HIGHER REGULARITY OF H OLDER CONTINUOUS SOLUTIONS OF PARABOLIC
EQUATIONS WITH SINGULAR DRIFT VELOCITIES
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ABSTRACT. Motivated by an equation arising in magnetohydrodynamies prove that Holder continuous
weak solutions of a nonlinear parabolic equation with siagdrift velocity are classical solutions. The resultis
proved using the space-time Besov spaces introduced by iGlaemh Lerner, combined with energy estimates,
without any minimality assumption on the Holder exponefrthe weak solutions.
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1. INTRODUCTION

In this paper we address the smoothness of Holder continu@ak solutions of the scalar nonlinear
parabolic equation with singular drift velocity

06— NG+ (u-V) =0 (1.1)

onR? x (0,00), whered > 2, {T;;}¢_, is ad x d matrix of Calderon-Zygmund singular integral operators,
and the summation convention on repeated indices is usedghout. The drift velocity is taken to be
divergence-free, i.e.

Vou=0 (1.3)

which is ensured byl(2) if the matrix {7;;} is taken such tha®;0;7;; f = 0 for smooth functionsf. The
system {.1)—(1.3) is supplemented with the initial condition

0(-,0) = 6o (1.4)

wheref € L?(R?%) has zero mean oR“. We note that[,, 6(z,t) dz is conserved in time by solutions of
(1.1)—(1.2).

The global in time existence of finite energy weak solutianéltl)—(1.4) has been proven by the authors
of this paper in 12]. Additionally, in [12] we prove that for positive time the weak solutions are irt fac
Holder continuous (see als@(]). In the present paper we address the higher regularithesda Holder
continuous weak solutions, by proving that they are classiolutions (eveild'>® smooth) for positive time.
This result was announced ihg, Lemma 3.4].

The motivation for studying advection-diffusion equasamith drift velocities as singular as those given
by (1.2) came from the three-dimensional equations of magnetstggahic dynamics, for a rapidly rotating,
electrically conducting fluid (cf. Moffatt]8]). A well studied advection-diffusion equation also antiin
rotating fluids (cf. Constantin, Majda, and Taba&¥)[is the so-called critical surface quasi-geostrophic
(SQG) equation. This 2-dimensional equation has the form

0+ (=AY + (u- V)0 =0 (1.5)
u=Vt(=A)"129. (1.6)
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Although there are significant differences between theesyst(.1)—(1.4) and (.5—(1.6), in both cases
L>(R?) is the critical Lebesgue space with respect to the natuadingcof the equations. The criticality of
the L°° norm with respect to scaling also holds for the modified @altsurface quasi-geostrophic equation
considered by Constantin, lyer, and Wu 0]

0,0 + (—A)20 + (u- V)0 =0 (1.7)
u=V*t(=A)»?>1g (1.8)

wheres € (0,1). In a recent paper, Caffarelli and Vassel} {ised De Giorgi iteration to prove that
weak solutions of{.5)—(1.6), with L? initial data, are smooth for positive time. A different pfad global
regularity for (L..5—(1.6) was given independently by Kiselev, Nazarov, and Volbé&#&j (see also Kiselev
and Nazarov14]). The proof of Holder regularity of weak solutions tb.{)—(1.4) given by the authors of
the present paper irL] is also based on a suitable modification of the De Giorgi me@ttalong the lines

of [1]. Once the weak solutions td.()—(1.4) are Holder continuous, we expect to be able to bootstrap to
higher regularity, since the Holdér* norm is subcritical with respect to the natural scaling efélquations,

for any« > 0. This matter is however not automatic due to the singulavorl drift «, which by (L.2) lies

in Li°CS~1 N L?,, wheneved € L*CS N L7H}. The following theorem is the main result of the present
paper.

Theorem 1. Letd, € L2(R?) be given. Let
6 € L*([0,00); L*(R7)) N L*((0,00); H' (R)) N L=((0, 00); C*(R)) (1.9)

be a Hdlder continuous weak solution ¢f.1)—(1.4), evolving fromdy, wherea € (0, 1) is given. Then, the
solution is classical, that is

0 € L™([to, 00); CM(RY)) (1.10)
for anyto > 0andé € (0,1).

