GLOBAL WELL-POSEDNESS FOR AN ADVECTION-DIFFUSION EQUATIO N ARISING IN
MAGNETO-GEOSTROPHIC DYNAMICS

SUSAN FRIEDLANDER AND VLAD VICOL

ABSTRACT. We use De Giorgi techniques to prove Holder continuity @k solutions to a class of drift-
diffusion equations, witt? initial data and divergence free drift velocity that lieshif° BM O, . We apply
this result to prove global regularity for a family of actigealar equations which includes the advection-
diffusion equation that has been proposed by Moffatt in theext of magnetostrophic turbulence in the Earth’s
fluid core.
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1. INTRODUCTION

Active scalar evolution equations have been a topic of ctemable study in recent years, in part because
they arise in many physical models. In particular, such #guog are prevalent in fluid dynamics. In this
paper we first examine a class of drift-diffusion equatiamsah unknown scalar fielé(t, =), of the form

010 + (v- V) = AW, (1.1)

wherew(t, z) is a given divergence free vector field that lies in the furctspacel? L2 N LY BMO; !,
t > 0, andz € R?. In Theorem2.1we prove that weak solutions tt.() are Holder continuous. Note that
this result is new for such linear parabolic equations withynsingular coefficientsl 18, 19, 25, 27, 34, 35).
We then use this result to prove in Theor8rithat Leray-Hopf weak solutions of the active scalar equatio

20+ (u-V)8 = Ad (1.2)
divu =0 (1.3)
Uj = 821—;]9 (1.4)

are classical solutions. IriL), the velocity vectoru is obtained fron¥ via {T;;}, ad x d matrix of
Calderon-Zygmund singular integral operators (thathisytare bounded.? — L? and L™ +— BMO)
such tha;0;T;; = 0. Note that in {.4) we have used the summation convention on repeated indioes,
i,7 €4{1,...,d}.

Our motivation for addressing the systein)-(1.4) comes from a model proposed by Moffa2?] for
magnetostrophic turbulence in the Earth’s fluid core. Thigleh is derived from the full magnetohydrody-
namic equations (MHD) in the context of a rapidly rotatingnslity stratified, electrically conducting fluid.
After a series of approximations relevant to the geodynarndet) a linear relationship is established be-
tween the velocity and magnetic vector fields, and the stalenyancy”d. The sole remaining nonlinearity
in the system occurs in the evolution equationépwhich has the form

00 + (u-V) =S+ rAb, (1.5)

whereS is a source term, angis the coefficient of thermal diffusivity. Here the three @insional velocity
u is such thatlivu = 0, and it is obtained from the buoyancy via

u = MI6], (1.6)
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whereM is a nonlocal differential operator of ordér We describe the precise form of the operatérn
Section4. An important feature of this operator is the spatial inhgereity that occurs due to the under-
lying mean magnetic field. We call 5)-(1.6) the magnetogeostrophic equatigMG). We show that the
MG system satisfies the conditions under which we prove T@m8rl, and hence obtain (cf. Theorefril)
global well-posedness fof (5)-(1.6).

An active scalar equation that has received much attentidgha mathematical literature following its
presentation by Constantin, Majda, and Talflkds a two-dimensional toy model for the three-dimensional
fluid equations, is the so called surface quasi-geostropgi@mtion (SQG) (see, for exampl@, B, 7, 10,

11, 16, 29, 33] and references therein). The dissipative form of this &qondor which there is a physical
derivation is

90 + (u- V)0 = —(—A)/20, (1.7)
where
uw=VE(—A)"Y20 = (Ry0, —R,0) (1.8)

andR; represents thé” Riesz transform. It was recently proved by Caffarelli andséar ] that solutions
of (1.7)-(1.8) with L? initial data are smooth (see also the review arti8lg [Well-posedness forl(7)-(1.9)
in the case of smooth periodic initial data was also obtaimeliselev, Nazarov, and Volberd §]. See also
Constantin and Wul[0, 11] for the super-critically dissipative SQG.

We note that the magnetogeostrophic equation MG and theatiytdissipative SQG equation (7)-(1.8)
are both derived from the Navier-Stokes equations in theéesbof a rapidly rotating fluid in a thin shell.
For both systems the Coriolis force is dominant in the moomargquation. In the case of the SQG equation
the relation {.8) is derived via a projection of the three-dimensional peailonto the two-dimensional
horizontal bounding surface. In the case of the MG equati@ncobupling with the magnetic induction
equation closes the three-dimensional linear system tbaupes the operatofd’;; }, with u; = 0,T;;0.

Systems1.2)-(1.4) and (L.7)-(1.8) have strong similarities. In particular, they have the saatative order
of the spatial derivatives between the advection term amdiffusive term. Moreover, if(¢, ) is a solution
of (1.2)-(1.4), thend, (¢, z) = H(\*t, \z) is also a solution, and hende® (R?) is the critical Lebesgue space
with respect to the natural scaling of the equation. We rwe/i> is also the critical Lebesgue space for
the critically dissipative surface quasi-geostrophicatiun (1.7)-(1.8), and for the modified surface quasi-
geostrophic equation (cf. Constantin, lyer, and \8)).[The advantage of systerh.p)-(1.4) over the critical
SQG equation is that the diffusive term is given via a locarapor. The tradeoff is that the drift velocity
in (1.2-(1.4) is more singular, i.e., the derivative offaM O function (see Koch and Tatardq] for the
Navier-Stokes equations BM O™1).

Our proof of Theoren?.1and Theoren8.1is along the lines of the proof of Caffarelli and Vasseir |
Theorem 3] for the critical SQG equation. The primary teghei employed ing, 11, 32], and in the
present paper, is the De Giorgi iteratidk?]. This consists of first showing that a weak solution is baahd
by proving that the functiomax{# — h, 0} has zero energy fi is chosen large enough. Then a diminishing
oscillation result implies smoothness of the solution inlacsitical space, namely®, for somea € (0, 1).
The proof of Holder continuity for solutions of (1) with v € L BM O ' does not follow directly either
from [2], wherev € L*BMO,, or from [8], wherev € L*C!~ anda € (0,1). The crucial step
in the proof of Theoren?.1is the local energy and uniform estimates. The main obstmudb applying
the classical parabolic De Giorgi estimates vialdbased Caccioppoli inequalityl (< p < o0), is that
v(t,-) € BMO™!. In Section2 we give details as to how we overcome this difficulty.

Equation (.1) is in the class of parabolic equations in divergence foran lave been studied extensively,
including in the classical papers of Nagd], Moser 23], Aronson and Serrinl]. Osada 25] allowed for
singular coefficients and proved Holder continuity of $ials to (L.1) whenv € L;’OWI‘LOO is divergence
free. Hence Theorerd.1 may be also viewed as an improvement of the results of Osauz & [ <
BMO(R?) N L%(R?), then it does not follow that € L (R%) (cf. [30]). In the same spirit, Zhan@f, 35]
and SemenovZ7] give strong regularity results for parabolic equationsheftype (.1), where the singular
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divergence free velocity satisfies a certain form boundeslgendition. We note that this form boundedness
condition does not cover the case L° BM O, !, and hence Theoret1does not follow from the results
in [27, 34, 35], and vice-versa. The overall conclusion of the body of woankparabolic equations with a
singular drift velocity is that the divergence free struietof v produces a dramatic gain in regularity of the
solution, compared to the classical theory (&8]).

