domain.
The case whenM is a generic real-analytic bounded domain inR2, and (1.12) holds on∂M, requires new
ideas and will be treated in a forthcoming paper.

Theorem 2.3. Letr ≥ 5/2, and letM be either the upper half-plane{x1 > 0} or the periodic box[0, 2π]2.
Assume thatv0 andρ0 are real-analytic with radius of analyticity strictly larger thanτ0, and suppose thatv0

satisfies the compatibility conditions(1.17)–(1.18). Then there existsT∗ = T∗(r, f, g, τ0, ‖(v0, ρ0)‖Xτ0
) >

0, and a unique real-analytic solution(v(t), ρ(t)) of the initial value problem associated with(1.7)–(1.12)
with radius of analyticityτ(t), such that

‖(v(t), ρ(t))‖Xτ(t)
+ Cg

ˆ t

0
eC1(t−s) ‖(v(s), ρ(s))‖Yτ(s)

ds

+ C‖(v0, ρ0)‖Xτ0
eC1t

ˆ t

0

(

1 + τ−5/2(s)
)

‖(v(s), ρ(s))‖Yτ(s)
ds ≤ ‖(v0, ρ0)‖Xτ0

eC1t, (2.7)

for all t ∈ [0, T∗), whereC = C(D) andC1 = C1(f, g) are fixed positive constants. Moreover, the radius
of analyticity of the solution,τ : [0, T∗) 7→ R+ may be computed explicitly from(7.13) or (7.46) below, for
the periodic box or the half-plane respectively.

The different powers ofτ in (2.6) and (2.7) are due to the different exponents in the two-dimensional and
three-dimensional Agmon’s inequalities.

Remark 2.4. We note that the solutionsv(t) constructed in Theorem2.2 and Theorem2.3 do not depend
on the functionτ(t). Moreover, ifv(1)(t) andv(2)(t) are two such real-analytic solutions, with radii of
analyticity τ (1)(t) and τ (2)(t) respectively, thenv(1)(t) = v

(2)(t) for all t on the common interval of
existence.



6 IGOR KUKAVICA, ROGER TEMAM, VLAD C. VICOL, AND MOHAMMED ZIA NE

3. THE TWO-DIMENSIONAL CASE

In this section we give the formala priori estimates needed to prove Theorem2.2. These estimates will
be made rigorous in Sections5 and 6. Let r ≥ 2 be fixed throughout the rest of the section. Assume
that (v, w), p, andρ are smooth solutions of (1.7)–(1.12), with v0, ρ0 ∈ Xτ0 , for someτ0 > 0, which are
independent ofx2. The horizontal domainM needs to bex2 independent,translation invariant inx2, and
hence without loss of generality we may considerM = (0, 1) × R. Since all derivatives with respect to
x2 vanish we denote∂x = ∂x1 , and similarly∆ = ∂x1 x1. It is convenient to write the system of equations
(1.7)–(1.12) in component form

∂tv1 + v1∂xv1 + w∂zv1 + ∂xp+ fv2 = g∂xψ, (3.1)

∂tv2 + v1∂xv2 + w∂zv2 − fv1 = 0, (3.2)

∂xv1 + ∂zw = 0, (3.3)

∂zp = 0, (3.4)

∂tρ+ v1∂xρ+ w∂zρ = 0, (3.5)

whereψ(x, z) =
´ z
0 ρ(x, ζ) dζ. The boundary conditions forw andv1 are

w = 0, onΓz, (3.6)
ˆ h

0
v1 dz = 0, onΓx, (3.7)

whereΓx = {0, 1}×R. We note that there is no boundary condition forv2. Integrating the incompressibility
condition (3.3) in z, and using (3.6) we get∂x

´ h
0 v1 dz = 0. Combined with (3.7) this implies that for all

x ∈ M we have
ˆ h

0
v1 dz = 0. (3.8)

In the two-dimensional case, the boundary conditions (3.6) and (3.8) give the pressure explicitly as a function
of v andρ, and imply the cancelation property (3.10) below, which turns out to be convenient in thea priori
estimates below.

Lemma 3.1. Let (v, w, p, ρ) be a smooth solution of(3.1)–(3.8). Then, after subtracting fromp a function
of time, the pressure is given at each instant of timet by

p(x) = −

 h

0
v21(x, z) dz−f

ˆ x1

0

 h

0
v2(x

′
1, x2, z) dz dx

′
1 + g

 h

0
ψ(x, z) dz, (3.9)

whereψ is obtained fromρ via (1.6). In (3.9) we have suppressed the dependence int for convenience. Also,
we have the cancelation property

〈∂x∂
αp, ∂αv1〉 = 0, (3.10)

for any multi-indexα ∈ N
3.

In (3.9) and in the following we use the notation
ffl h
0 φ(x, z)dz = (1/h)

´ h
0 φ(x, z)dz, for any func-

tion φ. In the two dimensional case we do not integrate inx2, so that in (3.10) we denoted〈φ1, φ2〉 =
´ 1
0

´ h
0 φ1(x, z)φ2(x, z) dz dx1, for any pair of smooth real functionsφ1 andφ2.

Proof of Lemma3.1. Integrating (3.1) in z and using the boundary condition (3.8), we obtain

∂x

(
ˆ h

0
v21(x, z) dz + hp(x)− g

ˆ h

0
ψ(x, z) dz

)

= −f

ˆ h

0
v2(x, z) dz. (3.11)
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Here we used
ˆ h

0
w∂zv1 dz = −

ˆ h

0
v1∂zw dz =

ˆ h

0
v1∂xv1 dz, (3.12)

which holds byw|Γz
= 0, and the incompressibility condition (3.3). The identity (3.9) then follows from

(3.11) by integrating inx1 andsubtracting a function of time.
In order to prove (3.10), note that ifαz 6= 0 or α2 6= 0, then∂αp = 0. On the other hand, ifα2 = αz = 0

andα1 ≥ 1, then by (3.3) we have∂αv1 = ∂α1
x v1 = −∂α1−1

x ∂zw. Moreover, the boundary condition (3.6)
for w implies∂α1−1

x w = 0 onΓz; therefore integrating by parts inz gives

〈∂x∂
αp, ∂αv1〉 = −〈∂x∂

αp, ∂α1−1
x ∂zw〉 = 〈∂z∂

α1+1
x p, ∂α1−1

x w〉 = 0.

Lastly, we need to prove (3.10) in the caseα = (0, 0, 0). Integrating by parts inx1 and using (3.3) we have
〈∂xp, v1〉 = 〈p, ∂zw〉 since onΓx = {0, 1} × R by (3.7) we have

ˆ h

0
p|Γx

v1|Γx
dz = p|Γx

ˆ h

0
v1|Γx

dz = 0. (3.13)

Integrating by parts inz we obtain〈p, ∂zw〉 = 0 sincew|Γz
= 0. Therefore, (3.10) is proven. �

We now turn toa priori estimates needed to prove Theorem2.2. From (2.1), (2.3), and (2.5) it follows
that

d

dt
‖v(t)‖Xτ(t)

= τ̇(t)‖v(t)‖Yτ(t)
+

∞
∑

m=0

∑

|α|=m

d

dt
‖∂αv(t)‖L2

(m+ 1)rτ(t)m

m!
. (3.14)

Given a multi-indexα ∈ N
3, we estimate(d/dt)‖∂αv(t)‖L2 by applying∂α to (3.1)–(3.2) and taking the

L2(D)-inner product〈·, ·〉 with ∂αv. Recall that in〈·, ·〉 we integrate only with respect tox1 andz. Since
〈∂αv⊥, ∂αv〉 = 0, we obtain

1

2

d

dt
‖∂αv(t)‖2L2 + 〈∂α(v · ∇v + w ∂zv), ∂

α
v〉+ 〈∂α∇p, ∂αv〉 = g〈∂α∇ψ, ∂αv〉. (3.15)

To treat the second term on the left of (3.15), we use the Leibniz rule to write

〈∂α(v · ∇v + w ∂zv), ∂
α
v〉 =

∑

0≤β≤α

(

α

β

)

〈∂βv · ∇∂α−β
v, ∂αv〉+

∑

0≤β≤α

(

α

β

)

〈∂βw ∂z∂
α−β

v, ∂αv〉.

