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Abstract

We address the local well-posedness of the hydrostatic Navier-Stokes equations. These equa-
tions, sometimes called reduced Navier-Stokes/Prandtl, appear as a formal limit of the Navier-
Stokes system in thin domains, under certain constraints on the aspect ratio and the Reynolds
number. It is known that without any structural assumption on the initial data, real-analyticity
is both necessary [38] and sufficient [24] for the local well-posedness of the system. In this paper
we prove that for convex initial data, local well-posedness holds under simple Gevrey regularity.

1 Introduction

The present paper is devoted to the study of the following two-dimensional system:

∂tu+ u∂xu+ v∂yu+ ∂xp− η∂2
yu = 0, (x, y) ∈ T× (0, 1), (1.1a)

∂yp = 0, (x, y) ∈ T× (0, 1), (1.1b)

∂xu+ ∂yv = 0, (x, y) ∈ T× (0, 1), (1.1c)

u|y=0,1 = v|y=0,1 = 0, x ∈ T, (1.1d)

where η > 0. The unknowns of this system are (u, v) = (u, v)(x, y, t) and p = p(x, y, t), which
model respectively the velocity field and pressure of a fluid flow. The boundary condition (1.1d)
corresponds to a no-slip condition at the walls y = 0, 1. With respect to the tangential variable x
we impose T-periodic (lateral) boundary conditions.

Note that upon integrating in y the incompressibility equation (1.1c), using the boundary condition
for v (1.1d) we obtain the compatibility condition

∂x

∫ 1

0
u(x, y, t)dy = 0 (1.2)

for all x ∈ T and t ≥ 0, so that the vertical mean of u is just a function of time. Condition (1.2)
allows us to compute the pressure gradient, cf. (2.4) below, and to obtain the boundary condition
for the vorticity, cf. (2.6b) below.

System (1.1) is formally obtained [29, 38] when considering the asymptotics of the two-dimensional
Navier-Stokes in a thin domain: Ω = (0, L)× (0, l) with δ = l

L � 1. After a proper rescaling

t :=
Ut

L
, x :=

x

L
, y :=

y

l
, u :=

u

U
, v :=

v

δU
,
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the Navier-Stokes equation becomes

∂tu+ u∂xu+ v∂yu+ ∂xp− ηδ2∂2
x − η∂2

yu = 0, (x, y) ∈ T× (0, 1), (1.3a)

δ2(∂tv + u∂xv + v∂yv) + ∂yp− ηδ4∂2
xv − ηδ2∂2

yv = 0, (x, y) ∈ T× (0, 1), (1.3b)

∂xu+ ∂yv = 0, (x, y) ∈ T× (0, 1), (1.3c)

where η = 1
δ2Re

, with Re = UL
ν the Reynolds number. If we assume η ∼ 1 and keep the leading

order terms as δ → 0, or if we assume η � 1 and keep both the leading order and next order terms
in (1.3), we end up with (1.1).

Our concern here will be the local in time well-posedness of (1.1). Besides its mathematical rele-
vance, this problem is meaningful from the point of view of hydrodynamic stability, notably with
regards to the properties of the so-called primitive equations:

∂tu+ u∂xu+ v∂yu+ ∂xp− η′∂2
x − η∂2

yu = 0, (x, y) ∈ T× (0, 1), (1.4a)

∂yp = 0, (x, y) ∈ T× (0, 1), (1.4b)

∂xu+ ∂yv = 0, (x, y) ∈ T× (0, 1). (1.4c)

This model and its three-dimensional counterpart are very important in atmospheric sciences, after
accounting for gravity and many other features [31, 30, 40, 37]. For positive values of tangential and
transverse viscosity coefficients, they are known to be globally well-posed in the Sobolev setting in
both the two and the three dimensional case [43, 3, 4, 40, 8, 21, 27, 28], and the vanishing viscosity
limit η, η′ → 0 can be characterized in the real-analytic category [22]. Yet, in the absence of
additional turbulent viscosity, the dimensional analysis of (1.3) shows that the tangential diffusion
coefficient η′ is expected to be very small. This allows to relate the well/ill-posedness of (1.1) and
the stability/instability properties of (1.4). For instance, assume that (1.1) is linearly ill-posed
without analyticity in x: a result in this direction was shown in [38], and will be discussed later
on. It roughly means that, at least in the early stages of the evolution, there are perturbations
with wave number k � 1 in x that grow like e|k|t. From there, if η′ is small enough so that
η′|k|2 � 1, one can expect the tangential diffusion −η′∂2

x to stay negligible, and the perturbation
to be an approximate solution of (1.4) (with Dirichlet conditions). This can result in a growth
almost as strong as et/

√
η′ , showing the strong instability of (1.4). We note that if one keeps

η′ > 0 in (1.4) while setting η = 0, the local well-posedness can be established for Sobolev initial
datum [6, 7], confirming that the horizontal dissipation dominated equation is much more stable
that the hydrostatic Navier-Stokes system (1.1) considered in this paper.

From a mathematical perspective, system (1.3) is reminiscent of the two-dimensional Prandtl sys-
tem, describing boundary layer flows. The latter is set in a half-plane, say T × R+, and reads

∂tu+ u∂xu+ v∂yu+ ∂xp− η∂2
yu = 0, (x, y) ∈ T× R+, (1.5a)

∂yp = 0, (x, y) ∈ T× R+, (1.5b)

∂xu+ ∂yv = 0, (x, y) ∈ T× R+, (1.5c)

u|y=0 = v|y=0 = 0, (1.5d)

lim
y→+∞

u = u∞, lim
y→+∞

p = p∞. (1.5e)

Hence, the only difference with (1.1) lies in the domain and in the boundary conditions. Here, u∞

and p∞ are given data, related to the Euler flow above the boundary layer. In particular, as p
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does not depend on y, it is no longer an unknown of the system. This is a major difference with
(1.1), where p can be seen as a Lagrange multiplier, associated to the constraint that v = −

∫ y
0 ∂xu

vanishes at y = 1 (see (2.4) below).

The well-posedness properties of (1.5) are now well-understood, and depend on the monotonicity
properties of the initial data. Roughly, if the data have Sobolev regularity, and if furthermore the
initial data are monotonic in y, (1.5) has local in time Sobolev solutions [34, 33]. On the other
hand, without monotonicity, system (1.5) is ill-posed in Sobolev spaces [12, 15]. Local in time well-
posedness can be achieved when the initial datum is real analytic [39, 25], and even under the milder
condition of Gevrey regularity in x [14]. We refer to [10, 42, 13, 20, 26, 9] and references therein
for more results on the Prandtl system such as singularities, long time behavior, and Gevrey-class
stability. Interestingly, the instability mechanism that yields ill-posedness in Sobolev involves in a
crucial manner the lack of monotonicity and the diffusion term −η∂2

yu. Indeed, the inviscid version
of Prandtl, that is

∂tu+ u∂xu+ v∂yu+ ∂xp = 0, (x, y) ∈ T× R+, (1.6a)

∂yp = 0, (x, y) ∈ T× R+, (1.6b)

∂xu+ ∂yv = 0, (x, y) ∈ T× R+, (1.6c)

v|y=0 = 0, (1.6d)

lim
y→+∞

p = p∞, (1.6e)

has local smooth solutions for smooth data, as can be shown by the method of characteristics [19].

With regards to this recent understading of the Prandtl system, it is very natural to ask about the
local well-posedness of (1.1), and to start from the consideration of the inviscid case η = 0, namely

∂tu+ u∂xu+ v∂yu+ ∂xp = 0, (x, y) ∈ T× (0, 1), (1.7a)

∂yp = 0, (x, y) ∈ T× (0, 1), (1.7b)

∂xu+ ∂yv = 0, (x, y) ∈ T× (0, 1), (1.7c)

v|y=0,1 = 0. (1.7d)

This hydrostatic Euler system has been the matter of many studies [1, 16, 2, 38, 24, 32, 23, 5, 41].
Contrary to (1.6), existence of local strong solutions requires a structural assumption, namely the
uniform convexity (or concavity) in variable y of the initial data. A contrario, the presence of
inflexion point may trigger high-frequency instability. This point was established in article [38].
The author considers in [38] the linearization of (1.7) around shear flows u = Us(y), v = 0. More
precisely, he shows that if the equation

∫ 1
0 (Us(y)−c)−2dy = 0 has complex roots, then the linearized

hydrostatic Euler system admits perturbations which have wavenumber k in x and grow like eδkt,
δ > 0, for all k � 1. Back to the nonlinear problem (1.7), one can only expect to show short time
stability for data whose Fourier transform in x behaves like e−δ|k| for large k. This corresponds to
analytic data in x. Local well-posedness in the analytic setting was established in [24]. Moreover,
it is mentioned in [38] that this high-frequency instability persists in the case of the viscous system
(1.1), at least for small enough η.

Considering all these results, the remaining task is to analyse the viscous system (1.1) for convex
(or concave) initial data. This is the purpose of this paper. It raises strong mathematical issues,
related to the control of x derivatives of the solution. In particular, we find

∂t(∂xu) + (u∂x + v∂y)(∂xu) + (∂xu)2 + (∂xv)∂yu+ ∂x(∂xp)− η∂2
y(∂xu) = 0.
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One of the main problems in controlling ∂xu is the term ∂xv∂yu. Indeed, ∂xv = −
∫ y

0 ∂
2
xu is

recovered from the divergence-free condition, so that it can be seen as a first oder operator in x
applied to ∂xu. As this first order term has no skew-symmetry, it does not disappear from energy
estimates, so that standard energy arguments can only be conclusive with the help of analyticity.
In the case of the hydrostatic Euler system, the way out of this difficulty consists in considering
the (approximate) vorticity ω = ∂yu. Its tangential derivative is seen to satisfy

∂t(∂xω) + (u∂x + v∂y)(∂xω) + (∂xu) (∂xω) + (∂xv) ∂yω = 0.

Under a uniform convexity or concavity assumption |∂yω| ≥ α, the idea is to test the equation
against ∂xω/∂yω rather than ∂xω, to take advantage of the cancellation:∫

∂xv ∂xω = −
∫
∂y∂xv ∂xu =

∫
∂2
xu ∂xu = 0.

This allows to get rid of the bad term, and is the starting point of the local well-posedness argument.
Such an idea was used previously in [17, 32].

Unfortunately, this manipulation, that we will call the hydrostatic trick, is not fully appropriate to
the viscous system (1.1). The reason is that in the estimate for ∂xω, the viscous term generates
extra boundary integrals such as

I[ = η

∫
T×{0}

∂y∂xω
∂xω

∂yω
dx, I] = η

∫
T×{1}

∂y∂xω
∂xω

∂yω
dx.

The value of ∂y∂xω at the boundary can be obtained from the equation on ∂xu, and yields for
instance (the computation will be detailed later)

∂y∂xω|y=0 = ∂2
xp = −2∂x

∫ 1

0
u ∂xu dy + ∂xω|y=1 − ∂xω|y=0.

The issue comes from the first term at the right hand-side, which is again a first order term in
∂xu without any skew-symmetric structure. In other words, there is an additional loss of deriva-
tive compared to the Prandtl equation, so that obtaining well-posedness below analytic regularity
is challenging. This is our goal in what follows, and we prove in Theorem 2.1 below the local
well-posedness under Gevrey regularity of class 9/8 in the x variable, under an extra convexity
assumption in y.

2 Main result and strategy

For notational simplicity, from now one we will set η = 1 in (1.1). Let Ω = T × (0, 1). For τ > 0,
γ ≥ 1, we define the Gevrey norm

‖f‖2γ,τ =

∞∑
j=0

τ2j(j!)−2γ‖∂jxf‖2L2(Ω).

Functions f satisfying ‖f‖γ,τ < +∞ are in Gevrey class γ with respect to x, measured in L2 in
variable y. Our main result is the following:
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Theorem 2.1 (Well-posedness for convex Gevrey-class initial datum). Let τ0 > τ1 > 0,
γ ≤ 9/8. Let u0 a function satisfying the regularity condition

‖∂yu0‖γ,τ0 + ‖∂3
yu0‖γ,τ0 < +∞, (2.1)

the convexity condition

inf
Ω
∂2
yu0 > 0, (2.2)

and the compatibility conditions ∂x
∫ 1

0 u0dy = 0, u0|y=0,1 = 0,

∂2
yu0|y=0,1 =

∫ 1

0
(−∂xu2

0 + ∂2
yu0)dy −

∫
Ω
∂2
yu0.

Then there exists T > 0, and a unique solution u of (1.1) with initial data u0 that satisfies

sup
t∈[0,T ]

(
‖∂yu(t)‖γ,τ1 + ‖∂3

yu(t)‖γ,τ1
)
< +∞.

and

inf
t∈[0,T ]×Ω

∂2
yu > 0. (2.3)

A few remarks are in order:

• The main point in our result is that we prove local well-posedness without analyticity, reaching
exponents γ > 1. The value γ = 9/8 is due to technical limitations, and could certainly be
improved. The optimal value that can be expected for γ, or even the possibility of well-
posedness in the Sobolev setting are interesting open questions. Our conjecture - based on a
formal parallel with Tollmien-Schlichting instabilities for Navier-Stokes [18] - is that the best
exponent possible should be γ = 3/2, but such result is for the time being out of reach. If
confirmed, it would emphasize the destabilizing role of viscosity.

• We loose on the radius τ of Gevrey regularity, going from τ0 to τ1 in positive time. This loss
is very standard [39, 24, 25, 14].

• Besides the Gevrey regularity assumption (2.1), the key assumption is infΩ ∂
2
yu0 > 0, which

corresponds to a strictly convex initial data. The strict concavity condition supΩ ∂
2
yu0 < 0

would work as well. On the opposite, as discussed before, we do not expect such well-posedness
to hold for data with inflexion points [38].