Organization of the paper. In Section2 we prove Holder regularity for the linear drift-diffusi@guation
(1.2), with v being a given divergence free vector field in the functiomeﬁ&vxﬂLfoBMOgl. In Section3
we apply this result to prove that a Leray-Hopf weak solutiaf the nonlinear active scalar systefinZ)-
(1.4) is Holder smooth for positive time. Since Holder regitfais subcritical for the natural scaling of
(1.2-(1.4) we can bootstrap to prove higher regularity and hence odecthat the solution is a classical
solution. In Sectiordt we describe an active scalar equation that arises as a nwdabfjneto-geostrophic
dynamics in the Earth’s fluid core. We show that this threeetisionalMG equationis an example of the
general systeml(2)-(1.4). In the Appendix we prove the existence of weak solutiond 18)-(1.4) evolving
from L?(R?) initial data.

2. REGULARITY FOR A PARABOLIC EQUATION WITH SINGULAR DRIFT

Consider the evolution of an unknown scadt, ) given by

80+ (v- V)0 = A9 (2.1)
where the velocity vecton(t,z) = (vi(t,z),...,vq(t,x)) € L?((0,00) x R?) is given, and(t,z) €
[0,00) x R, Additionally letw satisfy

Ojvi(t,z) =0 (2.2)
in the sense of distributions. We expregsas

vj(t,x) = 0;Vi;(t, x) (2.3)

in [0, 00) X R?, where we have used the summation convention on repeategsnand we denotel; =
—(=A)"'d;v;. The matrix{V;;}¢,_, is given, and satisfies

Vij € L®((0,00); L*(R)) N L?((0, 00); H' (R?)) (2.4)
foralli,j € {1,...,d}.
Theorem 2.1(The linear problem). Givené, € L*(R%) and {V;;} satisfying(2.4), let

6 € L>([0,00); L*(R?)) N L*((0, 00); H' (R))

be a global weak solution of the initial value problem asateil to(2.1)—2.3). If additionally we have
Vi; € L ([to, 00); BMO(R?)) for all 4,5 € {1,...,d} and some, > 0, then there exists: > 0 such that
6 € C([tg,00) x RY).

In analogy with the constructions i2,[11], the proof of Theoren2.1 consists of two steps. Fog > 0
fixed, we first prove thal € L>([ty, o0); L>°(R?)). The main challenge is to prove the Holder regularity
of the solution, which is achieved by using the method of Der@iiteration (cf. L2, 14, 19]). Note
that for divergence-free < Lix, the existence of a weak solutighto (2.1)—(2.3), evolving fromf, <
L?, is known (for instance, se@T] where the more general ¢ Llloc is treated, alsoZ], and references

therein). Moreover, this weak solution satisfies the ctadstnergy inequality and the level set energy
inequalities 2.6) below.

Remark 2.2. The conclusion of Theorem®.1holds if the Laplacian on the right side d&f.() is replaced by
a generic second-order strongly elliptic operaig;;0;), with bounded measurable coefficieqts; } .

Remark 2.3. We note that the De Giorgi techniques used here to provedddttularity for solutions to
(2.1)—(2.3) can also be used to prove Holder regularity for the probléth a forcing termS on the right
side of .1). In this case we considéf € L; , to be an externally given force, with> 1 + d/2 (cf. [19]).
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Remark 2.4. In a very recent preprint, Seregin, Silvestswerak, and Zlato®B] also use De Giorgi tech-
niques to prove Holder regularity of solutions to a parabetuation with drift velocities if.;° BM O L.

Notation. In the following we shall use the classical function spacg®:- Lebesgue space& MO -
functions with bounded mean oscillatioB M/ O~ - derivatives ofBM O functions, H* - homogeneous
Sobolev spaces, and® - Holder spaces. To emphasize the different integrabifitgpace and time we
shall denotel.?([0, oo); LI(R%)) by LP LY for 1 < p, q < oo, and similarly forL? H! and LY BMO,.. Also
L} .(IxB)=Lr(I; LP(B)) foranyl c RandB c R®. The ball inR? and the parabolic cylinder iR**+2
are classically denoted by, (z¢) = {z € R?: |z — 20| < p} andQ,(to, 7o) = [to — p?, to] x B,(xo) for
p > 0. Lastly, we shall write f — k), = max{f — k,0}.

2.1. Boundedness of the solution.The first step is to show that a weak solution is bounded foitipes
time.

Lemma 2.5 (From L2 to L*). Letf € L*°(]0,00); L?(R9)) N L2((0, ),Hl( 1)) be a global weak
solution of (2.1)-(2.3) evolving fromd, € L?*(R%), wherev € L?((0, 00); L?(R%)). Then for allt > 0 we
have

Cllfoll z2(ga
102 Mo ey < ——gr (2.5)

for some sufficiently large positive dimensional constant

Proof. The proof of this lemma is mutatis-mutandis as2n11], and requires only the fact thatis diver-
gence free. The main idea is that since> (y — h). is convex, for allh > 0 we have

(@ —h)y —AO—h)x+(v-V)(@—h)L <0

and hence, multiplying byé — h). integrating by parts, and using thditv v = 0, we obtain the energy
inequality

/y (t2,-) — h)4| dx+2// V(0 — )| dmdt</y (t1,-) — h)+|*dz, (2.6)
t1

forall h > 0and0 < t; < to < co. Forty > 0, andH > 0 to be chosen sufficiently large, we define
t, =to — t0/2n, h, = H — H/Qn, and

o =sup [ 100) ~ho)edov2 [ 90 - )P,
t>t, JRA tnJ R4

wheren > 0. The inequality 2.6), the Gagliardo-Nirenberg-Sobolev inequality, and Riesarpolation

then imply that

on(1+4/d) 1+2/d,

Letting H = Ccl/z/ztd/4 < CHOOHLQ(Rd)/tO , for some sufficiently large dimensional constéhtimplies
thatc,, — 0 exponentially a3t — oo, and thereford(ty,-) < H. Applying the same procedure ted
concludes the proof of the lemma. We refer the reade2,td]] for further details. O

2.2. Local energy and uniform inequalities. In proving the boundedness of the solution we only required
thatv € L?,, anddivv = 0. For the rest of the section we use the additional assumptierl° BM O, *

t,x?

Lemma 2.6 (First energy inequality). Letd € L°L2 N L?H! be a global weak solution of the initial
value problem associated {@.1)—(2.3). Furthermore, assume that; € L>((0,00); BMO(R?)) for all
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i,7 € {1,...,d}, and(2.4) holds. Then forang < r < Randh € R, we have

10 =)+ 13 20 + IV O = )1 132 (g,
CR
< WH(‘Q h)+\|L2 @7 0= h)+Hz;2(QR (2.7)
whereC = C(d, ||Vij||lz=Bmo,) is a fixed positive constant, and we have dend@gd= [t) — p?,to] X
B,(z0) for p > 0 and an arbitrary (to, z9) € (0,00) x RY. Moreover, estimaté2.7) also holds withg
replaced by-6.

