LOCAL AND GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR THE STOCH ASTIC
EULER EQUATIONS WITH MULTIPLICATIVE NOISE

NATHAN E. GLATT-HOLTZ AND VLAD C. VICOL

ABSTRACT. We establish the local existence of pathwise solutiongi®stochastic Euler equations in a three-
dimensional bounded domain with slip boundary conditiomd a suitable nonlinear multiplicative noise. In
the two-dimensional case we obtain the global existendeasid solutions with additive or linear-multiplicative
noise. Lastly, we show that, in the three dimensional caseaddition of linear multiplicative noise provides a
regularizing effect; the global existence of solutionswsavith high probability if the initial data is sufficiently
small, or if the noise coefficient is sufficiently large.
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1. INTRODUCTION

In this paper we address the well-posedness of the stocliastimpressible Euler equations with multi-
plicative noise, in a smooth bounded simply-connected domMac R?

du+ (u-Vu+ Vr)dt = o(u)dW, (1.1)
V-u=0, 1.2)

whered = 2 or 3, u denotes the velocity vector field, andhe pressure scalar field. Herg is a cylindrical
Brownian motion and (u)dWV can be written formally in the expansion ..., o (u)dW), whereW, are a
collection of1D independent Brownian motions. The systein)—(1.2) is supplemented with the classical
slip boundary condition

ulgp -n =0, a.3)

wheren denotes the outward unit normal to the boundBryHeredD is taken to be sufficiently smooth. In
order to emphasize the stochastic effects and for the gitypbf exposition we do not include a determin-
istic forcing f in (1.1), but note that all the results of this paper may be easilyifieatto include this more
general case.

The Euler equations are the classical model for the moticemadhviscid, incompressible, homogenous
fluid. The addition of stochastic terms to the governing ¢éigua is commonly used to account for numeri-
cal, empirical, and physical uncertainties in applicagioanging from climatology to turbulence theory. In
view of the wide usage of stochastics in fluid dynamics, the@n essential need to improve the mathe-
matical foundations of the stochastic partial differenéiguations of fluid flow, and in particular to study
inviscid models such as the stochastic Euler equations.

Even in the deterministic case, whén= 3 the global existence and uniqueness of smooth solutions
remains a famously open problem for the Euler equations,adswl for their dissipative counterpart, the
Navier-Stokes equations. There is a vast literature on thiinematical theory for the deterministic Euler
equations; see for instance the bookh¢98 MBO02], the recent surveysB[T07, Con07, and references
therein. While the stochastic Navier-Stokes equation leas lextensively studied dating back to the sem-
inal works BT72, BT73] and subsequently in e.gVipo76, Cru89 CG94 Fla08 MRO05, DPZ96 Bre0Q
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BFOQ, BPOQ MRO04, GHzZ09 CI11, DGHTL11], rather less has been written concerning the stochastic Eu
ler equations. Most of the existing literature on this sabjesats only the two dimensional case, see e.g.
[BF99, Bes99 CC99 BP0], Kim02, CFMO07]. To the best of our knowledge, there are only two works,
[MV00, KimQ9], which consider the local existence of solutionsdimension three Both of these works
consider only aradditive noisgand treat {.1)—(1.2) on thefull space avoiding difficulties which naturally
arise in the presence of boundaries, due to the nonlocalenatuhe pressure.

In this paper we establish three main results for the syste—(1.3). The first result addresses the
local existence and uniqueness of solutions in both two arektdimensions. From the probabilistic point
of view we studypathwisesolutions, that is probabilisticallgtrong solutions where the driving noise and
associated filtration is given in advance, as part of the. diatam the PDE standpoint, we consider solutions
which evolve continuously in the Sobolev spdé&™?(D), for any integerm > d/p + 1 and anyp > 2,
whered = 2, 3.

This local existence result covers a large class of nonlinadtiplicative noise structures iai(-). In
particular we can handle Nemytskii operators correspanttirany smooth functiory : R¢ — R%. Here,
heuristically speaking,

a(u)dW(t, 1‘) = g(u)ﬁ(t, 1‘)7
wheren(t, z) is formally a Gaussian process with the spatial-temporaletation structure described by
E(n(t,x)n(s,y)) = &—sK(x,y) for any sufficiently smooth correlation kern& on D. We can also
handle functionals of the solution forced by white noised ahcourse the classical cases of additive and
linear multiplicative noise. See SectiBr? below for further details on these examples.

As noted above such results appears to be new in dimensiee; ttiris seems to be the first work to
address (nonlinear) multiplicative noise, or to consither évolution on a bounded domain. Moreover, our
method of proof is quite different from those employed injimas works for a two-dimensional bounded
domain. More precisely, we do not approximate solutionheffuler system by those to the Navier-Stokes
equations subject to Navier boundary conditions, andaastenstruct solutions to the Euler system directly.

In the second part of the paper we address some situatiornre Wigeglobal existence of spatially smooth
solutions evolving inW™P(D), with m > p/d + 1 can be established. In the case of an additive noise
(c(u) = o), whend = 2 we show that the solutions obtained in the first part of theepape in fact global
in time. To the best of our knowledge such results for smoolitions was only known in the Hilbert space
setting, i.e. where = 2; see BF99 for a bounded domain and[m02, MV00] where the evolution is
considered over the whole space.

Lastly, we turn to the issue of global existence of smootlweste solutions with multiplicative noise,
in bothd = 2,3. Obtaining the global existence of solutions for generidtiplicative noiseo (u)dW
seems out of reach in view of some open problems that alred@gly ia the deterministic setting far = 2
(cf. Remark4.7 below). However, in the particular case ofimear multiplicative stochastic forcing, that
is wheno (u)dW = audW, wherelV is a one-dimensional standard Brownian motion, we showttiet
noise provides a damping effect on the pathwise behavioolotiens. In thethree-dimensionatase we
prove that for anyk > 1:

P(uis globa) > 1 — R~V whenevet|ug||ymasnpy < K(a?, R),
wherek is strictly positive and satisfies

lim s(a?, R) = oo,
a?—o00

for every fixedR > 1. This may be viewed as a kind of global existence result indige noise asymptotic
Furthermore, in théwo-dimensionatase, we show that solutions are global in time with proligidine,
for anya € R, and independently of the size of the data. Note that in basies the linear multiplicative
noise allows us to transforni (1)—(1.3) into an equivalent system for which the presence of an iadailt
damping term becomes evident. We can exploit this randonpatenioy using certain estimates for the exit
times of geometric Brownian motion, and hence may estabitisiimproved pathwise behavior of solutions.
We note that in the deterministic setting the presence dicitritly large damping is known to enhance the
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time of existence of solutions (see eg\V11]), but in order to carry over these ideas to the stochastimge
we need to overcome a series of technical difficulties.

The starting point of our analysis df.()—(1.3) is to establish some suitable a priori estimates in theespac
L2(Q; L*>(0,T; W™P(D))). Here obstacles arise both due to the presence of boundaesecause we
have to estimate stochastic integrals taking values in &asaaces, i.e.L’(D) for p > 2. While we
handle the convective terms using direct commutator egdgnan order to bound the pressure terms we
need to consider the regularity of solutions to an elliptieuhann problem. At first glance this seems to
require bounding expressions involving first order deiest of the solution on the boundary, i.€(u -
V)u) - n, which would prevent the estimates from closing. Howevegrekploiting a geometric insight
from [Tem79, one may obtain suitable estimates for the pressure tenig"t?(D). In order to treat the
stochastic elements of the problem we follow the constuctif stochastic integrals given in e.dry99,
MRO1]. Estimates for the resulting stochastic terms are morknieally demanding than in the Hibert
space setting, and are dealt with by a careful applicatiche@Burkholder-Davis-Gundy inequality. Note
also that we obtain bounds anin WP (D) only up to a strictly positive stopping time In contrast to the
deterministic setting, quantitative lower bounds on thigre unavailable. This leads to further difficulties
later in establishing the compactness necessary to pass linit within a class of approximating solutions
of (1.1)—(1.3).

With these a priori estimates in hand, we proceed to the fiegtssof the rigorous analysis. For this
purpose, we introduce a Galerkin approximation schemettjiréor (1.1)—(1.3), which we use to construct
solutions for the Hilbert space settipg= 2. We later employ a density and stability argument to obtain
W™P(D) solutions from the solutions constructed via the Galerkimesne. We believe that this Galerkin
construction is more natural than in the previous works enstiochastic Euler equations on bounded do-
mains BF99 Bes99 CC99 BP0, which use approximations via the Navier-Stokes equatigith Navier
boundary conditions, and exploits the vorticity formusatiof the equations, a method which is mostly
suitable for the two-dimensional case.

As with other nonlinear SPDEs, we face the essential crgalerf establishing sufficient compactness in
order to be able to pass to the limit in the class of Galerkpraximations; even if a spack is compactly
embedded in another spadet is not usually the case thdf*(Q; X) is compactly embedded ib?(£2; )).

As such, the standard Aubin or Arzela-Ascoli type compessiresults, which classically make possible the
passage to the limit in the nonlinear terms, can not be djregiplied in this stochastic setting. With this

in mind, we first establish the existence of martingale sahstfollowing the approach in e.gDPZ93 and

see alsoffG95 DGHTL1]]. Here the main mathematical tools are the Prokhorov tmepvehich is used to
obtain compactness in the collection of probability measassociated to the approximate solutions, and the
Skorohod embedding theorem, which provides almost sureecgences, but relative to a new underlying
stochastic basis.

At this stage there is another difficulty in comparison tovpes works, e.g. G953, which requires us
to consider martingale solutions which arery smoothtin z € D, i.e. which evolve starting from data in
Hm'(D), with m’ sufficiently large (in particular we may take’ = m-+5). The reason for this initially non-
sharp range forn’ stems from the following complication already alluded towd the a priori estimates
hold only up to a stopping time, so that when we attempt to fimifborm estimates the bounds hold only
up to a sequence of timesg, which may depend on the orderof the approximation. In contrast to the
deterministic case, it is not clear how to boundfrom below, uniformly inn. To compensate for this
difficulty, we add a smooth cut-off function depending on #iee of |u||;;1. in front of the nonlinear
and noise terms in the Galerkin scheme. This cut-off functiowever introduces additional obstacles for
inferring uniqueness, which in view of the Yamada-Watantde®rem is crucial for later arguments that
allow us to pass to the case of pathwise solutions. For un&gss estimates in the? (D) norm give rise to
terms involving thd? 1> (D) norm, which prevents one from closing the estimates in tleeggnspace. On
the other hand, if we attempt to prove uniqueness by estigétie difference of solutions in tHé™ norm
for arbitrarym’ > d/2 + 1, we encounter problems due to terms which involve an exeessimber of
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derivatives. By momentarily restricting ourselves to siintly large values of’, we manage to overcome
both difficulties.

Having passed to the limit in the Galerkin scheme, we obtianexistence of very smooth solutions
to a modified Euler equation with a cut-off in front of the nioelarity. We can therefora posteriori
introduce a stopping time and infer the existence of a mgatensolution of {.1)—(1.3). It still remains to
deduce the existence of pathwise solutions, that is solsited (L.1)—(1.3) defined relative to the initially
given stochastic basiS. For this we are guided by the classical Yamada-Watanalm@etirefrom finite
dimensional stochastic analysis. This result tells us teatfinite dimensional systems at least, pathwise
solutions exist whenever martingale solutions may be foamd pathwise uniqueness holds (f\W71,
WY71]). More recently a different proof of such results was depeld in [GK96] which leans on an
elementary characterization of convergence in probgiliitit. Lemma6.10below). Such an approach can
sometimes be used for stochastic partial differential #gus, see e.gIJGHT11]] in the context of viscous
fluids equations. Notwithstanding previous applicatiohd@mma6.10 for the stochastic Navier-Stokes
and related systems, the inviscid case studied here psesemte new challenges, most important of which
is the difficulty in establishing the uniqueness of pathvgiskitions.

With a class of pathwise solutions in very smooth spaces imdhae next apply a density-stability
argument to obtain the existence of solutions evolvinglifi? (D) where the ranges farm, p are now
sharp, i.e.m > d/p + 1 for anyp > 2. Since, for allm’ sufficiently large,H™ (D) is densely embedded
in WP (D), we may smoothen (mollify) the initial data to obtain a seweeof very smooth pathwise
approximating solutiong™ which evolve inH m'(D). By estimating these solutions pairwise we are able to
show that they form a Cauchy sequencélifi*? (D), up to a strictly positive stopping time. Since almost
sure control is needed for the individual solutions whicthelaave their own maximal time of existence, we
may use of an abstract lemma froMR04, GHZ09. See alsoGHT11H for an application to other SPDEs,
and [GHT114 for related results in the deterministic setting.

As above for the uniqueness of solutions, when estimating «"* we encounter terms involving «” in
the W™» norm (which is finite since” € H™ (D) andm’ is large). These terms are dealt with using some
properties of the mollifie, used to smoothen the initial data (here= 1/n). More precisely, the term
|IVu"||wm.p is of sizel /e, but it is multiplied by||w™ — u||}-m-1,», Which converges t6 whenm > n and
n — oo, even when multiplied by/e = n. See KL84, Mas07 for related estimates for the deterministic
Euler equation.

In the second part of the manuscript we turn to establish sgloi®al existence results fofl ()—(1.2).

We first study the case of additive noise in two spatial dirm1ss To address the additive case we apply
a classical Beale-Kato-Majda type inequality far||;;1. (see e.g.MB02]). This shows that if we can
control the vorticity of the solution ir,>° uniformly in time, then the nonlinear terms may be bounded
like log(||ullwm.»)||ull}ym.- As such our proof relies on suitable estimates for the aityticurl v in L,
which in this additive case can be achieved via a classicaigd of variables, and by establishing a suitable
stochastic analogue of a logarithmic Gronwall lemma.

The case of linear multiplicative noise is more interestiag noted above, such noise structures evidence
a pathwise damping of the solutions &f{)—(1.2), which may be seen by analyzing the transformed system
(9.49—(9.5) for a new variables(t) = u(t) exp(—aW;). In order to take advantage of this damping in the
three dimensional case, we need to carefully show that tHexstretching term is suitably controlled by
the damping terms coming from the noise. For a sufficientlydanoise coefficientv (or equivalently, for
a sufficiently small initial condition) we see that the voity must be decaying, at least for some initial
period during which|u||y1,. remains below a certain threshold value. Via the usage oB#wde-Kato-
Majda inequality we see in turn that the growth o] yy=.» is limited by the possible growth of a certain
geometric Brownian motion during this initial period. Weeaherefore able to show that |ji||yym.» is
sufficiently small with respect to a function aefand a givenR > 0 then, on the event that the geometric
Brownian motion never grows to be larger th&nthe quantityi|u||y-».» will remain below a certain bound.

In turn, this guarantees that the quantjiy||y;-1.- will in fact never reach the critical value that would
prevent the decay in vorticity, and we conclude that thetgmwius in fact global in time on this event that
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the geometric Brownian motion always stays below the vatueSince we are able to derive probabilistic
bounds on this event, which crucially are independent,afie obtain the desired results.

The manuscript is organized as follows. In Sectiowe review some mathematical background, deter-
ministic and stochastic, needed throughout the rest of thix.WWe then make precise the conditions that
we need to impose on the noise througn Section3. We conclude this section with a detailed discussion
of some examples of nonlinear noise structures covered tnegiven abstract conditions en Section4
contains the precise definitions of solutions 10lj—(1.3), along with statements of our main results. We
next carry out some a priori estimates in Sectionln Section6 we introduce the Galerkin scheme and
establish the existence of very smooth solutions. In Sedatiwe establish the existence of solutions in the
optimal space$V"? for anym > d/p + 1. The final two Section8 and9 are devoted to proofs of the
global existence results for the cases of additive anddimaatiplicative noises respectively. Appendices
gather various additional technical tools used throughioeibody of the paper.