The third term on the left of (3.15) vanishes by Lemma3.1, and therefore by (3.15) and the Schwarz in-
equality we have

d

dt
‖∂αv‖L2 ≤

∑

0≤β≤α

(

α

β

)

‖∂βv · ∇∂α−β
v‖L2 +

∑

0≤β≤α

(

α

β

)

‖∂βw ∂z∂
α−β

v‖L2 + g‖∇∂αψ‖L2 . (3.16)

Substituting estimate (3.16) above into (3.14), and using the independence on thex2 variable, we have the
a priori estimate

d

dt
‖v‖Xτ

≤ τ̇‖v‖Yτ
+ U(v1, v1) + U(v1, v2) + V(w, v1) + V(w, v2) + g‖∂xψ‖Xτ

, (3.17)

where fori ∈ {1, 2}, a vector functionv ∈ Xτ , and a scalar functioñv ∈ C∞(D), we denoted

U(vi, ṽ) =

∞
∑

m=0

m
∑

j=0

∑

|α|=m

∑

|β|=j,β≤α

(

α

β

)

‖∂βvi ∂xi
∂α−β ṽ‖L2

(m+ 1)rτm

m!
, (3.18)

and

V(w, ṽ) =
∞
∑

m=0

m
∑

j=0

∑

|α|=m

∑

|β|=j,β≤α

(

α

β

)

‖∂βw ∂z∂
α−β ṽ‖L2

(m+ 1)rτm

m!
. (3.19)
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In (3.19) we denoted as usualw(x, z) = −
´ z
0 div v(x, ζ) dζ. The following lemma summarizes the esti-

mates onU(v1, vi) andV(w, vi), for i ∈ {1, 2}. It is a corollary of Lemma4.1, which is proven in Section4.

Lemma 3.2. Letv ∈ Yτ , for someτ > 0 andr ≥ 2, and letw be given by(1.13). Then we have

U(v1, v1) + U(v1, v2) ≤ C0(1 + τ−1)‖v‖Xτ
‖v‖Yτ

, (3.20)

and

V(w, v1) + V(w, v2) ≤ C0(1 + τ−2)‖v‖Xτ
‖v‖Yτ

, (3.21)

for some sufficiently large positive constantC0 = C(D).

To bound the last term on the right of (3.17) we note that

|∂xψ|m =
∑

|α|=m

‖∂α∂xψ‖L2 =
∑

|α|=m,αz=0

∥

∥

∥

∥

ˆ z

0
∂α∂xρ(x, ζ) dζ

∥

∥

∥

∥

L2

+
∑

|α|=m,αz≥1

‖∂α1+1
x ∂αz−1

z ρ(x, z)‖L2

≤ C(h)|ρ|m+1 + |ρ|m,

so that by possibly enlarging the constantC0 from (3.20) and (3.21), we have

g‖∂xψ‖Xτ
≤ C0g‖ρ‖Yτ

+ g‖ρ‖Xτ
. (3.22)

We fix C0 = C0(D) as in (3.20)–(3.22) throughout the rest of this section. By (3.17), (3.20), (3.21), and
(3.22) we have

d

dt
‖v(t)‖Xτ(t)

≤
(

τ̇(t) + 3C0(1 + τ(t)−2)‖v(t)‖Xτ(t)

)

‖v(t)‖Yτ(t)
+ C0g‖ρ(t)‖Yτ(t)

+ g‖ρ(t)‖Xτ(t)
.

(3.23)

Similarly, by Lemma4.1we obtain from (3.5) an estimate for the growth of‖ρ(t)‖Xτ(t)
, namely

d

dt
‖ρ(t)‖Xτ(t)

≤ τ̇(t)‖ρ(t)‖Yτ(t)
+ U(v1(t), ρ(t)) + V(w(t), ρ(t))

≤ τ̇(t)‖ρ‖Yτ(t)
+ C0(1 + τ(t)−2)‖v(t)‖Xτ(t)

‖ρ(t)‖Yτ(t)
+ 2C0(1 + τ(t)−2)‖v(t)‖Yτ(t)

‖ρ(t)‖Xτ(t).
(3.24)

By summing the estimates (3.23) and (3.24) we obtain

d

dt
‖(v, ρ)‖Xτ

≤
(

τ̇ + C0g + 3C0(1 + τ−2)‖(v, ρ)‖Xτ

)

‖(v, ρ)‖Yτ
+ g‖(v, ρ)‖Xτ

. (3.25)

Define the decreasing functionτ(t) by

τ̇ + 20C0g + 20C0(1 + τ−2)‖(v0, ρ0)‖Xτ0
egt = 0, (3.26)

andτ(0) = τ0; this uniquely determinesτ in terms of the initial data. LetT∗ be the maximal time such
that τ(t) ≥ 0. It is clear thatτ(t) andT∗ may be computed from (3.26) in terms of the initial data. By
construction, we have att = 0

τ̇(t) + C0g + 3C0(1 + τ(t)−2)‖(v(t), ρ(t))‖Xτ(t)
< 0, (3.27)

and by (3.25) we then have for a short time

‖(v(t), ρ(t))‖Xτ(t)
≤ ‖(v0, ρ0)‖Xτ0

egt. (3.28)

It follows that (3.27), and hence (3.28), holds for allt < T∗. Moreover, by (3.25), we obtain that the solution
is a priori bounded inL∞(0, T∗;Xτ ) ∩ L

1(0, T∗; (1 + τ−2)Yτ ) in the sense

‖(v(t), ρ(t))‖Xτ(t)
+ 10C0g

ˆ t

0
eg(t−s)‖(v(s), ρ(s))‖Yτ(s)

ds

+ 10C0‖(v0, ρ0)‖Xτ0
egt

ˆ t

0

(

1 + τ(s)−2
)

‖(v(s), ρ(s))‖Yτ(s)
ds ≤ ‖v0‖Xτ0

egt, (3.29)
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for all t < T∗. The formal construction of the analytic solution(v, ρ) satisfying (3.29), with τ given by
(3.26) is given in Section5, which combined with the uniqueness result given in Section6 completes the
proof of Theorem2.2.

4. THE VELOCITY ESTIMATE

The goal of this section is to prove the next lemma. For convenience of notation, we suppress the time
dependence ofv, w, ṽ, andτ . By the two-dimensional cased = 2 we mean that all functions and the domain
are independent of the variablex2. In that case we recall that by‖φ‖2L2(D) we mean

´ 1
0

´ h
0 |φ(x, z)|2 dz dx1,

for any smooth functionφ independent ofx2.

Lemma 4.1. Let v ∈ Yτ for someτ > 0, and ṽ ∈ C∞(D) ∩ L2(D) with ‖ṽ‖Yτ
< ∞. Fix r ≥ d/2 + 1

andd ∈ {2, 3}. Letw be determined fromv via (1.13) i.e.,w(x, z) = −
´ z
0 div v(x, ζ) dζ. If U(vi, ṽ), for

i ∈ {1, 2}, andV(w, ṽ) are as in(3.18) and (3.19) respectively, then we have the estimates

U(vi, ṽ) ≤ C0(1 + τ−θ(d))‖v‖Xτ
‖ṽ‖Yτ

, (4.1)

and

V(w, ṽ) ≤ C0(1 + τ−1−θ(d))‖v‖Xτ
‖ṽ‖Yτ

+ C0(τ
−1 + τ−1−θ(d))‖v‖Yτ

‖ṽ‖Xτ
, (4.2)

for some positive constantC0 = C(r,D), whereθ(d) = 1 if d = 2, andθ(d) = 3/2 if d = 3.

By setting ṽ = v1, and thenṽ = v2, Lemma3.2 is a corollary of Lemma4.1 for the cased = 2.
For the rest of this section we fixd = 2. In the three-dimensional case the proof is identical except for
two modifications.The integration is done also inx2, and hence the exponents in Agmon’s inequality are
different. We omit further details. Here,‖ · ‖Lp = ‖ · ‖Lp(D), for all 1 ≤ p ≤ ∞.