The issue of proving higher regularity of Holder contina@olutions to a fractional advection-diffusion
equation has been considered in the context of the supeati®QG equation][l], the critical SQG equa-
tion [1], the modified critical SQG equatiorl(, 17], and in the recent preprinR]l] which addresses a
linear equation with singular drift. The natural charaietion of Holder spaces in terms of Besov spaces
were utilized in [LQ] for (1.7)—(1.8), respectively in 11] for the supercritical SQG equation, to prove that
if a solution isC* for somea < (0,1), then in fact it lies in a more regular Holder space, which ba
bootstrapped to prove the classical solution is classical.

The techniques used id(, 11] may be applied in order to prove higher regularity for theteyn (.1)—
(1.4), but only once the® regularity is such thatr > 1/2 (this was also pointed out irLf]). However,
if we only know that a weak solution ofl(1)—(1.4) is in C* with « € (0,1/2), the velocity field is too
rough, and the aforementioned method 19,[11] does not apply directly. We find that it is necessary to
use different arguments to obtain the desired result. Bykingrin the Chemin-Lerner space-time Besov
spaces (see]) we make use of the smoothing effect of the Laplacian atekellof each frequency shell,
which enables us to take advantage of the extra a prioririmdition thatu € Lix. The principal difficulty
lies in treating the high-high frequency interaction in gaaproduct decomposition of the nonlinear term
(cf. (4.5) below). The main result of this paper is the proof of highregularity for solutions of1.1)—(1.4)
without any minimality requiremern o > 0, and in any dimensiod > 2 (cf. Theoreml). The method
introduced in order to prove Theorebalso gives new higher regularity results for the systéni)(1.9),
in the parameter range € (1, 2) (cf. Theorem6 below).

This paper is organized as follows. In Sectibwe recall some facts about Besov spaces. Seétgives
the proof of Theoreni for « > 1/2, while for the casd) < « < 1/2 the proof is given in Sectiod.
Section5 contains a description of our results for the modified aiticdissipative SQG equations.
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2. PRELIMINARIES

Let {@- }ez be a standard dyadic decomposition of the frequency sRécwith the Fourier support of
the Schwartz function; being {2/~" < |¢| < 2771}, and where), $;(€) = 1onR%\ {0}. As usual,
defineA; f = ¢; « f andS; = 37, _, A; f for all Schwartz functions.

Fors € Randl < p, ¢ < oo the homogeneous Besov notfd , is classically defined as

17155, = 127145 F ol oz
whenever € [1,00), while in the casg = oo one defines
1£113, = sup 27| A, f s
JEL
Recall thatZ,>° N Bgo,oo = (C* is the Holder space with index except whers is a nonnegative integer (then

we recover the Zygmund spac€$). For anyr € [1, co| we classically let.”(Z; B;,q) denote the set of all

BochnerL"-integrable functions o, with values inB;vq, whereZ C [0, c0) is some given time interval.

Lastly, fors € R, atime intervalZ, and1 < r, p, g < oo we recall the Chemin-Lerner space-time Besov

spaced.’ (Z; BS ), with norm
. 1/r
2 ([ 18556015 o)

with the usual convention of taking a supremuny iifi ¢ = co. Note thatL" (Z; B ) = L"(Z; B3, for all
r>1.

)

”f”ZT(I;Bqu) =

a(Z)

3. PROOF OF THE MAIN THEOREM IN THE CASEx € (1/2,1)

In this case the proof follows directly froni, 11], with only slight modifications, so we give very
few details. First, note that # is as in the statement of the lemma, titer L>°([to, 00); Bpho), where
ap = (1 —2/p)e, andp € [2, 00) is fixed, to be chosen later. Then, fpe Z fixed, we have

1d _ _

EEHAJHHZ + / |A0P20;60(~A)A0 = — / | A0P72004(u - V). 3.1)
Upon integration by parts and usin@yg, Proposition 29.1] (cf. 19|, see also T, 23] for the fractionally
diffusive case), the dissipative term is bounded from bedsw
22
C
whereC' = C(d, p) > 0 is a sufficiently large constant. The main difficulty lies Btimating the convection
term. This is achieved inlp, 11] by using the Bony paraproduct decomposition