• The first compatibility condition ∂x
∫ 1

0 u0 = 0 is here to ensure that (1.2) holds for all time.
Note that we can use (1.2) to determine ∂xp: applying ∂x to (1.1a), taking the mean over
y ∈ (0, 1), integrating by parts in the term

∫ 1
0 v∂yu dy, and using the periodic lateral boundary

conditions, we find:

∂xp = ω̃|y=1 − ω̃|y=0 − ∂x
∫ 1

0
u2dy, x ∈ T, (2.4)

where ω = ∂yu is the vorticity, and we have denoted by

ω̃(x, y, t) = ω(x, y, t)−
∫
T
ω(x, y, t)dx, y ∈ {0, 1}, (2.5)

the zero mean (in x) boundary vorticity. We will use the notation (2.5) throughout the paper.
Note that for y ∈ {0, 1}, the functions ω and ω̃ only differ by a function of time.
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• The second and third compatibility conditions can be explained as follows. Most of our
analysis relies on the control of the vorticity ω = ∂yu. We notably need some bound on
supt∈[0,T ] ‖ω‖γ,τ for τ ∈ [τ1, τ

0) . If we leave aside the Gevrey regularity in x, this corresponds

to an L∞t H
1
y bound on u. As u satisfies a heat type equation with Dirichlet condition, it is

well-known that such an L∞t H
1
y bound requires the compatibility condition u|t=0|y=0,1 =

u|y=0,1|t=0. In view of (1.1c), this amounts to the second compatibility condition of the
theorem: u0|y=0,1 = 0.

Similarly, the last compatibility condition is related to the fact that we need a bound for
supt∈[0,T ] ‖∂tω‖γ,τ for τ ∈ [τ1, τ

0). More precisely, this condition can be derived from the
system obeyed by ω = ∂yu, which is:

∂tω + u∂xω + v∂yω − ∂2
yω = 0, (x, y) ∈ T× (0, 1), (2.6a)

∂yω|y=0,1 = ω̃|y=1 − ω̃|y=0 − ∂x
∫ 1

0
u2dy. (2.6b)

Indeed, (2.6a) follows from differentiating (1.1a) in y, while the boundary condition (2.6b)
is obtained by evaluating (1.1a) at y = 0, 1, using the Dirichlet boundary conditions for
u and v in (1.1d), and the formula for the pressure gradient (2.4). Now, from (2.6a), it
appears that an L∞t L

2
y control of ∂tω is similar to an L∞t L

2
y control of ∂2

yω, meaning a L∞t H
1
y

control of ∂yω. By differentiating (2.6a), one sees that ∂yω satisfies a heat like equation,
and by (2.6a), it also satisfies a Dirichlet type condition. Again, an L∞t H

1
y control requires

∂yω|t=0|y=0,1 = ∂yω|y=0,1|t=0, which by (2.6b) amounts to the third compatiblity condition.

General strategy of the proof. Our analysis is based on the vorticity evolution (2.6). We
want to benefit from the so-called hydrostatic trick, which consists in establishing L2 estimates
for the weighted derivatives ∂jxω/

√
∂yω. The difficulty is that these estimates are not compatible

with the diffusion −∂2
yω, which creates boundary terms involving ∂jx∂yω|y=0. Because of the extra

x-derivative at the right-hand side of (2.6b), one can not close an estimate at the Sobolev level.

To overcome this difficulty, our first idea is to write ω = ωin+ωbl, where ωbl is a boundary corrector
which solves (approximately):

∂tω
bl − ∂2

yω
bl = 0, ∂yω

bl|y=0,1 = −∂x
∫ 1

0
u2dy,

where the right side of the Neumann boundary condition is seen as a given data. With this splitting,
the bad term is removed from the Neumann condition on ωin, so that we may apply the hydrostatic
trick to this quantity. Still, this approach is obviously not enough: the equation for ωin still involves
ω, either directly or through ωbl, so that no closed estimate is available on ωin.

This is where we shall take advantage of Gevrey regularity. To explain this point, it is simpler to
consider the linearization of (2.6) around a shear flow u = (us(y), 0):

∂tω + us∂xω + u′′sv − ∂2
yω = 0, ∂xu+ ∂yv = 0, ∂yω|y=0,1 = ω̃|y=1 − ω̃|y=0 − 2∂x

∫ 1

0
usudy.

As this system has x-independent coefficients, one can Fourier transform in x. More precisely,
looking for local well-posedness in Gevrey class γ, it is natural to look for solutions in the form
ω = ek

1/γteikxω̂k(t, y). We end up with the following system for the boundary layer corrector:

(k1/γ + ∂t)ω̂
bl − ∂2

y ω̂
bl = 0, ∂yω̂

bl
k |y=0,1 = −2ik

∫ 1

0
usûkdy.
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Explicit calculations on this system reveal that Gevrey regularity in x is converted into spatial
localization in y: for k � 1, ω̂blk has a boundary layer behaviour, with concentration near y = 0, 1

at scale k
− 1

2γ . Roughly, neglecting the upper boundary, one can think of

ω̂blk ≈ k
1− 1

2γW (t, k
1
2γ y)

∫ 1

0
usûkdy,

ûblk ≈ k
1− 1

γU(t, k
1
2γ y)

∫ 1

0
usûkdy.

Now, the idea is to write∫ 1

0
usûkdy =

∫ 1

0
usû

bl
k +

∫ 1

0
usû

in
k =

(
k

1− 1
γ

∫ 1

0
us(y)U(t, k

1
2γ y)dy

)∫ 1

0
usûkdy +

∫ 1

0
usû

in
k .

In short, one can check that for γ ≤ 2, we have k
1− 1

γ
∫ 1

0 us(y)U(t, k
1
2γ y)dy = o(1) in the limit of

large k, so that the first term at the right-hand side can be absorbed in the left-hand side. This
leads to a control of

∫ 1
0 usu, and thus of ωbl, in terms of ωin. From there, one can get closed

estimates on ωin.

Of course, this strategy is made more difficult when dealing with the x-dependent and nonlinear
system (2.6). In particular, the Fourier approach is no longer convenient, and we must use the
characterization of Gevrey regularity in the physical space, through the family {∂jxω}j∈N. In order
to take advantage of the boundary layer phenomenon, we shall introduce Gevrey norms with extra-
weight (j + 1)r, see (3.1). The boundary layer phenomenon will be reflected by the fact that
multiplication by y or integration in y will generate a gain in the exponent r, see Lemma 3.1. Such
gain will make possible the control of boundary layer quantities by ωin, cf. Lemma 3.4.

From there, the analysis will focus on weighted estimates for ωin, using the hydrostatick trick.
As usual in nonlinear problems, these estimates will be obtained conditionally to certain bounds
(notably a lower bound on ∂yω, to benefit from convexity). We will show that such bounds are
preserved in small time, which will require estimates on the time derivative ∂tω, as well as maximum
principle arguments for ∂yω.

3 Preliminaries

As usual in this kind of analysis, we will focus on a priori estimates. This means that from Section
3 to Section 6, we will assume implicitly that we already have a solution of (1.1) on [0, T ] with all
necessary smoothness, and we will collect properties and estimates about this solution. Only in
Section 7 will we describe the way of constructing solutions.

3.1 Norms and notation

Let γ ≥ 1, r ∈ R, τ > 0. We introduce a refined two-dimensional Gevrey norm

‖f‖2γ,r,τ =
∑
j≥0

M2
j

∥∥∂jxf∥∥2

L2
x,y(T×[0,1])

, where Mj =
(j + 1)rτ j+1

(j!)γ
. (3.1)

Note that the L2 norm in space is only used on Ω = T × [0, 1], although the functions may be
defined on the half-space T× [0,∞). We note that if r′ ≥ r then ‖·‖γ,r′,τ ≥ ‖·‖γ,r,τ .
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For functions which are independent of the y variable, we use the one-dimensional counterpart

|f |2γ,r,τ =
∑
j≥0

M2
j

∥∥∂jxf∥∥2

L2
x(T)

,

where Mj is defined as before. Similarly, if r′ ≥ r then |·|γ,r′,τ ≥ |·|γ,r,τ .

Let τ0, τ1 as in the theorem, and let τ0 such that τ0 > τ0 > τ1. Throughout the paper, the
Gevrey-class radius τ will be defined by

τ(t) = τ0 exp(−βt), (3.2)

where β ≥ 1, t ∈ [0, T ], and T always small enough so that τ(t) ≥ τ1. In particular τ̇(t) = −βτ(t).

We will use a . b to denote the existence of a constant C > 0, which may depend only on γ, τ0, τ1,
and r, such that a ≤ Cb. Similarly, will use a � b to denote the existence of a sufficiently large
constant C > 0, which may depend only on γ, τ0, τ1, and r, such that Ca ≤ b.

For any function f we use the notation

fj = Mj∂
j
xf (3.3)

where Mj is defined in (3.1) and depends on r, γ, and τ . With this notation we have

‖f‖2γ,r,τ =
∑
j≥0

‖fj‖2L2
x,y

and |f |2γ,r,τ =
∑
j≥0

‖fj‖2L2
x
.

3.2 A boundary layer lift

The boundary condition (2.6b) in the vorticity evolution (2.6) motivates the introduction of a
boundary layer lift for the the vorticity, which we describe next. Throughout the paper we appeal
to Gevrey estimates for the system

(∂t − ∂2
y)ω[ = 0 (3.4a)

(∂yω
[ + 2ω[)|y=0 = ∂xh|y=0 (3.4b)

ω[|t=0 = 0 (3.4c)

posed for t ∈ [0, T ], x ∈ T, and y ∈ R+. Here h is a placeholder for −
(∫ 1

0 u
2 dy −

∫
T
∫ 1

0 u
2 dydx

)
.

Since the boundary datum for ω[ is a pure x derivative (and this is the only nontrivial datum), we
note that (3.4) immediately implies that

∫
T ω

[(x, y, t)dx = 0, for any y ≥ 0. We also define

u[(x, y) =

∫ y

+∞
ω[(x, z)dz (3.5)

v[(x, y) =

∫ +∞

y
∂xu

[(x, z)dz. (3.6)
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Lemma 3.1. Let r ∈ R, β ≥ 1 and T > 0 such that τ(t) ≥ τ1 for t ∈ [0, T ]. The boundary layer
vorticity ω[ obeys ∫ t

0

∥∥∥ω[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β3/2

∫ t

0
|h(s)|2γ,r+γ− 3

4
,τ(s) ds (3.7a)∫ t

0

∥∥∥y ω[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β5/2

∫ t

0
|h(s)|2γ,r+γ− 5

4
,τ(s) ds (3.7b)∫ t

0

∥∥∥∂yω[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β1/2

∫ t

0
|h(s)|2γ,r+γ− 1

4
,τ(s) ds (3.7c)∫ t

0

∥∥∥y∂yω[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β3/2

∫ t

0
|h(s)|2γ,r+γ− 3

4
,τ(s) ds (3.7d)∫ t

0

∣∣∣ω[(s)|y=1

∣∣∣2
γ,r,τ(s)

ds .
1

β20

∫ t

0
|h(s)|2γ,r+γ−10,τ(s) ds (3.7e)∫ t

0

∣∣∣∂yω[(s)|y=1

∣∣∣2
γ,r,τ(s)

ds .
1

β20

∫ t

0
|h(s)|2γ,r+γ−10,τ(s) ds, (3.7f)

the boundary layer velocity u[ obeys∫ t

0

∥∥∥u[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β5/2

∫ t

0
|h(s)|2γ,r+γ− 5

4
,τ(s) ds (3.8a)∫ t

0

∥∥∥yu[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β7/2

∫ t

0
|h(s)|2γ,r+γ− 7

4
,τ(s) ds, (3.8b)∫ t

0

∣∣∣u[(s)|y= 1
2

∣∣∣2
γ,r,τ(s)

ds .
1

β20

∫ t

0
|h(s)|2γ,r+γ−10,τ(s) ds, (3.8c)

and the boundary layer velocity v[ satisfies∫ t

0

∥∥∥v[(s)∥∥∥2

γ,r,τ(s)
ds .

1

β7/2

∫ t

0
|h(s)|2γ,r+2γ− 7

4
,τ(s) ds (3.9a)∫ t

0

∣∣∣v[|y=0(s)
∣∣∣2
γ,r,τ(s)

ds .
1

β3

∫ t

0
|h(s)|2γ,r+2γ− 3

2
,τ(s) ds (3.9b)∫ t

0

∣∣∣v[|y=1(s)
∣∣∣2
γ,r,τ(s)

ds .
1

β20

∫ t

0
|h(s)|2γ,r+γ−10,τ(s) ds (3.9c)

for all t ∈ [0, T ].

Proof of Lemma 3.1. In view of (3.2), (3.3), and (3.4), the function ω[j = Mj∂
j
xω[ obeys equations

(∂t + β(j + 1)− ∂2
y)ω[j = 0 (3.10a)

(∂yω
[
j + 2ω[j)|y=0 = ∂xhj |y=0 =

Mj

Mj+1
hj+1 (3.10b)

ω[j |t=0 = 0. (3.10c)

For fixed x ∈ T we define fj(x, t) =
Mj

Mj+1
hj+1(x, t) for t ∈ [0, T ], and fj(x, t) = 0 for t ∈ R \ [0, T ].

Pointwise in x and y we take a Fourier transform in time and solve in L2(Rt×Tx×R+
y ) the equation

(∂t + β(j + 1)− ∂2
y)ω̄[j = 0

(∂yω̄
[
j + 2ω̄[j)|y=0 = fj .

9



The solution is obtained by taking the inverse Fourier transform in time (we let ζ denote the dual
Fourier variable to t) of the function

ˆ̄ω[j(ζ, x, y) =
f̂j(ζ, x)

2−
√
β(j + 1) + iζ

e−y
√
β(j+1)+iζ . (3.12)

We implicitly assume here that β > 4 so that for all j ∈ N, for all ζ with Imζ ≤ 0,

|2−
√
β(j + 1) + iζ| ≥ |

√
β(j + 1) + iζ| − 2 ≥

√
β(j + 1)− Imζ − 2 ≥

√
β − 2 > 0. (3.13)

We will make a crucial use of

Lemma 3.2. The following two properties hold

• ω̄[j ≡ 0 for t < 0.

• ω̄[j ≡ ω[j for t ∈ [0, T ].

The proof is postponed to Appendix A. This lemma will allow us to use the explicit formula (3.12)
to obtain estimates on ω[j , starting with (3.7a)-(3.7f).

