LOCAL EXISTENCE AND UNIQUENESS FOR THE HYDROSTATIC EULER EQUATIONS
ON A BOUNDED DOMAIN
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ABSTRACT. We address the question of well-posedness in spaces ¢fiariahctions for the Cauchy problem
for the hydrostatic incompressible Euler equations (idiprimitive equations) on domains with boundary. By
a suitable extension of the Cauchy-Kowalewski theorem westtact a locally in time, unique, real-analytic
solution and give an explicit rate of decay of the radius af-analyticity.
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1. INTRODUCTION

The literature on incompressible homogeneous geophymas in the hydrostatic limit is vast, and
several models have been proposed both in the viscous amavibed case (cf. J.-L. Lions, Temam, and
Wang [13, 14, 15], P.-L. Lions [11], Pedloski 19], Temam and ZianeZ[/], and references therein). In the
present paper we consider the inviscid hydrostatic modéiwik classical in geophysical fluid mechanics;
see L9 and [11, Section 4.6], where the author raises the question ofemdstand uniqueness of solutions.
These equations are formally derived from the three-dioeasincompressible Euler equations for a fluid
between two horizontal plates, in the limit of vanishingtaigee between the plate$ b, 11]. The problem
is to find a velocity fieldu = (v1, v2, w) = (v, w), a scalar pressur, and a scalar densigysolving

o+ (v-Vv+wd,v+ VP + for =0, (1.1)
divv + 0, w = 0, (1.2)
0. P = —pg, (1.3)
ohp+ (v-V)p+w d,p=0, (1.4)

inD x (0,7), for someT" > 0. Here
D=Mx(0,h) ={(z1,29,2) = (x,2) eR®:x € M,0 < z < h}

is a3-dimensional cylinder of heightt, whereM C R? is a smooth domain with real-analytic boundary.
We denote bydiv, V, and A the correspondin@-dimensional operators acting an = (x1, z2), while

0, = 0/0z. Also, we letvt = (vg, —v1) be the first two components af x e3, f is the strength of the
rotation, andy is the gravitational constant. It follows fror.@) that the pressur® may be written in terms
of the densityp and the horizontal pressupéz,t) = P(x,0,1)

P(x,z,t) = p(x,t) — g(x, 2, 1), (1.5)

where we have denoted

B, t) = /0 pla, ¢, ) . (1.6)
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for all (z,z) € D andt > 0. The hydrostatic Euler equations.{)—(1.4) may then be rewritten as

o+ (v-V)v +w d.v + Vp + fot =gV, (1.7)
divev + 0,w =0, (1.8)
8.p = 0, (1.9)
Op+ (v-V)p+wd,p=0, (1.10)

where1) is obtained fromp via (1.6). The boundary conditions for the top and bottbph= M x {0, h}
and the sid&",, = OM x (0, h) of the cylinderD are

w(x,z,t) =0, onT, x (0,7, (1.11)
h

/ v(x,z,t)dz-n =0, onT', x (0,7), (1.12)
0

wheren is the outward unit normal téd1. Note that there is no evolution equation for Instead, the
incompressibility condition andL(11) imply that

w(x, z,t) = — /z divwo(x, (,t) dC, (1.13)
0

forall 0 < z < h, and0 < t < T, which combined again withl(11) shows that the vertical average of
divwv is zero, i.e.,

h
/ divv(ex, z,t) dz = 0, (1.14)
0
forall z € M and0 < ¢t < T. We consider a real-analytic initial datum
’U(ZE,Z,O) - 'UO(w7Z)a (115)
p(ZU,Z,O) = pO(w7Z) (116)
in D, which satisfies the compatibility conditions arising fr¢in12 and (L.14), namely
h
/ vo(x,z)dz -n =0, (1.17)
0
forallz € OM, and
h
/ divog(z, z) dz = 0, (1.18)
0

forall x € M.

The existence and uniqueness of solutions to the hydro&ater equations is an outstanding open prob-
lem (cf. P.-L. Lions 11]). The methods and results for hyperbolic systems cannappked to (.7)—(1.12)
in order to find a well-posed set of boundary conditions (dig€ and Sundstrom2@]). The instability
results of Grenier§, 5] and Brenier f]] suggest that the problem may be ill-posed in Sobolev spaces
analogy to the Prandtl equations. Recently, Renady proved that the linearization of the hydrostatic
Euler equations at specific parallel shear flows is ill-paseithe sense of Hadamard. The only local exis-
tence result available for the nonlinear problem was obthin two-dimensions by Brenie8] under the
assumptions of convexity af in the z-variable, constant normal derivative@bnT ,, and of periodicity of
(v, w,p) in thex-variable.

The study of this system in spaces of analytic functions épghint of convergence of a number of
essential difficulties which we need to recall before we qaperly describe the results in detail. For a given
system of partial differential equations, there is the @éssfiwell-posedness in the sense of Hadamafd [
The objective here is to show that the system of partial difigal equations supplemented with suitable
boundary (and possibly initial) conditions, possessesguersolution in certain spaces, and that the solution
depends continuously on the data.
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When we are interested in spaces of analytic functions @rsgface variables), two different issues can
be considered. The first one is when a well-posedness ressilbden proven in a suitable function space
(e.g. a Sobolev space) for a suitable initial-boundary egitoblem, and we wish to show that the solution
is analytic in space within the domain, or possibly up to the boundary @ (in which case the solution
extends beyon®). Pertaining to this type of approach are the results of 8a@hd Benachoui2] for
the Euler equations (see als® L0, 16]), or Masuda 18] for the incompressible (viscous) Navier-Stokes
equations. The second issue would be to look for a Cauchyakwski-type of result. In such a case a
system of partial differential equations and a number o&dae given, analytic, on a manifold. The
equations may permit to compute all the derivatives of tHenawn functions, and hence the uniqueness of
an analytic solution in the neighborhood Wffollows. For the existence, the problem is to derive enough
a priori estimates showing that the Taylor series is corar@rgn a neighborhood d?. Note that for some
equations no additional boundary condition, except tha deen of), are necessary. For example one can
solve in this way the wave equation; — u,, = 0, 0 < x < 1, for a short interval of time, without any
boundary condition for, atz = 0,1. Much more elaborate Cauchy-Kowalewski-type resultsuigelthe
results of Sammartino and Cafflish (c24], see also17] and references therein) for the dissipative Prandtl
boundary layer equations. 124, 17], using the abstract Cauchy-Kowalewski theorem (cf. Asdfp the
authors prove the existence of a real-analytic solution.ndie that due to the non-locality created by the
pressure it is challenging to verify that the assumptionthefabstract Cauchy-Kowalewski theorem hold
for the systemX.1)—(1.4).

In the case of the hydrostatic Euler equatiofsl}-(1.4) an additional fundamental set of difficulties
arises when we raise the question of well-posedness. Indeedrding to an old result of Oliger and
Sundstrom 23], revisited in Temam and Tribbi&2f], the boundary value problem for these equations, as
well as for a number of other equations from geophysical fiuéthanics, cannot be well-posedin [0, T')
for any set of local boundary condition¥he approach inZ3] and [26] is the following: D = M x (0, k)
with M of the form(0, L) x (0, L2). An expansion of this system is made in a suitable set of easid sine
functions in the vertical) direction. The boundary conditions which are needed foheaoden depends
onn and they are thus of a nonlocal type. In that direction, aliized system related t&.()—(1.4) has been
studied by Rousseau, Temam, and Tribl@a P2], and a result of well-posedness for this system has been
achieved using the linear semigroup theory. Note tha2in22] the boundary ofM = (0, L1) x (0, Lq) is
not analytic.

