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ABSTRACT. We find a new class of data for which the Prandtl boundary layer equations and the hydrostatic
Euler equations are locally in time well-posed. In the case of the Prandtl equations, we assume that the initial
datum u0 is monotone on a number of intervals (on some strictly increasing on some strictly decreasing) and
analytic on the complement and show that the local existence and uniqueness hold. The same is true for the
hydrostatic Euler equations except that we assume this for the vorticity ω0 = ∂yu0.

1. INTRODUCTION

In this paper we address the local in time well-posedness for two systems of partial differential equations
which arise when considering singular limits in fluid mechanics: the Prandtl boundary layer equations and
the hydrostatic Euler equations. The common features of these systems are:

• they are formally derived using singular asymptotic expansions,
• well-posedness theory established so far is rigid: the existence works were obtained in the class of

real-analytic functions or under certain monotonicity/convexity assumptions, and
• fundamental instabilities make the systems ill-posed in Sobolev spaces.

1.1. The Prandtl Equations. When considering the inviscid limit of the 2D Navier-Stokes equations for
the velocity field (uNS , vNS) on a bounded domain with Dirichlet boundary conditions, one is faced with
the fundamental difficulty of mismatch between the boundary conditions of the viscous flow (uNS(x, y, t) =

vNS(x, y, y) = 0 on the boundary) and the Euler flow (vE(x, y, t) = 0 on the boundary). We refer the reader
for example to [CW95, CW96] for vanishing viscosity results in domains without boundary, [Kat84, TW97,
Mas98, Wan01, Kel07, Mas07b, LFMNL08, LFMNLT08, MT08, Mae12] for vanishing viscosity results
with the Dirichlet boundary conditions, and [BdVC10, BdVC12, MR12] for the Navier type conditions.

To overcome this difficulty, Prandtl [Pra04] introduced an ansatz (uNS , vNS)(x, y, t) ≈ (uE , vE)(x, y, t)

valid away from a thin neighborhood of the boundary, called the boundary layer. Inside the boundary
layer, in order to account for the large gradients in the normal direction, the Navier-Stokes flow should
asymptotically behave as (uNS , vNS)(x, y, t) ≈ (u,

√
νv)(x, y/

√
ν, t), where ν is the kinematic viscosity.

Retaining the leading order terms in this matched asymptotic expansion, one formally arrives at the Prandtl
equations (see, e.g. [Ole66, OS78, EE97, OS99, SC98a, CS00, E00, HH03, GN10, Gre00a, XZ04, GSS09,
GVD10, GVN12, MW12a, MW12b, AWXY12] for results on the Prandtl equations).
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The two dimensional Prandtl equations for the unknown (tangential) velocity u = u(x, y, t) in the bound-
ary layer read

∂tu− ∂yyu+ u∂xu+ v∂yu = −∂xP (1.1)

∂xu+ ∂yv = 0 (1.2)

∂yP = 0 (1.3)

in H = {(x, y) ∈ R2 : y > 0}, where y is the normal variable in the boundary layer. The equations
(1.1)–(1.3) are augmented with the no-slip and the no-influx boundary conditions

u(x, y, t)|y=0 = v(x, y, t)|y=0 = 0 (1.4)

for t > 0, and the matching conditions with the Euler flow as y →∞, via the Bernoulli law

lim
y→∞

u(x, y, t) = U(x, t) (1.5)

∂xP (x, t) = −(∂t + U(x, t)∂x)U(x, t) (1.6)

for x ∈ R, t > 0, where U(x, t) is given by the trace at y = 0 of the tangential component of the underlying
Euler flow. Note that the vertical component of the velocity v = v(x, y, t) is determined from u (it is a
diagnostic variable) via (1.2) and (1.4):

v(x, y, t) = −∂−1
y ∂xu(x, y, t) (1.7)

for all (x, y, t) ∈ H× [0,∞). Here and throughout the text, for any function w : H→ R, we denote

∂−1
y w(x, y) =

∫ y

0
w(x, z)dz. (1.8)

The pressure gradient ∂xP appearing on the right side of (1.1) is given by (1.3) and (1.6) as the trace at
y = 0 of the underlying Euler pressure gradient.

From the mathematical point of view, the formal derivation of the Prandtl equations raises two intimately
connected fundamental questions:

• In what sense are the Prandtl equations well-posed (at least locally in time)?
• In which space can we rigorously justify the Prandtl asymptotics?

In this paper we address the first one. The well-posedness of the Prandtl equations has been established so
far only in three particular settings: either for initial data that is monotone in the y variable, or for data that is
real-analytic in the x variable, or for initial data that changes monotonicity (in a non-degenerate way) in the
y variable and is of Gevrey-class in the x variable. The results in this paper give a fourth regime in which
the Prandtl boundary layer equations are well-posed (cf. Theorems 2.2 and 2.3 below).

Summary of previous results. In the two-dimensional case, if one assumes the initial data u is monotonic
(and the matching Euler flow U has the correct sign), using the Crocco transform it was shown in [Ole66]
that the equations have a unique local in time solution (cf. also [OS99]). A recent, energy-based proof
of this result was obtained in [MW12a] by appealing to a special nonlinear cancellation in the equations
(cf. also [Gre00b, AWXY12]). In this monotone setting, if the pressure gradient is favorable ∂xP ≤ 0 the
local solution can be extended globally in time [XZ04]. A special finite time blowup solution of the Prandtl
equations was constructed in [EE97] when U = P = 0, although the corresponding inviscid problem is
well-posed in a weak sense [HH03].

The second setting where the Prandtl equations are locally well-posed is the analytic setting. Using an
Abstract Cauchy-Kowalewski theorem [Asa88], it was shown in [SC98a, SC98b] that if the initial data for
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the Prandtl equations are real analytic with respect to x and y (and so is the underlying Euler flow U ), then
the equations are locally well-posed in this class. The requirement of analyticity in the normal variable was
removed in [CLS01] (cf. also [CS00, GSS09]). Recently, in [KV13], an energy-based proof of the local
well-posedness result was given, assuming the initial data is real-analytic with respect to x only. In addition,
the result allows u − U to decay at an algebraic rate as y → ∞. In the three-dimensional case, the Prandtl
equations are only known to be well-posed in this analytic setting.

Removing the condition of real-analyticity in the normal variable y is relevant in the context of the finite
time blowup for the Prandtl equations considered in [EE97]. The initial datum u0(x, y) shown there to
yield finite time singularities has compact support in the y variables and hence cannot be real-analytic. An
example is given by the initial data u0(x, y) = −x exp(−x2)a0(y), where a0(y) = f(Ry), f is a positive,
compact support bump function, and 4R < ‖f‖3/2

L3 ‖f ′‖−1
L2 . Therefore, for this initial datum we have both

local existence (cf. [CLS01, KV13]) and finite time blowup (cf. [EE97]) of (1.1)–(1.6) with U = P = 0.
At this stage we point out that in the Sobolev (and even C∞) category the equations have recently been

shown to be ill-posed in the sense of Hadamard [GVD10] due to high-frequency instabilities in the equations
linearized about certain non-monotonic shear flows (cf. also [CHT85, GN10, GVN12]). The instabilities
exhibited in [GVD10, GVN12] do not however preclude the well-posedness of the system in Gevrey spaces
with index between 2 and 1 (the Gevrey-class 1 is the class of real-analytic functions). In this direction
a very recent result [GVM13] shows that the equations are locally well-posed if the initial data lies in the
Gevrey class 7/4 and changes monotonicity in a non-degenerate way across the graph of a function of x.
This result exhibits a nice interplay between the Gevrey class/analytic setting and the nonlinear cancellation
available in the monotone setting.

Main results. In this paper we address the following question for the two-dimensional Prandtl system. As-
sume that on one part of the domain the initial data is given by a profile that is monotone increasing with
respect to the normal variable and on another part of the domain the initial data is monotone decreasing (for
example consider initial vorticity ω0(x, y) = sin(x)(1 + y2)−1, defined on the domain [−π/2, π/2]×R+).
What is a sufficient condition to impose on the complement of these two regions, in order to ensure that the
equations are locally well-posed? We prove that such a sufficient condition is given by assuming the data
is uniformly real-analytic with respect to the tangential variable in this complementary region (cf. Theo-
rems 2.2 and 2.3 below).

The difficulties in establishing this result, as well as the analogous one for the hydrostatic Euler equations,
are as follows. As opposed to [GVM13], we need to localize in the x variable (instead of y) and real-analytic
functions of x cannot have compact support. Additionally, the localization in the x variable suggests that
one needs to solve for the monotone region in the presence of side boundary conditions, a construction that
is not amenable using the existing energy-based tools.

Moreover, at the technical level the norms used in the monotone region and the analytic region are not
compatible. Indeed, in order to close the estimates in the monotone region at the level of Sobolev spaces, one
works with the vorticity formulation of the Prandtl system with weights that match the number y-derivatives
of the solution (cf. [MW12a]). But it appears that in the analytic region these weights require the solution
to be analytic in both x and y, which is undesirable. Lastly, glueing the real-analytic and the monotone
solutions is an issue since the latter lies merely in a finite order Sobolev space.

The main ideas that allow us to overcome these difficulties are the following. First, we observe that using
a suitable change of normal variables, that depends on the underlying Euler flow U (cf. [KV13]), we may
construct the real-analytic solution (analytic in x only, with algebraic matching with U at the top of the
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layer) in a strip Ia × R+ (here Ia is the interval of analyticity), without the use of lateral boundary condi-
tions on ∂Ia × R+. In particular, this “decouples” the analytic estimates from the Sobolev Hs estimates.
This is possible because we can construct the analytic solution without integrating by parts in the x variable
(cf. [KV13]). On the other hand, constructing the monotone solution at the level of Sobolev spaces essen-
tially uses integration by parts in x. We overcome this problem by extending the initial data from Im × R+

(here Im is the interval of monotonicity) to R × R+ while preserving the monotonicity, and use the results
in [MW12a] to construct the monotone solutions on the entire half-plane. Note that this extension cannot
decay as x→∞ because then the uniform monotonicity condition would be violated. In order to work with
these non-decaying solutions we appeal to a locally uniform spaces (cf. (2.3)–(2.4) below). This setting also
allows us to extend the results in [MW12a] to the case when u is not x-periodic (cf. Theorem 2.1 below).