Let us detail the derivation of (3.7a). A simple calculation based on (3.12) yields

‖ ˆ̄ω[j‖2L2
ζ,x,y
≤ C

(β(j + 1))3/2
‖f̂j‖2L2

ζ,x

for a constant C independent of j (and obviously from T , which is only involved in the definition
of fj). By Plancherel formula in time:

‖ω̄[j‖2L2
t,x,y
≤ C

(β(j + 1))3/2
‖fj‖2L2

t,x
=

C

β(j + 1)3/2

(
Mj

Mj+1

)2 ∫ T

0
‖hj+1(s)‖2L2

x
ds (3.14)

This implies (by the second item of Lemma 3.2)∫ T

0
‖ω[j(s)‖2L2

x,y
ds ≤ C ′

β3/2
(j + 1)2γ− 3

2

∫ T

0
‖hj+1(s)‖2L2

x
ds

Multiplying by (j + 1)2r and summing over j, we obtain the inequality (3.7a) in the special case
t = T . For the general case t ∈ (0, T ), the idea is to slightly modify ω[j . Namely, instead of

extending
Mj

Mj+1
hj+1 by zero outside (0, T ), and then solving the heat equation with the extension

fj as a boundary data, we extend
Mj

Mj+1
hj+1|(0,t) by zero outside (0, t). We then solve the heat

equation with this modified boundary data f tj , which is zero outside (0, t), resulting in a new ω[,tj .

Obviously, Lemma 3.2 and the previous calculation remain true with T replaced by t, ω[j replaced

by ω[,tj . This yields (3.7a). Inequalities (3.7b) to (3.8b) follow very similar arguments, that we skip
for brevity.

In the case of (3.9a), we need to take into account one more x-derivative. A simple calculation
yields (with obvious notations):

‖ˆ̄v[j‖2L2
ζ,x,y
≤ C

(β(j + 1))7/2
‖∂xf̂j‖2L2

ζ,x

10



The extra factor of (β(j + 1))2 at the denominator compared to (3.14) comes from taking two
antiderivatives in y, while f̂j is replaced by ∂xf̂j due to the extra x-derivative in (3.6). It follows
that ∫ T

0
‖v[j(s)‖2L2

x,y
ds ≤ C

β7/2
(j + 1)2γ− 7

2

∫ T

0
‖∂xhj+1(s)‖2L2

x
ds

and using that |∂xhj+1| . Mj+1

Mj+2
|hj+2| . (j + 2)γ |hj+2|, we get∫ T

0
‖v[j(s)‖2L2

x,y
ds ≤ C

β7/2
(j + 1)4γ− 7

2

∫ T

0
‖hj+2(s)‖2L2

x
ds.

Multiplying by (j + 1)2r and summing over j yields (3.9a) for t = T , while the case of an arbitrary
time t is treated with the modification explained above. The pointwise estimate (3.9b), taken at
y = 0, follows from the inequality

‖ˆ̄v[j |y=0‖2L2
ζ,x
≤ C

(β(j + 1))3
‖∂xf̂j‖2L2

ζ,x
.

The pointwise estimates (3.7f), (3.8c), and (3.9c), taken at y = 1 or y = 1/2 are much better: all

boundary layer terms taken at y = 1 contain an exponential factor e−
√
β(j+1)+iξ which allows to

gain an arbitrary number of powers of βj (which explains the arbitrary factor 1
β20 and the index

r − γ − 10).

Lemma 3.3. Let r ∈ R, β ≥ 1 and T > 0 such that τ(t) ≥ τ1 for t ∈ [0, T ]. We have

sup
[0,t]

∥∥∥ω[(s)∥∥∥2

γ,r,τ(s)
.

1

β1/2

∫ t

0
|h(s)|2γ,r+γ− 1

4
,τ(s) ds (3.15a)

for all t ∈ [0, T ].

Proof of Lemma 3.3. In order to establish the estimate (3.15a), we rely on the explicit formula
(3.12), which gives an L1 control of the Fourier transform:

‖ ˆ̄ω[j‖L1
ζ(L2

x,y) .
∫
R

1

|
√
β(j + 1) + iζ − 2|

(∫
R+

∫
T

∣∣∣e−2y
√
β(j+1)+iζ

∣∣∣ |f̂j(ζ, x)|2dxdy
)1/2

dζ

.
∫
R

1

|
√
β(j + 1) + iζ|3/4

(∫
T
|f̂j(ζ, x)|2dx

)1/2

dζ

.

(∫
R

1

|
√
β(j + 1) + iζ|3/2

dζ

)1/2(∫
R

∫
T
|f̂j(ζ, x)|2dxdζ

)1/2

.
1

(β(j + 1))1/4

(∫
R

∫
T
|f̂j(ζ, x)|2dxdζ

)1/2

.

This implies that

sup
t∈R
‖ω[j(t)‖L2

x,y
.

1

(β(j + 1))1/4

(∫
R

∫
T
|fj+1(t, x)|2dt

)1/2

Restricting the left-hand side to the supremum over (0, T ), we get

sup
t∈(0,T )

‖ω[j(t)‖2L2
x,y

.
1

(β(j + 1))−2γ+1/2

∫ T

0

∫
T
‖hj+1(t, x)|2dt.

Multiplying by (j+1)2r and summing over j, we get (3.15a) for t = T . The general case of t ∈ (0, T )
is treated as in the proof of Lemma 3.1.
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3.3 The interior vorticity controls the boundary layer lift

So far, we have only focused on the lower boundary layer lift, which is very small near y = 0. We
introduce the notation

ωbl(x, y, t) = ω[(x, y, t)− ω[(x, 1− y, t) (3.16a)

ubl(x, y, t) = u[(x, y, t) + u[(x, 1− y, t) (3.16b)

vbl(x, y, t) = −
∫ y

0
∂xu

bl(x, z, t)dz (3.16c)

to denote the cumulative boundary layer profile, and

ωin(x, y, t) = ω(x, y, t)− ωbl(x, y, t) (3.17a)

uin(x, y, t) = u(x, y, t)− ubl(x, y, t) (3.17b)

vin(x, y, t) = v(x, y, t)− vbl(x, y, t) (3.17c)

to denote the interior vorticity, horizontal velocity component, and vertical velocity component. In
view of (3.3), (3.16) and (3.17) also define the objects ωblj , u

bl
j , v

bl
j in terms of the function h, and

ωinj , u
in
j , v

in
j in terms of h and ω.

Lemma 3.4. Let γ ∈ [1, 5/4], r > 2γ + 2, M > 0. Assume ω = ∂yu is such that

sup
[0,T ]
‖ω(t)‖γ, r

4
,τ(t) ≤M (3.18)

and define

h(x, t) = −
∫ 1

0
(u(x, y, t))2 dy +

∫
T

∫ 1

0
(u(x, y, t))2 dydx.

With h as above, let ω[ be defined via (3.4), and let ωin be as defined in (3.17). Then there exists
β∗ = β∗(τ0, τ1, γ, r,M) such that: if β ≥ β∗, if T is such that τ(t) ≥ τ1 for t ∈ [0, T ], then∫ t

0
|h(s)|2γ,r,τ(s) ds .M2

∫ t

0

∥∥ωin(s)
∥∥2

γ,r,τ(s)
ds

for any t ∈ [0, T ].

Note that with h defined as above we have ∂xh = −∂x
∫ 1

0 u
2 dy, so that the additional kinetic energy

term in h is not seen by ωbl. Combining Lemmas 3.1 and 3.3 and 3.4, we see that condition (3.18)
implies a sharp control of the Gevrey norm of the boundary layer profiles ωbl, ubl, and vbl, solely
in terms of the Gevrey norm of the interior vorticity ωin and of the constants M and β.

Proof of Lemma 3.4. For j = 0 we have h0 = M0h = τh, and since
∫
T h(x, t) dx = 0, we may apply

the Poincaré inequality in the x variable:

‖h0‖L2
x
. ‖∂xh0‖L2

x
. ‖h1‖L2

x
. (3.19)

Hence, it is enough to estimate hj for j ≥ 1. By the Leibniz rule we have

−hj(x, t) =

j∑
`=0

(
j

`

)
Mj

Mj−`M`

∫ 1

0
u`(x, y, t)uj−`(x, y, t)dy. (3.20)
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We can without loss of generality estimate only the half-sum
∑

0≤`≤j/2, as the other half-sum can

be put in the same form through the change of index `′ = j − `.

First let us treat the case ` ≥ 1. The compatibility condition (1.2) yields
∫ 1

0 u`(x, y)dy = 0, which
directly implies that∫ 1

0
u`(x, y)uinj−`(x, y)dy =

∫ 1

0
u`(x, y)

(
uinj−`(x, y)−

∫ 1

0
uinj−`(x, z)dz

)
dy.

Using the 1D Gagliardo-Nirenberg inequality, the 1D Hardy inequality, the 1D Poincaré inequality,
and the fact that u`|y=0 = u`|y=1 = 0, we have that for ` ≥ 1:∥∥∥∥∫ 1

0
u`(x, y)uj−`(x, y)dy

∥∥∥∥
L2
x

≤
∥∥∥∥∫ 1

0
u`(x, y)uinj−`(x, y)dy

∥∥∥∥
L2
x

+

∥∥∥∥∫ 1

0
u`(x, y)ublj−`(x, y)dy

∥∥∥∥
L2
x

≤ ‖u`‖L∞x L2
y

∥∥∥∥uinj−` − ∫ 1

0
uinj−`dz

∥∥∥∥
L2
x,y

+

∥∥∥∥ u`
y(1− y)

∥∥∥∥
L∞x L

2
y

∥∥∥y(1− y)ublj−`

∥∥∥
L2
x,y

. ‖u`‖
1/2
L2
x,y
‖∂xu`‖

1/2
L2
x,y

∥∥ωinj−`∥∥L2
x,y

+ ‖ω`‖
1/2
L2
x,y
‖∂xω`‖

1/2
L2
x,y

∥∥∥y(1− y)ublj−`

∥∥∥
L2
x,y

.
M

1/2
`

M
1/2
`+1

‖ω`‖
1/2
L2
x,y
‖ω`+1‖

1/2
L2
x,y

(∥∥ωinj−`∥∥L2
x,y

+
∥∥∥y(1− y)ublj−`

∥∥∥
L2
x,y

)
.

For ` = 0, we estimate the L2
x norm of

∫ 1
0 u0 u

bl
j dy precisely as in the case ` ≥ 1. For the interior

piece, since j ≥ 1 we may use (1.2) and the Poincaré inequality in y to estimate∥∥∥∥∫ 1

0
u0(x, y)uinj (x, y)dy

∥∥∥∥
L2
x

. ‖u0‖L∞x L2
y

(∥∥∥∥uinj (x, y)−
∫ 1

0
uinj (x, z)dz

∥∥∥∥
L2
x,y

+

∥∥∥∥∫ 1

0
ublj (x, z)dz

∥∥∥∥
L2
x,y

)

.M

(∥∥ωinj ∥∥L2
x,y

+

∥∥∥∥∫ 1

0
ublj (x, z)dz

∥∥∥∥
L2
x

)

since ‖u0‖L∞x L2
y
. ‖ω0‖L∞x L2

y
. ‖ω0‖L2

x,y
+ ‖ω1‖L2

x,y
.M . At this point we note that

∫ 1

0
ublj (x, y)dy = −

∫ 1/2

0
yωblj (x, y)dy + ublj (x, 1/2) +

∫ 1

1/2
(1− y)ωblj (x, y)dz

so that ∥∥∥∥∫ 1

0
ublj (x, y)dy

∥∥∥∥
L2
x

.
∥∥∥yω[j∥∥∥

L2
x,y

+
∥∥∥u[j(x, 1/2)

∥∥∥
L2
x

.

Returning to (3.20), and using that in this range of `, namely less than j/2, we have(
j

`

)
Mj

Mj−`M
1/2
` M

1/2
`+1

.
1

τ1/2

(
j

`

)1−γ 1

(`+ 1)r−γ/2
.

1

(`+ 1)r−γ/2
,
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for j ≥ 1 we obtain

‖hj‖L2
x
.
dj/2e∑
`=1

(
j

`

)
Mj

Mj−`M
1/2
` M

1/2
`+1

‖ω`‖
1/2
L2
x,y
‖ω`+1‖

1/2
L2
x,y

(∥∥ωinj−`∥∥L2
x,y

+
∥∥∥y(1− y)ublj−`

∥∥∥
L2
x,y

)
+M

(∥∥ωinj ∥∥L2
x,y

+
∥∥∥yu[j∥∥∥

L2
x,y

+
∥∥∥yω[j∥∥∥

L2
x,y

+
∥∥∥u[j(x, 1/2)

∥∥∥
L2
x

)

.
dj/2e∑
`=1

(l + 1)−
3r
4 ‖ω`‖

1/2
L2
x,y
‖ω`+1‖

1/2
L2
x,y

(`+ 1)
r
4
− γ

2

(∥∥ωinj−`∥∥L2
x,y

+
∥∥∥yu[j−`∥∥∥

L2
x,y

)
+M

(∥∥ωinj ∥∥L2
x,y

+
∥∥∥yu[j∥∥∥

L2
x,y

+
∥∥∥yω[j∥∥∥

L2
x,y

+
∥∥∥u[j(x, 1/2)

∥∥∥
L2
x

)
. (3.21)

From (3.19) and (3.21), using the discrete Hölder and Young inequalities, inequalities (3.8b), (3.8c),
(3.7b) and assumption (3.18) we obtain from the above that∫ t

0
|h(s)|2γ,r,τ(s) ds =

∫ t

0

∑
j≥0

‖hj(s)‖2L2
x
ds

. sup
[0,t]

∑
j≥0

(j + 1)−
3r
4 (‖ωj‖L2

x,y
+ ‖ωj+1‖L2

x,y
)

(j + 1)
r
4
− γ

2

2 ∫ t

0

(∑
j≥0

∥∥ωinj ∥∥2

L2
x,y

+
∑
j≥0

∥∥∥yu[j∥∥∥2

L2
x,y

)
ds

+M2

∫ t

0

(∥∥ωin(s)
∥∥2

γ,r,τ(s)
+
∥∥∥yu[(s)∥∥∥2

γ,r,τ(s)
+
∥∥∥yω[(s)∥∥∥2

γ,r,τ(s)
+
∣∣∣u[(s)|y=1/2

∣∣∣2
γ,r,τ(s)

)
ds

.M2

(∫ t

0

∥∥ωin(s)
∥∥2

γ,r,τ(s)
ds+

∫ t

0

∥∥∥yu[(s)∥∥∥2

γ,r,τ(s)
+
∥∥∥yω[∥∥∥2

γ,r,τ(s)
+
∣∣∣u[|y=1/2

∣∣∣2
γ,r,τ(s)

ds

)
.M2

(∫ t

0

∥∥ωin(s)
∥∥2

γ,r,τ(s)
ds+

1

β5/2

∫ t

0
|h(s)|2γ,r+γ− 5

4
,τ(s) ds

)
.

