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Abstract

We consider active scalar equations ∂tθ +∇ · (u θ) = 0, where u = T [θ] is a divergence-free velocity field, and
T is a Fourier multiplier operator with symbol m. We prove that when m is not an odd function of frequency, there
are nontrivial, compactly supported solutions weak solutions, with Hölder regularity C1/9−

t,x . In fact, every integral
conserving scalar field can be approximated in D′ by such solutions, and these weak solutions may be obtained from
arbitrary initial data. We also show that when the multiplier m is odd, weak limits of solutions are solutions, so that
the h-principle for odd active scalars may not be expected.
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1 Introduction
The present paper is concerned with existence, nonuniqueness and results of h-principle type for Hölder continuous,
weak solutions to inviscid active scalar equations with a divergence free drift velocity. These equations have the form

∂tθ + ∂l(θu
l) = 0

ul = T l[θ]

∂lu
l = 0.

(1.1)

The operator T l[·] defining the drift velocity ul in (1.1) is represented in frequency space by a multiplier

ûl(ξ) = T̂ l[θ](ξ) = ml(ξ)θ̂(ξ). (1.2)

We assume that ml(ξ) is defined on the whole frequency space as a tempered distribution and is homogeneous of
degree 0 so that T l is an operator of order 0. The multiplier must satisfy ml(−ξ) = ml(ξ) so that the drift-velocity
ul is real-valued whenever the scalar θ is real-valued, and we assume that ml(ξ) is smooth away from the origin. The
requirement that ul is divergence free corresponds to the requirement that ml(ξ) takes values perpendicular to the
frequency vector ξ, i.e. ξ ·m(ξ) = 0 for ξ 6= 0.

Active scalar equations arise from the full Navier-Stokes, Euler, or magneto-hydrodynamic equations in a number
of physical regimes, such as stratification, rapid rotation, hydrostatic, and geostrophic balance. Physically motivated
examples include:

1. The surface quasi-geostrophic (SQG) equation [17, 30]. Here

m(ξ) = i〈−ξ2, ξ1〉|ξ|−1

is an odd symbol, bounded and smooth on the unit sphere. The SQG equation belongs to a general class of
active scalar equations (with odd constitutive law T ) satisfied by the vorticity of a generalized two-dimensional
Euler equation on a Lie algebra (á la Arnold [1]) with a specific inner product [43] (see also [47] for a more
recent account).

2. The incompressible porous media (IPM) equation with velocity given by Darcy’s law [5, 21]. Here

m(ξ) = 〈ξ1ξ2,−ξ2
1〉|ξ|−2

is an even symbol, bounded and smooth on the unit sphere. Note that the IPM equation has a three-dimensional
analogue, with symbol m(ξ) = 〈ξ1ξ3, ξ2ξ3,−ξ2

1 − ξ2
2〉|ξ|−2, which is again even. Our proof applies to this

three-dimensional case as well, cf. Remark 1 below.

3. The magneto-geostrophic (MG) equation [39, 38, 28]. This is a three-dimensional active scalar equation, with
symbol given by

m(ξ) =
〈
ξ2ξ3|ξ|2 + ξ1ξ

2
2ξ3,−ξ1ξ3|ξ|2 + ξ3

2ξ3,−ξ2
2(ξ2

1 + ξ2
2)
〉

(ξ2
3 |ξ|2 + ξ4

2)−1

for all ξ ∈ Z3
∗ with ξ3 6= 0, and by m(ξ1, ξ2, 0) = 0. The symbol of the MG equation is even and zero-order

homogenous, but as opposed to the previous examples, it is not bounded. This unboundedness may be seen by
evaluating the symbol on a parabola m(ζ2, ζ, 1), and passing |ζ| → ∞. Nonetheless, the proof in our paper
still applies to the MG equations as we only require smoothness in a neighborhood of finitely many points, cf.
Remark 2 below.

Remarkably, from the mathematical point of view these scalar equations retain some of the same essential diffi-
culties of the full fluid equations. In particular, the global well-posedness for the 2D SQG and IPM equations remains
open, in analogy to the 3D Euler equations. More relevant for this paper, the regularity class in which the conservation
of the energy ‖θ‖2L2 may be established for weak solutions of (1.1), is Hölder continuity with exponent 1/3, as for 3D
Euler. However, due to their more rigid geometry (e.g. no known analogue for Beltrami flows), their non-local nature,
and the presence of infinitely many conservation laws (the Lp norms of θ, for any p ≥ 1), the construction of weak
solutions that fail to conserve energy appears to be more restrictive than for 3D Euler.
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The pair (θ, ul) is called a weak solution of (1.1) if the equations (1.1) are satisfied on R × T2 in the sense of
distributions. When (θ, ul) are continuous, it is equivalent to require the balance laws

d

dt

∫
Ω

θ(t, x)dx =

∫
∂Ω

θ u(t, x) · n dσ,
∫
∂Ω

u(t, x) · n dσ = 0

to be satisfied as continuous functions of time for all subdomains Ω with smooth boundary and inward unit normal n.
The definition of weak solution implies immediately that the integral

∫
T2 θ(t, x) dx is a conserved quantity, but this

definition does not immediately imply the other conservation laws that hold for classical solutions (see also [4, 2] for
comparisons with other notions of non-classical solutions for the Euler equations).

The study of weak solutions in fluid dynamics, including those which fail to conserve energy, is natural in the
context of turbulent flows. The power spectrum predicted by Kolmogorov [36] implies that solutions which arise in
the inviscid limit of the 3D Navier-Stokes equations have Hölder 1/3 regularity on average, and in particular are not
classical. Such flows are expected to exhibit anomalous dissipation of energy, rather than conserving energy. The
exponent 1/3 is the same regularity threshold conjectured by Onsager [42] to be critical for energy conservation in
the 3D Euler equations (see [3, 26, 44] for recent reviews). For power spectra in active scalar turbulence, we refer to
Kraichnan [37] and Constantin [13, 14].

Our first main result, Theorem 1.1, shows that if the symbol of the multiplier ml(ξ) is not an odd function of ξ
for ξ 6= 0, there exist nontrivial, space-periodic solutions in two dimensions with compact support in time, having
any Hölder regularity θ ∈ Cαt,x with α < 1/9. In contrast, the energy

∫
|θ|2(t, x)dx is a conserved quantity for

solutions with Hölder regularity above α > 1/3 and for classical solutions the quantity θ2 is also advected by the drift
velocity ul = T l[θ], whereas both these properties clearly fail for our solutions. This result gives the first proof of
nonuniqueness of continuous weak solutions for any active scalar equation of this type.

Theorem 1.1 (Weak Solutions to Active Scalar equations). Consider the active scalar equation (1.1) with divergence
free drift velocity, and assume that the multiplier ml(ξ) defining the operator T l is not an odd function of ξ for ξ 6= 0.
Let α < 1/9 and let I be an open interval. Then there exist nontrivial solutions to (1.1) with Hölder regularity
θ, ul ∈ Cαt,x(R× T2) which are identically 0 outside of I × T2.

Moreover, if f : R × T2 → R is a smooth scalar function with compact support on I × T2 which satisfies the
conservation law d

dt

∫
T2 f(t, x) dx = 0, then there exists a sequence of weak solutions θn : R × T2 → R to (1.1) in

the above regularity class such that θn converges to f in the L∞ weak-* topology, and each θn has compact support
in I × T2.

The above result builds upon the recent works by Córdoba, Faraco, Gancedo [19], Shvydkoy [45], and Székelyhidi [46]
which establish the non-uniqueness of L∞t,x weak solutions to the IPM equations and 2D active scalar equations with
even symbols m. These previous works are based on a variant of the method of convex integration introduced for
the Euler equations in [23] that provides an effective and elegant approach to producing bounded solutions, but which
faces a major obstruction to producing continuous solutions. For the Euler equations, this obstruction was overcome
in [22, 24, 12] to produce continuous and Cα solutions on T2 and T3. A crucial idea to overcome this obstruction is
a key cancellation coming from the use of special families of stationary, plane wave solutions which allows for the
control of interference terms between different waves in the construction. For 3D Euler, these solutions are Beltrami
flows (eigenfunctions of the curl operator), while for 2D Euler they are rotated gradients of Laplace eigenfunctions.

There is an obstruction to generalizing these ideas to obtain continuous solutions to active scalar equations, which
is that analogous families of stationary, plane wave solutions do not exist in general for active scalar equations. Fur-
thermore, as we explain more precisely in Section 2.1, there is a sense in which no analogous cancellation is ever
available under the assumptions of Theorem 1.1. The same difficulty has also prohibited this approach from general-
izing to the Euler equations in higher dimensions, even though similar results in principle could be expected to hold
in any dimension. (The conservation of energy for regularity above 1/3 holds in any dimension, and the approach of
[23] for constructing L∞t,x solutions applies in any dimension.)

The main idea that forms the starting point of our work is a new, more general, mechanism for obtaining the
cancellation of interference terms in the construction, which arises without any special Ansatz in the construction.
Our observation is that the interference terms which arise when an individual wave interacts with itself must always
cancel thanks to the divergence free structure of the equation, even though we lack a general method for controlling
the interference between waves which oscillate in different directions. This observation opens the door to a serial
iteration scheme based on one-dimensional oscillations, as in the original scheme of Nash [40]. The same observation
applies to both the Euler equations and to general active scalar equations regardless of the dimension (c.f. Remark 1).
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Our proof therefore gives a new approach to constructing continuous and Cα weak solutions to these equations that is
independent of the use of Beltrami flows or the analogue.

Although the regularity obtained in Theorem 1.1 is strictly worse than the results which have been obtained for
the Euler equations, the exponent 1/9 is the best result we can hope to obtain from our method. For the Euler
equations, solutions in the class C1/5−

t,x were constructed in [31], with another proof given by Buckmaster, De Lellis
and Székelyhidi [7]. The construction in [7] has recently been refined in [8] to give continuous solutions in the class
L1
tC

1/3−
x , improving significantly a result of Buckmaster [6]. A main obstruction to higher regularity faced by all of

these works and also the present paper is the presence of anomalously sharp time cutoffs. These cutoffs lead to bounds
on advective derivatives which are inferior to the bounds that hold for solutions with higher regularity, cf. [32, Sec. 9]
and [34, Sec. 1.1.3]. In our case, we face an additional loss of regularity which comes from our inability to eliminate
more than one component of the error in a given stage of the iteration. The same obstruction to regularity arises for
the isometric embedding equation [18]. For active scalars, we must deal with both obstructions at the same time, and
improving on either one seems to be a difficult problem.

Our approach to proving Theorem 1.1 also yields the following result, which shows that our construction can
realize arbitrary smooth initial data.

Theorem 1.2. Let I = (−T, T ) be a finite open interval containing the origin, let α < 1/9 and let (θ(0), u
l
(0))

be a smooth solution to (1.1) on I × T2. Then there exists a global, weak solution (θ, ul) to (1.1) in the class
(θ, ul) ∈ Cαt,x(R× T2) which coincides with (θ(0), u

l
(0)) on the time interval

θ(t, x) = θ(0)(t, x) (t, x) ∈ (−T/2, T/2)× T2

and which coincides with a constant
θ(t, x) = θ̄

for (t, x) /∈ (−4T/5, 4T/5)× T2.

To the best of our knowledge, Theorem 1.2 gives the first proof of global existence of weak solutions for (1.1)
with multipliers m which are not odd, from arbitrary smooth initial data [19]. The global existence of weak solutions
appears to be only known for odd symbols [43, 9], or for patch-type initial datum in the IPM equations [20]. Thus, in
view of the known existence result for odd multipliers, we show that all active scalar equations with smooth constitutive
law have global in time weak solutions (see also Remark 2).

Our method of construction demonstrates not only the existence of weak solutions, but also the abundance and
flexibility of solutions in the class C1/9−ε

t,x . This point is emphasized by the following result of “h-principle” type,
which follows from Theorem 1.1, and completely characterizes the weak-* closure of these solutions in L∞. The
result illustrates that, within this regularity class, the conservation of the integral is the only source of rigidity for
solutions to the equations that is stable in the weak-* topology1. We refer to [25, 11] for more on h-principles for fluid
equations.

Corollary 1.1 (h-principle for Active Scalar Equations). Consider the 2D active scalar equation (1.1) as in the
hypotheses of Theorem 1.1, with multiplier m that is not odd. Then for any α < 1/9 and for any open interval I , the
closure in the weak-* topology on L∞(I × T2) of the set of Cαt,x solutions to (1.1) with compact support in I × T2

is equal to the space of real-valued f ∈ L∞(I × T2) which satisfy the conservation law
∫
T2 f(t, x)dx = 0 as a

distribution in time.

While Theorems 1.1-1.2 and Corollary 1.1 illustrate an utter lack of rigidity for multipliers which are not odd,
we find a much more rigid situation for weak solutions in the case of odd multipliers. The following result implies
that, when the multiplier is odd, every weak limit of solutions in L∞t,x must also be a solution to the same active scalar
equation, in stark contrast to Theorem 1.1 and Corollary 1.1. This theorem generalizes the statement at the end of [25]
concerning weak rigidity for SQG, and makes precise the assumptions necessary for this rigidity.

Theorem 1.3 (Weak Rigidity for Active Scalars with Odd Multipliers). Consider the active scalar equation (1.1) in
any dimension, with divergence free drift velocity, and assume that the multiplier ml(ξ) defining the operator T l is an
odd function of ξ for ξ 6= 0. Suppose that f = limn θn is a weak limit of solutions to (1.1) in Lp(I;L2(Tn)), for some
p > 2. Then f(t, x) must be a weak solution to (1.1).

1One must be cautious that Corollary 1.1 below does not assert that integral-conserving L∞ functions can be approximated by a weak-*
convergent sequence of solutions as in the statement of Theorem 1.1. Such a statement would be false, since the functions f obtained as weak-*
limits of sequences will also inherit time regularity of the type ∂tf ∈ L∞t W−1,p

x from the equation (1.1).
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We note that the Lp time integrability condition on θn is by no means restrictive. Indeed, due to the incompressible
transport nature of (1.1), weak solutions constructed via smooth approximations (e.g. vanishing viscosity) are in fact
bounded, or even weakly continuous in time.

The proof of Theorem 1.3 is based on the approach of [43], where global L∞t L
2
x weak solutions of the surface

quasi-geostrophic equations are constructed. The main idea is that odd multipliers m induce a certain commutator
structure in the nonlinear term, which yields the necessary compactness. In fact, the oddness of m implies that the
equations are well-posed, even if the operator T l is not of degree 0 (see [9]), and in such cases the oddness appears to
be necessary [27, 29].

In addition to the weak rigidity of Theorem 1.3, in the following theorem we show that every active scalar equation
in 2D with odd symbol has a Hamiltonian that is conserved for solutions in the class L3

t,x.

Theorem 1.4 (Conservation of the Hamiltonian for Active Scalars with Odd Multipliers). Consider the active scalar
equation (1.1) in two dimensions with divergence free drift velocity and odd multiplier as in Theorem 1.3. Define the
operator

L = (−∆)−1(∇ · T⊥) = (−∆)−1/2(R2T
1 −R1T

2) (1.3)

where Ri is the ith Riesz transform. The fact that m is odd, implies that L is self-adjoint. Define the Hamiltonian

H(t) =

∫
T2

θ(t, x)Lθ(t, x)dx. (1.4)

Then, if θ is a solution to (1.1) in the class θ ∈ L3
t,x, the function H(t) is constant in time.

We note that due to the transport structure of (1.1), solutions which are obtained by smooth approximations, such
as viscosity approximations, Galerkin truncations, etc, will automatically lie in L∞t,x, and thus also in L3

t,x.
Theorem 1.3 precludes any results such as Theorems 1.1-1.2 from holding in the case of the SQG equation, in

which case L = (−∆)−1/2 and we obtain the conservation of the H−1/2 norm for solutions in L3
t,x. Note however

that in general the operator L need not be coercive, as is the case when m vanishes somewhere on the unit sphere. We
refer to [43, 47] for an exposition of how the quantity H(t) serves as a Hamiltonian for the equation.

We conclude our introduction by remarking on how our method extends to higher dimensions, and to the case of
multipliers which are not smooth.

Remark 1 (Higher Dimensions). Our proof generalizes to active scalar equations in arbitrary dimensions (c.f. Sec-
tion 3.2 for the relevant modifications). In this case, however, there are two further restrictions. First of all, the
regularity we obtain becomes worse as the dimension increases. The same type of loss (for essentially the same rea-
son, see Section 2.2.1 below) is also seen in the case of the isometric embedding equations [18]. Second, we cannot
obtain our result for all smooth multipliers whose symbols are not odd, and we require a nondegeneracy condition on
the even part of the multiplier.

The precise result we obtain is the following:

Theorem 1.5 (Multi-dimensional Case). Consider the active scalar equation (1.1) with divergence free drift velocity
on Td. Assume also that the image of the even part of the multiplier contains d vectors

A(i) = m(ξ(i)) +m(−ξ(i)), i = 1, 2, . . . , d (1.5)

such that the vectors A(1), . . . , A(d) span Rd. Then Theorems 1.1-1.2 and Corollary 1.1 hold as stated, but with the
condition α < 1

9 on the Hölder exponent being replaced by

α <
1

1 + 4d
.

Theorem 1.5 applies in particular to the 3D IPM equation, and in that case yields weak solutions with Hölder
regularity α < 1/13. Note also that Theorem 1.5 generalizes the two dimensional case of Theorem 1.1. Namely, if
the even part m(ξ(1)) +m(−ξ(1)) 6= 0 is nonzero at a single point, it follows already from incompressibility (i.e. the
condition m(ξ) · ξ = 0) that the span of the image of the even part of m has dimension at least 2.

The assumption (1.5) in Theorem 1.5 arises quickly from the proof and turns out to be necessary for the conclusion
of Theorem 1.1. That is to say, when the assumption (1.5) fails, there are in general additional constraints on weak
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limits of solutions besides the conservation of the mean value. In the case where the multiplier is even, such constraints
arise from the conservation of the integrals

d

dt

∫
Tn
θ(t, x)Ψ(x)dx = 0

for functions Ψ whose gradients take values perpendicular to the image of the multiplier. More generally, we have the
following theorem which can be applied to every multiplier that fails to satisfy (1.5):

Theorem 1.6 (Constraints on Weak Limits of Degenerate Multipliers). Consider the active scalar equation (1.1)
on a torus Tn of any dimension and suppose that the image of the even part of the multiplier lies in a hyperplane
perpendicular to some nonzero vector ξ(0) ∈ T̂n in the dual lattice. Then there exists a smooth function of compact
support f ∈ C∞0 (R × Tn) which is real-valued and satisfies the conservation law

∫
Tn f(t, x)dx = 0 such that f

cannot be realized as a weak-* limit in L∞ of any sequence of bounded weak solutions to (1.1).

The proof of Theorem 1.6 draws on the proof of weak compactness in Theorem 1.3. One can compare condition
(1.5) to criteria for having a large Λ-convex hull in the theory of differential inclusions (e.g. [35, 23, 46]).

Remark 2 (Non-smooth Symbols). In view of the example of the MG equation, it is important to remark that our
proof applies also to multipliers which are not smooth. In fact, the only regularity condition we require in our proof is
that the multiplier should be smooth in a neighborhood of the points ξ(1), ξ(2), . . . , ξ(d) and −ξ(1),−ξ(2), . . . ,−ξ(d)

appearing in (1.5). Thus Theorem 1.5 applies to the MG equation, if we take for example the points ξ(1) = 〈1, 0, 1〉,
ξ(2) = 〈0, 1, 1〉, ξ(3) = 〈1, 1, 1〉.

1.1 Difficulties and new ideas
The proof of Theorem 1.5 contains a number of new ideas in the method of convex integration, which we summarize
before we begin the proof.

As stated earlier in the Introduction, our main idea is a new mechanism for obtaining cancellations in interference
terms between overlapping waves. This allows us to get around the lack of Beltrami flows, or their analogues, as the
type of cancellation given by such flows is entirely unavailable in our setting (cf. Section 2.2). This idea gives a new
and general approach to constructing continuous weak solutions2 which generalizes also to Euler. The idea is based on
the observation that self-interference terms vanish automatically thanks to the incompressible nature of the equation.

The above idea opens the door to a multi-stage iteration scheme based on one-dimensional oscillations, as in the
original scheme of Nash for isometric embeddings applied in [40, 18]. This type of scheme had previously appeared
unavailable in the setting of the Euler equations (see [22, Section 1.3, Comment 2]). On the other hand, while im-
plementing a scheme exactly of this type now appears to be possible, it also appears to be relatively complicated,
requiring the addition of several iterations of waves (each with their own time, length scale and frequency parameters)
before the error improves in theC0 norm. We manage to avoid these complications by defining a space of approximate
solutions by a compound scalar stress equation. This concept allows us to obtain a C0 improvement after only one
iteration, which simplifies the iteration and gives estimates which are much closer to the bounds familiar from the case
of Euler.

The main new technical difficulty in obtaining continuous solutions to active scalar equations lies in how to deal
with the integral operator in the equation which determines the drift velocity ul = T l[θ]. The whole construction is
based on high frequency, plane-wave type corrections of the form eiλξI(t,x)θI(t, x), and it is necessary to understand
very precisely how adding such waves will affect the drift velocity. Furthermore, the convex integration schemes for
producing Hölder continuous Euler flows all use heavily C0 type estimates on all error terms. From this point of view,
the failure of C0 boundedness of T l suggests some serious trouble.

