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ABSTRACT. We address the local existence and uniqueness of solutions for the 3D Euler equations with a
free interface. We prove the local well-posedness in the rotational case when the initial datum wug satisfies
uo € H?5% and curlug € H?**°, where § > 0 is arbitrarily small, under the Taylor condition on the
pressure. December 15, 2015.

1. Introduction

The aim of this paper is to address the local existence of solutions in low regularity Sobolev spaces
for the rotational free-surface Euler equations

wt+u-Vu+Vp=0 inQ(t) x (0,T) (1.1)
divu=0 inQ(t) x (0,7) (1.2)

in a time-dependent domain §2(¢) C R3. The boundary of the domain consists of two parts: the moving
part I'; (¢), which is unknown and moves with the fluid velocity field, and the stationary part I'y. On
the free boundary I'; (¢) we require the vanishing of the pressure, while on I'j we impose the no-flow
boundary condition v - N = 0.

The earliest work to treat the local existence problem is a paper by Nalimov [N], where existence
for (1.1)—(1.2) was proven in two space dimensions for small initial data. Other early works [Y1, Y2, S]
also considered the problem of local existence under a smallness assumption of the data or under the
irrotationality assumption, i.e., when the initial vorticity vanishes. For the existence of solutions when
the data is rotational, the Taylor stability sign condition Op/ON < 0 must be imposed, as was shown
by Ebin [E]. Beale, Hou, and Lowengrub then proved in [BHL] the local existence of solutions to the
linearized system under the Taylor sign condition.

In [W1, W2], Wu established local existence of the solution without a smallness assumption on
the initial data and under the general Taylor sign condition, in two and three space dimensions. In
[AM1, AM2], Ambrose and Masmoudi treated the problem in the presence of surface tension. Many
other important works treating the problem of local existence and regularity using different methods
include [ABZ1, ABZ2, B, CCFGGS, CLa, Cr, CL, EL, HIT, IT, I, L, Lil, Li2, MR, OT, S, Sh,
Shn, T, XZ, ZZ]. Notably, Coutand and Shkoller provided in [CS1, CS2] existence and uniqueness of
solutions for H? initial velocity with the vorticity in H2. A similar result but with completely different

methods were at the same time obtained by Shatah and Zeng [SZ] and Zhang and Zhang [ZZ].
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Based on the well-posedness results for the classical Euler equation ([Lic, Te]), the minimal possible
assumption for the velocity one may expect is H n/2+149  where n is the space dimension and > 0.
In a previous work [KT2], two of the authors proved the local existence of solutions to the 2D system
under the Taylor sign condition assuming the minimum requirement on the initial velocity of H2°, with
the vorticity in H'9, where § > 0. The proof relies on div-curl type estimates of the velocity and the
Lagrangian flow map, which also require tangential estimates on the boundary. In order to establish the
curl estimates, [KT2] used that in two dimensions the vorticity is invariant in Lagrangian coordinates,
which allows us to obtain an estimate for the curl of the Lagrangian map depending only on the initial
regularity of the vorticity. This estimate is needed since the tangential estimates produce boundary terms
of higher order in the flow map by half a derivative. In [KT2], two of the authors also showed the local
existence for 3D irrotational initial data with the initial velocity in H2°. This left the case of the initial
velocity in H25%9 with the initial vorticity in H2*9 open.

The main result of this paper states that the local existence holds when the initial velocity ug belongs
to H?5%9 while the initial vorticity lies in H>*%, where § > 0 is arbitrary. We also show full details
for the uniqueness of solutions with initial data in this class. We believe that the details of uniqueness
are worthwhile to include, since the proof of uniqueness of solutions at this regularity level has not been
done in the literature. Moreover, an important feature that we aim to highlight is that the uniqueness
(stability) holds for solutions in a Sobolev regularity range in the range between H'5*% and H2*9; we
provide the complete details for the case of uniqueness (stability) in 2.

The main tool in the existence and uniqueness is the Cauchy invariance, cf. (4.5) below, which
yields an identity for the curl of the matrix product of the Jacobian matrix for the Lagrangian flow,
with the velocity vector [Ca, FV, ZF]. The Cauchy invariance, which follows from the Weber formula
[C1, C2, Web], provides a three-dimensional analogue to the two-dimensional conservation of vorticity
along Lagrangian trajectories, being thus useful for obtaining local in time estimates for the Lagrangian
vorticity. The Cauchy invariance also plays a crucial role in the proof of the uniqueness of solutions, for
estimating differences of Lagrangian maps, and for bounds on the curl of the differences of Lagrangian
velocities.

For irrotational flows, i.e., those with vanishing vorticity, the local existence with optimal regularity
assumptions on the initial datum has already been established by Alazard, Burq, and Zuily in [ABZ2]
in two and three space dimensions, and by Hunter, Ifrim, and Tataru in two dimensions [HIT]. In
a recent work [KT2], two of the authors provided an alternative proof of the optimal regularity for
irrotational flow in three dimensions, where the initial data is assumed to be irrotational with H2-519
Sobolev regularity. We also note that in the irrotational case, the delicate problem of global existence
of solutions with small initial datum, was settled in both three [GMS, W3] and two [AD, IP, IT] space
dimensions.

In order to make the proof more presentable to the reader, we address the case when the initial
boundary free-surface is flat. The proof can be modified to address the case of an initial boundary
which is the graph of a function, using a change of variable. The new terms appearing would all be of
lower order. The estimates can be justified by the horizontal mollification of the Lagrangian, the device
introduced by Coutand and Shkoller in [CS1].
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The paper is organized as follows. In Section 2, we recall the Lagrangian setting of the problem and
state the main theorem. Section 3, we recall the basic estimates for the coefficients a and the pressure
estimates from [KT2]. The proof of the existence is provided in Section 4, while the uniqueness is proven
in Section 5.