In the last and the crucial step, we glue the monotone solution defined on R × R+ with the analytic
one defined in Ia × R+. The idea here is to use the finite speed of propagation with respect to the x
variable. Indeed, initially the monotone and analytic solutions agree on (Im ∩ Ia) × R+, which is non-
empty. Thus, using that by continuity they are in fact both monotone there and that the real-analytic solution
obeys supt ‖u‖L∞(Ia×R+) ≤ M < ∞, we prove that the two solutions agree at later times on a strip
that shrinks with speed 2M with respect to x. That is, if Ia ∩ Im ⊃ [a, b], then the solutions agree on
[a + Mt, b −Mt] × R+ for all sufficiently small t. The uniqueness of the solution follows in a similar
fashion. Our main results for the Prandtl system and their detailed proof are given in Section 2 below.

1.2. The Hydrostatic Euler Equations. The two dimensional hydrostatic Euler equations for the unknown
velocity field (u, v) = (u, v)(x, y, t) and the scalar pressure p = p(x, t), read

∂tu+ u∂xu+ v∂yu+ ∂xp = 0 (1.9)

∂xu+ ∂yv = 0 (1.10)

∂yp = 0 (1.11)

where t ≥ 0 and the spatial domain is the infinite strip D = {(x, y) ∈ R2 : 0 < y < 1}. The equations
(1.9)–(1.11) are supplemented with the boundary condition

v = 0 on ∂D (1.12)

where ∂D = {(x, y) ∈ R2 : y = 0 or y = 1}. The unknown variable u is called diagnostic, while v and p
are called prognostic since they may be computed from u. Indeed, from (1.10) and (1.12) we see that

v(x, y) = −∂−1
y ∂xu(x, y). (1.13)

The expression (1.13) and the boundary condition (1.12) naturally lead to the compatibility condition∫ 1

0
u(x, y, t)dy = ψ(t)

for x ∈ R and t ≥ 0, where ψ is a function of time. Using a change of variables, we may without loss of
generality consider consider this function ψ to be zero, i.e.,∫ 1

0
u0(x, y)dy =

∫ 1

0
u(x, y, t)dy = 0. (1.14)

On the other hand, integrating (1.9) in y from 0 to 1 and using (1.14) we conclude that up to a function of
time, which without loss of generality we set equal to zero, the pressure is determined by

p(x, t) = −
∫ 1

0
u2(x, y, t)dy. (1.15)
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Summary of previous results. The hydrostatic Euler equations arise in two contexts in fluid dynamics:
in modeling of the ocean and the atmosphere dynamics [LTW92b, LTW92a, Ped82, Mas07a, TT03, TZ04]
and in the asymptotic limit of vanishing distance between two horizontal plates for the incompressible Euler
equations [Lio96].

Concerning the local existence and uniqueness of smooth solutions to the hydrostatic Euler equations
(1.9)–(1.12) in the absence of lateral boundaries there are two main types of results. If one assumes a
local Rayleigh condition, i.e., that ∂yyu ≥ σ > 0 uniformly in (x, t), then one can construct solutions in
Sobolev spaces. This analysis was initiated in [Bre99, Bre03, Gre99], which lead up to the recent energy-
based approach in [MW12b]. Note that if instead u has inflection points, i.e., the Rayleigh condition is
violated, the equations are Lipschitz ill-posed in Sobolev spaces [Gre00a, Ren09, Ren11]. In the absence
of a uniform Rayleigh condition the only available well-posedness results were obtained in [KTVZ11],
under the assumption that the initial data is real-analytic (cf. also [IKZ12] for the free surface case). The
techniques in these works were inspired by the earlier results on analyticity for the Euler equations [LO97,
OT01, KV11b, KV11a].

In the presence of lateral boundaries the problem is even more challenging, since no local set of bound-
ary conditions give rise to a well-posed problem [OS78, TT03]. In this direction progress has been made
regarding the linearized equations in [RTT05, RTT08].

We note that in the absence of the concavity/convexity assumption, the finite time blowup of particular
solutions to the hydrostatic Euler equations has been established very recently in [CINT12] and [Won12].
The initial datum u0(x, y) = 1+(1/3−y2) sin(x) satisfies the blowup conditions in [Won12], and is clearly
real-analytic in both the x and y variables. Therefore, for this initial datum we have both local existence
(cf. [KTVZ11]) and finite time blowup (cf. [CINT12, Won12]) of (1.9)–(1.12).

Main results. In this paper we address the local existence of smooth solutions for the hydrostatic Euler
equations for a larger class of initial data than previously considered in [MW12b, KTVZ11]. Similarly to
the Prandtl case discussed in Section 1.1 above, the question we study is the following. Assume that the
initial data satisfies ∂yyu0 ≥ σ > 0 on a subset D+

m, and ∂yyu0 ≤ −σ on another subset D−m of D; what
additional assumption on u0 guarantees that one can construct a unique smooth solution, at least locally
in time? We prove that if one assumes that u0 is uniformly real analytic on the complement Da of these
concavity/convexity regions, then there exists T > 0 and a solution u on [0, T ], which lies in Hs(Dm) for
some s ≥ 4, and is real analytic on Da. That is, our initial data is allowed to be convex in certain regions of
D and concave in other regions, as long as in the transition region it is real analytic. The precise statements
of our results for the hydrostatic Euler equations are given in Theorems 3.2 and Remark 3.3 below.

The main difficulties are similar as for the Prandtl system. Note that we cannot localize real analytic
functions; thus we appeal to the interior analytic estimates, as in [KTVZ11], which decouple the analytic
part from the Hs part of the solution. In the proof of the local well-posedness in Hs in [MW12b] the key
ingredient is a cancellation between the vorticity ω = ∂yu and v via integrating over D. Here an integration
by parts in x is essential, but under the current setting one cannot do this since the Rayleigh condition is not
uniform over D. To overcome this difficulty, we extend the convex data to all of the strip, and use the idea
in [MW12b], to construct a global (in x) convex solution. Lastly, we use the finite speed of propagation to
glue the convex and analytic solutions and to prove uniqueness. Our main results for the hydrostatic Euler
equations and their proofs are given in Section 3 below.

2. THE MAIN RESULTS FOR THE PRANDTL EQUATIONS
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2.1. Local existence for Oleinik solutions in unbounded domains. The main result of this subsection,
Theorem 2.1, gives a construction of local in time solutions to the Prandtl equations under the Oleinik
monotonicity condition, using solely energy methods, even on domains that are unbounded with respect to
the x-variable. This result is a direct consequence of the construction of x-periodic y-monotone solutions
given in [MW12a], and the finite speed of propagation in the x-variable inherent in the Prandtl equations.

We recall cf. [MW12a] the following function spaces. For s ≥ 4 an even integer, γ ≥ 1, σ > γ + 1/2,
δ ∈ (0, 1), and a bounded interval I ⊂ R, we let

Hs,γ(I) =
{
ω : I × R+ → R : ‖ω‖Hs,γ(I) <∞

}
(2.1)

where
‖ω‖2Hs,γ(I) =

∑
|α|≤s

‖(1 + y)γ+α2∂α1
x ∂α2

y ω‖2L2(I×R+).

We also recall the space of y-monotone functions

Hs,γ
σ,δ (I) =

{
ω ∈ Hs,γ(I) : (1 + y)σω(x, y) ≥ δ for all (x, y) ∈ I × R+,∑
|α|≤2

|(1 + y)σ+α2∂α1
x ∂α2

y ω(x, y)| ≤ δ−2 for all (x, y) ∈ I × R+

}
. (2.2)

In order to simplify notations, we write Hs,γ(I) rather than Hs,γ(I × R+), i.e., the range of the y-variable
is always assumed to be R+.

For unbounded domains, e.g. I = R, we need to deal with the fact that the condition

ω(x, y) ≥ δ(1 + y)−σ,

satisfied by functions in Hs,γ
σ,δ , prevents the vorticity from decaying to zero when |x| → ∞, and thus we

cannot work in L2
x-type spaces such as Hs,γ(I).

For this purpose we introduce the uniformly localHs,γ space, as follows. Assume that there exists a finite
length open interval Ī ⊂ R, and a countable set of real numbers {aj}j∈N such that

I =
⋃
j∈N

Ij , where Ij = aj + Ī .

For instance if I = (0,∞) we may take Ī = (0, 2) and {aj}j∈N = Z. We then define

Hs,γ
uloc(I) =

{
ω : I × R+ → R : ‖ω‖Hs,γ

uloc(I) = sup
j∈N
‖ω‖Hs,γ(Ij) <∞

}
(2.3)

and similarly

Hs,γ
σ,δ,uloc(I) =

{
ω ∈ Hs,γ

uloc(I) : (1 + y)σω(x, y) ≥ δ for all (x, y) ∈ I × R+,∑
|α|≤2

|(1 + y)σ+α2∂α1
x ∂α2

y ω(x, y)| ≤ δ−2 for all (x, y) ∈ I × R+

}
. (2.4)

Note that the additional conditions for a function in Hs,γ
uloc to lie in Hs,γ

σ,δ , are L∞x,y-based conditions (rather
than L2

x,y-based) and thus we do not need to explicitly take an additional supremum over j.
The main result of this subsection is as follows.

Theorem 2.1. Let I ⊂ R be an open interval, s ≥ 4 be an even integer, γ ≥ 1, σ > γ + 1/2, and
δ ∈ (0, 1/4). Assume that the initial velocity obeys u0 − U0 ∈ Hs,γ−1

uloc (I), the initial vorticity satisfies
ω0 ∈ Hs,γ

σ,2δ,uloc(I), and that the outer Euler flow U is sufficiently smooth (for example ‖U‖
W s+9,∞
t,x

=

supt
∑

0≤2l≤s+9 ‖∂ltU‖W s−2l+9,∞(I) < ∞ will suffice). Then there exists T > 0 and a smooth solution
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u of (1.1)–(1.6) such that the velocity obeys u − U ∈ L∞([0, T ];Hs,γ−1
uloc (I)) ∩ Cw([0, T ];Hs

uloc(I)) and
the vorticity obeys ω ∈ L∞([0, T ];Hs,γ

σ,δ,uloc(I)) ∩ Cw([0, T ];Hs
uloc(I)). When I = R or I = T, the

solution constructed above is the unique solution in this regularity class. When ∂I 6= ∅, e.g. if I = (a, b),
there exists a positive M < ∞ such that u(t) is the unique solution with u(t) − U(t) ∈ Hs,γ−1(It) and
ω(t) ∈ Hs,γ

σ,δ,uloc(It), where It = {x ∈ R : (x−Mt, x+Mt) ⊆ I}.