Remark 2.7. Note that from Lemma.5we have that € L%, and hence the right side d1.() is finite.

Remark 2.8. The classical local energy inequality (ci4, 19, 25|, see also2, 11]) does not contain the
term [[(0 — 1)+ || Ls= (@) ON the right, since the velocity field is not as singular as in our case. In this
section we prove that since i8.7) the exponen2/(d + 2) of || (6 — h)+|[Ls<, (Qr) is “small enough”, the De
Giorgi program may still be carried out to obtain the Holdegularity of weak solutions.

Proof of Lemm&.6. Fix h € Rand letd < » < R be such thaty/2 — R? > 0. Letn(t, z) € C§°((0,00) x
R%) be a smooth cutoff function such that

0<n<1in(0,00) x RY,
n=1 in QT('mOvtO)v andn =0in CZ{QCR('mOvtO) N {(t,l’) S tO}}v

C .
V| < T V| < O] < in Qr(wo,t0) \ Qr(o,t0),

_C _C
(R—r)% (R—1)?
for some positive dimensional constaiit Definet; = to — R? > 0 and lett, € [ty — 2, 1] be arbitrary.
Multiply (2.1) by (§ — h),n? and then integrate oft, t,] x R? to obtain

/ 9 ((6— h )n dwdt—2// 9;5(0 — h)4 (0 — h)4n? dzdt
t1J R4 t1J R

// 9;Vi; 05 ((0 — h)3 )77 dxdt = 0. (2.8)
t1

The main obstruction to applying classical the de Giorginesties (via thel.?-based Caccioppoli inequality,
cf. [14, 19)) is thato;V;; € L BM 0!, as opposed to the cagg° W, 1> considered by Osad23)] (see
also 27]). We overcome this difficulty by subtracting from; (¢, -) its spatial mean oveft} x Br, namely
Vi (t) (this does not introduce any lower order terms bec#ys¥;; s, (t) = 0), and by appealing to
the John-Nirenberg inequality. More precisely, we define

Vijr(t,z) = Vij(t, ) _Vij,BR(t) =Vi(t,z) — —=—

Vii(t,y) dy, (2.9)
|Brl| /By i(t:)

and note thad);V;; = aiIN/ijﬂ. Therefore, the third term on the left &.6) may be replaced by

to -
/ / E?Z-VU,R 8]- ((9 - h)i) ?’]2 dxdt.
1J/R4

t

We integrate by parts it the first term on the left of4.8), and usen(t1,-) = 0. The second term we
integrate twice by parts im;, and the third term on the left o2(8) we integrate by parts first in; (and use
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8;(8;Vij.r) = 0:(9;Vi;) = d;v; = 0) and then integrate by parts i, to obtain

1
5 [0 0t ok [ 90 -0 dsa

// (0 — h) +778t77 dxdt+/ (0 — h 0;(nojn) dxdt
t1J R4 Rd
- / / Vi (0 — B)2 0,(ndym) dadt
t1JR4

12 .
) / / Vs 1k (6 — 1) (6 — h) s ndym dadt. (2.10)
t1JRd

Using the bounds on the time and space derivativeg tife fact that) = 1 on @, t» < to, the Holder and
e-Young inequalities, we obtain fron2 (10

to
/ (O(t2,-) — h)i dx + 2/ V(0 — h)y|*n? dedt
T t1JRd

R—r) // (0= h)3 dmd“r Sj 2// Vij.rl (0 — h)3 dwdt
+/ V(0 = h)4 [ dudt + s // Vij.r|*(0 — h)3 dadt. (2.11)
t1JRY

After absorbing the third term on the right df.(1) into the left side, we take the supremum overe
[to — 12, 0], to Obtain

16 = W)+l 2 + IV = )+13 0,
¢ 2 C ~ )
= m”w M+l o T (R—1)7? //QR \Vijr| (0 —h)% dxdt
S L Wanlto -2
= Vi rl2(0 — h)? dadt. (2.12)
(R—r)2 QR| 4RI ( )+

As a corollary of the celebrated John-Nirenberg inequdtify[14, 30]) we have that for any fixed > 0,
t € [to — R%, o), and1 < p < oo,

IVij.m(t o) = 1Vis(t ) = Vig.r ()l o)
< C||Vi; (2, ')||BMO(R‘1)|BR|1/pa

whereC' = C(d,p) > 0 is a fixed constant (recall th&t(d,p) — oo asp — oo0). The fact thatl;; €
L>®([tg/2,00); BMO(R?)) implies that for allt € [tq — R2,t,] we have

Vs r(t, )| Lo () < Col Br|'? (2.13)

for a positive constanty = Co ([|Vij || Lo (1t /2,00); BMO (%)) 4, D). We fiX0 < & < 2 to be chosen later, and
using @.13 and the Holder inequality we bound

//QR Vijrl (0 — )2 dedt = / . </BR \Vijr(t,x)] (0 — h)2 (t,2) dgg) dt

to
< ColBal [ 100 = 1) oy
0—
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Using the interpolation inequalityf||.» < C\|f\|i/f||f||2;2/p, with p = 4/(2 — ¢), we obtain from the
above estimate that

// Vijrl (0 — )} dadt
Qr

< ColBal [ 100 = 045 O = 1)y
< CoRD2(0 = )13 10 = M)+ s - (2.14)
Similarly, from .13, the Holder inequality and? interpolation, we obtain
/ /Q ) Vi l?(0 — W% dade < CoRH22)(0 = ). 257 010 = W)l (2.15)
Combining estimates2(12) with (2.14), (2.15, and the Holder inequality, we conclude that
10 = P17 12(q,) + V(0 - h)-i‘”%?,w(QT.)

Cp Re(d+2)/2
“a 1 = W1 10 = )+l 0 (2.16)
The proof of the lemma is concluded by letting= 2/(d + 2)in (2.16) above. O

By applying the Holder inequality to the right side @f7) we then obtain:
Corollary 2.9. Letf be as in Lemma&.6. Then we have

CRd+2

(6 — h)-l-H%tOOL%(QT) + V(0 - h)+||%%yz(Qr) < m”(@ h)+||Lo<> (Qr)’ (2.17)

for some positive constait = C(d, ||Vl Ly Bro, )-

We now fix a point(tg, zo) € (0,00) x R? and we prove the Holder continuity &f at this point.
Throughout the following we denote 6y, the cylinderQ (o, o), for anyp > 0.

The following lemma gives an estimate on the supremuthaof a half cylinder, in terms of the supremum
on the full cylinder. A similar statement may be proven fdt.