2. The main result
Consider the Euler equation on the domain
Q=R%*x(0,1) CR3 2.1
with periodic boundary in z; and 9 with period 1. The top
' =Rx{z,=1} 2.2)
represents the free boundary, while the rigid bottom is represented by
Iy =R x{z, =0}. (2.3)

We denote by v(x,t) = (v!',v?,v%) the Lagrangian velocity, while ¢(x,t) represents the Lagrangian

pressure. The Euler equation in Lagrangian coordinates may be written as

vi+aFg=0inQx (0,7), i=1,2,3 (2.4)
akdpv’ = 0in Q x (0,T) (2.5)
with the initial condition
v(0) = vp. (2.6)
Note that the summation convention on repeated indices is used throughout. The matrix a evolves ac-
cording to
ar=—a:Vv:a 2.7
a(,z) =1, x € (2.8)
where the symbol : denotes the matrix multiplication. The cofactor matrix represents the inverse
a=(Vn)~! (2.9)
where 7 is defined as
ne(z,t) = v(z,t) (2.10)
n(z,0) = x, z € . (2.11)
Note that the property
a:Vn=1 (2.12)

may be deduced directly from the system by checking the evolution of the product a : V7. (In turn, (2.8)
follows from (2.12) by the time differentiation.)
On the top, which represents the free boundary, we impose

g=0onTy x (0,T) (2.13)
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while on the bottom boundary we assume
v'N*=0o0nTy x (0,7) (2.14)
where N = (N1, N2, N3) stands for the outward unit normal. Since our domain (2.1) is assumed to be

flat, for simplicity, we have N = (0,0,—1) on I'g and N = (0,0,1) on I';.
The following is our main result.

THEOREM 2.1. Let & > 0. Assume that v(-,0) = vg € H?>°1°(Q) is divergence-free withv - N = 0
onT'gand

curlvg € H(Q). (2.15)
Assume that the initial pressure q(-,0) satisfies the Rayleigh-Taylor condition
0q 1
—(2,0) < —— <0 T 2.16
8N (.’E, ) >~ C(] ’ rely ( )

where Cy > 0 is a constant. Then there exists a unique solution (v, q, a,n) to the free boundary Euler
system with the initial condition v(0) = vy such that

ve L2([0,7]; H***(Q)) n C([0, T]; H**(Q))

[
vy € L([0,T]; H*T(Q))
n € L0, T); H**(Q)) N C([0,T]; H**°())
a € L([0,T; H*(Q)) n C([0, T]; H*+°())
q € L>([0,T); H**°(Q))
@ € L=([0,T); H>59(Q)) (2.17)

for T’ > 0 which depends on the initial data.

The proof of existence is given in Section 4, while the uniqueness is proven in Section 5.
The main emphasis in the statement above is on the fact that 9 > 0 is arbitrarily small. However, we
emphasize that the statement and the proof holds for all positive §.

3. Preliminary lemma on the coefficients and pressure estimates

In the next lemma, we recall from [KT2] the a priori estimates for the coefficient matrix a and for
the particle map 7.

LEMMA 3.1. [KT2] Assume that ||NVv|| oo (0,17, 11545 () < M. If

1
< -
- CM
where C'is a sufficiently large constant, the following statements hold:
(i) ||V77(‘,t)||H1.5+6(Q) < Cforte|0,T)],
(ii) det(Vn(x,t)) = 1 for (z,t) € Q x [0,T],
(iii) [|a(-, t) | 1545y < C (and thus also ||a(-,t)|| Lo (o) < C) fort € [0,T],
(iv) ||at(‘7t)||LP(Q) < CHVIU(Ut)HLP(Q)forp € [1700] andt € [OaT]’
(v) Hazt(',t)HH'r‘(Q) < CIIVu(-, )| g form € 10,1.5 4+ 5) and t € [0,T],

T (3.1
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i) laze (-, ) | go () < ClIVUC O st @ IVOC, Dl ae ) + ClIVoi(, ) | 5o (o), for t € [0,T] and
all0 < o < 1.5+, and

(vii) for every € € (0,1] there exists a constant C > 0 such that for all t € [0,T'], where T' =
min{e/CM,T} > 0, we have

||a{ — 0l sty < € (3.2)
forj,l=1,2 3 and
laf af — 8jkllprr.5+s() < € (3.3)
forj k=123

For the proof, based on (2.7)—(2.8) and (2.10)—(2.11), cf. [KT2].
In the following lemma, we recall the pressure estimates from [KT2].

LEMMA 3.2. [KT2] Assume that (v,q, a,n) satisfies the Euler equation (2.4)—(2.11) in Q x [0,T)
and that we have ||VvHLoo([QT];HLers(Q)) < M. Assume that a satisfies the estimates in Lemma 3.1 for
a sufficiently small constant € > 0. Then the pressure q obeys

t
lg()lgsss < P+ P / I ()l gp2ve ds, &€ [0,T] (3.4)
0

where P is a polynomial in ||v|| g2.5+s, |0 gr3+s, and ||vo|| g2.5+s5, and

t
lae(®)llgrass < P+P/ lae(s)l|gass ds, € [0,T] (35)
0

where P is a polynomial in ||v|| g2.5+5, ||vell g2+, ||| gsvs, |0l ga+s, and ||vol| g5+

4. Proof of Existence

4.1. Tangential Estimates. Next, we recall the tangential estimates on the solution (v, 7, a, q). De-
note

g = 52.5-&-6

@.1)
where 0 = (I — Ay)'/? with Ay = 911 + Dao.
LEMMA 4.1. [KT2] Fort € [0, T), we have
1Sv(®) 172 + llai ()51 ()72,
< /Ot P(l[vllzses, lvell gravo, llall goes, laell s+, [0l ravs) ds + Q([lvoll g2ses) — (4.2)

where P and Q) are polynomials in indicated arguments.