In the case I = (a, b) we have It = (a + Mt, b −Mt). When s = 4 we need to also assume that δ is
chosen small enough so that ‖ω0‖Hs,γ

g
≤ Cδ−1 (cf. [MW12a, Equation (3.1)]). Here Cw([0, T ];X) stands

for continuity with values in X , when the space X is endowed with its weak topology.
For simplicity of the presentation we only give the proof in the case I = R, with Ij = (j, j + 2), and

j ∈ Z. The extension to the general case described in Theorem 2.1 requires no additional arguments.

Proof of Theorem 2.1. In order to appeal to the results in [MW12a], we need to work with solutions that are
periodic in the x-variable. For this purpose fix an arbitrary j ∈ Z. We extend the initial data u0, ω0 and
the outer Euler flow U from the domain Ij ×R+ = (j, j + 2)×R+ to x-periodic functions u(j)

0 , ω
(j)
0 , U (j)

defined on Ĩj ×R+ = (j− 1, j+ 3)×R+. The periodic extension is made in such a way that u(j)
0 −U (j) ∈

Hs,γ−1(Ĩj), with ‖u(j)
0 − U

(j)
0 ‖Hs,γ−1(Ĩj)

≤ C‖u0 − U0‖Hs,γ−1
uloc (I)

= M0, and that ω(j)
0 ∈ Hs,γ

σ,3δ/2(Ĩj),

with ‖ω(j)
0 ‖Hs,γ

σ,3δ/2
(Ĩj)
≤ C‖ω0‖Hs,γ

σ,2δ,uloc
= M1. Since we have an x-periodic initial data that is monotone

in y and decays sufficiently fast as y → ∞, we may apply the result in [MW12a, Theorem 2.2] directly
in order to obtain a unique local in time solution with u(j) − U (j) ∈ L∞([0, Tj ];H

s,γ−1(Ĩj)) and ω(j) ∈
L∞([0, Tj ];H

s,γ
σ,δ (Ĩj)), for some Tj = Tj(M0,M1, s, γ, σ, δ, ‖U‖W s+9,∞

t,x
) > 0. At this stage we note that in

view of the dependency of Tj and the uniform local spaces considered, we may find T > 0 such that T ≤ Tj
for all j ∈ Z, i.e., the time of existence can be taken independent of j.

We have so far constructed a countable family of solutions to the Prandtl equations, each of whom have a
common life-span, but so that each solution u(j) is Ĩj-periodic in the x variable. Using the transport structure
of (1.1) with respect to the x-variable we now proceed to “glue” the above constructed solutions.

Fix some j ∈ Z. At time 0, by construction, the solutions u(j) and u(j+1) are identical on the interval
(j + 1, j + 2). By construction, we have that

sup
j∈Z

sup
t∈[0,T ]

(
‖u(j)‖

L∞(0,T ;Hs−1,γ(Ĩj))
+ ‖ω(j)‖

L∞(0,T ;Hs,γ
σ,δ (Ĩj))

)
<∞.

Let

M = sup
j∈Z

sup
t∈[0,T ]

‖u(j)(t)‖
L∞(Ĩj×R+)

<∞

be an upper bound on the speed of propagation in the x variable. Note that since s ≥ 4, M may be
bounded in terms of the Hs,γ−1

uloc energy M0 and the L∞t,x norm of U . It thus follows from the finite speed of
propagation in the x variable (transport structure) that for each

0 ≤ t < T∗ = min{T, 2/M}

we have

u(j)(t, x, y) ≡ u(j+1)(t, x, y), (x, y) ∈ (j + 1 +Mt, j + 2−Mt)× R+. (2.5)

The proof of (2.5) uses the ideas of the uniqueness proof in [MW12a, Section 6.2]. We establish that the
function

g = ω(j+1) − ω(j) − (u(j+1) − u(j))∂y log(ω(j))
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obeys

‖g(t)‖L2((j+1+Mt,j+2−Mt)×R+) ≤ ‖g(0)‖(j+1,j+2)×R+
exp(Ct) (2.6)

for t ∈ [0, T∗) with some C > 0. This implies that g ≡ 0 on [0, T∗), and in view of the boundary conditions
for the Prandtl equations we furthermore obtain (2.5). The detailed proof of the estimate (2.6) is given in
Section 2.2.3 below (cf. (2.66)), for the case when one solution is analytic and the other one is monotone.
The proof works however with no changes for the case of two monotone solutions and we omit the details
to avoid redundancy.

In order to conclude the proof of the existence part of Theorem 2.1, we define a global (in x) solution
u(t, x, y) of the Prandtl equation on [0, T∗)× R× R+ by

u(t, x, y) = u(j)(t, x, y) whenever x ∈ [j + 1/2, j + 3/2). (2.7)

The uniform in j bounds are inherited from the bounds obtained on the u(j)’s individually. The proof of
uniqueness follows by appealing again to the finite speed of propagation in the x variable. �

2.2. Local existence with multiple monotonicity regions. The main result of this subsection, Theorem 2.3
below, gives the local existence of the Prandtl equations in the presence of multiple monotonicity regions.

For simplicity of the presentation, we only give the proof of a special case of our main result, Theorem 2.2
below, when the monotonicity regions cover the half plane minus the line x = 0, around which the function
is assumed to be analytic. Thus we treat the initial date u0 which satisfy

• ∂yu0(x, y) < 0 for x < 0

• ∂yu0(x, y) > 0 for x > 0

• u0(x, y) is real analytic with respect to x around x = 0

combined with suitable smoothness, decay, and compatibility conditions on the underlying tangential com-
ponent of the Euler flow trace U0(x).

The precise setup is as follows. Let 2τ0 > 0 be the analyticity radius of u0(x, y) at x = 0. The radius
is assumed to be uniform with respect to y. Then the power series in x for u0(x, y) converges with radius
τ0 > 0 at (x, y) ∈ [−τ0, τ0]× R+. Denote an interval of analyticity by

Ia = [−τ0, τ0].

Quantitatively, we assume that ū0, as defined in (2.12) below, satisfies

‖ū0‖Yτ0 (Ia) <∞ (2.8)

where the norm in Yτ0 is defined in (2.22) below. Here and throughout the paper we are implicitly using the
fact that if a function is analytic on (a, b) with radius 2τ , then it is analytic on (a− τ, b+ τ) with radius τ .

In terms of the monotonicity assumptions on u0(x, y) for x > 0 and for x < 0, we assume that there
exist s ≥ 4, an even integer, γ ≥ 1, σ > γ + 1/2, and δ ∈ (0, 1/2) such that the initial velocity u0 and the
initial vorticity ω0 = ∂yu0 obey

u0 − U0 ∈ Hs,γ−1
uloc (I+

m), u0 − U0 ∈ Hs,γ−1
uloc (I−m), (2.9)

and

ω0 ∈ Hs,γ
σ,2δ,uloc(I

+
m), −ω0 ∈ Hs,γ

σ,2δ,uloc(I
−
m) (2.10)

with suitable assumptions on U and on ω0 when s = 4. Here we denote the intervals of monotonicity by

I+
m = [τ0/2,∞) and I−m = (−∞,−τ0/2].
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The spaces Hs,γ−1
uloc (I) and Hs,γ

σ,4δ,uloc(I) are as defined in (2.3) and (2.4) above.
Note that Ia and I±m have a non-empty overlap. With these notations, the statement whose proof we

present in this section, is the following.

Theorem 2.2. Let s ≥ 4 be an even integer, τ0 > 0, γ ≥ 1, σ > γ + 1/2, and δ ∈ (0, 1/4). Assume
that the initial velocity u0 and vorticity ω0 obey (2.8)–(2.10) above, and that the underlying Euler flow
U is sufficiently smooth. If s = 4, assume that δ is sufficiently small so that ‖ω0‖Hs,γ

g
≤ Cδ−1. Then

there exists T > 0 and a smooth solution u of (1.1)–(1.6) on [0, T ] such that ū, as defined in (2.12)
below, belongs to L∞([0, T ];XεU τ0(Ia)) ∩ L2((0, T );YεU τ0(Ia)) ∩ L2((0, T );ZεU τ0(Ia)) on the analytic
region, for some εU > 0, and that on the monotone regions we have u − U ∈ L∞([0, T ];Hs,γ−1

uloc (I±m)) ∩
Cw([0, T ];Hs

uloc(I
±
m)) and ±ω ∈ L∞(Hs,γ

σ,δ,uloc(I
±
m)) ∩ Cw([0, T ];Hs

uloc(I
±
m)). The solution u is unique in

this class.

The spaces Xτ , Yτ , and Zτ are defined in (2.21)–(2.23) below. From the proof of Theorem 2.2, given
below, it is clear that the following more general statement holds.

Theorem 2.3. Let s ≥ 4 be an even integer, τ0 > 0, γ ≥ 1, σ > γ + 1/2, and δ ∈ (0, 1/4). Assume
that there exist open intervals {I+

i }
n+

i=1 and {I−k }
n−
k=1 ⊂ R such that the initial velocity u0(x, y) obeys

u0 − U0 ∈ Hs,γ−1
uloc (I±i ), the initial vorticity ω0(x, y) satisfies ±ω0 ∈ Hs,γ

σ,2δ,uloc(I
±
i ), and the underlying

Euler flow U(x, t) is such that ‖U‖
W s+9,∞
t,x (I±i )

< ∞. If s = 4, assume that δ is chosen small enough

depending on ω0. Assume also that there exist open intervals {Jj}mj=1 ⊂ R such that the initial vorticity ω0

is uniformly real analytic in x with radius at least 2τ0 there, i.e., ω0 ∈ Y2τ0(Jj), and that the underlying
Euler flow U(x, t) is uniformly (in x) real analytic on Jj with radius at least 2τ0 and norm bounded with
respect to t. Lastly, assume the intervals of monotonicity I±i and of analyticity Jj cover the real line, that is
(∪jJj) ∪ (∪iI+

i ) ∪ (∪kI−k ) = R. Then there exists T > 0 and a smooth solution u of (1.1)–(1.6) on [0, T ]

which is monotone with respect to y in I±i ×R+, analytic with respect to x in Jj ×R+, and is unique in this
class.

