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ABSTRACT. We establish the local existence of pathwise solutions forthe stochastic Euler equations in a three-
dimensional bounded domain with slip boundary conditions and a suitable nonlinear multiplicative noise. In
the two-dimensional case we obtain the global existence of these solutions with additive or linear-multiplicative
noise. Lastly, we show that, in the three dimensional case, the addition of linear multiplicative noise provides a
regularizing effect; the global existence of solutions occurs with high probability if the initial data is sufficiently
small, or if the noise coefficient is sufficiently large.
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1. INTRODUCTION

In this paper we address the well-posedness of the stochastic incompressible Euler equations with multi-
plicative noise, in a smooth bounded simply-connected domain D ⊂ R

d

du+ (u · ∇u+∇π) dt = σ(u)dW, (1.1)

∇ · u = 0, (1.2)

whered = 2 or 3, u denotes the velocity vector field, andπ the pressure scalar field. HereW is a cylindrical
Brownian motion andσ(u)dW can be written formally in the expansion

∑
k≥1 σk(u)dWk whereWk are a

collection of1D independent Brownian motions. The system (1.1)–(1.2) is supplemented with the classical
slip boundary condition

u|∂D · n = 0, (1.3)

wheren denotes the outward unit normal to the boundaryD. Here∂D is taken to be sufficiently smooth. In
order to emphasize the stochastic effects and for the simplicity of exposition we do not include a determin-
istic forcingf in (1.1), but note that all the results of this paper may be easily modified to include this more
general case.

The Euler equations are the classical model for the motion ofan inviscid, incompressible, homogenous
fluid. The addition of stochastic terms to the governing equations is commonly used to account for numeri-
cal, empirical, and physical uncertainties in applications ranging from climatology to turbulence theory. In
view of the wide usage of stochastics in fluid dynamics, thereis an essential need to improve the mathe-
matical foundations of the stochastic partial differential equations of fluid flow, and in particular to study
inviscid models such as the stochastic Euler equations.

Even in the deterministic case, whend = 3 the global existence and uniqueness of smooth solutions
remains a famously open problem for the Euler equations, andalso for their dissipative counterpart, the
Navier-Stokes equations. There is a vast literature on the mathematical theory for the deterministic Euler
equations; see for instance the books [Che98, MB02], the recent surveys [BT07, Con07], and references
therein. While the stochastic Navier-Stokes equation has been extensively studied dating back to the sem-
inal works [BT72, BT73] and subsequently in e.g. [Vio76, Cru89, CG94, Fla08, MR05, DPZ96, Bre00,
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BF00, BP00, MR04, GHZ09, CI11, DGHT11], rather less has been written concerning the stochastic Eu-
ler equations. Most of the existing literature on this subject treats only the two dimensional case, see e.g.
[BF99, Bes99, CC99, BP01, Kim02, CFM07]. To the best of our knowledge, there are only two works,
[MV00, Kim09], which consider the local existence of solutions indimension three. Both of these works
consider only anadditive noise, and treat (1.1)–(1.2) on thefull space, avoiding difficulties which naturally
arise in the presence of boundaries, due to the nonlocal nature of the pressure.

In this paper we establish three main results for the system (1.1)–(1.3). The first result addresses the
local existence and uniqueness of solutions in both two and three dimensions. From the probabilistic point
of view we studypathwisesolutions, that is probabilisticallystrongsolutions where the driving noise and
associated filtration is given in advance, as part of the data. From the PDE standpoint, we consider solutions
which evolve continuously in the Sobolev spaceWm,p(D), for any integerm > d/p + 1 and anyp ≥ 2,
whered = 2, 3.

This local existence result covers a large class of nonlinear multiplicative noise structures inσ(·). In
particular we can handle Nemytskii operators corresponding to anysmooth functiong : Rd → R

d. Here,
heuristically speaking,

σ(u)dW(t, x) = g(u)η̇(t, x),

whereη̇(t, x) is formally a Gaussian process with the spatial-temporal correlation structure described by
E(η̇(t, x)η̇(s, y)) = δt−sK(x, y) for any sufficiently smooth correlation kernelK on D. We can also
handle functionals of the solution forced by white noise, and of course the classical cases of additive and
linear multiplicative noise. See Section3.2below for further details on these examples.

As noted above such results appears to be new in dimension three; this seems to be the first work to
address (nonlinear) multiplicative noise, or to consider the evolution on a bounded domain. Moreover, our
method of proof is quite different from those employed in previous works for a two-dimensional bounded
domain. More precisely, we do not approximate solutions of the Euler system by those to the Navier-Stokes
equations subject to Navier boundary conditions, and instead construct solutions to the Euler system directly.

In the second part of the paper we address some situations where the global existence of spatially smooth
solutions evolving inWm,p(D), with m > p/d + 1 can be established. In the case of an additive noise
(σ(u) = σ), whend = 2 we show that the solutions obtained in the first part of the paper are in fact global
in time. To the best of our knowledge such results for smooth solutions was only known in the Hilbert space
setting, i.e. wherep = 2; see [BF99] for a bounded domain and [Kim02, MV00] where the evolution is
considered over the whole space.

Lastly, we turn to the issue of global existence of smooth pathwise solutions with multiplicative noise,
in both d = 2, 3. Obtaining the global existence of solutions for generic multiplicative noiseσ(u)dW
seems out of reach in view of some open problems that already arise in the deterministic setting ford = 2
(cf. Remark4.7 below). However, in the particular case of alinear multiplicativestochastic forcing, that
is whenσ(u)dW = αudW , whereW is a one-dimensional standard Brownian motion, we show thatthe
noise provides a damping effect on the pathwise behavior of solutions. In thethree-dimensionalcase we
prove that for anyR ≥ 1:

P(u is global) ≥ 1−R−1/4, whenever‖u0‖Wm,p(D) ≤ κ(α2, R),

whereκ is strictly positive and satisfies

lim
α2→∞

κ(α2, R) = ∞,

for every fixedR ≥ 1. This may be viewed as a kind of global existence result in thelarge noise asymptotic.
Furthermore, in thetwo-dimensionalcase, we show that solutions are global in time with probability one,
for anyα ∈ R, and independently of the size of the data. Note that in both cases the linear multiplicative
noise allows us to transform (1.1)–(1.3) into an equivalent system for which the presence of an additional
damping term becomes evident. We can exploit this random damping by using certain estimates for the exit
times of geometric Brownian motion, and hence may establishthe improved pathwise behavior of solutions.
We note that in the deterministic setting the presence of sufficiently large damping is known to enhance the
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time of existence of solutions (see e.g. [PV11]), but in order to carry over these ideas to the stochastic setting
we need to overcome a series of technical difficulties.

The starting point of our analysis of (1.1)–(1.3) is to establish some suitable a priori estimates in the space
L2(Ω;L∞(0, T ;Wm,p(D))). Here obstacles arise both due to the presence of boundariesand because we
have to estimate stochastic integrals taking values in Banach spaces, i.e.Lp(D) for p > 2. While we
handle the convective terms using direct commutator estimates, in order to bound the pressure terms we
need to consider the regularity of solutions to an elliptic Neumann problem. At first glance this seems to
require bounding expressions involving first order derivatives of the solution on the boundary, i.e.((u ·
∇)u) · n, which would prevent the estimates from closing. However, by exploiting a geometric insight
from [Tem75], one may obtain suitable estimates for the pressure terms in Wm,p(D). In order to treat the
stochastic elements of the problem we follow the construction of stochastic integrals given in e.g. [Kry99,
MR01]. Estimates for the resulting stochastic terms are more technically demanding than in the Hibert
space setting, and are dealt with by a careful application ofthe Burkholder-Davis-Gundy inequality. Note
also that we obtain bounds onu in Wm,p(D) only up to a strictly positive stopping timeτ . In contrast to the
deterministic setting, quantitative lower bounds on thisτ are unavailable. This leads to further difficulties
later in establishing the compactness necessary to pass to the limit within a class of approximating solutions
of (1.1)–(1.3).

With these a priori estimates in hand, we proceed to the first steps of the rigorous analysis. For this
purpose, we introduce a Galerkin approximation scheme directly for (1.1)–(1.3), which we use to construct
solutions for the Hilbert space settingp = 2. We later employ a density and stability argument to obtain
Wm,p(D) solutions from the solutions constructed via the Galerkin scheme. We believe that this Galerkin
construction is more natural than in the previous works on the stochastic Euler equations on bounded do-
mains [BF99, Bes99, CC99, BP01], which use approximations via the Navier-Stokes equations with Navier
boundary conditions, and exploits the vorticity formulation of the equations, a method which is mostly
suitable for the two-dimensional case.

As with other nonlinear SPDEs, we face the essential challenge of establishing sufficient compactness in
order to be able to pass to the limit in the class of Galerkin approximations; even if a spaceX is compactly
embedded in another spaceY it is not usually the case thatL2(Ω;X ) is compactly embedded inL2(Ω;Y).
As such, the standard Aubin or Arzelà-Ascoli type compactness results, which classically make possible the
passage to the limit in the nonlinear terms, can not be directly applied in this stochastic setting. With this
in mind, we first establish the existence of martingale solutions following the approach in e.g. [DPZ92] and
see also [FG95, DGHT11]. Here the main mathematical tools are the Prokhorov theorem, which is used to
obtain compactness in the collection of probability measures associated to the approximate solutions, and the
Skorohod embedding theorem, which provides almost sure convergences, but relative to a new underlying
stochastic basis.

At this stage there is another difficulty in comparison to previous works, e.g. [FG95], which requires us
to consider martingale solutions which arevery smoothin x ∈ D, i.e. which evolve starting from data in
Hm′

(D), withm′ sufficiently large (in particular we may takem′ = m+5). The reason for this initially non-
sharp range form′ stems from the following complication already alluded to above: the a priori estimates
hold only up to a stopping time, so that when we attempt to find uniform estimates the bounds hold only
up to a sequence of timesτn, which may depend on the ordern of the approximation. In contrast to the
deterministic case, it is not clear how to boundτn from below, uniformly inn. To compensate for this
difficulty, we add a smooth cut-off function depending on thesize of‖u‖W 1,∞ in front of the nonlinear
and noise terms in the Galerkin scheme. This cut-off function however introduces additional obstacles for
inferring uniqueness, which in view of the Yamada-Watanabetheorem is crucial for later arguments that
allow us to pass to the case of pathwise solutions. For uniqueness, estimates in theL2(D) norm give rise to
terms involving theW 1,∞(D) norm, which prevents one from closing the estimates in the energy space. On
the other hand, if we attempt to prove uniqueness by estimating the difference of solutions in theHm′

norm
for arbitrarym′ > d/2 + 1, we encounter problems due to terms which involve an excessive number of
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derivatives. By momentarily restricting ourselves to sufficiently large values ofm′, we manage to overcome
both difficulties.

Having passed to the limit in the Galerkin scheme, we obtain the existence of very smooth solutions
to a modified Euler equation with a cut-off in front of the nonlinearity. We can thereforea posteriori
introduce a stopping time and infer the existence of a martingale solution of (1.1)–(1.3). It still remains to
deduce the existence of pathwise solutions, that is solutions of (1.1)–(1.3) defined relative to the initially
given stochastic basisS. For this we are guided by the classical Yamada-Watanabe theorem from finite
dimensional stochastic analysis. This result tells us that, for finite dimensional systems at least, pathwise
solutions exist whenever martingale solutions may be foundand pathwise uniqueness holds (cf. [YW71,
WY71]). More recently a different proof of such results was developed in [GK96] which leans on an
elementary characterization of convergence in probability (cf. Lemma6.10below). Such an approach can
sometimes be used for stochastic partial differential equations, see e.g. [DGHT11] in the context of viscous
fluids equations. Notwithstanding previous applications of Lemma6.10 for the stochastic Navier-Stokes
and related systems, the inviscid case studied here presents some new challenges, most important of which
is the difficulty in establishing the uniqueness of pathwisesolutions.

With a class of pathwise solutions in very smooth spaces in hand, we next apply a density-stability
argument to obtain the existence of solutions evolving inWm,p(D) where the ranges form, p are now
sharp, i.e.m > d/p + 1 for anyp ≥ 2. Since, for allm′ sufficiently large,Hm′

(D) is densely embedded
in Wm,p(D), we may smoothen (mollify) the initial data to obtain a sequence of very smooth pathwise
approximating solutionsun which evolve inHm′

(D). By estimating these solutions pairwise we are able to
show that they form a Cauchy sequence inWm,p(D), up to a strictly positive stopping time. Since almost
sure control is needed for the individual solutions which each have their own maximal time of existence, we
may use of an abstract lemma from [MR04, GHZ09]. See also [GHT11b] for an application to other SPDEs,
and [GHT11a] for related results in the deterministic setting.

As above for the uniqueness of solutions, when estimatingun−um we encounter terms involving∇un in
theWm,p norm (which is finite sinceun ∈ Hm′

(D) andm′ is large). These terms are dealt with using some
properties of the mollifierFǫ used to smoothen the initial data (hereǫ = 1/n). More precisely, the term
‖∇un‖Wm,p is of size1/ǫ, but it is multiplied by‖un−um‖Wm−1,p , which converges to0 whenm ≥ n and
n → ∞, even when multiplied by1/ǫ = n. See [KL84, Mas07] for related estimates for the deterministic
Euler equation.

In the second part of the manuscript we turn to establish someglobal existence results for (1.1)–(1.2).
We first study the case of additive noise in two spatial dimensions. To address the additive case we apply
a classical Beale-Kato-Majda type inequality for‖u‖W 1,∞ (see e.g. [MB02]). This shows that if we can
control the vorticity of the solution inL∞ uniformly in time, then the nonlinear terms may be bounded
like log(‖u‖Wm,p)‖u‖pWm,p . As such our proof relies on suitable estimates for the vorticity curlu in L∞,
which in this additive case can be achieved via a classical change of variables, and by establishing a suitable
stochastic analogue of a logarithmic Grönwall lemma.

The case of linear multiplicative noise is more interesting. As noted above, such noise structures evidence
a pathwise damping of the solutions of (1.1)–(1.2), which may be seen by analyzing the transformed system
(9.4)–(9.5) for a new variablev(t) = u(t) exp(−αWt). In order to take advantage of this damping in the
three dimensional case, we need to carefully show that the vortex stretching term is suitably controlled by
the damping terms coming from the noise. For a sufficiently large noise coefficientα (or equivalently, for
a sufficiently small initial condition) we see that the vorticity must be decaying, at least for some initial
period during which‖u‖W 1,∞ remains below a certain threshold value. Via the usage of theBeale-Kato-
Majda inequality we see in turn that the growth on‖u‖Wm,p is limited by the possible growth of a certain
geometric Brownian motion during this initial period. We are therefore able to show that if‖u0‖Wm,p is
sufficiently small with respect to a function ofα and a givenR > 0 then, on the event that the geometric
Brownian motion never grows to be larger thanR, the quantity‖u‖Wm,p will remain below a certain bound.
In turn, this guarantees that the quantity‖u‖W 1,∞ will in fact never reach the critical value that would
prevent the decay in vorticity, and we conclude that the solution is in fact global in time on this event that
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the geometric Brownian motion always stays below the valueR. Since we are able to derive probabilistic
bounds on this event, which crucially are independent ofα, we obtain the desired results.

The manuscript is organized as follows. In Section2 we review some mathematical background, deter-
ministic and stochastic, needed throughout the rest of the work. We then make precise the conditions that
we need to impose on the noise throughσ in Section3. We conclude this section with a detailed discussion
of some examples of nonlinear noise structures covered under the given abstract conditions onσ. Section4
contains the precise definitions of solutions to (1.1)–(1.3), along with statements of our main results. We
next carry out some a priori estimates in Section5. In Section6 we introduce the Galerkin scheme and
establish the existence of very smooth solutions. In Section 7 we establish the existence of solutions in the
optimal spacesWm,p for anym > d/p + 1. The final two Sections8 and9 are devoted to proofs of the
global existence results for the cases of additive and linear multiplicative noises respectively. Appendices
gather various additional technical tools used throughoutthe body of the paper.

2. PRELIMINARIES

Here we recall some deterministic and stochastic ingredients which will be used throughout this paper.

2.1. Deterministic Background. We begin by defining the main function spaces used throughoutthe work.
For each integerm ≥ 0 andp ≥ 2 we let

Xm,p =
{
v ∈ (Wm,p(D))d : ∇ · v = 0, v|∂D · n = 0

}
(2.1)

and for simplicity writeXm = Xm,2 (see also [Tem75]). These spaces are endowed with the usual Sobolev
norm of orderm

‖v‖pWm,p(D) :=
∑

|α|≤m

‖∂αv‖pLp(D).

As usual, the norm onXm is denoted by‖ · ‖Hm . We make the convention to write‖ · ‖Wm,p and‖ · ‖Hm

instead of‖ · ‖Wm,p(D) and‖ · ‖Hm(D), unlessSobolev spaces on∂D are considered. We let(·, ·) denote the
usualL2(D) inner product, which makesX0 ⊂ L2(D) a Hilbert space. The inner product onXm shall be
denoted by(·, ·)Hm =

∑
|α|≤m(∂α·, ∂α·).

Throughout the analysis we shall make frequent use of certain classical “calculus inequalities” which can
be established directly from the Leibniz rule and the Gagliardo-Nirenberg inequalities. Wheneverm > d/p
we have the Moser estimate

‖uv‖Wm,p ≤ C(‖u‖L∞‖v‖Wm,p + ‖v‖L∞‖u‖Wm,p), (2.2)

for all u, v ∈ Wm,p(D) and some universal constantC = C(m, p,D) > 0. Note that in particular this
shows thatWm,p is an algebra wheneverm > d/p. The following commutator estimate will also be used
frequently

∑

0≤|α|≤m

‖∂α(u · ∇v)− u · ∇∂αv‖Lp ≤ C (‖u‖Wm,p‖∇v‖L∞ + ‖∇u‖L∞‖v‖Wm,p) (2.3)

for some constantC = C(m, p,D) > 0, wherem > 1 + d/p, u ∈ Wm,p, andv ∈ Wm+1,p. Note that for
what follows we shall assume thatm > 1 + d/p andp ≥ 2, whered = 2, 3 is the dimension ofD, allowing
us to apply (2.2) and (2.3).

In order to treat the pressure term appearing in the Euler equations, we will need to bound the solutions
of an elliptic Neumann problem taking the form:

−∆π = f, in D, (2.4)

∂π

∂n
= g, on∂D, (2.5)
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for given f andg, sufficiently smooth. For this purpose we recall the result in [ADN59] which gives the
bound:

‖∇π‖Wm,p(D) ≤ C(‖f‖Wm−1,p(D) + ‖g‖Wm−1/p,p(∂D)) (2.6)

whereC = C(m, p,D) > 0 is a universal constant. In fact, (2.6) is usually combined with the bound given
by the trace theorem:‖h|∂D‖Wm−1/p,p(∂D) ≤ C‖h‖Wm,p(D), which holds for sufficiently smoothh, integers
m ≥ 1, andp ≥ 2 (cf. [AF03]).

Also in relation to the pressure we considerP , the so-called Leray projector, to be the orthogonal pro-
jection inL2(D) onto the closed subspaceX0. Equivalently, for anyv ∈ L2(D) we havePv = (1 −Q)v
where

Qv = −∇π

for anyπ ∈ H1(D) which solves the elliptic Neumann problem

−∆π = ∇ · v, in D, (2.7)

∂π

∂n
= v · n, on ∂D. (2.8)

Moreover, forv ∈ Wm,p, observe that∇ · v ∈ Wm−1,p(D) andv|∂D · n ∈ Wm−1/p,p(∂D). Hence, by
applying (2.6) and the trace theorem to (2.7)–(2.8), we infer that

‖Pv‖Wm,p(D) ≤ C‖v‖Wm,p(D) (2.9)

for anyv ∈ Wm,p(D). ThusP is also a bounded linear operator fromWm,p(D) into Xm,p.
We conclude this section with some bounds on the nonlinear terms which involve the Leray projector.