As in [KT2], unless the arguments are specified, the symbol P denotes a generic positive polynomial

depending on [v[| g2.5+5, [[ve]| g2+, (gl gra+s, (| el pr2.5+5, and [|n]| gra-s.
For the proof of Lemma 4.1, see [KT2].
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In case of a non-flat initial boundary, the tangential estimates can be adapted using a change of
variable. In particular, we can take the more general domain €' = R? x (0, h(x1,2)) where the top
moving boundary I" is initially given by the graph of a function h(x1, z2) > 0 or

Fll = RQ X {:133 = h(xl,.’ﬁg)}
while the rigid bottom boundary is flat and described by
PO = R2 X {563 = O}

We can then use a change of variable from (x1, z2,z3) € ' to (y1,y2,y3) € Q where

Y1 =21
Y2 = X2
T3
3= T~
Y7 h(an, a0)
Applying this change of variable, we define
(y17y27y37 ) U($1,$27$37t)
(y17y27y37 ) Q(.Tfl,.%'g,.%'?),t)
(y17y27y31 ) "7(33173U2>$37t)

a(ylv Y2,9Y3, t) = CL("L'l, x2,x3, t)
The Euler equations can then be expressed in terms of the new variables on Q = R? x (0, 1) as
U+ arbld;g=0inQx (0,7), i=1,2,3 (4.3)
akbl0;o" = 0in Q x (0,T) (4.4)
where b,i = 0y;/0xy, are the entries of the Jacobian matrix. Defining C‘Z = dfb,i, we can repeat the

same tangential estimates as in [KT2] to obtain lemma 4.1. This requires assuming that h(z1, z2) has
H?*H(IR?) regularity.

4.2. Div-Curl Estimates. Next, differentiating the Cauchy invariance

€100 O™ = Wi, t>0, i=1,2,3 4.5)

(cf. [Ca, C2, FV, ZF] or see the appendix for the proof) we get
€100V OEn™ + €51 0kn"0; Vo™ = Vi, t>0, i=1,2,3. (4.6)
Here, €;;;, is the usual antisymmetric tensor defined by €123 = 1 with €;;, = —¢j;; and €5, = €, for

i,7,k =1,2,3. Next, using 9;Vn(0) = 0, we have

t
€ijk0kn " 0; V" = / (eijkaknmﬁjan” + eijkﬁkngnﬁjVnm> ds, i1=1,2,3. 4.7
0
For simplicity of notation, we frequently omit the argument ¢, as well as the argument s inside
integrals. The first term inside the integral sign may be rewritten as
€ijk0kn" 0, V" = €;,0km" 0; VU™
= —€;jp 00" Vo™ + Vw,  i=1,2,3 (4.8)
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where we utilized (2.10) in the first and (4.6) in the second equality. Using (4.8) in the first term inside
the integral in (4.7), we get

t
GijkaknmajV?]m = / (—eijkajvm&cvnm + El'jkak’umajVnm) ds + tié, 1=1,2,3
0
t
—2 / €ijeOv™ 0V ds + tVwh,  i=1,2,3 (4.9)
0
from where, by €;;x0;Vn* = V((curln)?) fori = 1,2, 3,

t
V((curln)’) = €k (Orm — Okn™)0; V"™ + 2/ €ijkOKV" 0, V™ ds 4+ tVwy, i=1,2,3.
0
(4.10)

Now, applying the H'*9 norms of both sides and writing 8j,,, — Ox1™ as a time integral of its derivative,
which is —0;v™, we may estimate

t
IV curln| grvs < Cllnllgrass |1 = Vll groses + C/ [0l 2 s+s |l gra+s ds + Cllwoll grz+s
0

t ¢
gwwmm/Wmmwﬁ+0/hmmmwmw®+CWﬂmm(MD
0 0
where we used the multiplicative Sobolev inequality

1fgllzr+s < CUFll sl gl prrs+s (4.12)

which follows from the Kenig-Ponce-Vega product estimate [KP, KPV]. Since ||n|g2+s < C +
C [i 0]l g2+s ds, we get

t t
HQMMWH<C+C/Hﬂmm%+qwmm/HWmMMS
0 0

t
+o/nmemme@+omMmM. @.13)
0

On the other hand, from [KT2], we recall the estimate on the divergence. First, we write

. t .
divy = G — ab)orr’ + [ outatonn’)ds+3
0

= ((5kz — af)@knz + / 813&?(9]#71 ds + 3
0

where we used (2.5) in the last step. Therefore,

t t
WWWWHSCAHWWMNWWH@+CAHW%HWMMH@

t t
+ C|nll ga+s / |v]| 2546 ds + C/ llv|| g2+s ds + C. (4.14)
0 0
Using the inequality