Here we have used that r/4− γ/2 > 1/2. The proof is completed using that M2β−5/2 � 1, which
follows once β∗ is taken sufficiently large, and the fact that γ ≤ 5/4, which allows us to absorb the
second term in the right side of the above into the left side.

4 Estimates involving ωin

From the vorticity evolution (2.6), and the definition of ωbl (3.16) (which in particular obeys∫
T ω

bl(x, y, t)dx = 0 for any y ≥ 0), we obtain that the equation obeyed by the interior vorticity is

∂tω
in − ∂2

yω
in + u∂xω

in + v∂yω
in = −u∂xωbl − v∂yωbl (4.1a)

∂yω
in|y=0,1 = ω̃in|y=1 − ω̃in|y=0 + 2ω[|y=1 − ∂yω[|y=1. (4.1b)

ωin(0) = ω0 (4.1c)

The initial condition for ωin is obtained from the fact that ωbl(0) = 0, which holds in view of (3.4c).
The main a priori estimate for ωin is provided by the following Proposition.

Proposition 4.1. Let M, δ0, γ ∈ [1, 9/8] be given, and let β∗ be as in Lemma 3.4. There exists
r0 = r0(γ) such that for all r ≥ r0, one can find β0 = β0(M, δ0, τ0, τ1, r, γ) > max(β∗, 4) satisfying:
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if β ≥ β0 and T ≤ 1 is small enough so that τ(t) ≥ τ1 for all t ∈ [0, T ], under the assumptions

sup
t∈[0,T ]

‖ω(t)‖γ, 3r
4
,τ(t) + sup

t∈[0,T ]
‖∂yω(t)‖γ, r

2
,τ(t) ≤M (4.2)

and

δ0 ≤ ∂yω ≤
1

δ0
, (4.3)

sup
t∈[0,T ]

∥∥∂2
yω(t)

∥∥
L∞x L

2
y
≤M, (4.4)

we have that

sup
s∈[0,t]

∥∥ωin(s)
∥∥2

γ,r,τ(s)
+

∫ t

0

∥∥∂yωin(s)
∥∥2

γ,r,τ(s)
ds+β

∫ t

0

∥∥ωin(s)
∥∥2

γ,r+ 1
2
,τ(s)

ds ≤ 1

δ2
0

‖ω(0)‖2γ,r,τ0 (4.5)

holds for all t ∈ [0, T ]. Moreover, as a consequence we obtain

sup
s∈[0,t]

‖ω(s)‖2γ,r−γ+ 3
4
,τ(s) +

∫ t

0
‖∂yω(s)‖2γ,r−γ+ 3

4
,τ(s) ds+ β

∫ t

0
‖ω(s)‖2γ,r−γ+ 5

4
,τ(s) ds ≤

4

δ2
0

‖ω(0)‖2γ,r,τ0
(4.6)

for all t ∈ [0, T ].

Proof of Proposition 4.1. Using the convention (3.3), from (4.1) we obtain

(∂t + β(j + 1)− ∂2
y)ωinj + (u∂x + v∂y)ω

in
j + vinj ∂yω

= −(u∂x + v∂y)ω
bl
j − vblj ∂yω −Mj [∂

j
x, u∂x + v∂y]ω + vj∂yω (4.7a)

∂yω
in
j |y=0,1 = ω̃inj |y=1 − ω̃inj |y=0 + 2ω[j |y=1 − ∂yω[j |y=1. (4.7b)

Note that as soon as j ≥ 1, we may replace ω̃inj |y=0,1 = ωinj |y=0,1 in (4.7b). We perform a “hydro-
static energy estimate” on (4.7), which is permissible in view of (4.3). That is, we multiply (4.7a)
with ωinj /∂yω and integrate over Ω = T × [0, 1]. We notably use the “hydrostatic trick”, which in
this case gives ∫

Ω
vinj ω

in
j dxdy = −

∫
Ω

(∫ y

0
∂xu

in
j

)
∂yu

in
j dxdy

=

∫
Ω
∂xu

in
j u

in
j dxdy −

∫
T

(∫ 1

0
∂xu

in
j

)
uinj |y=1dx

= −
∫
T

(∫ 1

0
∂xu

bl
j (x, y)dy

)
ublj (x, 1)dx.
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taking into account that
∫ 1

0 ∂xuj(x, y)dy = 0 and that uj |y=1 = 0. Thus, we obtain

1

2

d

dt

∥∥∥∥∥ ωinj√
∂yω

∥∥∥∥∥
2

L2

+ β(j + 1)

∥∥∥∥∥ ωinj√
∂yω

∥∥∥∥∥
2

L2

+

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

=

∫
T

(
∂yω

in
j ω

in
j

∂yω

∣∣∣
y=1
−
∂yω

in
j ω

in
j

∂yω

∣∣∣
y=0

)
dx+

∫
T

(∫ 1

0
∂xu

bl
j (x, y)dy

)
ublj (x, 1)dx

+

∫
Ω

∂yω
in
j ω

in
j

∂yω

∂2
yω

∂yω
dxdy − 1

2

∫
Ω

(ωinj )2

∂yω

(u∂x + v∂y)∂yω

∂yω
dxdy

−
∫

Ω
u∂xω

bl
j

ωinj
∂yω

dxdy −
∫

Ω
v∂yω

bl
j

ωinj
∂yω

dxdy −
∫

Ω
vblj ω

in
j dxdy

−
j∑

k=1

Mj

MkMj−k+1

(
j

k

)∫
Ω
ukωj−k+1

ωinj
∂yω

dxdy −
j−1∑
k=1

Mj

MkMj−k

(
j

k

)∫
Ω
vk∂yωj−k

ωinj
∂yω

dxdy

=: T1j + T2j + T3j − T4j − T5j − T6j − T7j − T8j − T9j . (4.8)

Summing over j, and integrating on [0, t), with t ≤ T , we obtain that

∥∥ωin(t)
∥∥2

γ,r,τ(t)
+ 2β

∫ t

0

∥∥ωin∥∥2

γ,r+1/2,τ
+

∫ t

0

∥∥∂yωin∥∥2

γ,r,τ

≤ 1

δ2
0

∥∥ωin0 ∥∥2

γ,r,τ0
+

1

δ0

∫ t

0

∑
j≥0

|T1j | −
1

2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

+ |T2j |+

|T3j |+ |T4j | −
1

2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

 ds

+
1

δ0

∫ t

0

∑
j≥0

|T5j |+ |T6j |+ |T7j |+ |T8j |+ |T9j |ds. (4.9)

The rest of the proof is dedicated to estimating the nine terms on the right side of (4.9).

The T1j bound. From (2.6b) and (4.7b) we obtain that

T1j =

∫
T

∂yω
in
j |y=0,1(ωinj |y=1 − ωinj |y=0)

∂yω|y=0,1
dx

=

∫
T

(ω̃inj |y=1 − ω̃inj |y=0)(ωinj |y=1 − ωinj |y=0)

∂yω|y=0,1
dx+

∫
T

(2ω[j |y=1 − ∂yω[j |y=1)(ωinj |y=1 − ωinj |y=0)

∂yω|y=0,1
dx

= T11j + T12j .

From the Gagliardo-Nirenberg inequality ‖f‖L∞(0,1) ≤ ‖f‖L2(0,1) +2 ‖f‖1/2
L2(0,1)

‖∂yf‖1/2L2(0,1)
, we have

|T11j | .
1

δ0

(∥∥ωinj ∥∥2

L2
x,y

+
∥∥ωinj ∥∥L2

x,y

∥∥∂yωinj ∥∥L2
x,y

)
.

Using Cauchy-Schwartz, we similarly obtain

|T12j | . |T11j |+
1

δ0

(∥∥∥ω[j |y=1

∥∥∥2

L2
x

+
∥∥∥∂yω[j |y=1

∥∥∥2

L2
x

)
.
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Summing up the above two estimates, and summing over j ≥ 0 we obtain that

∑
j≥0

|T1j | −
1

2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

 .
1

δ2
0

∥∥ωin∥∥2

γ,r,τ
+

1

δ0

(∣∣∣ω[j |y=1

∣∣∣2
γ,r,τ

+
∣∣∣∂yω[j |y=1

∣∣∣2
γ,r,τ

)
.

Using (3.7e)–(3.7f), and combining the resulting bound with Lemma 3.4 (which may be used due
to assumption (4.2)), we arrive at

∫ t

0

∑
j≥0

|T1j | −
1

2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

 .
1

δ2
0

∫ t

0

∥∥ωin∥∥2

γ,r,τ
+

1

δ0β20

∫ t

0
|h|2γ,r+γ−10,τ

.
1

δ2
0

∫ t

0

∥∥ωin∥∥2

γ,r,τ
(4.10)

where we have used that δ0M
2 ≤ β20.

The T2j bound. From (3.16) we obtain that

T2j = 2

∫
T

(∫ 1

0
∂xu

[
j(x, y)dy

)(
u[j(x, 0) + u[j(x, 1)

)
dx

= 2

∫
T

(
v[j(x, 0)− v[j(x, 1)

)(
u[j(x, 0) + u[j(x, 1)

)
dx

and thus, also appealing to Gagliardo-Nirenberg, we obtain

|T2j | ≤ 2

(∥∥∥v[j |y=0

∥∥∥
L2
x

+
∥∥∥v[j |y=1

∥∥∥
L2
x

)(∥∥∥u[j |y=0

∥∥∥
L2
x

+
∥∥∥u[j |y=1

∥∥∥
L2
x

)

.

∥∥∥v[j |y=0

∥∥∥
L2
x

+
∥∥∥v[j |y=1

∥∥∥
L2
x

(j + 1)
3
2
−γ

(
(j + 1)

3
2
−γ
∥∥∥u[j∥∥∥

L2
x,y

+ (j + 1)
7
8
− γ

2

∥∥∥u[j∥∥∥1/2

L2
x,y

(j + 1)
5
8
− γ

2

∥∥∥ω[j∥∥∥1/2

L2
x,y

)
,

and summing over j we arrive at∑
j≥0

|T2j | .
(∣∣∣v[|y=0

∣∣∣
γ,r+γ− 3

2
,τ

+
∣∣∣v[j |y=1

∣∣∣
γ,r+γ− 3

2
,τ

)(∥∥∥u[∥∥∥
γ,r+ 3

2
−γ,τ

+
∥∥∥u[∥∥∥1/2

γ,r+ 7
4
−γ,τ

∥∥∥ω[∥∥∥1/2

γ,r+ 5
4
−γ,τ

)

Upon integrating on [0, t), the above terms are bounded using (3.7a), (3.8a), (3.9b), and (3.9c),
after which Lemma 3.4 is used to yield∫ t

0

∑
j≥0

|T2j | .
1

β5/2

(∫ t

0
|h|2γ,r+3γ−3,τ

)1/2
((∫ t

0
|h|2γ,r+ 1

4
,τ

)1/2

+

(∫ t

0
|h|2γ,r+ 1

2
,τ

)1/2
)

.
M2

β5/2

(∫ t

0

∥∥ωin∥∥2

γ,r+3γ−3,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

For the last inequality, we have applied Lemma 3.4 to both factors at the right-hand side, which is
legitimate under the assumptions

r + min{3γ − 3,
1

2
} ≥ 2γ + 2, sup

[0,T ]
‖ω(t)‖γ, 1

4(r+max{3γ−3, 1
2
}),τ(t) ≤M.

17



Both assumptions are satisfied for r > r(γ) large enough, the second one being deduced from (4.2).
Thus we have proven ∫ t

0

∑
j≥0

|T2j | .
M2

β5/2

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ
. (4.11)

The T3j and T4j bounds. These are the only terms for which assumption (4.4) is used. In view
of (4.3)–(4.4) and the Gagliardo-Nirenberg inequality in y, we immediately obtain

∑
j≥0

|T3j | −
1

4

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
∑
j≥0

 M

δ
3/2
0

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
L2
xL

2
y

∥∥ωinj ∥∥L2
xL
∞
y
− 1

8

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
∑
j≥0

 M

δ
3/2
0

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
L2

∥∥ωinj ∥∥L2 +
1

δ
1/4
0

∥∥ωinj ∥∥1/2

L2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
1/2

L2

− 1

8

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
M4

δ7
0

∥∥ωin∥∥2

γ,r,τ

and using (4.2) combined with (4.3)–(4.4) we also obtain

∑
j≥0

|T4j | −
1

4

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
∑
j≥0

M2

δ2
0

∥∥ωinj ∥∥L2
xL

2
y

∥∥ωinj ∥∥L2
xL
∞
y
− 1

4

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
∑
j≥0

M2

δ2
0

∥∥ωinj ∥∥L2

∥∥ωinj ∥∥L2 +
1

δ
1/4
0

∥∥ωinj ∥∥1/2

L2

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
1/2

L2

− 1

4

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2


.
M8/3

δ3
0

∥∥ωin∥∥2

γ,r,τ
.

Here we have also used the second term on the left side of (4.2), in order to estimate ‖∂x∂yω‖L∞x L2
y
.

Thus, ∫ t

0

∑
j≥0

|T3j |+ |T4j | −
1

4

∥∥∥∥∥ ∂yωinj√
∂yω

∥∥∥∥∥
2

L2

 .
M4

δ7
0

∫ t

0

∥∥ωin∥∥2

γ,r,τ
. (4.12)

The T5j bound. As it turns out, this term creates the most stringent assumption on γ, namely
that γ ≤ 9/8. Since u|y=0,1 = 0, using (4.2) and (4.4), we have

|T5j | ≤
1

δ0

∥∥∥∥ u

y(1− y)

∥∥∥∥
L∞

∥∥∥y(1− y)∂xω
bl
j

∥∥∥
L2

∥∥ωinj ∥∥L2

.
‖ω‖L∞
δ0

Mj

Mj+1(j + 1)1/2

∥∥∥yω[j+1

∥∥∥
L2

(j + 1)1/2
∥∥ωinj ∥∥L2
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and thus, upon summing over j and integrating on [0, t] we arrive at∫ t

0

∑
j≥0

|T5j | .
M

δ0

(∫ t

0

∥∥∥yω[∥∥∥2

γ,r+γ− 1
2
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.