Proof of Lemma4.1. In order to prove the lemma, we need to estimate the terms‖∂βvi ∂xi
∂α−β ṽ‖L2 and

‖∂βw ∂z∂
α−β ṽ‖L2 , for all α, β ∈ N

3. For this purpose it is convenient to distinguish between two cases:
0 ≤ |β| ≤ |α− β| and|α− β| < |β| ≤ |α|. When0 ≤ |β| ≤ |α− β|, by the Hölder inequality, and by the
two-dimensional Agmon inequality we have

‖∂βvi ∂xi
∂α−β ṽ‖L2 ≤ C‖∂βvi‖L∞‖∂xi

∂α−β ṽ‖L2

≤ C‖∂βvi‖
1/2
L2 ‖(∆ + ∂zz)∂

βvi‖
1/2
L2 ‖∂xi

∂α−β ṽ‖L2 + C‖∂βvi‖L2‖∂xi
∂α−β ṽ‖L2 , (4.3)

for some constantC = C(D) > 0. Recall that∆ is the horizontal Laplacian∂x1 x1 whend = 2, and
∂x1 x1 + ∂x2 x2 whend = 3. Similarly, we estimate

‖∂βw∂z∂
α−β ṽ‖L2 ≤ C‖∂βw‖L∞‖∂z∂

α−β ṽ‖L2

≤ C‖∂βw‖
1/2
L2 ‖(∆ + ∂zz)∂

βw‖
1/2
L2 ‖∂z∂

α−β ṽ‖L2 + C‖∂βw‖L2‖∂z∂
α−β ṽ‖L2 . (4.4)

As in the above estimates, for multi-indices such that|α− β| < |β| ≤ |α|, we have

‖∂βvi ∂xi
∂α−β ṽ‖L2 ≤ C‖∂βvi‖L2‖∂xi

∂α−β ṽ‖L∞

≤ C‖∂βvi‖L2‖∂xi
∂α−β ṽ‖

1/2
L2 ‖∂xi

(∆ + ∂zz)∂
α−β ṽ‖

1/2
L2 + C‖∂βvi‖L2‖∂xi

∂α−β ṽ‖L2 , (4.5)

and

‖∂βw ∂z∂
α−β ṽ‖L2 ≤ C‖∂βw‖L2‖∂z∂

α−β ṽ‖L∞

≤ C‖∂βw‖L2‖∂z∂
α−β ṽ‖

1/2
L2 ‖∂z(∆ + ∂zz)∂

α−β ṽ‖
1/2
L2 + C‖∂βw‖L2‖∂z∂

α−β ṽ‖L2 . (4.6)
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Throughout this section we use the inequality
(

α
β

)

≤
(|α|
|β|

)

, which holds for allα, β ∈ N
3 with β ≤ α.

Moreover, since|α− β| = |α| − |β| for β ≤ α, the identity

∑

|α|=m

∑

|β|=j,β≤α

aβbα−β =





∑

|β|=j

aβ









∑

|γ|=m−j

bγ



 , (4.7)

holds for all sequences{aβ} and{bγ}, and forj ≤ m; this identity is useful when estimatingU = U(vi, ṽ)
andV = V(w, ṽ).

With (4.3) and (4.5) in mind, we splitU = Ulow + Uhigh, according to0 ≤ j ≤ [m/2] and[m/2] + 1 ≤
j ≤ m respectively. Using (4.3), we have

Ulow ≤ C
∞
∑

m=0

[m/2]
∑

j=0

∑

|α|=m

∑

|β|=j,β≤α

(

α

β

)

‖∂βvi‖
1/2
L2 ‖(∆ + ∂zz)∂

βvi‖
1/2
L2 ‖∂xi

∂α−β ṽ‖L2
(m+ 1)rτm

m!

+C
∞
∑

m=0

[m/2]
∑

j=0

∑

|α|=m

∑

|β|=j,β≤α

(

α

β

)

‖∂βvi‖L2‖∂xi
∂α−β ṽ‖L2

(m+ 1)rτm

m!
. (4.8)

By (4.7) it follows that

∑

|α|=m

∑

|β|=j,β≤α

(

α

β

)

‖∂βvi‖
1/2
L2 ‖(∆ + ∂zz)∂

βvi‖
1/2
L2 ‖∂xi

∂α−β ṽ‖L2

≤ C

(

m

j

)





∑

|β|=j

‖∂βvi‖L2





1/2



∑

|β|=j

‖(∆ + ∂zz)∂
βvi‖L2





1/2



∑

|γ|=m−j

‖∂γ∂xi
ṽ‖L2



 . (4.9)

We observe that
∑

|γ|=m−j ‖∂xi
∂γ ṽ‖L2 ≤ C|ṽ|m−j+1 and

∑

|β|=j ‖(∆ + ∂zz)∂
βvi‖L2 ≤ C|v|j+2. Hence,

from (4.8) it follows by the discrete Hölder inequality and (4.9) thatUlow is bounded from above by

C

∞
∑

m=0

[m/2]
∑

j=0

|vi|
1/2
j |vi|

1/2
j+2|ṽ|m−j+1

(

m

j

)

(m+ 1)rτm

m!
+ C

∞
∑

m=0

[m/2]
∑

j=0

|vi|j |ṽ|m−j+1

(

m

j

)

(m+ 1)rτm

m!

≤ C

∞
∑

m=0

[m/2]
∑

j=0

(

|vi|j
(j + 1)rτ j

j!

)

1
2
(

|vi|j+2
(j + 3)rτ j+2

(j + 2)!

)

1
2
(

|ṽ|m−j+1
(m− j + 2)rτm−j

(m− j)!

)

τ−1

+ C

∞
∑

m=0

[m/2]
∑

j=0

(

|vi|j
(j + 1)rτ j

j!

)(

|ṽ|m−j+1
(m− j + 2)rτm−j

(m− j)!

)

, (4.10)

where we have used the inequality

(

m

j

)

(m+ 1)r

m!

(m− j)!

(m− j + 2)r
j!1/2(j + 2)!1/2

(j + 1)r/2(j + 3)r/2
=

(m+ 1)r

(m− j + 2)r
(j + 1)1/2(j + 2)1/2

(j + 1)r/2(j + 3)r/2
≤ C, (4.11)

which holds for allm ≥ 0, 0 ≤ j ≤ [m/2], r ≥ 1, and a sufficiently large constantC, depending only onr.
By (4.10), the discrete Hölder and Young inequalities imply

Ulow ≤ C(1 + τ−1)‖v‖Xτ
‖ṽ‖Yτ

.
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By symmetry, from (4.5) and (4.7), we obtain an estimate for the high values ofj. Namely

Uhigh ≤ C

∞
∑

m=1

m
∑

j=[m/2]+1

|vi|j |∂xi
ṽ|

1/2
m−j |∂xi

(∆ + ∂zz)ṽ|
1/2
m−j

(

m

j

)

(m+ 1)rτm

m!

+ C

∞
∑

m=1

m
∑

j=[m/2]+1

|vi|j |∂xi
ṽ|m−j

(

m

j

)

(m+ 1)rτm

m!

≤ C(1 + τ−1)‖v‖Xτ
‖ṽ‖Yτ

, (4.12)

for some positive constantC depending only onr andD. This completes the proof of (4.1). The estimate
on V is in the same spirit, but we need to account for the derivative loss that occurs when estimatingw in
terms ofv. First, note that the definition (1.13) of w and that of the semi-norms| · |j imply

|w|j ≤
∑

|β|=j,β3≥1

‖∂β
′

x ∂
β3−1
z div v‖L2 +

∑

|β|=j,β3=0

∥

∥

∥

∥

ˆ z

0
∂β div v(x, ζ)dζ

∥

∥

∥

∥

L2

≤ |v|j + C|v|j+1,

for some constantC = C(h) > 0. We recall thatdiv is the divergence operator acting onx. Similarly
we have that|∆w|j ≤ |v|j+2 + C|v|j+3, and also|∂zzw|j ≤ |w|j+2. Next, we splitV = Vlow + Vhigh,
according to0 ≤ j ≤ [m/2] and[m/2] < j ≤ m. By (4.4) and (4.7) we have

Vlow ≤ C
∞
∑

m=0

[m/2]
∑

j=0

(

|v|
1/2
j + |v|

1/2
j+1

)(

|v|
1/2
j+2 + |v|

1/2
j+3

)

|ṽ|m−j+1

(

m

j

)

(m+ 1)rτm

m!