These bounds will be used throughout the rest of the work.

Lemma 2.1(Bounds on the nonlinear term). Letm > d/p + 1, andp ≥ 2. The following hold:

(a) If u ∈ Wm,p andv ∈ Wm+1,p thenP (u · ∇v) ∈ Xm,p, and

‖P (u · ∇v)‖Wm,p ≤ C (‖u‖L∞‖v‖Wm+1,p + ‖u‖Wm,p‖v‖W 1,∞) . (2.10)

(b) If u, v ∈ Xm,p, thenQ(u · ∇v) ∈ Wm,p(D) and

‖Q(u · ∇v)‖Wm,p ≤ C (‖u‖W 1,∞‖v‖Wm,p + ‖u‖Wm,p‖v‖W 1,∞) . (2.11)

(c) If u ∈ Xm,p andv ∈ Xm+1,p then
∣∣∣∣∣∣

∑

|α|≤m

(∂αP (u · ∇v), ∂αv|∂αv|p−2)

∣∣∣∣∣∣
≤ C (‖u‖W 1,∞‖v‖Wm,p + ‖u‖Wm,p‖v‖W 1,∞) ‖v‖p−1

Wm,p . (2.12)

In (2.10)–(2.12), C = C(m, p,D) is positive universal constant.

Proof of Lemma2.1. Firstly we observe that ifu ∈ Wm,p andv ∈ Wm+1,p then by (2.2) we haveu · ∇v ∈
Wm,p and‖u · ∇v‖Wm,p is bounded by the right side of (2.10). Thus (a) follows from (2.9).

The proof of item (b) is due to [Tem75]. If u andv are divergence free, and satisfy the non-penetrating
boundary condition (which occurs whenu, v ∈ Xm,p) then boundary term(u · ∇v) · n may be re-written as
uivjφij , for some smooth functionsφij , independent ofu, v which parametrize∂D in a suitable way. Also,
again due to the divergence free condition,∇ · (u · ∇v) may be re-written as∂iuj∂jvi. Hence, neither the
boundary condition nor the force have too many derivatives and the elliptic Neumann problem one has to
solve for the functionπ such thatQ(u · ∇v) = −∇π becomes

−∆π = ∂iuj∂jvi

∂π

∂n
= uivjφij .

The proof of (b) now follows by applying estimate (2.6) to the above system, using the trace theorem and
finally (2.2).
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Lastly, in order to prove (c) one uses the cancellation property (u · ∇v, v|v|p−2) = 0, the definition ofP ,
the bound (2.3), the Hölder inequality, and item (b) to obtain

∣∣∣∣∣∣

∑

|α|≤m

(∂αP (u · ∇v), ∂αv|∂αv|p−2)

∣∣∣∣∣∣

≤
∑

|α|≤m

∣∣(∂α(u · ∇v), ∂αv|∂αv|p−2)
∣∣+

∑

|α|≤m

∣∣(∂αQ(u · ∇v), ∂αv|∂αv|p−2)
∣∣

≤ C


 ∑

|α|≤m

‖∂α(u · ∇v)− u · ∇∂αv‖Lp + ‖Q(u · ∇v)‖Wm,p


 ‖v‖p−1

Wm,p

≤ C (‖u‖W 1,∞‖v‖Wm,p + ‖u‖Wm,p‖v‖W 1,∞) ‖v‖p−1
Wm,p ,

concluding the proof of item (c). �

2.2. Background on Stochastic Analysis.We next briefly recall some aspects of the theory of the in-
finite dimensional stochastic analysis which we use below. We refer the reader to [DPZ92] for an ex-
tended treatment of this subject. For this purpose we start by fixing a stochastic basisS := (Ω,F ,P,
{Ft}t≥0,W). Here (Ω,F ,P) is a complete probability space, andW is a cylindrical Brownian mo-
tion defined on an auxiliary Hilbert spaceU which is adapted to a complete, right continuous filtration
{Ft}t≥0. By picking a complete orthonormal basis{ek}k≥1 for U, W may be written as the formal sum
W(t, ω) =

∑
k≥1 ekWk(t, ω) where the elementsWk are a sequence of independent1D standard Brownian

motions. Note thatW(t, ω) =
∑

k≥1 ekWk(t, ω) does not actually converge onU and so we will sometimes
consider a larger spaceU0 ⊃ U we define according to

U0 :=



v =

∑

k≥0

αkek :
∑

k

α2
k

k2
< ∞



 ,

and endow this family with the norm‖v‖2
U0

:=
∑

k α
2
kk

−2, for any v =
∑

k αkek. Observe that the
embedding ofU ⊂ U0 is Hilbert-Schmidt. Moreover, using standard martingale arguments with the fact that
eachWk is almost surely continuous we have that,W ∈ C([0,∞),U0), almost surely. See [DPZ92].

Consider now another separable Hilbert spaceX. We denote the collection of Hilbert-Schmidt operators,
the set of all bounded operatorsG from U to X such that‖G‖2L2(U,X) :=

∑
k |Gek|

2
X < ∞, by L2(U,X).

WheneverX = R, i.e. in the case whereG is a linear functional, we will denoteL2(U,R) by simplyL2.
Given anX valued predictable1 processG ∈ L2(Ω;L2

loc([0,∞), L2(U,X))) and takingGk = Gek one
may define the (It ō) stochastic integral

Mt :=

∫ t

0
GdW =

∑

k

∫ t

0
GkdWk, (2.13)

as an element inM2
X , that is the space of allX valued square integrable martingales. If we merely assume

that the predictable processG ∈ L2
loc([0,∞), L2(U,X)) almost surely, i.e. without any moment condition,

thenMt can still be defined as in (2.13) by a suitable localization procedure. Detailed constructions in both
cases may be found in e.g. [DPZ92] or [PR07].

1LetΦ = Ω× [0,∞) and takeG to be theσ-algebra generated by sets of the form

(s, t]× F, 0 ≤ s < t < ∞, F ∈ Fs; {0} × F, F ∈ F0.

Recall that aX valued processU is called predictable (with respect to the stochastic basisS) if it is measurable from(Φ,G) into
(X,B(X)), B(X) being the family of Borel sets ofX.
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The process{Mt}t≥0 has many desirable properties. Most notably for the analysis here, the Burkholder-
Davis-Gundy inequality holds which in the present context takes the form,

E

(
sup

t∈[0,T ]

∣∣∣∣
∫ t

0
GdW

∣∣∣∣
r

X

)
≤ CE

(∫ T

0
|G|2L2(U,X)dt

)r/2

, (2.14)

valid for anyr ≥ 1, and whereC is an absolute constant depending only onr. In the coordinate basis{ek},
(2.14) takes the form

E

(
sup

t∈[0,T ]

∣∣∣∣∣
∑

k

∫ t

0
GkdWk

∣∣∣∣∣

r

X

)
≤ CE

(∫ T

0

∑

k

|Gk|
2
Xdt

)r/2

.

Since we consider solutions of (1.1)– (1.3) evolving in Xm,p for any p ≥ 2 andm > d/p + 1, we
will recall some details of the construction of stochastic integrals evolving onWm,p(D). Here we use the
approach of [Kry99, MR01], to which we refer the reader for further details. See also [Nei78, Brz95] and
containing references for a different, more abstract approach to stochastic integration in the Banach space
setting. Suppose thatp ≥ 2, m ≥ 0, define

W
m,p =



σ : D → L2 : σk(·) = σ(·)ek ∈ Wm,p and

∑

|α|≤m

∫

D
|∂ασ|pL2

dx < ∞



 ,

which is a Banach space according to the norm

‖σ‖p
Wm,p :=

∑

|α|≤m

∫

D
|∂ασ|pL2

dx =
∑

|α|≤m

∫

D


∑

k≥1

|∂ασk|
2




p/2

dx. (2.15)

Let P be the Leray projection operator defined in Section2.1. Forσ ∈ W
m,p we definePσ as an element

in W
m,p by taking(Pσ)ek = P (σek) so thatP is a linear continuous operator onWm,p. We take

Xm,p = PW
m,p = {Pσ : σ ∈ W

m,p}.

Note thatXm,2 = L2(U,Xm) and in accordance with (2.1), we will denoteXm,2 by simplyXm.
Consider any predictable processG ∈ Lp(Ω;Lp

loc([0,∞),Xm,p). For such aG we have, for anyT > 0

and almost everyx ∈ D, thatE
∫ T
0

∑
|α|≤m |∂αG(x)|2L2

dt < ∞. We thus obtain from the Hilbert space
theory introduced above thatMt as in (2.13) is well defined for almost everyx ∈ D as a real valued
martingale and that for each|α| ≤ m, ∂αMt(x) =

∫ t
0 ∂

αG(x)dW. By applying the Burkholder-Davis-
Gundy inequality, (2.14) we have that

E sup
t∈[0,T ]

‖Mt‖
p
Wm,p ≤ C

∑

|α|≤m

∫

D
E

(∫ T

0
|∂αG(x)|2L2

dt

)p/2

dx ≤ CE

∫ T

0
|G|p

Xm,p
dt.

Lastly, cf. [Kry99, MR01] one may show thatMt ∈ Lp(Ω;C([0,∞);Xm,p)) and is anXm,p valued martin-
gale.

3. NONLINEAR MULTIPLICATIVE NOISE STRUCTURES AND EXAMPLES

In this section we make precise the conditions that we imposeon the noise. While, in abstract form, these
conditions appear to be rather involved, they fact cover a very wide class of physically realistic nonlinear
stochastic regimes. We conclude this section by detailing some of these examples.
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3.1. Abstract conditions. We next describe, in abstract terms, the conditions imposedfor σ. Consider any
pair of Banach spacesX , Y with X ⊂ L∞(D). We denote the space of locally bounded maps

Bndu,loc(X ,Y) :=
{
σ ∈ C(X × [0,∞);Y) : ‖σ(x, t)‖Y ≤ β(‖x‖L∞)(1 + ‖x‖X ),∀x ∈ X , t ≥ 0

}

whereβ(·) ≥ 1 is an increasing function which is locally bounded and is independent oft. In addition we
define the space of locally Lipschitz functions,

Lipu,loc(X ,Y) =
{
σ ∈ Bndu,loc(X ,Y) :

‖σ(x, t) − σ(y, t)‖Y ≤ β(‖x‖L∞ + ‖y‖L∞)‖x− y‖X ,∀x, y ∈ X , t ≥ 0
}
.

Note that in in both cases the subscript u is intended to emphasize the that increasing functionβ appearing in
the above inequalities may be taken to be independent oft ∈ [0,∞). Note furthermore that, by considering
such locally Lipschitz spaces of functions, we are able to cover stochastic forcing involving Nemytskii
operators, i.e. smooth functions of the solutions multiplied by spatially correlated white in time Gaussian
noise (see Section3.2below).

For the main local existence results in the work, Theorem4.3 below, we fixp ≥ 2 and an integerm >
d/p + 1, and suppose that

σ ∈ Lipu,loc(L
p,W0,p) ∩ Lipu,loc(W

m−1,p,Wm−1,p) ∩ Lipu,loc(W
m,p,Wm,p). (3.1)

SinceP is a continuous linear operator onWk,p, for k ≥ 0 it follows thatPσ ∈ Lipu,loc(W
k,p,Xk,p), for

k = m − 1,m. Observe that by (3.1) we have that
∫ t
0 Pσ(u)dW ∈ C([0,∞);Xm,p) for each predictable

processu ∈ C([0,∞);Xm,p).
We will also impose some additional technical conditions onσ which are required for the proof of local

existence of solutions (cf. Theorem4.3 below). These conditions do no preclude any of the examples we
give below. Firstly we suppose that

σ ∈ Bndu,loc(W
m+1,p,Wm+1,p). (3.2)

Fix somem′ sufficiently large, such thatHm′−2 ⊂ Wm+1,p, e.g. m′ > m + 3 + d(p − 2)/(2p) by the
Sobolev embedding. For simplicity we take anm′ which works for allp ≥ 2, and for the rest of this paper
fix

m′ = m+ 5.

We assume that

σ ∈ Bndu,loc(H
m′

,Wm′,2). (3.3)

Condition (3.2) is used for the density and stability arguments in Section7, while condition (3.3) seems
necessary in order to justify the construction of solutionsto the Galerkin system (cf. Section6.2below).

In the case of an additive noise when we assume thatσ is independent ofu (cf. Theorem4.4), we may
alternatively assume that:

σ ∈ Lp(Ω, Lp
loc([0,∞);Wm+1,p)) (3.4)

and thatσ is predictable. Note that while (3.1)–(3.3) covers many additive noise structures, (3.4) is less
restrictive and allows forω ∈ Ω dependence inσ.

3.2. Examples. We now describe some examples of stochastic forcing structures for σ(u)dW covered
under the conditions (3.1) –(3.3) imposed above, or alternatively (3.4) for additive noise.
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Nemytskii operators. One important example is stochastic forcing of a smooth function of the solution.
Suppose thatg : Rd → R

d is C∞ smooth and considerα ∈ W
m′,2, where as abovem′ = m+ 5. We then

take

σk(u) = αk(x)g(u), k ≥ 1. (3.5)

In this case we have that:

σ(u)dW =
∑

k≥1

αk(x)g(u)dWk = g(u)
∑

k≥1

αk(x)dWk = g(u)αdW.

Note thatαdW is formally a Gaussian process with the spatial-temporal correlation structure

E(αdW(x, t)αdW(y, s)) = K(x, y)δt−s for all x, y ∈ R
d, t, s ≥ 0,

with K(x, y) =
∑

k≥1 αk(x)αk(y). Observe that ifg(u) ∈ W n,q for q ≥ 2 andn ≥ d/q then

‖σ(u) − σ(v)‖q
Wn,q :=

∑

|α|≤n

∫

D


∑

k≥1

|∂α(αkg(u)− αkg(v))|
2




q/2

dx ≤ C‖α‖q
Wn,q‖g(u) − g(v)‖qWn,q .

We may therefore show that (3.5) satisfies (3.1)–(3.3) by making use of the following general fact about the
composition of functions.

Lemma 3.1(Locally Lipschitz and bounded). Fix anyn > d/p with p ≥ 2. Suppose thatg : Rd → R
d

and thatg ∈ W n+1,∞(Rd). Then

‖g(u) − g(v)‖Wn,p(D) ≤ β(‖u‖L∞ + ‖u‖L∞)‖u− v‖Wn,p(D) for everyu, v ∈ W n,p(D). (3.6)

holds for some positive, increasing functionβ(·) ≥ 1.

Note that (3.1) follows from (3.6). Moreover settingv = 0 in (3.6) also proves (3.2) and (3.3). The
proof of Lemma3.1 is based on Moser-type estimates (similar to (2.2)), Gagliardo-Nirenberg interpolation
inequalities, and the chain rule. See e.g. [Tay11, Chapter 13, Section 3] for further details.

Linear multiplicative noise. One important example covered under this general class of Namytskii opera-
tors is a linear multiplicative noise. Here we consider

σ(u)dW = αudW

where nowα ∈ R andW is a1D standard Brownian motion. We obtain this special case from the above
framework by takingg = Id andα1 ≡ 1, αk = 0 for k ≥ 2. We shall treat such noise structures in detail in
Section9 (cf. Theorem4.6).

Stochastic forcing of functionals of the solution.We may also consider functionals (linear and nonlinear)
of the solution, forced by independent white noise processes. Suppose that, fork ≥ 1 we are givenfk :
Lp(D) → R such that

|fk(u)− fk(v)| ≤ C‖u− v‖Lp for u, v ∈ Lp (3.7)

where the constantC is independent ofk. We take

σk(u) = fk(u)αk(x, t) (3.8)

then, for anyn ≥ d/q

‖σ(u) − σ(v)‖q
Wn,q :=

∑

|α|≤n

∫

D


∑

k≥1

|fk(u)− fk(v)|
2|∂ααk|

2




p/2

dx ≤ ‖α‖p
Wn,q‖u− v‖pLp .

Thus, under the assumption (3.7) if we furthermore assume thatsupt≥0 ‖α(t)‖Wm′ ,2 < ∞, thenσ given by
(3.8) satisfies conditions (3.1)–(3.3).
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Additive Noise. For σ : [0,∞) → Hm′

, with supt≥0 ‖σ(t)‖Hm′ < ∞, we may easily observe thatσ
satisfies (3.1)–(3.3). For such noiseσdW may be understood in the formal expansion

σdW(t, x, ω) =
∑

k

σk(t, x)dWk(t, ω).

Note that our results for additive noise in Theorem4.4are established under a more generalω-dependentσ,
which satisfies (3.4).

4. MAIN RESULTS

With the mathematical preliminaries in hand and having established the noise structures we shall consider,
we now make precise the notions oflocal, maximalandglobal solutions of the stochastic Euler equation
(1.1)–(1.3).

Definition 4.1 (Local Pathwise Solutions).Suppose thatm > d/p + 1 with p ≥ 2 and d = 2, 3. Fix
a stochastic basisS := (Ω,F ,P, {Ft}t≥0,W) andu0 an Xm,p valuedF0 measurable random variable.
Suppose thatσ satisfies the conditions(3.1)–(3.3) (or alternatively(3.4)).

(i) A local pathwiseXm,p solution of the stochastic Euler equation is a pair(u, τ), with τ a strictly
positive stopping time, andu : [0,∞) × Ω → Xm,p is a predictable process satisfying

u(· ∧ τ) ∈ C([0,∞),Xm,p)

and for everyt ≥ 0,

u(t ∧ τ) +

∫ t∧τ

0
P (u · ∇u)dt = u(0) +

∫ t∧τ

0
Pσ(u)dW. (4.1)

(ii) We say that local pathwise solutions areunique(or indistinguishable) if, given any pair(u(1), τ (1)),
(u(2), τ (2)) of local pathwise solutions,

P

(
11u(1)(0)=u(2)(0)(u

(1)(t)− u(2)(t)) = 0;∀t ∈ [0, τ (1) ∧ τ (2)]
)
= 1. (4.2)

Given the existence and uniqueness of such local solutions we can quantify the possibility of any finite
time blow-up. In some cases we are able to show that such pathwise solution in fact are global in time.

Definition 4.2 (Maximal and global solutions). Fix a stochastic basis and assume the conditionsu0 and
σ are exactly as in Definition(4.1) above. Amaximalpathwise solution is a triple(u, {τn}n≥1, ξ) such that
each pair(u, τn) is a local pathwise solution,τn is increasing withlimn→∞ τn = ξ and so that

sup
t∈[0,τn]

‖u(t)‖W 1,∞ ≥ n on the set{ξ < ∞}. (4.3)

A maximal pathwise solution(u, {τn}n≥1, ξ) is said to beglobal if ξ = ∞ almost surely.2

Our primary goal in this work is to study local and global pathwise solutions of the stochastic Euler
equation. These type of solutions also fall under the designation of “strong solutions”; we prefer the term
“pathwise” since it avoids possible confusion with classical terminology used in deterministic PDEs. In any
case one can also establish the existence of “martingale” (or probabilistically “weak” solutions) of (1.1)–
(1.3) where the stochastic basis is an unknown in the problem and the initial conditions are only specified in
law. Indeed such type of solutions are essentially established as an intermediate step in the analysis which
is carried out in Section6; see Remark6.6below.