2. PRELIMINARIES

Here we recall some deterministic and stochastic ingrésliwhich will be used throughout this paper.

2.1. Deterministic Background. We begin by defining the main function spaces used throughewtork.
For each integem > 0 andp > 2 we let

Xonp = {v e (WmP(D)4:V-v=0, vpp -n= O} (2.1)

and for simplicity writeX,,, = X, » (see alsoTem73). These spaces are endowed with the usual Sobolev
norm of orderm

HUH%/m,p(D) = Z Haavllip(p)-

laf<m

As usual, the norm oX,,, is denoted by - || z~. We make the convention to write: ||yym.» and|| - || gm
instead of| - ||lyym.»(py @and|| - || gm (p), unlessSobolev spaces avD are considered. We Igt, -) denote the
usualL%(D) inner product, which makeX, C L?(D) a Hilbert space. The inner product o), shall be
denoted by(-, ) g = -4 < (0%, 0%).

Throughout the analysis we shall make frequent use of cectassical “calculus inequalities” which can
be established directly from the Leibniz rule and the GadtiaNirenberg inequalities. Whenever > d/p
we have the Moser estimate

[wolwme < C(l[uflzee[ollwme + ([0l Lo [[u]wm.e), (2.2)

for all u,v € W"™P(D) and some universal constafit = C(m,p, D) > 0. Note that in particular this
shows thai?¥"? is an algebra whenever > d/p. The following commutator estimate will also be used
frequently

Z |0%(u - V) —u - VO rr < C(||ul|lwmre||Vv| e + ||Vul Lo ||v]|wme) (2.3)

0<|a|<m

for some constant’ = C(m,p, D) > 0, wherem > 1 +d/p, u € W™P, andv € W™*LP, Note that for
what follows we shall assume that > 1+ d/p andp > 2, whered = 2, 3 is the dimension oD, allowing
us to apply 2.2) and @.3).

In order to treat the pressure term appearing in the Euleatems, we will need to bound the solutions
of an elliptic Neumann problem taking the form:

~Ar=f,inD, (2.4)

or

5 =9, oD, (2.5)
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for given f andg, sufficiently smooth. For this purpose we recall the resufADN59] which gives the
bound:

IV llwme o) < CUIfllwm-10m) + 19llwm-1/00 1)) (2.6)

whereC' = C(m,p, D) > 0is a universal constant. In facg.) is usually combined with the bound given
by the trace theorem yp [|yym-1/p.»9p)y < Cllhllwm.»(p), which holds for sufficiently smooth, integers
m > 1, andp > 2 (cf. [AF03]).

Also in relation to the pressure we considerthe so-called Leray projector, to be the orthogonal pro-
jection in L?(D) onto the closed subspadg. Equivalently, for any € L?(D) we havePv = (1 — Q)v
where

Qu=-Vm
for anyr € H'(D) which solves the elliptic Neumann problem
—Ar =V v, in D, (2.7)
on =v-n, on dD. (2.8)
on

Moreover, forv € W™P, observe thal/ - v € W™ 12(D) andv|gp - n € W™ 1/PP(9D). Hence, by
applying @.6) and the trace theorem t@.()—(2.8), we infer that
[Pollwms ) < Cllvllwme o) (2.9)

for anyv € W™P(D). ThusP is also a bounded linear operator fréii™? (D) into X, ,,.
We conclude this section with some bounds on the nonlinearstevhich involve the Leray projector.
These bounds will be used throughout the rest of the work.

Lemma 2.1(Bounds on the nonlinear term). Letm > d/p + 1, andp > 2. The following hold:
(@) If u e W™P andv € WP thenP(u - Vv) € X, and

1P (u - Vo)llwme < C([[ullLeel[olwmere + lulwmel[v]wre). (2.10)
(b) If u,v € X, , thenQ(u - Vv) € W™P(D) and
1Q(u - Vv)[lwme < C([[ullwrecllvlwme + [lullwms[v]pre) . (2.11)

(c) fue X,,,andv € X,,41, then

Y (@*P(u- Vo), 0%[0% )| < O ([ullwrosl[ollwme + [lullwms [olwe) [olfm,.  (212)

|oo| <m
In (2.10+2.12, C' = C(m,p, D) is positive universal constant.

Proof of Lemma.1. Firstly we observe that if. ¢ W™? andv € W™+1P then by @.2) we haveu - Vv €
W™P and||u - Vollwm.» is bounded by the right side 02.(10. Thus (a) follows from2.9).

The proof of item (b) is due tolem79. If v andv are divergence free, and satisfy the non-penetrating
boundary condition (which occurs whenv € X,, ,,) then boundary terru - Vo) - n may be re-written as
u;vj¢;;, for some smooth functions;;, independent of;, v which parametriz&D in a suitable way. Also,
again due to the divergence free conditidn; (v - Vv) may be re-written ad;u;0;v;. Hence, neither the
boundary condition nor the force have too many derivatives the elliptic Neumann problem one has to
solve for the functionr such thaQ(u - Vv) = —V 7 becomes

—Am = &-ujajvi
or
an

The proof of (b) now follows by applying estimatg.§) to the above system, using the trace theorem and
finally (2.2).

= UiV Pij-
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Lastly, in order to prove (c) one uses the cancellation ptgge - Vv, v|v[P~2) = 0, the definition ofP,
the bound 2.3), the Holder inequality, and item (b) to obtain

> (0*P(u- V), 0%v[0%vP~?)

|oo| <m

< >0 (0%(u- V), 0%0|0%0P7) + > [(07Q(u - V), 0%v|0%v]P~?)]

lo|<m lo]<m

<C D 10%u- Vo) —u-Voulle + Q- Vo) lwmo | [0]fyms

|oo| <m
< C (lullwresllollwrms + lullwmns[o]wree) [olfpmn,

concluding the proof of item (c). O

2.2. Background on Stochastic Analysis.We next briefly recall some aspects of the theory of the in-
finite dimensional stochastic analysis which we use belowe réfer the reader tadDPZ99 for an ex-
tended treatment of this subject. For this purpose we staftxing a stochastic basis := (2, F,P,
{Fi}+=0,). Here (Q,F,P) is a complete probability space, am is a cylindrical Brownian mo-
tion defined on an auxiliary Hilbert spa¢é which is adapted to a complete, right continuous filtration
{Fi}+>0. By picking a complete orthonormal badie; },>; for &, YW may be written as the formal sum
W(t,w) = >~ exWi(t,w) where the elementd’;, are a sequence of independéit standard Brownian
motions. Note thatV(t,w) = >, -, ex Wi (¢, w) does not actually converge éhand so we will sometimes
consider a larger spac¢g O i we define according to

Uy = U—Zakek Zﬁ<oo s

k>0

and endow this family with the noriv||§ = >, apk™?, for anyv = >, age. Observe that the
embedding ofl C i, is Hilbert-Schmidt. Moreover, using standard martingateienents with the fact that
eachlVy, is almost surely continuous we have that,e C([0, 00), ly), almost surely. SedJPZ93.

Consider now another separable Hilbert sp&caNMe denote the collection of Hilbert-Schmidt operators,
the set of all bounded operatagsfrom 44 to X such that|G|[7, ) = >p [Gerl < oo, by Lo (i, X).
WheneverX = R, i.e. in the case wher@ is a linear functional, we will denoté. (L, R) by simply L.
Given anX valued predictabfeprocessG' € L2(Q; L2 ([0, 0), L2 (8, X))) and takingGy = Ge;, one
may define the (It 0) stochastic integral

t t
M, ::/ GdW:Z/ GrdWy, (2.13)
0 L 0

as an element irM , that is the space of alt' valued square integrable martingales. If we merely assume
that the predlctable proceé%;e L2 ([0,00), Lo(81, X)) almost surely, i.e. without any moment condition,
then M, can still be defined as ir2(13 by a suitable localization procedure. Detailed consionstin both
cases may be found in e.d>PZ93 or [PRO7Y.

lletd =Q x [0, 00) and takeg to be thes-algebra generated by sets of the form
(s,t] x F, 0<s<t<oo,FeFs; {0} x F, F € Fo.

Recall that aX valued proces#/ is called predictable (with respect to the stochastic h&§i§it is measurable fron{®, G) into
(X, B(X)), B(X) being the family of Borel sets oX.
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The proces$ M, }+>¢ has many desirable properties. Most notably for the arslysie, the Burkholder-
Davis-Gundy inequality holds which in the present contekes the form,

t T r/2
E( sup /de g()E(/ |G|%2(ux)dt> : (2.14)
te[0,7] 1J0 X 0 ’

valid for anyr > 1, and where”' is an absolute constant depending only-oin the coordinate basigy },

(2.14) takes the form
T r/2
<Sup Z/ GrdW, )gox&(/ Z|Gk|§dt> .
te[0,T 0 &

Since we consider solutions of.()— (1.3) evolving in X,, , for anyp > 2 andm > d/p + 1, we
will recall some details of the construction of stochastitegrals evolving o/"™?(D). Here we use the
approach of Kry99, MRO1], to which we refer the reader for further details. See al®i78 Brz95 and
containing references for a different, more abstract agugrdo stochastic integration in the Banach space
setting. Suppose that> 2, m > 0, define

WP = ¢ o:D— Ly :ok(:) =0(-)e, € W™Pand Z / 0%}, dx < o0 ¢,

|| <m
which is a Banach space according to the norm

p/2

[E - Z/yaaa\fg2dx_ Z/ S| dn (2.15)

|| <m || <m. k>1

Let P be the Leray projection operator defined in Secéioh Foro € WP we definePo as an element
in WP by taking(Po)er, = P(oey) so thatP is a linear continuous operator &#™?. We take

X p=PW™P ={Po:0 € WP}

Note thatX,,, » = L2(4l, X,,,) and in accordance witf2(1), we will denoteX,,, » by simplyX,,,.

Consider any predictable proceSse L?(2; L ([0,00),X,,,). For such & we have, for any” > 0
and almost every € D, thatE f(;r > jal<m |0%G(x)|7,dt < oo. We thus obtain from the Hilbert space
theory introduced above that; as in .13 is well defined for almost every € D as a real valued
martingale and that for eadh| < m, 0“M;(z fO 0“G(z)dW. By applying the Burkholder-Davis-
Gundy inequality, 2.14) we have that

p/2
E sup HMt”me <C Z / </ 10°G( )‘Zmdt) dx SC’E/ \G\me

|| <m

Lastly, cf. [Kry99, MRO1] one may show that/; € L”(€2; C([0, c0); X, ,)) and is anX,, , valued martin-
gale.

3. NONLINEAR MULTIPLICATIVE NOISE STRUCTURES AND EXAMPLES

In this section we make precise the conditions that we impogee noise. While, in abstract form, these
conditions appear to be rather involved, they fact coverrg wade class of physically realistic nonlinear
stochastic regimes. We conclude this section by detailimgesof these examples.



LOCAL AND GLOBAL EXISTENCE FOR THE STOCHASTIC EULER EQUATIQS 9

3.1. Abstract conditions. We next describe, in abstract terms, the conditions impémed. Consider any
pair of Banach space¥, )Y with X C L>°(D). We denote the space of locally bounded maps

Budy oo, ) i= {0 € C(¥ x [0,00):Y): lo(a.O)ly < Blllalli=)(1 + [lallx). Var € 2.t > 0

whereS(-) > 1 is an increasing function which is locally bounded and ispehdent of. In addition we
define the space of locally Lipschitz functions,

Lipu,loc(Xa y) = {U S Bndu,loc(X7 y) :
o) = (Dl < Al + [yll=)le — vl ey € 2, > 0},

Note that in in both cases the subscript u is intended to esigthe that increasing functighappearing in
the above inequalities may be taken to be independentdf), o). Note furthermore that, by considering
such locally Lipschitz spaces of functions, we are able teecatochastic forcing involving Nemytskii
operators, i.e. smooth functions of the solutions mukiplby spatially correlated white in time Gaussian
noise (see Sectio®.2 below).

For the main local existence results in the work, Theotegbelow, we fixp > 2 and an integem >
d/p + 1, and suppose that

o € Lipy 1oc (L2, WOP) N Lipy joc (W™ 5P, WTLP) A Lipy, joc (WP, WP, (3.1)

SinceP is a continuous linear operator &*», for &k > 0 it follows that Po € LipuJoc(W’f’p,Xk’p), for
k = m — 1, m. Observe that by3 1) we have thatfot Po(u)dWW € C([0,00); X, ;) for each predictable
processu € C([0,00); X p)-

We will also impose some additional technical conditionsromhich are required for the proof of local
existence of solutions (cf. Theorefn3 below). These conditions do no preclude any of the exampkes w
give below. Firstly we suppose that

o € Bndy oo (WP Whthp), (3.2)

Fix somem’ sufficiently large, such thati™ =2 ¢ W™+br, e.g. m’ > m + 3 + d(p — 2)/(2p) by the
Sobolev embedding. For simplicity we take = which works for allp > 2, and for the rest of this paper
fix
m' =m+ 5.
We assume that
o € Bndy joc(H™ , W™2). (3.3)

Condition @.2) is used for the density and stability arguments in Secfiowhile condition 8.3) seems
necessary in order to justify the construction of solutitmthe Galerkin system (cf. Secti@n2 below).
In the case of an additive noise when we assumedhatindependent of. (cf. Theoremé.4), we may
alternatively assume that:
o€ LP(Q, LY ([0,00); W HP)) (3.4)

loc

and thato is predictable. Note that while3(1)—(3.3) covers many additive noise structure3,4 is less
restrictive and allows fow € €2 dependence in.

3.2. Examples. We now describe some examples of stochastic forcing stegttor o(u)dV covered
under the conditions3(1) —(3.3) imposed above, or alternativel@.€) for additive noise.
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Nemytskii operators. One important example is stochastic forcing of a smoothtfanoof the solution.
Suppose thag : R — R% is C°>° smooth and consider € W2, where as above)’ = m + 5. We then
take

or(u) = ag(z)g(u), k=1 (3.5)
In this case we have that:
w)dW = Zak w)dWy = g(u Zak )AWy = g(u)adW.
k>1 k>1

Note thatad)V is formally a Gaussian process with the spatial-temporaketation structure
E(adW(z, t)adW(y, s)) = K(z,y)0_, forallaz,y € R t,s >0,
with K (z,y) = > ;51 ax(w)ax(y). Observe that ify(u) € W™ for ¢ > 2 andn > d/q then

q/2
lo(u) = o (V) [fyn.q = Z/ (Zaa (arg(u) — arg(v))| ) dz < Clle[§yn.qllg(w) = g(0)Ifyn.a-

|a|<n k>1
We may therefore show thei.§) satisfies 8.1)—(3.3) by making use of the following general fact about the
composition of functions.

Lemma 3.1 (Locally Lipschitz and bounded). Fix anyn > d/p with p > 2. Suppose thaj : R¢ — R?
and thatg € Wn*1L°(R9). Then

l9(w) = g(0)lwnr) < Bllullze + lJullzee)llu = vlwnrp)  foreveryu,v e WP(D).  (3.6)
holds for some positive, increasing functigft) > 1.

Note that 8.1) follows from (3.6). Moreover settingy = 0 in (3.6) also proves3.2) and @.3). The
proof of Lemma3.1is based on Moser-type estimates (similarad)), Gagliardo-Nirenberg interpolation
inequalities, and the chain rule. See eTay1]1, Chapter 13, Section 3] for further details.