+ C

∞
∑

m=0

[m/2]
∑

j=0

(|v|j + |v|j+1) |ṽ|m−j+1

(

m

j

)

(m+ 1)rτm

m!
, (4.13)

for some constantC = C(r,D) > 0. Using the fact that
(

m

j

)

(m+ 1)r

m!

(m− j)!

(m− j + 2)r
(j + 1)!1/2(j + 3)!1/2

(j + 2)r/2(j + 4)r/2
≤ C,

holds for allm ≥ 0 and0 ≤ j ≤ [m/2], for some sufficiently large positive constantC depending only on
r ≥ 2, we obtain

Vlow ≤ C(1 + τ−2)‖v‖Xτ
‖ṽ‖Yτ

.

Lastly, to estimateVhigh, we note that by (4.6) and (4.7), we have

Vhigh ≤ C

∞
∑

m=1

m
∑

j=[m/2]+1

|w|j |∂z ṽ|
1/2
m−j |∂z(∆ + ∂zz)ṽ|

1/2
m−j

(

m

j

)

(m+ 1)rτm

m!

+ C

∞
∑

m=1

m
∑

j=[m/2]+1

|w|j |∂z ṽ|m−j

(

m

j

)

(m+ 1)rτm

m!

≤ C
∞
∑

m=1

m
∑

j=[m/2]+1

(|v|j + |v|j+1) |ṽ|
1/2
m−j+1|ṽ|

1/2
m−j+3

(

m

j

)

(m+ 1)rτm

m!

+ C
∞
∑

m=1

m
∑

j=[m/2]+1

(|v|j + |v|j+1) |ṽ|m−j+1

(

m

j

)

(m+ 1)rτm

m!
. (4.14)

By symmetry with theVlow estimate, the lower order terms (the ones containing|v|j) on the right side of
(4.14) are estimated byC(1+τ−1)‖v‖Xτ

‖ṽ‖Yτ
. On the other hand, the terms containing|v|j+1 are similarly

bounded byC(τ−1 + τ−2)‖v‖Yτ
‖ṽ‖Xτ

concluding the proof of (4.2), and hence of the lemma. �
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5. CONSTRUCTION OF THE SOLUTION

The formal construction of the solutions is via the Picard iteration. Letv(0) = v0, ρ(0) = ρ0 be given,
with v0 satisfying the compatibility conditions (1.17) and (1.18). Forn ∈ N, let

w(n)(x, z, t) = −

ˆ z

0
div v(n)(x, ζ, t) dζ, (5.1)

and

ψ(n)(x, z, t) =

ˆ z

0
ρ(n)(x, ζ, t) dζ. (5.2)

The density iterate is given by

ρ(n+1)(t) = ρ0 −

ˆ t

0

(

v
(n)(s) · ∇+ w(n)(s)∂z

)

ρ(n)(s) ds, (5.3)

and motivated by Lemma3.1, we define the pressure

p(n+1)(x, t) =−

 h

0

(

v
(n)
1

)2
(x, z, t) dz − f

ˆ x1

0

 h

0
v
(n)
2 (x′1, x2, z, t) dz dx

′
1

+ g

 h

0
ψ(n+1)(x, z, t) dz. (5.4)

Lastly, the velocity iterate is constructed as

v
(n+1)(t) = v0 −

ˆ t

0

(

v
(n)(s) · ∇+ w(n)(s)∂z

)

v
(n)(s) ds

−

ˆ t

0

(

∇p(n+1)(s)− g∇ψ(n+1)(s) + fv(n)⊥(s)
)

ds, (5.5)

for all n ∈ N. Taking the time derivative of the first component of (5.5), integrating inz, and using the
fact that∂x1p

(n) is obtained from (5.4), we obtain that∂t
´ h
0 v

(n+1)
1 dz = 0. Since the first component of

the initial data,v01, has zero vertical average, we obtain
´ h
0 v

(n)
1 (x, z) dz = 0 for all x ∈ M andn ≥ 0.

Therefore the compatibility conditions
´ h
0 div v

(n)
1 dz = 0 and the boundary condition

´ h
0 v

(n)
1 |Γx

dz = 0 are
conserved for alln ∈ N. Recall that we denote bydiv the differential operator acting only onx.

Assume that(v0, ρ0) ∈ Xτ0+ε, for some0 < ǫ < τ0. In particular, we have(v0, ρ0) ∈ Yτ0 . We define
τ(t) by τ(0) = τ0 and

τ̇(t) + 20C0g + 20C0(1 + τ−2(t))‖(v0, ρ0)‖Xτ0
egt = 0, (5.6)

where the constantC0 = C0(r,D) is fixed in Lemma4.1. First we show that the sequence of approximations
v
(n) is bounded inL∞(0, T ;Xτ ) ∩ L

1(0, T ; (1 + τ−2)Yτ ) for some sufficiently smallT > 0, depending
solely on the initial data.

Lemma 5.1. Let(v0, ρ0) ∈ Xτ0+ε andτ(t) be defined by(5.6). The approximating sequence{(v(n), ρ(n))}n≥0,
constructed via(5.1)–(5.5), satisfies

sup
t∈[0,T ]

‖(v(n)(t), ρ(n)(t))‖Xτ(t)
+ 10C0g

ˆ T

0
eg(T−t)‖(v(n)(t), ρ(n)(t))‖Yτ(t)

dt

+ 20C0‖(v0, ρ0)‖Xτ0
egT

ˆ T

0

(

1 + τ−2(t)
)

‖(v(n)(t), ρ(n)(t))‖Yτ(t)
dt ≤ 3egT ‖(v0, ρ0)‖Xτ0

, (5.7)

for all n ≥ 0, whereT = T (v0, ρ0) > 0 is sufficiently small.
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Proof of Lemma5.1. When n = 0, since τ is decreasing and sinceǫ < τ0, for all t ≥ 0 we have
‖(v0, ρ0)‖Yτ0

≤ C‖(v0, ρ0)‖Xτ0+ε
/ε, for some constantC. Sufficient conditions for the bound (5.7) to

hold in the casen = 0 are thatT is chosen such that

10C0 C(egT − 1)‖(v0, ρ0)‖Xτ0+ε
≤ ε‖(v0, ρ0)‖Xτ0

egT (5.8)

and

20C0 C‖(v0, ρ0)‖Xτ0+ε

ˆ T

0

(

1 + τ−2(t)
)

dt ≤ ε. (5.9)

The condition (5.8) holds if T ≤ T1, whereT1(ǫ, C0, C, g, ‖(v0, ρ0)‖Xτ0
, ‖(v0, ρ0)‖Xτ0+ε

) > 0 is deter-
mined explicitly. Also, by the construction ofτ (cf. (5.6)) we have20C0(1 + τ−2) < −τ̇ /‖(v0, ρ0)‖Xτ0

,
so that the condition (5.9) is satisfied if we chooseT so that

τ0 − τ(T ) ≤
ε‖(v0, ρ0)‖Xτ0

C‖(v0, ρ0)‖Xτ0+ε

, (5.10)

which is satisfied ifT ≤ T2, whereT2(ε, τ0, C0, C, g, ‖(v0, ρ0)‖Xτ0
, ‖(v0, ρ0)‖Xτ0+ε

) > 0 may be com-
puted explicitly from (5.6) and (5.10). Thus (5.7) holds forn = 0 if T ≤ min{T1, T2}.