We note that due of the uniform analyticity condition, the regions of overlap between the analyticity
regions and the monotonicity regions have a uniform positive minimum length. Also, it is not difficult to
adjust the statement to accommodate an infinite number of intervals.

Proof of Theorem 2.2. The construction of solutions to (1.1)–(1.3) in the case of multiple monotonicity
regions is carried out in several steps:

• In subsection 2.2.1 we construct the real analytic solution defined on Ia × R+ and prove higher
regularity properties with respect to the y variable.
• In subsection 2.2.2 we use the result of Section 2.1 to construct the uniformly local monotone

solution defined on I±m × R+.
• In subsection 2.2.3 we use the finite speed of propagation in the x variable to glue the monotone

and real-analytic solutions.
• In subsection 2.2.4 the uniqueness of solutions in this class is established.

The details for each of the above steps are given next. �

2.2.1. Construction of the analytic solution. Since we are working with solutions of low regularity with
respect to the y variable, and since we need to allow for sub-exponential decay of the initial data and the
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solution as y →∞, we use as in [KV13] the Euler-dependent transformation

ȳ = A(x, t)y (2.11)

ū(x, ȳ, t) = u(x, y, t)− (1− φ(ȳ))U(x, t) (2.12)

with

φ = φ(ȳ) = 〈ȳ〉−θ, 〈ȳ〉 = (1 + ȳ2)1/2 (2.13)

where θ is sufficiently large, to be specified later, and A is the solution of

∂tA+ U∂xA = A∂xU, A|t=0 = 1. (2.14)

It is also convenient to denote a(x, t) = logA(x, t). This change of variables turns the Prandtl equation
(1.1)–(1.6) into

∂tū−A2∂ȳȳū+N(ū) + L(ū) = F (2.15)

ū(x, ȳ, t)|ȳ=0 = 0, lim
ȳ→∞

ū(x, ȳ, t) = 0 (2.16)

with the corresponding initial condition, where we denoted by

N(ū) = ū ∂xū− ∂x∂−1
ȳ ū ∂ȳū+ ∂xa ∂

−1
ȳ ū ∂ȳū (2.17)

the nonlinear part, by

L(ū) = ∂x∂
−1
ȳ ū ∂ȳφ U + ∂xū(1− φ)U + ∂ȳū

(
∂−1
ȳ φ ∂xU − ∂xa ∂−1

ȳ φ U
)

− ∂−1
ȳ ū ∂xa ∂ȳφ U + ū(1− φ)∂xU (2.18)

the linear part, and by

F =
(
φ(1− φ) + ∂−1

ȳ φ ∂ȳφ
)
U∂xU − ∂xa ∂ȳφ ∂−1

ȳ φ U2 −A2 ∂ȳȳφ U − φ ∂xP (2.19)

the force. From (1.8), we recall the notation ∂−1
ȳ f(·, ȳ) =

∫ ȳ
0 f(·, z)dz.

Note that by assumption the function U(x, t) is assumed to be uniformly real-analytic for x ∈ [−2τ0, 2τ0]

with the radius of analyticity bounded from below by some 2τ0 > 0, on some time interval [0, T ]. In
particular U is bounded (in x and t), and by possibly reducing the time interval (2T ≤ τ0/‖U‖L∞x,t from a
ballistic estimate) we can ensure that the values ofA(x, t) in [−τ0, τ0]×[0, T ] depend only on those ofA0 =

1 and on U(x, t), ∂xU(x, t) in [−2τ0, 2τ0] × [0, T ]. Having established this, the existence and uniqueness
(in the class of real analytic functions) of A(x, t) on a short time interval [0, T ] follows from the classical
Cauchy-Kowalewski theorem. By possibly reducing T we may furthermore ensure that 1/2 ≤ A(x, t) ≤ 2

on Ia × [0, T ]. Let the uniform radius of real-analyticity of the function A(x, t) on [−τ0, τ0] × [0, T ] be
bounded from below by some τU > 0, and let its analytic norm on this set be bounded from above by some
constant GU .

In order to present the analytic a priori estimates, we introduce

ρ = ρ(ȳ) = 〈ȳ〉α (2.20)
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and for τ > 0, and an interval I ⊂ R we define the real-analytic norms

‖ū‖2Xτ (I) =
∑
m≥0

‖ρ∂mx ū‖2L2(I×R+)τ
2m(m+ 1)4(m!)−2 (2.21)

‖ū‖2Yτ (I) =
∑
m≥1

‖ρ∂mx ū‖2L2(I×R+)τ
2m−1m(m+ 1)4(m!)−2 (2.22)

‖ū‖2Zτ (I) =
∑
m≥0

‖Aρ∂ȳ∂mx ū‖2L2(I×R+)τ
2m(m+ 1)4(m!)−2. (2.23)

Then, similarly to estimate (3.26) in [KV13], we have the a priori estimate

d

dt
‖ū‖2Xτ (Ia) + ‖ū‖2Zτ (Ia)

≤ Ca(1 + τ−2)(1 + ‖ū‖2Xτ (Ia))
2 +

(
τ̇ + Ca + Caτ

−1‖ū‖Zτ (Ia)

)
‖ū‖2Yτ (Ia) (2.24)

whenever τ = τ(t) ≤ εUτU for some εU ≈ (1 +GU )−1 ∈ (0, 1], and for some positive constant Ca which
depends on α, θ, the analyticity radius τU and analytic norm GU of A(x, t) on [−τ0, τ0]× [0, T ].

While we do not provide full details for the above estimate, we wish to emphasize one important aspect.
In [KV13] the estimates are for the half-space R×R+ so that there are no boundary terms in x. On the other
hand, in the setting of this paper the estimates are considered in the strip Ia × R+, and hence integration
by parts with respect to the x variable is not permitted. Even so, at no stage in the derivation of (2.24) was
integration by parts with respect to x used. The one derivative loss with respect to x in the nonlinear term is
compensated by requiring the analyticity radius to decrease fast enough, and so integration by parts in x is
not needed.

There is just one more technical aspect which is different in obtaining (2.24) for Ia × R+ instead of
for R × R+. As opposed to the case of the whole line (with decay at infinity), when working on a finite
interval the one-dimensional Agmon inequality for a function f : I → R has a lower order term, i.e.,
‖f‖L∞ ≤ C‖f‖1/2

L2 ‖f ′‖
1/2
L2 + CI‖f‖L2 . To obtain (2.24) one repeatedly uses this estimate with f = ∂kx ū,

k ≥ 0, and I = Ia. These lower order term do not create any difficulties in the estimates.
In order to conclude the analytic a priori estimates, let the analyticity radius τ(t) solve the differential

equation

d

dt
(τ2) + 4Caτ(0) + 4Ca‖ū(t)‖Zτ(t)(Ia) = 0, τ(0) = εUτ0 (2.25)

for some εU ∈ (0, 1] as above. In particular, due to continuity in time of both the solution ū(t) in Xτ(t)(Ia)

and Zτ(t)(Ia), and of τ(t), this means that on a short time interval, the second term on the right side of
(2.24) is negative, and therefore on this short time interval we have

τ(t)2 ≥ τ(0)2 − 4Caτ(0)t− 4Cat
1/2

(∫ t

0
‖ū(s)‖2Zτ(s) ds

)1/2

≥ τ(0)2

4

and

d

dt
‖ū‖2Xτ (Ia) + ‖ū‖2Zτ (Ia) ≤ Ca(1 + 4τ(0)−2)(1 + ‖ū‖2Xτ (Ia))

2

which in particular implies that ∫ t

0
‖ū(s)‖2Zτ(s)(Ia) ds ≤ 1 + 2‖ū0‖2Xτ0 (Ia).
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Therefore, there exits Ta > 0, depending solely on τ0, ‖ū0‖Xτ0 , U, α, θ, such that

sup
t∈[0,Ta]

‖ū(t)‖2Xτ(t)(Ia) +

∫ Ta

0

(
‖ū(t)‖2Zτ(t) + ‖ū(t)‖2Yτ(t)

)
dt ≤ 1 + 2‖ū0‖2Xτ(0)(Ia) (2.26)

and

2τ(t) ≥ τ(0) = εUτ0

on this time interval.
The above a priori estimates can be made rigorous by constructing the analytic solution via Picard itera-

tion. Namely, let ū(0) = ū0 and

∂tū
(n+1) −A2∂ȳȳū

(n+1) = F −N(ū(n))− L(ū(n)), ū(n+1)(0) = ū0

for n ≥ 0, with homogeneous boundary conditions at ȳ = 0 and ȳ =∞. As in [KTVZ11, Section 5], using
(2.26) the sequence ū(n) may be shown to be contracting in the space

L∞([0, Ta];Xτ (Ia)) ∩ L2((0, Ta);Yτ (Ia)) ∩ L2((0, Ta);Zτ (Ia))

from which the existence of the real-analytic solution follows. We note that in order to establish uniqueness
of the analytic solution on Ia ×R+, one still needs to estimate the difference of two solutions in an analytic
norm (as in [KTVZ11, Section 6]). This is due to the lack of lateral boundary conditions which prevents one
from integrating by parts in x.

It is clear from the uniform real-analyticity of A(x, t) on Ia × [0, Ta] and the substitutions (2.11)–(2.11),
that the real-analyticity of ū implies the real-analyticity of u, with comparable radii of analyticity.

At this stage we note that the L2 in time control on the Zτ norm of the analytic solution, combined with
the parabolic character (in t and y) of the equation obeyed by ū, yields higher regularity properties of the
analytic solution with respect to the y variable. This fact will be needed later in the proof when we glue the
real-analytic and the monotone solutions.