We now appeal to (3.7b) and to Lemma 3.4, which is again legitimate for r > r(γ) large enough.
We obtain ∫ t

0

∑
j≥0

|T5j | .
M

δ0β5/4

(∫ t

0
|h|2γ,r+2γ− 7

4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.
M2

δ0β5/4

(∫ t

0

∥∥ωin∥∥2

γ,r+2γ− 7
4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.
M2

δ0β5/4

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ
. (4.13)

In the last inequality we have used that 2γ − 7/4 ≤ 1/2, which holds since γ ≤ 9/8.

The T6j bound. Similarly, using that v|y=0,1 = 0, we obtain

|T6j | ≤
1

δ0

∥∥∥∥ v

y(1− y)

∥∥∥∥
L∞

∥∥∥y(1− y)∂yω
bl
j

∥∥∥
L2

∥∥ωinj ∥∥L2

.
‖∂xu‖L∞

δ0

∥∥∥y∂yω[j∥∥∥
L2

∥∥ωinj ∥∥L2

.
M

δ0

∥∥∥y∂yω[j∥∥∥
L2

(j + 1)1/2

(
(j + 1)1/2

∥∥ωinj ∥∥L2

)
,

so that ∫ t

0

∑
j≥0

|T6j | .
M

δ0

(∫ t

0

∥∥∥y∂yω[∥∥∥2

γ,r− 1
2
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

Using (3.7d), and then Lemma 3.4 (applicable for r > r(γ) large enough, by (4.2)), we obtain∫ t

0

∑
j≥0

|T6j | .
M

δ0β3/4

(∫ t

0
|h|2γ,r+γ− 7

4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.
M2

δ0β3/4

(∫ t

0

∥∥ωin∥∥2

γ,r,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

(4.14)

since γ ≤ 7/4.

The T7j bound. For T7j we directly estimate∑
j≥0

|T7j | ≤
∑
j≥0

1

δ0
(j + 1)−1/2

∥∥∥v[j∥∥∥
L2

(j + 1)1/2
∥∥ωinj ∥∥L2 .

1

δ0

∥∥∥v[∥∥∥
γ,r− 1

2
,τ

∥∥ωin∥∥
γ,r+ 1

2
,τ
.
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Integrating in time, appealing to (3.9a), and still using Lemma 3.4 we obtain∫ t

0

∑
j≥0

|T7j | .
1

δ0β7/4

(∫ t

0
|h|2γ,r+2γ− 9

4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.
M

δ0β7/4

(∫ t

0

∥∥ωin∥∥2

γ,r+2γ− 9
4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

.
M

δ0β7/4

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

(4.15)

as 2γ − 9/4 ≤ 1/2.

The T8j bound. We note that

Mj

MkMj−k+1

(
j

k

)
.

(
j

k

)1−γ (j + 1)r

(k + 1)r(j − k + 1)r−γ
,

and for 1 ≤ k ≤ [j/2] it is convenient to use
(
j
k

)
≥ (j − k + 1)/k. We obtain

|T8j | .
[j/2]∑
k=1

j1/2(j − k + 1)1/2

(k + 1)r−γ+1

∣∣∣∣∣
∫

Ω
ukωj−k+1

ωinj
∂yω

∣∣∣∣∣+

j∑
k=[j/2]+1

1

(j − k + 1)r−γ

∣∣∣∣∣
∫

Ω
ukωj−k+1

ωinj
∂yω

∣∣∣∣∣
=: T8j,low + T8j,high.

In order to estimate T8j,low, we split ωj−k+1 = ωinj−k+1 + ωblj−k+1. First, using the Gagliardo-
Nirenberg inequality on Ω and the Poincaré inequality in x (since k ≥ 1) we may bound

‖ωk‖L∞ . ‖ωk‖L2 + ‖∂xωk‖L2 + (‖ωk‖
1/2
L2 + ‖∂xωk‖

1/2
L2 )(‖∂yωk‖

1/2
L2 + ‖∂x∂yωk‖

1/2
L2 )

. ‖∂xωk‖L2 + ‖∂xωk‖
1/2
L2 ‖∂x∂yωk‖

1/2
L2

. kγ
(
‖ωk+1‖L2 + ‖∂yωk+1‖L2

)
(4.16)

from which we conclude that we estimate∣∣∣∣∣
∫

Ω
ukω

bl
j−k+1

ωinj
∂yω

dxdy

∣∣∣∣∣ . 1

δ0

∥∥∥∥ uk
y(1− y)

∥∥∥∥
L∞

∥∥∥y(1− y)ωblj−k+1

∥∥∥
L2

∥∥ωinj ∥∥L2

.
kγ

δ0

(
‖ωk+1‖L2 + ‖∂yωk+1‖L2

) ∥∥∥yω[j−k+1

∥∥∥
L2

∥∥ωinj ∥∥L2

.
kγ+r/2

δ0

‖ωk+1‖L2 + ‖∂yωk+1‖L2

kr/2

∥∥∥yω[j−k+1

∥∥∥
L2

∥∥ωinj ∥∥L2 .

Similarly, ∣∣∣∣∣
∫

Ω
ukω

in
j−k+1

ωinj
∂yω

dxdy

∣∣∣∣∣ . kγ+r/2

δ0

‖ωk+1‖L2 + ‖∂yωk+1‖L2

kr/2

∥∥ωinj−k+1

∥∥
L2

∥∥ωinj ∥∥L2
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so that from the discrete Young and Hölder inequalities, we obtain∑
j≥0

T8j,low

.
1

δ0

∑
j 6=0

jγ+r/2

(j + 1)r−γ+1

‖ωj+1‖L2 + ‖∂yωj+1‖L2

jr/2

 (∥∥∥y ω[∥∥∥
γ,r+ 1

2
,τ

+
∥∥ωin∥∥

γ,r+ 1
2
,τ

)∥∥ωin∥∥
γ,r+ 1

2
,τ

.
1

δ0

(
‖ω‖γ, r

2
+ ‖∂yω‖γ, r

2

)(∥∥∥y ω[∥∥∥
γ,r+ 1

2
,τ

+
∥∥ωin∥∥

γ,r+ 1
2
,τ

)∥∥ωin∥∥
γ,r+ 1

2
,τ

.
M

δ0

(∥∥∥y ω[∥∥∥
γ,r+ 1

2
,τ

+
∥∥ωin∥∥

γ,r+ 1
2
,τ

)∥∥ωin∥∥
γ,r+ 1

2
,τ
. (4.17)

For the second inequality, we have assumed that r/2 − 2γ + 1 > 1/2 (so that jγ+r/2

(j+1)r−γ+1 is square

summable), and for the third inequality we have appealed to (4.2).

In order to bound T8j,high, we use that uk|y=0,1 = 0, and the 1D Poincaré inequality to obtain∣∣∣∣∣
∫

Ω
ukωj−k+1

ωinj
∂yω

dxdy

∣∣∣∣∣ . 1

δ0
‖uk‖L2

xL
∞
y
‖ωj−k+1‖L∞x L2

y

∥∥ωinj ∥∥L2

.
(j − k + 1)γ

δ0
‖ωk‖L2 ‖ωj−k+2‖L2

∥∥ωinj ∥∥L2

.
(j − k + 1)γ

δ0

∥∥ωink ∥∥L2 +
∥∥ωblk ∥∥L2

(k + 1)1/2
‖ωj−k+2‖L2 (j + 1)1/2

∥∥ωinj ∥∥L2 .

We again rely on discrete Young and Hölder inequalities, assume that r > 8
3γ + 2

3 (so that (j +

1)2γ−3r/4 is square summable), and use (4.2) to arrive at

∑
j≥0

T8j,high .
1

δ0

∑
j

(j + 1)2γ−3r/4 ‖ωj‖L2

(j + 1)r/4

 ∥∥ωin∥∥
γ,r+ 1

2
,τ

(∥∥ωin∥∥
γ,r,τ

+
∥∥∥ω[∥∥∥

γ,r− 1
2
,τ

)

.
M

δ0

∥∥ωin∥∥
γ,r+ 1

2
,τ

(∥∥ωin∥∥
γ,r− 1

2
,τ

+
∥∥∥ω[∥∥∥

γ,r− 1
2
,τ

)
. (4.18)

Combining (4.17), (4.18), integrating in time, using (3.7a), (3.7b), and Lemma 3.4 (which is appli-
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cable by assumption (4.2)), we arrive at∫ t

0

∑
j≥0

T8j .
M

δ0

((∫ t

0

∥∥∥y ω[∥∥∥2

γ,r+ 1
2
,τ

)1/2

+

(∫ t

0

∥∥∥ω[∥∥∥2

γ,r− 1
2
,τ

)1/2
)(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

+
M

δ0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

.
M

δ0β3/4

((∫ t

0
|h|2γ,r+γ− 3

4
,τ

)1/2

+

(∫ t

0
|h|2γ,r+γ− 5

4
,τ

)1/2
)(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

+
M

δ0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

.
M2

δ0β3/4

(∫ t

0

∥∥ωin∥∥2

γ,r+γ− 3
4
,τ

)1/2(∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

)1/2

+
M

δ0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

.
M2

δ0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

(4.19)

since γ ≤ 5/4.

The T9j bound. In order to estimate T9j we note that for 1 ≤ k ≤ j − 1 we have

Mj

MkMj−k

(
j

k

)
.

(
j

k

)1−γ (j + 1)r

(k + 1)r(j − k + 1)r
.

(
j

min{k, j − k}

)1−γ 1

(min{k, j − k})r

and similarly to T8j we decompose

T9j .
[j/2]∑
k=1

1

kr

∣∣∣∣∣
∫

Ω
vk∂yωj−k

ωinj
∂yω

∣∣∣∣∣+

j−1∑
k=[j/2]+1

1

(j − k)r−γ+1jγ−1

∣∣∣∣∣
∫

Ω
vk∂yωj−k

ωinj
∂yω

∣∣∣∣∣
=: T9j,low + T9j,high. (4.20)

First we treat the case k ≤ j/2. Using the Poincaré inequality in y (which is allowed since
uk+1|y=0,1 = 0) we obtain∣∣∣∣∣

∫
Ω
vk∂yωj−k

ωinj
∂yω

dxdy

∣∣∣∣∣ . 1

δ0

∥∥∥∥ vk
y(1− y)

∥∥∥∥
L∞
‖y(1− y)∂yωj−k‖L2

∥∥ωinj ∥∥L2

.
1

δ0
‖∂xuk‖L∞

(∥∥∂yωinj−k∥∥L2 +
∥∥∥y∂yω[j−k∥∥∥

L2

)∥∥ωinj ∥∥L2

.
kγ

δ0
‖ωk+1‖L∞x L2

y

(∥∥∂yωinj−k∥∥L2 +
∥∥∥y∂yω[j−k∥∥∥

L2

)∥∥ωinj ∥∥L2

Furthermore, using the 1D Gagliardo-Nirenberg and Poincaré inequalities in x, for 1 ≤ k ≤ [j/2]
we arrive at∣∣∣∣∣

∫
Ω
vk∂yωj−k

ωinj
∂yω

dxdy

∣∣∣∣∣ . k2γ+r/4

δ0

‖ωk+2‖L2

kr/4

(∥∥∂yωinj−k∥∥L2 +
∥∥∥y∂yω[j−k∥∥∥

L2

)∥∥ωinj ∥∥L2 .

Summing over j, assumng that r > 8
3γ + 2

3 , and appealing to (4.2) we obtain∑
j≥0

|T9j,low| .
‖ω‖γ, 3r

4
,τ

δ0

(∥∥∂yωin∥∥γ,r,τ +
∥∥∥y∂yω[∥∥∥

γ,r,τ

)∥∥ωin∥∥
γ,r,τ

.
M

δ0

(∥∥∂yωin∥∥γ,r,τ +
∥∥∥y∂yω[∥∥∥

γ,r,τ

)∥∥ωin∥∥
γ,r,τ

. (4.21)
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For the case k ≥ j/2, we first note that the compatibility condition (1.2) allows us to write∫
T

∫ 1

0
u2
k+1dydx =

∫
T

∫ 1

0
uk+1u

bl
k+1dydx+

∫
T

∫ 1

0
uk+1

(
uink+1 −

∫ 1

0
uink+1dz

)
dydx.

By Cauchy-Schwartz and the Poincaré inequality in y (for zero mean functions) we conclude

‖uk+1‖2L2 .
∥∥∥ublk+1

∥∥∥2

L2
+
∥∥ωink+1

∥∥2

L2 .

Then we similarly estimate∣∣∣∣∣
∫

Ω
vk∂yωj−k

ωinj
∂yω

dxdy

∣∣∣∣∣
.

1

δ0
‖vk‖L2

xL
∞
y
‖∂yωj−k‖L∞x L2

y

∥∥ωinj ∥∥L2

.
1

δ0
‖∂xuk‖L2 ‖∂x∂yωj−k‖L2

∥∥ωinj ∥∥L2

.
(j − k)γjγ−1

δ0
k1/2 ‖uk+1‖L2 ‖∂yωj−k+1‖L2

(
j1/2

∥∥ωinj ∥∥L2

)
.

(j − k)γ+r/2jγ−1

δ0

(
k1/2

∥∥ωink+1

∥∥
L2 + k1/2

∥∥∥u[k+1

∥∥∥
L2

) ‖∂yωj−k+1‖L2

(j − k)r/2

(
j1/2

∥∥ωinj ∥∥L2

)
.

Summing over j, noting that the powers of j precisely cancel, we find for r > r(γ) large enough:∑
j≥0

|T9j,high| .
‖∂yω‖γ, r

2

δ0

(∥∥ωin∥∥
γ,r+ 1

2
,τ

+
∥∥∥u[∥∥∥

γ,r+ 1
2
,τ

)∥∥ωin∥∥
γ,r+ 1

2
,τ

.
M

δ0

(∥∥ωin∥∥
γ,r+ 1

2
,τ

+
∥∥∥u[∥∥∥

γ,r+ 1
2
,τ

)∥∥ωin∥∥
γ,r+ 1

2
,τ
. (4.22)

Integrating in time the sum of (4.21) and (4.22), appealing to (3.7a) and (3.7d), and using
Lemma 3.4 (which is applicable for r > r(γ) large enough, by assumption (4.2)), we obtain∫ t

0

∑
j≥0

|T9j | −
1

2

∫ t

0

∥∥∂yωin∥∥2

γ,r,τ
.
∫ t

0

(∥∥∥y∂yω[∥∥∥2

γ,r,τ
+
∥∥∥u[∥∥∥2

γ,r+ 1
2
,τ

)
+
M2

δ2
0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

.
1

β3/2

∫ t

0
|h|2γ,r+γ− 3

4
,τ +

M2

δ2
0

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

.