Our main technical device for addressing this difficulty is a “Microlocal Lemma” (Lemma 4.1). This lemma makes
precise how a convolution operator behaves to leading order like a multiplication operator when given a high-frequency
plane wave input, allowing for the use of nonlinear phase functions. In the case of the operator T l, represented on the
Fourier side by the multiplier ml(ξ), our lemma gives a statement of the form

ul = T l[eiλξ(x)θ(x)] = eiλξ(x)(θml(∇ξ(x)) + δul)

2We note, however, this idea alone obtains a lesser Hölder regularity compared to the Beltrami flow approach to Euler.
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and gives an explicit formula for the error term δul (which also allows us to estimate its spatial and advective deriva-
tives). We expect that this technique should be of independent interest for other applications.

To address the lack of C0 boundedness of T l, our proof makes additional use of the frequency localization in the
construction, which allows for the effective application of the Microlocal Lemma. A number of other simplifications
in the argument arise from the use of frequency localized waves. For instance, many error terms can be estimated
in a simpler way than in previous works, and we remove the need for nonstationary phase arguments in solving the
relevant elliptic equations.

In connection with our space of approximate solutions, we introduce a family of estimates we call compound
frequency energy levels. These estimates generalize to active scalars the frequency energy levels introduced in [31].
These bounds have the key feature that they carry C0 type estimates for derivatives of the drift velocity along the
iteration. Otherwise, the lack of C0 boundedness of T l would prohibit us from deducing these estimates from the
bounds on the scalar field.

1.2 Outline of the Paper
The overall strategy for the construction is outlined in Section 2. The bulk of the paper then consists of proving the
“Main Lemma”, Lemma 3, which is stated in Section 3. After the statement of the Main Lemma, Section 4 is devoted
to the proof of a “Microlocal Lemma”, which is one of the main technical tools in the paper. Sections 5-8 are then
devoted to proving Lemma 3.

In Section 9, we explain how the Main Lemma implies the results stated in Theorem 1.1 and Corollary 1.1.
Section 11 provides an outline of how Theorem 1.2 also follows from the same Lemma. The modifications used to
prove Theorem 1.5 regarding higher dimensions are explained in Section 3.2.

Sections 12 and 13 are devoted to the rigidity properties of weak solutions in the case of odd multipliers. In
Section 12, we give a proof of Theorem 1.3 on the rigidity of solutions under weak limits when the multiplier is odd.
Section 13 is then devoted to the proof of Theorem 1.4 on the conservation of the Hamiltonian for active scalars with
odd multipliers in dimension 2.

The last Section 14 is devoted to proving Theorem 1.6, which shows that the nondegeneracy condition in The-
orem 1.5 is necessary in general for the weak limit statement of Theorem 1.1 to apply in higher dimensions. In
Section 15 we give a conclusion to the paper and state some open questions.

1.3 Notation
We use the Einstein summation convention of summing over indices which are repeated. We take the convention that
vectors are written with upper indices, whereas covectors are written with lower indices, thus for a vector field ul and
function ξ, we write u · ∇ξ = ul∂lξ and div u = ∂lu

l.
We use the notation X E Y to indicate an inequality X ≤ Y which have not been proven, but will be proven later

on in the course of the argument. We sometimes refer to such inequalities as “goals”.

2 Basic Technical Outline
In this Section, we give a technical outline of the main ideas of the construction which includes a list of the important
error terms and provides a comparison to the cases of the Euler and isometric embedding equations. This section
provides the basic ideas to motivate the statement of the Main Lemma of Section 3.

We will perform the construction in a space of approximate solutions to the active scalar equation which we now
define.

We say that (θ, ul, Rl) satisfy the scalar-stress equation if{
∂tθ + ∂l(θu

l) = ∂lR
l

ul = T l(θ)
(2.1)

This system is the analogue for active scalar equations of the Euler-Reynolds system introduced in [22] for the Euler
equations. Here Rl is a vector field on T2 that we call the “stress field” (by analogy with the stress tensor Rjl in the
Euler-Reynolds equations) which measures the error by which θ fails to solve the active scalar equation.
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Recall that the operator

T l[θ] =

∫
R2

Kl(h)θ(x− h)dh

is a convolution operator with a real-valued kernel Kl which is homogenous of degree −2 as a distribution. The
corresponding Fourier multiplier

ml(ξ) = K̂l(ξ) (2.2)

is homogeneous of degree 0, satisfiesml(−ξ) = ml(ξ), and we assume thatml(ξ) is smooth on |ξ| = 1 (and therefore
smooth away from the origin). To ensure that ul = T l[θ] satisfies the divergence free condition ∂lul = 0, we require
that

m(ξ) · ξ = 0 (2.3)

At a high level, the basic idea of the convex integration construction is to start with a given solution (θ, ul, Rl) to (2.1),
and proceed to add a (high-frequency) correction Θ to the scalar field θ, so that the corrected scalar field and drift
velocity

θ1 = θ + Θ, ul1 = ul + U l, U l = T l[Θ] (2.4)

satisfy the scalar stress equation (2.1) with a new stress field Rl1 that is significantly smaller than the original stress
field Rl. These corrections are added in an iteration to obtain a sequence of solutions to (2.1)

(θ(k), u
l
(k), R

l
(k))

such that Rl(k) → 0 as the number of iterations k tends to infinity. From dimensional analysis and experience with

the isometric embedding and Euler equations, we expect an estimate ‖Θ(k)‖C0 ≤ C‖R(k)‖
1/2
C0 for the size of the

corrections, so that we will obtain continuous solutions in the limit provided ‖R(k)‖C0 tends to 0 at a reasonable rate3.
On the other hand, the C1 norms of the corrections ‖∇Θ(k)‖C0 will diverge as the frequencies in the iteration grow to
infinity, and we prove convergence of the iteration in Hölder spaces by interpolating between the bounds for ‖Θ(k)‖C0

and ‖∇Θ(k)‖C0 after the construction has been optimized to reduce the stress field ‖R(k)‖C0 at the most efficient rate
possible. Although this description explains how the scheme works at a high level, we must study the equation and
the scheme in much more detail before it is clear that there is any hope of reducing the stress field Rl in this manner.

As in [31], we will consider corrections built from rapidly oscillating “plane waves” where we allow for phase
functions ξI and amplitudes θI which depend on space and time

Θ =
∑
I

ΘI (2.5)

ΘI = eiλξI (θI + δθI) (2.6)

The amplitude θI and the phase functions ξI are scalar functions of our choice, which vary slowly compared to the
frequency parameter λ. The term δθI is a small correction term which will be made precise later. Each wave ΘI has a
conjugate wave ΘĪ = ΘI with opposite phase function ξĪ = −ξI and amplitude θĪ = θ̄I so that the overall correction
is real valued.

We now proceed to calculate the equation satisfied by the corrected scalar field θ1 = θ + Θ. This requires us to
calculate the new drift velocity ul1 = T l[θ1] = ul + U l, where U l = T l[Θ]. Our main tool for this calculation is a
Microlocal Lemma, which in this case guarantees that each wave ΘI gives rise to a velocity field

U lI = T l[ΘI ] = eiλξI (ulI + δulI) (2.7)

ulI = ml(∇ξ)θI (2.8)

with amplitude determined by the Fourier multiplier ml(ξ) in the definition of T l.

3 In our case, the error will converge to zero exponentially fast: ‖R(k)‖C0 ≤ C1e−C2k for some constants C1, C2 > 0.
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The amplitude ulI thus has the size comparable to θI , while the term δuI is a small correction of the same order
as δθI . Thus, given a highly oscillatory input such as ΘI = eiλξIθI , the operator T l behaves to leading order like a
multiplication operator on the amplitude. (For our purposes, the simplest way to achieve equation (2.7) will be to use
phase functions defined on the whole torus T2, but this will not be a serious restriction.)

From the Ansatz (2.5) and equation (2.1), we see that the corrected scalar field θ1 = θ + Θ satisfies the equation

∂tθ1 + ∂l(u
l
1θ1) = ∂tΘ + ∂l(u

lΘ) + ∂l(U
lθ) + ∂l(U

lΘ +Rl) (2.9)

We now expand Θ and U into individual waves using (2.5) to derive

∂tθ1 + ∂l(u
l
1θ1) =∂tΘ + ∂l(u

lΘ) + ∂l(U
lθ) (2.10)

+
∑
J 6=Ī

∂l(U
l
JΘI) + ∂l(

∑
I

U lIΘĪ +Rl) (2.11)

Our goal is to design the correction Θ so that the forcing terms on the right hand side of (2.10)-(2.11) can be represented
in divergence form ∂lR

l
1 for a vector field Rl1 which is significantly smaller in C0 than the previous error Rl.

2.1 The Stress Term
Our first goal is to cancel out the termRl appearing in the rightmost term of (2.11), which is the only term in equations
(2.10)-(2.11) that has low frequency. We expand this term using (2.7)-(2.8) as∑

I

U lIΘĪ +Rl =
1

2

∑
I

(U lIΘĪ + U lĪΘI) +Rl

≈ 1

2

∑
I

(ulIθĪ + ulĪθI) +Rl

=
1

2

∑
I

|θI |2(ml(∇ξI) +ml(−∇ξI)) +Rl (2.12)

=
1

2

∑
I

|θI |2(ml(∇ξI) +ml(∇ξI)) +Rl (2.13)

where the error terms are lower order, involving δθI and δulI . Here we can see already why we are restricted to
multipliersml(·) which are not odd. Namely, for an odd multiplierml(−ξ) = −ml(ξ), the high frequency interactions
fail to leave a nontrivial low frequency part. In other words, the obstruction is that we lack a high-low frequency
cascade.

We therefore assume now that the multiplierml is not odd. Together with the divergence free property ξlml(ξ) = 0
and the degree zero homogeneity of the symbolml(·), this condition implies that there are linearly independent vectors
in the image of the even part of the multiplier

Al = ml(ξ(1)) +ml(−ξ(1)), Bl = ml(ξ(2)) +ml(−ξ(2)) (2.14)

where ξ(1), ξ(2) ∈ Z2 = T̂2 are nonzero frequencies with integer entries.
At this point, since we now have two vectors Al and Bl in the image of the even part of ml that are linearly

independent, there is some hope to get the terms in (2.12) to cancel out. Namely, one should first make sure that the
phase gradients∇ξI are perturbations of the directions ξ(1), ξ(2) so that each wave yields a velocity field taking values
in the direction (ml(∇ξI)+ml(−∇ξI) ≈ Al or in the direction (ml(∇ξI)+ml(−∇ξI) ≈ Bl. One would then like to
choose coefficients θI so that terms |θI |2(ml(∇ξI) +ml(−∇ξI)) in (2.12) form the appropriate linear combinations
of Al and Bl needed to cancel out Rl.

However, there is an immediate difficulty in implementing the above approach. Namely, although we know that
Al and Bl are linearly independent, it may not be case that Rl can be written as a linear combination of Al and Bl

with non-negative coefficients |θI |2. To get around this difficulty, we take advantage of a degree of freedom which
already played an important role in the arguments of [19] and [45]. Namely, observe that we do not need to solve the
equation (2.12) exactly, but need only ensure that (2.12) is divergence free. This freedom allows us to subtract from
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(2.11) any vector field e(t)δl which is constant in space and depends only on time. Therefore the equation we actually
solve is more similar to

1

2

∑
I

|θI |2(ml(∇ξI) +ml(∇ξI)) = e(t)δl −Rlε (2.15)

where Rlε is a regularized version of Rl and δl is a constant vector field. If we choose δl = Al + Bl and make sure
that e(t) is bounded below by, say, e(t) ≥ 100‖Rε‖C0 on the support of Rε, then the coefficients |θI |2 solving (2.15)
can be guaranteed to be non-negative. Observe also that the equation (2.15) leads to the bounds ‖θI‖C0 ≤ C‖Rε‖1/2C0

for the amplitudes.
The role played by the function e(t)δl is the same as the role played by the low frequency part of the pressure

correction in the scheme for Euler [31, Section 7.3]. This device in some way appears to limit our proof to the periodic
setting.

2.2 The High Frequency Interference Terms
Controlling the interference terms between high frequency waves is a fundamental difficulty in convex integration. In
our case, the interference terms require solving the elliptic equation

∂lR
l
H =

∑
J 6=Ī

∂l(U
l
JΘI) =

∑
J 6=Ī

U lJ∂lΘI (2.16)

=
1

2

∑
J 6=Ī

(U lJ∂lΘI + U lI∂lΘJ) (2.17)

To leading order, these terms have the form

∂lR
l
H =

1

2
(iλ)

∑
J 6=Ī

eiλ(ξI+ξJ )(ulJ∂lξIθI + ulI∂lξJθJ) + . . . (2.18)

=
1

2
(iλ)

∑
J 6=Ī

eiλ(ξI+ξJ )θIθJ(ml(∇ξJ)∂lξI +ml(∇ξI)∂lξJ) + . . . (2.19)

We expect to a gain a factor of λ−1 while inverting the divergence in (2.18); however, solving (2.18) leads in principle
to a solution RlH of size ‖RH‖C0 ≤ ‖

∑
I |θI |2‖C0 ≤ ‖R‖C0 , which is not even an improvement on the size of the

previous error Rl. These terms therefore seem to already prohibit the construction of continuous solutions by convex
integration. The same difficulty also arises for the Euler equations.

For the Euler equations, the key idea introduced in [22] which made it possible to handle high frequency interfer-
ence terms similar to (2.18) was to construct the high frequency building blocks using a family of stationary solutions
to the Euler equations known as Beltrami flows. Specifically, the basic building blocks in the construction [22] are
constructed using vector fields of the form Bleik·x where Bl is a constant vector amplitude, k · x is a linear phase
function, and we have (ik) × Bl = |k|Bl so that the experession Bleik·x is an eigenfunction of curl and hence a
stationary solution to Euler. The idea of using Beltrami flows was adapted in [31] to building blocks VI = eiλξIvI
with nonlinear phase functions ξI by imposing a “microlocal Beltrami flow” condition that (i∇ξI) × vI = |∇ξI |vI
pointwise. Viewed from this latter approach, the role of the Beltrami flow condition is to ensure that the leading term
in (2.19) cancels out.

For the active scalar equations we consider here, such a family of stationary solutions is not available, and moreover
we do not have any method to control interference terms between waves which oscillate in distinct directions. For
instance, suppose that the multiplier ml(ξ) is even, and suppose that ξ1, ξ2 ∈ R̂2 are linearly independent frequencies
for which the terms in (2.19) cancel

m(ξ1) · ξ2 ±m(ξ2) · ξ1 = 0

It then follows from the conditions m(ξ1) · ξ1 = 0,m(ξ2) · ξ2 = 0 that both m(ξ1) and m(ξ2) must be equal to 0.
More generally, one can show that the even part of the multiplier must vanish when applied to both frequencies

ml(ξ1) +ml(−ξ1) = ml(ξ2) +ml(−ξ2) = 0
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if we assume that all of the interference terms in (2.19) cancel. This vanishing of the even part would prohibit any
nontrivial contribution to (2.12). In contrast, in the case of the surface quasigeostraphic equation where the drift
velocity is given by u = ∇⊥(−∆)−1/2θ, the set of Laplace eigenfunctions provides a large family of high frequency,
stationary solutions. However, in this case the multiplier m(ξ) = i〈−ξ2, ξ1〉|ξ|−1 is odd and we have already seen that
such multipliers are out of reach of our method.

Our main observation which allows us to handle these terms is the fact that the interference terms which arise when
an individual wave interacts with itself always vanish to leading order from the structure of the equations. Namely, if
we look at a single index J = I , then from the divergence free condition for the symbol m(ξ) · ξ = 0 we see that the
leading term in (2.19) gives no contribution

(ml(∇ξI)∂lξI +ml(∇ξI)∂lξI) = 0

Therefore, while we lack a method to control interference terms between waves which oscillate in different directions,
we can still pursue an approach where in each step of the iteration we use corrections Θ containing waves waves which
oscillate in only a single direction and thus do not interfere with each other.

2.2.1 Comparison with the Euler and Isometric Embedding equations

In this Section, we remark on how our observation also gives a new approach to building weak solutions to the Euler
equations which is independent of Beltrami flows, and explain why we expect a loss of regularity by comparing to
analogous considerations in the case of the isometric embedding equations.

Our observation of vanishing self-interference terms applies in the case of the Euler equations as well. For the
Euler equations, an individual wave is a velocity field which takes the form VI = eiλξI (vI + δvI), and we require that
the amplitude takes values in vI ∈ 〈∇ξI〉⊥ in order to ensure the divergence free condition for VI . In this case, the
high frequency interference terms between an individual wave and itself have the form

V jI ∂jV
l
I = (iλ)e2iλξIvjI∂jξIv

l
I + lower order terms (2.20)

Observe that the requirement vI · ∇ξI = 0 forces the the main contribution to cancel. Thus, the method we apply here
in principle generalizes to give a new approach to producing Hölder continuous weak solutions to the Euler equations
which entirely avoids the use of Beltrami flows and applies in arbitrary dimensions. Our observation appears to be
quite natural in that the key cancellation we exploit comes immediately from the structure of the equations themselves
without imposing any particular Ansatz in the construction. On the other hand, in contrast to the use of Beltrami flows
for Euler, we are restricted here to removing one component of the error at a time during the iteration, which ultimately
results in a loss of regularity in the solutions obtained from the construction.

The reason we expect to lose regularity from the restriction of removing one component of the error each stage
comes from experience with the isometric embedding equations from the work of Conti, De Lellis and Székelyhidi
[18]. For these equations, there is currently no method available for controlling the relevant interference terms be-
tween high frequency waves for embeddings of codimension 1, and this obstruction leads to a loss of regularity for
the solutions obtained through convex integration. Namely, without a method to control interference terms between
distinct waves, it is only possible to eliminate a single, rank one component of the metric error in each step of the
iteration from the addition of a single wave. Consequently, it is necessary to increase the frequencies of the waves
multiple times before any C0 improvement in the metric error can be realized, which leads to a loss of regularity. In
contrast, the use of Beltrami flows for the Euler equations allows for the addition of waves which oscillate at the same
frequency level in several different directions, and the stress error can be made smaller in C0 after only one step of the
iteration. Since our scheme suffers from the same deficiency as in the case of isometric embeddings (that is, we cannot
use waves at equal frequency levels which oscillate in multiple directions), it turns out that our scheme is limited to a
Hölder exponent which is inferior to the exponent 1/5 achieved for the Euler equations.

The restriction to eliminating a single component of the error in each step of the iteration also threatens to make
our proof considerably more complicated than the scheme used for Euler. While we are unable to avoid the loss of
regularity, we are at least able to keep the overall complexity of the argument to be essentially no more complicated
than the scheme used for Euler. This simplification is accomplished by introducing a new technique, which we explain
in the following Section.
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2.3 Reducing the Steps in the Iteration
From the discussion in Section 2.2.1, we can now consider a serial convex integration scheme wherein we cannot
reduce the size of the error term Rl until we have added a series of two corrections

θ1 = θ + Θ(1) + Θ(2) (2.21)

Following the original scheme of Nash [40] in the isometric embedding problem, we should first decompose Rl into
components as

Rl = cAA
l + cBB

l

whereAl andBl are linearly independent vectors in the image ofml(ξ)+ml(−ξ) defined in (2.14). The first correction
Θ(1) to θ should oscillate in the ξ(1) direction in order to eliminate the Al component of the error Rl by the method
described in Section 2.1. Then, the second correction Θ(2) should have an even larger frequency than Θ(1), but the
same amplitude |Θ(1)| ∼ |Θ(2)| ∼ |R|1/2, since its purpose is to eliminate the Bl component of the error Rl. Thus,
one stage of the convex integration is completed after two steps, where each step involves eliminating one component
of the error, and the error Rl is smaller in C0 only at the end of the stage.

It appears that such a serial convex integration scheme should be possible for active scalar equations and should
lead to the same Hölder exponent 1/9 that we achieve here. On the other hand, such a serial proof seems to be
somewhat complicated compared to the “one-step” scheme used for Euler or to the case of the isometric embedding
equations. In our case, a serial proof would involve treating a larger number of error terms having unfamiliar estimates,
and optimizing a larger number of time, frequency and length scale parameters. We avoid these additional complexities
by making a simple observation that allows us to reduce the C0 norm of the error in a single step of the iteration rather
than several. It turns out that this idea also causes most of the terms in the construction to obey estimates which are
familiar from experience with the Euler equations, amounting to an overall more transparent proof.

Our observation which allows us to reduce the error in every stage of the iteration and thereby simplify our proof
is the following. First, note that the addition of the first correction Θ(1) results in a remaining error Rl(1) of the form

Rl(1) = cBB
l +RlE (2.22)

where RlE is much smaller than the original error Rl, whereas the term |cBBl| ∼ |Rl| has the same size. Rather
than using the second correction Θ(2) to eliminate the term cBB

l as discussed previously, we observe that we can
simultaneously get rid of the Bl component of the small term RlE , thus leaving an error of the form

Rl1 = cAA
l +RlJ (2.23)

where cAAl is the remaining Al component of RlE , and the term RlJ is an even smaller error term. For our next
correction, we can repeat the same idea and eliminate the Al component of (2.23), leaving an error of the form (2.22).
Continuing in this way, we see that each correction now causes an improvement in the size of the error in the C0

topology, just as in the situation for Euler.
The above discussion has been based on the hope that we can really eliminate the Al and Bl components of the

error, which is not entirely justified at this point. In fact, there are some further difficulties which stand in our way
before this task can be accomplished which will become more clear as we specify the construction. One such difficulty
is the appearance of low frequency interference terms.