We now state the main results of this paper. The first result concerns the local existence of solutions, the
proof of which is carried out in two steps, in Sections6 and7 below.

2Under this definition it is clear that, for everyT > 0, supt∈[0,T ] ‖u(t)‖W1,∞ is almost surely finite on the set{ξ = ∞}.
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Theorem 4.3(Local existence of pathwise solutions).Fix a stochastic basisS := (Ω,F , P, {Ft}t≥0,W).
Suppose thatm > d/p + 1 with p ≥ 2 andd = 2, 3. Assume thatu0 is anXm,p valued,F0 measurable
random variable, and thatσ satisfies the conditions(3.1)–(3.3). Then there exists a unique maximal pathwise
solution(u, {τn}n≥1, ξ) of (1.1)–(1.3), in the sense of Definitions4.1and4.2.

In Section8 we show that in two space dimensions we have, in the case of anadditive noise, the global
existence of solutions. Note that in contrast to the situation for the2D Navier-Stokes equations (cf. e.g.
[GHZ09]), proving the global existence for a general Lipschitz nonlinear multiplicative noise seems to be
out of reach with current methods (see Remark4.7below for further details).

Theorem 4.4(Global existence for additive noise in 2D).Fix m > 2/p + 1 with p ≥ 2, a stochastic
basisS := (Ω,F ,P, {Ft}t≥0,W), and assume thatu0 is anXm,p valued,F0 measurable random variable.
Assume thatσ does not depend onu and (3.4) (or (3.1)–(3.3)) holds. Then, there exits a unique global
pathwise solution of(1.1)–(1.3), i.e. ξ = ∞ almost surely.

Remark 4.5. The local existence of pathwise solutions with additive noise follows directly from Theo-
rem 4.3 in the case of a (deterministic) continuousσ : [0,∞) → W

m′,2, with supt≥0 ‖σ(t)‖Xm′ ,2
< ∞,

wherem′ is as in (3.3). On the other hand, the proof of local existence for additive noise does not require
the involved machinery employed to deal with a general nonlinear multiplicative noise; in this case one can
transform (1.1) into a random partial differential equation, which can be treated pathwise, using the classical
(deterministic) methods for the Euler equations (cf. [MB02]). Of course, one has to show that this random
transformed system is measurable with respect to the stochastic elements in the problem but this may be
achieve with continuity and stability arguments. These technicalities are essentially contained in [Kim09],
to which we refer for further details.

Finally we address the case of alinear multiplicative noise. In 2D we show that the pathwise solutions
are global in time. In3D we go further and prove that the noise is regularizing at the pathwise level. Here
we are essentially able to establish that the time of existence converges to+∞ a.s. in thelarge noise limit.
More precisely, we have:

Theorem 4.6 (Global existence for linear multiplicative noise). Fix S := (Ω,F ,P, {Ft}t≥0,W)3, a
stochastic basis. Suppose thatm > d/p+1 with p ≥ 2 andd = 2, 3, and assume thatu0 is anXm,p valued,
F0 measurable random variable. Forα ∈ R we consider(1.1)–(1.3) with a linear multiplicative noise

σk(u) = σ(u)ek =

{
αu if k = 1,

0 otherwise.

(i) Supposed = 2. Then for anyα ∈ R the maximal pathwise solution of guaranteed by Theorem4.3
is in fact global, i.e.ξ = ∞ almost surely.

(ii) Supposed = 3. Let R ≥ 1 andα 6= 0 be arbitrary parameters. Then there exists a positive
deterministic functionκ(R,α) which satisfies

lim
α2→∞

κ(R,α) = ∞

for every fixedR ≥ 1, such that whenever

‖u0‖Wm,p ≤ κ(R,α), a.s. (4.4)

then

P (ξ = ∞) ≥ 1−
1

R1/4
.

In particular, for everyǫ > 0 and any given deterministic initial condition, the probability that
solutions corresponding to sufficiently large|α| never blow up, is greater than1− ǫ.

3For the noise structure considered here, we need only to havedefined a single1D standard Brownian motion.
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Remark 4.7 (Lack of global well-posedness in two dimensions with generic multiplicative noise). We
emphasize that even in the two-dimensional setting, and even for D = R

2, the global existence of smooth
solutions to (1.1)–(1.3) for a generalLipschitz multiplicative noise appears to be out of reach. In fact, the
analogous result remains open even in the deterministic setting unless the forcing is linear. Indeed, let us
consider the Euler equations with asolution-dependent forcing

∂tu+ u · ∇u+∇π = f(u), ∇ · u = 0 (4.5)

wheref is a smooth function mappingR2 → R
2, which decays sufficiently fast at infinity. In order to obtain

the global in time regularity of (4.5) one must have an a priori global in time bound for the supremum of the
vorticity w = ∇⊥ · u (or at least a bound in a Besov space “sufficiently close” toL∞). However, using the
Biot-Savart law, the evolution ofw is governed by

∂tw + u · ∇w = −∂1f1(u)w − (∂1f2(u) + ∂2f1(u))R12w + (∂2f2(u)− ∂1f1(u))R11w (4.6)

whereRij are the Riesz transforms∂i∂j(−∆)−1, andf(u) = (f1(u), f2(u)). While the first term on the
right side of of (4.6) is harmless forL∞ estimates onw, unlessf is such that∂1f2+ ∂2f1 = ∂2f2− ∂1f1 =
0 identically (which is true forf(u) = u, that isf1(x, y) = x and f2(x, y) = y), the remaining two
terms prevent one from obtaining a bound on‖w‖L∞ using classical methods, since Calderón-Zygmund
operators are not bounded onL∞. Recently it was proven in [CV11] that if one adds anarbitrary amount
of dissipation, in the form of a positive power of−∆, or even dissipation as mild aslog(1 −∆), to the left
side of (4.5), then the equations have global in time smooth solutions. The global well-posedness of (4.5)
with no dissipation remains open for generic smooth forcingf .

5. A PRIORI ESTIMATES

In this section we carry out a priori estimates for solutionsevolving inXm,p of (1.1)–(1.3) with m >
d/p + 1, p ≥ 2. The bounds established in this section will be used extensively throughout the rest of the
work. We begin with the bounds in the Hilbert space case, namely for solutions inXm. These estimates will
be used in Section6 in the context of a Galerkin scheme.

5.1. L2-based estimates.We start with estimates inHm(D), wherem > d/2 + 1. Let u be a solution
of (1.1)–(1.2), which lies inHm+1(D) and is defined up to a (possibly infinite) maximal stopping time of
existenceξ > 0. Note however, that the a priori estimates (5.4)–(5.8) involve only theHm norm of the
solutionu.

Let α ∈ N
d be a multi-index with|α| ≤ m. Applying the Leray projectorP and then∂α to (1.1) we

obtain

d(∂αu) + ∂αP (u · ∇u)dt = ∂αPσ(u)dW. (5.1)

By the It ō lemma we find

d‖∂αu‖2L2 =− 2 (∂αu, ∂αP (u · ∇u)) dt+ ‖∂αPσ(u)‖2X0
dt+ 2 (∂αu, ∂αPσ(u)) dW

=(Jα
1 + Jα

3 )dt+ Jα
3 dW. (5.2)

Fix T > 0 and any stopping timeτ ≤ ξ ∧ T . We find that for everys ∈ [0, τ ],

‖∂αu(s)‖2L2 ≤ ‖∂αu0‖
2
L2 +

∫ s

0
(|Jα

1 |+ |Jα
2 |)ds

′ +

∣∣∣∣
∫ s

0
Jα
3 dW

∣∣∣∣ .

Hence, summing over all|α| ≤ m, taking a supremum overs ∈ [0, τ ] and then taking the expected value
we get

E sup
s∈[0,τ ]

‖u(s)‖2Hm ≤E‖u0‖
2
Hm + E

∑

|α|≤m

∫ τ

0
(|Jα

1 |+ |Jα
2 |)dt

′ +
∑

|α|≤m

E

(
sup

s∈[0,τ ]

∣∣∣∣
∫ s

0
Jα
3 dW

∣∣∣∣

)
. (5.3)
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We first treat the drift termsJα
1 and Jα

2 which may be estimated pointwise in time. We bound the
nonlinear termJα

1 by settingp = 2 andv = u in (2.12) to obtain

∑

|α|≤m

|Jα
1 | ≤ C‖u‖W 1,∞‖u‖2Hm (5.4)

for some positive constantC = C(m,D). In view of the assumption (3.1) theJα
2 term is direct:

∑

|α|≤m

|Jα
2 | ≤ β(‖u‖L∞)2(1 + ‖u‖2Hm). (5.5)

whereβ is the increasing function given in (3.1).
We handle the stochastic term, involvingJα

3 , using the Burkholder-Davis-Gundy inequality (2.14) and
assumption (3.1):

E

(
sup

s∈[0,τ ]

∣∣∣∣
∫ s

0
Jα
3 dW

∣∣∣∣

)
≤ CE

(∫ τ

0
‖∂αu‖2L2‖Pσ(u)‖2

Wm,2dt

)1/2

≤ CE

(∫ τ

0
‖∂αu‖2L2β(‖u‖L∞)2(1 + ‖u‖2Hm)dt

)1/2

.

Now, summing over|α| ≤ m, we infer

∑

|α|≤m

E

(
sup

s∈[0,τ ]

∣∣∣∣
∫ s

0
Jα
3 dW

∣∣∣∣

)
≤

1

2
E sup

s∈[0,τ ]
‖u‖2Hm +CE

∫ τ

0
β(‖u‖L∞)2(1 + ‖u‖2Hm)dt. (5.6)

In view of the estimate (5.4) for the nonlinear term, we now define the stopping time

ξR = inf {t ≥ 0: ‖u(t)‖W 1,∞ ≥ R} . (5.7)

Combining the estimates (5.4)–(5.6), we find that for anyt > 0, by takingτ = t ∧ ξR,

E sup
s∈[0,ξR∧t]

‖u‖2Hm ≤2E‖u0‖
2
Hm + CE

∫ ξR∧t

0
(‖u‖W 1,∞ + β(‖u‖L∞)2)(1 + ‖u‖2Hm)ds

≤2E‖u0‖
2
Hm + C

∫ t

0

(
1 + E sup

r∈[0,ξR∧s]
‖u‖2Hm

)
ds,

where the final constantC depends onR throughR + β(R)2. From the classical Grönwall inequality we
infer

E sup
s∈[0,ξR∧T ]

‖u‖2Hm ≤ C(1 + E‖u0‖
2
Hm) (5.8)

whereC = C(m,d,D, T,R, β).
Of course estimate (5.8) does not prevent‖u‖W 1,∞ from blowing up beforeT ; the bound (5.8) grows

exponentially inR and hence we do not a priori know thatξR → ∞ asR → ∞. Note also that, in contrast
to the case of the full space (or in the periodic setting), when D is a smooth simply-connected bounded
domain, the non-blow-up of solutions is controlled by‖u‖W 1,∞ , rather than the classical‖∇u‖L∞ . This
is due to the nonlocal nature of the pressure. In the bound (5.8) this is inherently expressed through the
definition of the stopping timeξR. Of course, theL∞ bound onu is also needed to control the terms
involving σ.
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5.2. Lp-based estimates,p > 2. We now return to (5.1) again for anyα, |α| ≤ m. We apply the It ō
formula, pointwise inx, for the functionφ(v) = |v|p = (|v|2)p/2. After integrating inx and using the
stochastic Fubini theorem (see [DPZ92]) we obtain:

d‖∂αu‖pLp =− p

∫

D
∂αu · ∂αP (u · ∇u)|∂αu|p−2dxdt

+
∑

k≥1

∫

D

(
p

2
|∂αPσk(u)|

2|∂αu|p−2 +
p(p− 2)

2
(∂αu · ∂αPσk(u))

2|∂αu|p−4

)
dxdt

+ p
∑

k≥1

(∫

D
∂αu · ∂αPσk(u)|∂

αu|p−2 dx

)
dWk

:=Iα1 dt+ Iα2 dt+ Iα3 dW. (5.9)

By letting v = u in (2.12) we bound

|Iα1 | ≤ C‖u‖W 1,∞‖u‖pWm,p . (5.10)

We turn now to estimate the terms specific to the stochastic case. ForIα2 , using (3.1) we have

|Iα2 | ≤C

∫

D

∑

k≥1

|∂αPσk(u)|
2|∂αu|p−2dx ≤ C‖Pσ(u)‖2Wm,p‖u‖

p−2
Wm,p ≤ Cβ(‖u‖L∞)2(1 + ‖u‖pWm,p).

(5.11)

To estimate the stochastic integral terms involvingI3, we apply the Burkholder-Davis-Gundy inequality,
(2.14), the Minkowski inequality for integrals, and use (3.1). We obtain, for any stopping timeτ ≤ T ∧ ξ,

E

(
sup

s∈[0,τ ]

∣∣∣∣
∫ s

0
Iα3 dW

∣∣∣∣

)
≤CE



∫ τ

0

∑

k≥1

(∫

D
∂αu · ∂αPσk(u)|∂

αu|p−2 dx

)2

ds




1/2

≤CE



∫ τ

0



∫

D


∑

k≥1

|∂αPσk(u)|
2|∂αu|2(p−1)




1/2

dx




2

ds




1/2

≤CE



∫ τ

0
‖∂αu‖

2(p−1)
Lp



∫

D


∑

k≥1

|∂αPσk(u)|
2




p/2

dx




2/p

ds




1/2

≤CE

(
sup

s∈[0,τ ]
‖∂αu‖

p/2
Lp

(∫ τ

0
‖u‖p−2

Wm,pβ(‖u‖L∞)2(1 + ‖u‖2Wm,p)ds

)1/2
)

≤
1

2
E sup

s∈[0,τ ]
‖∂αu‖pLp + CE

∫ τ

0
β(‖u‖L∞)2(1 + ‖u‖pWm,p)ds. (5.12)

Combining theLp It ō formula (5.9) with the estimates (5.10)–(5.12), and making use of the stopping time
ξR defined in (5.7), we may obtain, as in the Hilbert case,

E sup
s∈[0,ξR∧T ]

‖u‖pWm,p ≤ C(1 + E‖u0‖
p
Wm,p) (5.13)

whereC = C(m,d,D, T,R, β).

Remark 5.1 (From a priori estimates to the construction of solutions).Having completed the a priori
estimates inWm,p, we observe that, even for the deterministic Euler equations on a bounded domain, the
construction of solutions is non-trivial and requires a delicate treatment of the coupled elliptic/degenerate-
hyperbolic system (see e.g. [KL84, Tem75]). In addition, the stochastic nature of the equations introduces a
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number of additional difficulties, such as the the lack of compactness in theω variable. We overcome these
difficulties in Sections6 and7 below, by first constructing a sequence of very smooth approximate solutions
evolving from mollified initial data, and then passing to a limit using a Cauchy-type argument.

6. COMPACTNESS METHODS AND THE EXISTENCE OF VERY SMOOTH SOLUTIONS

Leetp ≥ 2 andm > d/p + 1 be as in the statement of Theorem4.3. In this section we establish the
existence of “very smooth” solutions of (1.1)–(1.3), that is solutions inHm′

, wherem′ = m + 5 (so that
m′ > m+ 3 + d(p − 2)/(2p) for anyd = 2, 3 andp ≥ 2). We fix thism′ throughout the rest of the paper.
In particular we shall use thatHm′−2 ⊂ Wm+1,p andm′ > d/2 + 3. Note that the the initial data in the
statement of our main theorem only lies inWm,p, not necessarily inHm′

, but we will apply the results in
this section to a sequence of mollified initial data (cf. (7.1) below), and then use a limiting argument in order
to obtain the local existence of pathwise solutions for all data inWm,p (see Section7).

We begin by introducing a Galerkin scheme with cut-offs in front of both the nonlinear drift and diffusion
terms. Crucially, these cut-offs allow us to obtain uniformestimates in the Galerkin approximations globally
in time (see Remark6.1 below). We then exhibit the relevant uniform estimates for these systems which
partially follow from the a priori estimates in Section5. We next turn to establish compactness with a
variation on the Arzela-Ascoli theorem, tightness arguments, and the Skorohod embedding theorem. In this
manner we initial infer the existence of martingale solutions to a cutoff stochastic Euler system (cf. (6.17)
below) in a very smooth spaces. We finally turn to prove the existence of pathwise solutions by establishing
the uniqueness for this cutoff system and applying the Gyöngy-Krylov convergence criteria as recalled in
Lemma6.10below.

6.1. Finite Dimensional Spaces and The Galerkin scheme.For eachu ∈ X0, by the Lax-Milgram theo-
rem, there exists a uniqueΦ(u) ∈ Xm′ solving the variational problem

(Φ(u), v)Hm′ = (u, v), for all v ∈ Xm′ .

Actually, the regularity ofΦ(u) is expected to be better. In [Ghi84] it is shown that in fact the maximal
regularityΦ(u) ∈ X2m′ holds. We let{φk}

∞
k=1 be the complete orthonormal system (inX0) of eigen-

functions for the linear mapu 7→ Φ(u), which is compact, injective and self-adjoint onX0. Therefore,
(φk, v)Hm′ = λk(φk, v) for all v ∈ Xm′ , whereλ−1

k > 0 is the eigenvalue associated toφk, and by [Ghi84]
we knowφk lies inX2m′ for all k ≥ 1.

For alln ≥ 1, we consider the orthogonal projection operatorPn, mappingX0 ontospan{φ1, . . . , φn},
given explicitly by

Pnv =

n∑

j=1

(v, φj)φj , for all v ∈ X0.

Note that thesePn are also uniformly bounded inn onXm′ , Xm′−1, etc. See e.g. [LM72] for further details.
Fix R > 0 to be determined, choose aC∞-smooth non-increasing functionθR : [0,∞) 7→ [0, 1] such

that

θR(x) =

{
1 for |x| < R,

0 for |x| > 2R.

We consider the following Galerkin approximation scheme for (1.1)

dun + θR(‖u
n‖W 1,∞)PnP (un · ∇un)dt = θR(‖u

n‖W 1,∞)PnPσ(un)dW, (6.1)

un(0) = Pnu0. (6.2)

The system (6.1)–(6.2) may be considered as an SDE inn dimensions, with locally Lipschitz drift (cf.
Proposition6.8below) and globally Lipschitz diffusion (cf. (3.1)). Since we also have the additional cance-
lation property(PnP (u · ∇u), u)L2 = 0 for all u ∈ PnXm′ we may infer that there exists a unique global
in time solutionun to (6.1)–(6.2), evolving continuously onPnXm′ . See e.g. [Fla08] for further details.
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Remark 6.1. The cutoff functions in (6.1) allow us to obtain uniform estimates forun in L∞([0, T ],Xm′ )
for any fixed, deterministicT > 0. Without this cutoff function we are only able to obtain uniform estimates
up to a sequence of stopping timesτn, depending onn. In contrast to the deterministic case it is unclear if,
for example,infn≥1 τ

n > 0 almost surely. Note however that the presence of this cut-off causes additional
difficulties in the passage to the limit of martingale solutions, see Remark6.6, and in order to establish the
uniqueness of solutions associated to the related to the limit cut-off system, see (6.17), Proposition6.8and
Remark6.9below.

6.2. Uniform Estimates. Applying the It ō formula to (6.1), and using thatPn is self-adjoint onXm′ ,
similarly to (5.2) we obtain

d‖un‖2
Hm′ =− 2θR(‖u

n‖W 1,∞) (un, P (un · ∇un))Hm′ dt

+ θR(‖u
n‖W 1,∞)2‖PnPσ(un)‖2Xm′

dt+ 2θR(‖u
n‖W 1,∞) (un, Pσ(un))Hm′ dW.