[ £l zs ) < Cllfllr2() + Cllcurl fl| gs—1(q) + Cll div fllgs-1q) + CIl(Vf) - Nl gs-1500)
(4.15)
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valid for any vector function f € H*(2) and s > 1.5 ([CS1, CS2]) where V; represents the tangential
gradient on the boundary, we get
1Ml 3+ < Clinllze + C|l cwrlnl| g2+s + Ol div gl gzes + ClSH°|| L2(ry)- (4.16)
Now, we replace (4.13) and (4.14) in (4.16). We also use
150° 1 L2ryy < llaid S0l p2eyy + 11Gs — af) S0l 2 ey
< Nlaf S|l 2ry) + CellSn* || 2, (4.17)

absorbing the last term assuming that ¢ > 0 is sufficiently small, which we may at the expense of
shortening the time interval as in Lemma 3.1. We get

t t t
nllgars < c+c/ [0l szss ds+C]]77]!H:s+s/ T ds+C’/ [ll 2,505 || g5 ds
0 0 0

t t
4 Clwollgess +C / 120 0l gasss ds + C /0 ol oss ds + [af S| 2oy
0

(4.18)
In order to obtain an estimate for curl v, we use the Cauchy invariance (4.5) again. First, we have
(curlv)’ = €0V = €0V (Okm — Opn™) + wé, 1=1,2,3 (4.19)
from where, using the algebra property of H579,
3
leurlol|grses < CIVllgisss Y 0km — Okn™ lgrses + [lwoll rrsss. (4.20)
k,m=1
Now, by g, — O™ = — fg it ds = — fg O™ ds for k,m = 1,2, 3, we get
t
|| curl v 1516 < C'||UHH25+5/ lv]| gr2.5+5 ds + ||wo| gri-s+s- 4.21)
0

As in [KT2], we obtain from here

t
ol gzsss < Cllvllgz + CllSvll 2 + C’||v||H2.5+5/ [0l 255 ds + Cllwol|ssss
0

t t
< C/ llvell 772 ds + C|Sv|| 12 +C||UHH2.5+5/ || 2546 ds + Cllwol| gis+s.  (4.22)
0 0

Finally, applying the Gronwall lemma to (4.2), (4.18), (4.22) with Lemma 3.2, as in [KT2], concludes
the proof of the existence part of Theorem 2.1.

REMARK 4.2. In order to justify the estimates, we can construct solutions using the horizontal
mollification procedure introduced in [CS1]. Namely, we approximate the Euler system with

vl + @0, = 0in Q x (0,7), i=1,2,3 (4.23)

aropvt =0in Q x (0,7) (4.24)

where 77 denotes the horizontal mollification with parameter ¢ > 0 applied to 7, and where a denotes the
inverse of V1. The Cauchy invariance for the modified system takes the form

(€30 On™) = —€1550;0 NqOk(N™ — T™) — €15k, O1q0 (0™ — ™) (4.25)
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which can be obtained using the second proof in the appendix. As ¢ — 0, the identity (4.25) converges
to the Cauchy invariance formula (4.5).

5. Proof of uniqueness

Let (v,q,a,n) and (v, q,1,a) be two solutions of our system on an interval [0, 7] satisfying the
bounds provided in the existence part. In addition, assume that the first solution satisfies the Taylor
assumption

9q

sy (@ <-1/C,  zely,  te[0T] (5.1)

Denote by
(‘/v QaAa E) = (an7a7n) - (57 avaaﬁ) (52)

the difference of these two solutions. For simplicity of notation, we allow all the constants to depend on

the suprema of the norms ||v|| 2.5+, Nl g3+s. and [[al| g2+5, as well as

qll gs+s, |lgel gro-s+6s
on the suprema of [|v]| grz.5+s. [[0¢]| g2+5, [|ql| gra+s. |G r2.5+5, (|77l gra+s., and [|a]| r2+s, over the interval

V|| pra+s,

[0, 7. For instance, we have ||v|| g2.5+s, [|0]| g25+s < C fort € [0,T].
The proof is divided in several subsections corresponding to the estimates for the differences of the
pressures, tangential velocities, Lagrangian maps, and the velocity gradients.

5.1. Pressure estimates. In the following lemma, we derive the pressure estimates satisfied by the
difference of two solutions.

LEMMA 5.1. The difference of pressures @ satisfies

t
1@z < CUIVI[g2 + | Ellg2s) + C/O Qi 2 ds (5.3)

while for the derivative Qs we have

t
1Qcll 2 < CUIV Nz + Vel e + | Al 12 +/0 Q]| r2) ds (5.4)
forallt € [0,T].
PROOF. Applying a’d; to v} + a¥dpq = 0 and a9, to ¥} + a¥8),q = 0, we obtain
9;(alakdyq) = ,alo;v’ (5.5)
and
8;(alato,q) = d,al ;0" (5.6)
where we used the divergence-free conditions (2.5) and
Aot = 0in Q x (0,7) (5.7

as well as the Piola identities ajag' = (0 and @fiﬁ = 0 for ¢ = 1,2, 3. Subtracting (5.6) from (5.5) leads
to

9;(Alakdyq) + 0;(@ AFoyq) + 0;(@lab0RQ) = 9, AL 90" + a0,V (5.8)
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from where we get

AQ = —;(Alakdrq) — 0;(@ AFoLq) + 9;(3;% — @al)OkQ

+ (85 — @ a0 Q + B AL O + TV (5.9)
On the other hand, by subtracting the boundary conditions satisfied by ¢ and g on T'g,
DigN® = (6 — a¥)OpgN* on T (5.10)
and
HGN® = (Op; — a¥)OxgN" on Tg (5.11)

we obtain a boundary condition for @ on 'y, which reads
QN = —A¥OLqN® + (63 — aF)0QN? on Ty (5.12)
in addition to the condition
Q=0onl}. (5.13)

Thus @ satisfies an elliptic problem with mixed Dirichlet/Neumann boundary conditions. In particular
the estimate

Q25 < Cllfll o5 + Cllgll 1 (re) (5.14)
holds where f is the right side of (5.9) and g is the boundary data on Iy in (5.12). Thus we may write
QNI z25 < CllA| s (llall grses + [|all grrs+s) gl grzses + Clla” : al graes || Q| a2
+Clla” s a = I grses||Qll y2s + Cll Al g Vol gravs
+ Cllael sV gz + CI = all grs+s @l g2s + Cll Al s gl g2+