For the hydrostatic Euler equations.))—(1.4) initial conditions need to be specified for the variables
v = (v1,v2) andp, which are callegprognosticvariables in the language of geophysical fluid mechanics,
but P andw arediagnosticvariables, giving rise to another set of difficulties. At lkaastant of time,P
andw can be expressed as functions (nonlocal functionals) afd p. Furthermore, as it appears below,
P is determined by the solution of an elliptic Neumann problem(7.24—(7.25) which introduces some
form of ellipticity in the system X.1)—(1.4), which is otherwise essentially hyperbolic. The requieaits
for solvability for this Neumann problem, lead us to introdwa novel side-boundary condition (cf.12).
Since z-independent solutions to the 3D hydrostatic Euler eqnatit.1)—(1.4) are solutions to the 2D
incompressible Euler equations, the natural boundaryitond1.12) is necessary.

After all the preliminaries, we can describe our result a®malatal Cauchy-Kowalewski-type of result
for the hydrostatic Euler equations.{)—(1.4). In the present paper we prove the existence and uniqueness
of solutions to the Cauchy problert.{)—(1.12) in the two-dimensional case (that is wittt and (u, p, p)
independent of:,), and the three-dimensional cases whetés a half-plane or a periodic box. These results
were announced in the not8][ The three dimensional case wh@rt is a generic bounded domain with
analytic boundary will be treated in a forthcoming paper.teNihat this is not a boundary value problem.
Indeed we do not require an infinite set of boundary condition 9D, as seems to be required by the
results of P1, 22, 23, 26]. However, the Neumann problem needed for the determmatid® destroys the
hyperbolic nature of the equations (and thus also the fipiéed of propagation), and for the uniqueness
of solutions we cannot argue by unique continuation, but atikar employ methods which pertain to the
evolution problem. Furthermore, we obtain an explicit maftelecay in time of the radius of analyticity of
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the solution. To the best of our knowledge this is the firsaloagell-posedness result for the hydrostatic
Euler equations in three dimensions, and in the absencengégity, even in two dimensions.

Organization of the paper is as follows. Sectiboontains the functional setting and the statements of
the main theorems. In SectiGwe give thea priori estimates for the two-dimensional case. In Section
we prove the derivation of the estimates for the velocitye Tanstruction of solutions is given in Section
and the uniqueness is proven in SecttrSection7 contains the proof for the three-dimensional periodic
domain and for the half-space.

2. MAIN THEOREMS

In the following, o = (ai,a2,a.) € N> and3 = (81,52, 3.) € N3 denote multi-indices, where
N = {0,1,2,...} is the set of all non-negative integers. The notatién= 9% 9% = 031 05202%, where
o' = (a1, az) will be used throughout. We denote the homogeneous Sobeieisrgorms| - |,,, form € N,
by

[V|m = Z 0%Vl L2(py, (2.1)

|al=m
where||0%v||2, = [[0%v1[|2, + [|0%va /2.

Remark 2.1. In the two-dimensional case, whért = (0, 1) x R is independent af,, the L2 norms in the
definition of| - |,,, are considered only with respectitg andz, that is

1 prh
Ha%iH%z(D):/O /0 |0%v; (2, 2)|* dz day,
fori e {1,2}.

We recall that a functiow(x, z) is real-analytic inc and z, with radius of analyticityr if there exists
M > 0 such that

for all (x, 2z) € D anda € N3, where|a| = a; + as + .. Forr > 0 andr > 0 fixed, we define the spaces
of real-analytic functions

h h
X, = {'U € C™(D): / v, dz-n = 0,/ divedz =0, ||v|x, < oo} , (2.2)
0 0
where
> (m+1)"r™
[vllx, = Z MmT- (2.3)
m=0
Similarly, denote
Y, = {v € X, |vlly, < oo}, (2.4)
where the semi-norrf - ||y, is given by
e (m+ 1)r7_m—1
= —t 25
Iollv: = 3 ol =y (2.5)

We writep € X, if p € C*°(D) and||p||x, < oo, andp € Y; if p € X, and||p|ly, < oco. For ease of
notation, let

(v, )l = llvllx, + llollx,



LOCAL EXISTENCE AND UNIQUENESS FOR THE HYDROSTATIC EULER BOATIONS 5

and similarly

(v, p)llyv. = llvlly- + llelly,-
Using the Sobolev embedding theorem it is clear fr@m)(that if v € X, thenw is real-analytic with radius
of analyticity 7. Conversely, ifv is real-analytic with radius of analyticity (and satisfies the boundary
conditions), therw € X for anyr’" < 7 andr > 0, since)_, -, m"2(7' /7)™ < oco. Moreover, we
have the estimatgv||x, < |[v|[z2(p) + Tl|v|ly,, and for anye > 0 we haveX, .. C Y; since|jv||y, <
(erIn(1 +¢/7)) Hvllx, ...
The following theorem is our main result for dimension two.

Theorem 2.2. Let the functionau, p, p be independent of,, and letr > 2. Assume thabg and py are
real-analytic with radius of analyticity strictly largehtinr,, and suppose that, satisfies the compatibility
conditions(1.179)—(1.18. Then there exists, = T\ (r, g, 70, || (vo, po)| x,,) > 0, and a unique real-analytic
solution(wv(t), p(t)) of the initial value problem associated with.7)—<1.12) with radius of analyticityr (),

such that
t

Iw(0). p(0) 1, + Co /0 (). ()l ds

t
+ C(w0, o)1 x,y " /0 (1+772() | (0(s). () o, ds < (w0, p0)llx e (26)

forall t € [0,T}), whereC = C(D) is a fixed positive constant. Moreover, the radius of anaitytiof the
solution,r : [0, T%) — R4, may be computed explicitly fro(8.26) below.

In the three-dimensional case, the boundary conditioh} allows us to find the pressure implicitly as the
solution of an elliptic Neumann problem (cf..24—(7.25). The classical higher-regularity estimates (cf. J.-
L. Lions and Mageneslp], Temam R5]) may not be used to prove that the pressure has the sams @diu
analyticity as the velocity, preventing the estimates frdosing. To overcome this obstacle we introduce
a new analytic norm which combinatorially encodes the fiansf normal to tangential derivatives in the
pressure estimate. The following theorem treats the casawi is a half-plane, or the periodic domain.
The case wherM is a generic real-analytic bounded domairRifhy and (L.12) holds ondM, requires new
ideas and will be treated in a forthcoming paper.

Theorem 2.3. Letr > 5/2, and letM be either the upper half-plangr; > 0} or the periodic boX0, 27]%.
Assume thai, andp are real-analytic with radius of analyticity strictly lagg thanr,, and suppose that,
satisfies the compatibility conditiors.17)—(1.18). Then there exist§, = T.(r, f, g, 70, [|(vo, o)l x,,) >
0, and a unique real-analytic solutiofv(t), p(t)) of the initial value problem associated with.7)—(1.12)
with radius of analyticityr(¢), such that

100, PO,y +Co [0 1w(s), el ds

t
+ CH(Uo,po)HXTOeC”/O (1+772(5)ll(w(s), p(5)) v, ds < (w0, po)lx, €, (2.7)

forall t € [0,T%), whereC = C(D) andC, = C1(f,g) are fixed positive constants. Moreover, the radius
of analyticity of the solutions : [0, 7,) — R, may be computed explicitly fro(d.13 or (7.46) below, for
the periodic box or the half-plane respectively.

The different powers of in (2.6) and @.7) are due to the different exponents in the two-dimensiondl a
three-dimensional Agmon’s inequalities.