2.4 Low Frequency Interference Terms
It turns out that the most straightforward approach to the construction based on the ideas Section 2.2 gives rise to certain
interference terms of low to intermediate frequency which apparently prohibit the success of our scheme. Thus, while
the idea introduced in Section 2.2 allows us to control the high frequency interference terms in a sactifactory manner,
we must incorporate one additional idea into the construction before our scheme can handle every type of error term
which arises.

The ideas in Section 2.2 suggest that a natural approach to the construction is to use waves of the form ΘI =
eiλξI (θI + δθI) where the phase functions ξI oscillate in the direction ±ξ(1) (or ±ξ(2)) in the sense that the gradients
remain close to their common initial values

∇ξI ≈ ±ξ(1) (2.24)
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For an index I , let us write f(I) ∈ {±} to denote the sign appearing in (2.24).
According to Section 2.2, we have a method to ensure that high frequency nonlinear interference terms obey good

bounds. Thus, every interaction term of the form

∂l(ΘIU
l
J + ΘJU

l
I) (2.25)

which arises between waves of the same sign f(I) = f(J) ∈ {±} can be handled by our method, as these terms are
all of high frequency.

A new difficulty arises when we consider interference terms between waves of opposite signs f(I) = −f(J),
which we call “Low-Frequency Interference Terms”. In this case, the terms of the form ΘIU

l
J + ΘJU

l
I as in (2.25)

can be expressed to leading order as

ΘIU
l
J + ΘJU

l
I ≈ eiλ(ξI+ξJ )(θIu

l
J + θJu

l
I) (2.26)

When we consider indices with opposite signs f(I) = −f(J), the term (2.26) cannot be viewed as a high frequency
error term. In the worst case it may even be true that∇(ξI + ξJ) = 0 thanks to the initial conditions satisfying (2.24).

It turns out that having low frequency interference terms of the form (2.26) prevents us from solving the quadratic
equation to determine the amplitudes θI . To see this difficulty, note that the left hand side of the equation analogous
to (2.15), which includes all low frequency interactions, would have to include terms of the form∑

I,J
f(I)=+, f(J)=−

ΘIU
l
J + ΘJU

l
I =

∑
I,J

f(I)=f(J)=+

eiλ(ξI−ξJ )(θI θ̄J + θJ θ̄I)A
l + . . . (2.27)

Remarkably, the right hand side of (2.27) appears to obey all the estimates we would require for obtaining solutions
with Hölder regularity 1/9−, despite the appearance of the parameter λ. The problem is that the right hand side of
(2.27) must remain bounded from 0 in order to solve the quadratic equation for the amplitudes. On the other hand, there
is no way to preclude the possibility that the series (2.27) cancels completely at points (t, x) on which the amplitudes
θI(t, x) and θJ(t, x) have essentially the same size, due to the presence of the oscillating factors eiλ(ξI−ξJ ) in the
cross terms arising from distinct indices J 6= I .

At first sight, this difficulty would seem to completely prevent us even from achieving continuous solutions, as we
are left with no way to obtain a C0 improvement in the size of the error on the regions where distinct indices interact.
We overcome this obstruction by making one more adjustment to the construction. Roughly speaking, our idea is to
allow the condition (2.24) to be satisfied by “half” the waves in our construction, whereas the other “half” of the waves
in the construction involve phase functions with initial data satisfying

∇ξI ≈ ±10ξ(1) (2.28)

Furthermore, we ensure that every nonlinear interaction which takes place between nonconjugate waves involves one
wave satisfying (2.24), and a second wave satisfying (2.28). In this way, every interference term of the form (2.26) is
actually a high frequency error term. Moreover, every wave oscillates in a direction essentially parallel to ξ(1), so that
the idea of Section 2.2 still applies to treat these high frequency interference terms.

With these ideas in hand, we are now ready to proceed with the formal construction in detail, beginning with the
statement of the Main Lemma.

3 The Main Lemma
In order to state the main lemma, let us recall that we have fixed once and for all a choice of linearly independent
vectors

Al = ml(ξ(1)) +ml(−ξ(1)), Bl = ml(ξ(2)) +ml(−ξ(2)) (3.1)

where ξ(1), ξ(2) ∈ Z2 = T̂2 are nonzero (integral) frequencies. The existence of these vectors is guaranteed by the
condition that ml(ξ) is not odd, and the orthogonality condition ξlml(ξ) = 0.
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Definition 3.1. For a constant vector Al, we say that (θ, ul, cA, R
l
J) satisfy the Compound Scalar-Stress equation

(with vector Al) if {
∂tθ + ∂l(θu

l) = ∂l(cAA
l +RlJ)

ul = T l(θ)
(3.2)

In this case, we will refer to the tuple (θ, ul, cA, R
l
J) as a compound scalar-stress field.

For a solution to the compound scalar-stress equation (2.1), we define compound frequency-energy levels to be the
following

Definition 3.2. Let L ≥ 1 be a fixed integer. Let Ξ ≥ 2, and let ev , eR and eJ be positive numbers with eJ ≤ eR ≤ ev .
We say that (θ, ul, cA, R

l) have frequency and energy levels below (Ξ, ev, eR, eJ) to order L in C0 if (θ, ul, cA, R
l)

solve the system (3.2) and satisfy the bounds

||∇ku||C0 + ‖∇kθ‖C0 ≤ Ξke1/2
v k = 1, . . . , L (3.3)

‖∇k(∂t + u · ∇)u‖C0 ≤ Ξk+1ev k = 0, . . . , L− 1 (3.4)

||∇kcA||C0 ≤ ΞkeR k = 0, . . . , L (3.5)

||∇k(∂t + u · ∇)cA||C0 ≤ Ξk+1e1/2
v eR k = 0, . . . , L− 1 (3.6)

||∇kRJ ||C0 ≤ ΞkeJ k = 0, . . . , L (3.7)

||∇k(∂t + u · ∇)RJ ||C0 ≤ Ξk+1e1/2
v eJ k = 0, . . . , L− 1 (3.8)

Here ∇ refers only to derivatives in the spatial variables.

Note that we assume bounds (3.3)-(3.4) on the drift velocity ul which do not in general follow from the corre-
sponding bounds on (θ, cA, R

l) and the transport equation (3.2). We assume these bounds on ul in order to to avoid
logarithmic losses in our estimates which would arise otherwise from the lack of C0 boundedness of the operator
ul = T lθ defining the velocity.

We now state the Main Lemma of the paper, which summarizes the result of one step of the convex integration
procedure. The statement of this lemma involves two constants: K0 ≥ 1 (specified in Line (5.30) of the construction)
and K1 ≥ 1 (determined in Line (5.25) of the construction, see also Section 8.1). These constants K0 and K1 depend
only on the operator T l in the statement of the Main Theorem.

Lemma 3.1 (The Main Lemma). Suppose that L ≥ 2 and let K,M ≥ 4 be non-negative numbers such that K ≥ K0.
There is a constant C0 depending only on L, K, M and the operator T l such that the following holds:

Let (θ, ul, cA, R
l
J) be any solution of the compound scalar-stress system whose compound frequency and energy

levels are below (Ξ, ev, eR, eJ) to order L in C0, and let I ⊆ R be a nonempty closed interval such that

suppRJ ∪ supp cA ⊆ I × T2 (3.9)

Define the time-scale τ̂ = Ξ−1e
−1/2
v , and let

e(t) : R→ R≥0

be any non-negative function for which the lower bound

e(t) ≥ KeR for all t ∈ I ± τ̂ (3.10)

is satisfied in a τ̂ -neighborhood of the interval I , and whose square root satisfies the estimates

|| d
r

dtr
e1/2||C0 ≤M(Ξe1/2

v )re
1/2
R , 0 ≤ r ≤ 2 (3.11)

Now let N be any positive number obeying the bound

N ≥
(
ev
eR

)3/2

(3.12)
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and define the dimensionless parameter b =

(
e1/2v

e
1/2
R N

)1/2

.

Then there exists a solution (θ1, u
l, cB , R

l
1) of the form θ1 = θ + Θ, u1 = u+ U to the Compound Scalar-Stress

Equation (3.2) with vector Bl whose frequency and energy levels are below

(Ξ′, e′v, e
′
R, e
′
J) =

(
CNΞ, eR,K1eJ ,

e
1/4
v e

3/4
R

N1/2

)

=

CNΞ, eR,K1eJ ,

(
e

1/2
v

e
1/2
R N

)1/2

eR


=

(
CNΞ, eR,K1eJ ,b

−1 e
1/2
v e

1/2
R

N

)
(3.13)

to order L in C0, and whose stress fields R1 and cB are supported in

supp cB ∪ suppR1 ⊆ supp e× T2 (3.14)

The correction Θ = θ1 − θ is of the form Θ = ∇ · W . This correction and the correction to the velocity field
U l = T l[Θ] can be guaranteed to obey the bounds

||Θ||C0 + ‖U l‖C0+ ≤ Ce1/2
R (3.15)

‖∇Θ‖C0 + ‖∇U‖C0 ≤ CNΞe
1/2
R (3.16)

‖(∂t + uj∂j)Θ‖C0 + ‖(∂t + uj∂j)U‖C0 ≤ Cb−1Ξe1/2
v e

1/2
R (3.17)

||W ||C0 ≤ CΞ−1N−1e
1/2
R (3.18)

‖∇W‖C0 ≤ Ce1/2
R (3.19)

||(∂t + uj∂j)W ||C0 ≤ Cb−1N−1e1/2
v e

1/2
R (3.20)

The energy increment from the correction is prescribed up to errors bounded by∣∣∣∣∫
T2

|Θ|2

2
(t, x)dx−

∫
T2

e(t)dx

∣∣∣∣ ≤ 1

2

∫
T2

e(t)dx+
eR
N

(3.21)

and the incremental energy variation satisfies an estimate∣∣∣∣ ddt
∫
T2

|Θ|2(t, x)dx

∣∣∣∣ ≤ Cb−1Ξe1/2
v eR (3.22)

uniformly in time. Finally, the space-time support of the correction Θ is contained in supp e× T2.

3.1 Remarks about the Main Lemma
The overall structure of Lemma 3.1 is based on the Main Lemma of [31, Lemma 10.1]. The most important difference
in our Lemma lies in the difference in the definition of the compound frequency energy levels. The bounds implicit in
(3.13), which state the rate at which we are able to reduce the stress error, are the most essential point the main lemma
and dictate the regularity of the solutions we obtain. Another noticeable difference between Lemma 3.1 compared
to the Lemmas [31, Lemma 10.1] and [34, Lemma 4.1] is that the estimate (3.21) gives us worse control over the
increment of energy. In those Lemmas, the term 1

2

∫
T2 e(t)dx is not present, and the error in prescribing the energy

increment is of size O(N−1).
This weaker estimate on the energy increment is still sufficient for the applications considered in those papers. In

[31] and [34], the same estimate is applied to prove the nontriviality of solutions, by proving that the energy strictly
increases during the iteration at each fixed time slice on which the corrections are nontrivial. The same statement can
be obtained here, although in our case the nontriviality of solutions follows already from the weak-* approximation
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statement in Theorem 1.1. In [34], it was shown that a localized version of the estimate (3.21) can be combined with
the bounds (3.18)-(3.19) to prove that that the construction necessarily results in solutions which fail to have any kind
of improved C1/5+ε

x (B) local regularity (or even local W 1/5+ε,1 regularity) on every open ball B and every time slice
contained in the support of the iteration (see [34, Theorem 1.2] for a precise statement). This lack of higher regularity
is an automatic consequence of the construction, as the same proof shows the failure of local regularity above C1/5−ε

x

regularity for the earlier constructions of C1/5−ε
t,x solutions in [31, 24]. The same result applies in our setting by the

same proof, using the estimates (3.18)-(3.19) and the localized version of (3.21). Namely, our solutions in dimension
2 fail to belong to C1/9+ε

x (B) on every open ball B and every time slice contained in the support of the iteration, and
in dimension d fail to have any local regularity C1/(1+4d)+ε

x (B) in a similar way.

3.2 Modifications for the higher dimensional case
In this subsection we make some remarks about how to modify our proof to apply in higher dimensions.

In order to prove Theorem 1.5 regarding the case of higher dimensions, the relevant Main Lemma has a slightly
different formulation, as one must modify the definitions of the compound scalar stress equation and the compound fre-
quency energy levels. In the case of dimension d, we assume given a linearly independent set of vectorsA(1), . . . , A(d)

in the image of the even part of the multiplier. A typical solution to the Compound Scalar Stress equation will then be
a solution to the equation

∂tθ + ∂l(θu
l) = ∂l(cA,(1)A

l
(1) + . . .+ cA,(d−1)A

l
(d−1) +RlJ)

ul = T l(θ)
(3.23)

A single step of the iteration will remove the A(1) component of the error, giving a solution θ1 and a new error of the
form

∂tθ1 + ∂l(θ1u
l
1) = ∂l(cA,(2)A

l
(2) + . . .+ cA,(d−1)A

l
(d−1) + cA,(d)A

l
(d) +RlJ,1) (3.24)

ul1 = T l(θ1) (3.25)

At the step above (or even earlier when writing (3.23)) we can absorb the A(2), . . . , A(d−1) components of RJ,1 into
the other terms. (To say it in a slightly different way, one can assume from the start in writing (3.23) that RJ is a
multiple of A(d) by absorbing the other components of RJ into the other terms.)

The Definition 3.2 of compound frequency energy levels now should include d + 1 different energy levels ev ≥
eR,[1] ≥ . . . ≥ eR,[d−1] ≥ eJ . The Main Lemma then takes as an input a compound scalar stress field with given
frequency energy levels and outputs another scalar stress field with compound frequency energy levels

(Ξ, ev, eR,[1], . . . , eR,[d−1], eJ) 7→ (CNΞ, eR,[1],K1eR,[2], . . . ,K1eR,[d−1],K1eJ , e
′
J) (3.26)

e′J =

 e
1/2
v

e
1/2
R,[1]N

1/2

eR,[1] (3.27)

as in (3.13). All the bounds of the Main Lemma then hold with eR replaced by eR,[1], since we are eliminating the
first and largest component of the error, and leaving the other terms for the next stages.

The proof of the Main Lemma is then performed similarly as below, but naturally involves more terms and nota-
tion. The Main Lemma is applied to prove Theorem 1.5 in a similar way as is done in Section 9 below, where one
maintains a constant ratio of the consecutive energy levels with size bounded by ev

eR,[1]
,
eR,[i]
eR,[i+1]

≤ K1

Z . The difference

in the iteration then is the choice of N(k) ∼ Z(4d+1)/2 instead of (9.14) at later stages k. Comparing the growth
of frequencies Ξ(k) ∼ Z(4d+1)k/2 to the decay in energy levels e1/2

R,[1],(k) ∼ Z−k/2 as in (9.26), we obtain Hölder
regularity up to 1

(4d+1) as stated in Theorem 1.5.

In the next Sections 4-8, we give the proof of the Main Lemma. In the following Sections 9-11, we then explain
how the Main Lemma can be used to deduce Theorems 1.1-1.2.
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4 The Microlocal Lemma
The following Lemma will be used heavily in the construction in order to control the output of a convolution operator
applied to a highly oscillatory input. The Lemma allows us to show that, to leading order, a convolution operator
simply behaves like a multiplication operator when it is applied to a high frequency input with a nonlinear phase
function.

In all of our applications, the kernelK(h) below will be a Schwartz function essentially supported on length scales
of order |h| ∼ λ−1 for large λ. We normalize the Fourier transform of a function K : R2 → C to be

K̂(ξ) =

∫
R2

e−iξ·hK(h)dh

Lemma 4.1 (Microlocal Lemma). Suppose that

T [Θ](x) =

∫
R2

Θ(x− h)K(h)dh

is a convolution operator acting on functions Θ : T2 → C, with a kernel K : R2 → C in the Schwartz class. Let
ξ : T2 → R and θ : T2 → C be smooth, periodic functions and λ ∈ Z be an integer. Then for any input of the form

Θ = eiλξ(x)θ(x)

we have the formula

T [Θ](x) = eiλξ(x)
(
θ(x)K̂(λ∇ξ(x)) + δ[TΘ](x)

)
(4.1)

where the error in the amplitude term has the explicit form

δ[TΘ](x) =

∫ 1

0

dr
d

dr

∫
R2

e−iλ∇ξ(x)·heiZ(r,x,h)θ(x− rh)K(h)dh

Z(r, x, h) = rλ

∫ 1

0

hahb∂a∂bξ(x− sh)(1− s)ds
(4.2)

Proof. Observe that

e−iλξ(x)T [Θ](x) =

∫
R2

eiλ(ξ(x−h)−ξ(x))θ(x− h)K(h)dh (4.3)

By Taylor expanding, we express

ξ(x− h)− ξ(x) = −∇ξ(x) · h+

∫ 1

0

hahb∂a∂bξ(x− sh)(1− s)ds (4.4)

In our applications, the kernel K is localized to small values of |h| ∼ λ−1 for large λ, so we view the second term in
(4.4) as a small error. Similarly, we think of θ(x−h) as a perturbation of θ(x), which motivates us to express the right
hand side of (4.3) as

e−iλξ(x)T [Θ](x) =

∫
R2

e−iλ∇ξ(x)·hθ(x)K(h)dh+ δ[TΘ](x), (4.5)

where δ[TΘ](x) is expressed in (4.2). The proof concludes by recognizing that θ(x) can be factored out of the integral
in (4.5), which gives formula (4.1).

Remark 3. We remark that the same method applied here to prove Lemma 4.1 can also be iterated to obtain a higher
order expansion of T [Θ](x) involving only the functions θ(x),∇ξ(x) and their derivatives evaluated at the point x

δ[Tθ](x) = −i ∂aθ(x)∂aK̂(λ∇ξ(x))− 1

2
iλ θ(x)∂a∂bξ(x)∂a∂bK̂(λ∇ξ(x)) + . . . (4.6)
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To obtain this further expansion, one modifies the function Z defined in (4.2) to have an additional factor of r in the
argument of the phase function

Z(r, x, h) = rλ

∫ 1

0

hahb∂a∂bξ(x− rsh)(1− s)ds

The expansion (4.6) is then obtained by Taylor expansion in the variable r via integration by parts. We do not take this
approach here because it does not improve our estimates, and results in some more complicated formulas.

5 The Construction
We now give a detailed description of the construction. We start by obtaining a complete list of the error terms.

Suppose that we are in the setting of Lemma 3.1. Thus, we have a solution (θ, u, cA, RJ) to the compound scalar-
stress equation with vector Al = ml(ξ(1)) +ml(−ξ(1)) as in (2.14){

∂tθ + ∂l(θu
l) = ∂l(cAA

l +RlJ)

ul = T l(θ)
(5.1)

whose frequency-energy levels are below (Ξ, ev, eR, eJ). After adding a correction Θ to the scalar field, the corrected
scalar θ1 = θ + Θ and drift velocity ul1 = ul + U l, U l = T l[Θ] satisfy the system

∂tθ1 + ∂l(θ1u
l
1) = ∂tΘ + ∂l(u

lΘ) + ∂l(θU
l) + ∂l(ΘU

l + cAA
l +RlJ) (5.2)

As a preliminary step, it is necessary to define suitable regularizations (θε, uε, c̃A, Rε) of the given (θ, u, cA, RJ). The
purpose of these regularizations is to ensure that only the “low frequency parts” of the given solutions (θ, u, cA, RJ)
will influence the building blocks of the construction. These mollifications give rise to an error term

RlM = (ul − ulε)Θ + (θ − θε)U l + (cA − c̃A)Al + (RlJ −Rlε) (5.3)

Our goal is to design a correction Θ for the scalar field θ so that the corrected scalar θ1 = θ + Θ and drift velocity
ul1 = ul + U l satisfy the compound scalar-stress equation with vector Bl = ml(ξ(2)) +ml(−ξ(2)) as in (2.14){

∂tθ1 + ∂l(θ1u
l
1) = ∂l(cBB

l +Rl1)

ul1 = T l[θ1]
(5.4)

whose compound frequency energy levels are bounded as in Lemma 3.1.

5.1 The shape of the corrections
Our correction is a sum of individual waves

Θ =
∑
I

ΘI (5.5)

ΘI = eiλξI (θI + δθI) (5.6)

where we are free to specify the amplitudes θI and the phase function ξI . The parameter λ is a large frequency
parameter of the form

λ = BλNΞ (5.7)

where Bλ is a very large constant associated to λ which is chosen at the end of the argument. (For technical reasons,
we will require that λ ∈ Z+ is a positive integer, so Bλ will really have some dependence on NΞ, but will nonetheless
be bounded, and should be thought of as a constant.) The term δθI in (5.6) is a small correction term which is present
to ensure that the wave ΘI has compact support in frequency space. We will specify δθI later, but it is important to
remark that

‖δθI‖C0 → 0, as λ→∞
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Each wave ΘI has a conjugate wave ΘĪ = ΘI with an opposite phase function ξĪ = −ξI and amplitude θĪ = θ̄I so
that the overall correction is real-valued. We will choose the amplitudes θI = θ̄I to be real-valued as well.