< Ol Al s + 1 Adlg + [V [ 2) + C/Ot 1Qill 2 ds + Ct]| Q| 25 (5.15)
where we used .
Qe <€ [ Qi ds (5.16
and tO
laT < a— I guses < 0/ 10u(a” : a)|gr.svs ds < Ct (5.17)
as well as Ot
la — I 1545 < /0 llat]| grses ds < Ct. (5.18)

Without loss of generality, we may assume that 7' = 1/C where C is a constant which is so large that the
last term on the far right side (5.15) can be absorbed using the left side. In order to establish the claimed
inequality (5.3), we need to bound the norms of A and A; by those of F. Subtracting a : Vi = I and

a:Vn=1I1,wegetA:Vn+a:VE =0, from where
A=—-a:VE:a. (5.19)
Using a multiplicative Sobolev inequality, we get

”AHH1A5 < C||a||H1.5+5HVE||H1A5HCLHH1.5+5 < C||E||H2A5. (5.20)
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Next, the identities a; = —a : Vv : a and a; = —a : Vv : a give
Ai=—A:Vv:a—a:VV:a—a:Vv: A (5.21)
and thus
[Adl[ e < Cl Al IVl rsesllallgases + Cllal grs+s [VV | llal grses
+ Cllall grs+s[[ VUl grs+s || All g
< C([[Allgr + IV [ 1r2)- (5.22)

The inequality (5.3) is thus established.
Similarly, we derive an estimate for ; by time differentiating the system (5.9) satisfied by (). We
obtain a Laplace equation

AQ; = —0;( AlafOrq) — 9;(AldwalOrq) — 0;(AlafOrar)
— 0;(0ra] AfOrq) — 0;(a] 0, Al Orq) — 0;(@] AT drar)
— 0;(0u(@laf))okQ + (05 — @k )hQy
— 0,(@af)0Q + (0 — @) 0 Qe
+ Oy ALOj0t + 9, LD 4 @ O,V + &l 0,0,V (5.23)
with a boundary condition
QN = =0, AFOqN' — AF O N' — 9,af 0,QN" + (Sr; — al)9xQ:N" on T. (5.24)
Applying the elliptic estimate in H?, we obtain after a short computation
1Q¢ll 2 < CllAelgr + CllAl s + CllQella + ClIQN 2 + Clla” = @ — Il guses | Qell 2
+ CllOwAll 2 + ClIV g + ClVillis + Clla = 1| grs+s]| Qi 2 (5.25)
Differentiating (5.21) in ¢, we obtain
Ay =—-A,:Vv:ia—A: Vv :a—A:Vv:a
—a;:VV:ia—a:VVi:a—a:VV :q
—a;:Vv:A—a:Vu: A—a:Vo: A (5.26)
Applying a multiplicative Sobolev inequality, we obtain
[Ast |2 < CU[Aell2 + Al + (VI + Vil ) (5.27)
from where, using (5.22),
[Asell g < C[Allgr + VI 2 + Vel 1) (5.28)

The sum of the fifth and the last term in (5.25) is dominated by C?||Q¢|| 72, which can be absorbed if
T = 1/C with C sufficiently large. We get

1Q:ll 2 < CUIV Il + Vil + 1Al + QN ar2)

t
<c (nvrm Wil + 1Al + [ @il ds) (5.29)
0
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on [0, 7', and the proof of Lemma 5.1 is complete. O

5.2. Tangential estimates. In this subsection, we derive the tangential estimates for V' and E. De-

note
2

R=-Ay== Omm. (5.30)

m=1
LEMMA 5.2. Fort € [0,T), we have
IRV (0)II72 + llai () RE' (8) | 72r,)

t t
< C||E||H2»5/ 1V [l 2 ds + C/ (V12 + 1Bl 72 + QI 25) ds (5.31)
0 0
fort €[0,T].

Proof of Lemma 5.2. The difference V' of the two solutions satisfies the equation

Vi+ Akopq + @k 0,Q = 0. (5.32)
Applying R to the equation (5.32) and multiplying it scalarly by RV, we get
1d . _ 4
~—||RV|3: = — / R(A¥OLq) RV da — / R(aFoxQ)RV' da (5.33)
from where
1d . _ .
~—||RV|2, = — / RAYOLqRV da — / arOLRQRV du
2dt Q Q

- / (R(A¥Orq) — RA¥OLg) RV da
Q

— / (R(a¥0rQ)RV' — @y 0, RQRV") dx
=1 +QIQ + I3+ 1y. (5.34)
In order to bound the first term I, we need the identity
Omak = —aFd,0,ntas, m=1,2 (5.35)
which is obtained by applying 9,, to a : Vn = I. Differentiating (5.35) leads to
6mmaf = —ﬁmaf(‘)ﬁmnlaf — af“@sc‘)mmnlaf — af@ﬁmnlamaf, m=1,2. (5.36)
Subtracting the analogous equation for @, we obtain
OmmAF = =0, A¥0,0,,m a3 — 9,0y 0,0 Eal — Omal 050,17 A3
— AJ 0sOmmn' @ — @) OsOmm B a§ — @ OsOrm 1T A
— AT 05011 0mai — @} 050 E' Opal — @} 0501 Om AS (5.37)

for every fixed m € {1,2}. Only the fifth term on the right side, —Zif(?ﬁmmEl a3, needs special treat-
ment. Therefore, we write

OmmAF = —aF0,0,mE'a + Rigm,  m=1,2 (5.38)
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where R;i,, denotes the sum of all the terms on the right side of (5.37) other than fifth. Using (5.38), we
rewrite I1 = — [, RA¥OqRVide = 32 | [ Omm AFORgRV dx as

