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ABSTRACT. We use De Giorgi techniques to prove Hölder continuity of weak solutions to a class of drift-
diffusion equations, withL2 initial data and divergence free drift velocity that lies inL∞

t BMO
−1
x . We apply

this result to prove global regularity for a family of activescalar equations which includes the advection-
diffusion equation that has been proposed by Moffatt in the context of magnetostrophic turbulence in the Earth’s
fluid core.
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1. INTRODUCTION

Active scalar evolution equations have been a topic of considerable study in recent years, in part because
they arise in many physical models. In particular, such equations are prevalent in fluid dynamics. In this
paper we first examine a class of drift-diffusion equations for an unknown scalar fieldθ(t, x), of the form

∂tθ + (v · ∇)θ = ∆θ, (1.1)

wherev(t, x) is a given divergence free vector field that lies in the function spaceL2
tL

2
x ∩ L∞

t BMO−1
x ,

t > 0, andx ∈ R
d. In Theorem2.1we prove that weak solutions to (1.1) are Hölder continuous. Note that

this result is new for such linear parabolic equations with very singular coefficients [1, 18, 19, 25, 27, 34, 35].
We then use this result to prove in Theorem3.1that Leray-Hopf weak solutions of the active scalar equation

∂tθ + (u · ∇)θ = ∆θ (1.2)

div u = 0 (1.3)

uj = ∂iTijθ (1.4)

are classical solutions. In (1.4), the velocity vectoru is obtained fromθ via {Tij}, a d × d matrix of
Calderón-Zygmund singular integral operators (that is, they are boundedL2 7→ L2 andL∞ 7→ BMO)
such that∂i∂jTij ≡ 0. Note that in (1.4) we have used the summation convention on repeated indices,and
i, j ∈ {1, . . . , d}.

Our motivation for addressing the system (1.2)-(1.4) comes from a model proposed by Moffatt [22] for
magnetostrophic turbulence in the Earth’s fluid core. This model is derived from the full magnetohydrody-
namic equations (MHD) in the context of a rapidly rotating, density stratified, electrically conducting fluid.
After a series of approximations relevant to the geodynamo model, a linear relationship is established be-
tween the velocity and magnetic vector fields, and the scalar“buoyancy”θ. The sole remaining nonlinearity
in the system occurs in the evolution equation forθ, which has the form

∂tθ + (u · ∇)θ = S + κ∆θ, (1.5)

whereS is a source term, andκ is the coefficient of thermal diffusivity. Here the three dimensional velocity
u is such thatdiv u = 0, and it is obtained from the buoyancy via

u = M [θ], (1.6)
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whereM is a nonlocal differential operator of order1. We describe the precise form of the operatorM in
Section4. An important feature of this operator is the spatial inhomogeneity that occurs due to the under-
lying mean magnetic field. We call (1.5)-(1.6) the magnetogeostrophic equation(MG). We show that the
MG system satisfies the conditions under which we prove Theorem3.1, and hence obtain (cf. Theorem4.1)
global well-posedness for (1.5)-(1.6).

An active scalar equation that has received much attention in the mathematical literature following its
presentation by Constantin, Majda, and Tabak [9], as a two-dimensional toy model for the three-dimensional
fluid equations, is the so called surface quasi-geostrophicequation (SQG) (see, for example, [2, 6, 7, 10,
11, 16, 29, 33] and references therein). The dissipative form of this equation for which there is a physical
derivation is

∂tθ + (u · ∇)θ = −(−∆)1/2θ, (1.7)

where

u = ∇⊥(−∆)−1/2θ ≡ (R2θ,−R1θ) (1.8)

andRi represents theith Riesz transform. It was recently proved by Caffarelli and Vasseur [2] that solutions
of (1.7)-(1.8) with L2 initial data are smooth (see also the review article [3]). Well-posedness for (1.7)-(1.8)
in the case of smooth periodic initial data was also obtainedby Kiselev, Nazarov, and Volberg [16]. See also
Constantin and Wu [10, 11] for the super-critically dissipative SQG.

We note that the magnetogeostrophic equation MG and the critically dissipative SQG equation (1.7)-(1.8)
are both derived from the Navier-Stokes equations in the context of a rapidly rotating fluid in a thin shell.
For both systems the Coriolis force is dominant in the momentum equation. In the case of the SQG equation
the relation (1.8) is derived via a projection of the three-dimensional problem onto the two-dimensional
horizontal bounding surface. In the case of the MG equation the coupling with the magnetic induction
equation closes the three-dimensional linear system that produces the operators{Tij}, with uj = ∂iTijθ.

Systems (1.2)-(1.4) and (1.7)-(1.8) have strong similarities. In particular, they have the same relative order
of the spatial derivatives between the advection term and the diffusive term. Moreover, ifθ(t, x) is a solution
of (1.2)-(1.4), thenθλ(t, x) = θ(λ2t, λx) is also a solution, and henceL∞(Rd) is the critical Lebesgue space
with respect to the natural scaling of the equation. We note thatL∞ is also the critical Lebesgue space for
the critically dissipative surface quasi-geostrophic equation (1.7)-(1.8), and for the modified surface quasi-
geostrophic equation (cf. Constantin, Iyer, and Wu [8]). The advantage of system (1.2)-(1.4) over the critical
SQG equation is that the diffusive term is given via a local operator. The tradeoff is that the drift velocity
in (1.2)-(1.4) is more singular, i.e., the derivative of aBMO function (see Koch and Tataru [17] for the
Navier-Stokes equations inBMO−1).