Lemma 2.10. Let# be as in Lemma.6. Assume that, < supg, 0, whererg > 0 is arbitrary. We have

1/2
1/(d+2)
sup 0 < hog+C <|{0 > ho} N Q| ) (sup& - h()) (2.18)
Qr-0/2 To QT'O

for some positive constant = C(d, ||Vi;| L Bro, )-

The above estimate differs from the classical one &9, [Theorem 6.50] in that the power 0f6 >
ho}NQr,|/|@r| is1/(2d+4) instead ofl /(d+2). However, the key feature o2 (19 is that the coefficient
of (supQrO 0 — hg) does not scale withy. It is convenient to introduce the following notation:

o A(h,r)={0>h}NQ,
o a(h,r) = |A(h,T)]
o b(hr) = (6 - Mls g,
e M(r) =supg, 0 7
m(r) = infq, 0
osc(Q)) = supg 0 — infg 0
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Proof of Lemm&.10. Let0 < r < Rand0 < h < H. We have
b(h,r) =6 — h|y2L2 Ay 2 110 = huig gy = (H = h)?a(H, 7). (2.19)

Letn(t,z) € C°(R x RY) be a smooth cutoff such that= 1 onQ,., n = 0 on Q¢ (rrry/2 ) {t <y}, and

|Vn| < C/(R—r) for some universal constatt > 0. Then, by Holder’s mequahty and the choicerpive
obtain

b(h,7) = [0 = 1)+ l7z_(q,) < a(h,r)* 2] (6 - h)"'”if(d“)/d(Qr)

< alh, D (0 — B P (2:20)

((—oc0,to)xR4)"
Using the Gagliardo-Nirenberg-Sobolev inequality andsRiaterpolation

||f||i2(d+2)/d((_oo’t0)><ﬂ{d) < C||f||%goLg((—oo,to)de) + CHVf”if’x((—oo,to)de)’
estimate 2.20 implies that

b(h.7) < Calh, 1) M2 (10 = P11 s 12 oot

FIV 0 = 1)) 125 (ot

< Ca(h,r)*/ 2 (”(9 - h)+|’2L§°L%(Q(T+R)/2) +[IV(6 —h)
1

2
m”w N h)+HL%,;c(Q(7"+R)/2)>

for some positive dimensional constarit Using the first energy inequality, i.e., Lemra, and the Holder
inequality, we bound the far right side of the above and obtai

2
+ HL%,E(Q(T+R)/2)

+

R 2-2/(d+2) 2/(d+2)
bl 1) < Calh,r) D 0 = )+ IO = W+ I
R 2/(d+2)
< Ca(h,r)2/(d+2)mb(h R)I-1/(@+2) g — h)+HL/; oh (2.21)

for some sufficiently large positive constaiit= C(d, ||Vi;| > srmo,)- By combining estimate2(19 and
(2.21) we obtain the main consequence of Lem2n@ that is

CR
(H — h)Y/(d+2)(R — )2

The above estimates give the proof of the lemma as follows.rle= r79/2 + ro/2"" N\, r0/2, hy, =
hoo — (hoo — ho)/2™ * heo, @andb,, = b(hy,, mn41), for alln > 0, wherery andhy are as in the statement
of the lemma, whileh, > 0 is to be chosen later. By letting = h,11,h = hy, 7 = rpyo, @aNAR = 7,11

in (2.22), we obtain

b(h, RV (9 — H) (7)) (2.22)

b(H,7) < L (Qr)

2/(d+2)
"+1)+ ”L°° (Qrpyq)

CTn 1 n
b1 < (oo — ho)I/(d”)T% A (0

2/(d+2
< OWM(ro) = ho) T2 o agiaray) i i) (2.23)
(hoo — h0)4/(d+2)ro n

by using

(6 — hn+1)+HL°° (Qrpy1) = sup 0 — hnt1
A(hn+1yrn+1)

< sup 0 — hypq1 <supf — hg = M(rg) — hyg

Qr'nﬁ»l QT()



GLOBAL WELL-POSEDNESS FOR THE MG EQUATION 9

which holds sincé\/ (r,) < M (ry) andh,, > hg. Let B = 24+2(4+2) We choosér, large enough so that

M — ho)2/(d+2) 1
C(M(ro) — ho) (1)/(d+2) <L (2.24)
(hoo — h0)4/(d+2)7’0 B
then by induction we obtain fron2(23 thatb,, < by/B", and thereforé,, — 0 asn — co. This implies
thatsupQT0/2 0 < hs. A simple calculation shows that if we let

CBUD/(M (ro) — ho)"/2by/*

hoo = ho + @2 /i (2.25)
To
then @.24) holds. Lastlypy = b(hg, 3ro/4) may be bounded vi&2(21) and the Holder inequality as
bo < Ca(ho, o)) ™2 (M (ro) — ho)*. (2.26)
The proof of the lemma is concluded by combinismgero/2 0 < hs with (2.25 and @.26). From the
above proof it follows that inequality2(18) also holds withd is replaced by-6. O

As opposed to the elliptic case, in the parabolic theory veslrea additional energy inequality to control
the possible growth of level sets of the solution.

Lemma 2.11(Second energy inequality).Letd € L°L2 N L?H! be a global weak solution of the ini-
tial value problem associated t@.1)<2.3). Furthermore, assume thaf; ¢ L*BMO, for all i,j €
{1,...,d}, and(2.4) holds. Fix an arbitraryz, € R?, leth € R,0 < r < R, and0 < t; < t5. Then we
have

102, ) = )+ 172,

C Rty — t
<10t ) — ) gy + etz )

WH(G — h)-i—”%gi (t1,t2)x Br) (2_27)

for some sufficiently large positive constatit= C(d, ||Vi;||L=Bmo0,), Where we have denotell, =
B,(xo) for p > 0.

Proof. Note that by Lemm&.5 we have that! € L%, and hence the right side o2.@7) is finite. Let
n € C5°(R?) be a smooth cutoff such that= 1 on B,, n = 0 on B, and|Vn(z)| < C/(R —r), for all
x € RY, for some constan® > 0. Multiply (2.1) by »?(6 — h), and integrate fron, to ¢, to obtain

t2 2 t2
[ [ a(e-m) szt —2 [ 0i6 )6 - 1) srds
t1JR4 t1JRA

to 2
=—/’ 0V 0;((0 — h). ) wfdedt
t

1J/RE

t2 . 2
_ _/ 0:Vign 0;((0 — h) ) oPdudr
t1JRd

where, as inZ.9), we have denoteﬁ’,-j,R(t,x) = Vij(t,z) — |B—1R‘ fBR Vij(t,y) dy. After integrating by
parts we get '

to
[ 62~ 1+ [ 90 b fipds
R4 t1JR4
g/(ﬂm»—hﬁ%m
Rd

to ~ ~
+ C/ /Rd(9 —h)% (Iay(nam)l +Vij. |8 (nm)| + |v;j,R|2|8mé‘jn|) dzdt.
t1
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We bound the right side of the above estimate agih4) and .15 to obtain that
10(t2, ) = B) 1|12,
CRda/2(t2 _ tl)a/Z

<NO) = Wl + g IO = W IO — Rl

Lettinge = 2 in the above estimates concludes the proof of the lemma. ®hesponding statement for
—6 also holds. O

The use of the second energy inequality is to bo{idt,,-) > H} N Br|/|Br
h} N B,|/|B,| < 1/2. More precisely, we have the following lemma.

, whenever{0(t;,-) >

Lemma 2.12. Fix ro = (4/5)"/¢, letny > 2 be the least integer so thate /(2" — 2) < /6/5, and let
o = (1 — ko)?/(12Cyk3), whereCy is the constant fron2.27). For ¢, R > 0, if

{0(t1,) 2 B} N By < 5B, (2.28)
then for allty € [t1,t; + dor?] we have
7

wherer = roR, M = supy, 1 1s,r2)xBg & M = infy, 4 15m2)xBr 00 h = (M +m)/2, and H =
M — (M —m)/2m.