Remark 2.4. We note that the solutions(¢) constructed in Theorer?.2 and Theoren?.3 do not depend
on the functionr(t). Moreover, ifv™®(t) andv(? (t) are two such real-analytic solutions, with radii of
analyticity (1) (t) and 7(?) (t) respectively, therv()(t) = »?)(¢) for all t on the common interval of
existence.
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3. THE TWO-DIMENSIONAL CASE

In this section we give the formal priori estimates needed to prove Theor2ra These estimates will
be made rigorous in Sectiofisand6. Letr > 2 be fixed throughout the rest of the section. Assume
that (v, w), p, andp are smooth solutions ofL.(7)—(1.12), with vy, po € X,, for somery, > 0, which are
independent of-. The horizontal domaioM needs to bes independentiranslation invariant iy, and
hence without loss of generality we may considefr = (0,1) x R. Since all derivatives with respect to
xo vanish we denoté, = 9d,,, and similarlyA = 9, ,,. Itis convenient to write the system of equations
(1.7—(1.12 in component form

Opv1 + v10v1 + w0, v1 + Oup + fv2 = g0z, (3.1)
09 + 010,09 + wd,v9 — fv1 =0, (3.2)
Oyv1 + 0w = 0, (3.3)
0,p =0, (3.4)
Orp+ v10:p + wd,p =0, (3.5)
wherey(x, z) fo ¢) d¢. The boundary conditions far andv; are
h
/ vidz =0, onl'y, (3.7)
0

wherel', = {0, 1} x R. We note that there is no boundary conditionderIntegrating the incompressibility
condition @.3) in z, and using §.6) we geto,. foh v1 dz = 0. Combined with 8.7) this implies that for all
x € M we have

h
/ vy dz = 0. (3.8)
0

In the two-dimensional case, the boundary conditién§) @nd @.8) give the pressure explicitly as a function
of v andp, and imply the cancelation property.10 below, which turns out to be convenient in th@riori
estimates below.

Lemma3.1. Let (v, w,p,p) be a smooth solution f3.1)«3.8). Then, after subtracting from a function
of time, the pressure is given at each instant of tirbg

h T h h
p(x) = —]g v%(a:, z) dz—f/o ][0 vo (2], 2, 2) dz da’y + gjg Y(x, z) dz, (3.9)

wherey is obtained fronp via (1.6). In (3.9) we have suppressed the dependenedanconvenience. Also,
we have the cancelation property

(0;0%p, 0%v1) = 0, (3.10)
for any multi-indexx € N3,

In (3.9 and in the following we use the notatiof(‘(‘ ¢(x,2)dz = (1/h) fo (x, z)dz, for any func-
tion ¢. In the two dimensional case we do not integraterin so that in 8.10 we denoted(¢;, ¢2) =

fol foh é1(x, 2)p2(x, 2) dz dzy, for any pair of smooth real functions and¢,.

Proof of Lemma3.1 Integrating 8.1) in z and using the boundary conditioB.8), we obtain

Ox </Ohvl(a: z)dz + hp(x / U(x,z)d )z—f/ohv2(m,z)dz. (3.12)
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Here we used

h h h
/ wo,v1 dz = —/ v10,wdz = / 010,01 dz, (3.12)
0 0 0

which holds byw|r, = 0, and the incompressibility conditior8.Q). The identity 8.9) then follows from
(3.11) by integrating inz; andsubtracting a function of time.

In order to prove §.10), note that ifoae, # 0 or ay # 0, thend®p = 0. On the other hand, ks = ., =0
anda; > 1, then by 8.3) we haved®v; = 0% v, = —9%1~19,w. Moreover, the boundary conditio.¢)
for w implies 921 ~1w = 0 onT,; therefore integrating by parts ingives

(0,0%p, 0%v1) = —(0,0%p, 02 "1 0,w) = (3,02 Tp, 02~ 1w) = 0.
Lastly, we need to prove3(10) in the casex = (0,0, 0). Integrating by parts in; and using 8.3) we have
(Ozp,v1) = (p,0,w) since on',, = {0,1} x R by (3.7) we have

h h
/ plr,vilr, dz zplrw/ vir, dz = 0. (3.13)
0 0

Integrating by parts in we obtain(p, 9,w) = 0 sincew|r, = 0. Therefore, 8.10) is proven. O

We now turn toa priori estimates needed to prove TheorgrdA From @.1), (2.3), and @.5) it follows
that

d o m+1)"7(t)™
Lol = OOl + 3 Y oo LT g 1a)

m=0 a|=m

Given a multi-indexa € N3, we estimatd/dt)||0%v(t)| ;2 by applyingd® to (3.1)—(3.2) and taking the
L?(D)-inner product(-, -) with 9%v. Recall that in(-, -) we integrate only with respect to, andz. Since
(0vt, 0% > = 0, we obtain

S0 0(1) 3 + (0%(0 - Vo -+ wdiw), 00) + 0"V, 9%v) = (0T, ). (3.15)

To treat the second term on the left 815, we use the Leibniz rule to write
(0%(v - Vv +wd,v),0%) = Z <a> (0Pv - VO Pu, 0%) + Z <a> (0Pw 0,0 Pv, 0%).
0<B<a b 0<B<a b

The third term on the left of3.15 vanishes by Lemma&.1, and therefore by3(15 and the Schwarz in-
equality we have

d
Dol < Y <B>H85'u vorfulat Y <B> 105w 8,0° P 12 + g VO Y| 2. (3.16)

0<f<a 0<pB<a

Substituting estimate3(16) above into 8.14), and using the independence on thevariable, we have the
a priori estimate

d .
vlx. < Tlolly, +U(vr,v1) + Uy, v2) + V(w, v1) + V(w, v2) + gll0:9l|x. (3.17)
where fori € {1,2}, a vector functiorv € X, and a scalar function € C*°(D), we denoted

U (v, 0 ZZ Z Z <5>Haﬁvl 0% B HL2%> (3.18)

m=0 j=0 |a|=m |B|=j,8<a
and

D=2 > <Z>H3’3w3zaa‘%|!m%#. (3.19)

m=0 j=0 |a|=m|5|=j f<a
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In (3.19 we denoted as usual(x, z) = — foz divwv(zx, () d¢. The following lemma summarizes the esti-
mates ordf (v, v;) andV(w, v;), fori € {1,2}. Itis a corollary of Lemma.1, which is proven in SectioA.

Lemma3.2. Letv € Y., for somer > 0 andr > 2, and letw be given by1.13. Then we have
U(vr,v1) +U(vr,v2) < Co(L+ 7Yl x, o]y, (3.20)
and
V(w,v1) + V(w,v2) < Co(1+772)|v[|x, [|vlly;, (3.21)
for some sufficiently large positive constarit = C'(D).

To bound the last term on the right &.(7) we note that

Ol = 3 [0°0u0ll e = 3 /0 0% B,p(a, C) d

|a)l=m |a|=m,0.=0
< C(h)|plm+1 + plm,
so that by possibly enlarging the constaftfrom (3.20 and @.21), we have

9109 x, < Cogliplly, + gllpllx.- (3.22)
We fix Cy = Cy(D) as in B.20—(3.22 throughout the rest of this section. By.{7), (3.20), (3.21), and
(3.22 we have

d ) -
o ®)lx.q, < (78 +3Co(1+ 7O 0)lx,q,) ) [0Dlv,, + Coglle®)llv, + gllo®)x,q,

(3.23)

+ Y et e, )|l

L2 ol=m,a.>1

Similarly, by Lemma4.1we obtain from 8.5) an estimate for the growth qito(t)HXT(t), namely

%\\p(t)llx,<t> < TOlp®)lly,(, +U1(E), p(8)) + V(w(t), p(t))
< 7 (®)lpllv,q, + Coll + 7))o ®)llx, ) 1oy, +2Co(1+ 7)) [0 ()l 12O | x7r)-