(
M2

β3/2
+
M2

δ2
0

)∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ

(4.23)

since γ − 3/4 ≤ 1
2 .

Conclusion of the proof. Inserting the bounds (4.10), (4.11), (4.12), (4.13), (4.14), (4.15), (4.19),
and (4.23) into estimate (4.9), we obtain∥∥ωin(t)

∥∥2

γ,r,τ(t)
+ 2β

∫ t

0

∥∥ωin∥∥2

γ,r+1/2,τ
ds+

∫ t

0

∥∥∂yωin∥∥2

γ,r,τ
ds− 1

δ2
0

∥∥ωin0 ∥∥2

γ,r,τ0

.

(
1

δ3
0

+
M4

δ8
0

+
M

δ0β3/2

)∫ t

0

∥∥ωin∥∥2

γ,r,τ
ds

+

(
M2

δ0β5/2
+

M2

δ2
0β

5/4
+

M2

δ0β3/2
+

M

δ2
0β

7/4
+

M2

δ2
0β

3/4
+
M2

δ3
0

)∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ
ds. (4.24)
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Note that
∥∥ωin∥∥2

γ,r,τ
≤
∥∥ωin∥∥2

γ,r+ 1
2
,τ

, so that we may combine the last two terms on the right side

of (4.24). Choosing β0 large enough, depending on M ≥ 1, δ0 ≤ 1, and the implicit constant in
(4.24), for any β ≥ β0 we obtain∥∥ωin(t)

∥∥2

γ,r,τ(t)
+ β

∫ t

0

∥∥ωin∥∥2

γ,r+ 1
2
,τ
ds+

∫ t

0

∥∥∂yωin∥∥2

γ,r,τ
ds ≤ 1

δ2
0

∥∥ωin0 ∥∥2

γ,r,τ0
.

The estimate (4.5) now follows directly from the above estimate.

Finally, in order to prove (4.6), we appeal to (3.15a), Lemma 3.4, and estimate (4.5), to obtain

sup
[0,t]

∥∥∥ω[∥∥∥2

γ,r−γ+ 3
4
,τ(s)

.
1

β1/2

∫ t

0
|h(s)|2γ,r+ 1

2
,τ(s) ds

.
M2

β1/2

∫ t

0

∥∥ωin(s)
∥∥2

γ,r+ 1
2
,τ(s)

ds ≤ 1

2δ2
0

∥∥ωin(0)
∥∥2

γ,r,τ0
(4.25)

upon ensuring that β is sufficiently large, depending on M, δ0. Moreover, from (3.7c) and (3.7a)
we similarly obtain∫ t

0

∥∥∥∂yω[(s)∥∥∥2

γ,r−γ+ 3
4
,τ(s)

ds+ β

∫ t

0

∥∥∥ω[(s)∥∥∥2

γ,r−γ+ 5
4
,τ(s)

ds .
1

β1/2

∫ t

0
|h(s)|2γ,r+ 1

2
,τ(s) ds

≤ 1

2δ2
0

∥∥ωin(0)
∥∥2

γ,r,τ0
(4.26)

as above. Summing (4.25)–(4.26) with (4.5) (and using (a+ b)2 ≤ 2a2 + 2b2) we obtain

sup
s∈[0,t]

‖ω(s)‖2γ,r−γ+ 3
4
,τ(s) +

∫ t

0
‖∂yω(s)‖2γ,r−γ+ 3

4
,τ(s) ds+ β

∫ t

0
‖ω(s)‖2γ,r−γ+ 5

4
,τ(s) ds

≤ 4

δ2
0

∥∥ωin(0)
∥∥2

γ,r,τ0

by using that γ ≤ 5/4. This concludes the proof of (4.6).

As an easy consequence of the estimate (4.6), we state:

Corollary 4.2. Let M, δ0 and γ ∈ [1, 9/8] be given. For r ≥ r0(γ), β ≥ β0 and T such that
τ(t) ≥ τ1 for all t ∈ [0, T ], if

4

δ2
0

‖ω0‖γ,r,τ0 ≤
M

2
(4.27)

then

sup
t∈[0,T ]

‖ω(t)‖γ, 3r
4
,τ(t) ≤

M

2
.

5 Estimates for ∂tω

In order to emphasize the linear nature of the estimates in this section we denote ∂tω = ω̇. The
equation obeyed by ω̇ is

∂tω̇ − ∂2
y ω̇ + (u∂x + v∂y)ω̇ + (u̇∂x + v̇∂y)ω = 0 (5.1a)

∂yω̇|y=0,1 = (˜̇ω|y=1 − ˜̇ω|y=0)− ∂x
(

2

∫ 1

0
u u̇ dy

)
. (5.1b)
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Proposition 5.1. Let M, δ0 and γ ∈ [1, 9/8] be given. There exists r1 = r1(γ) ≥ r0 such that: for
all r, r′ satisfying r′ ≥ r1, 3r

4 − r
′ ≥ r1, one can find β1 = β1(M, δ0, τ0, τ1, r, r

′, γ) ≥ β0 satisfying: if
β ≥ β0, if T ≤ 1 small enough so that τ(t) ≥ τ1 for all t ∈ [0, T ], and if (4.2)–(4.4) hold, we have

sup
s∈[0,t]

‖ω̇(s)‖2γ,r′−γ+ 3
4
,τ(s) +

∫ t

0
‖∂yω̇(s)‖2γ,r′−γ+ 3

4
,τ(s) ds+ β

∫ t

0
‖ω̇(s)‖2γ,r′−γ+ 5

4
,τ(s) ds

≤ 4

δ2
0

‖ω̇(0)‖2γ,r′,τ0 . (5.2)

Proof of Proposition 5.1. The proof is very similar to that of Proposition 4.1, since one may view
equation (5.1) as linearizing about ω itself of (2.6) (respectively u for the boundary condition). In
order to avoid redundancy, we only emphasize the essential differences.

Estimate (5.2) follows directly from estimates for ω̇in which are analogous to (4.5). In order to
define ω̇in, we define ω̇[ as the solution of system (3.4) with boundary datum given by ∂xḣ =
−2∂x

∫ 1
0 u u̇ dy, which is consistent with (5.1b). The function ω̇[ obeys all the estimates claimed

in Lemma 3.1, except that on the right side we need to replace h with ḣ. As in (3.16) we define
the boundary layer functions corresponding to ω̇, and according to (3.17) we define the interior
functions corresponding to ω̇. Note that as before we impose ω̇bl(0) = 0, and thus ω̇in(0) = ω̇0,
where by (2.6a):

ω̇0 = −u0∂xω0 − v0∂yω0 − ∂2
yω0.

At this stage, we can prove an analogous statement to the one provided by Lemma 3.4, with h
being replaced by

ḣ = 2

∫ 1

0
u u̇ dy − 2

∫
T

∫ 1

0
u u̇ dydx.

Namely, we can show that for any r as in Proposition 4.1 and any r′ such that

3r

4
− γ

2
− 1 ≥ r′ > 2γ + 2,

we have ∫ t

0

∣∣∣ḣ(s)
∣∣∣2
γ,r′,τ(s)

ds .M2

∫ t

0

∥∥ω̇in(s)
∥∥2

γ,r′,τ(s)
ds. (5.3)

Indeed, denoting for all f

f ′j = (j + 1)r
′−rfj = M ′j∂

j
xf, where M ′j =

(j + 1)r
′
τ j+1

(j!)γ
,

similarly to (3.19) we obtain
∥∥∥ḣ0

∥∥∥
L2
x

.
∥∥∥ḣ1

∥∥∥
L2
x

, while for j ≥ 1, as a substitute to (3.21) we obtain

the inequality

∥∥∥ḣ′j∥∥∥
L2
x

.
j∑
`=1

(
j

`

)
M ′j

M ′j−`M
′1/2
` M

′1/2
`+1

∥∥ω′`∥∥1/2

L2
x,y

∥∥ω′`+1

∥∥1/2

L2
x,y

(∥∥∥ω̇in′j−`∥∥∥
L2
x,y

+
∥∥∥y(1− y)u̇bl

′
j−`

∥∥∥
L2
x,y

)
+M

(∥∥ω̇inj ∥∥L2
x,y

+
∥∥∥yu̇[j∥∥∥

L2
x,y

+
∥∥∥yω̇[j∥∥∥

L2
x,y

+
∥∥∥u̇[j(x, 1/2)

∥∥∥
L2
x

)
.

25



The half sum
∑dj/2e

`=1 and the last term at the right-hand side can be treated as before, resulting in

∫ t

0

(dj/2e∑
`=1

(
j

`

)
. . . + M

(∥∥ω̇inj ∥∥L2
x,y

+ · · ·+
∥∥∥u̇[j(x, 1/2)

∥∥∥
L2
x

))2

.M2

(∫ t

0

∥∥∥ ˙ωin(s)
∥∥∥2

γ,r′,τ(s)
ds+

1

β5/2

∫ t

0

∣∣∣ḣ(s)
∣∣∣2
γ,r′+γ− 5

4
,τ(s)

ds

)
if supt∈[0,T ] ‖ω(t)‖

γ, r
′
4
,τ(t)
≤M , which is satisfied by assumption (4.2) as soon as r′ ≤ 3r.

For the half-sum
∑j

`=dj/2e+1, we can not proceed symmetrically as in the proof of Lemma 3.4: as

we want an L2 in time control by ω̇, the bound(
j

`

)
M ′j

M ′j−`M
′1/2
` M

′1/2
`+1

. (l + 1)γ/2

yields by a discrete convolution inequality:]

∫ t

0

( j∑
`=dj/2e+1

. . .
)2

.

sup
[0,t]

∑
`≥1

(`+ 1)
γ
2 ‖ω′`‖L2

2 ∫ t

0

(∥∥∥ ˙ωin(s)
∥∥∥2

γ,r′,τ(s)
+ ‖yu̇[(s)‖2γ,r′,τ(s)

)
ds

Writing
∑

`(`+ 1)
γ
2 ‖ω′`‖L2 =

∑
`

1
`+1

(
(`+ 1)

γ
2

+1‖ω′`‖L2

)
and using Cauchy-Schwartz, we find:

∫ t

0

( j∑
`=dj/2e+1

. . .
)2

. sup
[0,t]
‖ω(s)‖2γ,r′+ γ

2
+1,τ(s)

(∫ t

0

∥∥∥ ˙ωin(s)
∥∥∥2

γ,r′,τ(s)
ds+

1

β7/2

∫ t

0

∣∣∣ḣ(s)
∣∣∣2
γ,r′+γ− 7

4
,τ(s)

ds

)
.M2

(∫ t

0

∥∥∥ ˙ωin(s)
∥∥∥2

γ,r′,τ(s)
ds+

1

β7/2

∫ t

0

∣∣∣ḣ(s)
∣∣∣2
γ,r′+γ− 7

4
,τ(s)

ds

)
where the last inequality comes from (4.2), under the assumption that r′ + γ

2 + 1 ≤ 3r
4 . Gathering

the two previous inequalities yields (5.3) for β sufficiently large.

Now, similarly to (4.7), we have that

(∂t + β(j + 1)− ∂2
y)ω̇in

′
j + (u∂x + v∂y)ω̇

in′
j + v̇in

′
j ∂yω

= −(u∂x + v∂y)ω̇
bl′
j − v̇bl

′
j ∂yω −M ′j

[
∂jx, u∂x + v∂y

]
ω̇ −M ′j∂jx(u̇∂xω)−M ′j

[
∂jx, ∂yω

]
v̇ (5.4a)

∂yω̇
in
j |y=0,1 = ˜̇ω

in′

j |y=1 − ˜̇ω
in′

j |y=0 + 2ω̇[
′
j |y=1 − ∂yω̇[

′
j |y=1. (5.4b)

Note that (5.4b) is the same as (4.7b), the left side of (5.4a) is the same as the left side of (4.7a),
and the first two terms on the right side of (5.4a) are the same as the first two terms on the right
side of (4.7a). The difference comes from the last three terms at the right-side of (4.7a), namely
the quadratic terms. The main point is that they now lack of symmetry: they involve not only
(ω̇in

′
, ω̇bl

′
) but also ω. In particular, all terms containing ω must be controlled uniformly in time,

to allow for the L2
t control of ω̇in

′
at the left-hand side. This is why we take r′ less than 3r

4 : with
such a margin we can still use (4.2) to control uniformly in time the terms where most derivatives
fall on ω.
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More precisely, proceeding as in the proof of (5.3) to handle the linear terms (see the estimates of
T1j , . . . ,T7j), we can show that for β large enough:∥∥ω̇in(t)

∥∥2

γ,r′,τ(t)
+ 2β

∫ t

0

∥∥ω̇in∥∥2

γ,r′+1/2,τ
ds+

3

2

∫ t

0

∥∥∂yω̇in∥∥2

γ,r′,τ
ds− 1

δ2
0

‖ω̇0‖2γ,r′,τ0

.
M4

δ7
0

∫ t

0

∥∥ω̇in∥∥2

γ,r′,τ
ds+

M2

δ0β3/4

∫ t

0

∥∥ω̇in∥∥2

γ,r′+ 1
2
,τ
ds

+
∑
j≥0

∫ t

0
(S1j + S2j + S3j + S4j) (s)ds, (5.5)

where

S1j = −
∫

Ω
M ′j [∂

j
x, u∂x]ω̇

ω̇in
′

j

∂yω
, S2j = −

∫
Ω
M ′j [∂

j
x, v∂y]ω̇

ω̇in
′

j

∂yω

S3j = −
∫

Ω
M ′j∂

j
x(u̇∂xω)

ω̇in
′

j

∂yω
, S4j = −

∫
Ω
M ′j [∂

j
x, ∂yω]v̇

ω̇in
′

j

∂yω
.

The first term is analogue to T8j . One can write

S1j = −

dj/2e∑
k=1

+

j∑
k=dj/2e+1

(j
k

)
M ′j

M ′kM
′
j−k+1

∫
Ω
u′kω̇

′
j−k+1

ω̇in
′

j

∂yω
= S1j,low + S1j,high.