2 2
n=-Y% / @ 0uOmm E'ajOpq RV dz + / RigmOrqRV" da
m=1"% m=1"%

= I + Lo (5.39)

In order to treat the first term, /17, we integrate by parts in the ¢ variable and obtain
2 . 2 .
=Y / 0 Omm Bl af OpqRV da + ) / @ Omm E'af 0s0pq RV dac
m=1 Q m=1 Q
+) / 7 O ' @ 0q0s RV d — > / Y O E' a0, g RV N* do ()
m=178 m=17T1
2 .
-> / ¥ O Bl a3 0,qRVIN® do ()
m=17To
= I + T2 + s + Tia + Ings. (5.40)
For 1111, we use a multiplicative Holder inequality to obtain

Ly < ClVal| grses||RE 2 lall g5+ [Vl grs+s | RV || 2 < CE] g2 ]|V 122 (5.41)

according to the convention on the generic constant C' at the beginning of Section 5. Similarly, for 12,
we have

iz < Ol | grs+s |1 Omm E' || o a3 | 54511050k s RV |2 < OB r2s |Vl gz (542)

The third term I3 requires more care due to the extra derivative on RV'; thus we use the divergence-free
condition to reduce its order. First, we write

2
Ing=— > / A Oy B 0 qa Oy (v* — T') dx
Q

m,n=1

2 2
= Z / afammElakqann(afas(’Ui — 171)) dxr + Z / 6f0mmEl8kq0mafas (’Ui — Ez) dx
Q Q

m,n=1 m,n=1

2
+2 ) / A Oy B O, q0n a3 0ns (v* — ) da
Q

m,n=1

= I131 + l1132 + l1133- (5.43)
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Using af 950" = 0 and a 050" = 0, we get

2 2
Ingi = Y / 1 O B O qOpn a0 daz = ) / QY Oy B O qOnn (S0 — @50") dx
Q Q

m,n=1 m,n=1

2 2
=Y / @ O B OpqOpn AT d +2 / 1 O B 0 q0n A 0,0" dac
Q Q

m,n=1 m,n=1

2
+ > /Q O B 0 A0 da

m,n=1

2
=) / (I — A) 4@ 0y E' 0 q0? ) (I — Ag) Y40, AS dax
Q

m,n=1

2
+2 ) / f O B Opq0n A 00" dav
Q

m,n=1

2
+ > | G OmmE Opq A Opp ¥ da. (5.44)
Q

m,n=1
All three terms on the far right side are bounded by C||E|| g2.5|| Al| 1.5 using multiplicative Sobolev
inequalities. Therefore,

Lzt < C|E| g2s||Allgrs < ClE|Fes (5:45)

where we used (5.20) in the last step. The term [114 = frl EfRElafaquEfN ® do(x) requires the use
of the Taylor condition. First, by

GFRE' = af RE' — AF Ry + AFR7Y (5.46)
we have

Iy = / af RE'a30,qREIN® do(x) — | AFRn'af0pqREIN® do(x)
Fl 1—‘1

+ / A Riila 0uqREIN® dor(z)
INT
=J1+ Jo+ Js. (5.47)

We may easily check that
Jo, I3 < || Al g5 || E|| 25 - (5.48)

The first term on the right side of (5.47) may be rewritten as

1d

J = -
YT 2dt

af RE'af0qRE'N® do(z) — /F Oraf RE' a0pqRE'N® do(x)
1

1 .
—2/ af RE'a30,q RE*N*® do ()
'

= Ji1 + Ji2 + Jis. (5.49)
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Using trace and Sobolev multiplicative inequalities, we have

Jiz + Ji3 < OB |32 (5.50)
On the other hand, we have
! 1 : 1 .
/ Jii(x,s)ds = = / a} RE'a}05qRE" do(z) |, —= / a} RE'a}03qRE" do(z) |
0 2 Jr, * 2, 0
— L [ @RE0sRE d | 5.51)
“2 /. ! a; 034 o(z) |, - .
1
Using the Taylor sign condition (5.1), we get
1
Ji < —5||a;°’REl|\iz. (5.52)
which yields the second term on the left side of the inequality (5.31). Next, as in [KT2], we have
2
Lis=) / A O Elas0rqRVIN® do(z) = 0 (5.53)
m=1"T0
since a3 = a3 = 0 and v3 = 0 on ['y. In order to complete the treatment of I;, we estimate
Ly < C([|El g2 + Al sV 12 < ClE[ 25|V |2 (5.54)

with the help of (5.20). Therefore, we conclude

[ s <= L1atRE G+ ClBlns [ 1V1eds +C [ (VI + 1B1as) s 559
Next, we consider the second term in (5.34),
L =— /Q a¥0,RQRV dx = /Q @ RQOLRV dx (5.56)
where we used the Piola identity 8kfif =0for¢=1,2,3. Using af@svi = 0 and a 950" = 0, we have
oVt = —AFop (5.57)
and thus we may rewrite

2
afORRV' = R(@0RV') — RafO V' + 2> Ok O V'

m=1

2
= —R(AFOwv") — RaFORV' + 2 Omtly OV’

m=1

2
= —RAJO' +2 ) O AfOppv’ — AF RO

m=1

2
— RAf OV 42 Oy O V', (5.58)

m=1
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where we also used the product rule in the first and the third step. We split I5 into a sum of five terms
according to the far right side of (5.58) and name the terms 2y, I3, I23, Io4, and I35. For Iy =
— [ RQRAFOv" dx, we write