Further on, in order to establish the needed compactness in the probability distributions associated toun, we
need uniform estimates on higher moments of‖un‖2

Hm′ . For this purpose we fix anyr ≥ 2 and compute

d(‖un‖2
Hm′ )r/2 from the It ō formula and the evolution of‖un‖2

Hm′ . We find

d‖un‖r
Hm′ =− rθR(‖u

n‖W 1,∞)‖un‖r−2
Hm′ (u

n, P (un · ∇un))Hm′ dt

+ θR(‖u
n‖W 1,∞)2

(
r

2
‖un‖r−2

Hm′ ‖PnPσ(un)‖2Xm′
+

r(r − 2)

2
‖un‖r−4

Hm′ (u
n, Pσ(un))2

Hm′

)
dt

+ rθR(‖u
n‖W 1,∞)‖un‖r−2

Hm′ (u
n, Pσ(un))Hm′ dW. (6.3)

Let us introduce the stopping time

τK := inf

{
t ≥ 0 : sup

s∈[0,t]
‖un‖Hm′ ≥ K

}
, for anyK > 0.

Using bounds similar to the a priori estimates of Section5, we obtain the estimate

E

(
sup

s∈[0,t∧τK ]
‖un‖r

Hm′

)

≤ E‖Pnu0‖
r
Hm′ + CE

∫ t∧τK

0
θR(‖u

n‖W 1,∞)
(
β(‖un‖L∞)2 + ‖un‖W 1,∞

) (
1 + ‖un(s)‖r

Hm′

)
ds

+ CE

(∫ t∧τK

0
θR(‖u

n‖W 1,∞)2β(‖un‖L∞)2‖un‖r
Hm′ (1 + ‖un‖r

Hm′ )ds

)1/2

≤ E‖u0‖
r
Hm′ + C

∫ t

0
1 + E

(
sup

s′∈[0,s∧τK ]
‖un(r)‖r

Hm′

)
ds+

1

2
E

(
sup

s∈[0,t∧τK ]
‖un(r)‖r

Hm′

)
,

whereC is a constant independent ofn andK but depends onD, m′, r, andR (through θR and β).
Therefore, rearranging and applying the standard Grönwall inequality, we obtain that, for anyT > 0

E sup
s∈[0,T∧τK ]

‖un‖r
Hm′ ≤ C < ∞,

for some positive finite constantC = C(T,R, r, β,E‖u0‖
r
Hm′ ) which is independent ofn andK. Since

τK → ∞ asK → ∞, with the monotone convergence theorem we conclude

sup
n≥1

E sup
s∈[0,T ]

‖un‖r
Hm′ ≤ C < ∞. (6.4)

In order to obtain the compactness needed to pass to the limitin un we also would like to have uniform
estimates on the time derivatives ofun. Since in the stochastic case we do not expectun to be differentiable
in time, we have to content ourselves instead with estimateson fractional time derivatives of order strictly
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less than1/2. In order to carry out such estimates we shall also make use ofa variation on the Burkholder-
Davis-Gundy inequality (2.14), as derived in [FG95].

For this purpose, let us briefly recall a particular characterization of the Sobolev spacesWα,q([0, T ],X)
whereX may be any separable Hilbert space. See, for example, [DPZ92] for further details. Forq > 1 and
α ∈ (0, 1) we define

Wα,q([0, T ];X) :=

{
v ∈ Lq([0, T ];X);

∫ T

0

∫ T

0

‖v(t′)− v(t′′)‖qX
|t′ − t′′|1+αq

dt′dt′′ < ∞

}
,

which is endowed with the norm

‖v‖qWα,p([0,T ];X) :=

∫ T

0
‖v(t′)‖qXdt′ +

∫ T

0

∫ T

0

‖v(t′)− v(t′′)‖qX
|t′ − t′′|1+αq

dt′dt′′.

Note that forα ∈ (0, 1), W 1,q([0, T ];X) ⊂ Wα,q([0, T ];X) with ‖v‖Wα,q([0,T ];X) ≤ C‖v‖W 1,q([0,T ];X).
As in [FG95] one can show from (2.14) that for anyq ≥ 2 and anyα ∈ [0, 1/2)

E

(∥∥∥∥
∫ t

0
GdW

∥∥∥∥
q

Wα,q([0,T ];X)

)
≤ CE

(∫ T

0
‖G‖q

L2(U,X)
dt

)
, (6.5)

over allX valued predictableG ∈ Lq(Ω;Lq
loc([0,∞), L2(U,X))) and whereC = C(α, q, T ).

With these definitions and (6.5) in hand we return to (6.3). For any0 < α < 1/2, we have

E‖un‖r
Wα,r([0,T ],Hm′−1)

≤C E

∥∥∥∥Pnu0 +

∫ t

0
θR(‖u

n‖W 1,∞)PnP (un · ∇un)ds

∥∥∥∥
r

W 1,r([0,T ],Hm′−1)

+C E

∥∥∥∥
∫ t

0
θR(‖u

n‖W 1,∞)PnPσ(un)dW

∥∥∥∥
r

Wα,r([0,T ],Hm′−1)

(6.6)

for some positive constantC = C(T ), independent ofn. SincePnP is uniformly bounded inXm′−1

independently ofn, using (2.2) and (6.4) we bound the first term on the right hand side of (6.6) as

E

∥∥∥∥Pnu0 +

∫ t

0
θR(‖u

n‖W 1,∞)PnP (un · ∇un)ds

∥∥∥∥
r

W 1,r([0,T ],Hm′−1)

≤ C E‖u0‖
r
Hm′ + C E

∫ T

0
θR(‖u

n‖W 1,∞) ‖un · ∇un‖r
Hm′−1 dt

≤ C E‖u0‖
r
Hm′ + C E

∫ T

0
θR(‖u

n‖W 1,∞)‖un‖rW 1,∞‖un‖r
Hm′dt ≤ C E

(
sup

t∈[0,T ]
‖un(t)‖r

Hm′

)
≤ C

(6.7)

where the final constantC = C(T,R, r,E‖u0‖
r
Hm′ ) does not depend onn. For the second term on the left

hand side of (6.6) we make use of (6.5) with q = r andα ∈ (0, 1/2), then (3.1) and (6.4) to estimate

E

∥∥∥∥
∫ t

0
θR(‖u

n‖W 1,∞)PnPσ(un)dW

∥∥∥∥
r

Wα,r([0,T ],Hm′−1)

≤ C E

(∫ T

0
θR(‖u

n‖W 1,∞)r‖PnPσ(un)‖rXm′−1
dt

)

≤ C E

∫ T

0
θR(‖u

n‖W 1,∞)rβ(‖un‖L∞)r(1 + ‖un‖r
Hm′ )dt

≤ C E

(
1 + sup

t∈[0,T ]
‖un(t)‖r

Hm′

)
≤ C, (6.8)
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where in the final constantC = C(T,R, r, β,E‖u0‖
r
Hm′ ) is a sufficiently large constant independent onn.

Combining (6.6)–(6.8) we have now shown that

sup
n≥1

E‖un‖r
Wα,r([0,T ],Hm′−1)

≤ C, (6.9)

for some positive finite constantC = C(T,R, r,E‖u0‖
r
Hm′ , α). In summary, we have proven:

Proposition 6.2. Fix m > d/2 + 1, m′ = m + 5, α ∈ (0, 1/2), r ≥ 2, and suppose thatσ satisfies con-
ditions (3.1)–(3.3). Givenu0 ∈ Lr(Ω;Xm′), F0 measurable, consider the associated sequence of solutions
{un}n≥1 of the Galerkin system(6.1)–(6.2). Then the sequence{un}n≥1 is uniformly bounded in

Lr(Ω;L∞([0, T ],Xm′ ) ∩Wα,r(0, T ;Xm′−1))

for anyT > 0. Moreover, under the given conditions, we have

sup
n≥1

E

∥∥∥∥
∫ t

0
θR(‖u

n‖W 1,∞)PnPσ(un)dW

∥∥∥∥
r

Wα,r([0,T ],Hm′−1)

< ∞ (6.10)

sup
n≥1

E

∥∥∥∥u
n(t)−

∫ t

0
θR(‖u

n‖W 1,∞)PnPσ(un)dW

∥∥∥∥
r

W 1,r([0,T ],Hm′−1)

< ∞. (6.11)

6.3. Tightness, Compactness and The Existence of Martingale Solutions. For a given initial distribution
µ0 onXm′ we fix a stochastic basisS = (Ω,F , {Ft}t≥0,P,W) upon which is defined anF0 measurable
random elementu0 with distributionµ0. As described above, we define the sequence of Galerkin approxi-
mations{un}n≥1 solving (6.1)–(6.2) relative to this basis and initial condition.

To define a sequence of measures associated with{(un,W)}n≥1 we consider the phase space:

X = XS ×XW , where XS = C([0, T ],Xm′−2), XW = C([0, T ],U0). (6.12)

We may think of the first component,XS ⊃ C([0, T ],Xm′ ), as the space where theun lives, and the second
component,XW , as being the space on which the driving Brownian motions aredefined. OnX we define
the probability measures

µn = µn
S × µW , where µn

S(·) = P(un ∈ ·), µW (·) = P(W ∈ ·). (6.13)

We next show that the collection{µn}n≥1 is in fact weakly compact. Let Pr(X ) be the collection of
Borel probability measures onX . Recall that a sequence{νn}n≥0 ⊂ Pr(X ) is said toconverge weaklyto
an elementν ∈ Pr(X ) if

∫
fdνn →

∫
fdν for all continuous boundedf onX . As such, we say that a set

Λ ⊂ Pr(X ) is weakly compact if every sequence{νn} ⊂ Λ possesses a weakly convergent subsequence.
On the other hand we say that a collectionΛ ⊂ Pr(X ) is tight if, for everyǫ > 0, there exists a compact set
Kǫ ⊂ X such that,µ(Kǫ) ≥ 1− ǫ for all µ ∈ Λ. The classical result of Prohorov (see e.g. [DPZ92]) asserts
that weak compactness and tightness are in fact equivalent conditions for collectionsΛ ⊂ Pr(X ). We have:

Lemma 6.3(Tightness of Measures for the Galerkin Scheme).Letm > d/2 + 1, m′ = m + 5, r > 2,
assume thatσ satisfies conditions(3.1)–(3.3), and consider anyµ0 ∈ Pr(Xm′) with

∫
Xm′

|u|rdµ0(u) < ∞.

Fix any stochastic basisS = (Ω,F , {Ft}t≥0,P,W) upon which is defined anF0 measurable random
elementu0 with this distributionµ0 and take{un}n≥1 to be the sequence solving(6.1), (6.2) relative to this
basis and initial condition. Define the sequence{µn}n≥1 according to(6.13) using the sequence{un}n≥1.
Then{µn}n≥1 ⊂ Pr(X ) is tight and hence weakly compact.

In order to obtain the compact sets used to show that the sequence{µn}n≥1 is tight we use the following
variation on the classical Arzela-Ascoli compactness theorem from [FG95].

Lemma 6.4. Suppose thatY (0) ⊃ Y are Banach spaces withY compactly embedded inY (0). Letα ∈ (0, 1]
andq ∈ (1,∞) be such thatαq > 1 then

Wα,q([0, T ];Y ) ⊂⊂ C([0, T ], Y (0)) (6.14)

and the embedding is compact.
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With this result in hand we proceed to the proof of Lemma6.3:

Proof of Lemma6.3. Fix anyα ∈ (0, 1/2) such thatαr > 1. According to Lemma6.4 we have that both
W 1,2([0, T ];Xm′−1), W r,α([0, T ];Xm′ ) are compactly embedded inXS. Therefore, fors > 0, the sets

B2
s :=

{
u ∈ W 1,2([0, T ];Xm′−1) : ‖u‖W 1,2([0,T ];Hm′−1) ≤ s

}

+
{
u ∈ Wα,r([0, T ];Xm′ ) : ‖u‖Wα,r([0,T ];Hm′−1) ≤ s

}

are pre-compact inXS . Since{un ∈ B2
s} contains

{∥∥∥∥u
n(t)−

∫ t

0
β(‖un‖Wm,p)PnPσ(un)dW

∥∥∥∥
W 1,2([0,T ];Hm′−1)

≤ s

}

∩

{∥∥∥∥
∫ t

0
β(‖un‖Wm,p)PnPσ(un)dW

∥∥∥∥
Wα,r([0,T ];Hm′−1)

≤ s

}
,

and using Proposition6.2, estimates (6.10)–(6.11), and the Chebyshev inequality we bound

µn
S((B

2
s )

C) ≤P

(∥∥∥∥u
n(t)−

∫ t

0
θR(‖u

n‖W 1,∞)PnPσ(un)dW

∥∥∥∥
W 1,2([0,T ];Hm′−1)

> s

)

+ P

(∥∥∥∥
∫ t

0
θR(‖u

n‖W 1,∞)PnPσ(un)dW

∥∥∥∥
Wα,r([0,T ];Hm′−1)

> s

)
≤

C

s
,

whereC is a universal constant independent ofs andn. We infer thatµn
S is a tight sequence onX . Now,

since the sequence{µW} is constant, it is trivially weakly compact and hence tight.We may thus finally
infer that the{µn} is tight, completing the proof. �

With this weak compactness in hand we next apply the Skorokhod embedding theorem (cf. [DPZ92]) to
a weakly convergent subsequence of{µn}n≥1. We obtain a new probability space(Ω̃, F̃ , P̃) on which we
have a sequence of random elements{(ũn, W̃n)}n≥1 converging almost surely inX to an element(ũ, W̃),
i.e.

ũn → ũ, in C([0, T ],Xm′−2) almost surely (6.15)

and

W̃n → W̃ , in C([0, T ],U0) almost surely. (6.16)

One may verify as in [Ben95] that (ũn, W̃n) satisfies thenth order Galerkin approximation (6.1)–(6.2)
relative to the stochastic basisSn := (Ω̃, F̃ , P̃, {F̃n

t }, W̃
n) with F̃n

t the completion of theσ-algebra gen-
erated by{(un(s),Wn(s)) : s ≤ t}. Using the uniform bound (6.4) and the almost sure convergences
(6.15)–(6.16) we may now show that(ũ, W̃ ) solves the the cut-off system

dũ+ θR(‖ũ‖W 1,∞)P (ũ · ∇ũ) dt = θR(‖ũ‖W 1,∞)Pσ(ũ)dW̃ . (6.17)

For the technical details of this passage to the limit we refer to e.g. [DGHT11] where this analysis is carried
out for the primitive equations. Applying these arguments to the Euler equations introduces no additional
difficulties, so we omit further details. More precisely we have established the following:

Proposition 6.5. Fix anym′ > d/2 + 3, r > 2, andR > 0. Suppose thatµ0 ∈ Pr(Xm′) is given such
that

∫
Xm′

‖u‖r
Hm′ dµ0(u) < ∞. Then there exists a stochastic basisS := (Ω̃, F̃ , P̃, {F̃t}, W̃) and anXm′

valued, predictable process

ũ ∈ L2(Ω;L∞
loc([0,∞);Xm′ )) ∩ L2(Ω;C([0,∞),Xm′−2))
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with P̃(ũ(0) ∈ ·) = P(u0 ∈ ·) such that

ũ(t) +

∫ t

0
θR(‖ũ‖W 1,∞)P (ũ · ∇ũ) dt = ũ(0) +

∫ t

0
θR(‖ũ‖W 1,∞)Pσ(ũ)dW̃

for everyt ≥ 0.

Remark 6.6. The assumptionm′ > d/2 + 3 is needed facilitate the passage from (6.1) to (6.17). Indeed,
when passing to the limit we need to handle some stray terms arising due to the cut-off terms involving the
W 1,∞ norm of the solution. These stray terms are of higher order than the other terms in the estimates, and
in order to deal with them we need to have compactness in sufficiently regular spaces. In the analysis above
this compactness is provided by the Arzela-Ascoli type result, Lemma6.4. In order to apply this lemma we
need estimates on (fractional) time derivatives ofun, which in view of (6.7) must be made inXm′−1. An
additional degree of regularity is then lost in order to obtain a compact embedding inXm′−1, as required by
Lemma6.4, and we therefore arrive at the conditionm′ > d/2 + 3.

We also observe that Proposition6.5 immediately yield new results on the existence of martingale solu-
tions of the stochastic Euler equation.

Remark 6.7(Existence of Martingale Solutions).We may show that the pair(ũ, S̃), obtained from Propo-
sition 6.5 is a local martingale solution of (1.1)–(1.3) by introducing the stopping time

τ = inf{t ≥ 0: ‖ũ‖W 1,∞ ≥ R}.

Of course, unless‖ũ(0)‖W 1,∞ < R, i.e. unlessµ0({u0 ∈ Xm′ : ‖u0‖W 1,∞ < R}) = 1, we have
P̃ (τ = 0) > 0. Such stopping timesτ will also be used further on to infer the existence of solutions in the
pathwise case. Note however that in this case theL∞(Ω) condition may be subsequently removed with a
cutting argument, cf. (6.26)–(6.27) below.

6.4. Uniqueness, the Gÿongy- Krylov lemma, and the existence of strong solutions.Having now estab-
lished Proposition6.5, and guided by the classical Yamada-Wannabe theorem (see [YW71], [WY71]), we
would now expect pathwise solutions to exist once we establish that solutions are “pathwise unique”.

Proposition 6.8 (Pathwise uniqueness).Fix any r > 2, R > 0, andm′ = m + 5, wherep ≥ 2 and
m > d/p + 1. Assume thatσ satisfies(3.1)–(3.3), and suppose(S, u(1)) and (S, u(2)) are two global
solutions of(6.17) in the sense of Proposition6.5, relative to the same stochastic basisS := (Ω,F , {Ft}t≥0,

P,W). If u(1)(0) = u(2)(0) = u0, a.s, withE‖u0‖
r
Hm′ < ∞, thenu(1) andu(2) are indistinguishablei.e.

P

(
u(1)(t) = u(2)(t);∀t ≥ 0

)
= 1. (6.18)

Proof of Proposition6.8. By the assumption onu0 and Proposition6.5, we have for everyT > 0

E

(
sup

t∈[0,T ]
(‖u(1)‖2

Hm′ + ‖u(2)‖2
Hm′ )

)
≤ C < ∞, (6.19)

whereC is a universal constant depending only onE‖u0‖
2
Hm′ , R, β, andT . However, continuity in time is

only guaranteed for theHm′−2 norms ofu(1) andu(2), and so, in view of the choice ofm′, we may define
the collection of stopping times

ξK := inf
{
t ≥ 0: ‖u(1)‖2Wm+1,p + ‖u(2)‖2Wm+1,p > K

}
, K > 0.

Observe that due to (6.19) we haveξK → ∞ almost surely asK → ∞.
Takev = u(1) − u(2). We have

dv + θR(‖u
(1)‖W 1,∞)P

(
u(1) · ∇u(1)

)
dt−θR(‖u

(2)‖W 1,∞)P
(
u(2) · ∇u(2)

)
dt

=
(
θR(‖u

(1)‖W 1,∞)Pσ(u(1))− θR(‖u
(2)‖W 1,∞)Pσ(u(2))

)
dW.
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We now estimatev in Wm,p. For any multi-index|α| ≤ m we apply∂α to the equation forv. With the It ō
lemma inLp we find

d‖∂αv‖pLp =− p

∫

D
∂αv ·

(
θR(‖u

(1)‖W 1,∞)∂αP (u(1) · ∇u(1))− θR(‖u
(2)‖W 1,∞)∂αP (u(2) · ∇u(2))

)
|∂αv|p−2dxdt

+
∑

k≥1

∫

D

(
p

2
|∂αP (θR(‖u

(1)‖Wm,p)σk(u
(1))− θR(‖u

(2)‖Wm,p)σk(u
(2)))|2|∂αv|p−2

+
p(p− 2)

2
(∂αv · P (θR(‖u

(1)‖Wm,p)σk(u
(1))− θR(‖u

(2)‖Wm,p)σk(u
(2))))2|∂αv|p−4

)
dxdt

+ p
∑

k≥1

(∫

D
∂αv · ∂αP (θR(‖u

(1)‖W 1,∞)σk(u
(1))− θR(‖u

(2)‖W 1,∞)σk(u
(2)))|∂αv|p−2 dx

)
dWk

:=(Jα
1 + Jα

2 )dt+ Jα
3 dW.