The index I for the wave ΘI consists of two parts I = (k, f) ∈ Z × {±}. The discrete index k ∈ Z specifies
the support of the wave ΘI = Θ(k,f) in time. Specifically, the support of Θ(k,f) will be contained in the time interval
[(k − 2

3 )τ, (k + 2
3 )τ ] where τ is a time scale parameter that will be chosen during the iteration. The index f ∈ {±} is

a sign which specifies the direction of oscillation of the wave Θ(k,f).
The phase functions ξI are solutions to the transport equation

(∂t + ulε∂l)ξI = 0

ξI(t(I), x) = ξ̂I(x)
(5.8)

The amplitudes θI will be supported on a small time interval during which the phase functions remain close to their
initial data. The initial data ξ̂I for the phase function ξI = ξ(k,f) is chosen at the time t(I) = kτ depending on the
index I = (k, f)

ξ̂I(x) = ξ̂(k,±)(x) = ±10[k]ξ(1) · x (5.9)

where [k] ∈ {0, 1} is equal to 0 when k is even and is equal to 1 when k is odd. In particular, we have

∇ξ̂I = ±10[k]ξ(1), [k] ∈ {0, 1}

Our individual waves are localized in frequency and take the form

ΘI = P I≈λ[eiλξIθI ] (5.10)

The operators P I≈λ in (5.10) restrict to frequencies of order λ in a neighborhood of λ∇ξ̂I . To be explicit, let η̂≈1(ξ)
be a bump function supported on frequencies

η̂≈1(ξ) ∈ C∞c
(
B|ξ(1)|/2(ξ(1))

)
which has the property that

η̂≈1(ξ) = 1, if |ξ − ξ(1)| ≤ 1

4
|ξ(1)|

We then define a frequency cutoff supported on high frequencies of order λ by rescaling and reflection

η̂I≈λ(ξ) = η̂≈1(±10−[k]λ−1ξ).

Then P I≈λ is given explicitly by a Fourier multiplier

P̂ I≈λF (ξ) = η̂I≈λ(ξ)F̂ (ξ).

Including this “projection operator” P I≈λ guarantees that all the corrections (5.10) have frequency support in the ball

|ξ − (λ∇ξ̂I)| ≤ λ |∇ξ̂I |2 , and in particular have integral 0. Having compact support in frequency space will allow us to
easily control the resulting increment to the velocity field, which is obtained by applying another Fourier multiplier.

By the Microlocal Lemma 4.1, it is possible to write the wave (5.10) in the form (5.6) with an explicit remainder
δθI , since we have

ΘI = P I≈λ[eiλξIθI ] = eiλξI (θI η̂
I
≈λ(λ∇ξI) + δθI)

= eiλξI (θI + δθI) (5.11)

provided that the phase gradient is sufficiently close to its initial value

|∇ξI −∇ξ̂I |E
|∇ξ̂I |

4
(5.12)

We will verify that inequality (5.12) is satisfied when the parameter lifespan parameter τ is chosen.

19



Applying the Microlocal Lemma 4.1 again, we can also calculate the resulting correction to the drift velocity.

U lI := T lΘI (5.13)

T lP I≈λ[eiλξIθI ] = eiλξI (θIK̂
l(λ∇ξI)η̂I≈λ(λ∇ξI) + δulI) (5.14)

U lI = eiλξI (θIm
l(∇ξI) + δulI) (5.15)

Therefore, once we have verified (5.12), we have

U lI = eiλξI (ulI + δulI) (5.16)

ulI = θIm
l(∇ξI) (5.17)

with an explicit error term δulI given by Lemma 4.1.

5.2 Choosing the amplitudes
According to Section 5.1, we can now decompose the remaining error terms in Equation (5.2) as follows

∂tθ1 + ∂l(θ1u
l
1) = ∂tΘ + ∂l(u

l
εΘ) + ∂l(θεU

l) (5.18)

+ ∂l[
∑
I

ΘIU
l
Ī + c̃AA

l +Rlε] (5.19)

+
∑
J 6=Ī

∂l(ΘIU
l
J) (5.20)

+ ∂lR
l
M (5.21)

The term RlM comes from the regularizations in Equation (5.3).
The first objective of the correction is to eliminate the term (5.19), which is the only low frequency term that

arises. However, since we consider oscillations in essentially only one direction ∇ξI ≈ ±10[k]ξ(1), we will only able
to eliminate the Al component of (5.19).

We begin by expanding the low frequency part of the interactions in line (5.19) as∑
I

(ΘIU
l
Ī) =

1

2

∑
I

(ΘIU
l
Ī + ΘĪU

l
I)

=
∑
I∈I+

θI θ̄I(m
l(−∇ξI) +ml(∇ξI)) + Lower Order Terms (5.22)

=
∑
I∈I+

|θI |2(ml(−∇ξ̂I) +ml(∇ξ̂I)) + Lower Order Terms (5.23)

=
∑
I∈I+

|θI |2Al + Lower Order Terms (5.24)

We will give a complete list of the lower order terms below after we have chosen the amplitudes θI .
We wish to choose the amplitudes θI so that the main term in (5.24) cancels with the Al component of the other

terms in line (5.19). We achieve this cancellation in two steps. First, we decompose Rε into components

Rlε = cJA
l + cBB

l (5.25)

We also subtract a constant vector field ∂l(e(t)Al) = 0 from line (5.19), which leads us to impose to an equation∑
I∈I+

|θI |2Al = e(t)Al + c̃AA
l + cJA

l (5.26)

= e(t)(1 + ε)Al (5.27)

ε =
c̃A + cJ
e(t)

(5.28)
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for the amplitudes θI . In this way, the amplitudes θI are chosen to eliminate the Al component of the low frequency
part of the stress Rlε.

It will be important for our construction that the term ε is smaller than the constant 1 in the (1 + ε) term in (5.27).
From the lower bound e(t) ≥ KeR assumed in (3.10), we can obtain an upper bound

‖ε‖C0 ≤ Z

K
(5.29)

on the size of the term (5.28), where Z is a constant depending only on the vectors Al and Bl. Now, provided
K ≥ K0 = 2Z, we have

‖ε‖C0 ≤ 1

2
(5.30)

A subtle point here is that the bound (5.29) does not follow immediately from (3.10). Namely, we must also check
that the same lower bound remains true on the set

e(t) ≥ KeR for all (t, x) ∈ supp (c̃A + cJ), (5.31)

which is slightly larger than the supports of the given RJ and cA due to a regularization in time in the definitions of
c̃A, cJ . Thus, the estimates (5.29)-(5.30) are guaranteed only after (5.31) has been verified, which is accomplished
in Line (6.17) below when we choose the mollifying parameters. We now assume that (5.29)-(5.30) hold in order to
finish defining the construction.

From Equation (5.27), we are led to choose amplitudes of the form

θI = e1/2(t)ηk(t)γ, I = (k, f) (5.32)

γ = (1 + ε)1/2 (5.33)

The functions

ηk(t) = η

(
t− kτ
τ

)
are elements of a rescaled partition of unity in time∑

u∈Z
η2(t− u) = 1

which we use to patch together local solutions of Equation (5.27). Our choice of ηk ensures that each amplitude θ(k,f)

has support in a time interval [kτ − 2τ
3 , kτ + 2τ

3 ] of duration 4τ
3 . The coefficient γ ensures that (5.27) is satisfied, and

γ is assured to be well-defined by the bound (5.30).
To express the remaining error terms in a compact way, let us introduce the notation

θ̃I = θI + δθI , ũlI = ulI + δulI

Thus, ΘI = eiλξI θ̃I and U lI = eiλξI ũlI .
Having chosen θI , we can now expand the error term in (5.19) as follows∑

I

ΘIU
l
Ī + c̃AA

l +Rlε = cBB
l +RlS (5.34)

RlS =
∑
I

(ΘIU
l
Ī)−

∑
I∈I+

|θI |2Al (5.35)

We now expand

(ΘIU
l
Ī + ΘĪU

l
I) = θ̃I ũ

l
Ī + θ̃Ī ũ

l
I

= |θI |2(ml(−∇ξ̂I) +ml(∇ξ̂I)) +RlS,1 +RlS,2

RlSI,1 = |θI |2[(ml(−∇ξI)−ml(−∇ξ̂I)) + (ml(∇ξI)−ml(∇ξ̂I))]

RlSI,2 = δθI ũ
l
Ī + θ̃Iδu

l
Ī − δθIδu

l
Ī + δθĪ ũ

l
I + θ̃Īδu

l
I − δθĪδulI
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which gives

RlS =
∑
I

(RlSI,1 +RlSI,2) (5.36)

Note that, at any given time t, at most four indices I contribute to the sum in (5.36).

5.3 The remaining error terms
In Sections 5.1-5.2 we have defined the construction up to the specification of a few parameters. Our result is that the
corrected field θ1 = θ + Θ and drift velocity ul1 = ul + U l satisfy Equation (5.4) with cB defined in line (5.25), and

R1 = RT +RL +RH +RM +RS (5.37)

The terms RM RS are defined in (5.3) and (5.36). We now rewrite the remaining terms in Equations (5.18)-(5.20)
using the fact that the velocity fields appearing in these equations are divergence free.

The transport term RT is obtained by solving

∂lR
l
T = (∂t + ulε∂l)Θ (5.38)

=
∑
I

eiλξI (∂t + ulε∂l)θ̃I (5.39)

Here the term where the derivative hits the phase functions vanishes according to equation (5.8). Formula (5.39)
suggests that the transport term has frequency λ, so we expect to gain a factor λ−1 in solving equation (5.38). In fact,
we will choose our mollification uε to be a frequency-localized version of u so that together with (5.10), the term
(5.38) is literally supported on frequencies of size λ

3 ≤ |ξ| ≤ 20λ. Hence, there is a frequency localizing operator
P≈λ satisfying

(∂t + ulε∂l)Θ = P≈λ[(∂t + uε · ∇)Θ]

This frequency localization property allows us to simply define

RlT = ∂l∆−1P≈λ[(∂t + uε · ∇)Θ] (5.40)

In particular, we obtain the bound

‖RT ‖C0 ≤ λ−1‖(∂t + uε · ∇)Θ‖C0 (5.41)

The terms remaining from (5.18) and (5.20) are the High-Low term

∂lR
l
L = U l∂lθε (5.42)

=
∑
I

eiλξI ũjI∂jθε (5.43)

and the high frequency interference terms

∂lR
l
H =

∑
J 6=Ī

U lJ∂lΘI (5.44)

The frequency cutoffs in our definitions of θε, UI and ΘI ensure both of these terms have Fourier support in frequencies
λ
3 ≤ |ξ| ≤ 40λ. Here it is important that we have localized the frequency support each ΘI and U lI to a limited range
of angles. As a consequence,

U l∂lθε = P≈λ[U l∂lθε]

U lJ∂lΘI = P≈λ[U lJ∂lΘI ]

for some frequency projection operator P≈λ, and we can define

RlL = ∂l∆−1P≈λ[U j∂jθε] (5.45)

RlH =
∑
J 6=Ī

∂l∆−1P≈λ[U lJ∂lΘI ] (5.46)
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Now that we have written down the error terms (5.37), we must observe that each of these terms can be made small.
For the transport term RlT , the estimate (5.41) ensures that RT is small once λ is chosen sufficiently large, and the
same type of estimate can be used to control the High-Low term RL. The high-frequency interference terms require a
more careful treatment.

Let us focus on an individual term in the sum.

U lJ∂lΘI = (iλ)eiλ(ξI+ξJ )ũlJ∂lθ̃I (5.47)

We expand this term as

U lJ∂lΘI = (iλ)eiλ(ξI+ξJ )(θJm
l(∇ξJ) + δulJ)∂lξI θ̃I (5.48)

If we regard the phase gradients∇ξI ≈ ∇ξ̂I as perturbations of their initial values, the main term in (5.48) vanishes

ml(∇ξ̂J)∂lξ̂I = ml(±∇ξ̂I)∂lξ̂I = 0

from the degree zero homogeneity of m(ξ) and the identity m(ξ) · ξ = 0.
The terms which remain are all lower order

1

(iλ)
U lJ∂lΘI = eiλ(ξI+ξJ )θJ θ̃I(m

l(∇ξJ)−ml(∇ξ̂J))∂lξI (5.49)

+ eiλ(ξI+ξJ )θI θ̃Jm
l(∇ξ̂J)(∂lξI − ∂lξ̂I) (5.50)

+ eiλ(ξI+ξJ )δulJ∂lξI θ̃I (5.51)

The terms (5.49), (5.50) are made small by choosing the lifespan parameter τ to be small, while the term (5.51) is
made small once λ is chosen sufficiently large (see Section 6.1). The high-frequency term RH itself is then controlled
by the estimate

‖RH‖C0 ≤ C

λ
‖
∑
J 6=Ī

U lJ∂lΘI‖C0

from the formula (5.46). This calculation concludes our list of the error terms (5.37). What remains is to specify
the parameters in the construction, prove estimates for the elements of the construction and finally to check that the
estimates stated in Lemma 3.1 are satisfied.

6 Specifying parameters and the mollification term
To initialize the argument, we must specify how we regularize the given solution (θ, u, cA, R

l) to the compound
scalar-stress equation. In this section, we specify how these regularizations are defined. Because the flow map of the
regularized velocity is used to define the regularizations of cA and Rl, it is necessary to start with the defininition of
the regularized velocity. After the regularizations of cA and Rl are defined, we are able to verify the lower bound
(5.31) which had been assumed previously to guarantee a well-defined construction.

To obtain the regularized scalar field θε and drift velocity uε, we take low frequency projections in the spatial
variables with length scale parameters εθ and εu

θε = P 2
≤qθ, where 2−q = εθ (6.1)

uε = P 2
≤qu, where 2−q = εu (6.2)

The reason for the double mollification in equation (6.2) will become apparent during the commutator estimates of
Section 7. The operator is given by rescaling a Fourier multiplier

P̂≤χF (ξ) = η̂

(
ξ

2χ

)
F̂ (ξ)

where η̂(ξ) is a smooth function with compact support in |ξ| ≤ 2 that is equal to 1 on |ξ| ≤ 1.
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By well-known estimates for convolutions with mollifiers satisfying vanishing moment conditions (see [31] Section
5.1), we have

‖θ − θε‖C0 ≤ CLεLθ ‖∇Lθ‖C0 (6.3)

‖u− uε‖C0 ≤ CLεLu‖∇Lu‖C0 (6.4)

We want to choose the length scales εθ and εu as large as possible while ensuring that the mollification term RlM in
(5.3) is acceptably small. The main terms in (5.3) where these mollification errors appear are

RlM,θ =
∑
I

(θ − θε)eiλξIulI (6.5)

RlM,u =
∑
I

eiλξIθI(u
l − ulε) (6.6)

Logically, the terms (6.5) and (6.6) are not well-defined until we have specified how to define uε. However, from the
expressions (5.32) and (5.17) and the bound (3.11) we have an a priori estimate

‖RM,θ‖C0 + ‖RM,u‖C0 ≤ Ae1/2
R (‖θ − θε‖C0 + ‖u− uε‖C0) (6.7)

for A a constant depending only on the parameter M in Lemma 3.1.
Using (6.3)-(6.4) for a = L and the bound (3.3), we can choose parameters of the form

εθ = εu =
1

B
N1/LΞ (6.8)

Here B is some large constant depending on A in (6.7) chosen to assure that

‖RM,θ‖C0 + ‖RM,u‖C0 ≤
e

1/2
v e

1/2
R

1000N
(6.9)

The estimate (6.9) is stronger than what we require for Lemma 3.1. Rather, estimate (6.9) is the type of bound one
requires to obtain solutions with regularity 1/3− (see [31] Section 4.6).

Observe that the parameter choice (6.8) is exactly the choice of parameter taken in [31] Section 5.2 up to a constant.
We will therefore in many cases be able to refer to the estimates of [31] without repeating the proofs.

Having defined θε and uε, we can now define our regularizations c̃A and Rlε of cA and RlJ .
Following [31], we define these regularizations using the coarse scale flow Φs associated to ∂t + uε · ∇, whose

definition we now recall.

Definition 6.1. We define the coarse scale flow Φs(t, x) : R × R × T2 → R × T2 to be the unique solution to the
ODE

d

ds
Φ0
s(t, x) = 1

d

ds
Φjs(t, x) = ujε(Φs(t, x)), j = 1, 2

Φ0(t, x) = (t, x)

We can now define our regularizations for cA and RJ . First, we mollify both cA and RlJ in space to define

cA,εx = ηεx ∗ cA (6.10)
Rεx = ηεx ∗RJ (6.11)

We then use the coarse scale flow Φs and a smooth function ηεt(s) supported in |s| ≤ εt with integral
∫
ηεt(s)ds = 1

to average in time and form

c̃A(t, x) =

∫
cA,εx(Φs(t, x))ηεt(s)ds (6.12)

Rlε(t, x) =

∫
Rεx(Φs(t, x))ηεt(s)ds (6.13)
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Thus, the values of Rε(t, x) and c̃A(t, x) are obtained by averaging cA and RlJ over an εx-neighborhood of a time 2εt
flow line through (t, x).

To estimate c̃A and Rlε, we recall that both cA and RJ satisfy the estimates

||∇kcA||C0 +

(
eR
eJ

)
‖∇kRJ‖ ≤ 2ΞkeR k = 0, . . . , L (6.14)

||∇k(∂t + u · ∇)cA||C0 +

(
eR
eJ

)
||∇k(∂t + u · ∇)RJ ||C0 ≤ 2Ξk+1e1/2

v eR k = 0, . . . , L− 1 (6.15)

coming from the compound frequency-energy levels of Definition 3.2.
Since the bounds (6.14)-(6.15) coincide with the bounds for the tensor Rjl in [31], we can draw from the results

of that paper to control Rlε and c̃A.
Following Section 5.5 of [31], we choose length and time scales of the form

εx =
1

B
N1/LΞ, εt =

1

B
(NΞ)−1e

−1/2
R (6.16)

We choose B ≥ 1 large enough to bound the terms

‖(c̃A − cA)Al‖C0 + ‖RlJ −Rlε‖C0 ≤
e

1/2
v e

1/2
R

100N
(6.17)

which appear in the list of error terms from mollification of Equation (5.3).
Note that the choice of parameters (6.16) is the same as the choice made in [31, Section 18.3], and therefore leads

to the same bounds

‖∇k
(
D̄

∂t

)r
c̃A‖C0 ≤ CkΞkeR(Ξe1/2

v )(r≥1)(NΞe
1/2
R )(r≥2)N (k+1−L)+/L

‖∇k
(
D̄

∂t

)r
RJ‖C0 + ‖∇k

(
D̄

∂t

)r
cJ‖C0 ≤ CkΞkeJ(Ξe1/2

v )(r≥1)(NΞe
1/2
R )(r≥2)N (k+1−L)+/L

(6.18)

where we use the notation (r ≥ m) = χ[m,∞)(r). The fact we are using here is that cA obeys the same estimates as
the stress Rjl in [31], and the terms RJ and cJ satisfy even better bounds. The details of the proof are carried out in
[31, Section 18].

A crucial point here is that (6.18) contains estimates on second order advective derivatives, even though our
assumed bounds (3.6), (3.8) on cA and RJ contain only information regarding first order advective derivatives. The
ability to obtain this estimate comes from the fact that the advective derivative D̄

∂t commutes with its own flow Φs, and
thus commutes with the averaging along the flow. This observation allows us to integrate by parts in

D̄

∂t
Rlε(t, x) =

∫
D̄

∂t
Rεx(Φs(t, x))ηεt(s)ds (6.19)

= −
∫
Rεx(Φs(t, x))η′εt(s)ds (6.20)

This computation explains why the cost of the second advective derivative in (6.18) is exactly a factor of ε−1
t for the

choice of parameter (6.16). We refer to [31, Section 18.6.1] and to [33, Section 12.1] for two different proofs of this
identity.

Having defined c̃A and Rε, we are now able to verify the lower bound (5.31) on the energy profile, which had been
assumed previously in many of the formulas in our construction. From the assumption (3.9) that supp cA∪suppRJ ⊆
I × T2, we have by construction that

supp c̃A ∪ suppRε ∪ supp cJ ⊆ I ± εt × T2

Since we assumed the lower bound (3.10) for e(t) on the interval I±Ξ−1e
−1/2
v , it suffices to check that εt < Ξ−1e

−1/2
v .

This inequality follows from the definition (6.16) of εt and the inequalityN ≥
(
ev
eR

)1/2

, which follows from condition
(3.12).
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At this point, the only term that remains to be estimated in the mollification term

RlM = RlM,θ +RlM,u + (cA − c̃A)Al + (RlJ −Rlε) +RlM ′ (6.21)

is given by

RlM ′ =
∑
I

eiλξI (ul − ulε)δθI +
∑
I

eiλξI (θ − θε)δulI (6.22)

This term will be estimated when we choose the parameter λ at the end of the argument.

6.1 The choice of lifespan parameter and the limiting error terms
The present Section is devoted to choosing the lifespan parameter τ . Here we motivate the choice of τ by comparing
the estimates that will be satisfied by the main error terms and optimizing. However, we warn the reader that the
estimates stated in this Section have not yet been established, but will follow from the bounds of Section 7 below.

The lifespan parameter τ determines the length of time during which an amplitude

θI = e1/2(t)η

(
t− t(I)

τ

)
γ (6.23)

is allowed to remain nonzero. The parameter τ is chosen to be small so that the gradients of the phase functions, which
satisfy the transport equation

(∂t + ujε∂j)∂
lξI = −∂lujε∂jξI , (6.24)

remain close to their initial values ∇ξI ≈ ∇ξ̂I . More precisely, equation (6.24) with initial data ξI(t(I), x) = ξ̂I(x)
leads to a bound of the form

|∇ξI(Φs(t(I), x))−∇ξ̂I(x)| ≤ AeAΞe1/2v τ (Ξe1/2
v )τ, |s| ≤ τ (6.25)

where Ξe
1/2
v is an upper bound on ‖∇uε‖C0 ≤ Ξe

1/2
v , cf. Lemma 7.3 below.