(3.24)
By summing the estimate8.@3 and @.24) we obtain
d ) -
2@ lx, < (F 4 Cog +3Co(1 +7 v, p)llx, ) 1w, p)lly; + gll (v, p)llx, - (3.25)
Define the decreasing functiorit) by
7+ 20 Cog + 20 Co (1 + 772)|(vo, po) | x,, ¥ = 0, (3.26)

and7(0) = 7p; this uniquely determines in terms of the initial data. Lel, be the maximal time such
that7(¢t) > 0. Itis clear thatr(¢) and T, may be computed from3(26) in terms of the initial data. By
construction, we have at= 0

() + Cog + 3Co (1 + (1)) [|(v(1), p(t) |1 x, ) <O, (3.27)
and by @.25 we then have for a short time
1(0(8), p(t)) I,y < ll(v0, po)llx,, €7 (3.28)

It follows that (3.27), and hence3.28), holds for allt < T,.. Moreover, by 8.25), we obtain that the solution
is a priori bounded inL>(0, T}; X,) N L'(0,T,; (1 + 772) Y;) in the sense

t
1(v(2), p(t)llx, ) + 10 Cog /0 /(v (s), p(9)lv, ., ds

t
+ 1000H(vojpo)||xfoegt/0 L+ 7)) (s) p())lys,y ds < wollx, e, (3.29)
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for all t < T.. The formal construction of the analytic soluti¢n, p) satisfying 8.29, with 7 given by
(3.26) is given in Sectiorb, which combined with the uniqueness result given in Sediicompletes the
proof of Theoren®.2

4. THE VELOCITY ESTIMATE

The goal of this section is to prove the next lemma. For colevee of notation, we suppress the time
dependence af, w, v, andr. By the two-dimensional cagé= 2 we mean that all functions and the domain

are independent of the variahtg. In that case we recall that bMSH%Q(D) we meanfo1 foh |p(x, 2)|* dz day,
for any smooth functior independent of-.

Lemma4.l. Letv € Y, for somer > 0, ands € C>(D) N L?(D) with ||7]|y, < oo. Fixr > d/2 + 1
andd € {2,3}. Letw be determined frone via (1.13 i.e.,w(z,2) = — [ divo(z,¢) d¢. If U(v;,0), for
i € {1,2}, andV(w, ) are as in(3.18 and (3.19 respectively, then we have the estimates

U(vi,9) < Co(L+ 77D [w]lx. [[3lly,. (4.1)
and
V(w,) < Co(L+ 7D o|x, 3]l + Co(r™" + 77D o]y, ||3]lx,, (4.2)
for some positive constanty = C(r, D), wheref(d) = 1 if d = 2, andf(d) = 3/2if d = 3.

By settingy = v, and thenv = v, Lemma3.2 is a corollary of Lemmal.1 for the cased = 2.
For the rest of this section we fik = 2. In the three-dimensional case the proof is identical eixtmp
two modifications.The integration is done also iy, and hence the exponents in Agmon’s inequality are
different We omit further details. Heré,- |[1» = [| - || »(p), forall 1 < p < oo.

Proof of Lemmat.1 In order to prove the lemma, we need to estimate the tgj@ns; 9,,0"3|| ;2 and
10Pw 0,0 P3| 2, for all o, 3 € N®. For this purpose it is convenient to distinguish between tases:
0 <8 <|a—pland|a — F| < |8] < |al. When0 < |5| < |a — 3], by the Holder inequality, and by the
two-dimensional Agmon inequality we have

0%0; 0,07 P0| 12 < C|0Pv3]| oo |02, 0% PD|| 2

< Cl|O%vi | 157 1A + 8..)0% 0|12 02,0 P || 12 + C|10° 0il| 21|02, 0% 5 12, (4.3)

for some constan€ = C(D) > 0. Recall thatA is the horizontal Laplaciad,, ., whend = 2, and
Oz, 2, + Oz, 2, Whend = 3. Similarly, we estimate

107w8.0% P3| 2 < C||0%wl| o (|0:0% 7| 2
< Ol w2 1(A + 0.)0 w]| 2110:0° 0 2 + C0%w]|2]10:0° P52 (4.4)
As in the above estimates, for multi-indices such that- 3| < |3| < |a|, we have
10%0; 02,070 12 < C1|0%il| 210,070 10
< C0%il| 210,051 |0, (A + 0:2)0°75||}5° + ClIO%vi ] 121100, 0% P 12, (4.5)
and
107w 0.0° 75| 12 < C[10%w]| 12(|0:0 5| L

< C)0%w 12)18.0° P57 10- (A + 8.)0° 5|35 + C|0Pw| 121|0.0°PT| 2. (4.6)
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Throughout this section we use the inequalif}) < (;g") which holds for alla, 3 € N? with 8 < o

Moreover, sincéa — | = |a| — || for 8 < a, the identity

Y agbap = (Z ag) ( > bv>, (4.7)

la|=m |B|=j,f<a 18|=7 Iyl=m—j

holds for all sequenceiz} and{b, }, and forj < m; this identity is useful when estimatidg = 4/ (v;, )
andV = V(w, 7).

With (4.3) and @.5) in mind, we split/ = Uje., + Upign, according td < j < [m/2] and[m/2] +1 <
j < m respectively. Using4.3), we have

B~ m+1)"'t™
Uiow < C Z 2. 2 (5)\@6 o o [T PR TS

m=0 j=0 |a|= IB\ =j,B<a

255 51 Sl ol () R R I C

m=0 j=0 |a|=m |B|=j,B<c
By (4.7) it follows that

> <6>”aﬁ Uil (A + 8.)0% v |12 10,0 P | 2

la|=m |B|=j,8<a
1/2 1/2
m ~
C<j> (Z 0’3vim) (Z (A+0zz)35vu2> ( > a’yaxsz) . (49
1Bl=3 1Bl=3 [v|=m—j

We observe that s, _,,,_; (02,070 12 < C[0]m—j41 andd_ 5, [[(A + 0.2)9%v;|| 12 < Clvlj19. Hence,
from (4.8) it follows by the discrete Holder inequality andl.9) thati/,,,, is bounded from above by

< [ /2, (1/2 (m+1 N (m+1)"r
¢3S ol ol flmson () LT L 03 Y ool () T
m=0 j5=0 J m=0 j5=0 ’
= A Gy G+3T2NE (a2
=022 (s 5 ) (’”"’”2 ) ()
oo [m/2] _|_1> ) (m — j +2)rrm—
+CZ Z | Z|j : |9]m—ja1 ( 7 , (4.10)
m=0 5=0 ! m_])
where we have used the inequality
<m> (m+1)" (m=—g! GUPGHAME (i) G+DVGVE (4.11)
i) mt (=2 G TPG A3 (m— 2 ()G T

which holds for alln > 0,0 < 5 < [m/2], r > 1, and a sufficiently large consta@t depending only on.
By (4.10), the discrete Holder and Young inequalities imply

Uow < C(l + T_I)HU|’XTH1~)HYT'
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By symmetry, from 4.5) and @.7), we obtain an estimate for the high valuegioNamely

m\ (m+ 1) 7™
Z/{hzgh<CZ Z |1)Z|J|0mzv|1/2 |02, (A + 0,,)0 |%2]<]’>¥

m!
m=1 j= [m/2 1+1

- m+1
+C Z Z Vil 1Oz, Olim— ]<j>(T!)

m=1 j=[m/2)+1
< O+ Yvllx, 9]y, (4.12)

for some positive constarit depending only om andD. This completes the proof ofi(1). The estimate
onV is in the same spirit, but we need to account for the derigdtigs that occurs when estimatingin
terms ofv. First, note that the definitiori.(13 of w and that of the semi-nornjs |; imply

wly < >0 (lof ok divell + )