/|Aj9|p—2Aj9(—A)Aj9 de > —[|A;0|]%,, (3.2)

Aju-VO) = Y AV (Simudgd) + > Aj(Agu- VSk_10)
lj—k[<2 lj—k[<2

+ D) AV (Agud). (3.3)

k>j—1|k—1|<2

When integrated againgt ;0|A;0P~2, (3.3) gives rise to three terms on the right side 8flf. The first
two terms (wherjj — k| < 2) may be bounded favorably for any > 0, by first integrating by parts the
derivative contained i), u; = 0;5,—17;;0, then using a commutator estimate, the Holder and Bemstei
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inequalities (seell0] for details). However, the third term on the right side 8f3) gives rise to an integral
which may only be bounded favorably where (1/2,1). Indeed, from the Holder inequality we obtain

PP

k>j—1 |k—1]<2
<COIA015°2 > T 1 Akulle ]| A8
k>j—1|k—1]<2

< OO 72 (|0]ce Y 2Fmemer)ber | A0, (3.4)
k>j—1

/Ajv (Agul0) A0 AP

Given thatf € B;fgo, the sum of the right side of the above estimate is finite dndy + o, > 1. The later
holds if and only ifa > 1/2 (andp is large enough, depending a). However, ifa € (0,1/2) it seems
that the method of1[0] cannot be applied directly. We overcome this difficulty iecBon4 below. In the
casexa € (1/2,1), the right side of 8.4) does remain bounded and the estimate on the nonlinear teaym m
be summarized as

‘/mjew—%jmj(u-ve) dz| < 2072716 cen||6]] g - (3.5)

Combining B.1)—(3.5) with the Gronwall inequality, and taking the supremunjy imve obtain that
0 € L([t1,00); By (RY))
for anyt; > ty. Using the Besov embedding theorem we obtain that L>°([t1, c0); Bgﬁ;fp (R9)), for

anyt, > to, wheree, = (da+d)/p < (4+d)/p. Lettingp > (4+ d)/(2cc — 1) concludes the proof of the
theorem in the case € (1/2,1).

4. PROOF OF THE MAIN THEOREM IN THE CASEx € (0,1/2]

Let us fixZ = [to, 1], for some0 < ty < t;. The following lemma gives the principal estimate needed
in the proof of Theoreni.

Lemma 2. Let# be a weak solution of1.1)—(1.4) which is Hdlder continuous, that is
6 € L>®(T; L*(RY)) N L*(T; HY(RY)) N L>=(Z; C*(R?)) (4.1)

for somen € (0, 1/2). If additionally

0 € L*(Z; B} ,(RY)), (4.2)
for somep > 2, then we have

0 € L*(Z; B} .(RY)) (4.3)
forall 1 <r < oo, and for allg € (p, map), Wherem, = (1 —a)/(1 — 2a) > 1.
Proof. Apply A; to (1.1), multiply by A;0|A;60]972, integrate oveiR?, and use 16, Proposition 29.1]
(cf. [7, 19, 23)), to obtain

AL, + 218018, < | [ Ayt Vo8008

1d
—— 4.4
@ (4.4)
for some constant = ¢(d,q) > 0. Using the Bony paraproduct decomposition and the divegdree
nature ofu (and hence ob;_iu andAju) we write
Aju-VO) = Y AV (Seoqudi) + > Aj(Agu- VSk_16)
lj—k[<2 li—k|<2

+ )0 DT AV (AwuAe). (4.5)

k>j—1 |k—1|<2
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From the Holder inequality4(4), and @.5) we hence obtain
ld q 2j q q—1
QEHAJQHM +c27(|A;0[ 7. < ClA0)7a (J1+ J2+ J5) (4.6)

wherec = ¢(d, p) > 0 is a sufficiently small constant, and we have denoted

Ji= > AV - (Sk-1udgd)] o 4.7)
li—k|<2

Jo= ) 14i(Aku- VSpa0)lLe (4.8)
li—k|<2

o= > D AV (Awulb)| e (4.9)

k>j—1|k—1|<2

We bound.J; using the Bernstein inequality, the boundedness of Catd&ygmund operators oh?, and
the inequality|| Sy—1ul e <> x_1 [|Asul|a for all g € [1,00] (note thatii(0) = 0), to obtain