Lemma 2.4 (Vorticity of the analytic solution). Let ω = ∂yu be the vorticity associated with the real
analytic solution u, computed from ū via (2.12). Then we have

sup
t∈[0,Ta]

‖ρ(y)ω‖2H1
xL

2
y(Ia×R+) +

∫ Ta

0
‖ρ(y)∂yω(t)‖2H1

xL
2
y(Ia×R+)dt ≤ C

2
ω,a (2.27)

where Cω,a depends on α, θ, τU , GU , τ(0), and ‖ū0‖Xτ(0) , and ρ(y) = 〈y〉α with α > 1/2.

Proof. For simplicity of the presentation, we only give the proof of the estimates in L2
xL

2
y(Ia ×R+) for ρω

and ρ∂yω. The estimate with an additional ∂x derivative follows mutatis mutandi. Multiplying (2.15) by
−∂ȳȳū ρ2(ȳ) and integrating on Ia × R+ yields

d

dt
‖ρ∂ȳū‖2L2(Ia×R+) + ‖ρA∂ȳȳū‖2L2(Ia×R+)

≤ C‖∂ȳρ∂ȳū‖2L2(Ia×R+) + C‖ρ (F − L(ū)−N(ū)) ‖2L2(Ia×R+) (2.28)

where we used the homogeneous boundary conditions with respect to ȳ of ū, the fact that 1/2 ≤ A ≤ 2,
and the Cauchy-Schwartz inequality.

By definition of the Zτ norm in (2.23), we have

‖∂ȳρ∂ȳū‖2L2(Ia×R+) ≤ C‖ū‖
2
Zτ (2.29)

for some constant C that depends on α.
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We now recall the 1-dimensional Agmon inequalities with respect to the vertical variable

‖f‖L4
y(R+) ≤ C‖f‖

3/4
L2
y(R+)

‖∂yf‖1/4L2
y(R+)

(2.30)

which holds if f = 0 at y = 0, and a Hardy type inequality

‖∂−1
y f‖L∞y (R+) ≤ C‖ρf‖L2

y(R+) (2.31)

where ρ(y) = 〈y〉α with α > 1/2. With respect to the horizontal variable we shall use

‖f‖L4
x(I) ≤ C‖f‖

3/4
L2
x(I)
‖∂xf‖1/4L2

x(I)
+ C‖f‖L2

x(I) ≤ C‖f‖H1
x(I) (2.32)

and

‖f‖L∞x (I) ≤ C‖f‖
1/2
L2
x(I)
‖∂xf‖1/2L2

x(I)
+ C‖f‖L2

x(I) ≤ C‖f‖H1
x(I) (2.33)

for some positive constant C that may depend on I .
Using the inequalities (2.30)–(2.33) and recalling the definition of N(ū) from (2.17), and ρ(ȳ) = 〈ȳ〉α ≥

1, with 1/2 ≤ A ≤ 2, we obtain

‖ρN(ū)‖L2 ≤ ‖ρū‖L4‖∂xū‖L4 + ‖∂x∂−1
y ū‖L∞‖ρ∂yū‖L2 + C‖∂−1

y ū‖L∞‖ρ∂yū‖L2

≤ C‖ρū‖3/2
H2
xL

2
y
‖Aρ∂ȳū‖1/2H2

xL
2
y

+ C‖ρȳ‖H2
xL

2
y
‖Aρ∂ȳū‖L2

≤ C(1 + τ(0)−4)‖ū‖3/2Xτ
‖ū‖1/2Zτ

+ C(1 + τ(0)−2)‖ū‖Xτ ‖ū‖Zτ (2.34)

where we have also used τ(0)/2 ≤ τ(t) ≤ τ(0). Similarly, recalling the definition of the linear term in
(2.18) one may show that

‖ρL(ū)‖L2 ≤ CU‖ρū‖H1
xL

2
y

+ CU‖Aρ∂ȳū‖L2
xL

2
y

≤ CU (1 + τ(0)−1)‖ū‖Xτ + CU‖ū‖Zτ (2.35)

and

‖ρF‖L2 ≤ CU (2.36)

where CU = CU (GU , τU , α, θ) > 0 is a constant. Since by construction (cf. (2.26)) we have that

sup
t∈[0,Ta]

‖ū(t)‖2Xτ(t)(Ia) +

∫ Ta

0
‖ū(t)‖2Zτ(t)dt ≤ 1 + 2‖ū0‖2Xτ(0)

by combining (2.28) with (2.29) and (2.34)–(2.36), we obtain

sup
t∈[0,Ta]

‖ρ(ȳ)∂ȳū‖2L2(Ia×R+) +

∫ Ta

0
‖ρ(ȳ)A∂ȳȳū(t)‖2L2(Ia×R+)dt ≤ C

where C > 0 depends on CU , τ(0), and ‖ū0‖Xτ(0) . By translating back ∂ȳ to ∂y and ū to u, and using that
1/2 ≤ A ≤ 2 on Ia × [0, Ta], we conclude the proof of the lemma. �



14 IGOR KUKAVICA, NADER MASMOUDI, VLAD VICOL, AND TAK KWONG WONG

2.2.2. Construction of the monotone solution. In order to explore certain nonlinear cancellations present in
the two dimensional equations, following [MW12a] we look at the equation obeyed by the vorticity ω = ∂yu

which reads

∂tω − ∂yyω + u∂xω + v∂yω = 0 (2.37)

u(x, y, t) = U(x, t)−
∫ ∞
y

ω(x, z, t)dz (2.38)

v(x, y, t) = −
∫ y

0
∂xu(x, z, t)dz (2.39)

∂yω(x, y, t)|y=0 = ∂xP (x, t) (2.40)

supplemented with the initial condition

ω(x, y, 0) = ω0(x, y) = ∂yu0(x, y). (2.41)

Due to the assumptions (2.9)–(2.10) on the initial velocity u0 and initial vorticity ω0 on the intervals
I+
m = [τ0/2,∞) and I−m = (−∞,−τ0/2], we may extend the functions u0(x, y) and ω0(x, y) to the half-

space R× R+, such that the positive extension u+
0 , ω

+
0 , U

+ obeys

(u+
0 , ω

+
0 ) = (u0, ω0) on I+

m × R+ and U+(x, t) = U(x, t) on I+
m × [0, T ] (2.42)

and we have

u+
0 − U

+ ∈ Hs,γ−1
uloc (R) and ω+

0 ∈ H
s,γ
σ,3δ/2,uloc(R) (2.43)

with at most doubled uniform local norm. Similarly, a negative extension u−0 , ω
−
0 , U

− may be defined such
that

(u−0 , ω
−
0 ) = (u0, ω0) on I−m × R and U−(x, t) = U(x, y) on I−m × [0, T ]. (2.44)

It obeys

u−0 − U
− ∈ Hs,γ−1

uloc (R) and − ω−0 ∈ H
s,γ
σ,3δ/2,uloc(R). (2.45)

We note that the corresponding extensions of the underlying Euler flow U were necessary in order to main-
tain the compatibility conditions for u±0 (x, y) as y → ∞. The above mentioned extension is possible
because functions in a Sobolev space Hs may be localized (as opposed to real-analytic functions). It is also
clear that the extension may be chosen in such a way that the monotonicity constant 2δ of (2.4) shrinks by a
given factor.

With the above extensions in mind, we now solve the Prandtl equations on the half-space R × R+ with
the corresponding initial data (u+

0 , ω
+
0 ) and (u−0 , ω

−
0 ). The existence on a short time interval [0, Tm] of

a “positive” solution (u+, ω+) and a “negative” solution (u−, ω−) from these initial conditions is then
guaranteed directly by Theorem 2.1 above. The solutions obey

u± − U± ∈ L∞([0, Tm];Hs,γ−1
uloc (I±m × R+)) (2.46)

and

ω± ∈ L∞([0, Tm];Hs,γ
σ,δ,uloc(I

±
m × R+)). (2.47)
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2.2.3. Glueing the analytic and monotone solutions. Let T∗ = min{Ta, Tm}. In the above sections we have
constructed a unique real-analytic solution u on [−τ0, τ0]×R+×[0, T∗), which may be computed from ū via
(2.12) and two monotone solutions u+ and u− on R×R+×[0, T∗). We shall now glue these three solutions in
a suitable way in order to obtain a single solution uP of the Prandtl system on R×R+× [0, T∗) which agrees
with the positive solution for x ∈ I+

m = [τ0/2,∞), with the negative one for x ∈ I−m = (−∞,−τ0/2], and
with the analytic one for x ∈ Ia = [−τ0, τ0]. In order to achieve this, it is clear that first we need to prove
that the the analytic solution agrees with the monotone solutions on the domain on which they overlap.
The difficulty of not being able to localize real-analytic functions is overcome by using the finite speed of
propagation in the equations with respect to the x-variable in the vorticity equation.

We shall only give details for the overlap of u and u+, the case of u and u− being the same. By definition
we have that u0 = u+

0 on [τ0/2, τ0]× R+, and therefore the initial vorticities match as well, i.e., ω0 = ω+
0 .

We shall now prove that there exists M > 0 such that u(·, t) = u+(·, t) and ω(·, t) = ω+(·, t) on the strip

It × R+ = [τ0/2 +Mt, τ0 −Mt]× R+,

for all t ∈ [0, T ∗), where T ∗ = min{T∗, τ0/(4M)}.
For this purpose we localize the uniqueness argument in [MW12a, Section 6.2], but only in the x variable.