We proceed by induction. By (5.3), (5.5), and Lemma4.1, similarly to estimate (3.25), we obtain

d

dt
‖(v(n+1), ρ(n+1))‖Xτ

≤ (τ̇ + C0g)‖(v
(n+1), ρ(n+1))‖Yτ

+ g‖(v(n+1), ρ(n+1))‖Xτ

+ 3C0(1 + τ−2)‖(v(n), ρ(n))‖Xτ
‖(v(n), ρ(n))‖Yτ

≤ (τ̇ + C0g)‖(v
(n+1), ρ(n+1))‖Yτ

+ g‖(v(n+1), ρ(n+1))‖Xτ

+ 9C0(1 + τ−2)egT ‖(v0, ρ0)‖Xτ0
‖(v(n), ρ(n))‖Yτ

, (5.11)

by the induction assumption.In the above we also used the fact that by Lemma3.1we have〈∂α∇p(n), ∂αv(n+1)〉 =
0. Using thatτ was chosen to satisfy (5.6), the above estimate and Grönwall’s inequality give

‖(v(n+1)(t), ρ(n+1)(t))‖Xτ(t)
+ 10C0g

ˆ t

0
eg(t−s)‖v(n+1)(s), ρ(n+1)(s))‖Yτ(s)

ds

+ 20C0‖(v0, ρ0)‖Xτ0
egt

ˆ t

0

(

1 + τ−2(s)
)

‖(v(n+1)(s), ρ(n+1)(s))‖Yτ(s)
ds

≤ ‖(v0, ρ0)‖Xτ0
egt + 9egTC0‖(v0, ρ0)‖Xτ0

egt
ˆ t

0

(

1 + τ−2(s)
)

‖(v(n)(s), ρ(n)(s))‖Yτ(s)
ds. (5.12)

The proof of Lemma5.1 is completed by taking the supremum overt ∈ [0, T ] of the above inequality, by
the induction assumption, and by additionally lettingT be small enough so that27egT ≤ 40. �

We conclude the construction of the solution by showing thatthe mapv(n) 7→ v
(n+1) is a contraction in

L∞(0, T ;Xτ ) ∩ L
1(0, T ; (1 + τ−2)Yτ ), for some sufficiently smallT depending on the initial data.

Lemma 5.2. Let ṽ(n) = v
(n+1) − v

(n), andρ̃(n) = ρ(n+1) − ρ(n) for all n ≥ 0. Let(v0, ρ0) ∈ Xτ0+ε, τ(t)
be defined by(5.6), andT be as in Lemma5.1. If for all n ≥ 0 we let

an = sup
t∈[0,T ]

‖(ṽ(n)(t), ρ̃(n)(t))‖Xτ(t)
+ 10C0g

ˆ T

0
eg(T−t)‖(ṽ(n)(t), ρ̃(n)(t))‖Yτ(t)

dt

+ 20C0‖(v0, ρ0)‖Xτ0
egT

ˆ T

0

(

1 + τ−2(t)
)

‖(ṽ(n)(t), ρ̃(n)(t))‖Yτ(t)
dt, (5.13)

then we have20 an ≤ 19 an−1 for all n ≥ 1.
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Proof of Lemma5.2. Denotew̃(n) = w(n+1)−w(n), ψ̃(n) = ψ(n+1)−ψ(n), andp̃(n) = p(n+1)−p(n). Then
we have that the difference of two iterations satisfies the equations

∂tṽ
(n) +

(

v
(n) · ∇+ w(n)∂z

)

ṽ
(n−1) +

(

ṽ
(n−1) · ∇+ w̃(n−1)∂z

)

v
(n−1)

+∇p̃(n) − g∇ψ̃(n) + f ṽ(n−1)⊥ = 0, (5.14)

and

∂tρ̃
(n) +

(

v
(n) · ∇+ w(n) ∂z

)

ρ̃(n−1) +
(

ṽ
(n−1) · ∇+ w̃(n−1)∂z

)

ρ(n−1) = 0, (5.15)

with initial conditions ṽ(n)(0) = 0 and ρ̃(n)(0) = 0, for all n ≥ 0. Since the approximate solutions
u
(n) satisfy the boundary conditions (1.11)–(1.12), similarly to the proof of (3.10), it can be shown that

〈∂α∇p̃(n−1), ∂αṽ(n)〉 = 0 for all α ∈ N
3. Hence, from (5.14), (5.15), and Lemma4.1, we obtain

d

dt
‖(ṽ(n), ρ̃(n))‖Xτ

≤ (τ̇ + C0g)‖(ṽ
(n), ρ̃(n))‖Yτ

+ g‖(ṽ(n), ρ̃(n))‖Xτ

+ 3C0(1 + τ−2)
(

‖(v(n), ρ(n))‖Xτ
+ ‖(v(n−1), ρ(n−1))‖Xτ

)

‖(ṽ(n−1), ρ̃(n−1))‖Yτ

+ 3C0(1 + τ−2)
(

‖(v(n), ρ(n))‖Yτ
+ ‖(v(n−1), ρ(n−1))‖Yτ

)

‖(ṽ(n−1), ρ̃(n−1))‖Xτ
.

(5.16)

Using the definition oḟτ (cf. (5.6)), the estimate in Lemma5.1, Grönwall’s inequality, and taking the supre-
mum fort ∈ [0, T ], we obtain

an ≤ 18C0e
gT ‖(v0, ρ0)‖Xτ0

ˆ T

0
(1 + τ−2)eg(T−t)‖(ṽ(n−1), ρ̃(n−1))‖Yτ

dt

+

(

sup
t∈[0,T ]

‖(ṽ(n−1), ρ̃(n−1))‖Xτ

)

ˆ T

0
3C0(1 + τ−2)eg(T−t)

(

‖(v(n), ρ(n))‖Yτ
+ ‖(v(n−1), ρ(n−1))‖Yτ

)

dt.

(5.17)

If T is taken such that18 egT ≤ 19, then the above estimate and the definition ofan (cf. 5.13) imply that

an ≤
19

20
an−1. (5.18)

This concludes the proof of the lemma, showing that the map(v(n), ρ(n)) 7→ (v(n−1), ρ(n−1)) is a strict
contraction. The existence of a solution to (1.7)–(1.12) in the classL∞(0, T ;Xτ )∩L

1(0, T ; (1 + τ−2)Yτ ),
with τ(t) given by (5.6) follows from the classical fixed point theorem. �

6. UNIQUENESS

Fix (v0, ρ0) ∈ Xτ0+ε, a real-analytic function onD with radius of analyticity strictly larger thanτ0, for
some positiveε < τ0. Let τ(t) be defined byτ(0) = τ0 andτ̇+20C0g+20C0(1+τ

−2)‖(v0, ρ0)‖Xτ0
egt =

0, whereC0 = C(D, r) > 0 is the fixed constant defined in Lemma3.2. Let T∗ be the maximal time such
thatτ(t) ≥ 0.

Assume that there exist two solutions(v(1), ρ(1)) and (v(2), ρ(2)) to (1.7)–(1.12) evolving from initial
data(v0, ρ0), such that fori = 1, 2, we have

‖(v(i)(t), ρ(i))‖Xτ(t)
+ 10C0g

ˆ t

0
eg(t−s)‖(v(i)(s), ρ(i)(s))‖Yτ(s)

ds

+ 10C0‖(v0, ρ0)‖Xτ0
egT

ˆ t

0

(

1 + τ−2(s)
)

‖(v(i)(s), ρ(i)(s))‖Yτ(s)
ds <∞,

(6.1)
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for all 0 ≤ t < T∗. Similarly to (3.28) we have that‖v(i)(t)‖Xτ(t)
≤ ‖(v0, ρ0)‖Xτ0

egt for i ∈ {1, 2} and

for all 0 ≤ t < T∗. Let w(i) andp(i) be the vertical velocity and the pressure associated tov
(i), and let

ψ(i)(x, z) =
´ z
0 ρ

(i)(x, ζ) dζ, for i ∈ {1, 2}. We denote the difference of the solutionsv
(1) − v

(2) = v,
ρ(1) − ρ(2) = ρ, and similarly definew,ψ andp. Then(v, w, p, ρ) satisfy the equations

∂tv + (v(1) · ∇+ w(1)∂z)v + (v · ∇+ w∂z)v
(2) +∇p+ fv⊥ = g∇ψ, (6.2)

div v + ∂zw = 0, (6.3)

∂zp = 0, (6.4)

∂tρ+ (v(1) · ∇+ w(1)∂z)ρ+ (v · ∇+ w∂z)ρ
(2) = 0, (6.5)

in D × (0, T ), with the corresponding boundary and initial value conditions

w(x, z, t) = 0, onΓz × (0, T ), (6.6)
ˆ h

0
v(x, z, t)dz · n = 0, onΓx × (0, T ), (6.7)

v(x, z, 0) = 0, in D, (6.8)

ρ(x, z, 0) = 0, in D. (6.9)

Similarly to thea priori estimates of Section3, by (6.2)–(6.9) and Lemma4.1, we obtain that

d

dt
‖(v, ρ)‖Xτ

≤
(

τ̇ +C0g + 3C0(1 + τ−2)
(

‖(v(1), ρ(1))‖Xτ
+ ‖(v(2), ρ(2))‖Xτ

)

)