Ji<02Y Y Y A pall Agb|

lj—k|<21<k—1
<02 3 2t (2auli-) 3 21ab
li—k|<2 I<k—1
. p/q
<Clplee’ 3 27 37 o (0ufller)
lj—k|<2 I<k—1

1—
% <2laHAl9”L°°> p/e o—l(p/q+a(1-p/q))

—p/dei /
< Ololig’"2 32 otk 37 200wl (A, )

j—kl<2 1<k—1
s /
< €95 120—e) 37 gl1-pla—ali=p/a) <2l||Al9HLp>p ’ (4.10)
I<j

In the above estimate we also used the interpolation inggugf|| « < Hin/quleL;”/q, which holds for
all functionsf € LP N L, and anyy € (p, o). Note that sincex < 1 we have

1—]—9—0z<1—]—9>>0<:>1—£>0<:>q>p,
q q q

so that for ally > p and alls € [1, c0) we have

1/s
(Z Qsl(lp/qa(lp/q))) < 02(-p/q=o(1=p/) (4.11)

I<j
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We boundJ, similarly,

B<C Y > Akl VA o

lj—k|<21<k—1
<C > Al Y 2 A L
lj—k|<2 I<k—1
1- —a «a
<C >0 UAGILAILLT Y 210 (2| A0 1o )
lj—k|<2 I1<k—1

P/q o 1-p/q
<Clollee > 2 (21Ak00 )" (21 kb1 )
|7 —k[<2
x 2~ k(p/at+a(l-p/q)) 9k(1~a)

. ; /
< C”9Héap/q2j(2—a—p/Q—a(1—p/Q)) Z <2k”Ak9”Lp)p q. (4'12)
li—k|<2

Note that here we used < 1 to obtain thafy",_, , 2/(!:=%) < C2k(1-2), L astly, we bound’; as

J<C2 3 Al Arf e
k>j—1 [k—1|<2

<02 Y AW S 2 <2l°‘HA10HLm>
k>j—1 |k—1]<2
< OV llca S 250 | ALOIBL|| A6

k>j—1

<OPollce 3 20 (28e0) ) (2 Ar0] )

k>j—1

1-p/q

x 9—k(p/q+a(1-p/q))
o /
< CYN9|EPT 3 oki-emp/a—aliop/a) (QkHAkHHLp>p ’ (4.13)
k>j—1

Here as before we used the Bernstein’s inequality and thedjN, u|| e < C2F|| A0 Lq. If we let

1—«
1 -2«

P <qg<mMmap = b,

the exponent of” in the last inequality of4.13 lies in the range

1 1
—a<1—a—3—a<1—3><1———a<2——>:0
q q Mgy Mg,

sincea € (0,1/2). Therefore, ifg € (p, mqyp), for anys € [1, 00) we have

1/s
( Z gsk(la:n/qa(lp/q))) < ¢2i(-a=p/q=a(l-p/q) (4.14)

k>j—1
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We insert the boundi(10), (4.12), and @.13 into (4.6) and obtain the a priori estimate

d .
E”AJHHLQ + 2% A0 La

- , /
< C‘|9||2Cap/‘12](1—a) ng(l—p/q—a(l—p/q)) (QkHAk@HLPY 7
k<j

_ (9 o d—ou(1— p/q
e A AN D GV 1y
li—k|<2

e /
+Cl6]|5r/27 37 okli-emp/a—ali=p/0) (QkHAkHHLp>p ’ (4.15)
k>j—1

We apply Gronwall’s inequality and obtain
1856(0)l|za < e 10| A6(t0) | a
+C||g|>Pe . 0i(0-e) Z ok(l=p/a—a(l=p/a) @, | (1)

L (Z;0%)
k<j

_|_CH@Hiooil’/lf_lCQ)Q]'(Z—a—p/Q—Oz(l—P/Q)) Z @j,k(t)
|k—j]<2

+C||9Hioop/1['10a 9J Z Qk(l—a—p/q—a(l—p/q))@j’k(t) (4.16)
k>j—1

where we have denoted

¢ : »/q
0, 4(t) = / e (24 Ayf(s) 1) ds

to
Using the Young-type inequality
1f *gll2y < Wfllevllglle @) < HfHLl(I)Hg|’L2q/p(Z)’I’(q_p)/2q (4.17)
and the bound