The treatment of S1j,low is exactly the same as the one of T8j,low. Similarly to (4.17), (4.19), we get∑∫ t

0
S1j,low(s)ds .

M2

δ0

∫ t

0
‖ω̇in(s)‖2

γ,r′+ 1
2
,τ(s)

ds.

To treat S1j,high, we use the inequality

(
j

k

)
M ′j

M ′kM
′
j−k+1

. (j− k+ 1)γ−r
′

for k ≥ dj/2e+ 1, so that

S1j,high .
j∑

k=dj/2e+1

1

δ0
‖u′k‖L∞(j − k + 1)γ−r

′‖ω̇′j−k+1‖L2‖ω̇in′j ‖L2

.
j∑

k=dj/2e+1

kγ

δ0
‖ω′k+1‖L2(j − k + 1)γ−r

′‖ω̇′j−k+1‖L2‖ω̇in′j ‖L2

so that by the discrete Young’s inequality:∑∫ t

0
S1j,high(s)ds .

1

δ0
sup
s∈[0,t]

∑
k

kγ‖ω′k(s)‖L2

∫ t

0
‖ω̇(s)‖γ,γ,τ(s)‖ω̇in‖γ,r′,τ(s)

.
1

δ0
sup
s∈[0,t]

‖ω(s)‖γ,r′+γ+1,τ(s)

∫ t

0
‖ω̇(s)‖γ,γ,τ(s)‖ω̇in‖γ,r′,τ(s)

The sup in time is controlled as usual by assumption (4.2), under the constraint r′ + γ + 1 ≤ 3r
4 .

As regards the second factor, one can split ‖ω̇(s)‖γ,γ,τ(s) ≤ ‖ω̇in(s)‖γ,γ,τ(s) + ‖ω̇bl(s)‖γ,γ,τ(s) and

control the second term by the analogue of Lemma 3.1, followed by (5.3). For r′ ≥ γ + (γ + 3
4) we

find that ∑∫ t

0
S1j,high(s)ds .

M2

δ0

∫ t

0
‖ω̇in(s)‖2γ,r′,τ(s)ds.
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Estimates on S2j (which is analogue to T9j) and S3j can be established in the same way. We find
for r′ and 3r

4 − r
′ large enough (with thresholds depending on γ):

∑
j

∫ t

0
S2j ≤ η

∫ t

0
‖∂yω̇in(s)‖2γ,γ+r′,τ(s)ds+

C

η

M4

δ2
0

∫ t

0
‖ω̇in(s)‖2

γ,γ+r′+ 1
2
,τ(s)

ds

C > 0, η arbitrarily small, and∑
j

∫ t

0
S3j ≤

M2

δ0

∫ t

0
‖ω̇in(s)2‖γ,γ+r′,τ(s)ds

To handle S4j , we proceed slightly differently. We start with the decomposition

S4j = −

dj/2e∑
k=0

+

j−1∑
k=dj/2e+1

(j
k

)
M ′j

M ′kM
′
j−k

∫
Ω
∂yω

′
j−kv̇

′
k

ω̇in
′

j

∂yω

= S4j,low + S4j,high.

S4j,high can be treated similarly to T9j,high. We obtain, see (4.22):

∑
j

∫ t

0
S4j,high .

1

δ0
sup
[0,t]
‖∂yω‖γ, r′

2

∫ t

0

(
‖ω̇in(s)‖γ,r′+ 1

2
,τ(s) + ‖u̇[‖γ,r′+ 1

2
,τ(s)

)
‖ω̇in(s)‖γ,r′+ 1

2
,τ(s)ds

.
M2

δ0

∫ t

0
‖ω̇in(s)‖2

γ,r′+ 1
2
,τ(s)

ds.

Here, we have used the Gevrey control of ∂yω given by (4.2) to bound the first factor, and the
analogue of Lemma 3.1 followed by (5.3) to control the boundary layer term in the second factor.
As regards S4j,low, we integrate by parts in y. As v̇ vanishes at the boundary, no boundary term
appears, and we get

S4j,low =

dj/2e∑
k=0

(
j

k

)
M ′j

M ′kM
′
j−k

∫
Ω

(
ω′j−k∂yv̇

′
k

ω̇in
′

j

∂yω
− ω′j−kv̇′k

∂2
yω

(∂yω)2
ω̇in

′
j + ω′j−kv̇

′
k

∂yω̇
in′
j

∂yω

)
= S4j,low,1 + S4j,low,2 + S4j,low,3.

We can bound S4j,low,1 with the same ideas as before. For r′ and 3r
4 − r

′ large enough we have∫ t

0

∑
j

S4j,low,1 .
M2

δ0

∫ t

0
‖ω̇in(s)‖2

γ,r′+ 1
2
,τ(s)

ds.

As regards S4j,low,2 we start from the bound

S4j,low,2 .
1

δ2
0

dj/2e∑
k=0

‖ω′j−k‖L∞x L2
y
(k + 1)−r

′‖v̇′k‖L∞‖∂2
yω‖L∞x L2

y
‖ω̇in′j ‖L2

xL
∞
y

.
M

δ2
0

dj/2e∑
k=0

‖ω′j−k‖L∞x L2
y
(k + 1)−r

′‖v̇′k‖L∞‖ω̇in
′

j ‖L2
xL
∞
y
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where the last inequality comes from (4.4) to control ∂2
yω. It follows that

S4j,low,2 .
M

δ2
0

dj/2e∑
k=0

(j − k + 1)γ‖ω′j−k+1‖L2(k + 1)−r
′+2γ‖u̇′k+2‖L2(‖ω̇in′j ‖L2 + ‖∂yω̇in

′
j ‖L2).

From there, for r′ and 3r
4 − r

′ large enough (with thresholds depending on γ),∫ t

0

∑
j

S4j,low,2 ≤ η
∫ t

0
‖∂yω̇in(s)‖2γ,γ+r′,τ(s)ds+

C

η

M6

δ4
0

∫ t

0
‖ω̇in(s)‖2γ,γ+r′,τ(s)ds.

With similar manipulations, we get the bound∫ t

0

∑
j

S4j,low,3 ≤ η
∫ t

0
‖∂yω̇in(s)‖2γ,γ+r′,τ(s)ds+

C

η

M4

δ2
0

∫ t

0
‖ω̇in(s)‖2γ,γ+r′,τ(s)ds.

Injecting the previous estimates in (5.5), we get for large enough β:∥∥ω̇in(t)
∥∥2

γ,r′,τ(t)
+ β

∫ t

0

∥∥ω̇in∥∥2

γ,r′+1/2,τ
ds+

∫ t

0

∥∥∂yω̇in∥∥2

γ,r′,τ
ds ≤ 1

δ2
0

‖ω̇0‖2γ,r′,τ0 .

Estimate (5.2) follows from this inequality, in the same way as (4.6) is deduced from (4.5).

Corollary 5.2. Let M, δ0 and γ ∈ [1, 9/8] be given. There exists r2 = r2(γ) ≥ r1 such that for
r ≥ r2(γ), one can find β2 = β2(M, δ0, τ0, τ1, γ, r) ≥ β1 and

T0 = T0

(
M, δ0, β, τ0, τ1, γ, r, ‖ω̇0‖γ, r

2
+γ− 3

4
,τ0

)
> 0

satisfying: if β ≥ β0, if T ≤ T0, if (4.2)-(4.3)-(4.4) hold, and if

‖∂yω0‖γ, r
2
,τ0
≤ M

4
, (5.6)

then

sup
t∈[0,T ]

‖∂yω(t)‖γ, r
2
,τ(t) ≤

M

2
. (5.7)

Proof of Corollary 5.2. We write ∂yω(t) = ∂yω0 +
∫ t

0 ∂yω̇(s)ds, so that for all t ∈ [0, T ]:

‖∂yω(t)‖γ, r
2
,τ(t) ≤ ‖∂yω0‖γ,r/2,τ(t) +

∫ t

0
‖∂yω̇(s)‖γ, r

2
,τ(t)ds

≤ ‖∂yω0‖γ, r
2
,τ(0) +

∫ t

0
‖∂yω̇(s)‖γ, r

2
,τ(s)ds

≤ ‖∂yω0‖γ, r
2
,τ(0) +

√
t

(∫ t

0
‖∂yω̇(s)‖2γ, r

2
,τ(s)ds

)1/2

.

Taking for instance r2 = 4r1 + 4γ + 3, where r1 was introduced in Proposition 5.1, and r ≥ r2, we
ensure that r′ := r

2 + γ− 3/4 satisfies r′ ≥ r1 and 3r
4 − r

′ ≥ r1. By Proposition 5.1, for β ≥ β0 large
enough, and T such that τ(t) ∈ [τ1, τ0] for all t ∈ [0, T ], we get

sup
t∈[0,T ]

‖∂yω(t)‖γ,r/2,τ(t) ≤ ‖∂yω0‖γ, r
2
,τ(0) +

2
√
T

δ0
‖ω̇(0)‖γ, r

2
+γ− 3

4
,τ0
. (5.8)

The result follows from the assumption on ∂yω0, once T0 is taken small enough to ensure that
2
√
T0
δ0
‖ ˙ω(0)‖γ, r

2
+γ− 3

4
,τ0
≤ M

4 holds.
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Corollary 5.3. Let M, δ0 and γ ∈ [1, 9/8] be given. There exists r3 = r3(γ) ≥ r2 such that for
r ≥ r3(γ), one can find β3 = β3(M, δ0, τ0, τ1, γ, r) ≥ β2, c0 = c0(τ0, τ1, γ, r) > 0 and

T0 = T0

(
M, δ0, β, τ0, τ1, γ, r, ‖ω(0)‖γ,r,τ0 , ‖ω̇(0)‖γ, r

2
+γ− 3

4
,τ0

)
> 0 (5.9)

satisfying: if β ≥ β0, if T ≤ T0, if (4.2)-(4.3)-(4.4) hold, and if

1

δ0
‖ω̇0‖γ, r

2
+γ− 3

4
,τ0

+
1

δ2
0

‖ω0‖2γ,r,τ0 +
1

δ0
‖ω0‖γ,r,τ0‖∂yω0‖γ, r

2
,τ0 ≤

c0M

4
, (5.10)

then

sup
t∈[0,T ]

∥∥∂2
yω(t)

∥∥
L∞x L

2
y
≤ M

2
.

Proof of Corollary 5.3. We write the vorticity equation under the form

∂2
yω = ω̇ + u∂xω + v∂yω.

Hence, for all t ∈ [0, T ]:

‖∂2
yω(t)‖L∞x L2

y
≤ ‖ω̇(t)‖L∞x L2

y
+ ‖u(t)‖L∞x,y‖∂xω(t)‖L∞x L2

y
+ ‖v(t)‖L∞x,y‖∂yω(t)‖L∞x L2

y
.

For r large enough, we obtain

‖∂2
yω(t)‖L∞x L2

y
. ‖ω̇(t)‖γ, r

2
,τ(t) + ‖ω(t)‖2

γ,r−γ+ 3
4
,τ(t)

+ ‖ω(t)‖γ,r−γ+ 3
4
,τ(t)‖∂yω(t)‖γ, r

2
,τ(t).

By Propositions 4.1 and Proposition 5.1 applied respectively with r and r′ = r
2 + γ − 3

4 , and by
inequality (5.8), we find

sup
t∈[0,T ]

‖∂2
yω(t)‖L∞x L2

y
.

1

δ0
‖ω̇0‖γ, r

2
+γ− 3

4
,τ0

+
1

δ2
0

‖ω0‖2γ,r,τ0

+
1

δ0
‖ω0‖γ,r,τ0

(
‖∂yω0‖γ, r

2
,τ0 +

√
T

δ0
‖ω̇0‖γ, r

2
+γ− 3

4
,τ0

)
.

Upon taking T sufficiently small, this concludes the proof of the Corollary.

6 Minimum and maximum principle for ∂yω

The quantity ∂yω obeys a (degenerate) parabolic equation with Dirichlet boundary conditions

∂t(∂yω)− ∂2
y(∂yω) + (u∂x + v∂y)(∂yω) + (∂xu)(∂yω) = ω∂xω (6.1a)

∂yω|y=0,1 = (ω̃|y=1 − ω̃|y=0)− ∂x
∫ 1

0
u2dy. (6.1b)

Our goal is to combine this fact with L2
tL
∞
x,y estimates on ω ∂xω and the Dirichlet datum, to deduce

that the convexity of u is conserved for small time.
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Proposition 6.1. Let M, δ0 > 0 and γ ∈ [1, 9/8] be given. There exists r4 = r4(γ) ≥ r3 such that
for r ≥ r4(γ), one can find β4 = β4(M, δ0, τ0, τ1, γ, r) ≥ β3 and T0 as in (5.9) satisfying: if β ≥ β0,
if T ≤ T0, if (4.2)-(4.3)-(4.4) hold, and if

4δ0 ≤ ∂yω0 ≤
1

4δ0
, (6.2)

then

2δ0 ≤ ∂yω(t) ≤ 1

2δ0
, ∀t ∈ [0, T ]. (6.3)

Proof of Proposition 6.1. We wish to apply a version of the parabolic minimum/maximum principle
for the following degenerate parabolic problem posed in Ω× (0, T ), with Ω being the periodic in x
strip (x, y) ∈ T× (0, 1):

(∂t − ∂2
y + b(x, y, t) · ∇x,y + c(x, y, t))ψ = d(x, y, t) in Ω× (0, T ), (6.4a)

ψ = a(x, t) on ∂Ω× [0, T ), (6.4b)

ψ|t=0 = ψ0(x, y) in Ω. (6.4c)

Here ψ = ∂yω, b = (u, v) is incompressible and vanishes on the boundary T×{0, 1}, c = ∂xu vanishes

at the boundary T×{0, 1}, d = ω∂xω, and the boundary data is a = (ω̃|y=1 − ω̃|y=0)− ∂x
∫ 1

0 u
2dy.

As emphasized after Theorem 2.1, the third compatibility condition of the theorem corresponds to
the relation a(x, 0) = ψ0(x, 0).