We let

ũ = u− u+ and ω̃ = ω − ω+, (2.48)

where ω is the solution which is real-analytic with respect to x and has W 1,2 regularity in the y-variable by
Lemma 2.4, and ω+(x, y) ≥ δ(1 + y)−σ > 0 is the positive Hs solution. The equation obeyed by ω̃ reads

∂tω̃ − ∂yyω̃ + u∂xω̃ + v∂yω̃ + ũ∂xω
+ + ṽ∂yω

+ = 0, (2.49)

where

u = ∂−1
y ω, v = −∂x∂−1

y u, ũ = ∂−1
y ω̃, ṽ = −∂x∂−1

y ũ.

while the equation obeyed by ũ is

∂tũ− ∂yyũ+ u∂xũ+ v∂yũ+ ũ∂xu
+ + ṽ∂yu

+ = 0. (2.50)

In order to explore the nonlinear cancellation which permits solving the Prandtl equation in Sobolev spaces,
we consider the function

g = ω̃ − ũ∂yω
+

ω+
= ω̃ − ũΩ+ = ω+∂y

(
ũ

ω+

)
(2.51)

where we denoted

Ω+ = ∂y log(ω+)

which by construction obeys

(1 + y)|Ω+(x, y)|+ (1 + y)|∂xΩ+(x, y)|+ (1 + y)2|∂yΩ+(x, y)| ≤ δ−2 + δ−4 (2.52)

for (x, y) ∈ It × R+.
Our goal is to show that

‖g‖2L2(It×R+) = 0 (2.53)

for all t ∈ [0, T ∗), for a suitably chosen constant M in the definition of It.
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First, we explain why g(t) = 0 on It × R+ implies ũ = ω̃ = 0 on this shrinking strip. If g = 0, since
ω+ ≥ δ(1 + y)−σ > 0, it follows by (2.51) that

ũ(x, y, t) = ω+(x, y, t)f(x, t)

for some function f(x, t). Since by construction we have δ ≤ ω+(x, 0) ≤ δ−2 it follows that f(x, t) = 0,
since in view of the existing boundary condition ũ(x, 0, t) = 0. This proves that ũ(t) = 0 and thus ω̃(t) = 0

on It × R+, as desired.
It is left to prove (2.53). The equation obeyed by g is

(∂t − ∂yy + u∂x + v∂y) g = −2g∂yΩ
+ − ũ

(
ũ∂xΩ+ + ṽ∂yΩ

+
)

(2.54)

(cf. the equation (6.13) in [MW12a] for details). The boundary conditions are given by(
∂yg + Ω+g

)
|y=0 = 0 and lim

y→∞
g = 0. (2.55)

To obtain the boundary condition for g at y = 0 we use (1.4) and (2.40). For y → ∞ we have used that
Ω+ → 0 and ũ = 0 as y → ∞, and that ω̃ = ω − ω+ → 0 − 0 = 0 as y → ∞, since by continuity the
real-analytic solution is also monotone on [0, T ∗).

Upon multiplying (2.54) with g and integrating over It × R+ we obtain

1

2

d

dt

∫
It×R+

g(x, y, t)2dxdy +
M

2

∫
R+

(
g(τ0/2 +Mt, y)2 + g(τ0 −Mt, y)2

)
dy

=

∫
It×R+

g
(
∂yyg − u∂xg − v∂yg − 2g∂yΩ

+ − ũ2∂xΩ+ + ũṽ∂yΩ
+
)
dxdy

= J1 + J2 + J3 + J4 + J5 + J6. (2.56)

Integrating by parts in the y-variable and using (2.55) we arrive at

J1 = −
∫
It×R+

|∂yg|2dxdy +

∫
It

Ω+(x, 0)g(x, 0)2dx

≤ −1

2
‖∂yg‖2L2(It×R+) + Cδ‖g‖2L2(It×R+) (2.57)

by appealing to the trace theorem ‖g(·, 0)‖L2(It) ≤ C‖g‖L2(It×R+)‖∂yg‖L2(It×R+) and estimate (2.52).
For the first pair of transport terms along the flow of the analytic solution, we integrate by parts with

respect to x and y respectively, use the incompressibility condition ∂xu + ∂yv = 0 and the boundary
conditions on u, v, g to obtain that

J2 + J3 =
1

2

∫
R+

u(τ0/2 +Mt, y)g(τ0/2 +Mt, y)2 − u(τ0 −Mt, y)g(τ0 −Mt, y)2dy

≤ 1

2

(
sup

(x,y)∈Ia×R+

|u|

)∫
R+

(
g(τ0/2 +Mt, y)2 + g(τ0 −Mt, y)2

)
dy

≤ M

2

∫
R+

(
g(τ0/2 +Mt, y)2 + g(τ0 −Mt, y)2

)
dy (2.58)

by choosing M large enough. In particular, using Lemma 2.4 we obtain the bound

sup
(x,y)∈Ia×R+

|u| ≤ ‖ρω‖1/2
L2
xL

2
y
‖ρ∂xω‖1/2L2

xL
2
y
≤ Cω,a (2.59)

which is possible since ρ(y) = 〈y〉α and α > 1/2, and therefore it is sufficient to choose

M ≥ Cω,a (2.60)
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in order to absorb J2 +J3 into the right hand side of (2.56). For the term J4, directly from Hölder and (2.52)
we have

J4 ≤ Cδ‖g‖2L2(It×R+) (2.61)

For J5, using (2.4), (2.52), and (2.59) we have

J5 ≤ ‖g‖L2(It×R+)‖(1 + y)−1ũ‖L2(It×R+)‖(1 + y)∂xΩ+‖L∞(It×R+)‖u− u+‖L∞(It×R+)

≤ C‖g‖L2‖(1 + y)−1ũ‖L2 (2.62)

with C depending on δ, the norm of ω+ in L∞([0, T ∗];Hs,γ
σ,2δ(I

+
m × R+)) and on Cω,a. Now, similarly to

[MW12b, Claim 6.5], using that δ ≤ (1 +y)σω+(x, y) ≤ δ−1, the boundary condition on ũ, and integrating
by parts in y, we estimate

‖(1 + y)−1ũ‖L2(It×R+) =

∥∥∥∥(1 + y)σω+(1 + y)−1−σ ũ

ω+

∥∥∥∥
L2(It×R+)

≤ Cδ,σ
∥∥∥∥(1 + y)−σ∂y

(
ũ

ω+

)∥∥∥∥
L2(It×R+)

≤ Cδ,σ‖g‖L2(It×R+). (2.63)

Thus we obtain

J5 ≤ C‖g‖2L2(It×R+). (2.64)

Similarly, we have

J6 ≤ ‖g‖L2(It×R+)‖(1 + y)−1ũ‖L2(It×R+)‖(1 + y)2∂yΩ
+‖L∞(It×R+)‖(1 + y)−1(v − v+)‖L∞(It×R+)

≤ C‖g‖2L2(It×R+) (2.65)

by using (2.63) and the bounds available on (1 + y)−1v and (1 + y)−1v+ in L∞([0, T ∗];L∞(It × R+)).
Combining (2.56), (2.57), (2.58), (2.61), (2.64), and (2.65), we obtain that if M is chosen so that it

exceeds the maximal velocity of the analytic solution, i.e., (2.60) holds, then by Grönwall

‖g(t)‖L2(It×R+) ≤ ‖g(0)‖L2(I0×R+) exp(Ct) (2.66)

which concludes the proof of (2.53), since g0 = 0. This concludes the proof that the real-analytic and
the monotone solutions agree for all t ∈ [0, T ∗] for (x, y) ∈ IT ∗ × R+ = [τ0/2 + MT ∗, τ0 − MT ∗].
Therefore we can patch the analytic and monotone solutions together, and we obtain a global in x, local in
time, solution of the Prandtl system.

2.2.4. Uniqueness. The uniqueness holds in the sense that two solutions in the class given by the theorem
are the same. To see this, note that the interval of monotonicity I+

m (respectively I−m) overlaps with the
interval of analyticity Ia, with an overlap of initial size τ0/2. Using an argument that is identical to the
proof of the glueing one given in subsection 2.2.3 above, we may thus establish the uniqueness of solutions
on shrinking monotonicity and analyticity intervals. However, since the speed of this shrinking is finite, by
letting the time of existence be sufficiently small, the proof of uniqueness is established.
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3. THE MAIN RESULT FOR THE HYDROSTATIC EULER EQUATIONS

In the two dimensional setting it is convenient to study the evolution of the vorticity ω = ∂yu. Indeed,
applying ∂y to (1.9), and using (1.10)–(1.11) we obtain the nonlinear transport equation

∂tω + u∂xω + v∂yω = 0, (3.1)

where, using the notation in [MW12b], one may compute (u, v) from ω via

u = −∂yA(ω) and v = ∂xA(ω) (3.2)

where the stream function A(ω) solves

−∂yyA(ω) = ω

with the boundary condition

A(ω)|y=0,1 = 0.

Since we are working in the setting where (1.14) holds, it is not difficult to verify that in the smooth category
(u, v, p) solves (1.9)–(1.12) and (1.14), if and only if (u, v, ω) solves (3.1)–(3.2). We also have the following
estimates for u and v in terms of ω.

Lemma 3.1. Let α = (α1, α2) ∈ N2
0 be a multi-index, and let u and v be determined from the smooth

function ω via (3.2). Also letD′ be a cylindrical subset ofD, i.e., D′ = Ω× (0, 1) for some open set Ω ⊂ R.
If α2 = 0, we have

‖∂αu‖Lp(D′) ≤ C‖∂α1
x ω‖Lp(D′) ≤ C‖ω‖W |α|,p(D′) (3.3)

while if α2 ≥ 1 we may bound

‖∂αu‖Lp(D′) = ‖∂α1
x ∂α2−1

y ω‖Lp(D′) ≤ C‖ω‖W |α|−1,p(D′) (3.4)

for all 2 ≤ p ≤ ∞. Similarly, if α2 = 1, then

‖∂αv‖Lp(D′) ≤ C‖∂|α|x ω‖Lp(D′) ≤ C‖ω‖W |α|,p(D′) (3.5)

and if α2 ≥ 2, we may estimate

‖∂αv‖Lp(D′) = ‖∂α1+1
x ∂α2−2

y ω‖Lp(D′) ≤ C‖ω‖W |α|−1,p(D′) (3.6)

for all 2 ≤ p ≤ ∞.