Using the mean value theorem forθR, the embeddingW 1,∞ ⊂ Wm,p, and Lemma2.1we estimateJα
1 as

|Jα
1 | ≤C

∣∣∣θR(‖u(1)‖W 1,∞)− θR(‖u
(2)‖W 1,∞)

∣∣∣
∣∣∣
(
∂αP (u(1) · ∇u(1)), ∂αv|∂αv|p−2

)∣∣∣

+ C
∣∣∣
(
∂αP (u(1) · ∇u(1))− ∂αP (u(2) · ∇u(2)), ∂αv|∂αv|p−2

)∣∣∣

≤C
∣∣∣‖u(1)‖W 1,∞ − ‖u(2)‖W 1,∞

∣∣∣ ‖P (u(1) · ∇u(1))‖Wm,p‖v‖p−1
Wm,p

+ C
∣∣∣
(
∂αP (v · ∇u(1)), ∂αv|∂αv|p−2

)∣∣∣+ C
∣∣∣
(
∂αP (u(2) · ∇v), ∂αv|∂αv|p−2

)∣∣∣

≤C‖v‖pWm,p‖u
(1)‖Wm,p‖u(1)‖Wm+1,p + ‖v‖p−1

Wm,p

(
‖v‖L∞‖u(1)‖Wm+1,p + ‖u(1)‖W 1,∞‖v‖Wm,p

)

+ C‖v‖p−1
Wm,p

(
‖u(2)‖Wm,p‖v‖W 1,∞ + ‖u(2)‖W 1,∞‖v‖Wm,p

)

≤C‖v‖pWm,p

(
(1 + ‖u(1)‖Wm,p)‖u(1)‖Wm+1,p + ‖u(2)‖Wm,p

)
. (6.20)

Using the local Lipschitz condition onσ, i.e. (3.1), we have

|Jα
2 | ≤C‖v‖p−2

Wm,p‖θR(‖u
(1)‖W 1,∞)σ(u(1))− θR(‖u

(2)‖W 1,∞)σ(u(2))‖2Wm,p

≤C‖v‖p−2
Wm,p

(
θR(‖u

(1)‖W 1,∞)2‖σ(u(1))− σ(u(2))‖2Wm,p

+
∣∣∣(θR(‖u(1)‖W 1,∞)− θR(‖u

(2)‖W 1,∞)
∣∣∣
2
‖σ(u(2))‖2Wm,p

)

≤Cβ(‖u(1)‖L∞ + ‖u(2)‖L∞)2(1 + ‖u(2)‖2Wm,p)‖v‖
p
Wm,p . (6.21)

For the terms involvingJα
3 we make use of the Burkholder-Davis-Gundy inequality in a similar way to

(5.12) and then argue as in (6.21) in order to finally estimate, that for everyt ≥ 0

E sup
s∈[0,t]

∣∣∣∣∣

∫ s∧ξK

0
Jα
3 dW

∣∣∣∣∣

≤ CE



∫ t∧ξK

0

∑

k≥1

(∫

D
∂αv · ∂αP ((θR(‖u

(1)‖W 1,∞)σk(u
(1))− θR(‖u

(2)‖W 1,∞)σk(u
(2)))|∂αv|p−2 dx

)2

ds




1/2

≤ CE

(∫ t∧ξK

0
‖∂αv‖

2(p−1)
Lp ‖θR(‖u

(1)‖W 1,∞)σ(u(1))− θR(‖u
(2)‖W 1,∞)σ(u(2))‖2Wm,pds

)1/2

≤
1

2
E sup

s∈[0,t∧ξK ]

‖∂αv‖pLp + CE

∫ t∧ξK

0
‖v‖pWm,pds. (6.22)
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We now combine the estimates obtained in (6.20)–(6.22) and sum over allα with |α| ≤ m. We find that for
any fixedK > 0

E sup
s∈[0,t∧ξK ]

‖v‖pWm,p ≤CE

∫ t∧ξK

0
‖v‖pWm,p(β(‖u

(1)‖L∞ + ‖u(2)‖L∞)2 + 1)
(
1 + ‖u(1)‖2Wm+1,p + ‖u(2)‖2Wm,p

)
ds

≤C

∫ t

0
E sup

r∈[0,s∧ξK ]

‖v‖pWm,pds

where the constantC may depend onK via the definition of the stopping timeξK . By a classical version of
the Grönwall lemma, the monotone convergence theorem and the fact thatξK → ∞ asK → ∞ we infer
that, for everyT ≥ 0

E sup
t∈[0,T ]

‖v‖pWm,p = 0.

SinceT is arbitrary, (6.18) follows, and the proof of uniqueness is therefore complete. �

Remark 6.9. With obvious modifications the above proof can be used to showthat if (u(1), τ (1)) and
(u(2), τ (2)) are local pathwise solutions of (1.1)–(1.2) then

P

(
11u(1)(0)=u(2)(0)(u

(1)(t)− u(2)(t)) = 0;∀t ∈ [0, τ (1) ∧ τ (2)]
)
= 1. (6.23)

With uniqueness for (6.17) in hand, in order to establish the existence of pathwise solution, we shall use
the following criteria from [GK96].

Lemma 6.10. LetX be a complete separable metric space and consider a sequenceof X valued random
variables{Yj}j≥0. We denote the collection of joint laws of{Yj}j≥1 by{νj,l}j,l≥1, i.e. we take

νj,l(E) := P((Yj , Yl) ∈ E), E ∈ B(X ×X).

Then{Yj}j≥1 converges in probability if and only if for every subsequence of joint probabilities laws,
{νjk,lk}k≥0, there exists a further subsequence which converges weaklyto a probability measureν such that

ν({(u, v) ∈ X ×X : u = v}) = 1. (6.24)

With this result in mind let us now return again to the sequence of solutionsuj to the system (6.1) relative
to some stochastic basisS = (Ω,F , {Ft}t≥0,P,W) which we fix in advance. We define sequences of
measuresνj,l(·) = P((uj , ul) ∈ ·) andµj,l(·) = P((uj , ul,W) ∈ ·) on the phase spacesXJ = XS ×
XS = C([0, T ],Xm′−2) × C([0, T ],Xm′−2), XT = XJ × C([0, T ],U0) respectively. With only minor
modifications to the arguments in Lemma6.3 we see that the collection{µj,l}j,l≥1 is weakly compact.
Extracting a convergent subsequenceµj,l ⇀ µ and invoking the Skorokhod theorem we infer the existence

of a probability space(Ω̃, F̃ , P̃) on which there are defined random elements(ũl, ũl, W̃j,l) equal in law to
µj,l and so that

(ũj , ũl, W̃j,l) → (ũ, ũ∗, W̃), (6.25)

where the convergence occursΩ̃ almost surely inXT . As above we infer that each of(ũ, W̃) and(ũ∗, W̃)

are solutions of (6.17) relative to thesamestochastic basisS := (Ω̃, F̃ , P̃, {F̃t}, W̃) with F̃t the completion
of σ algebra generated by{ũ(s), ũ∗(s), W̃(s)) : s ≤ t}. Defineν(·) = P̃((ũ, ũ∗) ∈ ·) and observe that, due
to (6.25) νj,l → ν, weakly. Now Proposition6.8implies thatν({(u, u∗) ∈ XJ : u = u∗}) = 1. Here we use
thatHm′−2 ⊂ Wm,p, and so uniqueness inWm,p (which is proven in Proposition6.8) implies uniqueness
everywhere, and hence inHm′−2. We may therefore infer (passing if needed to a subsequence)thatuj → u
in XS almost surely, andon the original probability space. Having obtained this convergence and referring
again to (6.4) we may thus show thatu is a pathwise solution of (6.17). We finally define the stopping time

τ = inf {t ≥ 0: ‖u‖Wm,p > R} .

Note that this stopping time is well defined sinceu ∈ C([0,∞),Xm′−2) ⊂ C([0,∞),Xm,p) for m′ =
m + 5. Hence, relative to the initial fixed stochastic basisS, (u, τ) is a local pathwise solution of the
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stochastic Euler equation (1.1)–(1.2), in the sense thatu(· ∧ τ) ∈ L∞
loc([0,∞);Xm′ ) ∩ C([0,∞);Xm′−2)

and (4.1) holds for everyt ≥ 0.
In order to show thatτ > 0 we initially assume‖u0‖Hm′ ≤ M for somedeterministicM > 0, and

chooseR > C̄M , whereC̄ ≥ 1 is the constant such that‖u‖W 1,∞ ≤ C̄‖u‖Hm′ , in the cut-off function in
(6.1). To pass to the general case‖u0‖Hm′ < ∞ almost surely, we proceed as follows (see e.g. [GHZ09,
Section 4.2]). Fork ≥ 0 we defineuk0 = u011k≤‖u0‖Hm′<k+1 and obtain a corresponding local pathwise

solution(uk, τk) by applying the above construction with anyR > C̄(k+1) in the cut-off functionθR. We
then define

u =
∑

k≥0

uk11k≤‖u0‖Hm′<k+1 (6.26)

τ =
∑

k≥0

τk11k≤‖u0‖
Hm′<k+1 (6.27)

and find that(u, τ) is in fact the local pathwise solution corresponding to the initial conditionu0.
For any fixedu0 ∈ Xm′ we next extend the solution(u, τ) to a maximal time of existenceξ (cf. [GHZ09,

MR04, Jac79]). TakeE to be the set of all stopping timesσ corresponding to a local pathwise solution of
(1.1)–(1.2) with initial conditionu0. Let ξ = sup E and consider a sequenceσk ∈ E increasing toξ. Due to
the local uniqueness of pathwise solutions we obtain a processu defined on[0, ξ) such that(u, σk) are local
pathwise solutions. For eachr > 0 we now take

ρr = inf {t ≥ 0: ‖u(t)‖W 1,∞ > r} ∧ ξ.

Note thatu is continuous onW 1,∞ and soρr is a well-defined stopping time. By continuity and unique-
ness arguments we may infer that(u, ρr) is a local pathwise solution for eachr > 0.4 Suppose toward a
contradiction that, for someT, r > 0 we haveP(ξ = ρr ∧ T ) > 0. Since(u, ρr ∧ T ) is a local pathwise
solution then there exists, another stopping timeζ > ρr ∧ T and a processu∗ such that(u∗, ζ) is a local
pathwise solution corresponding tou0, contradicting the maximality ofξ. Hence we have proven that for
everyT, r > 0 we haveP(ξ = ρr ∧ T ) = 0. Observe that on the set{ξ < ∞}, by suitably choosingT , we
obtain thatρr < ξ for everyr > 0. On this set we hence havesupt∈[0,ρr ] ‖u(t)‖W 1,∞ = r for all r > 0,
which gives

sup
t∈[0,ξ)

‖u(t)‖W 1,∞ = ∞, on the set{ξ < ∞}. (6.28)

In summary in this section we have so far constructed maximallocal pathwiseHm′

solutions, but only
for the non-sharp smoothness regimem′ = m+5, with the solution guaranteed to evolve continuously only
in Xm′−2, and which remains bounded inXm′ . In the next section we shall use these very smooth solutions
to construct local (maximal) pathwiseWm,p solutions for allm > d/p + 1, and for allp ≥ 2, which will
then prove Theorem4.3.

7. CONSTRUCTION OFWm,p SOLUTIONS

For m > d/p + 1 with p ≥ 2, we now establish the local existence of solutions for any initial data
u0 ∈ Xm,p, which isF0 measurable, which concludes the proof of Theorem4.3. For this purpose we will
adapt a density and stability argument from [KL84, Mas07], which makes use of the very smooth solutions
constructed in Section6, as approximating solutions. Indeed, when the initial datalies in Xm′ , where
m′ = m+ 5, we obtained in Section6 maximal pathwise solutions in the sense of Definition4.1. In order
to make use of these smooth solutions we define a sequence of regularized initial data

uj0 = Fj−1 u0 (7.1)

4Note that, for a givenr > 0, we may haveP(ρr = 0) 6= 0. However, for almost everyω ∈ Ω, there existsr > 0 such that,
ρr(ω) > 0.
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where the smoothing operatorsFj−1 and their properties are recalled in AppendixA below (see also [KL84]).
For technical reasons we assume initially, that‖u0‖Wm,p ≤ M for some deterministic fixed constantM . As
in Section6, once we obtain the local existence of solutions for each fixed M , this assumption can be re-
laxed to the general case via a cutting argument as given in (6.26)–(6.27). Note that in view of LemmaA.1,
estimate (A.2)

sup
j≥1

‖uj0‖Wm,p ≤ C‖u0‖Wm,p ≤ CM (7.2)

whereC = C(m, p,D) is a universal constant. The bound (7.2) will be used in a crucial way in the forth-
coming estimates. SinceFj−1 is smoothing,{uj0}j≥1 ⊂ Xm′ , and we obtain from the results in Section6
a sequence(uj , ξj) of maximal, pathwise solutions evolving continuously inXm′−2 which are bounded in
Xm′ . In order to show that this sequence converges to a localXm,p solution corresponding to the initial
conditionu0 we show that, up to some stopping timeτ > 0 the sequence{uj}j≥1 is Cauchy and hence
convergent inC([0, τ);Xm,p).

To obtain this convergence (along with an associated stopping timeτ ) we apply an abstract result from
[GHZ09] (and see also [MR04]). For this purpose pick fix anyT > 0 and define the sequence of stopping
times

τTj := inf
{
t ≥ 0: ‖uj(t)‖Wm,p ≥ 2 + ‖uj0‖Wm,p

}
∧ T, (7.3)

and let

τTj,k = τTj ∧ τTk (7.4)

for j, k ≥ 1. SinceWm,p is continuously embedded inW 1,∞ it is clear thatτTj < ξj , where as usualξj is
the maximal (stopping) time of existence ofuj , i.e.

sup
t∈[0,ξj ]

‖uj(t)‖Wm,p = ∞, on the set{ξj < ∞}. (7.5)

From [GHZ09, Lemma 5.1] we recall:

Lemma 7.1(Abstract Cauchy lemma). For T > 0 andτTj,k as defined in(7.4), suppose that we have

lim
k→∞

sup
j≥k

E sup
t∈[0,τTj,k]

‖uj(t)− uk(t)‖Wm,p = 0 (7.6)

and

lim
S→0

sup
j≥1

P


 sup
t∈[0,τTj ∧S]

‖uj(t)‖Wm,p > ‖uj0‖Wm,p + 1


 = 0. (7.7)

Then, there exists a stopping timeτ with:

P(0 < τ ≤ T ) = 1, (7.8)

and a process predictable processu(·) = u(· ∧ τ) ∈ C([0, τ ],Xm,p) such that

sup
t∈[0,τ ]

‖ujl − u‖Wm,p → 0, a.s. (7.9)

for some subsequencejl → ∞. Moreover, the bound

‖u(t)‖Wm,p ≤ 2 + sup
j

‖uj0‖Wm,p , a.s. (7.10)

holds uniformly fort ∈ [0, τ ].

In view of Lemma7.1, we may now establish the essential convergence needed for Theorem4.3 in the
general case by verifying (7.6) and (7.7). To prove (7.6) we fix arbitraryj, k ≥ 1 and denotev = uk − uj

wherev0 = uk0 − uj0. We have

dv + P
(
v · ∇uk + uj · ∇v

)
dt = P (σ(uj)− σ(uk))dW .
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Applying ∂α to this system and then the It ō lemma inLp we obtain

d‖∂αv‖pLp =− p

∫

D
∂αv · ∂αP (v · ∇uk + uj · ∇v)|∂αv|p−2dxdt

+
∑

l≥1

∫

D

(
p

2
|∂αP (σl(u

j)− σl(u
k))|2|∂αv|p−2

+
p(p− 2)

2
(∂αv · P (σl(u

j)− σl(u
k)))2|∂αv|p−4

)
dxdt

+ p
∑

l≥1

(∫

D
∂αv · ∂αP (σl(u

j)− σl(u
k))|∂αv|p−2 dx

)
dWl

:=(Jα
1 + Jα

2 )dt+ Jα
3 dW . (7.11)

Using (7.11), we now estimatev in Wm,p. For the nonlinear terms we use Lemma2.1and infer

∑

α≤m

|Jα
1 | ≤ C‖P (v · ∇uk)‖Wm,p‖v‖p−1

Wm,p +
∑

α≤m

|(∂αP (uj · ∇v), ∂αv|∂αv|p−2)|

≤ C‖v‖p−1
Wm,p(‖v‖L∞‖uk‖Wm+1,p + ‖v‖Wm,p‖∇uk‖L∞)

+ C‖v‖p−1
Wm,p(‖u

j‖W 1,∞‖v‖Wm,p + ‖v‖W 1,∞‖uj‖Wm,p)

≤ C‖uk‖Wm+1,p‖v‖Wm−1,p‖v‖p−1
Wm,p + C(‖uk‖Wm,p + ‖uj‖Wm,p)‖v‖pWm,p

≤ C‖uk‖p
Wm+1,p‖v‖

p
Wm−1,p +C(‖uk‖Wm,p + ‖uj‖Wm,p + 1)‖v‖pWm,p . (7.12)

Note that the first term in the final inequality prevents one from directly closing the estimates forv in Wm,p.
We will therefore need to make further estimates foruk in Wm+1,p andv in Wm−1,p, cf. (7.16)–(7.17)
below. For the terms involvingJα

2 we use the local Lipschitz condition (3.1) and obtain

∑

α≤m

|Jα
2 | ≤ C‖v‖p−2

Wm,p



∑

α≤m

∫

D


∑

l≥1

|∂αP (σl(u
j)− σl(u

k))|2




p/2



2/p

≤ C‖v‖p−2
Wm,p‖P (σ(uj)− σ(uk))‖2Wm,p ≤ Cβ(‖uk‖L∞ + ‖uj‖L∞)2‖v‖pWm,p . (7.13)

Finally, estimating in a similar manner to (5.12), we find that for any stopping timeτ ,

E

(
sup

s∈[0,τ ]

∣∣∣∣
∫ s

0
Jα
3 dW

∣∣∣∣

)
≤CE



∫ τ

0

∑

k≥1

(∫

D
∂αv · ∂αP (σl(u

j)− σl(u
k))|∂αv|p−2 dx

)2

ds




1/2

≤
1

2
E sup

s∈[0,τ ]
‖∂αv‖pLp + CE

∫ τ

0
β(‖uk‖L∞ + ‖uj‖L∞)2‖v‖pWm,pds. (7.14)
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Combining the estimates obtained in (7.12)–(7.14) and recalling the definition ofτTj,k in (7.4) we find that

E


 sup

[0,τTj,k∧t]

‖v‖pWm,p


 ≤2E‖v0‖

p
Wm,p

+CE

∫ τTj,k∧t

0

(
‖uj‖Wm,p + ‖uk‖Wm,p + β(‖uk‖L∞ + ‖uj‖L∞)2

)
‖v‖pWm,pds

+CE

∫ τTj,k∧t

0

(
‖uk‖p

Wm+1,p‖v‖
p
Wm−1,p

)
ds

≤2E‖v0‖
p
Wm,p + C

∫ t

0


E sup

[0,τTj,k∧s]

‖v‖pWm,p + E sup
[0,τTj,k∧s]

(‖v‖p
Wm−1,p‖u

k‖p
Wm+1,p)


 ds

whereC is a positive constant that depends onM andβ but is independent ofj, k. By an application of the
classical Grönwall lemma we obtain that

E


 sup

[0,τTj,k]

‖uk − uj‖pWm,p


 = E


 sup

[0,τTj,k]

‖v‖pWm,p




≤ C


E‖uk0 − uj0‖

p
Wm,p + E sup

[0,τTj,k]

(‖v‖p
Wm−1,p‖u

k‖p
Wm+1,p)




whereC = C(m, p,D,M, T ) is independentof both j, k. Observe that, in view of LemmaA.1, estimate
(A.5), and applying the dominated convergence theorem we conclude thatsupj≥k E‖u

k
0 − uj0‖

p
Wm,p goes to

zero ask → ∞. As such, (7.6) will follow once we show that

lim
k→∞

sup
j≥k

E sup
[0,τTj,k]

(‖v‖p
Wm−1,p‖u

k‖p
Wm+1,p) = 0. (7.15)

With this goal of establishing (7.15) in mind, let us determined(‖v‖p
Wm−1,p‖u

k‖p
Wm+1,p). We have cf.