Proof. Fort, € [t1,t1 + dor?], we obtain from the second energy inequality (2f2()) that

CoR4(ty —t
00t2.) = By < 10061,) = e gy + S0 = 1) s

CoR% 5012
< H(H(tla ) - h)‘i‘H%Q(BR) + ﬁ(M - h)27 (230)

whereQs = (t1,t1 + 6o R?) x Bg. The left side of the above estimate is bounded from below as

1(6(t2,-) = W)+ 17205,y = 10(t2,) = B)+ll72 (86,2 )
> (H — h)?[{6(t2,) > H}y N B,|. (2.31)

From 2.30), (2.31), and the Holder inequality, we obtain after dividing || that

HﬂmdzfﬂﬂBd<(M>WVRdCWGn)2MﬂBm Codor? )
| By ~ (H —h)%rd | Br| (1—r/R)2R? )"

Noting that by constructioM/ — h)/(H — h) = 2™ /(2™ — 2) < 1/6/5, and recalling that /R = k¢ =
(4/5)1/?, we obtain from the previous estimate and the assumptidnedimma that

{0(t2,) > H}yN B, _ 3 (!{9@1,-) > h} N Br| | Codorg )
|B,| =2 |Br| (1 - x)

3/1 1 7
<2(z4) =L 2.32
—2<2+m> 8’ (2.32)

concluding the proof of the lemma. O
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2.3. Holder regularity of the solution. We now have all necessary ingredients to conclude the DeyiGior
argument for proving Holder regularity of the weak solatio

Recall that sincelive = 0, by Lemma2.5 we have that) € L>([ty, o0); L°(R?)) for any ¢, >
0. Moreover, ifV;; € L*([ty, 00); BMO(R?)) for somet, > 0, we obtain the energy inequalities of
Lemmas2.6and2.11 In turn, these inequalities give control for the growth led supremum on doubling
cylinders (cf. Lemma&.10), and for the growth of level sets of the solution (cf. Lem&&?). The rest of
the proof follows as in19], but we give a sketch for the sake of completeness.

Proof of Theoren?2.1 The proof of the theorem is based on showing that there exist§0, 1) such that
osc(Q1) < v osc(Q2). The key observation is that-fis independent oR, this estimate implies the Holder
regularity of the solution, where the Holder exponent (0, 1) may be calculated explicitly from.

Fix ko, 0o, no, M, m, h, H,r, andR as in Lemm&.12for the rest of this proof. We also fix two cylinders
Q1 = [t1,t1 + 6o7?] x B, andQq = [t1,t; + 6oR?] x Bg, where we recall that; > 0 andR > 0 are
arbitrary.

Recall thath = (infg, 6 + sup, ¢)/2. Without loss of generality we may assu{é(t1,-) > h} N
B,| < |B,|/2. Otherwise , letting:’ = (infq,(—0) + supg, (—0))/2 we have|{—0(t1,-) > W'} N B,| =
{O(t1,-) < h} N B,.| <|B,|/2, and we work with—6 instead of.

Forn > ng, we defineHd,, = M — (M —m)/2", and note that{ = H,,, < H,, /* M. We also letw be
f truncated between level$,,_, andH,,, namely

0, 0 < H,_1
w=min{f,H,} —min{0, H, 1} =< 60— H,_1, H, 1<0<H,
H,—H,,, H,<§.

Since|{0(t1,-) > h} N B,| < |B,|/2, by Lemma2.12, for everyt € [t1,t; + §or?] we have
7
[{w(t,) =0} N Br| = [{0(t,") < Hn1} N Br| = [{0(t,") < H} N Br| = ¢|Bxl.

By the above estimate and the Poincaré inequality we obtain

/ lw(t,-)|dx < Cr/ |Vw(t,-)|dz
B, By

forall ¢t € [tl,tl + dor? ] whereC' = C'(d) is a universal positive constant. Integrating the abovienesé
in time over[t{, t; + dor?] and using the Holder inequality we get

// |w|dxdt < Cr // |Vw|dxdt

< Crl{{Hp_1 <0< H,} N Q1|"?|V(0 — Hu-1)+ 2, qu)- (2.33)
We bound the far right side o2(33) by using Corollary2.9, to obtain

’Q2’1/2
R—r

ne1 <0 < Hyy nQq|Y?|Qa|Y2(M — Hy_1) (2.34)

J[[ wldsae < Cofti, 1 <6 < .} 0 QuIV0 ~ Hoo)s i
1

The left side of 2.34) is bounded from below as

/ / wldadt > / / o 1 2 (o Ho )02 H @1 (2.35)
1 1N n

By combining and squaring estimates34) and @.35 we obtain

C|Qa|(M — Hy1)?
(Hn Hn—l)

< ClQof ({0 = Hp—1} N1 = {0 = Hp} N Q1) (2.36)

{0 > HaynQuf* < {Hn1 <0 < Hy} 0@
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where we used the fact that, by constructioh] — H,,—1)/(H,, — H,—1) = 2. Hence,
> {0 = Hay n Qi < ClQ2|l{0 > Hyy} N Q1
n>nop+1
and since the sequeng@ > H,, } N Q| is decreasing, we obtain
C|Q2|"?{0 = H} N Q|
(n—10)1/2

for all n > ng + 1. By Lemma2.12we have that{d > H} N Q| < 7|Q1|/8, and therefore the above
estimate implies

{0 = H,}nQi <

C?”d+2
(n —ng)t/?2’

where we have used that= ko R, andkg = xo(d). By Lemma2.10, the fact that, < 1, and the estimate
(2.37) we obtain

{0 > H,} NQu| < (2.37)

1/2
>, 1/(d+2)
sup@SHn+C’<|{0_ }DQH ) (M — H,)
Q1

C
(n — ng)/(4d+8) (

< H,+ M — H,),

for some positive constaiit = C(d, ||V;;||Le>Bro, ), Which is independent of. Therefore there exists a
sufficiently largeny = n1(d, || VijllLee BMmo,) > 1o + 1 such that

1
supf < H,,, + (M — Hy,).
oh 2

Recalling the definition of{,,, m, andM, a simple calculation shows that the above estimate implies

. 1 1
osc(Q1) :sgf)ﬁ—léllfﬁ < Hp, —m+§(M—Hn1) = <1— W) (M —m)

1
= (1 — W) <sg?1p9 — 16515 9) = v 0sc(Q2), (2.38)
2

wherey = 1-1/2m%2 ¢ (0,1) is independent of. Recall that in .39 we haveQ; = [t1,t1 + dori R?] x
Bror(m0) and Qe = [t1,t1 + doR?] x Bgr(xo), with kg, dy fixed positive constants, and > 0 arbitrary.
This classically implies Holder continuity éfat the arbitrary pointt,, z) € (0, 00) x R¢, concluding the
proof of the theorem. O

3. GLOBAL REGULARITY FOR A NONLINEAR PARABOLIC EQUATION

We address the global regularity of solutions to the initelle problem

80— N0+ (u-V)9 =0 (3.1)
divu =0 (3.2)
uj = 0;T;;0 (3.3)
6(0,-) = 6o, (3.4)

where{Tij}gF1 is a matrix of Calderon-Zygmund singular integral opersitsuch that;0,7;; f = 0 for
any Schwartz functiorf. As an elementary example, df = 2 we may considefl}; = Ty, = 0, and
Ty, = —T; = T, for some Calderdon-Zygmund operafBr(for instancel’ = R;, a Riesz-Transform). In
this case the velocity would he= V7¢. Whend = 3, a physical example of such a matfi¥;; } arises
in the MG system (cf. Sectiohbelow).
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Theorem 3.1(The nonlinear problem). Let 6y € L?(RY) be given. A Leray-Hopf weak solutigh ¢
L>=([0,00); L2(R%)) N L?((0,00); H*(R)) of (3.1)«3.4), evolving fromdy, is a classical solution, that is
6 € C>((0,00) x RY).