Proof of Lemma 3.1. Let us first prove the estimates on u. If α2 ≥ 1, using ω = ∂yu we have

∂αu = ∂α1
x ∂α2

y u = ∂α1
x ∂α2−1

y ω,

which proves (3.4). If α2 = 0, we use
∫ 1

0 ∂
α1
x u(x, y)dy = 0. Hence, using the Poincaré inequality in the y

variable, we have ‖∂α1
x u‖Lp ≤ C‖∂α1

x ∂yu‖Lp , which proves (3.3).
In order to estimate v, note that when α2 ≥ 2 we have

∂αv = ∂α1
x ∂α2

y v = ∂α1+1
x ∂α2

y A(ω) = −∂α1+1
x ∂α2−2

y ω,

which proves (3.6). On the other hand, if α2 = 1, we have ∂α1
x ∂α2

y v = −∂α1+1
x u, which can be estimated

in Lp via (3.3), thereby proving (3.5). �
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For simplicity of the presentation we assume that for (x, y) belonging to the monotonicity domain

Dm = (−∞, 1)× (0, 1)

we have that

0 < σ ≤ ∂yω0(x, y) ≤ σ−1 (3.7)

for some σ ∈ (0, 1), while for (x, y) in the analyticity domain

Da = (0,∞)× (0, 1)

we have that u0 is uniformly real analytic with radius τ0 > 0, and analytic norm bounded by a constant
M > 0.

Following the notation in [MW12b], for σ > 0 and s ≥ 4 we consider the Rayleigh-modified Sobolev
space

Hs
σ(I) = {ω ∈ Hs(I × (0, 1)) : σ ≤ ∂yω ≤ σ−1}

with the norm

‖ω‖2Hs
σ

=

∥∥∥∥∥ ∂sxω√
∂yω

∥∥∥∥∥
2

L2

+
∑

|α|≤s,α1 6=s

‖∂αω‖2L2 . (3.8)

Here α = (α1, α2), with α1, α2 ≥ 0, is a two dimensional multi-index, and ∂α = ∂α1
x ∂α2

y . For functions in
Hs
σ, it is clear that the norm ‖ · ‖Hs

σ
and the usual Sobolev norm ‖ · ‖Hs are equivalent, with an equivalence

constant that depends on σ. Now, write I = (−∞, 1) as I =
⋃
j∈N Ij where Ij = (−j − 1,−j + 1). Then

define

Hs
σ,uloc(I) =

{
ω : I × (0, 1)→ R, σ ≤ ∂yω ≤ σ−1, ‖ω‖Hs

σ,uloc(I) = sup
j∈N
‖ω‖Hs

σ(Ij) <∞
}
. (3.9)

For the analytic part of the solution we use the notation from [KTVZ11]. For τ > 0, we define the space of
real analytic functions with the analyticity radius τ as

Xτ (Da) = {ω ∈ C∞(Da) : ‖ω‖Xτ <∞}

where the analytic norm is defined as

‖ω‖2Xτ =
∑
m≥0

τ2m(m+ 1)2

m!2
‖ω‖2

Ḣm(Da)
. (3.10)

Above and throughout the paper, Ḣm denotes the homogeneous Sobolev space with the (semi) norm

‖ω‖2
Ḣm(Da)

=
∑
|α|=m

‖∂αω‖2L2(Da).

It is also convenient to introduce the space

Yτ (Da) = {ω ∈ Xτ : ‖ω‖Yτ <∞},

where

‖ω‖2Yτ =
∑
m≥1

mτ2m−1(m+ 1)2

m!2
‖ω‖2

Ḣm(Da)
. (3.11)

The first main theorem may then be stated as follows.
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Theorem 3.2. Let σ, τ0 > 0 and s ≥ 4. Assume that the initial vorticity satisfies a uniform Rayleigh condi-
tion on Dm, we have ω0 ∈ Hs

2σ,uloc(Dm), and ω0 is uniformly real analytic on Da with radius of analyticity
at least τ0, i.e., u0 ∈ Yτ0(Da). Also assume that the initial velocity u0 satisfies the compatibility condition
(1.14). Then there exist T > 0 and a unique smooth solution ω ∈ C(0, T ;Xτ0/2(Da) ∩ Hs

σ,uloc(Dm)) of
(3.1)–(3.2) on [0, T ], which has zero vertical mean.

Remark 3.3. The above theorem can be generalized to allow for regions where the initial vorticity is either
increasing or decreasing. Let σ, τ0 > 0 and s ≥ 4. Assume there exists open intervals {Li}ni=1 ⊂ R such
that on Dm,i = Li × (0, 1) the initial vorticity ω0(x, y) is strictly monotone with respect to y, and either
ω0 ∈ Hs

2σ,uloc(Dm,i) or −ω0 ∈ Hs
2σ,uloc(Dm,i) for all i ∈ {1, . . . , n}. Assume also that there exist open

intervals {Jj}mj=1 ⊂ R such that (∪jJj) ∪ (∪iLi) = R and such that on Da,j = Jj × (0, 1) the initial
vorticity ω0 is uniformly real analytic with radius at least τ0, that is, ω0 ∈ Yτ0(Da,j) for all j ∈ {1, . . . ,m}.
Assuming the initial velocity u0 obeys the compatibility condition (1.14), there exist T > 0 and a smooth
solution ω(t) of (3.1)–(3.2) on [0, T ] which is monotone on the Dm,i and is real analytic on Da,j . We note
that it is possible to accommodate for an infinite number of intervals , i.e., m and n may be∞.

Below we present the proof of Theorem 3.2, the proof of the general case described in Remark 3.3, being
completely analogous. The argument closely follows the ideas in the Prandtl section, with the main work
having to be done when glueing the real-analytic and the convex solutions. To avoid redundancy, we omit
the other details of the proof.

Proof of Theorem 3.2. Let ω̄0 denote a function which agrees with ω0 on the monotonicity domain Dm =

(−∞,−1) × (0, 1) but which satisfies the convexity condition (3.7) on the whole strip R × (0, 1). Denote
by ω the solution of the initial value problem (3.1)–(3.2) with initial data ω̄0 on R × (0, 1), obtained from
Theorem 2.5 in [MW12b] and the arguments used to prove Theorem 2.1, on some time interval (0, t0). Note
that in order to construct the solution ω, as in Section 2.1 above, one needs to first use [MW12b] to construct
countably many solutions ω(j) which are (j − 1, j + 3) periodic, where j ∈ Z; due to the uniform local
Rayleigh condition on the initial data, all these solutions may be shown to live on a common time-interval,
with a uniform in j bound on their Hs

σ norms; the next step is then to glue these solutions together, which is
achieved using precisely the argument presented below in this section. To avoid redundancy with the proof
of Theorem 2.1, we omit further details for the construction of the monotone solution ω.

On the other hand, by Theorem 2.2 [KTVZ11], there exists an analytic solution ω̃ on the spatial domain
Da also on the same time interval (0, t0), without loss of generality.

Denote U = ũ− u, V = ṽ − v, and Ω = ω̃ − ω. Then

∂tΩ + ũ∂xΩ + ṽ∂yΩ + U∂xω + V ∂yω = 0. (3.12)

With M > 0 to be determined, write

It = (Mt, 1−Mt).

We now show that if M is a sufficiently large constant, and t0 is sufficiently small, the solutions ω and
ω̃ agree on It × (0, 1) for all t ∈ [0, t0). For this purpose, evaluate a weighted norm of Ω(x, y, t)2 for
(x, y) ∈ It × (0, 1). Differentiating the quantity

X(t) =
1

2

∫∫
It×(0,1)

Ω2

∂yω
dxdy =

1

2

∫ 1

0
dy

∫ 1−Mt

Mt

Ω2

∂yω
dx,
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we obtain

X ′(t) = −M
2

∫ 1

0

Ω(1−Mt, y, t)2

∂yω(1−Mt, y, t)
dy − M

2

∫ 1

0

Ω(Mt, y, t)2

∂yω(Mt, y, t)
dy

+

∫∫
It×(0,1)

Ω∂tΩ

∂yω
dxdy −

∫∫
It×(0,1)

Ω2∂t∂yω

(∂yω)2
dxdy (3.13)

and thus

X ′(t) = −M
2

∫ 1

0

Ω(1−Mt, y, t)2

∂yω(1−Mt, y, t)
dy − M

2

∫ 1

0

Ω(Mt, y, t)2

∂yω(Mt, y, t)
dy

−
∫∫

It×(0,1)

ũΩ∂xΩ

∂yω
dxdy −

∫∫
It×(0,1)

ṽΩ∂yΩ

∂yω
dxdy

−
∫∫

It×(0,1)

UΩ∂xω

∂yω
dxdy −

∫∫
It×(0,1)

V Ωdxdy

−
∫∫

It×(0,1)

Ω2∂t∂yω

(∂yω)2
dxdy

= I1 + I2 + I3 + I4 + I5 + I6 + I7. (3.14)

For I1 and I2, we have

I1 + I2 ≤ −
M

C

∫ 1

0
Ω(1−Mt, y, t)2dy − M

C

∫ 1

0
Ω(Mt, y, t)2dy

where C denotes a sufficiently large generic constant which may depend on σ and the initial data. In the
term I3, we integrate by parts in the x variable and obtain

I3 =
1

2

∫∫
It×(0,1)

Ω2∂x

(
ũ

∂yω

)
dxdy − 1

2

∫ 1

0
Ω(1−Mt, y, t)2 ũ(1−Mt, y, t)

∂yω(1−Mt, y, t)
dy

+
1

2

∫ 1

0
Ω(Mt, y, t)2 ũ(Mt, y, t)

∂yω(Mt, y, t)
dy

≤ C‖Ω‖2L2(It×(0,1)) + C

∫ 1

0
Ω(1−Mt, y, t)2dy + C

∫ 1

0
Ω(Mt, y, t)2dy. (3.15)

For I4, we integrate by parts in the y variable. No boundary terms appear due to vanishing of ṽ on y = 0

and y = 1, and we get

I4 =
1

2

∫∫
It×(0,1)

Ω2∂y

(
ṽ

∂yω

)
dxdy ≤ C‖Ω‖2L2(It×(0,1)) (3.16)

For I5, we use ‖U‖L2(It×(0,1)) ≤ C‖Ω‖L2(It×(0,1)), and we obtain

I5 ≤ C‖Ω‖2L2

For I6, we integrate by parts in y and then in the x variable. Again, since v|y=0,1 = 0, the boundary terms
only appear when integrating by parts in the x variable, and we get

I6 = −
∫∫

It×(0,1)
V Ωdxdy = −

∫∫
It×(0,1)

V Uydxdy =

∫∫
It×(0,1)

VyUdxdy

= −
∫∫

It×(0,1)
UxUdxdy = −1

2

∫ 1

0
U(1−Mt, y, t)2dy +

1

2

∫ 1

0
U(Mt, y, t)2dy. (3.17)

Finally, by using the equation obeyed by ∂t∂yω, for I7 we have

I7 ≤ C‖Ω‖2L2(It×(0,1))
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for a sufficiently large constant C. Collecting all the estimates on all the terms in (3.14) then leads to

X ′(t) ≤
(
C − M

C

)∫ 1

0
Ω(1−Mt, y, t)2dy +

(
C − M

C

)∫ 1

0
Ω(Mt, y, t)2dy + CX(t).