In our case, we require that τ ≤ Ξ−1e
−1/2
v , so that the estimate (6.25) becomes

‖∇ξI −∇ξ̂I‖C0 ≤ A(Ξe1/2
v )τ (6.26)

Here, there are two main error terms which require the choice of a sharp time cutoff in order to control. The first
such term, which is familiar from the case of the Euler equations, is the set of high-frequency interference terms in
(5.46)

RlH =
∑
J 6=Ī

∂l∆−1P≈λ[U jJ∂jΘI ] (6.27)

Recall from (5.49)-(5.51) that each term in the series (6.27) can be expressed to leading order as

1

(iλ)
U lJ∂lΘI = eiλ(ξI+ξJ )θJ θ̃I(m

l(∇ξJ)−ml(∇ξ̂J))∂lξI (6.28)

+ eiλ(ξI+ξJ )θI θ̃Jm
l(∇ξ̂J)(∂lξI − ∂lξ̂I) (6.29)

+ lower order terms (6.30)

Formula (6.27) leads to the bound

‖RH‖C0 ≤ A

λ
‖
∑
J 6=Ī

U jJ∂jΘI‖C0

≤ Amax
I
‖θI‖2C0(‖ml(∇ξI)−ml(∇ξ̂I)‖C0 + ‖∇ξI −∇ξ̂I‖C0) + Lower order terms

≤ AeR max
I
‖∇ξI −∇ξ̂I‖C0 + Lower order terms (6.31)

≤ AeR(Ξe1/2
v τ) + Lower order terms (6.32)
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where the constantA changes from line to line. The error term (6.32) is made small by choosing the lifespan parameter
τ to rhe small compared to the natural time scale Ξ−1e

−1/2
v of the coarse scale velocity uε. The other terms in (6.32)

are lower order in the sense that they can be made small by a suitable choice of λ.
The price we pay by introducing sharp cutoffs is a worse bound on the transport term.

RlT = ∂l∆−1P≈λ[(∂t + uε · ∇)Θ] (6.33)

(∂t + uε · ∇)Θ =
∑
I

eiλξI (∂t + uε · ∇)θI + Lower order terms (6.34)

The time cutoffs appear in the formula (6.23) for the amplitude, and give rise to a term of size

‖(∂t + uε · ∇)Θ‖C0 = Aτ−1e
1/2
R + Lower order terms (6.35)

which leads in turn from the definition (5.7) of λ. to a bound on the transport term

‖RT ‖C0 ≤ Aλ−1‖(∂t + uε · ∇)Θ‖C0 (6.36)

≤ AB−1
λ (NΞ)−1τ−1e

1/2
R + Lower order terms (6.37)

We therefore choose

τ = B
−1/2
λ

(
e

1/2
v

e
1/2
R N

)1/2

Ξ−1e−1/2
v (6.38)

in order to optimize between the estimates for the leading term in (6.32) and (6.37). This choice leads to the C0

estimate

‖R1‖C0 E

(
e

1/2
v

e
1/2
R N

)1/2
e

1/2
v e

1/2
R

N
(6.39)

stated in Lemma 3.1, and ultimately to the regularity 1/9−.
Unlike the case of the Euler equations, there is also a second error term which requires sharp time cutoffs to make

small in our present scheme, namely the Stress term RS appearing in (5.36). It turns out that this term also satisfies
the same estimate (6.32), and consequently will be among the largest error terms, having size (6.39) after the above
choice of τ . The reason that we see this extra term compared to the case of Euler is that the method we have used
here to solve the quadratic equation (5.26) requires the phase gradients∇ξI to remain very close to their initial values
∇ξI ≈ ∇ξ̂I to within an error much smaller than O(1). In the case of Euler, the equation analogous to (2.15) can be
solved using nonlinear phase functions in a way which allows for the phase gradients to depart from their initial values
by an error of size ‖∇ξI −∇ξ̂I‖C0 = O(1) (see [31, Section 7.3]). Ideally, one would hope to solve equation (2.15)
in a similar manner to avoid generating error terms such as these which require sharp time cutoffs to treat as above.

We now turn our attention to obtaining estimates for the terms in the construction. In particular, we need to
establish the estimates (6.32) and (6.37) precisely, and also to estimate the other error terms. The proof is concluded
by choosing the constant Bλ in (5.7) to be sufficiently large so that the inequality (6.39) holds as stated, without any
implicit constant factor.

7 Basic Estimates for the Construction
Lemma 7.1 (Coarse Scale Flow Estimates). Let L ≥ 2 be an integeras in Lemma 3.1. The mollified velocity field uε
defined in (6.2) obeys the estimates

‖∇kuε‖C0 ≤ CkΞke1/2
v N (k−L)+/L, k ≥ 1, (7.1)

‖∇k(∂t + uε · ∇)uε‖C0 ≤ CkΞk+1evN
(k+1−L)+/L, k ≥ 0 (7.2)

for some universal positive constants Ck.
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Proof. For k ≤ L, we see that (7.1) holds in view of the iterative assumption (3.3). For k > L, there is an additional
cost of ε(k−L)+

u = (B−1N1/LΞ)(k−L)+ , where we have used the choice of εu in (6.8).
In order to prove (7.2), we recall that ujε = P 2

≤qu
j , where 2−q = εu = B−1N1/LΞ. We then have

P 2
≤q(∂tu+ u · ∇u) = (∂tuε + uε · ∇uε)−Qε(u, u), (7.3)

where

Qjε(u, u) = uiε∂iu
j
ε − P 2

≤q(u
i∂iu

j) (7.4)

= [P 2
≤qu

i∂i, P≤q](P≤qu
j) + P≤q

(
[ui∂i, P≤q]u

j
)
− P≤q

(
(ui − P≤qui)∂i(P≤quj)

)
. (7.5)

The estimate

‖Qε(u, u)‖C0 ≤ CεuΞ2ev ≤ CN−1/LΞev (7.6)

follows from (7.5) precisely as in [31, Section 16], by appealing to (3.3). The decomposition (7.5) of the quadratic
commutator term is convenient since it allows one to estimate without additional complications the higher order
derivatives∇kQε(u, u). Derivatives up to order L−1 each introduce a factor of Ξ, while past that order the derivatives
fall on the mollifier P≤q and the cost per derivative is a constant multiple of ΞN1/L. Combining with

‖∇kP 2
≤q(∂tu

j + ui∂iu
j)‖C0 ≤ CkΞk+1evN

(k+1−L)+/L (7.7)

which follows from the definition of q and (3.4), the proof of (7.2) is completed.

Lemma 7.2 (Commutator Estimates). Let D ≥ 1 and let Q be a convolution operator

Qf(x) =

∫
R2

f(x− h)q(h)dh

whose kernel q satisfies the estimates

‖ |∇kq|(h) ‖L1(R2) + ‖|h| |∇1+kq|(h) ‖L1(R2) ≤ λk

for some λ ≥ NΞ, and all 0 ≤ |k| ≤ D. Then the commutator
[
D̄
∂t , Q

]
= [∂t + uε · ∇, Q] satisfies the estimates∥∥∥∥∇k [ D̄∂t ,Q

]∥∥∥∥ ≤ CkΞe1/2
v λk, 0 ≤ k ≤ D − 1

as a bounded operator on C0(R× T2).

In fact, the above lemma will only be applied to operators Q for which λ is given as in (5.7).

Lemma 7.3 (Transport Estimates). Let L ≥ 2, and denote by D̄
∂t the convective derivative associated to the flow uε.

The phase gradients ∇ξI obey the bound

‖∇k
(
D̄

∂t

)r
∇ξI‖C0 ≤ CkΞk(Ξe1/2

v )rN (k+(r−1)++1−L)+/L (7.8)

for all k ≥ 1 and r ∈ {0, 1, 2}. Moreover, the same bound holds if ∇k( D̄∂t )
r is replaced by D(k,r), where the latter is

defined by

D(k,r) = ∇k1
(
D̄

∂t

)r1
∇k2

(
D̄

∂t

)r2
∇k3 , (7.9)

with k1 + k2 + k3 = k, ki ≥ 0, r1 + r2 = r, and ri ≥ 0.
We also have the estimate

|∇ξI(Φs(t, x))−∇ξ̂I(x)| ≤ Cb (7.10)

b = B
−1/2
λ

(
e

1/2
v

e
1/2
R N

)1/2

= τΞe1/2
v

where Φs is the coarse scale flow defined in 6.1, and τ is specified as in line (6.38).
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Proof. In order to establish (7.8) for r = 0, one appeals to (6.24), and obtains

(∂t + ujε∂j)∇k∂lξI = −∇k(∂lujε∂jξI) + [ujε∂j ,∇k]∂lξI . (7.11)

The bound for r = 0 then follows from the Grönwall inequality in the above identity, estimate (7.1), and the choice
for τ in (6.38). Similarly, from

∇k(∂t + ujε∂j)∂
lξI = −∇k(∂lujε∂jξI) (7.12)

and (3.3) we obtain the estimate (7.8) with r = 1.
Lastly, in order to obtain the desired estimate when r = 2 we note that(

D̄

∂t

)2

∂lξI = (∂t + uiε∂i)
2∂lξI = −(∂t + uiε∂i)(∂

lujε ∂jξI) (7.13)

= −∂jξI(∂t + uiε∂i)(∂
lujε)− ∂lujε(∂t + uiε∂i)(∂jξI) (7.14)

= −∂jξI∂l(∂t + uiε∂i)u
j
ε + 2∂lujε ∂ju

i
ε∂iξI . (7.15)

In particular, it is important that the second convective derivative of∇ξI only depends on a single convective derivative
of uε. By appealing to Lemma 7.1, from (7.15) we obtain that

‖
(
D̄

∂t

)2

∇ξI‖C0 ≤ CΞ2ev. (7.16)

The bound (7.8) with r = 2 and k ≥ 1, similarly follows from (7.15), the Leibniz rule, Lemma 7.1, and estimate (7.8)
with r = 0.

The estimate (7.10) follows from the bound (7.8) with k = 0 and r = 1, from the calculation

|∇ξI(Φs(t, x))−∇ξ̂I(x)| ≤
∫ s

0

∣∣∣ D̄
∂t
∇ξI(Φσ(t, x))

∣∣∣dσ
≤ C|s|Ξe1/2

v ≤ Cb, if |s| ≤ τ

Lemma 7.4 (Principal Amplitude estimates). Let L ≥ 2 and τ be defined in (6.38). Then the principal parts of the
scalar amplitude θI , and the velocity amplitude uI , obey the bounds

‖D(k,r)θI‖C0 + ‖D(k,r)uI‖C0 ≤ CkΞke
1/2
R τ−rN (k+1−L)+/L (7.17)

for all k ≥ 0 and r ∈ {0, 1, 2}, for some suitable universal constants Ck > 0.

Proof. First, we note that in view of (5.17) we have ulI = θIm
l(∇ξI). Since the multiplier m is smooth outside the

origin and in view of Lemma 7.3 we have bounds for the derivatives of∇ξI , the bound on uI follows from that on θI ,
up to possibly increasing the constant CK by a constant factor.

From (5.28) and (5.32) we recall that

θI = η

(
t− kτ
τ

)
e(t)1/2γ = η

(
t− kτ
τ

)
e(t)1/2 (1 + ε)

1/2 (7.18)

where ε = (c̃A + cJ)/e(t). Using (6.18), the lower bound e(t) ≥ K0eR and (5.30), we obtain the following estimates
for ε and γ = (1 + ε)1/2

‖∇k
(
D̄

∂t

)r
ε‖C0 + ‖∇k

(
D̄

∂t

)r
γ‖C0 ≤ CkΞkeR(Ξe1/2

v )(r≥1)(NΞe
1/2
R )(r≥2)N (k+1−L)+/L. (7.19)

The bounds for spatial derivatives of θI now follow from (7.19) since the other terms η
(
t−kτ
τ

)
and e1/2(t) do not

depend on x. Lemma 7.4 requires us also to show that that each advective derivative up to order 2 costs at most Cτ−1

per derivative. For the time cutoff and the function e1/2(t) in (7.18), the cost of τ−1 follows by definition for the
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time cutoff and by (3.11) for e1/2(t) using the inequality Ξe
1/2
v ≤ τ−1 from the choice of τ in Section 6.1. For the

other terms, the estimate (7.19) tells us that the first advective derivative costs Ξe
1/2
v ≤ τ−1, and taking two advective

derivatives costs ∣∣∣∣ D̄2

∂t2

∣∣∣∣ ≤ C(Ξe1/2
v )(NΞe

1/2
R ) = CNΞ2e1/2

v e
1/2
R = Cτ−2

from the choice of τ in (6.38). The bounds for the spatial derivatives then follow from the pattern in (7.19).

Lemma 7.5 (Amplitude correction estimates). Under the hypotheses of Lemma 7.4, the corrections δθI and δulI to
the scalar amplitude and the velocity amplitude obey the bounds

‖D(k,r)δθI‖C0 + ‖D(k,r)δuI‖C0 ≤ CkB−1
λ N−1Ξke

1/2
R τ−rN (k+2−L)+/L (7.20)

for all k ≥ 0 and r ∈ {0, 1, 2}, for some suitable universal constants Ck > 0.

Proof. These estimates are obtained by explicitly differentiating the formulas for δθI and δulI coming from the Mi-
crolocal Lemma, Lemma 4.1. Here we carry out the calculation for the case of δθI , since the term δulI can be treated
in the same way. Recall that

ΘI = P I≈λ(eiλξIθI) = eiλξI (θI + δθI)

Applying Lemma 4.1 with K(h) = ηI≈λ(h), we have the following formula for δθI

δθI = δθI,1 − δθI,2

δθI,1 =

∫ 1

0

dr

∫
e−iλ∇ξI(x)·heiZ(r,x,h)(iλ)

[∫ 1

0

hahb∂a∂bξI(x− sh)(1− s)ds
]
θI(x− rh)ηI≈λ(h)dh (7.21)

δθI,2 =

∫ 1

0

dr

∫
e−iλ∇ξI(x)·heiZ(r,x,h)∂aθI(x− rh)haηI≈λ(h)dh (7.22)

with Z(r, x, h) = rλ
∫ 1

0
hahb∂a∂bξ(x− sh)(1− s)ds and where ηI≈λ is defined after line (5.10). In particular, recall

that the kernel ηI≈λ(h) = 102[k]λ2η≈1(±10[k]λh) is constructed by rescaling a Schwartz kernel by a factor λ, and
therefore satisfies the estimates

‖|h|mηI≈λ‖L1
h
≤ Cmλ−m (7.23)

Combining the estimate (7.23) with the bounds of Lemma 7.4 and Lemma 7.3 gives the C0 estimate for∇kδθI .
Proving estimates for advective derivatives of δθI is tedious, but straightforward. To ease notation let us write

Z(r, x, h) = rλhahbZab where

Zab = Zab(t, x, h) =

∫ 1

0

∂a∂bξI(x− sh)(1− s)ds

We will sketch one example and estimate the advective derivative of the term in (7.21).

(∂t + uε · ∇)δθI,1(t, x) = −iT(1) + iT(2) + T(3) + T(4) (7.24)

T(1) =

∫ 1

0

dr

∫
e−iλ∇ξI(x)·heiZ(iλ)hahbZabθI(x− rh)

D̄

∂t
∂cξI(x)λhcηI≈λ(h)dh (7.25)

T(2) =

∫ 1

0

dr

∫
e−iλ∇ξI(x)·heiZ(iλ)hahbZabθI(x− rh)r

(
∂t + uiε(x)

∂

∂xi

)
Zabλh

ahbηI≈λ(h)dh (7.26)

T(3) =

∫ 1

0

dr

∫
e−iλ∇ξI(x)·heiZ(iλ)hahb

(
∂t + uiε(x)

∂

∂xi

)
ZabθI(x− rh)ηI≈λ(h)dh (7.27)

T(4) =

∫ 1

0

dr

∫
e−iλ∇ξI(x)·heiZ(iλ)hahbZab

(
∂t + uiε(x)

∂

∂xi

)
θI(x− rh)ηI≈λ(h)dh (7.28)
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The pattern we observe in (7.25)-(7.28) is that the cost of the first advective derivative is given by Ξe
1/2
v for every

term. This cost is most clear for the term (7.25). The advective derivative brings down one term of size

‖ D̄
∂t
∇ξI‖C0 ≤ CΞe1/2

v

and also introduces the factor λhc. The λ and the h cancel out in terms of the estimate, since we gain a λ−1 when we
apply the bound

‖hahbhcηI≈λ(h)‖L1
h
≤ Cλ−3

for the kernel, which comes from scaling.
The terms (7.26)-(7.28) require one more trick, which is to approximate the value of uiε(x) with the nearby point

in the integral. For example, for the term
(
∂t + uiε(x) ∂

∂xi

)
θI(x− rh) in (7.28) we write(

∂t + uiε(x)
∂

∂xi

)
θI(x− rh) =

D̄

∂t
θI(x− rh) + (uiε(x)− uiε(x− rh))∂iθI(x− rh) (7.29)

The cost of Ξe
1/2
v for the advective derivative on θI follows from Lemma 7.4. For the latter term, we write

(uiε(x)− uiε(x− rh))∂iθI(x− rh) = −r
∫ 1

0

∂cu
i
ε(x− σrh)dσ ∂iθI(x− rh)hc (7.30)

The term where ∂cuiε appears accounts for the cost of ‖∇uε‖C0 ≤ Ξe
1/2
v . The derivative hitting θI costs a factor of

Ξ, but this factor is regained by the factor hc that has appeared, which gains a λ−1 when combined with the kernel as
usual. Repeating this observation many times for each one of (7.26)-(7.28), one obtains the first advective derivative
bound in (7.20). We omit the details.

One also has to take a second advective derivative in order to prove (7.20), giving rise to another long series of
terms which obey the correct bounds. We omit the proof of this estimate also, but we remark that one can avoid using
these bounds during the course of the proof. The only applications of these bounds are in Section 8.3 for a lower order
part of the advective derivative of the transport term, and in this case one can substitute second order commutator
estimates as in Lemma 7.2, which are somewhat less tedious to write down.

Corollary 7.1. The bounds (7.17) of Lemma 7.4 hold also for θ̃I = θI + δθI and for ũlI = ulI + δulI .

7.1 Estimates for the Corrections to the Scalar Field and Drift Velocity
In this Subection, we obtain estimates for the corrections Θ and U l = T l[Θ] to the scalar field and drift velocity. These
bounds confirm that the estimates (3.15)-(3.20) of Lemma 3.1 are satisfied. As with the previous Lemmas 7.1-7.5 and
our choices of parameters, the results we obtain in this section are familiar from [31, Section 22.1]. In our setting,
these estimates turn out to be a bit easier to check thanks to our use of frequency localizing projections.

Proposition 7.1. Under the hypotheses of Lemma 7.4, the corrections ΘI and U lI to the scalar field and the drift
velocity satisfy

‖D(k,r)ΘI‖C0 + ‖D(k,r)UI‖C0 ≤ Ck(BλNΞ)kτ−re
1/2
R (7.31)

for 0 ≤ r ≤ 2.

Proof. We outline the proof of (7.31) for ΘI , as the velocity field UI can be treated in the same way. Here we recall
again that

ΘI = P I≈λ[eiλξIθI ] = eiλξI θ̃I

For r = 0, the estimates for ∇kΘI follow from the bound ‖θI‖C0 ≤ Ce
1/2
R , and the definition of λ. To estimate the

advective derivatives, we write

D̄

∂t
ΘI = eiλξI

D̄

∂t
θ̃I (7.32)

D̄2

∂t2
ΘI = eiλξI

D̄2

∂t2
θ̃I (7.33)
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The bounds (7.31) now follow from the bounds of Lemma 7.3 and Corollary 7.1. The main terms in the estimates for
spatial derivatives arise in every case when the derivatives fall on eiλξI . Alternatively, one can obtain the same bounds
using commutator estimates such as those of Lemma 7.2 extended to second order commutators. Note that this latter
approach avoids using the second advective derivative estimates proven in Lemma 7.5.

Lemma 3.1 also requires bounds on a vector field W l satisfying div W = Θ. To define W l, first recall that the
corrections

ΘI = P I≈λ(eiλξIθI)

are frequency localized, which allows us to invert the divergence using the standard Helmholtz solution

W l
I = ∂l∆−1P I≈λ(eiλξIθI) (7.34)

With this definition, we have Θ = div W for W l =
∑
IW

l
I . The bounds (3.18)-(3.20) of Lemma 3.1 now follow

from Lemma 7.2 and Lemma 7.4 by writing

(∂t + uε · ∇)WI =

[
D̄

∂t
, ∂l∆−1P I≈λ

]
(eiλξIθI) + ∂l∆−1P I≈λ(eiλξI

D̄

∂t
θI) (7.35)

and differentiating in space.