Lemma 3.2 (Boundedness).A Leray-Hopf weak solutiofi of (3.1)-(3.4) is bounded fort > 0, i.e.,f €
L>®([tg, 00); L (R%)) for anyty > 0.

Proof. The proof of this lemma is the same as the proof of LenZagcf. [2, 11]), and only uses the fact
thatdivu = 0, whereu € L7 ((0,00) x RY). O
Sinced € Ly, it follows from the Calderon-Zygmund theory of singulategrals that’;;0 =: V;; €
L>®([tg,00); BMO(R?)), for anytq > 0, wherei,j € {1,...,d}. Therefore, we may treaB(l) as
a linear evolution equation (see als? [L1]), where the divergence-free velocity fieldis given, and
u € L2((0,00); L2(R%)) N L*([tg, 00); BMO~Y(R?)), for anyty, > 0. This is precisely the setting of
Theorem2.1for the linear evolution equation. Hence Theorrhcan be applied to the nonlinear problem
to give Holder regularity of the solution. Therefore weaibt

Lemma 3.3(Holder regularity). A Leray-Hopfweak solutioé of (3.1)-(3.4) is Holder smooth for positive
time, i.e., for anytg > 0, there existsy > 0 such that) € C([to, 00) x RY).

Lastly, since the Holder regularity is sub-critical foethatural scaling of3.1)-(3.4) one may bootstrap
to prove that the solution is in a higher Holder class:

Lemma 3.4 (Higher regularity). Letf € L>([ty,00); C*(RY)) be a Leray-Hopf weak solution of the
initial value problem associated {@.1)—(2.3), with o € (0, 1). Thend € L>®([t;, 00); C119(R%)), for any
t1 > to, for somes € (0,1).

For1l/2 < a < 1, the proof is the same as the proof of higher regularity ferrttodified surface quasi-
geostrophic equatior8B] Theorem 2.2] (see alsd(, Theorem 3.1] for the supercritical quasi-geostrophic
equation). These elegant proofs use the natural charzatieri of Holder spaces in terms of Besov spaces,
and energy inequalities at the level of frequency shells.

For0 < a < 1/2, theC® smoothness of is weak relative to the roughness of the veloeityand it is
therefore necessary to modify the techniqueslof B] for the proof of higher regularity. In1[3] we give
the details of this modification which uses the extra infdrorathatu Lf,x and employs estimates in the
Chemin-Lerner (cf.%]) space-time Besov spaces.

We give a very brief outline of the proof of lemma 3.4 in the ti@oges for alpha and refer the reader to
[10, 8] and [13] for detailed estimates.

Proof of Lemm&3.4. Let Bﬂq be the classical homogenous Besov space &:fL{]), and recall that.> N
Bio,oo = (* is the Holder space with index The proof of the lemma in the case € (1/2,1) is
based on first noting that # is as in the statement of the lemma, there L ([tg, 00); Bpho), Where
a, = (1 —2/p)a, andp € [2,00) is fixed, to be chosen later. Then, fpe Z fixed, we have
td
pdt
Upon integration by parts (see alst})] the dissipative term is bounded from below

_ 2%

[ 1A A)AD o> s A (3.6)
whereC'(d, p) > 0is a constant depending on the dimension @anthe main difficulty lies in estimating the
convection term. This is achieved i8,[10] by using the Bony paraproduct formula, the Holder ineijyal
the Bernstein inequalities, a commutator estimate, anéhatttehat||u/| -a,-1 < C||0||cer. The latter holds

HAj@HIier/!AJHIP_ZAJ'H(—A)AJQZ —/\AjQ\p_QAﬂAJ(U‘VH)- (3.5)
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sinceu; = 0;T;;60 and the fact that Calderon-Zygmund operators are boundétbtrler spaces. I, < 2
these operations give

/ 8,017 2800 (u - VO) da| < C2C272) |10 o [|6]| o (3.7)

Combining @.5—(3.7), using the Gronwall inequality, and then taking the sopum in j gives thatd €
L*>®([t1,00); Bﬁ%ﬁ(Rd)) for anyt; > t¢y. Using the Besov embedding theorem we obtain that

0 € L®([t1,00); BX o (RY)

, for anyt, > ty, wheree, = (4da +d)/p < (4 + d)/p. Lettingp > (4 + d)/(2« — 1) concludes the proof
of the lemma in the case € (1/2,1). .
Inthe casex € (0, 1/2] the proof is based on proving that the additional infornatice L ([t1,ts]; H'),

implies € L2([ty, ta]; B;jd/p) for some large enough > 2, and for anyt; > ¢;. This is achieved by using

the smoothing effect of the Laplacian on high frequencie8, & that we need to work in the space-time
Besov spaces introduced by Chemin and Lerner &Y. By the endpoint Sobolev embedding theorem we
thus obtain thakvg € L([t1,to]; BY, ;) C L*([t1,t2); L°°). From here, standard energy estimates imply

thatd € L>([t},to]; H™) for all m > 2, andt!, € [t1, t2], concluding the proof of the lemma after applying
the Sobolev embedding™ c C'# with m > 1 + d/2. We refer to [L3] for details.
O

Proof of Theoren3.1. The existence of a global in time Leray-Hopf weak solutiorf31)—(3.4), evolving
from 6, € L?, is proven in AppendiA. The argument is to construct solutions to an approximaseesy,
and then to pass to the limit in the weak formulation of thebfgm, using the Aubin-Lions compactness
lemma (cf. RQ]).

The proof of Theoren3.1now follows from Lemmas.2, 3.3, 3.4. For anys3 € (0, 1), after finitely many
applications of Lemma&.4 the solution is shown to be ih>([tg, 00); C'+#(R?)), for anyty > 0, and is
hence a classical solution. Higher regularity is standard. O

4. GLOBAL REGULARITY OF THE MG SYSTEM

There is a vast literature studying mathematical modelsh@iEarth’s dynamo (see, for example Glatz-
maier, Ogden, and Clun&%] and references therein). However, at present, no compogidynamo model
can encompass the fine scale resolution required to sinthiateirbulent processes believed to exist in the
Earth’s core. It is therefore reasonable to examine modielsare simpler than the full system of PDE
governing rotating, convective, magneto-hydrodynamiwg$ldout that retain some of the essential features
relevant to the physics of the Earth’s core. One such modeh&mnetostrophic turbulence was recently pro-
posed by Moffatt 22]. He postulates that the magnetic figk{t, x) in the core consists of a mean paij,
which results from dynamo action and can be considered a#ijjamiform and steady, and a perturbation
field b(¢, =) induced by the flowu (¢, 2) acrossBy.