Linear multiplicative noise. One important example covered under this general class ofykékii opera-
tors is a linear multiplicative noise. Here we consider

o(u)dW = audW

where nowa € R andW is alD standard Brownian motion. We obtain this special case fizenabove
framework by takingy = Id anda; = 1, o, = 0 for & > 2. We shall treat such noise structures in detail in
Section9 (cf. Theorem4.6).

Stochastic forcing of functionals of the solution.We may also consider functionals (linear and nonlinear)
of the solution, forced by independent white noise processeippose that, far > 1 we are givenf;, :
LP(D) — R such that

[fe(u) = fr(v)] < Cllu —v|[»  foru,v e L? 3.7)
where the constar is independent of. We take
or(u) = fre(u)ag(z,t) (3.8)

then, for anyn > d/q

p/2
|o(u) — o (v)[§yn.g = Z/ (ka v)? 00‘0%2) dz < ||allgyn.qllu —vll7,

|a|<n k>1

Thus, under the assumptio®.{) if we furthermore assume thatip, - || (t)]|ym > < oo, theno given by
(3.8) satisfies conditions3(1)—(3.3).
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Additive Noise. Foro : [0,00) — H™, with sup;sq [|o(t)|| gym < 00, we may easily observe that
satisfies 8.1)—(3.3). For such noised}V may be understood in the formal expansion

ocdW(t,z,w) = Z o (t, x)dWy(t,w).
k

Note that our results for additive noise in Theorémare established under a more generalependent,
which satisfies3.4).

4. MAIN RESULTS

With the mathematical preliminaries in hand and havingtistaed the noise structures we shall consider,
we now make precise the notions lotal, maximalandglobal solutions of the stochastic Euler equation
(1.1)—(1.3).

Definition 4.1 (Local Pathwise Solutions). Suppose thatn > d/p + 1 withp > 2 andd = 2,3. Fix
a stochastic basis := (0, F,P, {F;}+>0, W) anduy an X, , valuedF, measurable random variable.
Suppose that satisfies the conditionS.1)—3.3) (or alternatively(3.4)).

(i) Alocal pathwiseX,, , solution of the stochastic Euler equation is a péir, 7), with 7 a strictly
positive stopping time, and: [0, c0) x Q — X,, ,, is a predictable process satisfying

u(- A1) € C([0,00), Xop)

and for everyt > 0,

tAT tAT
u(t A7)+ / P(u - Vu)dt = u(0) + Po(u)dW. (4.1)
0 0
(i) We say that local pathwise solutions angique(or indistinguishablif, given any pair(u), 7(1)),
(u®, 7)) of local pathwise solutions,

P (1u<1)(0):u<2)(0) (W) —u®(t)) = 0;vt € [0, 7 A T@)]) = 1. (4.2)

Given the existence and uniqueness of such local soluti@nsan quantify the possibility of any finite
time blow-up. In some cases we are able to show that such jz&lsalution in fact are global in time.

Definition 4.2 (Maximal and global solutions). Fix a stochastic basis and assume the conditiopsnd
o are exactly as in Definitiof4.1) above. Amaximalpathwise solution is a tripl¢u, {7, },>1, &) such that
each pair(u, 7,,) is a local pathwise solutiory, is increasing withim,, ., 7, = £ and so that

sup ||u(t)|lw1.c > nonthe sef{ < oo} 4.3)
te[0,7n]

A maximal pathwise solutiofu, {7, },>1, &) is said to beglobalif £ = co almost surely.

Our primary goal in this work is to study local and global peaite solutions of the stochastic Euler
equation. These type of solutions also fall under the desigm of “strong solutions”; we prefer the term
“pathwise” since it avoids possible confusion with claakterminology used in deterministic PDEs. In any
case one can also establish the existence of “martingatgir@abilistically “weak” solutions) ofX.1)—
(1.3) where the stochastic basis is an unknown in the problemtenihitial conditions are only specified in
law. Indeed such type of solutions are essentially estadaliss an intermediate step in the analysis which
is carried out in Sectiofi; see Remark.6 below.

We now state the main results of this paper. The first resuit@ms the local existence of solutions, the
proof of which is carried out in two steps, in Sectigand7 below.

2Under this definition it is clear that, for evey > 0, Sup,eo,77 [[u(t)|lw1.o is almost surely finite on the s¢f = oo}
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Theorem 4.3(Local existence of pathwise solutions)Fix a stochastic basi§ := (Q, F, P, {F; }1>0, W).
Suppose thatr > d/p + 1 withp > 2 andd = 2,3. Assume that is an X,, , valued,F, measurable
random variable, and that satisfies the condition8.1)—3.3). Then there exists a unique maximal pathwise
solution (u, {7, }n>1,&) of (1.1)—1.3), in the sense of Definitionsland4.2.

In Section8 we show that in two space dimensions we have, in the case additive noisethe global
existence of solutions. Note that in contrast to the situafor the2D Navier-Stokes equations (cf. e.g.
[GHZ09), proving the global existence for a general Lipschitz lm@ar multiplicative noise seems to be
out of reach with current methods (see Remaikbelow for further details).

Theorem 4.4(Global existence for additive noise in 2D).Fix m > 2/p + 1 with p > 2, a stochastic
basisS := (Q, F,P, {F:}+>0, W), and assume that, is an X,, , valued,F, measurable random variable.
Assume that does not depend onm and (3.4) (or (3.1)—3.3)) holds. Then, there exits a unique global
pathwise solution of1.1)—«1.3), i.e. £ = oo almost surely.

Remark 4.5. The local existence of pathwise solutions with additivesadiollows directly from Theo-
rem4.3in the case of a (deterministic) continuowis: [0, 00) — W2, with sup;~ lo®)|x, ,, < oo,
wherem/ is as in 8.3). On the other hand, the proof of local existence for adelitivise does not require
the involved machinery employed to deal with a general mesali multiplicative noise; in this case one can
transform (.1) into a random partial differential equation, which canfgated pathwise, using the classical
(deterministic) methods for the Euler equations (MBJ02]). Of course, one has to show that this random
transformed system is measurable with respect to the stichelements in the problem but this may be
achieve with continuity and stability arguments. Thesémélities are essentially contained Kifn09],

to which we refer for further details.

Finally we address the case ofimear multiplicative noise In 2D we show that the pathwise solutions
are global in time. Ir8D we go further and prove that the noise is regularizing at titbwise level. Here
we are essentially able to establish that the time of exist@onverges tg-oco a.s. in thdarge noise limit
More precisely, we have:

Theorem 4.6 (Global existence for linear multiplicative noise). Fix S := (Q, F,P, {F;};>0, W)3, a
stochastic basis. Suppose that> d/p+ 1 withp > 2 andd = 2, 3, and assume that, is an X, , valued,
Fo measurable random variable. Far € R we consider(1.1)—1.3) with a linear multiplicative noise

au ifk=1,
ok(u) = o(u)er = 0 otherwise

(i) Supposel = 2. Then for anyx € R the maximal pathwise solution of guaranteed by Theotein
is in fact global, i.e£ = oo almost surely.

(i) Supposel = 3. LetR > 1 anda # 0 be arbitrary parameters. Then there exists a positive
deterministic function: (R, o) which satisfies

lim k(R,a) =00
a?—o00

for every fixedR > 1, such that whenever
HUOHW’”J] < ’%(Ra Oé), a.s. (44)
then
1
- R4
In particular, for everye > 0 and any given deterministic initial condition, the problitlyi that
solutions corresponding to sufficiently largel never blow upis greater thanl — e.

P=oc0)>1

3For the noise structure considered here, we need only todedireed a singlé D standard Brownian motion.
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Remark 4.7 (Lack of global well-posedness in two dimensions with genearimultiplicative noise). We
emphasize that even in the two-dimensional setting, and fareD = R?, the global existence of smooth
solutions to {.1)—(1.3) for a generalLipschitz multiplicative noise appears to be out of reaghfakt, the
analogous result remains open even in the deterministimgetnless the forcing is linear. Indeed, let us
consider the Euler equations wittsalution-dependent forcing

Ou+u-Vu+Vr = f(u), V-u=0 (4.5)

wheref is a smooth function mappirig? — R?, which decays sufficiently fast at infinity. In order to olptai
the global in time regularity of4.5) one must have an a priori global in time bound for the suprarotithe
vorticity w = V+ -« (or at least a bound in a Besov space “sufficiently closel’t0). However, using the
Biot-Savart law, the evolution af is governed by

ow +u-Vw = —Z?lfl(u)w — (81f2(u) + agfl(u))ngw + (82f2(u) — 81f1(u))7211w (4.6)

whereR;; are the Riesz transfornid; (—A)~1, and f(u) = (f1(u), f2(u)). While the first term on the
right side of of @.6) is harmless fof.*>° estimates om, unlessf is such thab; fo + ds f1 = Oafo — 01f1 =

0 identically (which is true forf(u) = u, that is fi(z,y) = « and fa(x,y) = y), the remaining two
terms prevent one from obtaining a bound |on|| - using classical methods, since Calderon-Zygmund
operators are not bounded @A°. Recently it was proven inQV11] that if one adds a@rbitrary amount

of dissipation, in the form of a positive power ofA, or even dissipation as mild &sg(1 — A), to the left
side of @.5), then the equations have global in time smooth solutioriee Jlobal well-posedness of.6)
with no dissipation remains open for generic smooth forging

5. APRIORI ESTIMATES

In this section we carry out a priori estimates for solutiewslving in X, ,, of (1.1)—(1.3) with m >
d/p+ 1, p > 2. The bounds established in this section will be used extelysthroughout the rest of the
work. We begin with the bounds in the Hilbert space case, hafoesolutions inX,,,. These estimates will
be used in Sectiofi in the context of a Galerkin scheme.

5.1. L2-based estimatesWe start with estimates if{™ (D), wherem > d/2 + 1. Letu be a solution
of (1.1)—(1.2), which lies in H™*!(D) and is defined up to a (possibly infinite) maximal stoppingetiof
existence¢ > 0. Note however, that the a priori estimatés4f—(5.8) involve only the H™ norm of the
solutionw.

Let o« € N? be a multi-index withja| < m. Applying the Leray projecto and thend® to (1.1) we
obtain

d(0%u) + %P (u - Vu)dt = 0 Po(u)dW. (5.1)
By the It 0 lemma we find
d)|0%ull7s = — 2 (0%, 0*P(u - Vu)) dt + ||8O‘Pa(u)||§g0dt + 2 (0%, 0% Po(u)) dW
=(JT + JgH)dt + J5dWw. (5.2)
Fix T > 0 and any stopping time < £ A T. We find that for every € [0, 7],
o ate) < 10wl + [ (ot + 1aglhas+ | [ agaw)

Hence, summing over alte] < m, taking a supremum over € [0, 7] and then taking the expected value

we get
/s J??dWD . (5.3)
0

E sup |lu(s)||%m <E|uo||%m +E Z / (| J5| + [JS])dt’ + Z E ( sup
0

s€0,7] s€[0,7]

lo|<m la|<m
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We first treat the drift terms/{* and J3* which may be estimated pointwise in time. We bound the
nonlinear term/{* by settingp = 2 andv = w in (2.12) to obtain

Y 1< Clullwoe [[ullm (5.4)

la|<m

for some positive constaiit = C'(m, D). In view of the assumptior3(1) the J§' term is direct:

> 181 < B(lfull )2 (X + [ Fm)- (5.5)

laj<m

whereg is the increasing function given i3.({).
We handle the stochastic term, involviog, using the Burkholder-Davis-Gundy inequality.14) and

assumptiong.1):
s - 1/2
0 0

E{ sup
s€[0,7]
< CE < PR S uun%m)dt)

1/2

Now, summing ovefa| < m, we infer

Z E ( sup
lal<m s€[0,7]

In view of the estimateX.4) for the nonlinear term, we now define the stopping time

s 1 T
/0 J:?dWD <5E s%p}IIUH?{m +CE/O Blllullz=)*(L + ul|fm)dt. — (5.6)
se|0,7

fR = inf {t > 0: ”u(t)”wloo > R} . (57)

Combining the estimate$ @#)—(5.6), we find that for any > 0, by takingr = ¢ A &g,

ErNL

E sup |lulfm <2E|uo|lFm +CE/O (lullwce + B(llullze)?) (L + [[ullFm)ds

sS€[0,ErNE]

t
<9E||ug | + C /0 <1+E s }HuH%)ds,
re|0,ErNAs

where the final constartt depends oz through R + 5(R)?. From the classical Gronwall inequality we
infer

E sup fulfm < C1+E|uollzm) (5.8)
SE[0,ERNT)

whereC = C(m,d, D, T, R, ().

Of course estimate5(8) does not prevenful|y1.« from blowing up beforel’; the bound %.8) grows
exponentially inR and hence we do not a priori know th@f — oo asR — oo. Note also that, in contrast
to the case of the full space (or in the periodic setting), wieis a smooth simply-connected bounded
domain, the non-blow-up of solutions is controlled |y||;;1., rather than the classiciVu|| . This
is due to the nonlocal nature of the pressure. In the bo&rt) this is inherently expressed through the
definition of the stopping tim€g. Of course, theL>° bound onu is also needed to control the terms
involving o.
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5.2.
formula, pointwise inz, for the functiong(v) = |v|P = (|v|?)P/2. After integrating inz and using the
stochastic Fubini theorem (se@RPZ93) we obtain:

dj0%ult, = — p/ 0%u - 0*P(u - Vu)|0%u[P~2dxdt

—l—Z/ < 0% Py, (u) [*|0%u|P~2 + plp=2) (aau'(‘)O‘Pak(u))2]8au]p_4> dxdt

k>1

—i—pZ(/ 8% - 9 Po(u)|0%ulP~ 2dx> AW,

k>1
=17dt + I5dt + IS dW. (5.9)
By lettingv = u in (2.12 we bound
117] < Cllullwros [[wllym.e- (5.10)
We turn now to estimate the terms specific to the stochassie. deor/$', using @8.1) we have
15| <C/ Y10 Poy(u)|*|0%ulP~2da < C|[Po () |[Fym ulfyms < CB(Iullzoo)* (1 + [fuu][fym.p)-

k>1
(5.11)

To estimate the stochastic integral terms involvilig we apply the Burkholder-Davis-Gundy inequality,
(2.14), the Minkowski inequality for integrals, and us&1). We obtain, for any stopping time< T' A &,

1/2
s 2
E < sup / Ig‘f‘dWD <CE / </ 0% - 0% Poy(u)]0%ulP—2 dw) ds)
s€l0,7] 1/0 0 D

2 1/2

1/2
gCE/ /(Z@O‘Pak a%“”) dz | ds
0

k>1

k>1

p/2
<CE /||aa 2D /(Z@O‘Pak ) o | ds

k>1

1/2
§0E<sup o2/ (/ hll?2., ||uuLoo>2<1+uun%vm,p)ds) )

s€[0,7]

<3E sup 0%l + OB [ Bl 0+ ) (5.12)
s€|0,7

Combining theL? It o formula $.9) with the estimatesy10—(5.12), and making use of the stopping time

&g defined in 6.7), we may obtain, as in the Hilbert case,

E sup |[ullfyms < C(+Elluolffym.s) (5.13)
s€[0,ErNT

whereC = C(m,d, D, T, R, 3).

Remark 5.1 (From a priori estimates to the construction of solutions). Having completed the a priori
estimates idV" P, we observe that, even for the deterministic Euler equatmma bounded domain, the
construction of solutions is non-trivial and requires aadek treatment of the coupled elliptic/degenerate-
hyperbolic system (see e.Kl[84, Tem79). In addition, the stochastic nature of the equationsitces a
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number of additional difficulties, such as the the lack of paniness in the variable. We overcome these
difficulties in Section$ and7 below, by first constructing a sequence of very smooth apprabe solutions
evolving from mollified initial data, and then passing toraitiusing a Cauchy-type argument.