‖(v, ρ)‖Yτ

+ g‖(v, ρ)‖Xτ
+ 3C0(1 + τ−2)

(

‖(v(1), ρ(1))‖Yτ
+ ‖(v(2), ρ(2))‖Yτ

)

‖(v, ρ)‖Xτ
, (6.10)

whereC0 > 0 is the constant from Lemma3.2. But by the construction ofτ we haveτ̇+20C0g+20C0(1+
τ−2)‖(v0, ρ0)‖Xτ0

egt = 0, and by also using‖(v(1), ρ(1))‖Xτ
+ ‖(v(2), ρ(2))‖Xτ

≤ 2‖(v0, ρ0)‖Xτ0
egt, we

obtain

d

dt
‖(v, ρ)‖Xτ

+ 10C0g‖(v, ρ)‖Yτ
+ 10C0‖(v0, ρ0)‖Xτ0

egt(1 + τ−2)‖(v, ρ)‖Yτ

≤ g‖(v, ρ)‖Xτ
+ 3C0(1 + τ−2)(‖v(1)‖Yτ

+ ‖v(2)‖Yτ
)‖(v, ρ)‖Xτ

. (6.11)

It is straightforward to check that (6.1), (6.8), (6.9), (6.11), and Grönwall’s inequality imply that‖(v, ρ)‖Xτ
=

0 for all t ∈ [0, T∗), and thereby proving the uniqueness of the solutions.

7. THE THREE-DIMENSIONAL CASE

In this section we sketch the proof of Theorem2.3. As opposed to the two-dimensional case, here
Lemma3.1 does not hold, and hence we need to estimate the analytic normof the pressure. We only
emphasize the necessary changes from the two-dimensional case.

In Section7.1 we give the proof of the pressure estimate in the case of periodic boundary conditions in
thex-variable. In this casep may be written explicitly as a function ofv andρ (cf. (7.6) below), thereby
simplifying the analysis.

WhenM is an analytic domain with boundary, the pressure is given implicitly as a solution of an elliptic
Neumann problem (cf. Temam [25] for the Euler equations). We explore the transfer of normalto tangential
derivatives in the higher-order estimates for the pressureand introduce a new suitable analytic norm to
combinatorially encode this transfer. This gives us the necessary estimate (cf. Lemma7.1) to prove that the
pressure has the same radius of analyticity as the velocity.In Section7.2we give the proof of the pressure
estimate in the case whenM is a half-space.
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7.1. The periodic case: M = [0, 2π]2. Here we give thea priori estimates for the case when the boundary
condition (1.12) is replaced by the periodic boundary condition in thex-variable. Assume that(u, p, ρ) is a
smooth solution to (1.7)–(1.11), M-periodic in thex-variable. Since the pressure is defined up to a function
of time, we may assume that

´

M p dx = 0. Letv0, ρ0 ∈ Xτ0 for someτ0 > 0, and fixedr ≥ 5/2. Similarly
to estimate (3.17) we have

d

dt
‖v(t)‖Xτ(t)

≤ τ̇(t)‖v(t)‖Yτ(t)
+ U(v,v) + V(w,v) + P + g‖∇ψ‖Xτ

, (7.1)

whereU(v,v) =
∑2

i,j=1 U(vi, vj) andV(w,v) =
∑2

j=1 V(w, vj), with U(vi, vj) andV(w, vj) being
defined by (3.18) and (3.19) respectively. In (7.1) above, we have denoted the upper bound on the pressure
term by

P =
∞
∑

m=1

∑

|α|=m

‖∇∂αp‖L2(D)
(m+ 1)rτm

m!
= h1/2

∞
∑

m=1

∑

|α|=m,α3=0

‖∇∂αp‖L2(M)
(m+ 1)rτm

m!
. (7.2)

Here we used the fact thatp is z-independent, and the fact that due to the boundary condition (1.12) we
have〈∇p,v〉 = 〈p,div v〉 = −〈p, ∂zw〉 = 0. We note that in the three-dimensional case the cancelation
property (3.10) does not hold, and therefore the pressure term does not vanish in the estimate (7.1). To
estimateP, we use the fact that the pressure may be computed explicitlyfrom the velocity. First, note that
´ h
0 div v dz = 0, and therefore, by integrating (1.7) in the z-variable, and then applying the divergence

operator in thex-variable, we obtain

−∆p = ∂k

 h

0

(

vj∂jvk + w∂zvk

)

dz + f

ˆ h

0
(∂1v2 − ∂2v1) dz − g∆

ˆ h

0
ψ dz. (7.3)

In (7.3) we have used the summation convention over repeated indices 1 ≤ j, k ≤ 2, and denoted by∂j the
partial derivative∂/∂xj , for all 1 ≤ j ≤ 2. Integrating by parts in thez variable, it follows from (1.8) and
(1.11) that

ˆ h

0
w∂zvk dz = −

ˆ h

0
vk∂zw dz =

ˆ h

0
vk∂jvj dz, (7.4)

and therefore, by (7.3) we have

−∆p = ∂k∂j

 h

0
(vjvk) dz + f

 h

0
(∂1v2 − ∂2v1) dz − g∆

 h

0
ψ dz. (7.5)

The periodic boundary conditions in thex-variable allow for a simple solution to (7.5), namely

p = RjRk

 h

0
(vjvk) dz + f(−∆)−1/2

 h

0
(R1v2 −R2v1) dz + g

 h

0
ψ dz, (7.6)
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whereRj is thejth Riesz transform, classically defined by its Fourier symboliξj/|ξ|. The boundedness of
the Riesz transforms onL2(M), the Hölder inequality, and the Leibniz rule give the bound

P ≤ Ch1/2
∞
∑

m=1

∑

|α|=m,α3=0

∑

1≤i,j,k≤2

∥

∥

∥

∥

∂i∂
α

(
 h

0
vjvk dz

)∥

∥

∥

∥

L2(M)

(m+ 1)rτm

m!

+ h1/2
∞
∑

m=1

∑

|α|=m,α3=0

(

f

∥

∥

∥

∥

∂α
 h

0
v dz

∥

∥

∥

∥

L2(M)

+ g

∥

∥

∥

∥

∂α
 h

0
∇ψ dz

∥

∥

∥

∥

L2(M)

)

(m+ 1)rτm

m!

≤ C
∞
∑

m=1

∑

|α|=m,α3=0

∑

1≤i,j,k≤2

‖∂α(vj ∂ivk)‖L2(D)
(m+ 1)rτm

m!
+ f‖v‖Xτ

+ g‖∇ψ‖Xτ

≤ C
∞
∑

m=1

∑

|α|=m,α3=0

∑

β≤α

(

α

β

)

∑

1≤i,j,k≤2

‖∂βvj ∂
α−β∂ivk‖L2(D)

(m+ 1)rτm

m!
+ f‖v‖Xτ

+ g‖∇ψ‖Xτ
.

(7.7)

The first term on the right of (7.7) is estimated similarly toU(v,v) via Lemma4.1, the cased = 3, and we
obtain thea priori pressure estimate

P ≤ C0(1 + τ−5/2)‖v‖Xτ
‖v‖Yτ

+ f‖v‖Xτ
+ g‖∇ψ‖Xτ

. (7.8)

By possibly enlargingC0, as shown in (3.22) we also have‖∇ψ‖Xτ
≤ C0‖ρ‖Yτ

+ ‖ρ‖Xτ
, and therefore

P ≤ C0(1 + τ−5/2)‖v‖Xτ
‖v‖Yτ

+ f‖v‖Xτ
+ g‖ρ‖Xτ

+ C0g‖ρ‖Yτ
. (7.9)

Combining thea priori estimate (7.1), the bounds onU(v,v) andV(w,v) obtained from Lemma4.1, and
the pressure estimate (7.9), in analogy to (3.23), we obtain the bound

d

dt
‖v‖Xτ

≤
(

τ̇ + 4C0(1 + τ−5/2)‖v‖Xτ

)

‖v‖Yτ
+ 2C0g‖ρ‖Yτ

+ f‖v‖Xτ
+ 2g‖ρ‖Xτ

. (7.10)