181=3,8321 |81=7,83=

for some constant’ = C'(h) > 0. We recall thatdiv is the divergence operator acting @n Similarly
we have thatAw|; < |v|j12 + C|v|j43, and alsgo,.w|; < |w[j12. Next, we splitV = Vi, + Vhigh,
according td) < j < [m/2] and[m/2] < j < m. By (4.4) and @.7) we have

oo [m/2]
. m\ (m+ 1) 7™
Viow <€ 30 3 (1ol + 1ol3) (1ol + o3 ooy (7 ) 22V

/ aﬁdlvv( 7C)dCH < vl + Clvlj41,
L2

!
m=0 j=0 m:
oo [m/2]
(m+1)"r
£OX S (ol o) ohogen () T @19
m=0 j=0

for some constant’ = C'(r, D) > 0. Using the fact that
(m (m+1)" (m—g)! (G+DM2G+3)12
j)omb (m=g+2) (G2 G+ T

holds for allm > 0 and0 < j < [m/2], for some sufficiently large positive constatitdepending only on
r > 2, we obtain

Viow < C(1+772)||v]|x [[3]ly, -
Lastly, to estimaté/,,;,,, we note that by4.6) and @.7), we have

m\ (m+ 1)"7™
Vn O3S 052, 10u(A + 0,.)3 %%(j)%

m!
m=1j= [m/2 ]+1

PO S bty () DT

o m
S1/2 -1/2 m\ (m+ 1) 7™
SOY S (ol L alol2 () T

m=1 j=[m/2]+1
- = 5 m\ (m+ 1) 7™
c E E (lvlj + vlj+1) \U\m—j+1< .>7( ') . (4.14)
. 7 m)!
m=1 j=[m/2]+1

By symmetry with theV,,,, estimate, the lower order terms (the ones contaifirig) on the right side of
(4.14) are estimated bg' (1+7 1) ||v|| x, [|2]|y, . On the other hand, the terms containjog ., are similarly
bounded byC (7=t + 772)||lv||y. ||7]|x, concluding the proof of4.2), and hence of the lemma. O
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5. CONSTRUCTION OF THE SOLUTION

The formal construction of the solutions is via the Picaedation. Letv(?) = vy, p©) = p, be given,
with v satisfying the compatibility conditions.(17) and (1.18. Forn € N, let

w™ (x, 2, t) = —/Z div o™ (z, ¢, t) d¢, (5.1)
0
and
(@, 2,t) = / o (@, ¢, 1) dc. (5.2)
0

The density iterate is given by

t
D (1) = po — / (v(n)(s) v +w(n>(3)az> o™ (s) ds, (5.3)
0

and motivated by Lemma.1, we define the pressure

h 2 xr1 h
p(n+1)($’t) = ][ <v§n)) (x,2,t) dz — f/ ][ vén)(mll,mg,z,t) dz dz|
0 o Jo

h
+ g][ 1/1(”+1)(a:, z,t) dz. (5.4)
0

Lastly, the velocity iterate is constructed as
t
v () = vy — / (v(")(s) -V + w(")(s)az) v™(s) ds
0

- (T8 (s) - gTUHI(s) 4 Fol (s)) s, (5.5)
0

for all n € N. Taking the time derivative of the first component 6f5), integrating inz, and using the
fact thatc‘)xlp(”) is obtained from %.4), we obtain that Oh v§”+1) dz = 0. Since the first component of
the initial data,ug;, has zero vertical average, we obtgf@vg")(m, z)dz = Oforallxz € M andn > 0.

Therefore the compatibility conditionﬁh div vgn)dz = 0 and the boundary conditioﬁ)h fu&") lr,dz = 0are
conserved for alh € N. Recall that we denote hiiv the differential operator acting only an

Assume thatv, po) € X;,+e, for somed < e < 7. In particular, we havévy, pp) € Y,,. We define
7(t) by 7(0) = 79 and

#(t) + 20 Cog + 20 Co(1 + 772(1)) || (vo, po) | x,, €7 = 0, (5.6)

where the constarity = Cy(r, D) is fixed in Lemmad. L First we show that the sequence of approximations
v is bounded inL>(0,T; X,) N LY(0,T; (1 + 7=2)Y;) for some sufficiently small” > 0, depending
solely on the initial data.

Lemmab5.1. Let(vg, po) € X, andr(t) be defined bgs.6). The approximating sequengév(™, p(™)1, 5,
constructed vig5.1)—5.5), satisfies

T
up 1™ (@), o™ (1))|x.,, +10Cog /0 T (@ (1), 0 (1))lv, , dt
€|0,

T
+20 Coll (w0, po) e /0 (14720 1@, 2 D)y, dt < 3e7 | (vo, o)1, (6.7)

for all n > 0, whereT' = T'(vg, po) > 0 is sufficiently small.
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Proof of Lemm&.1 Whenn = 0, sincer is decreasing and since < 7, for all t > 0 we have
[(vo, po)llv;, < Cll(vo, po)l x,, ./, for some constant’. Sufficient conditions for the bound.() to
hold in the case. = 0 are thatT" is chosen such that

10Co C(e?" = 1)[|(vo, po) | x, 1. < €ll(®0, p0)llx,, 7" (5.8)

and
T
20 Cy Cu(vo,po)\lxms/ (1 + 7—2@)) dt < e. (5.9)
0

The condition $.8) holds if 7" < T, whereTi (e, Co, C, g, || (vo, po)l| x,, » [(vo, po) I x.,.) > O is deter-
mined explicitly. Also, by the construction ef (cf. (5.6)) we have20 Cy(1 + 772) < —7/Il(vo, o)l x,, »
so that the condition5(9) is satisfied if we choos& so that

(w0, p0)llx.,

T0 — T(T) S s
C”(UO7PO)HXTO+5

(5.10)

which is satisfied ifl" < T3, whereTx(e, 10, Co, C, g, [|(vo, po) || x., | (vo, po)ll x,,..) > 0 may be com-
puted explicitly from 6.6) and 6.10. Thus 6.7) holds forn = 0 if 7' < min{T},T>}.
We proceed by induction. BYs(3), (5.5), and Lemmat.1, similarly to estimate3.25, we obtain

i H (,U(n—i-l)

i 4D)llx, < (7 + Cog) (60, p0*D) Iy, + gl (0D, D) .,

+3Co(1+772)|(0™, p™) |, |(v™, p™) ]Iy,
< (7 + Cog)ll (0" Y, p™ D)y, + g\l(v("“)’p("“))lle
+9Co(1+72)e | (w0, po) [ x, I (™, 2™y, (5.11)

by the induction assumptioin the above we also used the fact that by Len@mave have(0*Vp(™), 9v(+1)) =
0. Using thatr was chosen to satisfs (6), the above estimate and Gronwall’'s inequality give

) P

t
1D (@), o () 1x,,) + 10 Cog /0 o (5), D (5)ly , ds
t
+20 Col| (w0, po) |, /0 (1+772)) 1@ (5), o () Iy, ds

t
< /w0, po) 7, €% + 97 Coll (w0, po) 1 x., " /0 (14 772) 1" (5), 2 (), s (5:12)

The proof of Lemméb.1is completed by taking the supremum ovet [0, 7] of the above inequality, by
the induction assumption, and by additionally lettifidpe small enough so thared” < 40. g

We conclude the construction of the solution by showing thatmapv(™ — v("+1) is a contraction in
L>(0,T; X,) N LY0,T; (1 + 772)Y;), for some sufficiently small’ depending on the initial data.