I = —/(1 — A) YA RQOW) (I — Do) "VARAE dae < C|| Q|| g5 || Al g5 (5.59)
Q
For I52, we simply use a multiplicative Sobolev inequality to obtain
2
Iyp =2 Z / RQamAfamkvi dx < Cl|Qlg2s||All g5 < ClQ|l 25 || E|| 25 (5.60)
m=1 Q
where we also used (5.20) in the last step. The third term, lo3 = — fQ RQAfRGkvi dx, is treated

similarly to Io1, i.e.,

Ipg = — /Q(I — A)YHRQAN (I — Ay) VARG da < C|| Q|| s || All s < Cl|QI| grzos | E|| s

(5.61)
Similarly
Tos = —/ RQR 0w — 5 dz < C||Q |l yas ||V || 2 (5.62)
Q
and
2 .
Ly=2%" / RO Vi dz < C|| QLo |V 12 (5.63)
m=1 Q

The terms I3 and I are lower order and all the terms which result may be treated using multiplicative
Sobolev inequalities. We obtain

Is < C||Allg1s ||V gz < ClE|mzs||V] 12 (5.64)

and
Iy < C||Q 25|V || g2- (5.65)
Combining all the estimates on I; through I, we obtain the desired inequality (5.31). U

5.3. Gradient estimates for £'. Now, we obtain curl estimates for E using the Cauchy invariance.
Subtracting (4.10) and the analogous equation for 7, i.e.,

V(curl )’ = €k (6km — Opi™)0; V™
t
+/ (—eijkaﬂmakVﬁm +€ijkakﬁm8jVﬁm> ds + (tio)l (5.66)
0

we get

V(Curl E)Z = —EijkakEmajvnm + Eijk(ékm — 8kﬁn)3jVEm
t
—l-/ (—Gz‘jkajvmakVnm + EijkakvmajVnm) ds
0

t
-l—/ (—GijkajmakVEm + ez-jk(‘?k’ﬁm&jVEm) ds. (5.67)
0
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Applying the H%-5 norms on both sides, we get

3

|V (curl E)iHHOf) < C||E| 25 Z ”ajanHo‘w-é + C\I — V|| g2s+s|| B 25
k=1

+C /0 t(uvnmunuw 18l 25451l 25 ) s
The second factor in the first term is bounded by Z;’ kel fot 1011 || gro.5+s ds < Ct and thus
lcurl Ef| g5 < C|VE| o5 + Ct| B 25 + C /0 t(nvmz + 1Bll2) ds
< CtlBllna+C [ (Vs + 1Bl ) ds

where we used E; = V in order to estimate | VE|| o5 < || E| g2 < Cfg V|| g2 ds.

17

(5.68)

(5.69)

Now, we proceed to estimate the divergence of E using the Lagrangian divergence conditions (2.5)

and (5.7). From [KT2, p. 350], we get

¢
(D,Vn) = / (Dq, V1 + D Vv) ds
0

where we denoted
Dof = ko, f.

Writing the analogous equation for v and 7 and subtracting it from (5.70), we obtain

t
AkQVrf + GOV E = / (04t 0LV + Ot OV E' + AFOL VY +afauvVT) ds.
0

The last term in the integral may be rewritten as

oLV = k0, Vu; — a0,V
= V(@b o' — @ oRv') — O’ Vak + o vk

= V((Eii»g - af)@kvi) — o Vival.
Also, note that
WFOLVE = Vdiv E + (aF — 60k VE".
Using (5.21), (5.73), and (5.74) in (5.72), we get
VdivE = a0, VE" — (@ — 6;)0rVE"
= —AFo Vil — ( /0 t oy (ak) ds) OLVE!

t
+ / (atAfakw + 8,ar o, VE! + A¥9, Vv + afakvw) ds
0

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)
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and thus, taking the H%° norms of both sides

t
| div E||g1s < C||VE| gos + C||A| g1 + Ct||E|| g2 —l—/o (HAt”H1 + | E|| g2s + HVHH2) ds
t t t
< c/ 1V B[ 505 ds+C/ 1A ds + CH|E| g2 +/ (1l gz25 + IV | 22) ds
0 0 0

t
SCt\IE\IH2-s+/ (1Bl zz2s + 1V [lz2) ds (5.76)
0

where we used (5.20) and (5.22) in the last step.
In order to obtain an estimate for || E'|| 2.5, we use (4.15) with f = F and s = 2.5. For the boundary
term, we write

IV2E - Nl roury) = IV2E? [ 11 roury) < CIRE® | 2 (rgury)- (5.77)
Since a RE' = RE® + (a} — &i3) RE'", we get
IRE®|| L2 (roury) < lai REY| 2 rouryy + [1(af — 813) REM| L2 rgury)
< |6 RE'|| p2roury) + lla = Tl | RE| 2 rour)
< lla} RE'|| .2 (rour, ) + CHIE | s (5.78)

where we used || RE|[z2ryur,) < ClE| g2(roury) < C||E| 25 in the last step. By (4.15), we then get
t
|El s < CH|El 25 + C /0 (V112 + 1Bllp22 ) ds + Cllaf RE' 2oy (579)
Assuming that 7" = 1/C with C sufficiently large, we get
t
IBll2s < C [ (Ve + |Ellas) ds + Cllat REzaroor, (5.80)
0
on [0, 7.