< min{C2~%/" |7}y (4.18)

He—czzf (t—to)
L™(T)

with » = 1, we obtain that

10,(0)l2z) = \

t ) /
/ e (P A0(9)]|10) " ds
to

L2(1)

. oy P/q _
< Cmin{27, 7} (251840l pazzr ) 1T, (4.19)

We take thel.?(Z) norm of ¢4.16), use the bound4(19 above, combined with the discrete Holder inequality,
the fact thatt € L2(Z; B} ,) = L*(Z; B),), the estimates4(11) and @.14 with s = 2q/(2q — p), and
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obtain that
120(6) ]| L2z:0y < CIAGOE)|BAHA;0(t0) |22 min{2~7, 2]/}
+ OO o 1O VI
X (Qj(2—a—p/q—a(1—p/q)) min{C2~% |I|})
< C”H(to)”p/qu(to)”l p/q (2 ja(l—p/q) min{2_j,\l'\1/2}>
2— _
+ OO o100 g gy 171
x (27@emplae=r/o) min{C2~%, |1]} ) (4.20)

for all ¢ € (p,map). Note thatf(to) € LP since we a priori havé € L¥L2 N LPLSe. We multiply the
above estimate on both sides #lyand take ar”(Z)-norm, to obtain that

= || 2711461 2 z; o)

HQ”P(Z;B; 07 (Z)

< ”H(to)Hp/q”e(to Hl p/QHQ](l a(l-p/q)) m1n{2 J ’1’1/2}H
e N

X Hzﬂ'@—a—f’/q—a(l—?’/q)) min{C2~%, |7| }Hm) . (4.21)

The key observation is that for ajl € (p, m,p) we have—a(l — p/q) < 0, 1 — (1 — p/q) > 0,
l—a—p/¢g—a(l—p/q)) <0,and3 —a—p/q—a(l —p/q)) > 0, so that the twd” norms on the right
side of the above estimate are finite, for dny » < co. We have hence proven that

0 € L*(1;B.,)
foranyl <r < oo, and anyg € (p, mqp), concluding the proof of the lemma. O

The following lemma shows how one may bootstrap the argusnantemma2 in order to controb in
L2W,™.

Lemma 3. Letd be a weak solution ofl.1)—1.4) which is Hdlder continuous, that is
0 € L°°(Z; L*(RY)) N L2(T; HY(RY)) N L>®(Z; C*(RY)) (4.22)
for somen € (0,1/2). Then we have
V0 € L*(T; L*=(RY)). (4.23)
Proof. We note thatf/' = B} , so that we may apply Lemngawith p = 2, and obtain that € L*(Z; B} ,)
for anyq € (2,2m,). Sincem, > 1, we may bootstrap and apply Lemriaonce more to obtain that

0 € L*(Z; Bl ,) for all ¢ € (2,2m2). For any fixedp > 2, sincem! diverges as — oo, we may iterate
Lemma2 finitely many times and obtain théate L*(Z; B} ), for all r € [1, oc].
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Fix p large enough, to be explicitly chosen later, andjlet p(1 + m,,)/2. From the estimate(20), for
anye > 0 we have
0281 12z, 10)
< Cl6(to) 175" 18 (ko) "
x min{C27(c~e(=p/0) | T|1/29i(Fe—a(1=p/0)}

2 _
OO o101 ITIPV20

x min{C2/(<t1-p/a= O4(2 p/9) gile+d=pla—a=p/a)| T} (4.24)

whereq = p(1 4+ my)/2. We now pick a suitable > 0, so that the/!(Z) norm of the right side of4.24) is
finite. For this to hold, we need that the following four board hold true

—a(l— 2 ><0<:>e< o (4.25)
1+mg, 2 — 3«
1+€_a<1_1+ma>>0®6>_% (4.26)
() oe et e
e+3—mia—a< —1+ma>>0<:>e>—2(_1?:aa4;(§2_;i?3 (4.28)

where we used that/q = 2/(1 + m,). Note that2 — 3a — o > 0 and2 — 3a + a? — 2a® > 0 whenever
0 < a < 1/2, so that we must choosesuch that only4.25 and @.27) hold. It is therefore sufficient to let