(5.9) and (7.11) that

d‖uk‖p
Wm+1,p = (I1 + I2)dt+ I3dW, (7.16)

d‖v‖p
Wm−1,p = (J1 + J2)dt+ J3dW , (7.17)

where, to make the notation less cumbersome, we take

Il =
∑

|α|≤m+1

Iαl , and Jl =
∑

|α|≤m−1

Jα
l for l = 1, 2, 3.

The elementsIαl are defined as in (5.9) (with u replaced withuk throughout) andJα
l are as in (7.11). By an

application of the It ō product rule we find that

d(‖v‖p
Wm−1,p‖u

k‖p
Wm+1,p)

=‖v‖p
Wm−1,pd‖u

k‖p
Wm+1,p + ‖uk‖p

Wm+1,pd‖v‖
p
Wm−1,p + d‖v‖p

Wm−1,pd‖u
k‖p

Wm+1,p

=
(
‖v‖p

Wm−1,p(I1 + I2) + ‖uk‖p
Wm+1,p(J1 + J2) +K

)
dt+

(
‖v‖p

Wm−1,pI3 + ‖uk‖p
Wm+1,pJ3

)
dW,

whereK is the term arising fromI3dWJ3dW and is given by

K = p2
∑

l≥1


 ∑

|α|≤m+1

∫

D
∂αuk · ∂αPσl(u

k)|∂αuk|p−2 dx




 ∑

|α|≤m−1

∫

D
∂αv · ∂αP (σl(u

j)− σl(u
k))|∂αv|p−2 dx


 .
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In view of the estimates carried out in Section5 (cf. (5.10)–(5.11)) and making use of the assumption (3.2)
we immediately infer that
∣∣‖v‖p

Wm−1,p(I1 + I2)
∣∣ ≤C(β(‖uk‖L∞)2 + ‖uk‖W 1,∞)‖uk‖p

Wm+1,p‖v‖
p
Wm−1,p +Cβ(‖uk‖L∞)2‖v‖p

Wm−1,p .
(7.18)

We next treat the drift terms in (7.17). ForJ1, recalling thatP = I −Q we write

|J1| ≤ p
∑

|α|≤m−1

∣∣∣∣
∫

D
∂αv · ∂αP (v · ∇uk + uj · ∇v)|∂αv|p−2dx

∣∣∣∣

≤ C‖v‖p−1
Wm−1,p‖P (v · ∇uk)‖Wm−1,p + C

∑

|α|≤m−1

∣∣∣∣
∫

D
∂αv · ∂α(uj · ∇v)|∂αv|p−2dx

∣∣∣∣

+ C
∑

|α|≤m−1

∣∣∣∣
∫

D
∂αv · ∂αQ(uj · ∇v)|∂αv|p−2dx

∣∣∣∣

= J1,1 + J1,2 + J1,3 (7.19)

The right side of the above estimate may be bounded as follows. To boundJ1,1 we use Lemma2.1 and
obtain

J1,1 ≤ C‖v‖p−1
Wm−1,p

(
‖v‖L∞‖uk‖Wm,p + ‖v‖Wm−1,p‖uk‖W 1,∞

)
≤ C‖v‖p

Wm−1,p‖u
k‖Wm,p . (7.20)

For the other two terms on the right side of (7.19) we cannot estimate as in Lemma2.1 directly; we would
obtain bound of the type‖uj‖Wm−1,p‖v‖Wm,p‖v‖p−1

Wm−1,p , which would prevents us from closing the esti-
mates involving‖v‖p

Wm−1,p . To boundJ1,2 we we use the Leibniz rule, the Hölder and Gagliardo-Nirenberg
inequalities. There is only one non-standard term‖∂αuj · ∇v‖Lp , which is bounded as

∑

|α|≤m−1

‖∂αuj · ∇v‖Lp ≤ C‖uj‖Wm−1,q‖∇v‖Lr ≤ ‖uj‖Wm,p‖v‖Wm−1,p ,

whereq = pd/(d − p), r = pq/(q − p) = d if p < d, andq = ∞, r = p if p ≥ d. The other terms are
bounded as in Lemma2.1, and we obtain

J1,2 ≤ C‖v‖p
Wm−1,p‖u

j‖Wm,p . (7.21)

Lastly, the “pressure term”J1,3 is estimated using the the Hölder inequality, the Agmon-Douglis-Nirenberg
estimate (2.6), and the Gagliardo-Nirenberg inequality as

J1,3 ≤‖Q(uj · ∇v)‖Wm−1,p‖v‖p−1
Wm−1,p

≤C(‖∂iu
j
l ∂lvi‖Wm−2,p + ‖ujv‖Wm−1,p)‖v‖p−1

Wm−1,p ≤ C‖v‖p
Wm−1,p‖u

j‖Wm,p . (7.22)

Combining (7.20) –(7.22) we conclude

|J1| ≤ C‖v‖p
Wm−1,p(‖u

j‖Wm,p + ‖uk‖Wm,p). (7.23)

ForJ2 we find, as above in (7.13) that

|J2| ≤ C‖v‖p−2
Wm−1,p‖P (σ(uj)− σ(uk))‖2

Wm−1,p ≤ Cβ(‖uk‖L∞ + ‖uj‖L∞)2‖v‖p
Wm−1,p . (7.24)

Combining (7.23)–(7.24) we find
∣∣∣‖uk‖pWm+1,p(J1 + J2)

∣∣∣ ≤ C(β(‖uk‖L∞ + ‖uj‖L∞)2 + ‖uj‖Wm,p + ‖uk‖Wm,p)‖uk‖p
Wm+1,p‖v‖

p
Wm−1,p .

(7.25)
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The termK is estimated using the Hölder and Minkowski inequalities followed by the standing assumption
onσ, (3.1),

|K| ≤C


∑

l≥1


 ∑

|α|≤m+1

∫

D
|∂αPσl(u

k)||∂αuk|p−1 dx




2


1/2


∑

l≥1


 ∑

|α|≤m−1

∫

D
|∂αP (σl(u

j)− σl(u
k))||∂αv|p−1 dx




2


1/2

≤C
∑

|α|≤m+1

∫

D


∑

l≥1

|∂αPσl(u
k)|2




1/2

|∂αuk|p−1 dx

∑

|α|≤m−1

∫

D


∑

l≥1

|∂αP (σl(u
j)− σl(u

k))|2




1/2

|∂αv|p−1 dx

≤C‖uk‖p−1
Wm+1,p




∑

|α|≤m+1

∫

D


∑

l≥1

|∂αPσl(u
k)|2




p/2

dx




1/p

‖v‖p−1
Wm−1,p




∑

|α|≤m−1

∫

D


∑

l≥1

|∂αP (σl(u
j)− σl(u

k))|2




p/2

dx




1/p

≤C‖uk‖p−1
Wm+1,p‖Pσ(uk)‖Wm+1,p‖v‖p−1

Wm−1,p‖P (σ(uj)− σ(uk))‖Wm−1,p

≤Cβ(‖uk‖L∞ + ‖uj‖L∞)2
(
‖uk‖p

Wm+1,p‖v‖
p
Wm−1,p + ‖v‖p

Wm−1,p

)
. (7.26)

To treat the stochastic terms we proceed similarly to (5.12) and find that for any stopping timeτ

E

(
sup

s∈[0,τ ]

∣∣∣∣
∫ s

0
‖uk‖p

Wm+1,pJ3dW

∣∣∣∣

)

≤ CE



∫ τ

0
‖uk‖2p

Wm+1,p

∑

l≥1


 ∑

|α|≤m−1

∫

D
|∂αP (σl(u

j)− σl(u
k))||∂αv|p−1 dx




2

ds




1/2

≤ CE



∫ τ

0
‖uk‖2p

Wm+1,p




∑

|α|≤m−1

∫

D


∑

l≥1

|∂αP (σl(u
j)− σl(u

k))|2




1/2

|∂αv|p−1 dx




2

ds




1/2

≤ CE

(∫ τ

0
‖uk‖2p

Wm+1,p‖P (σ(uj)− σ(uk))‖2
Wm−1,p‖v‖

2(p−1)
Wm−1,pds

)1/2

≤
1

4
E sup

s∈[0,τ ]

(
‖v‖p

Wm−1,p‖u
k‖p

Wm+1,p

)
+ CE

∫ τ

0
β(‖uk‖L∞ + ‖uj‖L∞)2‖v‖p

Wm−1,p‖u
k‖p

Wm+1,pds.

(7.27)
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Similarly to (7.27) above we also obtain

E

(
sup

s∈[0,τ ]

∣∣∣∣
∫ s

0
‖v‖p

Wm−1,pI3dW

∣∣∣∣

)

≤ CE

(∫ τ

0
‖v‖2p

Wm−1,p‖P (σ(uk))‖2
Wm+1,p‖u

k‖
2(p−1)
Wm+1,pds

)1/2

≤
1

4
E sup

s∈[0,τ ]

(
‖v‖p

Wm−1,p‖u
k‖p

Wm+1,p

)
+ CE

∫ τ

0
β(‖uk‖L∞)2‖v‖p

Wm−1,p(‖u
k‖p

Wm+1,p + 1)ds.

(7.28)

Summarizing, from the estimates (7.18), (7.25)–(7.28), and the definition ofτTn,m in (7.3) we find that

E


 sup

t∈[0,τTj,k∧t]

‖v‖p
Wm−1,p‖u

k‖p
Wm+1,p




≤ 2E
(
‖v0‖

p
Wm−1,p‖u

k
0‖

p
Wm+1,p

)
+ CE

∫ t

0


 sup

t∈[0,τTj,k∧s]

(
‖v‖p

Wm−1,p‖u
k‖p

Wm+1,p

)
+ sup

t∈[0,τTj,k∧s]

‖v‖p
Wm−1,p


 ds

for anyt > 0 where the constantC depends onM , β and the data but not onj, k. Thus, again invoking the
Grönwall lemma finally conclude that

E


 sup

t∈[0,τTj,k ]

‖uk‖p
Wm+1,p‖v‖

p
Wm−1,p




≤ CE

(
‖uk0‖

p
Wm+1,p‖u

k
0 − uj0‖

p
Wm−1,p

)
+ CE


 sup

t∈[0,τTj,k ]

‖uk − uj‖p
Wm−1,p


 (7.29)

where the constantC is independent ofj, k. By the dominated convergence theorem (for(Ω,F ,P)) and
making use of the properties of the smoothing operatorFǫ, cf. (A.3) and (A.6), we find

lim
k→∞

sup
j≥k

E

(
‖uk0‖

p
Wm+1,p‖u

k
0 − uj0‖

p
Wm−1,p

)
≤ C lim

k→∞
sup
j≥k

E

(
‖u0‖

p
Wm,pk

p‖uk0 − uj0‖
p
Wm−1,p

)
= 0.

To handle the second term in (7.29) we refer back to (7.17) and the estimates in (7.23)–(7.24). The sto-
chastic terms involvingJ3 are handled in a similarly to (7.27) (and also cf. (5.12) above). Combining these
observation, using the Grönwall inequality and the properties ofFǫ we finally infer:

lim
k→∞

sup
j≥k

E


 sup

t∈[0,τTj,k]

‖uj − uk‖p
Wm−1,p


 = 0. (7.30)

With this final observation in place we have now established (7.15) and hence the first requirement (7.6) of
Lemma7.1.

To establish the second condition (7.7) required by Lemma7.1, we return to (5.9). We find that, for any
k ≥ 1 andS > 0

sup
t≤[0,τTk ∧S]

‖uk(t)‖pWm,p ≤ ‖uk0‖
p
Wm,p +

∑

|α|≤m

∫ τTk ∧S

0
|Iα1 + Iα2 |dt+ sup

t≤[0,τTk ∧S]

∣∣∣∣∣∣

∫ t

0

∑

|α|≤m

Iα3 dW

∣∣∣∣∣∣
,
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and hence

P

(
sup

t≤[0,τTk ∧S]

‖uk(t)‖pWm,p > ‖uk0‖
p
Wm,p + 1

)

≤ P


 ∑

|α|≤m

∫ τTk ∧S

0
|Iα1 + Iα2 |dt >

1

2


+ P


 sup

t≤[0,τTk ∧S]

∣∣∣∣∣∣

∫ t

0

∑

|α|≤m

Iα3 dW

∣∣∣∣∣∣
>

1

2


 .

(7.31)

For the first term on the right of (7.31) we apply the estimates in (5.10)–(5.11) and then the Chebyshev
Inequality and find

P


 ∑

|α|≤m

∫ τTk ∧S

0
|Iα1 + Iα2 |dt >

1

2


 ≤P

(∫ τTk ∧S

0
C(β(‖uk‖L∞)2 + ‖uk‖Wm,p)‖uk‖pWm,pdt >

1

2

)

≤CE

∫ τTk ∧S

0
(β(‖uk‖L∞)2 + ‖uk‖Wm,p)‖uk‖pWm,pdt ≤ CS,

(7.32)

where the constantC = C(m, p,M, β,D) is independent ofk andS. With Doob’s inequality, the It ō
Isometry and the integral Minkowski inequality we estimatethe second term

P


 sup

t≤[0,τTk ∧S]

∣∣∣∣∣∣

∫ t

0

∑

|α|≤m

Iα3 dW

∣∣∣∣∣∣
>

1

2


 ≤4E



∫ τTk ∧S

0

∑

|α|≤m

Iα3 dW




2

≤CE

∫ τTk ∧S

0

∑

|α|≤m

∑

l≥1

(∫

D
∂αuk · ∂αPσl(u

k)|∂αuk|p−2 dx

)2

dt

≤CE

∫ τTk ∧S

0
β(‖uk‖L∞)2(1 + ‖uk‖2pWm,p)dt ≤ CS, (7.33)

where again the constantC is independent ofS andk. With (7.31)–(7.33) we now conclude the proof of the
second item in Lemma7.1, i.e. (7.7).

Having finally established both (7.6) and (7.7), we apply Lemma7.1 to infer the existence of a strictly
positive stopping timeτ , a subsequence{ujl}l≥1 of {uj}j≥1, and a predictable processu such that, up to
a set of measure zero,ujk converges tou in C(0, τ ;Xm,p) andsupt∈[0,τ ] ‖u‖Wm,p ≤ C < ∞. We may
infer that(u, τ) is a local pathwise solution of (1.1)–(1.3) in the sense of Definition4.1. Note that, in order
to initially obtain thisu we have had impose the almost sure bound on the initial data,u0 in (7.2). This
restriction is easily removed with the cutting argument as employed in Section6 (cf. (6.26)–(6.27)). We
may pass from the case of local to maximal pathwise solutionsas given in Definition4.2 via maximality
arguments similar to those at the end of Section6, in (6.28). Recall that this maximality argument involves
considering the set of all stopping times up to which the solution exists. We then show by contradiction that
the supremum of all these stopping times yields the maximal time of existence of the solution (see Section6
for further details). The proof of Theorem4.3 is now complete.

8. GLOBAL EXISTENCE IN THE TWO-DIMENSIONAL CASE FOR ADDITIVE NOISE

In this section we establish the global existence of solutions to (1.1)–(1.3) in dimension two forced by
an additive noise. Note that, while the local existence of solutions for (1.1)–(1.3) in the case of a general
ω dependent additive noise (cf. (3.4) above), is not covered under the proof of local existence given here,
equations with additive noise can be treated “pathwise” viaa simple change of variables. In this way the
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local existence follows from more classical arguments. SeeRemark4.5above and the proof of Lemma8.1
below.

Recalling the a priori estimates in Section5, we have that, for anym > d/p + 1,

d‖u‖pWm,p = Xdt+ ZdW, (8.1)

whereX andZ are defined according to (5.9). Making use of the estimates in (5.10)–(5.11), we have

|X| ≤ C(1 + ‖u‖W 1,∞)‖u‖pWm,p + C‖σ‖p
Wm,p , (8.2)

for some universal constantC = C(m,d,D). ForZ we observe with similar estimate to (5.12) that

‖Z‖L2 ≤


∑

k≥1

(∫

D
∂αu · ∂αPσk|∂

αu|p−2 dx

)2



1/2

≤ C‖σ‖Wm,p‖u‖p−1
Wm,p . (8.3)

Thus, in view of (8.2)–(8.3), to close the estimates for (8.1) we make use of the Beale-Kato-Majda type
inequality

‖u‖W 1,∞ ≤ C2‖u‖L2 + C2‖ curl u‖L∞

(
1 + log+

(
‖u‖Wm,p

‖ curlu‖L∞

))
, (8.4)

whereC2 is a universal constant depending only onD, m, p. See e.g. [Fer93] for the simply-connected
bounded domain case. As such the proof of global existence requires us to obtain uniform bound on the
vorticity of the solution inL∞ and also for‖u‖L2 and to establish a stochastic analogue of thelog-Grönwall
lemma. The latter is developed in AppendixC below (and see also related results in [FZ05]).

In order to carry out suitable estimates forw = curlu we apply∇⊥ = (∂2,−∂1) to (4.1) and obtain the
evolution:

dw + u · ∇wdt = ρdW, (8.5)

w = ∇⊥ · u, ∇ · u = 0, (8.6)

where for ease of notation we denotedρ = ∇⊥ · σ. Note that crucially, in contrast to the three dimensional
case, no vortex stretching termw · ∇u appears in (8.5). Forw we now establish the following result:

Lemma 8.1 (Non-blow-up of the energy and the supremum of vorticity). Fix m > 2/p + 1, consider
anyσ that satisfies(3.4), and anyu0 ∈ Xm,p. Take(u, ξ) be the maximal solution corresponding to thisσ
andu0. Then we have

sup
t∈[0,T∧ξ]

‖u‖2L2 + sup
t∈[0,T∧ξ]

‖w‖L∞ < ∞, (8.7)

almost surely, for eachT > 0.

Proof of Lemma8.1. The bound for‖u‖L2 required in (8.7) follows directly in view of the cancelation
(P (u · ∇u), u)L2 = 0. cf. Section5.1.