5.4. Gradient estimates for V. From (4.19) and the analogous estimate

(curl B)" = €;;50;0™ (S — OkT™) + wp, i=1,2,3 (5.81)
we obtain
(curl V)" = €505 V"™ (8 — Okm'™) — €1j1.0;0" O B™, i=1,2,3 (5.82)
from where
[curl Vg < Cl[Vm2(I = Vnllgrses + Cl[VO| 245 || El| g2s.- (5.83)

Since |1 — V| grses < Jo |Vl goses < Ct, we get
leurl Vil < Ct(IV]|2 + 1 Ell25)- (5.84)
Next, we need an estimate for the divergence of V. Subtracting a¥0;v’ = 0 and @¥9; v’ = 0 we obtain
AFopt +aFo Vi =0 (5.85)

from where
divV = (86 — a¥)oR Vi — Aot (5.86)
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Applying the H! norm on both sides, we get
[div Vg < Ol = allgrs+s[Vigz + CllAl s [[vll gr2+s (5.87)
and this leads to
| div V| < Ct(|V g2 + | Allrs) (5.88)

since ||1 — a||grses < f(f @] 1545 ds < Ctand ||v]] go+s < Cfg |v|| gra+s < Ct. Using (4.15) with
s = 2, we get

Va2 < ClV 2 + Cll curl V|| g1y + Cll div V|| g1y + ClIVaVsl|goswour,)-  (5.89)

Since
[VaVs|l gosroury) < IVaVallgr < ClVaVs|pe + C|[RVs| 12 + C||05V2 V3| 12
< C||[RV ||z + C[[V203V5 12 (5.90)
we get
Va2 < Cll carl V1) + Cll div V| g1 (o) + CIIRV |2 + C[|V205V3]| 2. (5.91)

When estimating the term analogous to Vo03v3 while establishing existence, the proof in [KT2] used
the divergence condition. Here we write instead

2
IV205Vs| 12 < [V div V|zz + ) (V20 Vinll 2

m=1

< C|RV| 2 + Ct([V 2 + | All grrs) + CIRV |2 (5.92)

where we used (5.88) in the last step. Applying the inequalities (5.84), (5.88), and (5.92) in (5.91) leads
to

Vlizz < Ct(IIVIim2 + | Ellg2s) + CIRV | 22- (5.93)
Since we have assumed that T = 1/C with C sufficiently large constant C, we obtain
WV lgz < Ct|E||lg2s + C||RV || 12 (5.94)
on [0, 7.
5.5. Conclusion of the proof of uniqueness. We are still missing an estimate for the L? norm of
V. From (5.32), we obtain

1d

5 gVl < CllAlLV L2 + CIVQI 2]V e

t t
SMWWAH&MMHWWMAHWWmﬁ

t t
SWWWAH&MMHWWWAHWW%- (5.95)

Now, we are ready to collect all the estimates and conclude the proof of uniqueness. Introduce the
the quantities
X(t) = |VIIEe + 1Bl (5.96)
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and
Y(t) = QI + 1Qu 72 (5.97)
Without loss of generality, we may assume 1" < 1. First, using (5.3) and (5.4), we get

Y(t) < CX(t) + C / "Y(s)ds. (5.98)
0

On the other hand, (5.31) together with (5.80), (5.94), and (5.95), assuming that 7" < 1/C' to absorb the
first term on the right side of (5.94), gives

X(t) < CX(t)'/? /tX(s)1/2 ds + C/t (X(s) +Y(s))ds (5.99)
from where ’ . ’
X(t) < C/ (X(s)+Y(s))ds. (5.100)
Let e € (0, 1]. Multiplying (5.98) by € and addigg to (5.100), we get
X(t)+eY(t) < CeX(t) + C/Ot(X(s) +Y(s))ds < CeX(t) + % /Ot(X(s) + €Y (s)) ds. (5.101)

Choosing € so that the first term on the far right side can be absorbed and then applying the standard
Gronwall argument leads to X (t) = Y (¢) = 0 for ¢ € [0, T, and the proof of uniqueness is completed.

Appendix A. Appendix
For convenience, we provide here two proofs of the Cauchy invariance identity
€O O™ = wh, >0 (A1)

The first proof, which establishes also the Weber formula, is from [Ca, FV, ZF], however rewritten in
the coordinate notation used in the present paper. The second proof, which we believe is new, is shorter
and bypasses the Weber formula.

Proof 1: We start with the Weber formula [C2, Web]

S 1
at(vjaknj) = Ok <2|U’2 - Q> ) i=1,2,3 (A.2)
which is proven as follows. The left side equals

v{@knj + vjé)kng = —agnamq(?knj + v P07

1 1
= i+ 300 = 3 (51 - 4) (a3)
where we used
ai O’ = djk, Jk=1,2,3. (A.4)
Applying the curl operator to the identity (A.2), rewritten as
Uj:aﬂ]jj 1
O | vouy | =V (2|v\2 — q) , (A.5)
vJ 8377]

we get
O (€6 0; (V™" Okm™)) = 0. (A.6)
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Note that
815 (Eijk’l)majk’f]m) =0 (A7)
since
€V 0™ = €V Opn™ = —€ij 0" Opjn™ (A.8)
using 0j;, = O in the first equality and €;;; = —€;; in the second. By (A.6) and (A.7), we obtain
8t (eijmjvm@knm) =0. (A9)
The expression in parentheses at ¢ = 0 equals
€0 (0)0kn™(0) = wf, >0 (A.10)

and thus (A.1) follows.
Proof 2: Taking the time derivative, we obtain

Ot(eijkajvmaknm) = Eijkajvmak’um + Ez‘jkaj’ulnaknm
= 0 — €ij10;(al, 01q) O™ (A.11)

where we replaced v by —al, 9;q using the Euler equation. Now, by 0; al, = agaj,.nwm, which follows
by differentiating a : Vnp = I, we get

01 (€in0jv™ Okn™) = —€ijral, 051q0kn™ — €ijrak05n° ay, DigOkn™
= —€;j10190k1 — €ij1a 051" 01q0kr
= —€;k0j1q — €ij1a 0jkn*O1q
=0+0=0 (A.12)
where we used in the second equality a : Vip = I. Hence,
€ijr0v™ O™ = €0jv5 Ok (0) = wjy

and the proof of (A.1) is concluded.
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