1 a? (1 -2a)(2—3a—a?)
ea_Emm{z_m’ 1—a)2—3a) }

It can be easily checked that for anye (0,1/2) we havee, > 0. With this choice ok = ¢, we may take
the ¢! norm of @.24) and obtain that

T2 1+eaq 2 1+eq
el (I B p(1+ma )/271) cL (I Bp(1+ma)/21)

The Besov embedding theoreRf ; ¢ BS_ d/p gives that

1+ea 1+5a 2d/( + ma)
Bp(—ii+ma)/2 . C B prbme) (4.29)
so that choosing = p(«a, d) > 2 to satisfy
2d
«— —————— = 4.30
‘ p(1+mq) ! ( )
we obtain
Vo € L*(T; BY, ). (4.31)
We note that we may explicitly solve farin (4.30
2d
= >4d>2
p ea(l+mg) — =

for anyo € (0,1/2). We recall from §.22) that V¢ € L*(Z; L?), and hence&v§ € L*(Z; L? N BY, ,), by
(4.31). Lastly, we use.? N B0 1C BY. .1 and the borderline Sobolev embedding theorem

BY,, C L™
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to obtain that
V6l € L*(Z; L)
which concludes the proof of the lemma. Note that4y2¢) we may even obtain that € L*(Z; L>). O
A simple consequence of this improved regularity is theofelhg statement.

Proposition 4. Letd be a Holder continuous weak solution ¢f.1)—(1.4) such that

VO € L*([to, t1]; L™). (4.32)
Then

0 € L>([t, t1]; H™) (4.33)
foranym > 2, and a.ets € (to,t1).

Proof of Proposition4. Sincew is divergence free, we have the a priori estimate

1d
GIVOI 18012 < | [ Dus0100,0

o < 1 40]2 V62 [V 8] 1<

1 1
< 51280132 + SIVOIZ: VO .
We absorb th¢1/2)[|Ad||%, term on the left side of the above estimate and obtain that
LIve(s 2o ds
101 < 0Ct0) et ¥

which is finite for allt, < t € Z thanks to the assumptiovid € L2(Z; L>), as long a®(ty) € H'. The
latter is true for a.ety > 0 since we a priori knew that € L2((0,00); H'), and L? functions are finite
a.e. (by using arguments similar #® [Chapter 9], one may even obtain explicit bounds in term®eff ;2).

This shows that € L>(Z; H') N L*(Z; H?). Repeating the above argument with= [, ;] replaced by
someZ’ = [tq, 1], Wherety > t(, we get

1d

5718005 + IVAG]7. <
onZ', and therefore obtaifh € L>*(Z'; H?) N L*(Z'; H®). Hence, for anyn > 2, finitely many iterations
of the above argument proves thatc L>°(Z"; H™) N L*(Z"; H™*) for anyZ” c Z, concluding the
proof. O

/ A(ujajeme\ < O VA 12| A8 12 | V8] 1

Proof of Theoreni. If o € (1/2,1) the theorem follows from the arguments given in Seciolf o = 1/2,
we simply consider the solution to lie fi'/2=¢ ¢ L n C'/2, for somee > 0, reducing the proof of the
theorem to the case € (0,1/2). In this case, we apply Lemnato obtain thatvg € L?(Z; L>°) for any

T = [to,t1] C (0,00). Using Propositiord, this implies that) € L>([to,t1]; H™) for some large enough
m (@anym > d/2 + 1 is sufficient), and a.ety € (to,t1). The statement of the theorem follows from the
Sobolev the embedding™ (R?) ¢ C9(R%), for somes € (0,1). In particular, ifd = 3 one may let
m = 3. ]

Corollary 5. The Holder continuous weak solutighof (1.1)—(1.4) is C'*° smooth for positive time.