7.2 Prescribing the energy increment
We conclude this Section by verifying the estimates (3.21) and (3.22) for prescribing the energy increment. To obtain
the estimate (3.21), let t ∈ R and write∫

T2

|Θ|2(t, x)dx =
∑
I,J

∫
ΘI ·ΘJ(t, x)dx (7.36)

For indices J 6= Ī which are not conjugate to each other, the product ΘI · ΘJ is localized at frequency ≈ λ, and in
particular has integral 0. The only remaining terms are∫

T2

|Θ|2(t, x)dx =
∑
I

∫
|ΘI |2(t, x)dx

|ΘI |2 = |θI + δθI |2 = |θI |2 + 2δθIθI + δθ2
I

The terms involving δθI can all be estimated using Lemma 7.5 and Lemma 7.4.∑
I

∣∣∣ ∫
T2

2θI δθI + (δθI)
2dx
∣∣∣ ≤ C eR

BλN

The main terms are then given by ∑
I

∫
T2

|θI |2(t, x)dx =
∑
I

∫
η2
k(t)e(t)γ2dx

= 2

∫
e(t)γ2dx

= 2

∫
T2

e(t)(1 + ε)dx

The bound (3.21) now follows from (5.30) provided Bλ is sufficiently large.
In order to obtain the estimate (3.22), we differentiate (7.36) with respect to t, and use the fact that the coarse scale

velocity field uε is divergence free

d

dt

∫
T2

|Θ|2(t, x)dx =
∑
I,J

∫
T2

(∂t + uε · ∇)ΘI ·ΘJ(t, x)dx
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At this point, we again observe that the terms (∂t + uε · ∇)ΘI ·ΘJ are localized in frequency space at frequencies of
order λ for all nonconjugate indices J 6= Ī . These terms therefore integrate to 0 and we are left with

d

dt

∫
T2

|Θ|2(t, x)dx =
∑
I

∫
T2

(∂t + uε · ∇)|ΘI |2(t, x)dx

=
∑
I

∫
T2

(∂t + uε · ∇)|θ̃I |2dx

The bound (3.22) now follows from Corollary 7.1.

7.3 Checking frequency energy levels for the scalar field and drift velocity
The statement (3.13) in Lemma 3.1 requires us to prove that the new scalar field and drift velocity θ1 = θ + Θ,
ul1 = ul + U l satisfy the bounds (3.3)-(3.4) for the new compound frequency energy levels (Ξ′, e′v, e

′
R, e
′
J) =

(CNΞ, eR,K1eJ , e
′
J) with

e′J =

(
e

1/2
v

e
1/2
R N

)1/2

eR

The bounds in (3.3) already follow from the arguments in [31, Section 22], as the scalar field θ and drift velocity ul

both share the same estimates as the coarse scale velocity vl in that paper, and the corrections Θ and U l both share the
same estimates at the corrections V l in that paper. The only new point here is how we establish the bound

‖(∂tu1 + u1 · ∇)u1‖C0 E (Ξ′e′v) = CNΞeR (7.37)

This estimate, which is quadratic in the velocity, is analogous to the bound for the pressure gradient in the case of
Euler.

The idea is to use the assumed bound (3.4) and write

(∂tu1 + u1 · ∇)u1 = (∂tu+ u · ∇u) + U · ∇u+ (∂t + u · ∇)U (7.38)

In the case of Euler, the first term (∂tu + u · ∇u) can be bounded using the Euler-Reynolds equations. In our
case, though, the bound (7.37) on the advective derivative cannot be obtained from commuting the operator T l with
the compound scalar stress equation due to the lack of C0 boundedness of T l, and arguments involving frequency
truncations still give logarithmic losses.

The idea is that we have already assumed the bound ‖(∂tu + u · ∇u)‖C0 ≤ Ξev , so that (7.37) follows from the
condition N ≥

(
ev
eR

)
. Also, further advective derivatives can be estimated at a cost smaller than NΞ per derivative

up to order L − 1, giving (3.4) for this term. The proof of (3.4) for the other two terms is the same as in [31, Section
22]. The main idea is to write (∂t + u · ∇) = (∂t + uε · ∇) + (u − uε) · ∇, and then to apply the relevant bounds
established earlier on in Sections 6-7.

8 Estimates for the New Stress
In this Section, we conclude the proof of Lemma 3.1 by establishing estimates for the error terms contributing to the
new stress field which were derived in Section 5.3. Recall from that section that the new scalar field θ1 = θ + Θ and
the new drift velocity ul1 = ul + U l satisfy the compound scalar stress equation{

∂tθ1 + ∂l(θ1u
l
1) = ∂l(cBB

l +Rl1)

ul1 = T l[θ1]
(8.1)

The function cB is defined in (5.25), and the new stress field has the form

Rl1 = RT +RL +RH +RM +RS (8.2)
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as in (5.37). For these error terms, the Main Lemma requires us to show that the bounds of Definition 3.2 are satisfied
for the compound frequency energy levels (Ξ′, e′v, e

′
R, e
′
J) specified in (3.13). Our starting point will be to prove the

C0 estimates

‖cB‖C0 EK1eJ (8.3)
‖R1‖C0 E e′J (8.4)

e′J =

(
e

1/2
v

e
1/2
R N

)1/2

eR (8.5)

We will obtain these bounds in Section 8.1, at which point we will finally specify the large constant Bλ appearing in
line (5.7) where λ is defined.

Once the C0 estimates are established and Bλ is chosen, the bounds on spatial derivatives

‖∇kcB‖C0 E C(NΞ)kK1eJ k = 0, . . . , L (8.6)

‖∇kR1‖C0 E C(NΞ)ke′J , k = 0, . . . , L (8.7)

will be clear, and we will also need to verify the estimates for the advective derivatives

‖∇k(∂t + u1 · ∇)cB‖C0 E C(NΞ)k(NΞe
1/2
R )K1eJ (8.8)

‖∇k(∂t + u1 · ∇)R1‖C0 E C(NΞ)k(NΞe
1/2
R )e′J (8.9)

k = 0, . . . , L− 1

These bounds will be checked in Sections 8.2 and 8.3, which will conclude the proof of Lemma 3.1.

8.1 The C0 bounds
In this Section, we establish the C0 bounds (8.3)-(8.4). The bound (8.4) will be obtained only after the constant Bλ of
line (5.7) is chosen sufficiently large.

First, observe that the estimate (8.3) for cB follows immediately from line (5.25) where cB is defined, and the
bound ‖Rε‖C0 ≤ ‖RJ‖C0 . Note that the constant K1 depends only on the operator T l.

It now remains to estimate the stress terms appearing in (8.2). We estimate each of these in turn.

The mollification term RlM . We recall from (5.3) and (6.21) that

RlM = (ul − ulε)Θ + (θ − θε)U l + (cA − c̃A)Al + (RlJ −Rlε) (8.10)

= RlM,θ +RlM,u + (cA − c̃A)Al + (RlJ −Rlε) +RlM ′ . (8.11)

Note that by the choice of B, from (6.9) and (6.17) we have that

‖RM,θ‖C0 + ‖RM,u‖C0 + ‖(cA − c̃A)Al‖C0 + ‖(RlJ −Rlε)‖C0 ≤
e

1/2
v e

1/2
R

50N
=

1

50

(
e

1/2
v

e
1/2
R N

)
eR (8.12)

The factor
(

e1/2v

e
1/2
R N

)
is less than 1, so this estimate is more than enough to achieve the bound (8.4).

To estimate the remaining term

RlM ′ =
∑
I

eiλξI (ul − ulε)δθI +
∑
I

eiλξI (θ − θε)δulI (8.13)

recall the estimates

‖(ul − ulε)‖C0 + ‖(θ − θε)‖C0 ≤ e
1/2
v

N
≤ e1/2

v (8.14)

‖δθI‖C0 + ‖δulI‖C0 ≤ C
e

1/2
R

BλN
(8.15)
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from Section 6 and Lemma 7.5 (in fact the estimates for the terms (θ − θε) and (u − uε) are even better). Note also
that, at any given time t, at most four indices I contribute to the sum in (8.13).

For sufficiently large values of Bλ, we therefore obtain

‖RlM ′‖C0 ≤ 1

50

e
1/2
v e

1/2
R

N

which is sufficient for (8.4).

The Stress term RS . To estimate RS , let us recall from (5.36) that we can express

RlS =
∑
I

(RlSI,1 +RlSI,2) (8.16)

RlSI,1 = |θI |2[(ml(−∇ξI)−ml(−∇ξ̂I)) + (ml(∇ξI)−ml(∇ξ̂I))] (8.17)

RlSI,2 = δθI ũ
l
Ī + θ̃Iδu

l
Ī − δθIδu

l
Ī + δθĪ ũ

l
I + θ̃Īδu

l
I − δθĪδulI (8.18)

The estimates of Lemma 7.4, Lemma 7.5 and Corollary 7.1 give

‖RSI,2‖C0 ≤ C

BλN
eR

At any given time t, as most 4 terms of the form RSI,2 are nonzero, which allows us to obtain the estimate

‖
∑
I

|RSI,2|‖C0 ≤
e

1/2
v e

1/2
R

500N

which is sufficient for (8.4), by taking the value of Bλ sufficiently large.
We estimate the terms in (8.17) using (7.10) and Lemma 7.4, in order to obtain the bound

‖RlSI,1‖C0 ≤ C

B
1/2
λ

(
e

1/2
v

e
1/2
R N

)1/2

eR

By choosing the constant Bλ sufficiently large, we obtain the bound

‖
∑
I

|RlSI,1|‖C0 ≤ 1

1000
e′J (8.19)

where e′J , as defined in (8.4), is our goal for the size of the new stress term Rl1.
For the next stress terms, RL and RT , we use that they are frequency localized between two constant multiples of

λ, and thus we can appeal to the estimate

‖∇∆−1P≈λ‖C0→C0 ≤ Cλ−1 =
C

NBλ
. (8.20)

The High-Low term RL. We recall from (5.45) that

RlL = ∂l∆−1P≈λ[U j∂jθε]

and thus
‖RL‖C0 ≤ ‖∇∆−1P≈λ‖C0→C0‖U j‖C0‖∂jθε‖C0 ≤ C

NBλ
e

1/2
R e1/2

v

holds, upon appealing to (8.20). Choosing Bλ sufficiently large, we see that

‖RL‖C0 ≤ 1

1000

e
1/2
v e

1/2
R

N

which is sufficient for (8.4) to be satisfied.
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The Transport term RT . We use (5.40) to recall that

RT = ∂l∆−1P≈λ

[
D̄

∂t
Θ

]
.

Thus, from (8.20) and (7.31) we obtain

‖RT ‖C0 ≤ C

λ
τ−1e

1/2
R

=
C

BλNΞ
B

1/2
λ

(
e

1/2
v

e
1/2
R N

)−1/2

Ξe1/2
v e

1/2
R

=
C

B
1/2
λ

(
e

1/2
v

e
1/2
R N

)1/2

eR

in view of the choice of τ in (6.38). Choosing Bλ sufficiently large immediately shows that

‖RT ‖C0 ≤ 1

1000
e′J

holds.

The High-Frequency Interference termRH . To conclude theC0 stress estimates we recall from (5.46) and (5.49)–
(5.51) that

RH =
∑
J 6=Ī

iλ∂l∆−1P≈λ[
eiλ(ξI+ξJ )

(
θJ θ̃I(m

l(∇ξJ)−ml(∇ξ̂J))∂lξI + θI θ̃Jm
l(∇ξ̂J)(∂lξI − ∂lξ̂I) + δulJ∂lξI θ̃I

) ]
.

From (8.20) we thus obtain

‖RH‖C0 ≤ CAeR(Ξe1/2
v τ) +

C

BλN
eR

≤ CA

B
1/2
λ

(
e

1/2
v

e
1/2
R N

)1/2

eR +
C

BλN
eR.

For all sufficiently large choices of Bλ, we finally have the estimate

‖RH‖C0 ≤ 1

1000
e′J

This error term is the last one, so the estimate (8.4) will finally be satisfied for any sufficiently large choice ofBλ ≥ Bλ.
The only restriction now is that λ = BλNΞ in (5.7) must be a positive integer. Since we assume Ξ ≥ 2 in Definition 3.2
andN ≥ 1, an appropriate choice ofBλ exists in the intervalBλ ∈ [Bλ, 2Bλ]. Our construction is now fully specified
once such a value is chosen.

8.2 Spatial derivative bounds
First we claim that

‖∇kcB‖C0 ≤ Ck(NΞ)kK1eJ

For this purpose, recall the definition (5.25) and the bound (6.18). This above estimate holds since we have already
verified the C0 estimate (8.3), and each spatial derivatives costs no more than a factor

|∇| ≤ CNΞ.
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The stress terms RT , RL, and RH each are contain a frequency localizing operator P≈λ, so that again, each spatial
derivative costs at most CNΞ, since the constant Bλ has now been fixed, in the previous subsection.

The term RlM is treated in the same fashion as the mollified stress term in [31, Section 25.1]. The main ideas is
that comparing the bound

‖u− uε‖C0 ≤ e
1/2
v

N
which had been used to establish (8.12) in Section 6, to the estimate

‖∇u‖C0 + ‖∇uε‖C0 ≤ CΞe1/2
v

we notice the cost is at most CNΞ upon taking a spatial derivative.
The RlS stress is treated by writing RlS =

∑
I(R

l
SI,1 + RlSI,2). The estimate for RSI,2 follows from the bounds

established in Lemmas 7.4–(7.5). To treat RSI,1 we need to observe that the spatial derivative costs at most NΞ when
it is applied to the difference∇ξI −∇ξ̂I . Comparing the bounds of Lemma 7.3 and (7.10)

‖∇ξI −∇ξ̂I‖C0 ≤

(
e

1/2
v

e
1/2
R N

)1/2

‖∇2ξI‖C0 ≤ CΞ

gives a cost of |∇| ≤ CN1/2Ξ, which is smaller than the threshold NΞ. All further derivatives of this term cost at
most CN1/2Ξ according to Lemma 7.3.

8.3 Advective Derivative bounds
We now proceed to establish the advective derivative bounds (8.8)-(8.9) for the new frequency energy levels, which
is more subtle than the spatial derivative estimates due to the improved regularity of the advective derivative. As
observed in [31, Proposition 24.1 and Proposition 24.2], note that it suffices to check the bounds for the coarse scale
advective derivative D̄

∂t = ∂t + uε · ∇ after we write

∂t + u1 · ∇ = (∂t + uε · ∇) + (u− uε) · ∇+ U · ∇.

Having established spatial derivative estimates on all our error terms, the the bounds for the two error spatial derivative
terms follow from the results of Section 8.2, the already established estimates on spatial derivatives for ‖∇k(u−uε)‖C0

which follow from (6.4), and the bounds on ‖∇kU‖C0 , which follow from Propositon 7.1.
Since each term has been estimated already in C0 by the energy level e′J , our goal at this point is to check that the

advective derivative never costs any more than ∣∣∣ D̄
∂t

∣∣∣E CNΞe
1/2
R (8.21)

compared the estimates that were used to obtain the C0 bound.
For most terms, the advective derivative costs τ−1, so it is useful to observe that our goal is also implied by a

bound of the type ∣∣∣ D̄
∂t

∣∣∣ ≤ Cτ−1 (8.22)

from the fact that τ−1 ≤ NΞe
1/2
R . For terms involving the difference between the phase gradients and their initial

values, the following Lemma stating the cost of differentiating∇ξI −∇ξ̂I is helpful

Lemma 8.1. For k ≥ 0 and 0 ≤ r ≤ 2, we have the following bounds

‖∇k
(
D̄

∂t

)r
(∇ξI −∇ξ̂I)‖C0 ≤ Ck(NΞ)kτ−rb (8.23)

b =

(
e

1/2
v

e
1/2
R N

)1/2

(8.24)
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Lemma 8.1 follows from Lemma 7.3 after checking the relationships of the parameters using the condition N ≥
ev
eR

.

Corollary 8.1. The bounds in Lemma 8.1 hold also for

ml(∇ξI)−ml(∇ξ̂I) = (∇ξI −∇ξ̂I)
∫ 1

0

∂am
l
(

(1− σ)∇ξ̂I + σ∇ξI
)
dσ

With these bounds in hand, we can now quickly verify (8.21).

The term cB . The term cB inherits the estimates for Rε from its definition in (5.25). These bounds are no worse
than the bounds stated for RJ in (6.18) as long as one takes no more than 2 advective derivatives and no more than L
total spatial or advective derivatives (see [31, Section 18]). As a consequence, we obtain (8.8).

The mollification term RlM . The mollification term (8.11) is handled in the same way as in [31, Sections 25.1,
25.2]. Among these estimates, the most subtle are the terms

(u− uε)Θ + (θ − θε)U

For the purposes of proving our result and the main theorem in [31], these terms can be estimated separately as∥∥∥∥( D̄∂tu− D̄

∂t
uε

)
Θ

∥∥∥∥
C0

≤ C
(∥∥∥∥ D̄∂tu

∥∥∥∥
C0

+

∥∥∥∥ D̄∂tuε
∥∥∥∥
C0

)
‖Θ‖C0

at the cost of requiring the condition N ≥
(
ev
eR

)3/2

. However, as discussed in [31, Section 25.1], it appears that
a scheme aimed at proving 1/3 regularity might require this term to be estimated more delicately. A more delicate
commutator estimate would allow us to require instead that N ≥

(
ev
eR

)
.

The stress term RS For the term RS , the cost (8.21) is obtained for every term appearing in (8.16) using the
estimates of Lemmas 7.4-7.5 and Corollary 7.1 for the amplitudes, and using Lemma 8.1 and Corollary 8.1 for the
terms involving differences of phase gradients.

The terms RT , RL and RH The commutator estimates of Lemma 7.2 and the use of frequency localized waves
make it especially simple to estimate the terms obtained by solving the divergence equation. We list these terms here.

D̄

∂t
RlT =

[
D̄

∂t
, ∂l∆−1P≈λ

] [
D̄

∂t
Θ

]
+ ∂l∆−1P≈λ

[
D̄2

∂t2
Θ

]
(8.25)

D̄

∂t
RlL =

[
D̄

∂t
, ∂l∆−1P≈λ

] [
U j∂jθε

]
+ ∂l∆−1P≈λ

D̄

∂t

[
U j∂jθε

]
(8.26)

D̄

∂t
RlH =

∑
J 6=Ī

[
D̄

∂t
, ∂l∆−1P≈λ

]
rH,IJ + ∂l∆−1P≈λ

D̄

∂t
rH,IJ (8.27)

rH,IJ = (iλ)eiλ(ξI+ξJ )
(
θJ θ̃I(m

l(∇ξJ)−ml(∇ξ̂J))∂lξI

)
(8.28)

+ (iλ)eiλ(ξI+ξJ )
(
θI θ̃Jm

l(∇ξ̂J)(∂lξI − ∂lξ̂I) + δulJ∂lξI θ̃I

)
. (8.29)

Combining Lemma 7.2 with Corollary 8.1 and all the bounds of Section 7, we obtain a cost of (8.22) (and therefore
(8.21)) for the advective derivative. Further spatial derivatives cost at most CNΞ as all the terms are in fact localized
to frequencies of order λ.

This estimate concludes the proof of the Main Lemma.
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9 Proof of the Main Theorem
In this Section, we explain how Theorem 1.1 can be deduced from the Main Lemma, Lemma 3.1. More specifically,
the Theorem we establish directly is the following:

Theorem 9.1. As in the hypotheses of Theorem 1.1, let α < 1/9, let ε > 0 be given, and let f : R× T2 → R be any
smooth function of compact support

supp f ⊆ I × T2

for which the integral ∫
T2

f(t, x)dx = 0, t ∈ R (9.1)

remains constant in time. Then there exists a function θ : R× T2 → R with the following properties:

1. θ satisfies the Active Scalar Equation (1.1) in the sense of distributions.

2. The scalar field θ and the drift velocity ul = T l[θ] both belong to the Hölder class θ, ul ∈ Cαt,x
3. θ is supported in the time interval

supp θ ⊆ Iε × T2, (9.2)

where Iε = [a0 − ε, b0 + ε] is an ε-neighborhood of the interval I = [a0, b0]

4. θ satisfies a uniform estimate

‖θ‖C0 ≤ C (9.3)

with C depending only on f .

5. For any smooth function φ : R× T2 → C, we have∣∣∣∣∫
R×T2

(θ − f)φ dtdx

∣∣∣∣ ≤ Cε‖∇φ‖L1
t,x(Iε×T2) (9.4)

for some constant C depending on f .

Theorem 1.1 follows from Theorem 9.1 by a straightforward argument that is implicit in Section 10 below.
Our starting point is the observation that the function f can be viewed as a solution to the scalar-stress equation

∂tf + ∂l(fu
l) = ∂lR

l (9.5)

ul = T l[f ]

Rj = ∂j∆−1[∂tf + ∂l(fu
l)] (9.6)

thanks to the condition ∫
T2

∂tfdx =
d

dt

∫
T2

f(t, x)dx = 0.

Furthermore, the functions (f, ul, Rl) in (9.5) are all smooth functions on R × T2 with support contained in a finite
time interval I×T2. In particular, the scalar function θ(0) = f can be viewed as part of a smooth, compactly supported
solution (f, ul, cA, R

l) to the compound scalar stress equation (3.2) with cA = 0.
Our proof of Theorem 9.1 will be completed once we prove the following Claim.

Claim 9.1. Under the assumptions of Theorem 9.1, there exists a sequence sequence of scalar-stress fields (θ(k), u
l
(k), cA,(k), R

l
J,(k))

satisfying the following properties.

1. For even indices k = 0, 2, 4, . . ., (θ(k), u
l
(k), cA,(k), R

l
J,(k)) solves the Compound Scalar-Stress Equation (3.2)

with vector Al, whereas for odd indices k = 1, 3, 5, . . ., (θ(k), u
l
(k), cA,(k), R

l
J,(k)) solves the Compound Scalar-

Stress Equation (3.2) with vector Bl. Here Al and Bl are defined as in (3.1).

39



2. We have ‖cA,(k)‖C0 + ‖RJ,(k)‖C0 → 0 as k →∞

3. The sequences θ(k), u
l
(k) are Cauchy in C0

t,x with uniform bounds on ‖θ(k)‖C0 , ‖u(k)‖C0 depending only on f .