6. COMPACTNESS METHODS AND THE EXISTENCE OF VERY SMOOTH SOLUTNSB

Leetp > 2 andm > d/p + 1 be as in the statement of Theoreh3. In this section we establish the
existence of “very smooth” solutions of .(I)—(1.3), that is solutions ind™ , wherem’ = m + 5 (so that
m’ >m+3+d(p—2)/(2p) foranyd = 2,3 andp > 2). We fix thism’ throughout the rest of the paper.
In particular we shall use tha@i™ —2 ¢ W™*'» andm’ > d/2 + 3. Note that the the initial data in the
statement of our main theorem only liesliii”?, not necessarily itf”’, but we will apply the results in
this section to a sequence of mollified initial data (¢f1f below), and then use a limiting argument in order
to obtain the local existence of pathwise solutions for atednWW™P (see Section).

We begin by introducing a Galerkin scheme with cut-offs onfrof both the nonlinear drift and diffusion
terms. Crucially, these cut-offs allow us to obtain unifasetimates in the Galerkin approximations globally
in time (see Remark.1 below). We then exhibit the relevant uniform estimates fase systems which
partially follow from the a priori estimates in Sectidh We next turn to establish compactness with a
variation on the Arzela-Ascoli theorem, tightness argutsieaind the Skorohod embedding theorem. In this
manner we initial infer the existence of martingale soluido a cutoff stochastic Euler system (d.1(7)
below) in a very smooth spaces. We finally turn to prove theterce of pathwise solutions by establishing
the uniqueness for this cutoff system and applying the @yéfrylov convergence criteria as recalled in
Lemma6.10below.

6.1. Finite Dimensional Spaces and The Galerkin schemd-or eachu € X, by the Lax-Milgram theo-
rem, there exists a unique(u) € X,/ solving the variational problem

(®(u),v) g = (u,v), for all vE Xy

Actually, the regularity of®(u) is expected to be better. II&hi84 it is shown that in fact the maximal
regularity ®(u) € Xo,, holds. We let{¢;};2, be the complete orthonormal system (ify) of eigen-
functions for the linear map — ®(u), which is compact, injective and self-adjoint ofy. Therefore,
(D> V) gy = Ai(@r,v) forall v € X, where/\,;1 > 0 is the eigenvalue associateddp, and by [Ghi84]
we knowgy, lies in X,,, for all k& > 1.

For alln > 1, we consider the orthogonal projection opera®r mappingX, ontospan{¢i, ..., o},
given explicitly by

Py = Z(’U, ¢j)¢p;, forallv e Xo.
j=1

Note that thesé’, are also uniformly bounded imon X,,,/, X,,,»_1, etc. See e.gLM72] for further details.

Fix R > 0 to be determined, choose(&*°-smooth non-increasing functidiy, : [0,00) — [0, 1] such

that
1 for |z| < R,
br(z) = {0 for ;w} > 2R.

We consider the following Galerkin approximation schemg(fol)

du"™ 4+ Or(||u"||yyr1.00 ) Pa P(u™ - Vu™)dt = Or(||u” ||y ) P Po(u")dW, (6.1)

u"(0) = Pyuo. (6.2)
The system §.1)—(6.2) may be considered as an SDErndimensions, with locally Lipschitz drift (cf.
Proposition6.8 below) and globally Lipschitz diffusion (cf3(1)). Since we also have the additional cance-

lation property(P, P(u - Vu),u)r2 = 0 for all w € P, X,,» we may infer that there exists a unique global
in time solutionu™ to (6.1)—(6.2), evolving continuously orP, X,,.. See e.g.Fla0g for further details.
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Remark 6.1. The cutoff functions in.1) allow us to obtain uniform estimates faf in L>°([0, 7], X,,/)

for any fixed, deterministi¢’ > 0. Without this cutoff function we are only able to obtain wmih estimates
up to a sequence of stopping time&s depending om. In contrast to the deterministic case it is unclear if,
for example,inf,,>; 7" > 0 almost surely. Note however that the presence of this duteafses additional
difficulties in the passage to the limit of martingale sauos, see Remar.6, and in order to establish the
uniqueness of solutions associated to the related to thiediioff system, sees(17), Proposition6.8 and
Remark6.9 below.

6.2. Uniform Estimates. Applying the Ito formula to§ 1), and using that?, is self-adjoint onX,,,,
similarly to (5.2) we obtain

dllu |3 = = 20R([u" lwreo) (W, P(u" - V™)) o dt
+Or([u" lwree)? [ PaPo(u)IIE, , dt + 20R([u" [wie) (u”, Po(u")) g dWV.

Further on, in order to establish the needed compactnelie probability distributions associatedu, we
need uniform estimates on higher moments|@f||2 ,. For this purpose we fix any > 2 and compute

d(|[u™|%,,.,)"/? from the It formula and the evolution i ||?, ,. We find

dl|u™ |y = = TR [lwroe ) [u™ ]2 (u, Pu™ - V™)) g dt
n T ongr— n r(r—2 n|r— n n
s (51015 2P P, + 2 Pota ) )
O s 5% (", Po(u™) e W, 63)

Let us introduce the stopping time

TK = inf{t >0: sup |[u"| gm > K}, forany K > 0.

s€[0,t]

Using bounds similar to the a priori estimates of Sectipwe obtain the estimate

E sup  ||[u™||",
SE[0,tATK]

t/\’TK
< E||Putiolyy +CE [ Or(u lwace) (B 2)? + " wre) (1 + 100" (3)ll e ) s
0
tATK ) , 12
R </0 Ol o) Bl |[zoe) 2l e (1 + "1 m/)d8>

t
1
< Elluol|r + C/ 1+ E ( sup  ||u"(r)]|" m,> ds + §E ( sup Hu"(T)HTHm,> ,
0 s'€[0,sA\TK] s€[0,tATK]
where C' is a constant independent efand K but depends orD, m/, r, and R (through 6z and 3).
Therefore, rearranging and applying the standard Grdnmeduality, we obtain that, for any > 0
E sup |u"|",, <C < oo,
s€[0,TATK]
for some positive finite constait = C(T, R, r, 8, E||uo||",,.,) which is independent of and K. Since
T — o0 asK — oo, with the monotone convergence theorem we conclude
supE sup |[u"||},,. < C < 0. (6.4)
n>1  se[0,T]
In order to obtain the compactness needed to pass to therimft we also would like to have uniform
estimates on the time derivativesdf. Since in the stochastic case we do not exp&db be differentiable
in time, we have to content ourselves instead with estimatefsactional time derivatives of order strictly
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less thanl /2. In order to carry out such estimates we shall also make uaevafiation on the Burkholder-
Davis-Gundy inequalityd.14), as derived infFG935.
For this purpose, let us briefly recall a particular chamdza¢ion of the Sobolev spac&E*4([0, 7], X)
whereX may be any separable Hilbert space. See, for exanipkZ97 for further details. For; > 1 and
€ (0,1) we define

T o) ()]
weao, i x) = {ve mo.myxy [ [ 10 Carar <o},

! __ t//’l—i—aq

which is endowed with the norm

@) — oIS
X "
HUHWap ([0,7);X) / [o(t)%dt’ +/ / [ — ¢7iTaq dt'dt”.

Note that fora: € (0,1), Wh4([0,T]; X) € W*4([0,T]; X) with [[v]lwe.aor,x) < Cllvllwrago,r)x)-
As in [FG99 one can show fromZ.14) that for anyg > 2 and any«x € [0,1/2)

t q
E / Gaw <CE (/ 1GHL, dt>, (6.5)
0 Wes([0.71:X)

over all X valued predictabl€s € L¢(Q; L] ([0,00), Lo (4, X))) and wherel = C(a, ¢, T).
With these definitions and(5) in hand we return tod.3). For any0 < o < 1/2, we have

s

t
E|lu <CE ‘ Pyug —I—/ Or(||u"||w1.00) Py P(u™ - Vu')ds
0

[
ar([0,T],H™ ~1
(017, ) whr([0,T],H™ 1)

T

t
+CIEH/ 0|1 |0 ) P Por (™AW
0

(6.6)
wenr([0,T],H™ —1)
for some positive constart’ = C(7'), independent of.. Since P, P is uniformly bounded inX,, _;
independently of., using €.2) and €.4) we bound the first term on the right hand side @] as

T

E

t
Pou + / Or(([u™ 10 ) P P (0™ - V™) ds
0

Whr([0,T],H™ = 1)

T
< CE|fup|[",, + CE/ Or((lu 1) ([0 - V[l dt
0

T
< CEljuo||}ym + CE/ Or(|[u"[wree) |u" [1c0 [0 dt < CE < Sflp} [u" () mr | <C
0 tefo,T

(6.7)

where the final constartt = C(T', R, 7, E|[uo|[},,,,) does not depend am. For the second term on the left
hand side of§.6) we make use ofg.5) with ¢ = r anda € (0,1/2), then 3.1) and 6.4) to estimate

T

t
EH/ Or ([t |y 1,00 ) Po Por(u™)dW
0

W ((0,T),H 1)

T
<CE ( /0 9R<Hu"HWmVuPnPow“)Hggm,1dt)
T
< CE [ 0n(lur e B =) 0+ [ [y

<CE (1 + sup ||u"<t>u’,;m,> <c, (6.8)
te€[0,T
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where in the final constardt = C(T', R, r, 5,E||uo||",,.,) is a sufficiently large constant independentron
Combining 6.6)—(6.8) we have now shown that

<, (6.9)

igFfEHU"HT a,r([07T]7Hm’71)

for some positive finite constant = C(T, R, r, E||uo||",, ., &). In summary, we have proven:

m

Proposition 6.2. Fix m > d/2 +1,m’ = m + 5, « € (0,1/2), »r > 2, and suppose that satisfies con-
ditions (3.1)—3.3). Givenug € L"(Q; X,,,/), Fo measurable, consider the associated sequence of solutions
{un}n>1 Of the Galerkin systerf6.1)<6.2). Then the sequende:” },,>; is uniformly bounded in

L"(Q; L ([0, T, Xy ) D W0, T Xy —1))
for anyT > 0. Moreover, under the given conditions, we have

t T
supE /QR(HU"HWLOO)PNPJ(un)dW < 00 (6.10)
nz1 [lJo weer((0,7], Hm'=1)
t T
supE u"(t)—/ Or([|u" w100 ) Py Po(u")dW < 00. (6.11)
n>1 0 wtr([0,T),H™ ~1)

6.3. Tightness, Compactness and The Existence of Martingale Stlons. For a given initial distribution
1o on X,,,» we fix a stochastic basiS = (2, F, {F:}+>0, P, W) upon which is defined ai, measurable
random element,, with distribution ;.. As described above, we define the sequence of Galerkinxppro
mations{u" },,>; solving 6.1)—(6.2) relative to this basis and initial condition.

To define a sequence of measures associated{\ith W)}, >, we consider the phase space:

X =X x Xy, where Xg=C(0,T],X,y—2), Xw =C(0,T],). (6.12)

We may think of the first components O C([0, 7], X,.), as the space where thé& lives, and the second
componentXyy, as being the space on which the driving Brownian motiongdafimed. OnY we define
the probability measures

=l x i, where pl() =P €4), pw () =PW e ). (6.13)
We next show that the collectiofy.” },,> is in factweakly compact Let Pr(X) be the collection of

Borel probability measures ok. Recall that a sequende, },,>0 C Pr(X) is said toconverge weakljo

an elementv € Pr(X)if [ fdv, — | fdv for all continuous bounded on X. As such, we say that a set

A C Pr(X) is weakly compact if every sequen¢e,} C A possesses a weakly convergent subsequence.

On the other hand we say that a collectibrC Pr(X) is tight if, for everye > 0, there exists a compact set

K. C X suchthatu(K,.) > 1—eforall u € A. The classical result of Prohorov (see e[gPF97) asserts
that weak compactness and tightness are in fact equivaleditons for collections\ C Pr(X). We have:

Lemma 6.3(Tightness of Measures for the Galerkin Scheme)Letm > d/2 + 1, m' = m +5,r > 2,
assume that satisfies conditiong3.1)—3.3), and consider anyg € Pr (X, ) with [ |u["dpo(u) < oo,

Fix any stochastic basi§ = (2, F, {F:}+>0,P, W) upon which is defined aif; measurable random
elementu, with this distributions and take{v" },>1 to be the sequence solvif§ 1), (6.2) relative to this
basis and initial condition. Define the sequerdgé },~, according to(6.13) using the sequencg:” },>1.
Then{u"},>1 C Pr(X) is tight and hence weakly compact.

In order to obtain the compact sets used to show that the seg{ig” },,>1 is tight we use the following
variation on the classical Arzela-Ascoli compactness rtai@ofrom [FG935.

Lemma 6.4. Suppose that (). 5 Y are Banach spaces wifti compactly embedded (). Leta € (0, 1]
andq € (1, 00) be such thatyg > 1 then

Wi(10,T];Y) cc C([0, 7],V (6.14)
and the embedding is compact.
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With this result in hand we proceed to the proof of LemBna

Proof of Lemmd.3. Fix anya € (0,1/2) such thatwr > 1. According to Lemma.4 we have that both
WH2([0, T]; Xpwr—1), WH([0, T); X, ) are compactly embedded &. Therefore, fors > 0, the sets

Bg = {u S W172([O,T];Xm’_1) : HU’HWLQ([O,T};H’”,*l) S S}
+ {u e WO (0, T X : el o s 1) < 5

/BHu ) P Por(u de gs}

are pre-compact i’s. Since{u" € B2} contains
W2([0,T]; Hm' ~1)

{H/ B(I[a ) P Po(u de gs},
wer([0,T];H™ ~1)

and using Propositiofi.2, estimates®.10—(6.11), and the Chebyshev inequality we bound

/eR 0™ [yy1.00 ) P Por (1 de > s
W12 [0 T] H'm 1)

L P H/ On([[u 1) P Por(u de s <&
W(xr(oT}Hm 1) S

whereC' is a universal constant independentsaind». We infer thaty.% is a tight sequence af’. Now,
since the sequenciuyy } is constant, it is trivially weakly compact and hence tigite may thus finally
infer that the{ "} is tight, completing the proof. O

u5((BI)C) <P (

With this weak compactness in hand we next apply the Skomblemabedding theorem (cfDPZ93) to
a weakly convergent subsequence{pﬁ}n>1 We obtain a new probability spauﬁ@ J—“ IP’) on which we
have a sequence of random elem€[ts”, W")}n21 converging almost surely i’ to an elementu, W)
ie.
u" —u, inC([0,T], X, _2) almost surely (6.15)
and
W =W, inC(]0,T], ) almost surely (6.16)

One may verify as inBen9] that (’d”,VNV”) satisfies thenth order Galerkin approximatiors(1)—(6.2)
relative to the stochastic bas®' := ({2, F, P, {F'},W") with F* the completion of ther-algebra gen-
erated by{(u"(s), W"(s)) : s < t}. Using the uniform bound6(4) and the almost sure convergences
(6.15—(6.16) we may now show thaz, W) solves the the cut-off system

i + O (||t 1.00 ) P (1 - V) dt = Og(||i]|yyr1.00 ) Por (@) V. (6.17)

For the technical details of this passage to the limit werrefe.g. DGHT11] where this analysis is carried
out for the primitive equations. Applying these argumentshe Euler equations introduces no additional
difficulties, so we omit further details. More precisely wavh established the following:

Proposition 6.5. Fix anym’ > d/2 + 3, r > 2, and R > 0. Suppose thaﬁo € Pr(X ) is given such
that [ |lull”., duo(u) < co. Then there exists a stochastic baSis= (Q, F,P,{F},W) and anX,,,
valuedf’predictable process

u€ L2(Q Lloc([0> OO); Xm’)) N Lz(Q; C([0> OO)>Xm’—2))
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with P(u(0) € -) = P(ug € -) such that

t t _
ﬂ(t)+/ Or(||wllyy1,00 )P (- V) dt:ﬂ(0)+/ Or(||w]|y1,00 ) Po(w)dWW
0 0
for everyt > 0.