Since the evolution of the densityρ (cf. (1.10)) does not involve the pressure term, using Lemma4.1, in
analogy to (3.24) we have

d

dt
‖ρ‖Xτ

≤ τ̇‖ρ‖Yτ
+ 2C0(1 + τ−5/2)‖v‖Xτ

‖ρ‖Yτ
+ 4C0(1 + τ−5/2)‖v‖Yτ

‖ρ‖Xτ
, (7.11)

and therefore, by combining (7.10) and (7.11) we obtain

d

dt
‖(v, ρ)‖Xτ

≤
(

τ̇ + 2C0g + 4C0(1 + τ−5/2)‖(v, ρ)‖Xτ

)

‖(v, ρ)‖Yτ
+ C1‖(v, ρ)‖Xτ

, (7.12)

whereC1 = max{f, 2g}. With τ(t) defined byτ(0) = τ0 and

τ̇ + 20C0g + 20C0(1 + τ−5/2)‖(v0, ρ0)‖Xτ0
eC1t = 0, (7.13)

the rest of the proof of Theorem2.3, namely the estimate (2.7), follows in analogy to the two-dimensional
case (cf. Section3). The uniqueness ofx-periodic solutions in the spaceL∞(0, T∗;Xτ ) ∩ L

1(0, T∗; (1 +

τ−5/2)Yτ ) follows as in Section6, with the only modification being the power ofτ in the estimates is now
−5/2 instead of−2. The construction of thex-periodic solution is similar to Section5, with one additional
modification: instead ofp(n) being defined by (7.6), we define thenth iterate of the pressure via

p(n+1) = RjRk

 h

0
v
(n)
j v

(n)
k dz + f(−∆)−1/2

 h

0
(R1v

(n)
2 −R2v

(n)
1 ) dz + g

 h

0
ψ(n+1) dz. (7.14)

To avoid redundancy we omit further details.
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7.2. A domain with boundary: M is the upper half-plane. Let M = {x ∈ R
2 : x1 > 0}, so that

Γx = ∂M× (0, h) = {(x, z) ∈ R
3 : x1 = 0, 0 < z < h}. Therefore the side boundary condition (1.12)

is
´ h
0 v1(0, x2, z) dz = 0. In order to close the estimates for the pressure (cf. Lemma7.1), in the case of the

half-pane it is necessary to use a modified Sobolev semi-norm(see also Kukavica and Vicol [10]), instead
of the classical| · |m from (2.1). We let

[v]m =
∑

|α|=m

1

2α1
‖∂αv‖L2(D), (7.15)

and define the corresponding analyticXτ norm

‖v‖Xτ
=

∞
∑

m=0

[v]m
(m+ 1)rτm

m!
, (7.16)

and respectively theYτ semi-norm

‖v‖Yτ
=

∞
∑

m=1

[v]m
(m+ 1)rτm−1

(m− 1)!
. (7.17)

As in the periodic case, we have thea priori estimate

d

dt
‖v(t)‖Xτ(t)

≤ τ̇(t)‖v(t)‖Yτ(t)
+ U(v,v) + V(w,v) + P + g‖∇ψ‖Xτ

, (7.18)

whereU(v,v) andV(w,v) are defined similarly to (3.18) and (3.19), namely by

U(v, ṽ) =

∞
∑

m=0

m
∑

j=0

∑

|α|=m

1

2α1

∑

|β|=j,β≤α

(

α

β

)

‖∂βv · ∇∂α−β ṽ‖L2
(m+ 1)rτm

m!
, (7.19)

and by

V(w, ṽ) =

∞
∑

m=0

m
∑

j=0

∑

|α|=m

1

2α1

∑

|β|=j,β≤α

(

α

β

)

‖∂βw ∂z∂
α−β ṽ‖L2

(m+ 1)rτm

m!
, (7.20)

and the pressure term is given by

P = h1/2
∞
∑

m=1

∑

|α|=m,α3=0

1

2α1
‖∇∂αp‖L2(M)

(m+ 1)rτm

m!
. (7.21)

Recall that the term corresponding tom = 0 in (7.21) is missing since the side boundary condition (1.12)
implies that〈∇p,v〉 = 0. It is straightforward to check that the proof of Lemma4.1 also applies to the
above defined operatorsU andV, and hence we have the three-dimensional bounds

U(v,v) + V(w,v) ≤ 2C0(1 + τ−5/2)‖v‖Xτ
‖v‖Yτ

. (7.22)

To estimateP, we note that by (7.3) the vertical average of the full pressure

p̃(x) =

 h

0
P (x, z) dz = p(x)− g

 h

0
ψ(x, z) dz (7.23)

satisfies

−∆p̃ = ∂k

 h

0

(

vj ∂jvk + vk ∂jvj

)

dz + f

 h

0

(

∂1v2 − ∂2v1

)

dz = F (7.24)
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for all x ∈ M, where the summation convention over1 ≤ j, k ≤ 2 is used. By applying
ffl h
0 dz to (1.7), and

taking the inner product withn = (−1, 0), the outward unit normal vector toM, we obtain that (7.24) is
supplemented with the boundary condition

∂p̃

∂n
= −

 h

0

(

vj∂jvk + w∂zvk

)

dz · nk − f

 h

0
v⊥k dz · nk

=

 h

0

(

v1∂jvj + vj∂jv1

)

dz + f

 h

0
v2 dz = G, (7.25)

wherej ∈ {1, 2}. We note that as opposed to the Euler equations on a half-space (cf. [10]) the nonlocal
boundary condition on the velocity implies that the boundary condition forp is non-homogeneous (i.e.,
∂p/∂n may be nonzero), creating additional difficulties. After subtracting a function of time from the full-
pressure we have

´

D P (x, z) dxdz = 0, and therefore there exists a unique smooth solution to the boundary
value problem (7.24)–(7.25).

Lemma 7.1. The smooth solutioñp = p−g
ffl h
0 ψ dz to the elliptic Neumann problem(7.24)–(7.25), satisfies

[∇p̃]m ≤ C1[F ]m−1 + C1[G]m, (7.26)

whereC1 is a universal constant, independent ofm.

Proof of Lemma7.1. In order to bound

[∇p̃]m =
∑

|α|=m,α3=0

1

2α1
‖∇∂αp̃‖L2(M), (7.27)

we estimate tangential and normal derivatives separately.To estimate tangential derivatives of the pressure,
we note that for anyα2 ≥ 0, the function∂α2

2 p̃ is a solution of the elliptic Neumann problem

−∆(∂α2
2 p̃) = ∂α2

2 F (7.28)

∂(∂α2
2 p̃)

∂n
= ∂α2

2 G, (7.29)

and hence the classicalH2 regularity theorem, and the trace theorem give that there existsC1 > 0 such that

‖∂α2
2 p̃‖Ḣ2(M) ≤ C1‖∂

α2
2 F‖L2(M) + C1‖∂

α2
2 G‖H1(M). (7.30)

To estimate normal derivatives, we note that

−∂11p̃ = −∆p̃+ ∂22p̃ = F + ∂22p̃ (7.31)

(−∂11)
2p̃ = −∂11F + ∂22(F + ∂22p̃) = −∂11F + ∂22F + ∂222p̃, (7.32)

and by induction one may show that

(−∂11)
k+1p̃ = ∂k+1

22 p̃+
k
∑

l=0

(−1)l∂2l1 ∂
2k−2l
2 F. (7.33)

Therefore, ifα = (α1, α2, 0) ∈ N
3 is such thatα1 ≥ 2, andα1 = 2k + 2 is even, then by (7.33) and (7.30)

we have

‖∇∂αp̃‖L2(M) ≤ ‖∂2k+2+α2
2 ∇p̃‖L2(M) +

k
∑

l=0

‖∂2l1 ∂
2k−2l+α2
2 ∇F‖L2(M) (7.34)

≤ C1‖∂
|α|−1
2 G‖H1(M) + C1

α1−2
∑

j=0

‖∂j1∂
|α|−j−2
2 ∇F‖L2(M). (7.35)
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Similarly, if α1 ≥ 3, andα1 = 2k + 3 is odd, then similar arguments show that

‖∇∂αp̃‖L2(M) ≤ C1‖∂
|α|−1
2 G‖H1(M) + C1

α1−2
∑

j=1

‖∂j1∂
|α|−j−2
2 ∇F‖L2(M). (7.36)