4. The sequences θ(k), u
l
(k) are also Cauchy in Cαt,x.

5. We have supp θ(k) ⊆ Iε × T2 for all k.

6. The estimate (9.4) holds for θ(k) uniformly in k.

The scalar stress fields described in Claim 9.1 will be constructed by iteration of Lemma 3.1.

9.1 The Base Case
To initialize the construction, we set θ(0) = f , ul(0) = T l[f ], cA,(0) = 0, and RJ,(0) as in (9.6). We define I(0) to be
the smallest closed inerval such that supp f ⊆ I(0) × T2. We set

eJ,(0) = ‖RJ,(0)‖C0 .

In order to be consistent with the iteration rules (9.8)-(9.11) below and to maintain the inequality ev ≥ eR ≥ eJ during
the iteration, we take

ev,(0) = eR,(0) = K1eJ,(0)

where K1 is the constant in Lemma 3.1.Now let Ξ be a sufficiently large constant such that the bounds of Definition
3.2 hold with L = 2 for the frequency energy levels (Ξ, ev, eR, eJ) = (Ξ, eJ,(0), eJ,(0), eJ,(0)).

We will choose our initial frequency level Ξ(0) to be even larger than the parameter Ξ. More specifically, Ξ(0) will
take the form

Ξ(0) = Y Ξ (9.7)

Here Y ≥ 1 is a large parameter whose purpose will ultimately be to make sure that the time interval containing
the support of the solution will be small without disturbing the required C0 estimate. In terms of the construction,
choosing the parameter Y to be large will imply that we perform the iteration with a large frequency parameter λ and
a small lifespan parameter τ when we iterate the Main Lemma.

9.2 Choice of Parameters for k ≥ 1.
We will proceed with the proof by iteration of the Main Lemma, which requires us to specify a sequence of frequency
energy levels (Ξ(k), ev,(k), eR,(k), eJ,(k)), a sequence of functions e(k)(t) prescribing the energy increment, a sequence
of intervals I(k) containing the support of the compound scalar-stress fields, and a sequence of frequency growth factors
N(k) ≥ 2. The present section is devoted to choosing these parameters, and studying how these parameters grow or
decay during the iteration.

We will choose our frequency energy levels so that the following iteration rules hold for all k ≥ 0:

ev,(k+1) = eR,(k) (9.8)
eR,(k+1) = K1eJ,(k) (9.9)

eJ,(k+1) =
eJ,(k)

Z
(9.10)

Ξ(k+1) = C0N(k)Ξ(k) (9.11)

The parameter Z will be chosen in the proof to be a large constant satisfying Z ≥ K1 ≥ 1. From (9.8)-(9.10) and the
choices of Section 9.1, the energy levels decay exponentially according to the following pattern:

(ev, eR, eJ)(0) = (K1eJ,(0),K1eJ,(0), eJ,(0))

(ev, eR, eJ)(1) =

(
K1eJ,(0),K1eJ,(0),

1

Z
eJ,(0)

)
(ev, eR, eJ)(k) =

(
K1

Zk−2
eJ,(0),

K1

Zk−1
eJ,(0),

1

Zk
eJ,(0)

)
, k ≥ 2

(9.12)

40



The constant C0 in (9.11) is the constant C appearing in line (3.13) of the Main Lemma. Thus, C0 will depend on how
we construct our energy increment functions e(k)(t), which will be specified momentarily. According to the bound of
line (3.13), we have that

eJ,(k+1) =

 e
1/2
v,(k)

e
1/2
R,(k)N(k)

1/2

eR,(k) (9.13)

The iteration rules (9.8)-(9.10) are therefore achieved by taking

N(k) =

(
ev,(k)

eR,(k)

)1/2(eR,(k)

eJ,(k)

)2

Z2 (9.14)

More specifically, recalling (9.12),

N(0) = K2
1Z

2, N(1) = K2
1Z

4, N(k) = K2
1Z

9/2, k ≥ 2. (9.15)

As we always have
(
ev,(k)
eR,(k)

)3/2

≤ Z3/2 ≤ N , the assumption of line (3.12) is always satisfied, so this choice of N(k)

is admissible. With this choice, iteration of (9.11) results in exponential growth of the frequency levels

Z2kΞ(0) ≤ Ξ(k) ≤ Ck0K2k
1 Z(9/2)kΞ(0) (9.16)

for all k ≥ 0.
We will now specify how our sequence of energy functions e(k)(t) and time intervals I(k) will be chosen, beginning

with stage k = 0. Define

τ̂(k) = Ξ−1
(k)e
−1/2
v,(k) (9.17)

to be the natural time scale associated to these frequency energy levels. Let I(0) be the time interval containing the
support of the initial scalar-stress field. Let ηε(t) be a standard, non-negative mollifying kernel in one variable, with
support in |t| ≤ ε. The initial energy function e(0)(t) is required to satisfy the lower bound e(0)(t) ≥ K0eR,(0) on the
time interval I(0) ± τ̂(0) according to (3.10), and must have a square root e1/2

(0) (t) which satisfies bounds of the form
(3.11). We construct e(0)(t) by mollifying the characteristic function of I(0) according to the formula

e
1/2
(0) (t) = (2K0)1/2e

1/2
J,(0) ητ̂ ∗ χI(0)±3τ̂ (t) (9.18)

With this choice, the lower bound (3.10) and the bounds (3.11) are satisfied with K = K0 and with M being some
absolute constant which arises from differentiating the mollifier. Having constructed e(0)(t), we can apply Lemma 3.1
to obtain a solution (θ(1), u

l
(1), cA,(1), R

l
J,(1)) to the Compound Scalar-Stress equation with vector Bl with support in

the interval I(1) × T2, I(1) = I(0) ± 4τ̂(0).
We now iterate this procedure to form a sequence of scalar stress fields (θ(k), u

l
(k), cA,(k), R

l
J,(k)) whose compound

frequency energy levels obey the rules -(9.8)-(9.11) by choosing N(k) = Z9/2 according to (9.15). We define

e
1/2
(k) (t) = (2K0)1/2e

1/2
J,(k) ητ̂ ∗ χI(k)±3τ̂ (t)

so that the bounds on e1/2
(k) are consistent with the bounds on (9.18), and Lemma 3.1 applies with the same constantM .

According to Lemma 3.1, the time intervals containing the support of the scalar stress fields support grow according
to the rule

I(k+1) = I(k) ± (4τ̂k) (9.19)

In (9.19) and below, we use the notation I ± δ to denote the δ-neighborhood of an interval I . In other words, I ± δ =
[a− δ, b+ δ] if I = [a, b]. During this iteration, the vector in the scalar-stress equation alternates between Al and Bl

as in Property 1 of Claim 9.1.
We have now defined our iteration up to the choice of the parameters Y and Z. We will choose these parameters

in the following Subsection to ensure that the properties listed in Claim 9.1 are all satisfied.
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9.3 Verifying Claim 9.1
We now verify that the properties in Claim 9.1 hold for sufficiently large values of Y and Z.
Property 1 This property follows immediately from the construction.
Property 2 To check that the error terms converge uniformly to 0, we observe that

‖RJ,(k)‖C0 ≤ eJ,(k) = Z−keJ,(0)

from (9.12), and the same type of estimate holds for ‖cA,(k+1)‖C0 . Thus, both terms composing the stress error
converge uniformly to 0.
Property 3 Here we verify that the sequence θ(n), u

l
(n) is Cauchy in C0. Recall that, for n ≥ 1 we have

θ(n) = θ(0) +

n−1∑
k=0

Θ(k), ul(n) = ul(0) +

n−1∑
k=0

U(k) (9.20)

where the properties of Θ(k) and U l(k) are as described in Lemma 3.1. The functions θ(0) and ul(0) are smooth with
compact support, and are therefore uniformly bounded. Our estimates for the corrections have the form

‖Θ(k)‖C0 + ‖U(k)‖C0 ≤ Ce1/2
R,(k) (9.21)

From (9.12), the bounds eR,(k) decays exponentially in k for any choice of Z ≥ 2, and both series in (9.20) therefore
converge uniformly. In particular, as θ(0) = f , we have

‖θ(k)‖C0 + ‖u(k)‖C0 ≤ ‖f‖C0 + Ce
1/2
R,(0), k ≥ 0 (9.22)

where C is proportional to the constant in Lemma 3.1. In particular, the bound (9.22) depends only on f , and does not
depend on our choices of parameters Y and Z.
Property 4 We now verify that the series (9.20) also converges in Cαt,x once Z is chosen large enough. We claim that
the bounds from Lemma 3.1 give

‖∇Θ(k)‖C0 + ‖∇U(k)‖C0 + ‖∂tΘ(k)‖C0 + ‖∂tU(k)‖C0 ≤ CN(k)Ξ(k)e
1/2
R,(k) (9.23)

The bounds on ‖∇Θ(k)‖C0 + ‖∇U(k)‖C0 follow directly from Lemma 3.1. We obtain the same bound for the time
derivatives by writing

∂tΘ(k) = −u(k) · ∇Θ(k) + (∂t + u(k) · ∇)Θ(k) (9.24)

and similarly forU(k). As we have shown in (9.22) that the sequence ‖u(k)‖C0 is uniformly bounded by some constant,
we have that the terms −u(k) · ∇Θ(k) and −u(k) · ∇U(k) both obey the estimate (9.23). Lemma 3.1 also supplies the
following bound on the advective derivative:

‖(∂t + u(k) · ∇)Θ(k)‖C0+‖(∂t + u(k) · ∇)U(k)‖C0 ≤ Cb−1/2
(k) Ξ

1/2
(k) e

1/2
v,(k)e

1/2
R,(k)

b(k) = N−1
(k)(e

1/2
v,(k)/e

1/2
R,(k))

Note that the parameter N(k) = K2
1Z

9/2 and the ratio
e
1/2

v,(k)

e
1/2

R,(k)

= Z1/2 are both independent of k once k ≥ 2, while

ev,(k) = K2
1Z
−(k−2)eJ,(0) decays to 0 exponentially. Thus, the estimate for the advective derivative is even better

than the bound (9.23). From (9.24) we now conclude that (9.23) holds for the time derivative as well.
Interpolation of (9.23) and (9.21) gives

‖Θ(k)‖Cαt,x + ‖U(k)‖Cαt,x ≤ C[N(k)Ξ(k)]
αe

1/2
R,(k) (9.25)

Applying (9.16) and (9.15), we have

‖Θ(k)‖Cαt,x + ‖U(k)‖Cαt,x ≤ CZ,K1,C0

(
Cα0 K

2α
1 Z( 9

2α−
1
2 )
)k (

Ξα(0)e
1/2
R,(0)

)
(9.26)
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As we have assumed α < 1/9, we can take Z large enough depending on α, K1 and C0 so that

Z( 9
2α−

1
2 ) < K2α

1 Cα0 (9.27)

Under this assumption, the right hand side of (9.26) tends to 0 exponentially fast as k → ∞, and it follows that the
series (9.20) converges in Cαt,x.
Property 5 To bound the support of θ(k), recall that supp θ(k) ⊆ I(k), where I(0) is the smallest time interval contain-
ing the support of f , and the intervals I(k) grow according to the rule (9.19). As a consequence, we have (in terms of
the notation introduced in (9.19))

I(k) ⊆ I(0) ± T, k = 0, 1, 2, . . .

T = 4

∞∑
k=0

τ̂(k) = 4

∞∑
k=0

Ξ−1
(k)e
−1/2
v,(k)

We recall now that ev,(0) = ev,(1) = ev,(2) = K1eJ,(0) while ev,(k) decays exponentially as (9.12) for k ≥ 2. We also
recall the lower bound in (9.16) to obtain

T ≤ 4Ξ−1
(0)e
−1/2
J,(0)

(
2 +

1

1− (C0Z5/2)−1

)
(9.28)

Recalling the definition (9.7) of Ξ(0), and noting that C0 ≥ 2 and Z ≥ 1, we have

T ≤ 8Y −1Ξ
−1
e
−1/2
J,(0) (9.29)

Property 5 is satisfied for the ε > 0 given in (5) once Y is chosen sufficiently large to ensure T < ε.
Property 6 For a smooth test function φ with compact support, we have∫

R×T2

(θ − f)φ(t, x)dtdx =

∫
R×T2

(θ − θ(0))φ(t, x)dtdx (9.30)

=

∞∑
k=0

∫
Θ(k)φ(t, x)dtdx (9.31)

According to Lemma 3.1, we can write the corrections in divergence form Θ(k) = ∂lW
l
(k) for some vector fields W l

(k)

obeying the estimates (3.18)-(3.20). Integrating by parts, we have
∞∑
k=0

∫
Θ(k)φ(t, x)dtdx = −

∞∑
k=0

∫
W l

(k)∂lφ(t, x)dtdx (9.32)

Recalling (9.12), (9.16) and the definition (9.7) of Ξ(0), we obtain∣∣∣ ∫
R×T2

(θ − f)φ(t, x)dtdx
∣∣∣ ≤ ∞∑

k=0

‖W(k)‖C0‖∇φ‖L1
t,x(Iε×T2) (9.33)

≤ C

( ∞∑
k=0

1

N(k)Ξ(k)
e

1/2
R,(k)

)
‖∇φ‖L1

t,x(Iε×T2) (9.34)

=

( ∞∑
k=0

C0

Ξ(k+1)
e

1/2
R,(k)

)
‖∇φ‖L1

t,x(Iε×T2) (9.35)

≤ C C0

Ξ(1)
e

1/2
R,(0)‖∇φ‖L1

t,x(Iε×T2) (9.36)

≤ C 1

Z2
Ξ−1

(0)e
1/2
J,(0)‖∇φ‖L1

t,x(Iε×T2) (9.37)

≤ C 1

Z2Y
Ξ
−1
e

1/2
J,(0)‖∇φ‖L1

t,x(Iε×T2) (9.38)

where C0 above denotes the constant in the Main Lemma. Taking Y (or alternatively Z) to be large enough depending
on C, Ξ and eJ,(0), we obtain (9.4). This choice concludes the proof of Theorem 9.1.
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10 Proof of Corollary 1.1
In this Section, we explain how Theorem 1.1 (or alternatively Theorem 9.1) can be applied to prove Corollary 1.1,
which characterizes the closure of compactly supported solutions to the active scalar equations in the space L∞

endowed with the weak-* topology.

Proof of Corollary 1.1. As in the statement of Theorem 1.1, consider an Active Scalar Equation (1.1) with a smooth
multiplier that is not odd. Let I ⊆ R be a nonempty, finite, open interval. Let α < 1/9 and let S ⊆ L∞ denote
the set of all weak solutions (θ, ul) to the Active Scalar equation (1.1) which have compact support in I × T2, and
which belong to the Hölder class (θ, ul) ∈ Cαt,x. Let S denote the closure of S in L∞ with respect to the weak-*
topology. Corollary 1.1 asserts that S is equal to the space of f ∈ L∞(I × T2) which satisfy the conservation law∫
f(t, x)dx = 0 as a distribution in the variable t. In other words, we assume that for every smooth test function

η(t) : I → R with compact support, we have∫
I×T2

η(t)f(t, x)dtdx = 0 (10.1)

First, observe that any f ∈ L∞ which belongs to S must satisfy (10.1) for all such η(t), since the integration against
η(t) is continuous with respect to the weak-* topology, and because equality (10.1) is satisfied by all of the elements
(θ, ul) ∈ S. This conservation law is proven for each (θ, ul) ∈ S by writing the test function in (10.1) as η =
η̃ + (η − η̃), where η̃ is a smooth function whose support is disjoint support from that of (θ, ul) that satisfies∫

I

η̃(t)dt =

∫
I

η(t)dt

This condition allows us to write η − η̃ = d
dth(t), where h(t) is smooth and compactly supported in I . The definition

of weak solution for (1.1) then implies∫
I×T2

η(t)θ(t, x)dtdx =

∫
I×T2

η̃(t)θ(t, x)dtdx+

∫
I×T2

(η − η̃)(t)θ(t, x)dtdx

=

∫
∂

∂t
h(t)θ(t, x)dtdx

=

∫
ul

∂

∂xl
h(t) θ(t, x)dtdx = 0

We now show conversely that every f ∈ L∞ satisfying (10.1) belongs to S. Let us assume by contradiction that
f /∈ S. By definition of the weak-* topology, there exists a finite collection {η1, . . . , ηm} ⊆ L1(I × T2) and δ > 0
such that for all θ ∈ S the lower bound∣∣∣ ∫ (f(t, x)− θ(t, x))ηj(t, x)dtdx

∣∣∣ ≥ δ (10.2)

holds for at least one ηj ∈ {η1, . . . , ηm}.
Let f̃ ∈ L∞(I × T2) be a smooth function of compact support with ‖f̃‖L∞ ≤ ‖f‖L∞ such that property (10.1)

holds for f̃ and for all such ηj , and we have the bound∣∣∣ ∫ (f(t, x)− f̃(t, x))ηj(t, x)dtdx
∣∣∣ ≤ δ/4 (10.3)

Such a function f̃ can be constructed by first applying a smooth cutoff in time to restrict to a compact subset of
I × T2, and then convolving with a mollifier in time and space, noting that both operations preserve the property
(10.1) without enlarging the L∞ norm. Inequality (10.3) is established by duality, as the adjoint cutoff and mollifier
operations converge strongly in L1 when applied to each ηj . We choose the mollification in such a way that the support
of f̃ remains inside a time interval Ĩ strictly smaller than I with Ĩ ± τ ⊆ I for some τ > 0.

Now apply4 Theorem 9.1 for the function f̃ with ε = 1/n to obtain a sequence (θn, u
l
n) ∈ S such that the bound

‖θn‖L∞ ≤ A holds uniformly, and (9.4) holds for f̃ with ε = 1/n. We assume here that n ≥ τ−1 is large enough to
4At this point, Theorem 1.1 would also suffice.
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ensure (θn, u
l
n) have compact support in I × T2 thanks to the compact support of f̃ and (9.2). Now let η̃j be smooth

functions of compact support in I ×T2 with ‖ηj − η̃j‖L1(I×T2) ≤ δ
5(‖f‖L∞+A) . We obtain an upper bound on the left

hand side of (10.2) ∣∣∣ ∫ (f(t, x)− θn(t, x))ηj(t, x)dtdx
∣∣∣ ≤ δ

4
+
∣∣∣ ∫ (f̃ − θn)ηjdtdx

∣∣∣
≤ δ

4
+
δ

5
+
∣∣∣ ∫ (f̃ − θn)η̃jdtdx

∣∣∣
≤ δ

4
+
δ

5
+

1

n
‖∇η̃j‖L1

t,x

Taking n large enough contradicts inequality (10.2) and concludes the proof.

11 Proof of Theorem 1.2
In this section, we outline how Lemma 3.1 can also be applied to yield Theorem 1.2. The proof follows an idea of [31,
Section 12]. The same argument below also shows that one can glue any two solutions which have the same integral5.

Let θ be a smooth solution of (1.1) on (−T, T )×T2, with multiplierml which is not odd. Let θ̄ = 1
|T2|

∫
T2 θ(0, x)dx

be the average value of θ, which is conserved by θ along the flow. Let ψ(t) be a smooth cutoff function, equal to 1 on
|t| ≤ 5T

8 and equal to 0 for |t| ≥ 6T
8 = 3T

4 .
Now consider the scalar field θ(0)(t, x) = ψ(t)θ(t, x) + (1 − ψ(t))θ̄. Then θ(0) is an integral-conserving scalar

field (i.e.
∫
T2 ∂tθ(0)dx = d

dt

∫
T2 θ(0)dx = 0), and therefore solves the scalar stress equation

∂tθ(0) + ∂l(θ(0)T
l[θ(0)]) = ∂lR

l (11.1)

Rj = ∂j∆−1[∂tθ(0) + ∂l(θ(0)T
l[θ(0)])] (11.2)

Note also that, because both θ and θ̄ are solutions to (1.1), the support of Rl is contained in the support of ψ′(t),
namely

suppRl(t, x) ⊆ {5T

8
≤ |t| ≤ 6T

8
} × T2

Repeating the argument of Sections 9.1-9.3, we can now iterate Lemma 3.1 to obtain a sequence of solutions θ(k) to
the compound scalar stress equation, such that

supp (θ(k) − θ(0)) ⊆ {
T

2
≤ |t| ≤ 4T

5
} × T2

for all indices k ≥ 0, and such that θ(k) → θ̃ converge in Cαt,x to a solution of (1.1). At this point, the main difference
in the argument is that we choose energy functions e(k)(t) which are supported within pairs of intervals containing a
small neighborhood of { 5T

8 ≤ |t| ≤
6T
8 }. (In fact, the argument is simpler at this point because we do not need to

achieve a weak approximation, and hence there is no need to introduce the parameter Y .) As we can take this intervals
of support to form an arbitrarily small neighborhood of { 5T

8 ≤ |t| ≤
6T
8 }, we can keep the support of the iteration

contained within {T2 ≤ |t| ≤
4T
5 }, and thereby obtain Theorem 1.2.