Remark 6.6. The assumptiom’ > d/2 + 3 is needed facilitate the passage frofnlj to (6.17). Indeed,
when passing to the limit we need to handle some stray terisia@due to the cut-off terms involving the
W1°° norm of the solution. These stray terms are of higher ordar the other terms in the estimates, and
in order to deal with them we need to have compactness in iuffig regular spaces. In the analysis above
this compactness is provided by the Arzela-Ascoli typeltekemma6b.4. In order to apply this lemma we
need estimates on (fractional) time derivatives,®f which in view of 6.7) must be made iX,,,,_;. An
additional degree of regularity is then lost in order to abtacompact embedding iX,,,,_1, as required by
Lemma6.4, and we therefore arrive at the conditiord > d/2 + 3.

We also observe that Propositiérb immediately yield new results on the existence of martiegallu-
tions of the stochastic Euler equation.

Remark 6.7 (Existence of Martingale Solutions).We may show that the paft:, S), obtained from Propo-
sition 6.5is a local martingale solution of.(1)—(1.3) by introducing the stopping time

7 =inf{t > 0: ||u||y1.~ > R}.

Of course, unlesgu(0)|[y1.0c < R, i.e. unlessug({up € Xy @ |luwollwre < R}) = 1, we have
ﬁ(T = 0) > 0. Such stopping times will also be used further on to infer the existence of sohgi the
pathwise case. Note however that in this caseltf&(2) condition may be subsequently removed with a
cutting argument, cf.§.26—(6.27) below.

6.4. Uniqueness, the G¥ngy- Krylov lemma, and the existence of strong solutionsHaving now estab-
lished Propositiort.5, and guided by the classical Yamada-Wannabe theorem Y&®&1], [WY71]), we
would now expect pathwise solutions to exist once we esfalifiat solutions are “pathwise unique”.

Proposition 6.8 (Pathwise uniqueness)Fix anyr > 2, R > 0, andm’ = m + 5, wherep > 2 and
m > d/p + 1. Assume that satisfies(3.1)~(3.3), and supposéS,«()) and (S, u(?)) are two global
solutions of(6.17) in the sense of Propositidh5, relative to the same stochastic baSis= (2, F, {F; }+>0,
P, W). If u)(0) = u®(0) = ug, a.s, withE|jug|",,,., < oo, thenu(!) andu(® are indistinguishable.e.

P (u(l)(t) — u®(t): vt > o) ~ 1. (6.18)
Proof of Propositior6.8. By the assumption ony and Propositiors.5, we have for every” > 0
E(amuMWPW+WNWHn>§O<m, (6.19)
te[0,7

whereC is a universal constant depending onlyI®jul|?,, ., R, 3, andT. However, continuity in time is

only guaranteed for th&” ~2 norms ofu(Y) and«(?), and so, in view of the choice of’, we may define
the collection of stopping times

€ i int {2 05 JulD Byisy + 0D By > K}, K >0,

Observe that due td®(19 we havet® — oo almost surely ag( — oco.
Takev = u(M) — ). We have

dv + 05(||u®|[yp1.00 ) P (u<1> : vu<1>) dt—0r(|u® |y )P (u<2> : vu<2>) dt

= (Br(Iu® 1) P (™) — 6p(lu® fyy1.2) Po(u®)) dW.
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We now estimate in WP, For any multi-indeX«| < m we applyo® to the equation fop. With the Ito
lemma inL? we find

d|0v|[7, =—p/ v GR(Hu(l)HWlm)aaP(u(l) - Vul) = Op(|[u®|y1.00) 0 P(u® -Vu(z))> |00 [P~2 ddt
+Z/< 10* POR([u llwmr)or(@™) = Or(|[u® (lwms)or () P[00

k>1

-2
- Lpz )(0% - POr([u|lwms)op (u)) 9R(HU(2)HWmvP)Uk(U@))))2\3%11)_4) dxdt

+pz</ 00 - 0" P(Or([u' w100 )on(ut)) = Op([u® [l )i (u®)) |00 P~ 2d:v> AWy

k>1
=(J¢ + J)dt + JdW.
Using the mean value theorem g, the embeddingV’ > ¢ W™, and Lemma.1we estimate/{* as
21 <C [0r(1u lwe) = Or(u® lyree)| | (8P - TulD), 000]00}~2) |
+C ‘ <8“P(u(l) Ve =92 Pu® . vu?), a%|a%|l’—2>(
<C luD s = 1 flynce | 1P - FuO) fms 0l
+C ‘ <8°‘P(v -vul), a%|8%|1?—2) ‘ +C ‘ <8°‘P(u(2) - V), 8av|8av|p_2) ‘
<Clolfymp 6 wmslle® s + ol (02 6 lpress + D oo ol )
+ Cllolfms (6 lwms [0l + 6@l [ollwms )
<Clollym (4 Nu® o)l s + 6 lwms) (6.20)
Using the local Lipschitz condition o, i.e. (3.1), we have
5| <Cllolfma 10 ([u™M w1 )o (™) = Or([u® |l )o (@) [Fm.s
<Cllvlhms <9R(||u o) llo (™) = o () |[Fyon.s
|0 o) = 0@ )| o) s

<CB(lu o + u®lzoe)? (1 + [a [Fymo) [0 1Fym.e- (6.21)

For the terms involving/s* we make use of the Burkholder-Davis-Gundy inequality inrailsir way to
(5.12 and then argue as i%.21) in order to finally estimate, that for evety> 0

SAEK
E sup / J3'dW
s€[0,t]
1/2
7N3 2
< CE (/ Z </ o%v - 9P HR(HU le oo)O'k( ) HR(HU HWl,oo)O'k(u(z)))’aa'U’p_2 dx) dS)
k>1
tAEK 1/2
o 2(p—1
< CE ( /0 1002210 R([u™ |y, ) (u D) —eR<uu<2>\|W1,w>a<u<2>>||%w,pds>
1 tAEK
<IE sup [0%|7, +CE / 19]12y e p ds. (6.22)
2 sel0,neK] 0
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We now combine the estimates obtained@r2()—(6.22) and sum over alk with |a| < m. We find that for
any fixedK > 0

tAEE
B s lolfym, <CE L 1o B e + 10 i)+ 1) (1 P+ 0 s ) s
s€|0,tNA

<C/ sup  ||v][fympds

rel0,sAEK]

where the constart may depend ork via the definition of the stopping timg,. By a classical version of
the Gronwall lemma, the monotone convergence theoremhanthet that® — oo as kK — oo we infer
that, for everyl’ > 0

E sup |[[v][fyms =0.
t€[0,7]

SinceT is arbitrary, 6.18 follows, and the proof of uniqueness is therefore complete 0

Remark 6.9. With obvious modifications the above proof can be used to stiawif (u("), 7)) and
(u®, 7)) are local pathwise solutions af (1)—(1.2) then

P (1,0 (0)-ut@ (0) (1) = u® () = 09 € 0,7 A7 P]) =1, (6.23)

With uniqueness ford.17) in hand, in order to establish the existence of pathwisetieol, we shall use
the following criteria from GK96].

Lemma 6.10. Let X be a complete separable metric space and consider a seqoédcealued random
variables{Y;},>¢. We denote the collection of joint laws{f; } j>1 by {v;};:>1, i.e. we take

viu(E) :=P((Y;,Y)) € E), E€B(X xX).

Then{Y;};>1 converges in probability if and only if for every subsequeint joint probabilities laws,
{vj, 1. }k>0, there exists a further subsequence which converges wieeklgrobability measure such that

v({(u,v) e X x X :u=v}) =1 (6.24)

With this result in mind let us now return again to the seqeenfcsolutions:’ to the system@.1) relative
to some stochastic basis = (2, F, {F:}+>0,P, W) which we fix in advance. We define sequences of
measures; (1) = P((u/,u!) € -) andp;j(-) = P((w/,u!,W) € -) on the phase spacet; = Xs x
Xg = C([0,T], Xpy—2) x C([0,T], Xpr—2), Xr = X; x C([0,T],4p) respectively. With only minor
modifications to the arguments in Lemrie3 we see that the collectiofy;,;};,>1 is weakly compact.
Extracting a convergent subsequenge — . and invoking the Skorokhod theorem we infer the existence
of a probability spacéQ, 7, P) on which there are defined random eleme(ﬁl.’s’dl,l/w\/j’l) equal in law to
5, and so that

@, @, Wi = (@, W), (6.25)

where the convergence occuisalmost surely in¥y. As above we infer that each ol W) and(u* VN\/)
are solutions of.17) relative to thesamestochastic basi§ := (Q F.P, {J—“t} W) with F; the completion
of o algebra generated Hyi(s), u*(s), W(s)) : s < t}. Definev(-) = P((u, @*) € -) and observe that, due
to (6. 23 vt — v, weakly. Now Propositios.8implies thatv ({(u, u*) € X : u = u*}) = 1. Here we use
that H™ =2 c W™P, and so uniqueness IiY"? (which is proven in Propositio.8) implies uniqueness
everywhere, and hence fi”" ~2. We may therefore infer (passing if needed to a subsequémae)y — u
in Xg almost surely, andn the original probability spaceHaving obtained this convergence and referring
again to 6.4) we may thus show that is a pathwise solution o6(17). We finally define the stopping time

T =1inf{t > 0: ||lu|lwmer > R}.

Note that this stopping time is well defined sineec C([0, ), X,,y—2) C C([0,00), Xy,p) for m’ =
m + 5. Hence, relative to the initial fixed stochastic baSis(u, 7) is a local pathwise solution of the
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stochastic Euler equatior.()—(1.2), in the sense thai(- A 7) € L7 ([0,00); X,nr) N C([0, 00); Xpnr—2)
and @.1) holds for everyt > 0.

In order to show that > 0 we initially assume|uo|| ..+ < M for somedeterministicA/ > 0, and
chooseR > CM, whereC' > 1 is the constant such thiit||yy1.c < C/|lul| g, in the cut-off function in
(6.1). To pass to the general caey|| ..~ < oo almost surely, we proceed as follows (see e@HZO09,
Section 4.2]). Fok > 0 we defineu’g = ”01k§|\uol\Hm/<k+1 and obtain a corresponding local pathwise

solution (uy, 71,) by applying the above construction with aRy> C(k -+ 1) in the cut-off functiord . We
then define

u = Z Uk k<] luol|,,pr <k+1 (6.26)
k>0

T = ZTk1k§|\u0||Hm/<k+1 (6.27)
k>0

and find thafw, 7) is in fact the local pathwise solution corresponding to thgal conditionu,.

For any fixeduy € X, we next extend the solutiam, 7) to a maximal time of existencg(cf. [GHZ09,
MRO04, Jac79). Take& to be the set of all stopping timescorresponding to a local pathwise solution of
(1.1)—(1.2) with initial conditionug. Let{ = sup £ and consider a sequeneg € £ increasing t. Due to
the local uniqueness of pathwise solutions we obtain a peacdefined o0, £) such thaf«, o) are local
pathwise solutions. For eaehr> 0 we now take

pr =1inf {t > 0: [Ju(t)||ppec > 7} AE.

Note thatu is continuous ori¥ > and sop, is a well-defined stopping time. By continuity and unique-
ness arguments we may infer that p,.) is a local pathwise solution for eagh> 0.* Suppose toward a
contradiction that, for som&,r > 0 we haveP({ = p, A T) > 0. Since(u, p, A T) is a local pathwise
solution then there exists, another stopping tine p, A 7" and a process* such that(u*, () is a local
pathwise solution corresponding 4@, contradicting the maximality of. Hence we have proven that for
everyT,r > 0 we haveP(¢ = p. A T) = 0. Observe that on the séf < oo}, by suitably choosing’, we
obtain thatp, < ¢ for everyr > 0. On this set we hence hawep,¢ , 1 [[u(t)1.0 = 7 forallr >0,
which gives

sup |Ju(t)|lwi~ =00, onthe sef{{ < oo}. (6.28)

t€[0,6)

In summary in this section we have so far constructed maxiowal pathwiseH™ solutions, but only
for the non-sharp smoothness regime= m + 5, with the solution guaranteed to evolve continuously only
in X,,/_92, and which remains bounded i,,/. In the next section we shall use these very smooth solutions
to construct local (maximal) pathwid& P solutions for allm > d/p + 1, and for allp > 2, which will
then prove Theorem.3,

7. CONSTRUCTION OFW""P SOLUTIONS

Form > d/p + 1 with p > 2, we now establish the local existence of solutions for aryaindata
ug € Xy p, Which is 7y measurable, which concludes the proof of Theoresn For this purpose we will
adapt a density and stability argument frakiLB4, Mas07, which makes use of the very smooth solutions
constructed in Sectio, as approximating solutions. Indeed, when the initial des in X,,,, where
m/ = m + 5, we obtained in Sectiof maximal pathwise solutions in the sense of Definitdoh In order
to make use of these smooth solutions we define a sequenagutdnized initial data

u% = ij1 u? (7.1)

4Note that, for a giver > 0, we may havé?(p, = 0) # 0. However, for almost every € €, there exists: > 0 such that,
pr(w) > 0.
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where the smoothing operatdrs-: and their properties are recalled in Appenélikelow (see alsa{L84]).
For technical reasons we assume initially, that||;y~.» < M for some deterministic fixed constahf. As
in Section6, once we obtain the local existence of solutions for eachdfixe this assumption can be re-
laxed to the general case via a cutting argument as giveh28)(6.27). Note that in view of Lemma\..1,
estimate A.2) '
sup [ugllwms < Clluollwms < CM (7.2)
Ve
whereC = C(m,p, D) is a universal constant. The bouridd) will be used in a crucial way in the forth-
coming estimates. Sincg;-: is smoothing{u}};>1 C X, and we obtain from the results in Sectién
a sequencéu’, £7) of maximal, pathwise solutions evolving continuouslyXi,,_, which are bounded in
X,. In order to show that this sequence converges to a I&¢a), solution corresponding to the initial
conditionuy we show that, up to some stopping time> 0 the sequencéu’};>; is Cauchy and hence
convergent irC'([0,7); Xy, p)-

To obtain this convergence (along with an associated sigpiiine ) we apply an abstract result from
[GHZ09 (and see alsoNIR04]). For this purpose pick fix any" > 0 and define the sequence of stopping
times _

L=t {¢ > 05 [l () lweo > 2+ | lwpmo } AT, (7.3)
and let
Tfk = TJT ATt (7.4)

for j,k > 1. SincelW™ " is continuously embedded i it is clear thatr]” < &/, where as usua’ is
the maximal (stopping) time of existencedf, i.e.

sup ||u? (t)||wme = 0o, onthe sef¢’ < oo}. (7.5)
t€[0,£9]

From [GHZ09 Lemma 5.1] we recall:

Lemma 7.1(Abstract Cauchy lemma). For 7" > 0 andTJTk as defined irn{7.4), suppose that we have

lim supE  sup |[u (t) — u(t)|[pyme = 0 (7.6)
k=00 j>k  tef0,rT,]

and

lim supP | sup  |[u? (&) |lwme > ||Judlwme + 1| = 0. (7.7)
S=05>1 t€[0,m AS]

Then, there exists a stopping timevith:

PO<7<T)=1, (7.8)
and a process predictable proces§) = u(- A7) € C([0, 7], X,y p) such that
sup ||’ — ullpme — 0, a.s. (7.9)
te[0,7]

for some subsequenge— oo. Moreover, the bound
[u()|lwme <2+ sup HU%”Wm,p, a.s. (7.10)
J
holds uniformly fort € [0, 7].