Lemma5.2. Lets™ = o) — o andj") = pr 1) — o forall n > 0. Let(vo, po) € Xryie, 7(t)
be defined by5.6), andT be as in Lemma.L If for all n > 0 we let

T
I = Sup @™ (@), 5™ () x, ) + 10 Cog /0 AT (1), 5™ () v, ., dt
te|0,

T
+20 Coll (w0, po) ., " /0 (14772 16 @), 5 (), o dt, - (5.13)

then we have0a,, < 19a,_1 forall n > 1.
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Proof of Lemm&.2 Denotew(™ = w1 — () 4h(n) = o (n+1) _ () andp) = p(ntl) — () Then
we have that the difference of two iterations satisfies thegons

8o + (v™ .V +w™d,) 5" 4 (3D . ¥ 4 5D, )p)
+ V™ — gV 4 fpVL =0, (5.14)
and
8p™ + (v™ -V +w™ 0,) 57V + (3™ . v + w5 D9,) pn ) =0, (5.15)
with initial conditions@™ (0) = 0 and 5 (0) = 0, for all n» > 0. Since the approximate solutions

u(™ satisfy the boundary conditiond.(1)—(1.12), similarly to the proof of 8.10), it can be shown that
(v, 9oy = 0 for all « € N3, Hence, from%.14), (5.15), and Lemmat.1, we obtain

d

ZN@E, 5 x, < (4 Cog)ll(@™, 5Dy, + g5 <">>||XT
+3Co(1+ 72 (0, ™) x, + [, 5 7D) 1, 1B, 5Dy,
+3Co(1+ 772 (W™, o)y, + (0" p<“ Dy Y@, 7).

(5.16)

Using the definition of- (cf. (5.6)), the estimate in Lemnma.1, Gronwall’'s inequality, and taking the supre-
mum fort € [0, T], we obtain

T
an < 18Coe" || (vo, po)llx, / (L4720 @00, 50Dy, dt
0

T
+ ( sup ||<f)<“—1>,p~<"—”>||xf> / 3Co(1 + 72?0 ([ (W™, o)y, + (0", p )y, )dt.
te[0,T 0
(5.17)

If T'is taken such that8 e9” < 19, then the above estimate and the definitiom,p{cf. 5.13 imply that
ap < B

" =20

This concludes the proof of the lemma, showing that the gp), p) — (v, p(»=1) is a strict

|_>
contraction. The existence of a solution 1074—(1.12) in the class.>°(0, ,XT) NLY0,T; (1 +7172)Y,),
with 7(¢) given by 6.6) follows from the classical fixed point theorem. g

Ap—1- (5.18)

6. UNIQUENESS

Fix (vo, po) € Xr,+e, a real-analytic function of® with radius of analyticity strictly larger than, for
some positive < 7. Let7(t) be defined by-(0) = 7o and7 +20Cqg +20Co (1 +72) [ (vo, po)ll x,, €7 =
0, whereCy = C(D,r) > 0 is the fixed constant defined in Lem&. Let T} be the maximal time such
thatr(t) > 0.

Assume that there exist two solutiofs™), p()) and (v, p(?)) to (1.7)—(1.12) evolving from initial
data(vg, po), such that fori = 1, 2, we have

t
109 (1), p)lIx,, +10Cog /0 (0 (s), 99 (5))lv, o, ds

t
+10C0[ (w0, po) ., € /0 (14 772)) WD (), 09 () Iy, s < 00,
(6.1)
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for all 0 < ¢ < T.. Similarly to (3.28) we have thatjv(")()||x,,, < [l(vo,p0)llx,, e’ fori € {1,2} and

forall0 < t < T.. Letw® andp(® be the vertical velocity and the pressure associategflo and let
VO (x,2) = [ pD(x,¢)d(, fori € {1,2}. We denote the difference of the solutions) — v(?) = v,
pM) — p@) = p, and similarly definev, 1) andp. Then(v, w, p, p) satisfy the equations

o + ('v(l) -V + w(l)az)'u +(v-V+ w@z)'v(2) + Vp + fot = gV, (6.2)
dive + d,w = 0, (6.3)
0.p=0, (6.4)
ap+ WV +wd,)p+ (v-V+wd,)p? =0, (6.5)

in D x (0,7, with the corresponding boundary and initial value cowdisi

w(x, z,t) =0, onI', x (0,7), (6.6)
h
/ v(x,z,t)dz-n=0, onT, x (0,T), (6.7)
0
v(x,2,0) =0, inD, (6.8)
p(x,z,0) =0, inD. (6.9)

Similarly to thea priori estimates of Sectio8, by (6.2)—(6.9) and Lemmat.1, we obtain that

d . -
1@ Pllx, < (T +Cog +3Co(L +7%) (Il V)|, + II(’v(z),p(z))lle)) (v, p)lly-
+gll(v,p)lx, +3Co(L+72) (1™, )y, + (P, o)y, ) lI(v. p)l|x,, (6.10)

whereC\ > 0is the constant from Lemnfa2. But by the construction aof we haver +20Cyg+20C (1 +
72)[|(vo, po)|lx,, €9 = 0, and by also using(v ), pV)||x. + [|(v®, p@)]|x, < 2||(vo, po)|x,, €, we
obtain

(v, p)|lx, +10Cog||(v, p)lly, + 10Col|(vo, po)llx,, €’ (1 + 772)||(v, p)lv:
< gl@,p)lx, +3Co(1 +72) (oW, + [0y, (v, p)llx, - (6.11)

<
dt

Itis straightforward to check thab (1), (6.8), (6.9), (6.11), and Gronwall's inequality imply that(v, p)||x, =
0 forall t € [0,7%), and thereby proving the uniqueness of the solutions.

7. THE THREEDIMENSIONAL CASE

In this section we sketch the proof of Theoreh8. As opposed to the two-dimensional case, here
Lemma3.1 does not hold, and hence we need to estimate the analytic abthre pressure. We only
emphasize the necessary changes from the two-dimensasal ¢

In Section7.1we give the proof of the pressure estimate in the case ofgierimundary conditions in
the z-variable. In this casg may be written explicitly as a function af andp (cf. (7.6) below), thereby
simplifying the analysis.

WhenM is an analytic domain with boundary, the pressure is givepligitly as a solution of an elliptic
Neumann problem (cf. Temar@%] for the Euler equations). We explore the transfer of norto@ngential
derivatives in the higher-order estimates for the presamct introduce a new suitable analytic norm to
combinatorially encode this transfer. This gives us theesgary estimate (cf. Lemntal) to prove that the
pressure has the same radius of analyticity as the veldaitgection7.2we give the proof of the pressure
estimate in the case whewt is a half-space.
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7.1. Theperiodic case: M = [0, 27]?. Here we give the priori estimates for the case when the boundary
condition (L.12) is replaced by the periodic boundary condition in theariable. Assume thdt, p, p) is a
smooth solution toX(.7)—(1.11), M-periodic in thex-variable. Since the pressure is defined up to a function
of time, we may assume thﬁ}wpdx = 0. Letwy, pg € X, for somery > 0, and fixedr > 5/2. Similarly

to estimate §.17) we have

d .
v Olx. ) < 7Ov)lly,, +Uv,v) + V(w,v) + P + gl VPlx., (7.1)

wherelf(v,v) = Z?,j:1u(vi7”j) andV(w,v) = Z?Zl V(w,v;), with U(v;,v;) and V(w,v;) being
defined by 8.18 and .19 respectively. InT7.1) above, we have denoted the upper bound on the pressure
term by

a (m + 1 1/2 a (m+1)"rm
P> Y IVl “WRY Y v Plrzpn~——— (72

m=l|al=m m=1 |a|=m,a3=0

Here we used the fact thatis z-independent, and the fact that due to the boundary condffid.2) we
have(Vp,v) = (p,divv) = —(p,0,w) = 0. We note that in the three-dimensional case the cancelation
property @.10 does not hold, and therefore the pressure term does nahvamithe estimate7(1). To
estimateP, we use the fact that the pressure may be computed explictty the velocity. First, note that

foh divevdz = 0, and therefore, by integratind..(/) in the z-variable, and then applying the divergence
operator in thes-variable, we obtain

h h h
—Ap = Ok][ (vjajvk + w@zvk) dz + f/ (O1vg — Dov1) dz — gA/ Ydz. (7.3)
0 0 0