We turn to estimate the vorticity term (8.7). Since (8.5) is forced with an the additive noise we have the
option to introduce the stochastic process

dz = ρ dW , z(0) = 0 (8.8)

and then consider the evolution ofw̃ := w−z. The equation for̃w is the random partial differential equation

∂tw̃ + u · ∇w̃ + u · ∇z = 0 (8.9)

w̃ = ∇⊥ · u− z, ∇ · u = 0, (8.10)

w̃(0) = w0. (8.11)
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This system can be treated pathwise with the methods of ordinary calculus. Multiplying (8.9) by w̃|w̃|p−2

and integrating overD we obtain

d

dt
‖w̃‖Lp ≤ ‖u‖Lp‖∇z‖L∞

where we have used the divergence-free nature ofu. Integrating in time and sendingp to ∞, the above
estimate gives

‖w̃(t)‖L∞ ≤ ‖w0‖L∞ +

∫ t

0
‖u(s)‖L∞‖∇z(s)‖L∞ ds. (8.12)

We can use the two-dimensional Sobolev embedding and the Biot-Savart law to bound

‖u‖L∞ ≤ C‖∇u‖L4 +C‖u‖L2 ≤ C‖w‖L4 + C‖u‖L2 , (8.13)

whereC = C(D). Thus, in view of (8.12)–(8.13) and the fact thatw = w̃ + z, the proof will be complete
once we obtain suitable bounds for the quantities‖w‖L4 and‖∇z‖L∞ .

In order to obtain bounds on‖w‖L4 we apply the It ō formula inL4 to (8.5) an obtain

d‖w‖4L4 =

∫

D


2|w|2

∑

k≥1

|ρk|
2 + 4

∑

k≥1

(wρk)
2


 dxdt+ 4

∑

k≥1

(∫

D
|w|2wρkdx

)
dWk, (8.14)

where we have used the cancelation(u · ∇w,w|w|2)L2 = 0. Let

σR = inf {t ≥ 0: ‖w(t)‖L4 > R} ∧ inf

{
t ≥ 0:

∫ t

0
‖ρ‖2

W0,4ds > R

}
∧ ξ. (8.15)

From (3.4) and the definition ofξ as the maximal time of existence, it follows thatσR → ξ almost surely as
R → ∞. In addition, for everyT > 0 and a.s.ω, if R is sufficiently large we have thatσR ∧ T = ξ ∧ T .

Upon taking a supremum in time in (8.14), and applying the Hölder inequality in the last term, we obtain
on the set{σR > 0}

sup
t∈[0,σR∧T ]

‖w(t)‖4L4

≤ ‖w0‖
4
L4 + 4 sup

t∈[0,σR∧T ]

∣∣∣∣∣∣

∑

k≥1

∫ t

0

∫

D
|w|2w · ρk dxdWk

∣∣∣∣∣∣
+ 4

∫ σR∧T

0
‖w(t)‖2L4‖ρ‖

2
W0,4dt

≤ ‖w0‖
4
L4 + 4 sup

t∈[0,σR∧T ]

∣∣∣∣∣∣

∑

k≥1

∫ t

0

∫

D
|w|2w · ρk dxdWk

∣∣∣∣∣∣
+

1

4
sup

t∈[0,σR∧T ]
‖w(t)‖4L4 + C

(∫ σR∧T

0
‖ρ‖2

W0,4dt

)2

.
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To estimate the stochastic integral terms we find with the Burkholder-Davis-Gundy inequality, (2.14) that

E sup
t∈[0,σR∧T ]

∣∣∣∣∣∣
11σR>0

∑

k≥1

∫ t

0

∫

D
|w|2w · ρk dxdWk

∣∣∣∣∣∣

≤ CE


11σR>0

∫ σR∧T

0

∑

k≥1

(∫

D
|w|3|ρk| dx

)2

dt




1/2

≤ CE


11σR>0

∫ σR∧T

0



∫

D
|w|3


∑

k≥1

|ρk|
2




1/2

dx




2

dt




1/2

≤ CE

(
11σR>0

∫ σR∧T

0
‖w‖6L4‖ρ‖

2
W0,4dt

)1/2

≤
1

4
E

(
11σR>0 sup

t∈[0,σR∧T ]
‖w‖4L4

)
+ CE

(
11σR>0

∫ σR∧T

0
‖ρ‖2

W0,4dt

)2

.

Combining the above observations we findE(11σR>0 supt∈[0,σR∧T ] ‖w‖
4
L4) ≤ C, by recalling the definition

of σR (cf. (8.15)), for someC > 0 which depends onR. Since‖w0‖L4 < ∞ almost surely we conclude
thatsupt∈[0,σR∧T ] ‖w‖

4
L4 < ∞ almost surely for allR > 0. Thus we finally conclude that for almost every

ω that

sup
t∈[0,ξ∧T ]

‖w‖4L4 < ∞. (8.16)

We now turn to make estimates forz. In view of the Sobolev embeddingW 1,∞ ⊂ Wm,p and the
definition ofz, given in (8.8), we estimate using (2.14)

E sup
t∈[0,T ]

∥∥∥∥
∫ t

0
ρdW

∥∥∥∥
p

Wm,p

≤
∑

|α|≤m

∫

D
E sup

t∈[0,T ]

∣∣∣∣
∫ t

0
∂αρdW

∣∣∣∣
p

dx

≤C
∑

|α|≤m

∫

D
E

(∫ T

0
|∂αρ|2L2

dt

)p/2

dx ≤ CE

∫ T

0
‖ρ‖p

Wm,pdt.

We therefore infer that

E sup
t∈[0,T ]

‖z(t)‖2W 1,∞ ≤ C

(
E sup

t∈[0,T ]

∥∥∥∥
∫ t

0
ρdW

∥∥∥∥
p

Wm,p

)p/2

< ∞. (8.17)

Taking the supremum in time over[0, T ∧ ξ] for (8.12), and applying (8.13), we obtain for almost every
ω that

sup
t∈[0,T∧ξ]

‖w̃(t)‖L∞

≤ ‖w0‖L∞ + C

(
sup

t∈[0,T∧ξ]
‖u(t)‖L2

∫ T

0
‖∇z(t)‖L∞ dt

)
+ C

(
sup

t∈[0,T∧ξ]
‖w(t)‖L4

∫ T

0
‖∇z(t)‖L∞ dt

)

≤ ‖w0‖L∞ + C

(
sup

t∈[0,T∧ξ]
‖u(t)‖2L2 + sup

t∈[0,T∧ξ]
‖w(t)‖2L4 + sup

t∈[0,T ]
‖z(t)‖2W 1,∞

)
, (8.18)

whereC may depend onT . Given the bounds established in (8.16)–(8.17), and since by construction
w = w̃ + z, referring once more to (8.17), the proof of the lemma is now complete. �
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With the estimates in Lemma8.1 in hand we apply the results established in AppendixC below, to show
that(u, ξ) is aglobal pathwise solution.

Proof of Theorem4.4. We need to verify that the conditions in LemmaC.1 are satisfied. In what follows
we will assume, without loss of generality that‖u0‖Wm,p ≤ M , for some deterministic constantM > 0.
Indeed, after we obtain global existence in this special case, the general case,u0 ∈ Xm,p a.s, follows from
a cutting argument as in Section6, see (6.26)–(6.27).

Define the collection of stopping times

τR := inf
{
t ≥ 0: ‖u(t)‖2L2 + ‖w(t)‖L∞ > R

}
∧ ξ, (8.19)

where we recall thatw = curlu. Obviously,τR is increasing inR, almost surely. We need to verify that
(C.3) is satisfied. In other words, we need to show

P

(
⋂

R

{τR < T ∧ ξ}

)
= 0, (8.20)

for everyT > 0. For this purpose we make use of the conclusions of Lemma8.1. Owing to the fact thatτR
is increasing inR and (8.7) we infer

P

(
⋂

R>0

{τR < T ∧ ξ}

)
= lim

R∗→∞
P


 ⋂

0<R≤R∗

{τR < T ∧ ξ}


 = lim

R∗→∞
P (τR∗ < T ∧ ξ)

≤ lim
R∗→∞

P

(
sup

t∈[0,T∧ξ]

(
‖u‖2L2 + ‖w‖L∞

)
> R∗

)

≤ P

(
⋂

R∗>0

{
sup

t∈[0,T∧ξ]

(
‖u‖2L2 + ‖w‖L∞

)
> R∗

})
= 0,

for everyT > 0.
Returning to the a priori estimates (8.1)–(8.3) we now define the quantities

Y = 1 + ‖u‖pWm,p , η = (1 + ‖σ‖Wm,p)p. (8.21)

Of course,Y satisfiesdY = Xdt+ZdW. Combining (8.2), (8.4), and the definition ofτR, we find that for
eachR there exists a deterministic constantKR such that on[0, τR] we have

|X| ≤ C

(
1 + ‖u‖L2 + ‖w‖L∞

(
1 + log+

(
‖u‖Wm,p

‖w‖L∞

)))
‖u‖pWm,p + C‖σ‖p

Wm,p

≤ C
(
2 +R1/2 +R+ ‖w‖L∞ log+ ‖u‖Wm,p

)
Y + C‖σ‖p

Wm,p

≤ KR(1 + log Y )Y + C(1 + ‖σ‖Wm,p)p, (8.22)

and from (8.3) we in addition obtain

‖Z‖L2 ≤ C‖σ‖Wm,p‖u‖p−1
Wm,p ≤ C(1 + ‖σ‖Wm,p)Y (p−1)/p. (8.23)

We now have all the ingredients need to apply LemmaC.1. More precisely we takeY andη according
to (8.21), r = 1/p, ξ as the maximal time of existence ofu andτR according to (8.19). Having established
(8.20)–(8.23) and recalling the standing assumption (3.4) we infer from LemmaC.1 that indeedξ = ∞.
The proof of Theorem4.4is therefore complete. �
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9. GLOBAL EXISTENCE FOR LINEAR MULTIPLICATIVE NOISE

In this section we consider the stochastic Euler equations in two and three dimensions, withlinear multi-
plicative noise

du+ P (u · ∇u) dt = αudW, (9.1)

where in this caseα ∈ R andW is asingle1D Brownian motion. This forcing regime is covered under the
theory developed in the previous sections, so we are guaranteed the existence of a local pathwise solution in
the sense of Definition4.1(cf. Theorem4.3).

As in the case of an additive noise above we may transform (9.1) to an random PDE. To this end consider
the (real valued) stochastic process

γ(t) = e−αWt . (9.2)

Due to the It ō formula we find theγ satisfies

dγ = −αγdW +
1

2
α2γdt, γ(0) = 1.

By apply the It ō product rule we therefore find that

d(γu) = γdu+ udγ + dγdu

= −γP (u · ∇u) dt+ αγudW − αγudW +
1

2
α2γudt− α2γudt

= −γP (u · ∇u) dt−
1

2
α2(γu)dt. (9.3)

By definingv = γu we therefore obtain the system

∂tv +
α2

2
v + γ−1P (v · ∇v) = 0, (9.4)

v(0) = u0. (9.5)

Fix p ≥ 2, andm > d/p + 1 throughout the rest of this section. First, using the standard estimates on the
nonlinear term (cf. (5.4) for p = 2, or (5.10) for p > 2), we may obtain

d

dt
‖v‖Wm,p +

α2

2
‖v‖Wm,p ≤ C1γ

−1‖v‖W 1,∞‖v‖Wm,p (9.6)

for a positive constantC1 = C1(m, p,D). In order to bound the right side of (9.6) we recall the Beale-Kato-
Majda-type inequality (cf. (8.4))

‖v‖W 1,∞ ≤ C2‖v‖L2 + C2‖w‖L∞

(
1 + log+

(
‖v‖Wm,p

‖w‖L∞

))
(9.7)

where the constantC2 = C2(m, p,D) is fixed, and as usualw = curl v. Due to the cancellation property
(P (v · ∇v), v) = 0, it follows directly from (9.4) that

‖v(t)‖L2 ≤ ‖v0‖L2e−α2t/2 (9.8)

for all t ≥ 0. On the other hand, obtaining an a priori estimate on‖w(t)‖L∞ is more delicate. For this
purpose, we return to (9.4) and consider the equation satisfied byw = curl v, i.e.

∂tw +
α2

2
w + γ−1v · ∇w =

{
0, for d = 2,

γ−1w · ∇v, for d = 3.
(9.9)

Multiplying (9.9) byw|w|p−2, integrating inx, and making use of the divergence-free nature ofv, we obtain

1

p

d

dt
‖w‖pLp +

α2

2
‖w‖pLp ≤

{
0, for d = 2,

γ−1‖v‖W 1,∞‖w‖pLp , for d = 3.
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Upon canceling‖w‖p−1
Lp , and sendingp → ∞ in the above estimate we have

d

dt
‖w‖L∞ +

α2

2
‖w‖L∞ ≤

{
0, for d = 2,

γ−1‖v‖W 1,∞‖w‖L∞ , for d = 3.
(9.10)

In view of the different bounds obtained in (9.10) in 2D versus3D, we now treat the two cases separately.
For this purpose it is convenient to first fix the Sobolev embedding constantC3 = C3(m, p,D) such that

‖v‖L2 + ‖v‖W 1,∞ ≤ C3‖v‖Wm,p (9.11)

and to letC̄ = C1C2 + C3 + 1.

9.1. The two-dimensional case.In two dimensions we prove the global in time existence of smooth path-
wise solutions, as stated in Theorem4.6. From (9.10) we immediately obtain that the function

z(t) = ‖w(t)‖L∞ exp

(
α2t

2

)

is such that

z(t) ≤ z(0) = ‖w0‖L∞ (9.12)

for all t ≥ 0. Therefore, letting

y(t) = ‖v(t)‖Wm,p exp

(
α2t

2

)

we obtain from (9.6)–(9.8), and (9.12) that

dy

dt
≤ C̄γ−1y

(
‖v(t)‖L2 + ‖w(t)‖L∞

(
1 + log+

(
y(t)

‖w(t)‖L∞ exp(α2t/2)

)))

≤ C̄γ−1 exp

(
−
α2t

2

)
y
(
‖v0‖L2 + ‖w0‖L∞ + z log+

(y
z

))
. (9.13)

A short computation reveals thatz log+(y/z) ≤ 1/e + z log+(y). In view of (9.12), and definingρα(t) =
exp

(
αWt − α2t/2

)
estimate (9.13) gives

dy

dt
≤ C̄ραy

(
‖v0‖L2 + ‖w0‖L∞ + 1 + ‖w0‖L∞ log+(y)

)
. (9.14)

By the law of iterated logarithms we havesupt≥0 ρα < ∞ a.s. for everyα > 0. Hence, (9.14) implies

dy

dt
≤ Ay

(
1 + log+(y)

)
. (9.15)

where

A = C̄

(
sup
t≥0

ρα

)
(‖v0‖L2 + ‖w0‖L∞ + 1). (9.16)

Let Y (t) = log(1 + y(t)). We obtain from (9.15) that

dY

dt
≤ A (1 + Y (t))

for all t ≥ 0. This givesY (t) ≤ Y (0) exp(tA) + tA exp(tA), and hence

y(t) ≤ (1 + y0)
exp(tA) exp (tA exp (tA)) . (9.17)

Recalling the definition ofy(t), we note that‖u(t)‖Wm,p = γ−1(t)y(t) exp(−α2t/2) = ρα(t)y(t).
Thus, estimate (9.17) shows that

‖u(t)‖Wm,p ≤ ρα(t)(1 + ‖u0‖Wm,p)exp(tA) exp (tA exp (tA))
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with A as defined in (9.16). Therefore, for allT > 0 we have proven

sup
t∈[0,T∧ξ]

‖u‖W 1,∞ < ∞, a.s.

So that necessarily(u, ξ) is a global pathwise solution, i.e. we haveξ = ∞ (cf. Definition 4.2). We have
thus now established part (i) of Theorem4.6.

9.2. The three-dimensional case.Fix α > 0. Let (u, ξ) be the maximal strong solution of (9.1). As in the
two-dimensional case, the key ingredient to global regularity is an a priori bound on‖w‖L∞ . However, due
to the presence of the vortex stretching term, in the three-dimensional case we have (cf. (9.10) above)

d

dt
‖w‖L∞ +

α2

2
‖w‖L∞ ≤ γ−1‖v‖W 1,∞‖w‖L∞ . (9.18)

To exploit the damping in (9.18), we now define the stopping time

σ = inf
t≥0

{
t : γ−1(t)‖v(t)‖Wm,p ≥

α2

4C̄

}
= inf

t≥0

{
t : ‖u(t)‖Wm,p ≥

α2

4C̄

}
(9.19)

whereC̄ ≥ 1 is the constant defined above (9.11). Note thatσ < ξ on the set{ξ < ∞} (cf. (4.3) and the
Sobolev embedding). In order to ensure thatσ > 0 a.s. we will at least need to impose the condition

‖u0‖Wm,p <
α2

4C̄
. (9.20)

In fact, in order to close the estimates we shall impose additional assumptions onu0 (cf. (9.31) below).
Due to the Sobolev embedding, on[0, σ] we have

γ−1‖w‖L∞ ≤ γ−1‖v‖W 1,∞ ≤
α2

4
. (9.21)

Hence, by (9.18) and (9.21) we obtain

d

dt
‖w‖L∞ +

α2

4
‖w‖L∞ ≤ 0 (9.22)

on [0, σ). Therefore, letting

z(t) = ‖w(t)‖L∞ exp

(
α2t

4

)

we find from (9.21) and (9.22) that

z(t) ≤ z(0) = ‖w0‖L∞ ≤
α2

4
(9.23)

where we also used thatγ(0) = 1. Similarly to above, we now let

y(t) = ‖v(t)‖Wm,p exp

(
α2t

4

)
. (9.24)

By (9.6) and (9.7) we obtain

dy

dt
≤ C̄γ−1y

(
‖v‖L2 + ‖w‖L∞

(
1 + log+

(y
z

)))
.

Using the decay of‖v(t)‖L2 obtained in (9.8), and assumption (9.20), the above estimate implies

dy

dt
≤ C̄γ−1 exp

(
−
α2t

4

)
y
(
‖u0‖L2 + z

(
1 + log+

(y
z

)))

≤ C̄ρα exp

(
−
α2t

8

)
y

(
α2

4
+ z + z log+

(y
z

))
(9.25)
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where we now denote

ρα(t) = γ−1(t) exp

(
−
α2t

8

)
= exp

(
αWt −

α2t

8

)
. (9.26)

To simplify the right side of (9.25), it is convenient to observe that

α2

4
+ z + z log+

(y
z

)
≤ C̄ + α2 + z log y (9.27)

holds whenever0 < z ≤ α2/4, andz ≤ C̄y (note that we indeed have these a priori bounds onz, due to
(9.11) and (9.23)). In order to prove (9.27) we distinguish two cases:z < y, andz/C̄ ≤ y ≤ z. If z < y,
thenlog+(y/z) = log(y/z) = log(y)− log(z). Hence the left side of (9.27) is bounded by

α2

2
+ z log(y)− 11z∈(0,1]z log(z) ≤ α2 + z log y + C̄

where we have used the fact that0 ≤ −z log(z) ≤ 1/e ≤ C̄ for all z ∈ (0, 1]. This concludes the proof
of (9.27) for y > z. On the other hand, ify ≤ z, thenlog+(y/z) = 0, and hence we need to prove that
α2/4 + z is less than the left side of (9.27). For this purpose, it is sufficient to prove that

C̄ + z log y ≥ 0,

for all y ∈ [z/C̄, z] and allz > 0. Indeed, the right side of the above inequality is monotone increasing in
y, so the minimum is attained aty = z/C̄, and it equalsC̄ + z log(z/C̄). A simple calculation shows that
C̄ + z log(z/C̄) ≥ C̄ − C̄/e > 0, for all z ≥ 0, concluding the proof of (9.27).