In view of Lemma7.1, we may now establish the essential convergence neededhémrdm4.3in the
general case by verifying’(6) and (/.7). To prove {.6) we fix arbitraryj, k > 1 and denote) = uF —ul

wherevy = uf — u}. We have

dv+ P (v VU Vv) dt = P(o(uv’) — a(uk))dW.
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Applying 9° to this system and then the It o lemmd.thwe obtain

d|o%vl|f, = — p/ 0% - 9*P(v - VuF + - Vo) |0%|P~2dadt

>/ ( 0% Ploy(u) — on(ub)) 0% o]

1>1
+ p(p2— 2) (0%v - P(oy(uw’) — Jl(uk)))2|8°‘v|p_4> dxdt
+pz (/ 0% - 9P (oy(w!) — oy(uF))|0%w|P~2 dac) dw,
I>1
=(Jy + Js")dt + J§dW. (7.11)

Using (7.11), we now estimate in W™P. For the nonlinear terms we use Lemgha and infer

YR CIP@ - Vub) lwma [0lfyms + D 1(0°P(u! - Vo), 0%0]00]P2)]

am a<m
< Cllolffgms (10l oo 1 fwmsro + [[0llwmr | Ve[ o)
+ Cl[vlfgms (107 Lo [0l + [[0]lyr.00 |0 [0
< Olu* lwmsrolollwm-so [0lFyms + Culwme + 6 [wms)[0][Fym.s

k k j
< Ol e o 1015y m-1p + CUlut lwme + 0 [lwm + D[]y (7.12)

Note that the first term in the final inequality prevents omafdirectly closing the estimates foiin WW™P,
We will therefore need to make further estimates @6rin W+ andv in W™~LP, cf. (7.16—(7.17)
below. For the terms involvings* we use the local Lipschitz conditioB.(l) and obtain

p/2\ /P
> 1< ol | 3 [ | Sl - o)
a<m a<m >1
< CllolE2 , 1P(o () — 0w ) Boms < CB(IH I + )2 [0 Bmp.  (7.13)

Finally, estimating in a similar manner t6.(2), we find that for any stopping time,

[ J;dWD <cs( %

<3 E Sl[lp}\laavll +CE/ Bl[uF |z + 1[0l fymods.  (7.14)
se|0,7 0

1/2

</D 0% 0 Por() = o (u")) |0 vl dw>2 ds

E ( sup
s€0,7] >1
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Combining the estimates obtained ihX2—(7.14) and recalling the definition af;{k in (7.4) we find that

El sup [[vlfyms | <2E[vollfyms
[O,Tfk/\t}

T At
7,k . .
4+ CE [ (s + o + B + o 10)2) o1y
0

Tfk/\t "
+CE [ (1 e 01y n-1 ) s

k
|

t
S2E|lvo\|€w,p+0/o E sup [[vlfyms +E sup ([0llfym-p 1u"ymir,) | ds

(0,7} As] (0,7, As]

where(C' is a positive constant that depends/@nand but is independent of, k. By an application of the
classical Gronwall lemma we obtain that

E ([ sup [[uf — |8y | =E | sup [[v]mo

[O,qu:k [O,T}:k

[

< C | Ellug — w|lfyme +E sup (0lfmspl6*[fmers

[Ovak]

whereC' = C(m,p, D, M, T) is independendf both j, k. Observe that, in view of Lemma.1, estimate
(A.5), and applying the dominated convergence theorem we cg@chatsup,~, E|uf — u} || 5ym.» gOES to
zero ask — oo. As such, 7.6) will follow once we show that

m supE sup (0[5, [6FEy i) = 0. (7.15)

li
k .
T gzk (ol

With this goal of establishing7(15) in mind, let us determiné([[v||7;,._, [|u* |11, ). We have cf.
(5.9 and (7.11) that
A |5, = (I + L)t + IsdW, (7.16)
dl|vl[Vym-r1, = (J1 + Jo)dt + J3dW, (7.17)
where, to make the notation less cumbersome, we take
L= > Ip, and J= Y J* fori=1,23
|| <m+1 la|<m—1

The elementd}* are defined as irb(9) (with « replaced with:* throughout) and* are asin7.11). By an
application of the It o product rule we find that

k
I

d(”v”g[/mfl,p Hu g[/val,p)

=01yl By +
= (Nl (11 4+ Z2) + [ By (1 + T2+ K ) it (ol s + [ [y ) WV,

whereK is the term arising fromisdWW.J3d)V and is given by

k k
[ e ] e |

K =p? Z Z /Dﬁo‘uk - 0% Poy(uF)|0%u®|P~2 dx Z /Dﬁo‘v -0°P(oy(w!) — oy(uF))|0%v[P~2 da:

I>1 \Ja|<m+1 |o| <m—1
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In view of the estimates carried out in Sectocf. (5.10—(5.11)) and making use of the assumptidhd)
we immediately infer that

k k k k
om0 (1 + I2)| SCB(Iu"|z00)? + 1 lwroe) e [Fmssp [0 ]m1p + CBUE | o) 0117y m1,p-

(7.18)
We next treat the drift terms irv(17). For.Jy, recalling thatP = I — Q we write
A <p /aa LOPP(v- Vb £l - Vo) |90 2da
|a|<m—1
<C’HvHWm LIP@ - VuF) yym-10 + C Z /80‘1} O%(uw! - Vo) |0 [P~ 2da
|a|<m—1
+C Z /80‘11 Qv - Vv)|0%v|P~2dx
|| <m—1
=Jii+Ji2+ i3 (7.19)

The right side of the above estimate may be bounded as folldwsbound.J; ; we use Lemma.1 and
obtain

Tt < Cllollsy (ol e¥llwens + Nollwn-so et lwie ) < Cllolymos p Je¥lwens.  (7.20)

For the other two terms on the right side @f19 we cannot estimate as in Lemr&dl directly; we would
obtain bound of the typéu? ||yym—1 p||v||meHvHWm 1.»» Which would prevents us from closing the esti-
mates involving|v|[7};..1,,. To bound/; » we we use the Leibniz rule, the Holder and Gagliardo-Niezgh
inequalities. There is only one non-standard tgfifiu’ - Vv||1», which is bounded as

> 1107 - Vol < Clled wmosalIVoller < fwms [0,
|a|<m—1

whereq = pd/(d — p), r = pq/(q —p) = dif p < d, andqg = oo, r = pif p > d. The other terms are
bounded as in Lemma 1, and we obtain

J12 < Cllolfymnp @ [wms. (7.21)

Lastly, the “pressure termJ; 3 is estimated using the the Holder inequality, the Agmonulis-Nirenberg
estimate 2.6), and the Gagliardo-Nirenberg inequality as

T3 <IQW - Vo) llwm-vol|olfym—
<C(|05u] Dvillym—20 + 1w vl 12 [0 < CllOIE sy |6 [ (7.22)
Combining .20 —(7.22 we conclude
[Tl < Cllo v (1 [lwms + [ [[wrmr). (7.23)
For .J; we find, as above in7(13 that
| J2| < Cllvlhn - IP(e () = o (@) [Fgm—1p < CBU[UF Lo + 0 o) 0]y (7.24)
Combining {.23—(7.24) we find

k k j j k k
[ 0¥y (J1 + J2)| < CB[0" [ poo + [0 |z00)? + ([0 [wmw + [[u* [wme ) | [Fymssn 1015y
(7.25)
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The termK is estimated using the Holder and Minkowski inequalitieofved by the standing assumption
onao, (3.1,

2
K| <C (Z( I 1dw) )
I>1 \Ja|<m+1
2
( ( 3 /yaap o1(w) — oy(u ))a%pldx))
>1

1/2

1/2

|| <m—1
1/2
<C Z / Z]@O‘Pm |0%uP P~ da
|a|<m—+1 >1

1/2
Z /(ZGO‘P oy(u?) — oy(u ))2) |0“v[P~1 da

|a|<m—1 >1

p/2
<ClluF i | D /(Zaapal ) dz

1/p

|| <m4-1 1>1
p/2 1/p
ol | X (ZaaPaz () ~ onu >>2) o
la] <m—1 >1
<Clu* s [P s [0y 1| Plo ) = (b)) s
OBz + 17l )? (e Wy [0y s+ 0l ) - (7.26)

To treat the stochastic terms we proceed similarlyst@?) and find that for any stopping time

(Sup /\|u’f”Wm+MJ3dWD
s€[0,7]

2
<CE{ [ 1 3 ( > [ 0P - o >>a%“dw) ds)
>1

1/2

|| <m—1
1/2 2 1/2
=cn / e i | D / (Za“ oi(u’) = ar(u ’W) 0[P~V da | ds
|o]<m—1 >1

' 1/2
< CE </ 1 178 1 [P0 () = 0 () g 0] ll)pd8>

1 k ! k j k
<78 sup ([0ymoss 16 i) +CE [ Bl + 107 oy [
se|0,7
(7.27)
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Similarly to (7.27) above we also obtain

<sup /”v”wmlmli”dw')
s€(0,7

1/2
2(p—1
< CE ( IR 1,,HP(o(u’“))H%W,p|ruk|rvé”m+3,pds)

1 T
<{E s%p}(uvw;vmLpuu’fuwmﬂp ) +CE /0 B 22 10 By (2 [y + Dds.

se|0,7
(7.28)

Summarizing, from the estimates.{8), (7.25—(7.28), and the definition oﬁfm in (7.3) we find that

E( sup  [olfympllu e,
te[0,7; k/\t]

t
< 28 ([lolfyn s lebllynns) + CE [ sup (Iollym sl ymns) 4 sup (ol | ds
0 tE[OT 1 /\S] tE[O,qu:k/\s]

for anyt > 0 where the constarit’ depends or/, 5 and the data but not ofy k. Thus, again invoking the
Gronwall lemma finally conclude that

E sup HukH{ijJrl,p”v”a/mfl,p
tE[O,qu:k}

S CE <Hu§||€vm+l,z)||u3 - u‘(j)Hil.ijfl,p) + CE [SUP ] ||uk - ujH%/mfl,p (729)
tel0,75

where the constant’' is independent of, k. By the dominated convergence theorem (far 7, P)) and
making use of the properties of the smoothing operatoct. (A.3) and @A.6), we find

Jim jupE (HuOH mep [0 — u%\\’;vmfl,p) <C lim ngle (HuoH’;Vm,pk”llu’S - u%H’;mel,p) =0.
To handle the second term .29 we refer back to{.17) and the estimates irv (23—(7.24). The sto-
chastic terms involving/; are handled in a similarly to/(27) (and also cf.%.12) above). Combining these
observation, using the Gronwall inequality and the proesrof F,. we finally infer:

lim supE | sup |/ — uk||€vm,1,p =0. (7.30)
k=00 >k \ teforT,]

With this final observation in place we have now establishedy and hence the first requiremenit ) of
Lemma7.l

To establish the second condition?) required by Lemm&.1, we return to $.9). We find that, for any
k>1andS >0

t
swp Oy < bl + 3 / I ISl - sup / S 1aw,

t<[0,7TAS t<[0,7T AS]

la|<m O Jaj<m
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and hence

IP’( sup |[u" ()1 > [l ffymn + 1)

t<[0,7T AS]

TE/\S 1 t 1
<P( > / [T+ I5ldt > 5 | +P | sup / > Igaw >3
0 0

T
la|<m <07 ASTZO o <m

(7.31)

For the first term on the right of7(31) we apply the estimates i5(L0—(5.11) and then the Chebyshev
Inequality and find

TE/\S 1 TE/\S . ) ) L 1
Pl S [" e mslas 5 ) < [T B I+ e ) > 5
la|<m
TE/\S
<CE [ (B ie)? + [ o) oy < €5
(7.32)

where the constant’ = C(m,p, M, 3,D) is independent of and S. With Doob’s inequality, the Ito
Isometry and the integral Minkowski inequality we estimiite second term

t 1 TE/\S ?
P sup /O S rgaw| > 2 | <dE /0 S 1gaw
|

t<[0,7TAS 2

laf<m laf<m
TE/\S 2
<CE / >y ( / °u® - 9% Poy(uF)|0%u®|P—2 da:) dt
0 loj<m 121 NP
TkT/\S . ) o2
<CE [ Bl [P0+ )it <CS, (7:39)
0

where again the constatis independent of andk. With (7.30)—(7.33 we now conclude the proof of the
second item in Lemma.1, i.e. (7.7).

Having finally established botty (6) and (7.7), we apply Lemma’.1 to infer the existence of a strictly
positive stopping time-, a subsequencgu’t },>1 of {u/},>1, and a predictable processsuch that, up to
a set of measure zere/* converges ta: in C(0, 7; X, ,,) and supyefo - [[ullwme < C < co. We may
infer that(u, 7) is a local pathwise solution of.(1)—(1.3) in the sense of Definitiod.1. Note that, in order
to initially obtain thisu we have had impose the almost sure bound on the initial dgta (7.2). This
restriction is easily removed with the cutting argument @pleyed in Sectiorb (cf. (6.26—(6.27)). We
may pass from the case of local to maximal pathwise solutaengiven in Definitiord.2 via maximality
arguments similar to those at the end of Sectipim (6.28. Recall that this maximality argument involves
considering the set of all stopping times up to which thetsmtuexists. We then show by contradiction that
the supremum of all these stopping times yields the maxiima bf existence of the solution (see Section
for further details). The proof of Theorefin3is now complete.

8. GLOBAL EXISTENCE IN THE TWO-DIMENSIONAL CASE FOR ADDITIVE NOISE

In this section we establish the global existence of sahgtito (L.1)—(1.3) in dimension two forced by
an additive noise. Note that, while the local existence ditams for (L.1)—(1.3) in the case of a general
w dependent additive noise (cf3.6) above), is not covered under the proof of local existeneerghere,
equations with additive noise can be treated “pathwise’avi@mple change of variables. In this way the
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local existence follows from more classical arguments. Bemark4.5 above and the proof of Lemn&l
below.

Recalling the a priori estimates in Sectidnwe have that, for anya > d/p + 1,
dl|ulfymy = Xdt + ZdW, (8.1)
whereX andZ are defined according t&.0). Making use of the estimates i6.(0—(5.11), we have

(X[ < CA A+ [lullwre) lullfyms + Cllolymns, (8.2)
for some universal constaat = C'(m, d, D). For Z we observe with similar estimate t6.(2) that
1/2
2
1Z]|L, < Z (/ 0%u - 9% Poy,|0%u|P~2 d:c> < CHaHWm,pHuH‘;ﬁ,p. (8.3)
D

k>1

Thus, in view of 8.2—(8.3), to close the estimates fo8.() we make use of the Beale-Kato-Majda type
inequality

fulbwros < Callls + Callewtul= (14 og* (L2021, ©.4)
|| curl w||poe

where(Cs is a universal constant depending only Bnm, p. See e.g. Fer93 for the simply-connected
bounded domain case. As such the proof of global existerqpgiress us to obtain uniform bound on the
vorticity of the solution inZ>° and also fot|u|| ;2 and to establish a stochastic analogue oltaeGronwall
lemma. The latter is developed in Appendbbelow (and see also related resultshzD5).

In order to carry out suitable estimates for= curl u we applyV+ = (9», —9;) to (4.1) and obtain the
evolution:

dw + u - Vwdt = pdWV, (8.5)
w=Vtou V-u=0, (8.6)

where for ease of notation we denotee- V- - o. Note that crucially, in contrast to the three dimensional
case, no vortex stretching tenm- Vu appears in§.5). Forw we now establish the following result:

Lemma 8.1 (Non-blow-up of the energy and the supremum of vorticity). Fix m > 2/p + 1, consider
any o that satisfieg3.4), and anyuy € X,, . Take(u, &) be the maximal solution corresponding to this
andug. Then we have

sup HuH?Lz—i— sup ||wl]|pe < 00, (8.7)
te[0,TAE] te[0,TAE]

almost surely, for eacli’ > 0.