It is assumed that the scaleof convective turbulence lies in the ranggQ < L < n/V, whereV is
the average magnitude of the upward buoyant velo€itis the angular velocity of the Earth, ands the
magnetic diffusivity of the fluid medium. This assumptionpiies that the Rossby numbg&y/Q2L and the
magnetic Reynolds numb&fL /5 are both small. The turbulent Reynolds number in the corepseted to
be very large. The dominant terms in the three dimensionst@ns of motion and the induction equation
give the followinglinear system

2Qe3 x u=—VP+ (By-V)b—0g (4.1)
0= (Bg-V)u+nAb 4.2
dive =0 (4.3)

divh = 0, (4.4)
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whereP(t, x) is the sum of the fluid and magnetic pressutgs,z) is the buoyancy field (e.g. perturbation
of the temperature), anglis the gravitational acceleration. We use Cartesian coatés in the reference
frame rotating about the axig = (0,0, 1).

Equations4.1)-(4.4) establish a linear relation between the variahlgsz), b(t, z), andé(t, z). The sole
remaining nonlinearity from the full convective MHD systecurs in the advection-diffusion equation for
the buoyancy(¢, x):

00 + (u-V)0 =S + rAS, (4.5)

whereS is a source term. The diffusivity in the core is very small, hence the nonlinear advection term
dominant and cannot be neglected.

The system4.1)-(4.5) gives an active scalar model for magneto-geostrophicmjecsg which we call the
MG equations As Moffatt observes 4. 1)-(4.5) has some similarities with the dissipative Burgers equati
but it has a clearer physical basis and the velogity x) is three-dimensional. We remark that the system
has closer similarities to the surface quasi-geostropfpimeon (SQG), which is also derived in the context
of a rapidly rotating system dominated by Coriolis’ forceowver, the operator that conneatandé via
(4.D-(4.4) has features that are distinct from the analogous opeiatibie SQG system as we shall now
discuss.

For simplicity we will examine 4.1)-(4.4) in the case wher@ is a vector that is constant in magnitude
and direction in the plane perpendiculareto We write

BO = 562.

We assume that gravity acts parallel to the axis of rotati@n,g = e3. With these assumptions we are
examining a local tangent plane model for the Earth’s fluickedbat ignores the sphericity, but retains the
essence of the mathematical structure of the active sceglatien @.5), with » constructed frong via
(4.D-(4.4). Manipulation of the linear systerd (1)-(4.4) gives, in component form,

u; = D71 (=200, P — T'9, P) (4.6)
uy = D™ (200, P — T0, P) (4.7)
dsuz = DT AxP (4.8)
030 = (IQAHD_I + 833) P, (4.9
where the operators, D, andA 5 are defined as
_ @ -1
= Ao (4.10)
D =402 + T2, (4.12)
A = 011 + 0Oa2, (4.12)

wherez = (x1, 12, 23) € R? x T. We note that a more general choice of the mean, steadylylagaform
magnetic fieldB, or of the gravitational vectas results in the same structure of the leading order terms. It
is the anisotropy that is produced By that is a distinctive and crucial feature of the MG system.

The operatoD given by ¢@.11) is invertible since its Fourier symbol does not vanisiR3rx Z, justifying
the use ofD~!. In order to uniquely determine; andé from (4.8) and @.9), we restrict the system to the
function spaces wher@ andug are periodic in thers-variable, with zero vertical mean, i.§02” 0 dzs =

foz’r uz dxs = 0. In fact, without such a restriction the system is not wefirted. We integrate4(9) and
use the zero-mean assumption to obtain

0 = A[P]. (4.13)
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whereA is formally defined as the Fourier multiplier with symbol
N 27.2(7.|2 2 /27,4
Alhy ko, ) = e BIRE (5 1) ks
iks (4927 |k|* + (B2 /n)?k3)
for all k3 # 0 (by our vertical mean-free assumption), whére= (ki1, ko, k3) € R? x Z. ThereforeA is

invertible on the space of functions with nu#§-average. Note thals A[P] = (I?AxD~! + 933) P in the
physical space. We now usé.()-(4.8) to represent:y, us, andus in terms of6:

(4.14)

up = D7H(=2Q0, — T'0))(A7L[A]) = M, (6] (4.15)
uy = D71 (200, — T0s)(A™1[0]) = My[6] (4.16)
us = (D 'TAR) (D' T Ay + 933) 0] = M3[0]. (4.17)

To investigate the properties of the operaddr = (M, Ms, M3), we note that it is a vector of Fourier
multipliers, with explicit Fourier symbols given by

== o 2Qkoks |k[? — (8% /n)ki k3ks
M) =0z 1 (32 g (@19
= oy 2k ks|k|? — (8 /n)kSks
(k) = /RS + ) (4.20)

- AQPKE|K[? + (B2 /n)%k;

for all k3 # 0. Since by assumptio6(ky, k2,0) = u(ky, k2,0) = 0, in order to have a uniquely defined
symbol M (k) on all of R? x Z, without loss of generality we may létf; (ky, k2,0) = Mo (k1, ko,0) = 0,
andMsz(ky, ko,0) = M3(ki, k2, 1). Note thatu; = M;[6] is defined via the inverse Fourier transform from

;(k) = M;(k)d(k), for all k € R? x Z, (4.21)

forall j € {1,2,3}. Also, sincedivu = 0, we have thak - ]\7(k:) =0.

When the frequency vectdr = (kq, ko, k3) has components such thiat < max{ks, k3}, then the
symbolsﬁj are bounded for all € {1, 2, 3}. However this is not the case for “curved” regions of freqryen
space wherés = O(1), ko = O(|k1|?), where0 < o < 1/2, and|k;| > 1. In such regions the symbols
(4.18—(4.20 are unbounded, since gs| — oo we have

My (K, k1|7, )| & k|7, [ Mk, K], 0] = k], (DM (K, k|7, 1)) ~ k]2,
whereo € (0,1/2], and we writea ~ b if there exists a constarit > 0 such thata/C < b < Ca. It
follows from (4.18—(4.20) that
|M; (k)| < C.lK] (4.22)

forallk € R? x 7, and allj € {1,2, 3}, whereC, = C.(3,7n,9Q) > 0is afixed constant. From the previous
remark it is clear that along certain curves in frequencysphe bound4.22) is sharp.
We now prove that the active scalar equation @f1):(4.5) with S = 0)

00 + (u- V)0 = kB (4.23)
diveu = 0 (4.24)
w= M[6] (4.25)

with M given by @.19-(4.17), or equivalently by its Fourier symbo# (18-(4.20), satisfies the conditions
of the abstract problem studied in Sectl@rirst note that we can write
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where we have denoted
T;; = —0i(—A) "1 M;. (4.27)

By (4.22 we have thatﬁj(k)\ < C, forall k € R? x Z, and hence it follows directly from Plancherel's
theorem that’;;: L*(R? x T) — L?*(R? x T) is a bounded map.