In (7.3) we have used the summation convention over repeated s1tli€ej, £ < 2, and denoted by; the
partial derivatived/0x;, for all 1 < j < 2. Integrating by parts in the variable, it follows from (.8) and
(1.17) that

h h h
/ wo, vy dz = —/ VRO, w dz = / vp0;v; dz, (7.4)
0 0 0

and therefore, by/A(.3) we have

h h h
—Ap = akaj][ (vjo) dz + f][ (O1vg — Oguy) dz — gA][ Ydz. (7.5)
0 0 0

The periodic boundary conditions in thevariable allow for a simple solution t@ (5), namely

h h h
p= Rij][ (vjo) dz + f(—A)_l/zj[ (Ryve — Rovy) dz + g][ ¥ dz, (7.6)
0 0 0
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whereR; is the j*" Riesz transform, classically defined by its Fourier symigpl|£|. The boundedness of
the Riesz transforms oh?( M), the Holder inequality, and the Leibniz rule give the bound

h r.-m
P < Chl/? Z o> e <][ VjU dz) w
m=1|a|=m,az=0 1<i,j,k<2 LA (M) m:
h h 1) rm
+h1/2z > (s aa][ vdz aa][ Vi dz {m + L
m=1 |a|=m,a3=0 0 L2 (M) 0 LA (M) m

1
¢S Y Y 19 w0l VT L flellx, + gl Vo,

m= 1‘a| =m,a3=01<4,5,k<2

o m+1)"t™
0y ¥ () T 100w Bawknm(m(T!)wnvuXT+guwnxf.

m=1|a|=m,a3=0 B<a 1<d,5,k<2
(7.7)
The first term on the right of7(7) is estimated similarly té/(v, v) via Lemma4.1, the casel = 3, and we
obtain thea priori pressure estimate
P < Co(l+ 77 ollx, [olly, + fllvllx, + gl Vellx, . (7.8)
By possibly enlarging’y, as shown in%.22) we also have|Vy| x,. < Collplly, + ||p]lx,, and therefore

P < Co(1+7°)||vllx, [vlly, + fllvllx, + gllollx, + Coglolly, - (7.9)

Combining thea priori estimate 7.1), the bounds o/ (v, v) andV(w, v) obtained from Lemmd.1, and
the pressure estimat@.g), in analogy to 8.23, we obtain the bound

d ) _
Zlollx, < (7+4Co0+ ) ollx, ) [vlly, +2Coglely, + flollx, +2glelx,.  (7.10)

Since the evolution of the densigy (cf. (1.10) does not involve the pressure term, using Lemhia in
analogy to 8.24) we have

d . _ _
gplellx < 7lplly; +2Co(1 +7 ) lvllx, olly, +4Co(1+772) o]y, Iollx. (7.11)
and therefore, by combining (L0 and (7.11) we obtain
d ) _
@, p)lx, < (7+2C0g +4Co (1 + 77w, p)lx, ) 1w, )y, + Cull@op)x,,  (7:12)

whereC; = max{f,2¢}. With 7(¢) defined byr(0) = 7, and
7+ 20Cog + 20Co (1 +7-°/2)|| (v, po) | x,, €' = 0, (7.13)

the rest of the proof of Theoreth3, namely the estimate(7), follows in analogy to the two-dimensional
case (cf. Sectiod). The uniqueness af-periodic solutions in the spade™ (0, T,; X,) N L'(0, Ty; (1 +
775/2)Y;) follows as in Sectiors, with the only modification being the power ofin the estimates is now
—5/2 instead of-2. The construction of the-periodic solution is similar to Sectids with one additional
modification: instead 0f(™ being defined by7.6), we define the:!" iterate of the pressure via

h h h
pntl) = Rij][ vj(.n)vli") dz + f(—A)_l/zj[ (Rlvgn) - RQ'UYL)) dz + g][ ™t dz. (7.14)
0 0 0

To avoid redundancy we omit further details.



18 IGOR KUKAVICA, ROGER TEMAM, VLAD C. VICOL, AND MOHAMMED Z| ANE

7.2. A domain with boundary: M is the upper half-plane. Let M = {x € R? : z; > 0}, so that
I, =0Mx (0,h) ={(z,2) € R® : 1 =0, 0 < z < h}. Therefore the side boundary conditiah X2
is foh v1(0, 22, 2) dz = 0. In order to close the estimates for the pressure (cf. Lemi)ain the case of the
half-pane it is necessary to use a modified Sobolev semi-ifeemalso Kukavica and Vicol()), instead
of the classical - |,,, from (2.1). We let

1
[V]m = Z 271”8(XUHL2(D)7 (7.15)

|a|=m

and define the corresponding analylic norm

> m+4 1) ™
follx, = 3 ol T (7.1
m=0 :
and respectively th&,. semi-norm
o (’I’)’L + 1)r,7_m—1
[vlly, = zzl[’v]mw (7.17)

As in the periodic case, we have tagriori estimate

d .
v Olx. ) < 7OIv)lly,, +Uv,v) + V(w,v) + P + gl VPlx., (7.18)

wherel{ (v, v) andV(w, v) are defined similarly to3.18 and .19, namely by

Uw,5) =3 5 3 2% 3 <Z>Haﬁv.vaa-%|m%ﬂ, (7.19)

m=0 j=0 |a|=m 1Bl=7.8<a
and by
~ o0 m 1 Q B Q,_BN (m_"_ 1)7"7.m
Vet =20 2 g 2 (g)Wwod T 020
m=0 j=0 |a|=m 1Bl=4.8<a '
and the pressure term is given by
o0 1 N m+1)"' ™
D — /2 Z Z 271HV(9 pHLQ(M)(T!). (7.21)

m=1 |a|=m,a3=0

Recall that the term corresponding#o= 0 in (7.21) is missing since the side boundary conditidnl@)
implies that(Vp,v) = 0. It is straightforward to check that the proof of Lemrhd also applies to the
above defined operatot6and), and hence we have the three-dimensional bounds

U(v,v) + V(w,v) < 2Co(1 4+ 77 |v||x, |[v]y, - (7.22)
To estimateP, we note that by{.3) the vertical average of the full pressure
h h
pe) = | Pla.)d=p@) g f vle.2)ds (7.23)
0 0

satisfies

h h
—Ap = 0 ][ <Uj ajvk + vk 8jvj> dz + f][ (81212 - 82211) dz=F (7.24)
0 0
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for all € M, where the summation convention ovex j, k < 2 is used. By applyingfoh dz to (1.7), and
taking the inner product withh = (—1,0), the outward unit normal vector t&1, we obtain that{.24) is
supplemented with the boundary condition

Op g "L
o _—]g (’Ujajvk+wazvk) dZ'nk—f]g v dz - ny,

h h
= ][ (’Ulaj’Uj + vjajvl) dz + f][ v dz = G, (7.25)
0 0

wherej € {1,2}. We note that as opposed to the Euler equations on a halégp&d10]) the nonlocal
boundary condition on the velocity implies that the bougdeondition forp is non-homogeneous (i.e.,
dp/On may be nonzero), creating additional difficulties. Aftebsacting a function of time from the full-
pressure we havg, P(x, z) dedz = 0, and therefore there exists a unique smooth solution todbadary
value problem7.24—(7.25).