Proof of LemmaB.1 The bound for||u|/;2 required in 8.7) follows directly in view of the cancelation
(P(u-Vu),u)rz = 0. cf. Section5.1

We turn to estimate the vorticity tern8.(7). Since 8.5) is forced with an the additive noise we have the
option to introduce the stochastic process

dz = pdW, 2(0) =0 (8.8)
and then consider the evolution®f:= w— z. The equation fofo is the random partial differential equation

dw+u-Vo+u-Vz=0 (8.9)

W=V+t-u—2z V-u=0, (8.10)

@(0) = wo. (8.11)
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This system can be treated pathwise with the methods ofamgdicalculus. Multiplying 8.9) by w|w|[P—?2
and integrating oveP we obtain

d ., -
Fplwllee < llull e[|V 2 oo

where we have used the divergence-free nature. ofintegrating in time and sendingto oo, the above
estimate gives

t
@0 < unllm + [ o)l 192(6) o ds. (8.12)
We can use the two-dimensional Sobolev embedding and theiart law to bound
[ulle < ClIVul[ps + Cllullrz < Cllwl[pa 4+ Cllul 2, (8.13)

whereC' = C(D). Thus, in view of 8.12—(8.13 and the fact thaty = w + z, the proof will be complete
once we obtain suitable bounds for the quantifie$ ;+ and||Vz|| .
In order to obtain bounds dfw||;« we apply the It'o formula in* to (8.5) an obtain

dl|wl| 4 :/D 20w* okl + 4> (wpr)? | dedt +4> </D\w\2wpkdw> AWy, (8.14)

k>1 k>1 k>1

where we have used the cancelatian Vw, w|w|?);2 = 0. Let

t
ogp =inf{t > 0: |[w(t)||;« > R} Ainf {t >0: / pll3yo.ads > R} NE. (8.15)
0

From 3.4) and the definition of as the maximal time of existence, it follows that — £ almost surely as
R — oo. In addition, for everyl’ > 0 and a.sw, if R is sufficiently large we have thatz AT =& AT.

Upon taking a supremum in time i8.(L4), and applying the Holder inequality in the last term, wéadrp
on the sefor > 0}

sup [w(t)| 74
te[0,0p AT

t orAT
< flwollpa +4  sup 1 / / wlw - py dadWi| +4 / lew(®)17l]30.adt
te[0,0 p AT >1 0 JD 0

t 1 orN\T
<l rt s (5[ [P pteaii +5 s uiio ([ o)

te[0,0r AT E>1 te[0,0r AT

2
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To estimate the stochastic integral terms we find with thekBeider-Davis-Gundy inequality2(14) that

t
E sup 10R>OZ//]w]2w-pkddek
o Jp

te[0,0 p AT >1

orA\T 2 1/2

< CE 10R>0/ Z(/ ’w’?"pk’dm‘) dt
0 i>1 \/D

1/2 2 1/2

orN\T

< CE 1aR>0/ /”w’g > lonl de | dt
0 D i>1

1/2

orNT p 9
< CE (1UR>0 / kumuquOAdt)

orN\T
E <10'R>0 sup HwH‘};) +CE <10R>0/ ||P||%)v0,4dt>
te[0,0r AT 0

Combining the above observations we fiil, >0 Sup;c(o,o, A7) |wl]|74) < C, by recalling the definition
of o (cf. (8.15), for someC > 0 which depends omk. Since||wql|/;«+ < oo almost surely we conclude
thatsupyc(o o .17 w74 < oo almost surely for allk > 0. Thus we finally conclude that for almost every
w that

2
<

B~ =

sup  |Jwl|74 < 0. (8.16)
t€[0,ENT)

We now turn to make estimates fer In view of the Sobolev embedding/1'> < W™? and the
definition of z, given in @.8), we estimate using?(14)

t p
pdWww < /E sup
/0 Wm.p Z D te]0,T]

t
/ 9% pdW
|| <m 0

T p/2 T
<0 [E([ 10ar) ar<CE [ plgnpn

t
/ pdW
0

Taking the supremum in time ovér, T' A &] for (8.12), and applying .13), we obtain for almost every
w that

P
dx

E sup
t€[0,T]

We therefore infer that

P p/2
) < o0. (8.17)

E sup Hz(t)H%/VLoo <C|E sup
Wwm,p

te[0,T] te[0,T]

sup |w(t)] L~

te[0,TNE]
T T
< Jlwollzee +C | sup Hu(t)HLz/ IVz(t)|[L~dt ) +C | sup Hw(t)llm/ V()| Lo~ dt
te[0,TAE] 0 te[0,TAE] 0
§||w0||L°°+C< sup Ju(t)l|7: + sup [w(t)|F. + sup Hz(t)\l%w,oo>, (8.18)
te[0,TNE] te[0,TAE] t€[0,T]

where C' may depend orf’. Given the bounds established i&.16—(8.17), and since by construction
w = w + z, referring once more tdB(17), the proof of the lemma is now complete. O
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With the estimates in Lemnalin hand we apply the results established in Appertibelow, to show
that (u, &) is aglobal pathwise solution.

Proof of Theoreml.4. We need to verify that the conditions in Lemr@ial are satisfied. In what follows
we will assume, without loss of generality thaty||ym» < M, for some deterministic constait > 0.
Indeed, after we obtain global existence in this specia cte general casey € X, , a.s, follows from
a cutting argument as in Sectiénsee 6.26—(6.27).

Define the collection of stopping times

TR :=inf {t > 0: u()|2s + lw(t)| e > R} NE, (8.19)

where we recall thatv = curlu. Obviously, 7 is increasing inR, almost surely. We need to verify that
(C.3) is satisfied. In other words, we need to show

P (ﬂ{m <TA g}) =0, (8.20)
R

for everyT > 0. For this purpose we make use of the conclusions of Le@haOwing to the fact thatr
is increasing ink and @.7) we infer

P (m {mr < T/\£}> = Rliinoo]P’ ﬂ {tR<TANE} | = Rl*iinooP(TR* <TANE)
R>0 0<R<Rx*

< lim P{ sup (Jullf> + |wlr~) > R*
R*—o00 (te[O,TAS}( r )

<P ( N { sup ([Jull72 + Jw]re) > R*}) _,
R*>0 UE[0,TAL]
for everyT > 0.

Returning to the a priori estimate8.{)—(8.3) we now define the quantities
YV =1+ [ulffyms, 1= 1+ [o]lwns)P. (8.21)

Of courseY satisfieslY = Xdt + ZdYW. Combining 8.2), (8.4), and the definition ofz, we find that for
eachR there exists a deterministic constdii such that or0, 7z] we have

[
X1 <0 (1 ulla + Dol (14 10g* (X)) )l + oot
< C (24 R + R+ |lwll e log" [ullwms ) Y + Cllolfyms
< Kr(1+41logY)Y + C(1 + |lo]wm.s)P, (8.22)

and from 8.3) we in addition obtain
12|, < Cliollwms [ulfmy < CA+ [lo]lwms)Y /P, (8.23)

We now have all the ingredients need to apply Lenitna More precisely we tak& andn according
to (8.21), »r = 1/p, £ as the maximal time of existence @fand Ty according to §.19). Having established
(8.20—(8.23 and recalling the standing assumptid4j we infer from LemmaC.1 that indeed = ~c.
The proof of Theorem.4is therefore complete. O
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9. GLOBAL EXISTENCE FOR LINEAR MULTIPLICATIVE NOISE

In this section we consider the stochastic Euler equatiotwo and three dimensions, wilinear multi-
plicative noise

du+ P (u - Vu)dt = audW, (9.1)

where in this case: € R and WV is asingle1 D Brownian motion This forcing regime is covered under the
theory developed in the previous sections, so we are gusaaiie existence of a local pathwise solution in
the sense of Definitiod.1 (cf. Theorerm4.3).

As in the case of an additive noise above we may transfér) {0 an random PDE. To this end consider
the (real valued) stochastic process

y(t) = e~ W, (9.2)
Due to the It o formula we find thesatisfies
1
dy = —arydW + §a27dt, ~v(0) = 1.
By apply the It 0 product rule we therefore find that
d(vyu) = ydu + udy + dydu

1
= —yP (u- Vu)dt + ayudW — ayudW + iazfyudt — o?yudt

= —yP(u-Vu)dt — %az(’yu)dt. (9.3)
By definingv = yu we therefore obtain the system
2
o + %v +~71P(v- Vo) =0, (9.4)
v(0) = up. (9.5)

Fix p > 2, andm > d/p + 1 throughout the rest of this section. First, using the stethdatimates on the
nonlinear term (cf.%.4) for p = 2, or (56.10) for p > 2), we may obtain

d a? 1

g lwme + = lollwrr < Coy™vllwree [vllwme (9.6)
for a positive constar®’; = Cy(m, p, D). In order to bound the right side d¥.6) we recall the Beale-Kato-
Majda-type inequality (cf.§.4))

lellwiee < Collollzs + Callwll (1 T log* (M)) ©.7)

where the constant, = Cy(m, p, D) is fixed, and as usuab = curlv. Due to the cancellation property
(P(v-Vuv),v) = 0, it follows directly from @.4) that
lo(®)ll12 < llvoll 2e2 (9.8)

for all ¢ > 0. On the other hand, obtaining an a priori estimatel|ort)| .~ is more delicate. For this
purpose, we return t®(4) and consider the equation satisfiediby= curl v, i.e.

a? 0 ford =2
) — . Vw=14" ’ 9.9
e 2w+7 veove {7_1w'Vv, ford = 3. (9:9)
Multiplying (9.9) by w|w|P~2, integrating inz, and making use of the divergence-free nature, @fe obtain
0, ford =2,

Ly, + e, <
——|lw —|lw
par e Il < el ford — 3.
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Upon canceling]wH’;l, and sending — oo in the above estimate we have
d a? 0, ford =2,
gplwllze + S llwllze < 9 74 (9.10)
t 2 Y vllwres wllzes,  ford = 3.

In view of the different bounds obtained if.(0 in 2D versus3D, we now treat the two cases separately.
For this purpose it is convenient to first fix the Sobolev endisgl constantC's = C5(m, p, D) such that

[vllz2 + llvllwiee < Callvllwms (9.11)
andto letC = C,Cy + Cs + 1.

9.1. The two-dimensional case.Iln two dimensions we prove the global in time existence ofstimpath-
wise solutions, as stated in Theordné. From ©.10 we immediately obtain that the function

o(0) = ot~ exp ()
is such that
2(t) < 2(0) = [lwol| Lo (9.12)
for all t > 0. Therefore, letting
(1) = [o(®)llwes exp (%%)
we obtain from 9.6)—(9.8), and .12 that
e R e (o))

_— ot Yy
< C~ylexp <—7> Y (HvoHLz + |lwol| L + zlog™ (;)) . (9.13)

A short computation reveals thatog™ (y/2) < 1/e + zlog™ (y). In view of (9.12), and definingo, (t) =
exp (aW; — a*t/2) estimate 9.13 gives

d _
< Cpay (Ilvollzz + llewoll = + 1+ [lwol|z log* () (.14)
By the law of iterated logarithms we havep,~., p. < co a.s. for everyx > 0. Hence, 9.14) implies
d
d—i < Ay (1 +1log™ (1)) - (9.15)
where
A=C <Sl>110)pa> (llvoll 22 + llwollLee + 1). (9.16)
t>
LetY (t) = log(1 + y(t)). We obtain from 9.15 that
dy
— < A+Y(t
— SAL+Y(1)
forall ¢t > 0. This givesY (t) < Y (0) exp(tA) + tAexp(tA), and hence
(1) < (1 + o)™ exp (tAexp (tA)). (9.17)

(
Recalling the definition ofy(t), we note that]|wu(t)||wmr = Y1 ()y(t) exp(—a?t/2) = pa(t)y(t).
Thus, estimate9.17) shows that

Ja®) [ < pal)(1 + [ lwms)PE4) exp (tA exp (£4))
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with A as defined in4.16). Therefore, for alll’ > 0 we have proven

sup  JJu|lpie < 00, a.s.
te[0,TNE]
So that necessarilyu, £) is a global pathwise solution, i.e. we hage= oo (cf. Definition 4.2). We have
thus now established part (i) of Theoren®.

9.2. The three-dimensional case Fix a > 0. Let (u, £) be the maximal strong solution dd.(l). As in the
two-dimensional case, the key ingredient to global redgtylés an a priori bound otfjw|| .. However, due
to the presence of the vortex stretching term, in the thieexasional case we have (cf.10) above)

iH [z + a—2|| e < A7 Hollwroe Jwll (9.18)
dt W| oo B W Lo S Vilwl,ec ||W|| [ .
To exploit the damping in9. 18, we now define the stopping time
. a2 o2
o=t {ts 7 O 2 25 b= ing {1 Jutolhwns > 21 (9.19)

whereC' > 1 is the constant defined abov& 11). Note thato < ¢ on the sef{¢ < oo} (cf. (4.3 and the
Sobolev embedding). In order to ensure that 0 a.s. we will at least need to impose the condition

O42
—. 9.20
luollwnr < 75 (9.20)
In fact, in order to close the estimates we shall impose mahdit assumptions ong (cf. (9.31) below).
Due to the Sobolev embedding, {fho| we have

2
_ _ (%
Y wllpe <7 Holwroe < 5 (9.21)

Hence, by 9.18 and ©.21) we obtain
d a?
gl + —llwlze < 0 (9.22)
on [0, ). Therefore, letting
a’t
2(t) = ()= exp ( =
we find from @.21) and ©.22 that

2
«
2(t) < 2(0) = [lwollpee < — (9.23)
where we also used that0) = 1. Similarly to above, we now let
a’t
() = ool exp (). (9.22)

By (9.6) and ©.7) we obtain
dy _ ~ 1 +(Y
— < o0 = )
2 < Oyt (ol + e (1+1087 (£)))
Using the decay ofv(t)|| ;2 obtained in 9.8), and assumptior9(20), the above estimate implies

it =0 ow (4 o (= (e ()

2

_ 2¢
< Cpq exp <—%> Y <% + 2+ zlog™ (%)) (9.25)
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where we now denote

%t 2t
palt) =7 1(t) exp (—%) = exp (aWt - %) . (9.26)
To simplify the right side of4.25), it is convenient to observe that
2
%+z—|—zlog+ <%> < C+ o+ zlogy (9.27)

holds wheneved < z < a2/4, andz < Cy (note that we indeed have these a griori bounds,adue to
(9.11) and ©.23). In order to prove .27) we distinguish two cases: < y, andz/C <y < z. If z < y,
thenlog™ (y/2) = log(y/z) = log(y) — log(z). Hence the left side 0f(27) is bounded by

2

% + zlog(y) — 10,112 log(z) < a? + zlogy + C

where we have used the fact tak —zlog(z) < 1/e < C for all z € (0,1]. This concludes the proof
of (9.27 for y > 2. On the other hand, if < z, thenlog™ (y/z) = 0, and hence we need to prove that
a?/4 + z is less than the left side 08(27). For this purpose, it is sufficient to prove that

C + zlogy >0,

forally € [z/C, 2] and allz > 0. Indeed, the right side of the above inequality is monoteeesiasing in
y, S0 the minimum is attained gt= z/C, and it equal” + zlog(z/C). A simple calculation shows that
C + zlog(z/C) > C — C/e > 0, forall z > 0, concluding the proof ofg.27).