12 Proof of Weak Rigidity in Odd Active Scalars
In this section we give the proof of Theorem 1.3. Let θ ∈ {θn}n≥0 be a weak solution to (1.1), with associated velocity
field ul = T l[θ]. Also let φ ∈ D(I × T2) be a fixed test function. The proof of the theorem is based on the following
computation. For each fixed time t, let

Nt[θ, φ] =

∫
T2

θ(t, x) ul(t, x) ∂lφ(t, x) dx (12.1)

5This observation is due to Sung-Jin Oh [41].
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denote the nonlinear term integrated over the time t slice. Since T l is given by a Fourier multiplier, it commutes with
differentiation, and upon integrating by parts several times we obtain

Nt[θ, φ] =

∫
T2

∂k∆−1∂kθ ∂
jT l[∆−1∂jθ] ∂lφ dx

= −
∫
T2

∆−1∂kθ ∂
k∂jT l[∆−1∂jθ] ∂lφ dx−

∫
T2

∆−1∂kθ ∂
jT l[∆−1∂jθ] ∂

k∂lφ dx

=

∫
T2

∂k∆−1∂jθ ∂kT l[∆−1∂jθ] ∂lφ dx

+

∫
T2

∆−1∂kθ ∂
kT l[∆−1∂jθ] ∂

j∂lφ dx−
∫
T2

∆−1∂kθ ∂
jT l[∆−1∂jθ] ∂

k∂lφ dx

= −
∫
T2

∆−1∂jθ ∂jT
l[θ] ∂lφ dx−

∫
T2

∆−1∂jθ ∂kT l[∆−1∂jθ] ∂k∂lφ dx

+

∫
T2

∆−1∂kθ ∂
kT l[∆−1∂jθ] ∂

j∂lφ dx−
∫
T2

∆−1∂kθ ∂
jT l[∆−1∂jθ] ∂

k∂lφ dx. (12.2)

At this stage we use that the Fourier multiplier ml(ξ) is odd in ξ, which implies that ∂jT l, given by the Fourier
multiplier iξjml(ξ) which is even in ξ, is self-adjoint in L2(T2). We may thus write∫

T2

∆−1∂jθ ∂jT
l[θ] ∂lφ dx

=

∫
T2

θ ∂jT
l[∆−1∂jθ ∂lφ] dx

=

∫
T2

θ ∂jT
l[∆−1∂jθ] ∂lφ dx+

∫
T2

θ
(
∂jT

l[∆−1∂jθ ∂lφ]− ∂jT l[∆−1∂jθ] ∂lφ
)
dx

= Nt[θ, φ] +

∫
T2

θ
[
∂jT

l, ∂lφ
]

∆−1∂jθ dx. (12.3)

Combining (12.2) and (12.3) we arrive at

2Nt[θ, φ] = −
∫
T2

θ
[
∂jT

l, ∂lφ
]

∆−1∂jθ dx−
∫
T2

∆−1∂jθ ∂kT l[∆−1∂jθ] ∂k∂lφ dx

+

∫
T2

∆−1∂kθ ∂
kT l[∆−1∂jθ] ∂

j∂lφ dx−
∫
T2

∆−1∂kθ ∂
jT l[∆−1∂jθ] ∂

k∂lφ dx. (12.4)

From the Hölder inequality, and the bounds

‖∇T∆−1∇η‖L2 ≤ C‖η‖L2 , for η ∈ L2(T2) (12.5)

‖[∇T l, ∂lφ]η‖L2 ≤ C‖η‖L2‖φ‖H3+ε , for η ∈ Ḣ1(T2) (12.6)

we thus obtain from (12.4) that

|Nt[θ, φ]| ≤ C‖θ(t, ·)‖L2‖∆−1∇θ(t, ·)‖L2‖φ(t, ·)‖H3+ε (12.7)

for any ε > 0. The above estimate is a manifestation of the compactness inherent in Nt in the spatial variables.
Since we have only assumed θ ∈ Lp(I;L2(T2)), compactness in the time variable must come from the active

scalar equation. Below we give two essentially equivalent approaches to obtaining this compactness. The first proof
is based on a variant of the Arzelà-Ascoli principle due to Aubin-Lions. The second proof is a more direct argument
in the spirit of [32], using Littlewood-Paley theory to extract regularity in time.

Time compactness via Aubin-Lions compactness lemma. At this stage we notice that for any weak solution θ ∈
Lp(I;L2(T2)) of (1.1), and any index j, we have we have that

∂t(∆
−1∂jθ) = ∆−1∂j∂l(θ T

l[θ]) (12.8)
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holds in the sense of distributions, and thus

‖∂t(∆−1∂jθ)‖Lp/2(I;H−2(T2)) = ‖∆−1∂j∂l(θ T
l[θ])‖Lp/2(I;H−2(T2))

≤ C‖∆−1∂j∂l(θ T
l[θ])‖Lp/2(I;L1(T2))

≤ C‖θ‖2Lp(I;L2(T2)) (12.9)

in view of the compact embedding of L2(T2) ⊂W 2,1(T2).
Now assume that

θn ⇀ f ∈ Lp(I;L2(T2)) (12.10)

for some p > 2. The convergence of the mean∫
T2

θn dx→
∫
T2

f dx in D′(I)

is automatic. In view of the Sobolev embedding and (12.9), by (12.10) we have that

∆−1∇θn is uniformly bounded in Lp(I;H1(T2)) (12.11)

∂t(∆
−1∇θn) is uniformly bounded in Lp/2(I;H−2(T2)). (12.12)

Therefore, applying the Aubin-Lions compactness lemma (see e.g. [16, Lemma 8.4]), we obtain that there is a subse-
quence {θnj} such that

∆−1∇θnj → ∆−1∇f ∈ Lp(I;L2(T2)), (12.13)

i.e. the convergence is strong. To conclude, we integrate (12.4) in time, use (12.7) and (12.13), and obtain that∫
I

∫
T2

θnj T l[θnj ] ∂lφdxdt→
∫
I

∫
T2

f T l[f ] ∂lφdxdt

for any test function φ, since the product of a strong and a weak limit is a weak limit. The convergence holds in fact
along any subsequence nj →∞, and therefore holds also along the original sequence.

Time compactness via Littlewood-Paley theory. We now give a more direct proof which illustrates the usefulness
of Littlewood-Paley theory in extracting time regularity.

Let us use the notation P≤Iθ, PIθ and P[a,b]θ denote the standard, Littlewood-Paley projection operators. Thus,

P̂≤Iθ(ξ) = η(2−Iξ)θ̂(ξ), I = 0, 1, 2, . . .

is a truncation of θ̂ to frequencies of order supp P̂≤Iθ ⊆ {|ξ| ≤ 2I+1}, η is a smooth cutoff supported in |ξ| ≤ 2 with
η(ξ) = 1 for |ξ| ≤ 5/4. We let PI = P≤I − P≤I−1 denote the Littlewood-Paley piece which occupies frequencies
supp P̂Iθ ⊆ {2I−1 ≤ |ξ| ≤ 2I+1}. We use the notation P[a,b] =

∑
a≤I≤b PI .

Now let φ ∈ C∞0 (I × T2) be a smooth test function, and let θn be a sequence of solutions to (1.1) converging
weakly to θn ⇀ f in Lp(I;L2(T2)) for some p > 2 as in (12.10). Let N =

∫
RNt[θ, φ]dt =

∫
R
∫
T2 θu

l∂lφ dxdt
denote the full nonlinear term.

We claim that N [θn, φ] → N [f, φ]. To simplify the calculation, a simple approximation argument allows us to
assume that that φ̂ has compact support in supp φ̂ ⊆ {|ξ| ≤ 2r−1} for some r ≥ 0. In this case, for all θ ∈ {θn}n≥0,
we decompose the nonlinear term (12.1) into dyadic frequency increments

N [θ, φ] = N [P≤rθ, φ] +

∞∑
I=r+1

δNI [θ, φ] (12.14)

δNI [θ, φ] = N [P≤I+1θ, φ]−N [P≤Iθ, φ] (12.15)

=

∫
R

∫
T2

PI+1θP≤I+1u
l∂lφdxdt+

∫
R

∫
T2

P≤IθPI+1u
l∂lφdxdt (12.16)

=

∫
PI+1θP[I−r,I+r]u

l∂lφdx+

∫
P[I−r,I+r]θPI+1u

l∂lφdx. (12.17)
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In the last line we take advantage of the compact support of φ̂ for convenience. Using the commutator formulation
(12.4), each δNI decomposes into several terms of the type

δNI [θ, φ] =

∫
R

∫
T2

∆−1∂kPI+1θ ∂
kT l[∆−1∂jP[I−r,I+r]θ]∂

j∂lφ dxdt+ other similar terms

From (12.6) and ‖∆−1∇PIθ‖L2
x
≤ C2−I‖θ‖L2

x
, each δNI is bounded by

|δNI [θ, φ]| ≤ Cφ2−I‖θ‖2L2
t,x

(12.18)

for some constant Cφ depending on φ.
We now show that the weak convergence (12.10) can in fact be upgraded to uniform convergence for each dyadic

piece PIθn → PIf , which implies the convergence of each term δNI [θ
n, φ]→ δNI [f, φ]. The uniform convergence

is obtained by compactness. We start with the bounds

‖PIθn‖LptL∞x + ‖∇PIθn‖LptL∞x ≤ CI‖θ
n‖LptL2

x

Applying PI to (1.1), the equation ∂tPIθ = −∂lPI [θul] gives regularity in time

‖∂tPIθn‖Lp/2t L∞x
≤ CI‖θn‖2LptL2

x

As we have assumed p > 2 and uniform in n bounds on ‖θn‖2
LptL

2
x

from (12.10), it follows by Sobolev embedding
that the sequence PIθn for each I is Hölder continuous in time and space, uniformly in n. By Arzelà-Ascoli, there
exists a uniformly convergent subsequence PIθnj for each I . From the weak convergence (12.10), we have uniform
convergence of PIθn → PIf on any subsequence, which implies that the original sequence PIθn → PIf converges
uniformly.

It now follows that δNI [θn, φ]→ δNI [f, φ] for each index I and that N [P≤rθ
n, φ]→ N [P≤rf, φ]. We also have

the estimate (12.18), so the convergence of N [θn, φ] → N [f, φ] follows from the dominated convergence theorem
applied to (12.14).

We remark that the same two arguments can be upgraded to prove compactness of solutions when we only assume
weak convergence in LptH

s
x for some p > 2 and s > −1/2. The main difference involves using the commutator

formulation (12.4) to obtain an estimate for the time derivative from the lower regularity in space.

13 Conservation of the Hamiltonian in Odd Active Scalars
In this Section we give the proof of Theorem 1.4. Recall that the symbol of the Fourier multiplier L defined in (1.3),
which defines the Hamiltonian is given by

L̂(ξ) = |ξ|−2(iξ2m1(ξ)− iξ1m2(ξ)) (13.1)

with the convention that L̂(0) = 0. Since we are in two spatial dimensions and ξ ·m(ξ) = 0 for all nonzero vectors ξ,
automatically we must have that

m(ξ) = iξ⊥|ξ|−1`(ξ) (13.2)

for some even, zero-order homogenous, smooth on the unit sphere, real-valued scalar function `(ξ). The fact that
`(ξ) ∈ R follows from the fact that `(ξ) = `(−ξ) = `(ξ). In the case of the SQG equation, `(ξ) = 1.

In summary, we have that

L̂(ξ) = |ξ|−1`(ξ) (13.3)

which reiterates that L is a self-adjoint operator, which is smoothing of degree −1 when `(ξ) is nonvanishing on the
unit sphere. The Hamiltonian then is

H(t) =

∫
T2

θ(t, x)Lθ(t, x)dx (13.4)
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or equivalently, in view of Plancherel’s theorem,

H(t) =
∑
k∈Z2

∗

|θ̂(t, k)|2|k|−1`(k). (13.5)

Let φε = ε−2φ(x/ε) be a standard mollifier on T2, and denote

·ε = · ∗ φε, ·ε,ε = · ∗ φε ∗ φε.

The conservation of the Hamiltonian H for solutions of (1.1) is implied by establishing that d
dtH(t) = 0 as a

distribution in t. Namely, we show that

lim
ε→0

∫
R

∫
T2

η′(t)θε(t, x)Lθε(t, x)dxdt = 0 (13.6)

holds for every smooth function η(t) which is supported in I . Note that since mollification ∗φε is given by a Fourier
multiplier, it commutes with L.

Considering the test function η(t)Lθε,ε in the weak formulation of (1.1), we arrive at∫
R

∫
T2

θ∂t(ηLθε,ε)dxdt+

∫
R

∫
T2

θul∂l(ηLθε,ε)dxdt = 0, (13.7)

for every ε > 0. Strictly speaking, the above test function is not smooth in time, but this restriction can be ignored
after a time mollification argument, as in the proof of [33, Theorem 2.2]. The first term in (13.7) may now be rewritten
as ∫

R

∫
T2

θ∂t(ηLθε,ε)dxdt =

∫
R

∫
T2

θε∂t(ηLθε)dxdt

=

∫
R

∫
T2

θεη
′Lθεdxdt+

∫
R

∫
T2

θεηL∂tθεdxdt

=

∫
R

∫
T2

θεη
′Lθεdxdt+

∫
R

∫
T2

Lθεη∂tθεdxdt

=

∫
R

∫
T2

θεη
′Lθεdxdt−

∫
R

∫
T2

∂t(Lθε,εη)θdxdt. (13.8)

Combining the above with (13.7) we see that establishing (13.6) is equivalent to establishing

lim
ε→0

∫
R
η

∫
T2

(θul)ε∂lLθεdxdt = 0. (13.9)

for ul = T l[θ].
Up to this point, we have presented the proof of conservation of H(t) analogously to the proof of energy conser-

vation for Euler in the Onsager critical Besov space L3
tB

3
1/3,c(N) of [10], but the remaining analysis turns out to be

less subtle. In particular, there is no need for a quadratic commutator estimate as in [15] (and the mollification above
could also be simpler).

To proceed, we view the cubic term on the left hand side of (13.9) as the diagonal part of a family of trilinear
operators

Qε[θ(1), θ(2), θ(3)] =

∫
R
η

∫
T2

(θ(1)T
l[θ(2)])ε(∂lLθ(3))εdxdt (13.10)

In this notation, equation (13.9) asks to show limε→0Qε[θ, θ, θ] = 0 for all θ ∈ L3
t,x. Observe first that the operators

Qε satisfy the bound

|Qε[θ(1), θ(2), θ(3)]| ≤ ‖θ(1)‖L3
t,x
· ‖T [θ(2)]‖L3

t,x
· ‖∇L[θ(3)]‖L3

t,x

≤ C‖θ(1)‖L3
t,x
· ‖θ(2)‖L3

t,x
· ‖θ(3)‖L3

t,x
(13.11)
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This bound follows from the fact that both operators T and

∇L = ∇(−∆)−1/2(R2T
1 −R1T

2) (13.12)

are bounded as operators from L3
x to itself, thanks to the smoothness and degree 0 homogeneity of m.

Because the operators Qε are trilinear, and the bound (13.11) they satisfy is uniform in ε, it suffices to prove
(13.9) under the additional assumption that θ is smooth with compact support by the density of such functions in L3

t,x.
Assuming now that θ is smooth, we may pass ε to 0 in (13.9), and it remains to show that∫

R
η

∫
T2

θT l[θ]∂lLθdxdt = 0.

At this stage we recall that

ul = T l[θ] = (∂l)⊥Lθ, (13.13)

which may be seen on the Fourier side from (13.2) and (13.3). As a result, we have∫
T2

θul ∂lLθdx =

∫
T2

θ(∂l)⊥Lθ ∂lLθdx = 0 (13.14)

which concludes the proof.

14 Constraints on weak limits of degenerate active scalars in higher dimen-
sions

In this Section, we give a proof of Theorem 1.6, which shows that the nondegeneracy condition in Theorem 1.5 is
necessary for the weak limit statement of Theorem 1.1.

In this section, we assume that there is a nonzero frequency ξ(0) ∈ T̂n \ {0} = Zn∗ in the dual lattice such that the
image of the even part of the multiplier is contained in

{m(ξ) +m(−ξ) | ξ ∈ R̂n} ⊆ 〈ξ(0)〉⊥ (14.1)

In this case, we have the following restriction on weak limits of solutions to the active scalar equation, which bears
resemblance to a new conservation law.

Lemma 14.1. Consider the active scalar equation (1.1) on I × Tn and suppose that the image of the even part of the
multiplier is contained in the hyperplane (14.1). Let T l0 denote the Fourier multiplier with symbol

T̂ l0[θ](ξ) =
1

2
(ml(ξ)−ml(−ξ))θ̂(ξ)

Suppose that φ ∈ C∞0 (I × Tn) has the property that its spatial gradient takes values in the direction ξ(0)

∇φ(t, x) ∈ 〈ξ(0)〉 (14.2)

Suppose that f ∈ L∞(I × Tn) can be realized as a weak-* limit θ(k) ⇀ f in L∞ of some sequence of solutions θ(k)

to (1.1). Then ∫
I×Tn

f∂tφ+ fT l0[f ]∂lφdxdt = 0 (14.3)

Proof. Consider the sequence of solutions θ(k) to (1.1) converging to f in the L∞ weak-* topology. Decompose the
operator T l as T l = T l0 + T le, where the term T le of the operator is the Fourier multiplier with symbol

T̂ le[θ](ξ) =
1

2
(ml(ξ) +ml(−ξ))θ̂(ξ) (14.4)
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By equation (1.1), we have for all indices k that∫
I×Tn

(θ(k)∂tφ+ θ(k)T
l
0[θ(k)]∂lφ)dxdt = −

∫
I×Tn

θ(k)T
l
e[θ(k)]∂lφdxdt = 0

by the condition (14.1). By the proof of Theorem 1.3, the nonlinear term is continuous with respect to weak-* limits
in L∞ when restricted to active scalar fields, giving (14.3). To make this conclusion, it is important to note that,
in the proof of compactness for the nonlinear term, it was not important that the operator in the nonlinear term was
identical to the operator appearing in the active scalar equation. The proof used only the oddness of the multiplier in
the nonlinear term, and certain time regularity estimates from the active scalar equation coming from the boundedness
properties of the operator in the equation.

Assuming that the hyperplane containing the image of the even part of m is in the dual lattice ξ(0) ∈ T̂n, it is
now not so hard to design a test function φ obeying (14.2) and an integral-conserving function f which fails to satisfy
(14.3). As a first attempt, we can let ζ(t) be a smooth cutoff in time, and take

φ(t, x) = ζ(t) cos(ξ(0) · x) (14.5)
f(t, x) = ζ ′(t) cos(ξ(0) · x) (14.6)

Then (14.2) is satisfied, and we also have∫
f(t, x)∂tφ(t, x)dxdt =

∫
(ζ ′(t))2 cos2(ξ(0) · x)dxdt > 0 (14.7)

is strictly positive.
The positivity of (14.7) does not necessarily imply the failure of (14.3). However, if the equality (14.3) holds for

this function f , then (14.3) cannot hold for the function 2f , because the linear term (which is positive by (14.7)) scales
linearly, whereas the quadratic term scales quadratically. Thus, at least one of f or 2f fails to satisfy (14.3), and we
have Theorem 1.6.

15 Concluding discussion
Active scalar equations arise naturally in fluid dynamics in several asymptotic regimes, and as model equations for the
full fluid systems. The problem of constructing active scalar fields for which the energy ‖θ‖L2

x
fails to be conserved

is a natural generalization of Onsager’s conjecture for the Euler equations. This problem, however, encounters several
additional difficulties when compared to Euler. Most importantly, a suitable analogue of Beltrami flows, which provide
an essential ingredient for obtaining regularity up to 1/5 in the case of Euler, are unavailable.

For active scalars with multipliers that are not odd, we obtain nonuniqueness of weak solutions and even h-
principles among integral-conserving functions for weak solutions with Hölder regularity up to 1/9 (Theorem 1.1,
Theorem 1.2, and Corollary 1.1). Our proof is based on the observation that the interference terms which arise due
to self-interactions between individual waves must vanish to leading order. This observation allows for an approach
in the spirit of the isometric embedding equations, where we eliminate one component of the error in each stage of
the iteration using one-dimensional oscillations. Our observation is general, and applies in arbitrary dimensions even
to the case of the Euler equations, giving a new approach to solutions in that case as well. However, our inability to
remove more than one component of the error leads to further losses in regularity.

These results however should not be expected for multipliers which are odd. For odd symbols, the Hamiltonian
is conserved at the level of θ ∈ L3

t,x (Theorem 1.4), and the nonlinearity exhibits a weak rigidity which makes it
impossible to obtain an h-principle type result (Theorem 1.3). In higher dimensions, the presence of conservation
laws and other rigidity properties of weak solutions can even be sensitive to more subtle algebraic properties of the
multiplier, and our method applies in a generality which is essentially optimal (Theorems 1.5, 1.6).

Several related questions remain open. Part of our proof does not apply to the nonperiodic setting and some new
idea could be required to produce nonperiodic solutions (currently even L∞t,x solutions have not been constructed in
this case). Other significant questions include

1. In the case of SQG, exhibit a weak solution θ ∈ LptL2
x, that does not conserve energy.
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2. In the case of SQG, exhibit a weak solution θ ∈ C0
x,t that does not conserve energy, but does conserve the

Hamiltonian.

3. In the case of IPM, or more generally for not odd symbols, exhibit weak solutions θ ∈ Cαt,x, with α ∈ (1/9, 1/3)
that do not conserve energy.

We believe that answering these questions may shed some light into the field of two dimensional turbulence.
Finally, further sharpening approaches which do not rely on the use of Beltrami flows may be found useful in

resolving Onsager’s conjecture. The current approaches introduce anomalous time scales in the construction which
are incompatible with the time regularity bounds held by more regular solutions. With this obstruction, it seems
unlikely at this time that an approach based on stationary solutions alone will go beyond the exponent 1/5 even for
L2-based function spaces. Although our construction shares in this deficiency, the cancellation of self-interference
terms that lies at the heart of our proof is a general observation that arises from the structure of the equations and
remains available even at longer time scales. It is important to investigate whether further, more dynamical methods
of construction can be developed.
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