Lastly, whenα1 ≤ 1, and|α| ≥ 1, then

‖∇∂αp̃‖L2(M) ≤ C1

(

‖∂
|α|−1
2 F‖L2(M) + ‖∂

|α|−1
2 G‖H1(M)

)

. (7.37)

Summarizing estimates (7.30)–(7.37) we obtain

∑

|α|=m,α3=0

1

2α1
‖∇∂αp̃‖L2(M) ≤ C1

m
∑

α1=0

1

2α1
‖∂m−1

2 G‖H1(M) + 2C1‖∂
m−1
2 F‖L2(M)

+ C1

m
∑

α1=2

α1−2
∑

j=0

(

1

2j
‖∂j1∂

|α|−j−2
2 ∇F‖L2(M)

)

1

2α1−j
, (7.38)

for all m ≥ 1. Here we see why the introduction of the normalizing factors1/2α1 was necessary. Without
them the constantC1 in the above estimates would depend linearly onm. However since

∑

k 1/2
k < ∞,

by possibly enlargingC1 (which is independent ofm) we have

∑

|α|=m,α3=0

1

2α1
‖∇∂αp̃‖L2(M) ≤ C1‖∂

m−1
2 G‖H1(M) + C1

∑

|α|=m−1, α3=0

1

2α1
‖∂αF‖L2(M), (7.39)

concluding the proof of the lemma. �

Remark 7.2. If C1 would depend onm, and would grow unboundedly asm→ ∞, then the additional loss
of one full derivative coming from estimatingw in terms ofv, prevents the estimates from closing. The
normalizing weights1/2α1 may be viewed as a suitable combinatorial encoding of the transfer of normal to
tangential derivatives in (7.33).

Lemma 7.3. Let(v, ρ) ∈ Xτ , andp̃ be the unique smooth solution of the elliptic Neumann-problem(7.24)–
(7.25). Then the termP as defined in(7.21), with p = p̃+ g

ffl h
0 ψ, is bounded by

P ≤ C1(1 + τ−5/2)‖v‖Xτ
‖v‖Yτ

+ g‖ρ‖Xτ
+ C1g‖ρ‖Yτ

+ C1f‖v‖Xτ
, (7.40)

for some positive universal constatC1.

Proof of Lemma7.3. By the triangle inequality and the definition ofp̃ cf. (7.23), we have that

∑

|α|=m,α3=0

1

2α1
‖∇∂αp‖L2(M) ≤

∑

|α|=m,α3=0

1

2α1
‖∇∂αp̃‖L2(M) + g

∑

|α|=m,α3=0

1

2α1
‖∇∂α

 h

0
ψ dz‖L2(M).

From (7.39) and the above estimate it follows that the pressure term is bounded by

P ≤ C1h
1/2

∞
∑

m=1

∑

|α|=m−1, α3=0

1

2α1

(

‖∂αF‖L2(M) + ‖∂αG‖H1(M)

) (m+ 1)rτm

m!

+ gh1/2
∞
∑

m=1

∑

|α|=m,α3=0

1

2α1
‖∇∂α

 h

0
ψ dz‖L2(M). (7.41)
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Using Hölder’s inequality and the definitions ofF andG, we obtain

P ≤ C1

∞
∑

m=0

∑

|α|=m,α3=0

1

2α1
‖∂α(vj ∂jvk + vk∂jvj)‖L2(D)

(m+ 1)rτm

m!

+ g‖∇ψ‖Xτ
+ C1f

∞
∑

m=0

∑

|α|=m,α3=0

1

2α1
‖∂αv‖L2(D)

(m+ 1)rτm

m!

≤ C1

∞
∑

m=0

m
∑

j=0

∑

|α|=m,α3=0

1

2α1

∑

|β|=j, β≤α

(

α

β

)

‖∂βv · ∇∂α−β
v‖L2(D)

(m+ 1)rτm

m!

+ g‖ρ‖Xτ
+ C1g‖ρ‖Yτ

+ C1f‖v‖Xτ
. (7.42)

The first term on the right of the above term is bounded asU(v,v) using the three-dimensional case of
Lemma4.1, concluding the proof of the lemma. �

We now conclude the proof of Theorem2.3 in the case whenM is a half-space. Combining (7.40) with
(7.18) and (7.22), we obtain the analytica priori estimate

d

dt
‖v‖Xτ

≤
(

τ̇ + C2(1 + τ−5/2)‖v‖Xτ

)

‖v‖Yτ
+ g‖ρ‖Xτ

+ C2g‖ρ‖Yτ
+ C2f‖v‖Xτ

, (7.43)

for some positive constantC2 = C2(C0, C1). Since the equation for the evolution of the densityρ does not
contain a pressure term, similarly to (7.11) we have

d

dt
‖ρ‖Xτ

≤ τ̇‖ρ‖Yτ
+ C2(1 + τ−5/2)‖v‖Xτ

‖ρ‖Yτ
+ C2(1 + τ−5/2)‖v‖Yτ

‖ρ‖Xτ
, (7.44)

and therefore, by combining the above with (7.43) we obtain

d

dt
‖(v, ρ)‖Xτ

≤
(

τ̇ + C2g + C2(1 + τ−5/2)‖(v, ρ)‖Xτ

)

‖(v, ρ)‖Yτ
+ C3‖(v, ρ)‖Xτ

, (7.45)

for some fixed positive constantC2 > 0, whereC3 = g + C2f . Lastly, we letτ(t) be the solution of the
ordinary differential equation

τ̇ + 2C2g + 2C2(1 + τ−5/2)‖(v0, ρ0)‖Xτ0
eC3t = 0, (7.46)

with initial dataτ0. Arguments similar to those for the periodic case and to those for the two-dimensional
case, give the existence and uniqueness of solutions satisfying

‖(v(t), ρ(t))‖Xτ(t)
+ C2g

ˆ t

0
eC3(t−s) ‖(v(s), ρ(s))‖Yτ(s)

ds

+ C2‖(v0, ρ0)‖Xτ0
eC3t

ˆ t

0

(

1 + τ−5/2(s)
)

‖(v(s), ρ(s))‖Yτ(s)
ds ≤ ‖(v0, ρ0)‖Xτ0

eC3t, (7.47)

whereC3 = C3(C2, f, g) is a fixed constant, for allt ∈ [0, T∗), whereT∗ can be estimated from the data. We
point out that thesea priori estimates can be made rigorous using verbatim arguments to those in Sections5
and6. The only difference is that in the construction of the solutions, thenth iteratep(n) is defined here by

p(n+1)(x) = p̃(n)(x) + g

 h

0
ψ(n+1)(x, z) dz, (7.48)

wherep̃(n) is the unique smooth mean-free solution of the elliptic Neumann-problem

−∆p̃(n) = ∂k

 h

0

(

v
(n)
j ∂jv

(n)
k + v

(n)
k ∂jv

(n)
j

)

dz + f

 h

0

(

∂1v
(n)
2 − ∂2v

(n)
1

)

dz (7.49)

∂p̃(n)

∂n
=

 h

0

(

v
(n)
1 ∂jv

(n)
j + v

(n)
j ∂jv

(n)
1

)

dz + f

 h

0
v
(n)
2 dz. (7.50)
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We recall that the velocity iteratev(n+1) is defined via cf. (5.5), and hence after taking the derivative in time,
the average value inz, and integrating by parts inz, it satisfies

∂t

 h

0
v
(n+1) dz +

 h

0

(

v
(n) · ∇+ div v(n)

)

v
(n) dz +∇p̃(n) + f

 h

0
v
(n)⊥ dz = 0. (7.51)

By taking the dot product of (7.51) with the outward unit normaln to Γx, and using (7.50), we obtain that
ˆ h

0
v
(n+1)
1 (0, x2, z, t) dz =

ˆ h

0
v
(n+1)
1 (0, x2, z, 0) dz =

ˆ h

0
v01(0, x2, z) dz. (7.52)

Therefore, the boundary condition
´ h
0 v

(n)
1 (0, x2, z, t) dz = 0 (cf. (1.12)) is satisfied by all iterates if it is

satisfied by the initial data. Similarly, by taking the two-dimensional divergence of (7.51), and using (7.49),
we obtain that the compatibility condition

´ h
0 div v(n)(x, z, t) dz = 0 (cf. (1.14)) is satisfied by all iterates

if it is satisfied by the initial data. We omit further details.
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