Therefore, by 9.25 and 0.27) we have

2
Z—ZZ < Cpg exp <—%t> y (C+a*+zlogy). (9.28)
Fix any R > 1 and define the stopping time
Tr =inf {t > 0: po(t) > R}. (9.29)
From ©.28 we obtain the bound
_ 24 _
Z_Zt/ < CRexp <—%> Yy (C +a? + zlog y) (9.30)

forall t € [0,7r A o]. We now may apply Lemm8.1, which is a suitable version of the logarithmic
Gronwall inequality. Lemma.1 guarantees the existence of a positive deterministic iomet R, o) with
the properties

2

R(R,0) < ==,
lim k(R,a) =0, forevery fixeda # 0
R—o00

foreveryR > 1

a“—00

lim k(R,a) = oo, foreveryfixedR > 1
0,

lim k(R,a) =

a?2—0
such that if the initial data satifies

for every fixedR > 1

[uollwms = y(0) < (R, ) (9.31)
then a smooth solution 09(30) satisfies
O42
t) < = 9.32
v(t) <S55 (9.32)

forall t € [0,7r A o]. For clarity of the presentation we postpone the precisedita for the function
k(R, ) and the proof thatq.31) implies ©.32) to AppendixB below.
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Note that the condition9(31) imposed on the initial data automatically impli€sZ0), and hencer > 0.
Recalling the definition of)(t) andp,(t) in (9.24) and ©.26) we obtain from 9.32) that for everyt in the
interval [0, 0 A TR]

1 ot a? a?
@l =3 @@l = exp (=) palOt) < Az = oo 039
Hence, due to the definition of (cf. (9.19), the bound 9.33 shows that: A 7r = 7. Therefore
2
«
sup [[u(t)[wree < Cs sup |lu(t)llwmr < —,
tE[O,’TR] tE[O,TR}

which implies that > 7. Therefore, the maximal pathwise solutign &) of (9.1) is global in time on the
set{rr = oo}, i.e. on the set wherg, (¢) always stays below (cf. (9.29). We now claim that

1
holds, for anyR > 1. Note carefully that this lower bound i8.34) is independent of.. Thus if we wish to
obtain that the local pathwise solution is global in timehaliigh probability, i.e.

P =00) =1—F¢,

for somee € (0, 1), it is sufficient to choosé? so that

i4 <R (9.35)
€
and for this fixedR, consider an initial datay which satisfieg|ug||wm.» < (R, «). Alternatively for this
R and agiven(deterministic) initial datdug ||y=.» we may choose? sufficiently large so thatug ||yym.» <
k(R, ) to guarantee that the associated¢) is global with probabilityl — e. The proof of Theorerd.6,
(i), is now complete, modulo a proof 0®(34), which we give next.

In order to estimat®(7r = c0), lettingu = % we observe that

ot s (s %))

is a geometric Brownian motion, the solution of
dr = pxdt + axdW, x(0) =1, (9.36)

(9.34)

wherelV is a standard — D Brownian motion. The following lemma, with = % proves estimate
(9.34), and by the above discussion it concludes the proof of Témdr6.

Lemma 9.1 (Estimates for the exit times of geometric Brownian motion). Suppose that < %2 and
xo > 0 and isdeterministic Letx(¢) be the solution 0{9.36) and for R > 1 definery as

Tr =inf {t > 0: z(t) > R}. (9.37)
Then we have
2p
1\ a2
P(rp =00)>1— <—> . (9.38)
R
Proof of Lemma.1 For A > 0 we apply the Ito formula foif () = 2* and obtain that
AA—1) A\ —1)

e = A ld
T T T+ 5 5

Integrating up to any timeA 7z and taking an expected value we find that

tATR 2)\ A—1
EaMt ATR) =1 —HE/ (u)\ + %) ards.
0

2 2dadr = (,u/\ + > 2t 4+ adz dW.
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Taking\ = A\, = 1 — 2% in the above expression we find that
E(ﬂ)‘c(t VAN TR) =1.

Now, using thatrz is increasing inR and the continuity of measures we get
P(rp =00) =P <ﬂ{TR > n}) = lim P(rg > N) = lim P(z’¢(N A7g) < R*)
n N—o0 N—oo

< Exte(N A TR)> 1
which concludes the proof of the lemma. O

APPENDIXA. THE SMOOTHING OPERATOR AND ASSOCIATED PROPERTIES

In this appendix we define and review some basic propertiaxizss of smoothing operataFs as used
in [KL84]. These mollifiers are used to construct solution$lifi"? in Section7 above.

For everye > 0, let F. be a standard mollifier oR?, for instance consideF. to be the convolution
against the inverse Fourier transformeab (—¢|¢]?). AssumingdD is sufficiently smooth, there exists (see
for instance AF03, Chapter 5]) a linear extension operafofrom D to R¢, i.e. Eu(z) = u(x) a.e. inD,
and || Eullyym.p ey < Cllullwmspy for m > 0, and all2 < p < co. We also takeR to be a restriction

operator, which is bounded frowmvp(Rd) into WP (D) form > 0 and allp > 2. Lastly, we letP be
the Leray projection operator as defined in SecfiokVe finally define the smoothing operatdrsby

F.=PREF.E (A.1)
for everye > 0. We have the following basic properties fBy.

Lemma A.1 (Properties of the smoothing operator). Suppose that, > 0, andp > 2. For everye > 0
the operatorF, mapsX,, , into X,,/, wherem’ = m + 5. Moreover the following properties hold:

(i) The collectionf., is uniformly bounded oKX, ,, independently of
HFEU,”Wm,p < CH’U,”Wm,p, u € Xm,p (AZ)

whereC' = C(m, p, D) is a universal constant independenteaf 0.
(i) For everye > 0, whenm > 1 we have

C
”FﬁuHWm’p < ?HU’HW’”*LIN u € Xm,p (A3)
and
|Feu — ul|yym-1p < Cel|ullwmr, u€ Xpmp (A.4)

whereC' = C(m, p, D) is a universal constant independenteaf 0.
(iif) The sequence of mollificatiod$w converge tay, for everyu in X,, ,, that is

lim ||F€’LL — ’LLHWm,p =0 (A5)
e—0
and whenm > 1 we also have
1
lim_HFEu_uHWrnfl,p — 0. (A.G)
e—0 €

(iv) The convergence df.u to u is uniform over compact subsets.¥f, ,,. In particular if {uk}k21 is
a sequence of functions i, ,, which converge inx,, ,, then we have

hmsupHFu — ¥ yms =0 (A7)

e—0f
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and

1
lim sup — || Fu® — u*||yym-1, = 0, (A.8)
e—0 k>1 €

whenm > 1.

The above properties hold féf., since they hold for the standard mollifier onRR?, we have thaR? and
E are bounded maps between the relevant Sobolev spaceg fanrd Idp a.e.. For further details, see for
instance AF03, KL84].

APPENDIX B. A TECHNICAL LEMMA ABOUT ODEs

In this appendix we give the proof of a technical lemma whidmswsed in proving th8D case of
Theoremd4.6, in Section9.2 above. Thaeason détre of the below lemma is to very carefully keep track
of the dependence amfor all constants involved. This enables us to control thendjties involved as the
parametery is sent to eithef or cc.

LemmaB.1. LetC > 1 be a universal constant. Fix the parametéts> 1,« # 0 and7 > 0. For yo > 0,
let y(t) be a positive smooth function satisfying

a? -
(ji_zt/(t) < CRexp <—?t> y(t) (C+ o + z(t) log y(t)) (B.1)
y(0) =yo (B.2)

wherez(t) is agivencontinuous function such that< z(t) < o?/4 for all t € [0, T]. There exits a positive
function K (R, o) > 2 such that if

a2

<= B.3
N =4CK(R.a) B3
then we have
K(R,«a) a?
t) < < _ B.4
y(t) S —5p W0 < oo (B.4)
forall ¢ € [0, 7). This functionK (R, o) may be chosen explicitly as
2 (1- 8(D1 ,1)) ~ ~ 2
K(R,a) = 2R (1 + (O‘_> . ) exp <SCRDR(2C ra )> (B.5)
8C «

where we have denotedr = exp(4C'R). Additionally, for evenyffixed R > 1 we obtain the asymptotic

behavior for the function
2

(0%
Ra)= -2
(B 0) = R Ra)
to be
. . o?
s (R, e) = lim s =00 (B.6)
. . o?
Jm w(R, ) = I oy =0 (B.7)

Proof of Lemma.1 For ease of notation, let(t) = C' Rexp(—a?t/8). After letting Y (¢) = log y(t), the
inequality B.1) reads

dZEt) <a(t) ((C+a®) + ()Y (t)) (B.8)
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with initial conditionY (0) = log yo. The initial value problem associated #.8) leads to the bound
t t t
Y (t) <Y(0)exp (/ a(s)z(s)ds> +(C + oz2)/ a(s) exp (/ a(s')z(s')ds’) ds
0 0 s

< Y(0) exp ( /O t a(s)z(s)ds> +(C + 02) exp(2CR) /O " a(s)ds

n 8CR(C + a?)exp(2CR)
2

< Y(0) exp ( /O t a(s)z(s)ds>

where we used the a priori bourd< o?/4 and the identity[;™ a(t)dt = 8C'R/a?. By exponentiation it
follows that

(B.9)
Qv

(B.10)

ex ta(s)z(s)ds SCR é+0¢2 € QCR
y(t)gyop(fo (5)2(5) )exp< ( az) xp( )>.

We note that ifyy < 1, sinceexp (f(f a(s)z(s)ds) > 1, we have

ygxp(fo a@z)ds) (B.11)

On the other hand, iy > 1, due to 8.3) we may bound

042
< — B.12
Yo > M’ ( )

wheneverM < 4CK. Hence, recalling the a priori bound afit) and integrating:(¢) from 0 to co, we
obtain from 8.10) and B.12) that

ex a(s)z(s)ds — Oé2 br—t
yp P O] < byt <y <M> (B.13)

for yo > 1, sinceDy = exp(2C' R) > 3. Hence, we obtain from®10), (B.11), and B.13) that

2\ Pr—1 ~ A 2
(1) < o (23 (1 i (%) ) exp (800*1) alC o) >> = oy KON, (814

The proof of B.4) is completed if we show that' (M) < K for all o > 0, for someM is chosen such that
M < 4CK. We now let

(2

_ _ 1 o
M = 8C1 256 + Ly 5(8C) P o* D1 (B.15)

and define

a2\ 5o 8CRDR(C + a?)
K(R,a) =2R (1 + <§> exp ( 2 > .

Indeed, it is not hard to verify that faR > 1, andQ > 1, we havedCK > M for all « > 0. Lastly, to
verify that the above definell indeed is larger tha’ (M) (which was defined ing.14)), it is sufficient to

check that
042 Dgr—-1 ()[2 (1_8(D;—{51))
il < | == B.16
() =) ©19

for all « > 0. Indeed, B.16) may be checked by a direct computation usidlf) and Dr > 3.

Lastly, one may directly check that for any fix&> 1, asa — oo we haveK (R, ) = O(az_ TR—D )s
and thereforen? /K (R, ) — oo, asa — oo, which concludes the proof oB8(6). To conclude, it is
clear from the definition of{ (R«) that it is larger thar?, and hencev? /K (R,a) — 0 asa — 0, which
concludes the proof of the lemma. O
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APPENDIXC. A NON-BLOWUP CONDITION FORSDES WITH LINEAR-LOGARITHMIC GROWTH IN THE
DRIFT

In this section we state and prove a condition for the nomthip of solutions to SODESs via a Logarithmic
Gronwall type argument. See e.§409 for related results.

Lemma C.1. Fix a stochastic basi§ := (2, F,P, {F;}+>0,W). Suppose that o§ we have defined
a real valued, predictable process defined up to a blow up &me0, i.e. for all bounded stopping times
T < &, Supgepo, Y <ooas. and

sup Y =00 onthe sef{ < oo}

t€[0,€)
Assume thal” > 1 and that on[0, £), Y satisfies the & stochastic differential
dY = Xdt+ ZdW, Y (0) = Yo, (C.1)

where on[0, &), X, Z are respectively real valued anti, valued predictable processes afi is Fy, and
bounded above by a deterministic constaht> 0.°> Suppose that there exists a stochastic process

n € LY Lj,.[0,00)) (C.2)

with » > 1 for almost everyw, t) and an increasing collection of stopping timeswith 7z < £ and such
that

]P’(ﬂ{TR<§/\T}> = 0. (C.3)

R>0

We further assume that for every fix@d> 0, there exists a deterministic constaldiz; depending only on
R (independent of), and a number- € [0, 1/2] such that,

| X[ <KRr((1+1og Y)Y +1n),
1Z|, SKRY'™""
which holds ovef0, 7g]. Thené = oo and in particularsup,cjo ) Y < oo, a.s. foreveryl’ > 0.
Proof. As in [FZ05, we introduce the functions
((z)=(1+1Inx)

v 1

)
O(x) = exp(V¥(x)). (C.4)
By direct computation we find that
oy ®x) " ~ O(x)¢(x)
R e U TS ES
Thus, by an application of the It 0 lemma, we have
_ & 1y _ %) 1 e )¢Y) 2 oY)
dd(Y) =2 (Y)dY + 2<I> (Y)dYdY = Y + 1th S Ve) 172 | Z]|7,dt + Y+ 1ZdW.

For S > 0 we define the stopping times

t
(s :=inf{t >0:Y(t) > S} ATrg, pg::inf{tZO:/nds>S}.
0

SThis condition is not essential; we may merely assumelhat oo, almost surely. See Rematk?2 below
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In view of the definition of, we have thaglim (s = Tr A& Due to C.2) we also have thasilim ps = Q.
—00 —00
Fix T, S1,S2 > 0. We estimate and any stopping tines 7, < 7, < (s, A ps, AT
tE|Ta,p) Y) +1 2

CZI2, ) B
()
/Ta V) + 1Zdw' ’
1/2

E sup (I)(Y) §E(I)(Y(Ta)) —i—E/Tb (I)(Y) (% + ! W
b Ty 2
§E<I>(Y(Ta))+CIE/ B(Y) (1 + ) dt + CE (/ <%> quﬁm:) ,

+E sup
te[Tava}

b Ty 1/2
§E(I>(Y(Ta))+CE/ cI>(Y)(1+n)dt+CE</ <I>(Y)277dt> ,

§E<I>(Y(Ta))+CIE/Tb<I>(Y)(1+77)dt+%E sup (V)

te[Tava]

whereC, depends o through K and is is independent df, S1, £, 7, andr,. Rearranging and applying
a stochastic version of the Gronwall Lemma given@HZ09, Lemma 5.3] we find

E sup oY) <C
te[0,05, Aps, AT

where here” = C(R, T, Sz, M) and is independent ¢f; and¢. Thus, sending; — oo and applying the
monotone convergence theorem,

E sup oY) <C. (C.5)

t6[07p52/\TR/\T}
Thus, by the properties @ (cf. (C.4)) we infer

sup Y < oo foreachR, Sy > 0,
tG[O,pSQ ATRAT]

on a set of full measure. Thus, singhm ps, = oo we infer that, for eacti? > 0, sup;cg ;a7 Y <
2—00 )

oo, almost surely. In view of the conditiorC(3) imposed on the stopping times; this in turn implies
supsejo,enr) Y < oc. Sincel was also arbitrary to begin with, we have perfogce oo, almost surely. The
proof is therefore complete. O

Remark C.2. In LemmaC.1we may actually just assume tHatis finite almost surely. Indeed if we define
the set€2,, := {Yy < M} we infer, arguing similarly to above that

E <1QM sup (I>(Y)> < Cp.

te [Ovcsl /\PSQ /\T]

We thus find that = oo for almost everyw in Ny;2y,. Since this latter set is clearly of full measure, we
may thus establish the proof of Lemr@alin this more general situation.
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