Now, choose M so large that the first two terms on the right side are negative. Then we get X ′(t) ≤ CX(t)

and thus X(t) ≡ 0 for t ≤ 1/C0, where C0 is a sufficiently large constant. By reducing t0 if necessary, we
may assume that t0 = 1/C0. Now, define the solution ω̄ on (−∞,∞) × (0, 1) as follows: Let ω̄ = ω if
x < 1 −Mt and ω̄ = ω̃ if x ≥ Mt. For Mt < x < 1 −Mt, the solutions agree by the first part of the
proof. Therefore, ω̄ provides a solution on the interval (0, t0). Uniqueness follows in a similar fashion. �

Acknowledgments. The work of IK was supported in part by the NSF grant DMS-1311943, the work of
NM was supported in part by the NSF grant DMS-1211806, while the work of VV was supported in part by
the NSF grant DMS-1211828.

REFERENCES

[Asa88] K. Asano. A note on the abstract Cauchy-Kowalewski theorem. Proc. Japan Acad. Ser. A Math. Sci., 64(4):102–105,
1988.

[AWXY12] R. Alexandre, Y.-G. Wang, C.-J. Xu, and T. Yang. Well-posedness of the Prandtl equation in Sobolev spaces. arXiv
preprint arXiv:1203.5991, 2012.

[BdVC10] H. Beirão da Veiga and F. Crispo. Sharp inviscid limit results under Navier type boundary conditions. An Lp theory.
J. Math. Fluid Mech., 12(3):397–411, 2010.

[BdVC12] H. Beirão da Veiga and F. Crispo. The 3-D inviscid limit result under slip boundary conditions. A negative answer.
J. Math. Fluid Mech., 14(1):55–59, 2012.

[Bre99] Y. Brenier. Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity, 12(3):495–512, 1999.
[Bre03] Y. Brenier. Remarks on the derivation of the hydrostatic Euler equations. Bull. Sci. Math., 127(7):585–595, 2003.
[CHT85] S.J. Cowley, L.M. Hocking, and O.R. Tutty. The stability of solutions of the classical unsteady boundary-layer

equation. Physics of Fluids, 28(2):441, 1985.
[CINT12] C. Cao, S. Ibrahim, K. Nakanishi, and E.S. Titi. Finite-time blowup for the inviscid primitive equations of oceanic

and atmospheric dynamics. arXiv preprint arXiv:1210.7337, 2012.
[CLS01] M. Cannone, M.C. Lombardo, and M. Sammartino. Existence and uniqueness for the Prandtl equations. C. R. Acad.

Sci. Paris Sér. I Math., 332(3):277–282, 2001.
[CS00] R.E. Caflisch and M. Sammartino. Existence and singularities for the Prandtl boundary layer equations. ZAMM Z.

Angew. Math. Mech., 80(11-12):733–744, 2000.
[CW95] P. Constantin and J. Wu. Inviscid limit for vortex patches. Nonlinearity, 8(5):735–742, 1995.
[CW96] P. Constantin and J. Wu. The inviscid limit for non-smooth vorticity. Indiana Univ. Math. J., 45(1):67–81, 1996.
[E00] W. E. Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math. Sin. (Engl. Ser.),

16(2):207–218, 2000.
[EE97] W. E and B. Engquist. Blowup of solutions of the unsteady Prandtl’s equation. Comm. Pure Appl. Math.,

50(12):1287–1293, 1997.
[GN10] Y. Guo and T. Nguyen. A note on the Prandtl boundary layers. arXiv:1011.0130v3 [math.AP], 2010.
[Gre99] E. Grenier. On the derivation of homogeneous hydrostatic equations. M2AN Math. Model. Numer. Anal., 33(5):965–

970, 1999.
[Gre00a] E. Grenier. On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math., 53(9):1067–1091,

2000.
[Gre00b] E. Grenier. On the stability of boundary layers of incompressible Euler equations. J. Differential Equations,

164(1):180–222, 2000.
[GSS09] F. Gargano, M. Sammartino, and V. Sciacca. Singularity formation for Prandtl’s equations. Phys. D, 238(19):1975–

1991, 2009.
[GVD10] D. Gérard-Varet and E. Dormy. On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc., 23(2):591–609,

2010.
[GVM13] D. Gérard-Varet and N. Masmoudi. Well-posedness for the Prandtl system without analyticity or monotonicity. arXiv

preprint arXiv:1305.0221, 2013.
[GVN12] D. Gérard-Varet and T. Nguyen. Remarks on the ill-posedness of the Prandtl equation. Asymptotic Analysis, 77:71–

88, 2012.



PRANDTL AND HYDROSTATIC EULER EQUATIONS 23

[HH03] L. Hong and J.K. Hunter. Singularity formation and instability in the unsteady inviscid and viscous Prandtl equations.
Commun. Math. Sci., 1(2):293–316, 2003.

[IKZ12] M. Ignatova, I. Kukavica, and M. Ziane. Local existence of solutions to the free boundary value problem for the
primitive equations of the ocean. Journal of Mathematical Physics, 53:103101, 2012.

[Kat84] T. Kato. Remarks on zero viscosity limit for nonstationary Navier-Stokes flows with boundary. In Seminar on non-
linear partial differential equations (Berkeley, Calif., 1983), volume 2 of Math. Sci. Res. Inst. Publ., pages 85–98.
Springer, New York, 1984.

[Kel07] J.P. Kelliher. On Kato’s conditions for vanishing viscosity. Indiana Univ. Math. J., 56(4):1711–1721, 2007.
[KTVZ11] I. Kukavica, R. Temam, V. Vicol, and M. Ziane. Local existence and uniqueness for the hydrostatic Euler equations

on a bounded domain. J. Differential Equations, 250(3):1719–1746, 2011.
[KV11a] I. Kukavica and V. Vicol. On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations.

Nonlinearity, 24(3):765–796, 2011.
[KV11b] I. Kukavica and V.C. Vicol. The domain of analyticity of solutions to the three-dimensional Euler equations in a half

space. Discrete Contin. Dyn. Syst., 29(1):285–303, 2011.
[KV13] I. Kukavica and V. Vicol. On the local existence of analytic solutions to the prandtl boundary layer equations.

Commun. Math. Sci., 11(1):269–292, 2013.
[LFMNL08] M.C. Lopes Filho, A.L. Mazzucato, and H.J. Nussenzveig Lopes. Vanishing viscosity limit for incompressible flow

inside a rotating circle. Phys. D, 237(10-12):1324–1333, 2008.
[LFMNLT08] M.C. Lopes Filho, A.L. Mazzucato, H.J. Nussenzveig Lopes, and M. Taylor. Vanishing viscosity limits and boundary

layers for circularly symmetric 2D flows. Bull. Braz. Math. Soc. (N.S.), 39(4):471–513, 2008.
[Lio96] P.-L. Lions. Mathematical topics in fluid mechanics. Vol. 1, volume 3 of Oxford Lecture Series in Mathematics and

its Applications. The Clarendon Press Oxford University Press, New York, 1996. Incompressible models, Oxford
Science Publications.

[LO97] C.D. Levermore and M. Oliver. Analyticity of solutions for a generalized Euler equation. J. Differential Equations,
133(2):321–339, 1997.

[LTW92a] J.-L. Lions, R. Temam, and S.H. Wang. New formulations of the primitive equations of atmosphere and applications.
Nonlinearity, 5(2):237–288, 1992.

[LTW92b] J.-L. Lions, R. Temam, and S.H. Wang. On the equations of the large-scale ocean. Nonlinearity, 5(5):1007–1053,
1992.

[Mae12] Y. Maekawa. On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half
plane. Preprint, 2012.

[Mas98] N. Masmoudi. The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary. Arch. Rational
Mech. Anal., 142(4):375–394, 1998.

[Mas07a] N. Masmoudi. Examples of singular limits in hydrodynamics. In Handbook of differential equations: evolutionary
equations. Vol. III, Handb. Differ. Equ., pages 195–275. Elsevier/North-Holland, Amsterdam, 2007.

[Mas07b] N. Masmoudi. Remarks about the inviscid limit of the navier-stokes system. Comm. Math. Phys., 270(3):777–788,
2007.

[MR12] N. Masmoudi and F. Rousset. Uniform regularity for the Navier-Stokes equation with Navier boundary condition.
Arch. Ration. Mech. Anal., 203(2):529–575, 2012.

[MT08] A. Mazzucato and M. Taylor. Vanishing viscosity plane parallel channel flow and related singular perturbation
problems. Anal. PDE, 1(1):35–93, 2008.

[MW12a] N. Masmoudi and T.K. Wong. Local-in-time existence and uniqueness of solutions to the Prandtl equations by
energy methods. Comm. Pure Appl. Math., to appear., 2012.

[MW12b] N. Masmoudi and T.K. Wong. On the Hs theory of hydrostatic Euler equations. Archive for Rational Mechanics
and Analysis, 204(1):231–271, 2012.

[Ole66] O.A. Oleı̆nik. On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl.
Math. Mech., 30:951–974 (1967), 1966.

[OS78] J. Oliger and A. Sundström. Theoretical and practical aspects of some initial boundary value problems in fluid
dynamics. SIAM J. Appl. Math., 35(3):419–446, 1978.

[OS99] O.A. Oleinik and V.N. Samokhin. Mathematical models in boundary layer theory, volume 15 of Applied Mathemat-
ics and Mathematical Computation. Chapman & Hall/CRC, Boca Raton, FL, 1999.

[OT01] M. Oliver and E.S. Titi. On the domain of analyticity of solutions of second order analytic nonlinear differential
equations. J. Differential Equations, 174(1):55–74, 2001.

[Ped82] J. Pedlosky. Geophysical Fluid Dynamics. Springer Verlag, 1982.
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