Therefore, by (9.25) and (9.27) we have

dy

dt
≤ C̄ρα exp

(
−
α2t

8

)
y
(
C̄ + α2 + z log y

)
. (9.28)

Fix anyR ≥ 1 and define the stopping time

τR = inf {t ≥ 0: ρα(t) ≥ R} . (9.29)

From (9.28) we obtain the bound

dy

dt
≤ C̄R exp

(
−
α2t

8

)
y
(
C̄ + α2 + z log y

)
(9.30)

for all t ∈ [0, τR ∧ σ]. We now may apply LemmaB.1, which is a suitable version of the logarithmic
Grönwall inequality. LemmaB.1 guarantees the existence of a positive deterministic function κ(R,α) with
the properties

κ(R,α) ≤
α2

8C̄
, for everyR ≥ 1

lim
R→∞

κ(R,α) = 0, for every fixedα 6= 0

lim
α2→∞

κ(R,α) = ∞, for every fixedR ≥ 1

lim
α2→0

κ(R,α) = 0, for every fixedR ≥ 1

such that if the initial data satifies

‖u0‖Wm,p = y(0) ≤ κ(R,α) (9.31)

then a smooth solution of (9.30) satisfies

y(t) ≤
α2

8RC̄
(9.32)

for all t ∈ [0, τR ∧ σ]. For clarity of the presentation we postpone the precise formula for the function
κ(R,α) and the proof that (9.31) implies (9.32) to AppendixB below.
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Note that the condition (9.31) imposed on the initial data automatically implies (9.20), and henceσ > 0.
Recalling the definition ofy(t) andρα(t) in (9.24) and (9.26) we obtain from (9.32) that for everyt in the
interval [0, σ ∧ τR]

‖u(t)‖Wm,p = γ−1(t)‖v(t)‖Wm,p = exp

(
−
α2t

8

)
ρα(t)y(t) ≤ R

α2

8RC̄
=

α2

8C̄
. (9.33)

Hence, due to the definition ofσ (cf. (9.19)), the bound (9.33) shows thatσ ∧ τR = τR. Therefore

sup
t∈[0,τR]

‖u(t)‖W 1,∞ ≤ C3 sup
t∈[0,τR]

‖u(t)‖Wm,p ≤
α2

8
,

which implies thatξ ≥ τR. Therefore, the maximal pathwise solution(u, ξ) of (9.1) is global in time on the
set{τR = ∞}, i.e. on the set whereρα(t) always stays belowR (cf. (9.29)). We now claim that

P(τR = ∞) ≥ 1−
1

R1/4
(9.34)

holds, for anyR > 1. Note carefully that this lower bound in (9.34) is independent ofα. Thus if we wish to
obtain that the local pathwise solution is global in time with high probability, i.e.

P(ξ = ∞) = 1− ǫ,

for someǫ ∈ (0, 1), it is sufficient to chooseR so that

1

ǫ4
≤ R (9.35)

and for this fixedR, consider an initial datau0 which satisfies‖u0‖Wm,p ≤ κ(R,α). Alternatively for this
R and agiven(deterministic) initial data‖u0‖Wm,p we may chooseα2 sufficiently large so that‖u0‖Wm,p ≤
κ(R,α) to guarantee that the associated(u, ξ) is global with probability1 − ǫ. The proof of Theorem4.6,
(ii), is now complete, modulo a proof of (9.34), which we give next.

In order to estimateP(τR = ∞), lettingµ = 3α2

8 we observe that

ρα(t) = exp

((
µ−

α2

2

)
t+ αWt

)

is a geometric Brownian motion, the solution of

dx = µxdt+ αxdW, x(0) = 1, (9.36)

whereW is a standard1 − D Brownian motion. The following lemma, withµ = 3α2

8 , proves estimate
(9.34), and by the above discussion it concludes the proof of Theorem4.6.

Lemma 9.1 (Estimates for the exit times of geometric Brownian motion).Suppose thatµ < α2

2 and
x0 > 0 and isdeterministic. Letx(t) be the solution of(9.36) and forR > 1 defineτR as

τR = inf {t ≥ 0: x(t) > R} . (9.37)

Then we have

P(τR = ∞) ≥ 1−

(
1

R

)1− 2µ

α2

. (9.38)

Proof of Lemma9.1. Forλ > 0 we apply the Ito formula forf(x) = xλ and obtain that

dxλ = λxλ−1dx+
λ(λ− 1)

2
xλ−2dxdx =

(
µλ+

α2λ(λ− 1)

2

)
xλdt+ αλxλdW.

Integrating up to any timet ∧ τR and taking an expected value we find that

Exλ(t ∧ τR) = 1 + E

∫ t∧τR

0

(
µλ+

α2λ(λ− 1)

2

)
xλds.
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Takingλ = λc = 1− 2µ
α2 in the above expression we find that

Exλc(t ∧ τR) = 1.

Now, using thatτR is increasing inR and the continuity of measures we get

P(τR = ∞) = P

(
⋂

n

{τR > n}

)
= lim

N→∞
P(τR > N) = lim

N→∞
P(xλc(N ∧ τR) < Rλc)

≥ lim
N→∞

(
1−

Exλc(N ∧ τR)

Rλc

)
= 1−

1

Rλc

which concludes the proof of the lemma. �

APPENDIX A. THE SMOOTHING OPERATOR AND ASSOCIATED PROPERTIES

In this appendix we define and review some basic properties ofa class of smoothing operatorsFǫ as used
in [KL84]. These mollifiers are used to construct solutions inWm,p in Section7 above.

For everyǫ > 0, let F̃ǫ be a standard mollifier onRd, for instance consider̃Fǫ to be the convolution
against the inverse Fourier transform ofexp(−ǫ|ξ|2). Assuming∂D is sufficiently smooth, there exists (see
for instance [AF03, Chapter 5]) a linear extension operatorE from D to R

d, i.e. Eu(x) = u(x) a.e. inD,
and‖Eu‖Wm,p(Rd) ≤ C‖u‖Wm,p(D) for m ≥ 0, and all2 ≤ p < ∞. We also takeR to be a restriction

operator, which is bounded fromWm,p(Rd) into Wm,p(D) for m ≥ 0 and allp ≥ 2. Lastly, we letP be
the Leray projection operator as defined in Section2. We finally define the smoothing operatorsFǫ by

Fǫ = P R F̃ǫ E (A.1)

for everyǫ > 0. We have the following basic properties forFǫ.

Lemma A.1 (Properties of the smoothing operator).Suppose thatm ≥ 0, andp ≥ 2. For everyǫ > 0
the operatorFǫ mapsXm,p into Xm′ , wherem′ = m+ 5. Moreover the following properties hold:

(i) The collectionFǫ is uniformly bounded onXm,p independently ofǫ

‖Fǫu‖Wm,p ≤ C‖u‖Wm,p , u ∈ Xm,p (A.2)

whereC = C(m, p,D) is a universal constant independent ofǫ > 0.
(ii) For everyǫ > 0, whenm ≥ 1 we have

‖Fǫu‖Wm,p ≤
C

ǫ
‖u‖Wm−1,p , u ∈ Xm,p (A.3)

and

‖Fǫu− u‖Wm−1,p ≤ Cǫ‖u‖Wm,p , u ∈ Xm,p (A.4)

whereC = C(m, p,D) is a universal constant independent ofǫ > 0.
(iii) The sequence of mollificationsFǫu converge tou, for everyu in Xm,p, that is

lim
ǫ→0

‖Fǫu− u‖Wm,p = 0 (A.5)

and whenm ≥ 1 we also have

lim
ǫ→0

1

ǫ
‖Fǫu− u‖Wm−1,p = 0. (A.6)

(iv) The convergence ofFǫu to u is uniform over compact subsets ofXm,p. In particular if {uk}k≥1 is
a sequence of functions inXm,p which converge inXm,p, then we have

lim
ǫ→0

sup
k≥1

‖Fǫu
k − uk‖Wm,p = 0 (A.7)
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and

lim
ǫ→0

sup
k≥1

1

ǫ
‖Fǫu

k − uk‖Wm−1,p = 0, (A.8)

whenm ≥ 1.

The above properties hold forFǫ, since they hold for the standard mollifier̃Fǫ onRd, we have thatR and
E are bounded maps between the relevant Sobolev spaces, andRE = IdD a.e.. For further details, see for
instance [AF03, KL84].

APPENDIX B. A TECHNICAL LEMMA ABOUT ODES

In this appendix we give the proof of a technical lemma which was used in proving the3D case of
Theorem4.6, in Section9.2 above. Thereason d’̂etre of the below lemma is to very carefully keep track
of the dependence onα for all constants involved. This enables us to control the quantities involved as the
parameterα is sent to either0 or ∞.

Lemma B.1. Let C̄ ≥ 1 be a universal constant. Fix the parametersR ≥ 1, α 6= 0 andT > 0. For y0 > 0,
let y(t) be a positive smooth function satisfying

dy

dt
(t) ≤ C̄R exp

(
−
α2t

8

)
y(t)

(
C̄ + α2 + z(t) log y(t)

)
(B.1)

y(0) = y0 (B.2)

wherez(t) is agivencontinuous function such that0 < z(t) ≤ α2/4 for all t ∈ [0, T ]. There exits a positive
functionK(R,α) ≥ 2 such that if

y0 ≤
α2

4C̄K(R,α)
(B.3)

then we have

y(t) ≤
K(R,α)

2R
y0 ≤

α2

8RC̄
(B.4)

for all t ∈ [0, T ). This functionK(R,α) may be chosen explicitly as

K(R,α) = 2R

(
1 +

(
α2

8C̄

)(1− 1
8(DR−1)

)
)
exp

(
8C̄RDR(C̄ + α2)

α2

)
(B.5)

where we have denotedDR = exp(4C̄R). Additionally, for everyfixed R ≥ 1 we obtain the asymptotic
behavior for the function

κ(R,α) =
α2

2C̄K(R,α)

to be

lim
α2→∞

κ(R,α) = lim
α2→∞

α2

K(R,α)
= ∞, (B.6)

lim
α2→0

κ(R,α) = lim
α2→0

α2

K(R,α)
= 0. (B.7)

Proof of LemmaB.1. For ease of notation, leta(t) = C̄R exp(−α2t/8). After lettingY (t) = log y(t), the
inequality (B.1) reads

dY (t)

dt
≤ a(t)

(
(C̄ + α2) + z(t)Y (t)

)
(B.8)
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with initial conditionY (0) = log y0. The initial value problem associated to (B.8) leads to the bound

Y (t) ≤ Y (0) exp

(∫ t

0
a(s)z(s)ds

)
+ (C̄ + α2)

∫ t

0
a(s) exp

(∫ t

s
a(s′)z(s′)ds′

)
ds

≤ Y (0) exp

(∫ t

0
a(s)z(s)ds

)
+ (C̄ + α2) exp(2C̄R)

∫ t

0
a(s)ds

≤ Y (0) exp

(∫ t

0
a(s)z(s)ds

)
+

8C̄R(C̄ + α2) exp(2C̄R)

α2
(B.9)

where we used the a priori boundz ≤ α2/4 and the identity
∫∞
0 a(t)dt = 8C̄R/α2. By exponentiation it

follows that

y(t) ≤ y
exp(

∫ t
0 a(s)z(s)ds)

0 exp

(
8C̄R(C̄ + α2) exp(2C̄R)

α2

)
. (B.10)

We note that ify0 ≤ 1, sinceexp
(∫ t

0 a(s)z(s)ds
)
≥ 1, we have

y
exp(

∫ t
0 a(s)z(s)ds)

0 ≤ y0. (B.11)

On the other hand, ify0 > 1, due to (B.3) we may bound

y0 ≤
α2

M
, (B.12)

wheneverM ≤ 4C̄K. Hence, recalling the a priori bound onz(t) and integratinga(t) from 0 to ∞, we
obtain from (B.10) and (B.12) that

y
exp(

∫ t
0
a(s)z(s)ds)

0 ≤ yDR
0 ≤ y0y

DR−1
0 ≤ y0

(
α2

M

)DR−1

(B.13)

for y0 > 1, sinceDR = exp(2C̄R) ≥ 3. Hence, we obtain from (B.10), (B.11), and (B.13) that

y(t) ≤ y0
1

2R

(
2R

(
1 +

(
α2

M

)DR−1
)
exp

(
8C̄C∗DR(C̄ + α2)

α2

))
=: y0

1

2R
K̄(M). (B.14)

The proof of (B.4) is completed if we show that̄K(M) ≤ K for all α > 0, for someM is chosen such that
M ≤ 4C̄K. We now let

M = 8C̄11α2≤8C̄ + 11α2>8C̄(8C̄)
1

2(DR−1)α
(2− 1

DR−1
)

(B.15)

and define

K(R,α) = 2R

(
1 +

(
α2

8C̄

)(1− 1
8(DR−1)

)
)
exp

(
8C̄RDR(C̄ + α2)

α2

)
.

Indeed, it is not hard to verify that forR ≥ 1, andC̄ ≥ 1, we have4C̄K ≥ M for all α > 0. Lastly, to
verify that the above definedK indeed is larger than̄K(M) (which was defined in (B.14)), it is sufficient to
check that

(
α2

M

)DR−1

≤

(
α2

8C̄

)(1− 1
8(DR−1)

)

(B.16)

for all α > 0. Indeed, (B.16) may be checked by a direct computation using (B.15) andDR ≥ 3.

Lastly, one may directly check that for any fixedR ≥ 1, asα → ∞ we haveK(R,α) = O(α
2− 1

4(DR−1) ),
and thereforeα2/K(R,α) → ∞, asα → ∞, which concludes the proof of (B.6). To conclude, it is
clear from the definition ofK(Rα) that it is larger than2, and henceα2/K(R,α) → 0 asα → 0, which
concludes the proof of the lemma. �
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APPENDIX C. A NON-BLOWUP CONDITION FORSDES WITH LINEAR-LOGARITHMIC GROWTH IN THE

DRIFT

In this section we state and prove a condition for the non-blow up of solutions to SODEs via a Logarithmic
Grönwall type argument. See e.g. [FZ05] for related results.

Lemma C.1. Fix a stochastic basisS := (Ω,F ,P, {Ft}t≥0,W). Suppose that onS we have definedY
a real valued, predictable process defined up to a blow up timeξ > 0, i.e. for all bounded stopping times
τ < ξ, supt∈[0,τ ] Y < ∞ a.s. and

sup
t∈[0,ξ)

Y = ∞ on the set{ξ < ∞}.

Assume thatY ≥ 1 and that on[0, ξ), Y satisfies the It̄o stochastic differential

dY = Xdt+ ZdW, Y (0) = Y0, (C.1)

where on[0, ξ), X, Z are respectively real valued andL2 valued predictable processes andY0 is F0 and
bounded above by a deterministic constantM > 0.5 Suppose that there exists a stochastic process

η ∈ L1(Ω;L1
loc[0,∞)) (C.2)

with η ≥ 1 for almost every(ω, t) and an increasing collection of stopping timesτR with τR ≤ ξ and such
that

P

(
⋂

R>0

{τR < ξ ∧ T}

)
= 0. (C.3)

We further assume that for every fixedR > 0, there exists a deterministic constantKR depending only on
R (independent oft), and a numberr ∈ [0, 1/2] such that,

|X| ≤KR((1 + log Y )Y + η),

‖Z‖L2 ≤KRY
1−rηr

which holds over[0, τR]. Thenξ = ∞ and in particular,supt∈[0,T ] Y < ∞, a.s. for everyT > 0.

Proof. As in [FZ05], we introduce the functions

ζ(x) = (1 + lnx)

Ψ(x) =

∫ x

0

1

rζ(r) + 1
dr

Φ(x) = exp(Ψ(x)). (C.4)

By direct computation we find that

Φ′(x) =
Φ(x)

xζ(x) + 1
, Φ′′(x) = −

Φ(x)ζ(x)

(xζ(x) + 1)2
.

Thus, by an application of the It ō lemma, we have

dΦ(Y ) = Φ′(Y )dY +
1

2
Φ′′(Y )dY dY =

Φ(Y )

Y ζ(Y ) + 1
Xdt−

1

2

Φ(Y )ζ(Y )

(Y ζ(Y ) + 1)2
‖Z‖2L2

dt+
Φ(Y )

Y ζ(Y ) + 1
ZdW.

ForS > 0 we define the stopping times

ζS := inf{t ≥ 0 : Y (t) > S} ∧ τR, ρS := inf

{
t ≥ 0 :

∫ t

0
ηds > S

}
.

5This condition is not essential; we may merely assume thatY0 < ∞, almost surely. See RemarkC.2below
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In view of the definition ofξ, we have thatlim
S→∞

ζS = τR ∧ ξ. Due to (C.2) we also have thatlim
S→∞

ρS = ∞.

Fix T, S1, S2 > 0. We estimate and any stopping times0 ≤ τa ≤ τb ≤ ζS1 ∧ ρS2 ∧ T

E sup
t∈[τa,τb]

Φ(Y ) ≤EΦ(Y (τa)) + E

∫ τb

τa

Φ(Y )

(
|X|

Y ζ(Y ) + 1
+

1

2

∣∣∣∣∣
ζ(Y )‖Z‖2L2

(Y ζ(Y ) + 1)2

∣∣∣∣∣

)
dt

+ E sup
t∈[τa,τb]

∣∣∣∣
∫ t

τa

Φ(Y )

Y ζ(Y ) + 1
ZdW

∣∣∣∣ ,

≤EΦ(Y (τa)) + CE

∫ τb

τa

Φ(Y ) (1 + η) dt+ CE

(∫ τb

τa

(
Φ(Y )

Y ζ(Y ) + 1

)2

‖Z‖2L2
dt

)1/2

,

≤EΦ(Y (τa)) + CE

∫ τb

τa

Φ(Y ) (1 + η) dt+ CE

(∫ τb

τa

Φ(Y )2ηdt

)1/2

,

≤EΦ(Y (τa)) + CE

∫ τb

τa

Φ(Y ) (1 + η) dt+
1

2
E sup

t∈[τa,τb]
Φ(Y )

whereC, depends onR throughKR and is is independent ofT , S1, ξ, τa andτb. Rearranging and applying
a stochastic version of the Grönwall Lemma given in [GHZ09, Lemma 5.3] we find

E sup
t∈[0,σS1

∧ρS2
∧T ]

Φ(Y ) ≤ C

where hereC = C(R,T, S2,M) and is independent ofS1 andξ. Thus, sendingS1 → ∞ and applying the
monotone convergence theorem,

E sup
t∈[0,ρS2

∧τR∧T ]
Φ(Y ) ≤ C. (C.5)

Thus, by the properties ofΦ (cf. (C.4)) we infer

sup
t∈[0,ρS2

∧τR∧T ]
Y < ∞ for eachR,S2 > 0,

on a set of full measure. Thus, sincelim
S2→∞

ρS2 = ∞ we infer that, for eachR > 0, supt∈[0,τR∧T ] Y <

∞, almost surely. In view of the condition (C.3) imposed on the stopping timesτR this in turn implies
supt∈[0,ξ∧T ] Y < ∞. SinceT was also arbitrary to begin with, we have perforceξ = ∞, almost surely. The
proof is therefore complete. �

Remark C.2. In LemmaC.1we may actually just assume thatY0 is finite almost surely. Indeed if we define
the setsΩM := {Y0 ≤ M} we infer, arguing similarly to above that

E

(
11ΩM

sup
t∈[0,ζS1

∧ρS2
∧T ]

Φ(Y )

)
≤ CM .

We thus find thatξ = ∞ for almost everyω in ∩MΩM . Since this latter set is clearly of full measure, we
may thus establish the proof of LemmaC.1in this more general situation.
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