By (6.2), the initial datum ψ0 is taken to obey 0 < 4δ0 ≤ ψ0(x, y) ≤ 1/(4δ0), for some δ0 ∈ (0, 1/4),
uniformly on Ω. Thus, by the compatibility of the initial datum and of the boundary condition,
we have that 0 < 4δ0 ≤ a(x, 0) ≤ 1/(4δ0), uniformly on T. Thanks to the Gagliardo-Nirenberg
inequality

‖f‖L∞y ≤ C‖f‖
1/2
L2
y

(
‖f‖1/2

L2
y

+ ‖∂yf‖1/2L2
y

)
and the estimate (5.2), we have that

‖∂ta(x, t)‖L2(0,T ;L∞x ) ≤ 4 ‖ω̇‖L2(0,T ;L∞) + 2

∥∥∥∥∂x ∫ 1

0
u u̇ dy

∥∥∥∥
L2(0,T ;L∞x )

.
1

δ2
0

(
1

β1/4
+

M

β1/2

)
‖ω̇0‖γ, r

2
+γ− 3

4
,τ0
≤ ‖ω̇0‖γ, r

2
+γ− 3

4
,τ0

for β sufficiently large. By the fundamental theorem of calculus in time, and the Cauchy-Schwartz
inequality we thus obtain that

3δ0 ≤ 4δ0 −
√
T ‖ω̇0‖γ, r

2
+γ− 3

4
,τ0
≤ a(x, t) ≤ 1

4δ0
+
√
T ‖ω̇0‖γ, r

2
+γ− 3

4
,τ0
≤ 1

3δ0

uniformly on T × (0, T ), upon taking T sufficiently small. Thus, on the parabolic boundary Ω ×
{0} ∪ ∂Ω× (0, T ), we have that ψ ≥ 3δ0.

By the same Gagliardo-Nirenberg inequality, the Poincaré inequality in y, and estimate (4.6),
we have

sup
t∈[0,T ]

‖c(t)‖L∞x L∞y = sup
t∈[0,T ]

‖∂xu(t)‖L∞x L∞y ≤
C1

δ0
‖ω0‖γ,r,τ0
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where C1 = C1(τ0, τ1, γ, r). Denoting

C∗ = 1 +
C1

δ0
‖ω0‖γ,r,τ0 , (6.5)

the above estimate implies that

c(x, y, t) + C∗ ≥ 1.

Lastly, we note that by the Gagliardo-Nirenberg inequality and (4.6) we have∫ t

0
‖d(s)‖L∞x L∞y ds =

∫ t

0
‖ω(s)‖L∞x L∞y ‖∂xω(s)‖L∞x L∞y ds .

√
t

δ2
0

‖ω0‖2γ,r,τ0

so that for T ≤ 1 we have

e(t) := t+

∫ t

0
e−C∗s ‖d(s)− 3δ0c(s)‖L∞x L∞y ds

. t+
√
t ‖ω0‖2γ,r,τ0 + tC1 ‖ω0‖γ,r,τ0

≤ C2

√
t
(

1 + ‖ω0‖2γ,r,τ0 + ‖ω0‖γ,r,τ0
)

=
√
tD∗ (6.6)

holds for all t ∈ [0, T ], where C2 is a constant that only depends on γ, r, τ0, and τ1, and we have
denoted

D∗ = C2

(
1 + ‖ω0‖2γ,r,τ0 + ‖ω0‖γ,r,τ0

)
.

With this notation, we make the following change of unknowns

ψ̄ = e−C∗t(ψ(x, y, t)− 3δ0) + e(t) (6.7a)

ā = e−C∗t(a(x, t)− 3δ0) + e(t) (6.7b)

d̄ = e−C∗t(d(x, y, t)− 3δ0c(x, y, t)) (6.7c)

c̄ = c(x, y, t) + C∗ (6.7d)

ψ̄0 = ψ0(x, y)− 3δ0 (6.7e)

The quantity e(t) was chosen so that ė(t) = 1 +
∥∥d̄(t)

∥∥
L∞

. One may then verify directly that

(∂t − ∂2
y + b · ∇x,y + c̄)ψ̄ =

(
d̄+

∥∥d̄∥∥
L∞

)
+ 1 + c̄e ≥ 1 > 0 (6.8a)

ψ̄|y∈{0,1} = ā ≥ t ≥ 0 (6.8b)

ψ̄|t=0 = ψ̄0 ≥ δ0 > 0. (6.8c)

The parabolic minimum principle then guarantees that

ψ̄(x, y, t) ≥ 0 on Ω× [0, T ] (6.9)

Indeed, if a strictly negative minimum would be attained by ψ̄, then this point minimum could not
lie on the parabolic boundary (since ā ≥ 0 and ψ̄0 > 0). If this point would lie in the interior, at
this point we would need to have ∇t,x,yψ̄ = 0, whereas (−∂2

y + c̄)ψ̄ < 0 since c̄ > 0. This contradicts(
d̄+

∥∥d̄∥∥
L∞

)
+ 1 + c̄e > 0, which thus proves (6.9).

Working backwards from the definition of ψ̄, we see that (6.5), (6.6), and (6.9) imply

ψ(x, y, t) ≥ 3δ0 − eC∗te(t) ≥ 3δ0 −
√
TeC∗TD∗ ≥ 2δ0

as long as T is chosen sufficiently small in terms of C∗, D∗, and δ0, consistent with the dependence
given in (5.9). This proves the lower bound in (6.3).

The proof of the upper bound in (6.3) follows from very similar arguments, reducing the problem
to a maximum principle for a parabolic equation. To avoid redundancy, we omit these details.
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7 Proof of Theorem 2.1

The proof of the main theorem proceeds as follows. Let γ ≤ 9/8 and r ≥ r4(γ). For any τ0 < τ0

assumption (2.1) implies that ω0 = ∂yu0 satisfies

‖ω0‖γ,r,τ0 + ‖∂2
yω0‖γ,r,τ0 < +∞.

We fix τ0 ∈ (τ1, τ
0). We then fix δ0 small enough and M large enough, so that the initial constraints

(4.27), (5.6), (5.10) and (6.2) hold. Let β ≥ β4 and ε > 0. We consider the approximate system

∂tu+ u∂xu+ v∂yu+ ∂xp− ∂2
yu− ε∂2

xu = 0, (x, y) ∈ T× (0, 1), (7.1a)

∂yp = 0, (x, y) ∈ T× (0, 1), (7.1b)

∂xu+ ∂yv = 0, (x, y) ∈ T× (0, 1), (7.1c)

u|y=0,1 = v|y=0,1 = 0, (7.1d)

with the same initial condition u|t=0 = u0. System (7.1) is called the two-dimensional primitive
equations, and has been widely studied, in various geometries and under various boundary condi-
tions [4, 3, 40]. In particular, Gevrey or analytic regularity results were obtained in both periodic
and bounded geometries [35, 36, 22]. In the context of system (7.1), the well-posedness result stated
in Theorem 2.1 can be proved without much difficulty. In fact, the presence of −ε∂2

xu allows for
a classical treatment, and the existence of solutions at fixed ε > 0 follows e.g. from a Galerkin
approximation procedure (which is compatible with the hydrostatic trick [32]). Moreover, the com-
patibility conditions are the same for (1.1) and (7.1). We find in this way a unique local solution
uε with the regularity requirements stated in Theorem 2.1. We can then consider Tε,∗ the maximal
time on which ‖ωε‖γ,0,τ1 < +∞. In particular, if Tε,∗ is small enough so that τ(Tε,∗) ≥ τ1, one has

sup
t∈[0,Tε,∗)

‖ωε(t)‖γ, 3r
4
,τ(t) = +∞. (7.2)

By the initial constraint (4.27), the fact that τ0 < τ0, and the continuity of the solution, there
exists a maximal time 0 < Tε ≤ Tε,∗ on which the conditions (4.2)-(4.3)-(4.4) are satisfied with
u replaced by uε and T replaced by Tε. Note that all the estimates that we established for a
solution u of (1.1) adapt straightforwardly to a solution uε of (7.1). The only notable change is
the inclusion of the −ε∂2

x term in (3.4) for defining the boundary layer lift ω[,ε. However, since
all estimates for ω[,ε are obtained by performing a Fourier transform in x and using Plancherel to
obtain the desired L2

x bound, this modification is routine (see also [20] for ε-independent bounds
for analytic in x - Sobolev in y solutions of the ε-regularization of the Prandtl system). Applying
Corollaries 4.2, 5.2, 5.3, and Prosition 6.1 at positive ε, we see that there exists T > 0 independent
of ε, such that for all t ∈ [0,min(Tε, T )], the conditions (4.2)-(4.3)-(4.4) still hold with M replaced
by M

2 , and δ0 replaced by 2δ0. If Tε < T , then one has necessarily Tε = Tε,∗, otherwise by continuity
the inequalities (4.2)-(4.3)-(4.4) would be satisfied beyond Tε. But then there is a contradiction
between (7.2) and the first half of (4.2). Hence, Tε ≥ T , and so Tε,∗ ≥ T .

We have just shown that the approximations uε are all defined on a time interval independent of ε,
and satisfy uniform Gevrey bounds on it. This allows to let ε go to zero, and conclude by standard
compactness arguments to the existence of a solution.

For the uniqueness of solutions, the equation obeyed by the difference is basically a linearized
version of the equation, very similar to the equation obeyed by ω̇. Then an estimate similar to
the one from Proposition 5.1, gives the good estimate for the difference of two solutions, implying
uniqueness.
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A Proof of Lemma 3.2

To prove the first item, we adapt arguments of [11, pages 1805-1807]. We fix x ∈ T, y > 0, and
drop them from notations. We write

ˆ̄ω[j(η) = f̂j(ζ) gj(ζ), gj(ζ) =
1

2−
√
β(j + 1) + iζ

e−y
√
β(j+1)+iζ .

Clearly, as fj = 0 for t < 0 and belongs to L1(R),

f̂j(ζ) =

∫
R+

fj(t)e
−iζtdt

is holomorphic for Imζ < 0, and continuous for Imζ ≤ 0. Moreover,

lim
Imζ→+∞

f̂j(ζ) = 0 uniformly for Re ζ ∈ R, lim
Re ζ→±∞

f̂j(ζ) = 0 uniformly for Imζ ≤ 0. (A.1)

The first limit follows directly from the inequality

|f̂j(ζ)| ≤
∫
R+

|fj(t)|e−Imζtdt

and the dominated convergence theorem. The second limit follows from a close look at Riemann-
Lebesgue’s lemma: given ε > 0, and some f εj ∈ C1

c (R+) with
∫
R+
|fj − f εj | ≤ ε, we get

|f̂j(ζ)| ≤
∫
R+
|fj − f εj | + |

∫
R+

f εj (t)e−iζtdt|

≤ ε+
Mε

|Re ζ|

where the second bound follows from an integration by part of the second integral.
Obviously, gj is also holomorphic in Imζ < 0, continuous over Imζ ≤ 0, with bound

|gj(ζ)| ≤ 1

β − 2
e−
√
|ζ|y, (A.2)

see (3.13). We finally apply the Cauchy formula: for any t < 0, for any µ > 0

ω[j(t) = lim
s→+∞

1

2π

∫ s

−s
f̂j(ζ) gj(ζ)eiζt dζ

=− lim
s→+∞

1

2π

(∫
[−s,s]−iµ

f̂j(ζ) gj(ζ)eiζt dζ +

∫
[s,s−iµ]

f̂j(ζ) gj(ζ)eiζt dζ

+

∫
[−s−iµ,−s]

f̂j(ζ) gj(ζ)eiζt dζ

)
As t < 0, taking into account the first limit in (A.1), the first integral at the right-hand side goes
to zero when µ → +∞, while the two other integrals over the vertical segments converge to the
integrals over the vertical half-lines:

ω[j(t) = lim
s→+∞

1

2π

(∫
[s,s−i∞]

f̂j(ζ) gj(ζ)eiζt dζ +

∫
[−s−i∞,−s]

f̂j(ζ) gj(ζ)eiζt dζ

)
= lim
s→+∞

1

2π

(∫
[0,−i∞]

f̂j(s+ ζ) gj(s+ ζ)ei(s+ζ)t dζ +

∫
[−i∞,0]

f̂j(−s+ ζ) gj(−s+ ζ)ei(−s+ζ)t dζ

)
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Using the second limit in (A.1) and the bound (A.2), we can conclude that the limit at the right-
hand side is zero thanks to the dominated convergence theorem.

To prove the second item of the lemma, we remark from formula (3.12) that

(1 + |ζ|)3/4ω̂[j ∈ L2
ζ(R, L2

y(R+, H
k
x(T))), (1 + |ζ|)1/4ω̂[j ∈ L2

ζ(R, H1
y (R+, H

k
x(T))), ∀k

using the smoothness of f̂j with respect to x. We deduce that

ω[j ∈ H
3/4
t (R, L2

y(R+, H
k
x(T))), ω[j ∈ H

1/4
t (R, H1

y (R+, H
k
x(T)), ∀k. (A.3)

Moreover, using again (3.12) and Plancherel in time, we get that: for any ϕ = ϕ(t, x, y) smooth
and fastly decreasing as t→ ±∞ and y → +∞,∫

R×R+×T
ω[j (β(j + 1)− ∂t)ϕ +

∫
R×R+×T

∂yω
[
j ∂yϕ−

∫
R×T

(2ω[j |y=0 + fj)ϕ|y=0 = 0.

If we take ϕ with support in time included in (−∞, T ), taking into account that ω[j is zero for
negative times, we end up with∫

(0,T )×R+×T
ω[j (β(j+ 1)− ∂t)ϕ +

∫
(0,T )×R+×T

∂yω
[
j ∂yϕ−

∫
(0,T )×T

(2ω[j |y=0 +
Mj

Mj+1
hj+1)ϕ|y=0 = 0.

We recognize the weak formulation of system (3.10a)-(3.10b)-(3.10c). The identity ω[j = ω[j over
(0, T ) follows from the uniqueness of solutions to this system (for example in the regularity class
given by (A.3)).
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Ann. Henri Poincaré, 17(7):1793–1823, 2016.

[12] D. Gérard-Varet and E. Dormy. On the ill-posedness of the Prandtl equation. J. Amer. Math.
Soc., 23(2):591–609, 2010.

[13] D. Gérard-Varet, Y. Maekawa, and N. Masmoudi. Gevrey stability of Prandtl expansions for
2D Navier-Stokes. arXiv:1607.06434, 2016.

[14] D. Gérard-Varet and N. Masmoudi. Well-posedness for the Prandtl system without analyticity
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