Proof. Letd = 9,0 for somei € {1,....d}. From Theoreni we obtain that for ang < ¢; < 7' we have
0 € L>([t1,T]; C°(R%)) for somes > 0. From Propositiont we also have that € L>([t1,T]; L*(R%)) N
L2([t;,T); H'(RY)). Lastly, the equation satisfied By obtained by applying); to (1.1), is

80 — A0 + 8;0T;;0:0 + 0;T;;00,0 = 0 (4.34)
where we use the summation convention over repeated indeme$;; are Calderon-Zygmund operators.
Given that the coefficien®;0, 9;T;;0 € L>°([t1, T]; C°(R?)) (cf. Theoreml) are smoother than the a priori
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smoothness of the velocity it (1) (which belonged to a Holder space of negative index) strsightforward
to repeat the arguments used to prove Theatémorder to show that € L>([t2, T]; C17(R%)) for some

v >0, and a.ety € (t1,T). Sincei € {1,...,d} was arbitrary, this shows the solutiéris C?” for some
~v > 0. The proof of the corollary is concluded by further takingidatives of the equation, and iterating
the above arguments. O

5. HIGHER REGULARITY FOR THE CRITICALLY DISSIPATIVE MODIFIED SQGEQUATIONS

Here we address the applicability of the method present&kationd above, to prove higher regularity
for the modified critically dissipative SQG equatioh{)—(1.8), for the parameter range € (1,2). Note
that wheng = 2 the equations1(7)—(1.8) reduce to the heat equation, and regularity is trivial. 1],
Miao and Xue prove the global existence of weak solutbrsL> ([0, co); L?) N L2((0, 00); H/?), using
methods similar to§, 12, 22], the local existence of smooth solutions, and the everegllarity of the
weak solutions (see alsg,[3, 4, 15] and references therein, for further results concerningegaizations of
the SQG equations). Moreover, ib7, Proposition 5.1], the authors prove the following regityegriterion:
if a weak solutiond lies in L>([tg, 00); C%), with a > (8 — 1)/2, thend € C>((t1,00) x R?) for any
t; > to. Such a minimality requirement anseems to be purely technical, as the problesuiscritical in
C“ foranya > 0.

The proof of Theoren of the present paper directly applies 1o4—(1.8), with 5 € (1,2), and gives the
following regularity criterion for weak solutions.

Theorem 6. Letd, € L? be given, and leT = [to, 1] C (0,0). Given a weak solution

0 € L®(T; L*(R?)) N L*(Z; H%/?(R?)) (5.1)
of the initial value problem associated (®.7)—(1.8), if
0 € L=(Z; C*(R?)) (5.2)
where
min{#,%}<a<l (5.3)
andps € (1,2), then
0 € L>([tz, t1]; C*°(R?)) (5.4)
for somed > 0, and for a.eits € (to,t1). Additionally, we have
0 € C*((to, 1] x R?). (5.5)

Proof. First we note thatifv € ((5 —1)/2,1), for anys € (1, 2) this result was proven irl[7]. Therefore,
in order to complete the proof of the theorem it is left to trise range2 — §)/2 < (8 — 1)/2, which is
equivalent tg3 € (3/2,2), under the regularity criterion th& — 5)/2 < a < (8 —1)/2. In order to avoid
redundancy we only outline the differences with the prooflogoremi.

Using methods directly corresponding to those describeldemproof of Lemm& we first prove that if a
weak solutiord satisfying 6.1)—(5.2) is such that € L?(Z; Bf/;), for somep > 2, thend € L2 (Z; Bqﬁ,{«z),
for any1 < r < oo, and for any value of > p such that ’

¢ _(B12-a B2-«
5€<ﬁ—1—a’ﬁ/2—2a>' >

Due to our choice ofy, the range §.6) is not empty. Since initiallyy ¢ L?(Z; 1'35/22), we can therefore
bootstrap this argument finitely many times, and similaoythte proof of Lemmas, we show that fomp

large enough we hav € L*(Z; Bﬁ/lz”/”) c L*(Z; Bffl). As in Propositiord, this implies, via energy
estimates and interpolation inequalities, that L>°([to, t1]; H™) N L% ([to, t1]; H™P/2) for anym > 1,
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and a.e.ty € (to,t1). The proof of 6.4) follows now from the Sobolev embedding, while the proof of
higher regularity consists of taking derivatives of theattpn and repeating the arguments listed abovs.

Due to the sub-criticality of th&’® norms, for anya > 0, with respect to the natural scaling of the
equations 1.7)—(1.8), we conjecture that conditiorb(2) may be replaced with < a < 1, foranyg €

(1,2).
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