It remains to prove thaf};: L=°(R? x T) — BMO(R? x T) boundedly. This reduces to proving that
N; = (=A)~Y2M;: L>® — BMO is a bounded map, since Riesz-transforms are boundéi\é®. The
later holds becaus®’; is a pseudo-differential operator of orde(cf. [21, 26, 30]). The main idea is that

one may extende fromR? x Z to a symbolﬁj’. defined onR? such that they agree d&’ x Z, and such
that]\Af]/- is the symbol of a classical Hormander-class pseudordifteal operator of orde (cf. Stein 30]).
More precisely, Ietﬁj’.(k:) = J\Yj(k:)/|k| for all k € R3 with |ks| > 1, while for |k3| < 1, replace the
denominator?k32|k|? + (52 /n)%k3 by the quantitydQ?p(ks)?(k? + k3 + (k3)?) + (82 /n)%k3, in the
definitions @.18-(4.20 of ]\//.Tj(k). Herep(-) is C*° smooth monotone increasing function that coincides
with the identity on|ks| > 1/2, and is constantly equal t/2 on |k3| < 1/4. This construction ensures
the smoothness of the symbol near the origin, while the b¢agnsz;(k)| < Cyu(1 4+ |k|)~lol follows by
inspection. To close the argument, note that the operafgrand N; differ by a compact operator in the
symbol classS—*°(cf. [21, 26] and references therein). This concludes the proof of thenbedness of
Tij: L>® — BMO.

The abstract Theorer®.1 may therefore be applied to the MG equations in order to nkta global
smoothness of weak solutions, and hence we have proven:

Theorem 4.1(The MG system). Letd, € L?(R?) be given. There exists@> smooth classical solution
0(t, x), of (4.23—«4.27), evolving fromp,.

APPENDIXA. EXISTENCE OF WEAK SOLUTIONS TO(3.1)—(3.4)

Here we sketch the proof of existence of global Leray-Hopakveolutions of 8.1)—(3.4) evolving
from 6, € L?(R%). We follow the general strategy used to construct weak ismisitof the Navier-Stokes
equations (cf.31]). The main obstacle is the fact thais obtained fron¥ via a nonlocal operator of order
1.

Denote by(—A)!/2 = A the square root of the Laplacian. gt C§°(R?) be positive, with[, ¢ dz =
1. Theng, = e~ %¢(x/e), for e > 0, is a standard family of mollifiers. We first consider the apmating
system

9,0° + (u - V)0 — AGS = —eA30° (A.1)
div ue = 0, ’LLj = 82‘Tij96 (AZ)
0°(0, ) = 65, (A.3)

whered = ¢, x 6, represents the mollified initial data, afif} are Calderon-Zygmund operators. Note that
16612 < [|6ol| 2 for anye > 0.

Lets > d/2 + 1 and fixe > 0. SinceA*d5 € L*(R?), and since: A® gives a sub-critical dissipation,
from standard energy arguments it follows that

sSup ||A896(t)”L2 < C(Ev d> ¢7 T7 ||90||L2)7
te[0,7

whereC'(¢,d, ¢, T, ||6b]|2) > 0 is a positive constant which is finite for affy< co. This a-priori estimate
and a standard Galerkin approximation procedure ensueeglthal existence of a strong?® solution to
(A.1)-(A.3). Moreover, for any > 0 we have the uniform im energy inequality

T
10T gty +2 /0 I96°(5) 122 ) ds < [10]122 2, (A.4)
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foranyT > 0, and thus
6¢ is bounded irC'([0, T7; L*(R%)) N L?(0, T; H(RY)). (A.5)
This guarantees that, up to a subsequefitepnverges weakly to some functiene L>(0,T;L?) N

L?(0,T; H") (this convergence is weakin L>(0, T; L?)). This does not suffice to pass to the limit in the
weak formulation of £.1)-(A.3). We next claim that for any compact gétc R? we have

8,0¢ is bounded irLY/3(0, T, W~ 221 (K)). (A.6)

Indeed, from A.5), the Gagliardo-Nirenberg inequality, and interpolatignfollows that ¢ is bounded
in (0, T; L*¥/(4=1)(R%)). SinceT;; are bounded oi.?(R?), by (A.5) it follows that u¢ is bounded in
L2(0,T; L*(R%)). By Holder's inequalitydiv(u<d€) is bounded inl*/3(0, T; W—1:24/(24=1)(R4)), Lastly,
eA%0¢ is bounded inL2(0, T; H~2(R9)), and Af¢ is a bounded family in.2(0, 7; H~1(R%)). Therefore,
by (A.1), restricting to a compadf we obtain that),6¢ is bounded in

LA3(0,T; W3 (K0)) + L2(0,T; H-2(K)) + L2(0,T; H~1(K)),

and hence ilL*/3(0, T’; W2 st (K)) by the Sobolev inequality, proving\(6).
Since the injection7' (K) into L?(K) is compact, the injection of.?(K) into W —224/(24-1)(K) is
continuous, it follows from the Aubin-Lions compactnessitea 31, Theorem 3.2.1] (cf.20]) that

¢ — 0 strongly inL2(0, T; L2, .(R%)) (A7)

sinceC was arbitrary. Passing to the limit in the weak formulatidriA.1)-(A.3) is nontrivial only for the
nonlinear term. For any € C5°((0,00) x R?), upon recalling that;; = 9,T;;[0], and an integration by
parts inx;, we have

/ (0°uc -V —0u- V)

// Ou -V — /GHTZ] —0]0;p — /96 il 6] 0;05¢

=1 +II + III. (A.8)

Sinceu € L?L2, by (A.7) and the Holder inequality it follows that. — 0 ase — 0. To obtain the
convergence of I, and/11., we claim that

T;;0° — 6] — 0 strongly inL2(0, T; L} . (R%)). (A.9)

)
The proof of A.9) is similar to that of A.7). SinceT;; is bounded o ?(R%) and onHl(]R{d), it follows
from (A.5) that

T;;(6°] is bounded irC'([0, T); L*(R%)) N L2(0, T; H' (R%))
Also, T;; is bounded o> (24=1)(R9), so that we obtaiff’;;[u 6] is bounded irL4/3 (0, T; L?4/(24=1) (R%)),

Fix a compactC and a test functiorp supported oriC. Applying 7;; to (A.1), integrating againsp, and
integrating by parts, we obtain

(OT35160], )] = [(Tyjlu 6, V') + (VT3[6, Vo) + e(AT;5[6], Ag)l
< 1Tl 0N s p2arcan 180 papaa + 1T 0T 1 s 1911 vz
< Cfuf QE”Lf/sLid/@dfl) H¢HL21W02,2d + CHQEHL?H% ”¢HL§W§’2d'
In the last estimate we have also used the Holder and Péimmegualities. The above proves that
8,T;;[0] is bounded in4/3(0, 7, W~ 221 (K)).

The claim A.9) now follows directly from the Aubin-Lions lemma (c2(, 31]). Moreover, this shows that
in (A.9) we havelII. — 0and/I. — 0 ase — 0.
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This proves that is a weak solution to the limit system, i.€3,.0)-(3.4). By construction it satisfies the
energy inequality, concluding the proof of existence ofltbeay-Hopf weak solutions ta3(1)-(3.4).
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