Lemma7.1. The smooth solutiop=p—g foh 1 dz to the elliptic Neumann problelf7.24—7.25), satisfies
(VDlm < C1[F|m—1 + C1[Glm, (7.26)
where(’; is a universal constant, independentrof
Proof of Lemmé&’.1 In order to bound
_ 1 o~
(VD] = Z ﬁ”va Pllzz(mys (7.27)
|o]=m, a3=0

we estimate tangential and normal derivatives separalelgstimate tangential derivatives of the pressure,
we note that for anyx, > 0, the functiond5?p is a solution of the elliptic Neumann problem

—A(05%p) = 05*F (7.28)

2
0(%°p) = 052G, (7.29)

on
and hence the classical? regularity theorem, and the trace theorem give that thestse%; > 0 such that
1052 DIl gr2 pgy < C1ll03* Fll 2ty + C1llOF2 Gl (aa (7.30)

To estimate normal derivatives, we note that

—011p = —Ap+ Ox2p = F + O22p (7.31)
(—011)%p = =01 F + 09 (F + O92p) = —011F + 092 F + 935, (7.32)

and by induction one may show that
( all)k-l-l ~ ak—i-lp + Z 82162k 2lF (733)

Therefore, ifa = (a1, a9,0) € N? is such thaty; > 2, anda; = 2k + 2 is even, then by7.33 and (7.30)
we have

k
VOBl L2a) < 1055 2F22 Vil Loy + D 10705202V F | 12 g (7.34)
=0
a1 —2
< OIS Gl oy + C1 Y 1005 TPV F |2 gy (7.35)

7=0
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Similarly, if oy > 3, anday = 2k + 3 is odd, then similar arguments show that

a1 —2
IV Bllizany < CLllS ™ Gl agy + C1 Y 100572V F |2 uq (7.36)
7j=1
Lastly, wheno; < 1, and|a| > 1, then
Vop M E ata 7.37
VOBl L2y < Cr (] 2 + ] £ ) ) - (7.37)
Summarizing estimate§ (30—(7.37) we obtain
> —HV@“pHLz ) <Gy —Ham Gl ) + 2C1105 T F | L2
201 201
|a|=m,c3=0 a1=0
m  a1—2 1
a 2
+ C ZZ Z < H(?]Z?‘ I=3= VFHL2(M)> 2 (7.38)
a1=2 j=0

for all m > 1. Here we see why the introduction of the normalizing factot®*! was necessary. Without
them the constan®; in the above estimates would depend linearlyrenHowever since ", 1/2% < oo,
by possibly enlarging’; (which is independent of,) we have

> 5o HV(‘)apHLz(M <G Gl +C Y ﬁ”aaF”H(M (7.39)
|a|=m,3=0 |o]=m—1, a3=0
concluding the proof of the lemma. O

Remark 7.2. If C; would depend omn, and would grow unboundedly as — oo, then the additional loss
of one full derivative coming from estimating in terms ofv, prevents the estimates from closing. The
normalizing weightd /2% may be viewed as a suitable combinatorial encoding of thmestea of normal to
tangential derivatives in7(33).

Lemma7.3. Let(v, p) € X, andp be the unique smooth solution of the elliptic Neumann-gmifl’.24)—
(7.295. Then the ternP as defined ir{7.22), withp =p+ ¢ foh 1, is bounded by

P < i1+ ol x, [vlly. + gllollx. + Crgllolly, + Ciflv ., (7.40)
for some positive universal constaf.

Proof of Lemma&’.3. By the triangle inequality and the definition ptf. (7.23, we have that

> 5o HV& Pl < D 5o HV& Pllzeomy + —HVE?C“][ Y dz|| 2 (m

|a|=m, a3=0 |a|=m, a3=0 \a| m, az=0
From (7.39 and the above estimate it follows that the pressure terrausided by

(m+ 1) ™
m!

P<anY S o (100 Fllizon + 10°Gla )

m=1|a|=m—1, az=0

S h
+ght2y "N ﬁuvaa][ ¥ dz| 12 (m)- (7.41)

m=1|a|=m, az=0
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Using Holder’s inequality and the definitions BfandG, we obtain

00 1 m+ 1) 7™
r<ay. Y gar 19 (v D + vkajvj)Hm(D)(T,)
m=0 |a|]=m, az=0 .
0 1 m+1)" ™
+HolVelx, +Cf Y, Y IO ’v||L2<D>(T;)

m=0 |a|=m, az=0

<Oy Z Z Z 2%1 Z <‘;> 105 - vaa—ﬁv”m(p)w

!
m=0j=0 |a|=m,a5=0 = ||=j, B<a i
+gllollx. + Crgllplly. + Ciflvlx, - (7.42)
The first term on the right of the above term is bounded{&s, v) using the three-dimensional case of
Lemmad4.1, concluding the proof of the lemma. g

We now conclude the proof of Theorel3in the case wheM is a half-space. Combining (40 with
(7.18 and (7.22), we obtain the analytia priori estimate

d . _
ol < (74 Cot+ 777 ollx, ) oy, +gllellx, + Cogllolly, +Caflvllx,,  (7.43)

for some positive constaidt, = C5(Cy, Cy). Since the equation for the evolution of the dengityoes not
contain a pressure term, similarly t6.{1) we have

d . _ -
EHPHXT < Fplly, + Co(1 +77H)||vlx, llplly, + Ca(1 +7752)|v|ly; lpllx, , (7.44)

and therefore, by combining the above with43 we obtain

d . _
@, p)lx, < (7+Cog + A+ p)lx, ) W, o)l + Call@.p)x,.  (7:45)

for some fixed positive constant, > 0, whereCs = g + Cof. Lastly, we letr(¢) be the solution of the
ordinary differential equation

F + 2Cog9 + 2C5(1+ 77°2)||(v0, po) | x,, e = 0, (7.46)

with initial datary. Arguments similar to those for the periodic case and todliosthe two-dimensional
case, give the existence and uniqueness of solutionsysagjsf

[(w(®), p())llx, () + 029/0 eCa=) [(v(s), p(s)ly, ., ds

t
+02H(vo,po)fooec?’t/0 (1+772(5)l(v(5), p(5)) v, ds < (w0, po)x,, €, (7.47)

whereCs = C5(Cq, f, g) is a fixed constant, for all € [0, T%.), whereT, can be estimated from the data. We
point out that thesa priori estimates can be made rigorous using verbatim argumeritege in Sections
and6. The only difference is that in the construction of the sSohs, then!” iteratep(™ is defined here by

h
P @) =5 @) +g f 9 @, 2)dz, (7.48)
0
wherej(™ is the unique smooth mean-free solution of the elliptic Nanmproblem

h h
—Ap™) = ]ﬁ (U]('n) v +vfl? 8jvj(-")) dz + f ]ﬁ (awé”) - 62v§”)> dz (7.49)

o :]é (vg )Ojv](- )—I—v](- )Ojvg )> dz—l—f]g vg ) dz. (7.50)
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We recall that the velocity iterate”+1) is defined via cf.§.5), and hence after taking the derivative in time,
the average value in, and integrating by parts in it satisfies

h h h n
at][ vt gz +][ (v<"> -V + divv(")>v(") dz + Vpi™ + f][ v dz = 0. (7.51)
0 0 0

By taking the dot product of/(51) with the outward unit normat to I',,, and using 7.50), we obtain that
h h h
/ vgnﬂ)(O,xQ, z,t)dz = / vgnﬂ)(O,xQ, 2,0)dz = / vo1(0, 29, 2) dz. (7.52)
0 0 0

Therefore, the boundary conditiqﬁf UYL)(O,@, z,t)dz = 0 (cf. (1.12) is satisfied by all iterates if it is
satisfied by the initial data. Similarly, by taking the twisrénsional divergence of (51), and using 7.49),
we obtain that the compatibility conditiofbh div o™ (z,z,t)dz = 0 (cf. (1.14) is satisfied by all iterates
if it is satisfied by the initial data. We omit further details
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