Our proof of Theorem2.1 and Theorem3.1 is along the lines of the proof of Caffarelli and Vasseur [2,
Theorem 3] for the critical SQG equation. The primary technique employed in [2, 11, 32], and in the
present paper, is the De Giorgi iteration [12]. This consists of first showing that a weak solution is bounded
by proving that the functionmax{θ−h, 0} has zero energy ifh is chosen large enough. Then a diminishing
oscillation result implies smoothness of the solution in a subcritical space, namelyCα, for someα ∈ (0, 1).
The proof of Hölder continuity for solutions of (1.1) with v ∈ L∞

t BMO−1
x does not follow directly either

from [2], wherev ∈ L∞
t BMOx, or from [8], wherev ∈ L∞

t C1−α
x andα ∈ (0, 1). The crucial step

in the proof of Theorem2.1 is the local energy and uniform estimates. The main obstruction to applying
the classical parabolic De Giorgi estimates via anLp-based Caccioppoli inequality (1 < p < ∞), is that
v(t, ·) ∈ BMO−1. In Section2 we give details as to how we overcome this difficulty.

Equation (1.1) is in the class of parabolic equations in divergence form that have been studied extensively,
including in the classical papers of Nash [24], Moser [23], Aronson and Serrin [1]. Osada [25] allowed for
singular coefficients and proved Hölder continuity of solutions to (1.1) whenv ∈ L∞

t W−1,∞
x is divergence

free. Hence Theorem2.1 may be also viewed as an improvement of the results of Osada, since if f ∈
BMO(Rd)∩L2(Rd), then it does not follow thatf ∈ L∞(Rd) (cf. [30]). In the same spirit, Zhang [34, 35]
and Semenov [27] give strong regularity results for parabolic equations ofthe type (1.1), where the singular
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divergence free velocity satisfies a certain form boundedness condition. We note that this form boundedness
condition does not cover the casev ∈ L∞

t BMO−1
x , and hence Theorem2.1does not follow from the results

in [27, 34, 35], and vice-versa. The overall conclusion of the body of workon parabolic equations with a
singular drift velocity is that the divergence free structure of v produces a dramatic gain in regularity of the
solution, compared to the classical theory (cf. [18]).

Organization of the paper. In Section2 we prove Hölder regularity for the linear drift-diffusionequation
(1.1), with v being a given divergence free vector field in the function spaceL2

t,x∩L
∞
t BMO−1

x . In Section3
we apply this result to prove that a Leray-Hopf weak solutionθ of the nonlinear active scalar system (1.2)-
(1.4) is Hölder smooth for positive time. Since Hölder regularity is subcritical for the natural scaling of
(1.2)-(1.4) we can bootstrap to prove higher regularity and hence conclude that the solution is a classical
solution. In Section4 we describe an active scalar equation that arises as a model for magneto-geostrophic
dynamics in the Earth’s fluid core. We show that this three dimensionalMG equationis an example of the
general system (1.2)-(1.4). In the Appendix we prove the existence of weak solutions to(1.2)-(1.4) evolving
from L2(Rd) initial data.

2. REGULARITY FOR A PARABOLIC EQUATION WITH SINGULAR DRIFT

Consider the evolution of an unknown scalarθ(t, x) given by

∂tθ + (v · ∇)θ = ∆θ (2.1)

where the velocity vectorv(t, x) = (v1(t, x), . . . , vd(t, x)) ∈ L2((0,∞) × R
d) is given, and(t, x) ∈

[0,∞) ×R
d. Additionally letv satisfy

∂jvj(t, x) = 0 (2.2)

in the sense of distributions. We expressvj as

vj(t, x) = ∂iVij(t, x) (2.3)

in [0,∞) × R
d, where we have used the summation convention on repeated indices, and we denotedVij =

−(−∆)−1∂ivj. The matrix{Vij}
d
i,j=1 is given, and satisfies

Vij ∈ L∞((0,∞);L2(Rd)) ∩ L2((0,∞); Ḣ1(Rd)) (2.4)

for all i, j ∈ {1, . . . , d}.

Theorem 2.1(The linear problem). Givenθ0 ∈ L2(Rd) and{Vij} satisfying(2.4), let

θ ∈ L∞([0,∞);L2(Rd)) ∩ L2((0,∞); Ḣ1(Rd))

be a global weak solution of the initial value problem associated to(2.1)–(2.3). If additionally we have
Vij ∈ L∞([t0,∞);BMO(Rd)) for all i, j ∈ {1, . . . , d} and somet0 > 0, then there existsα > 0 such that
θ ∈ Cα([t0,∞)× R

d).

In analogy with the constructions in [2, 11], the proof of Theorem2.1 consists of two steps. Fort0 > 0
fixed, we first prove thatθ ∈ L∞([t0,∞);L∞(Rd)). The main challenge is to prove the Hölder regularity
of the solution, which is achieved by using the method of De Giorgi iteration (cf. [12, 14, 19]). Note
that for divergence-freev ∈ L2

t,x, the existence of a weak solutionθ to (2.1)–(2.3), evolving fromθ0 ∈

L2, is known (for instance, see [27] where the more generalv ∈ L1
loc is treated, also [2], and references

therein). Moreover, this weak solution satisfies the classical energy inequality and the level set energy
inequalities (2.6) below.

Remark 2.2. The conclusion of Theorem2.1holds if the Laplacian on the right side of (2.1) is replaced by
a generic second-order strongly elliptic operator∂i(aij∂j), with bounded measurable coefficients{aij}.

Remark 2.3. We note that the De Giorgi techniques used here to prove Hölder regularity for solutions to
(2.1)–(2.3) can also be used to prove Hölder regularity for the problemwith a forcing termS on the right
side of (2.1). In this case we considerS ∈ Lr

t,x to be an externally given force, withr > 1 + d/2 (cf. [19]).
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Remark 2.4. In a very recent preprint, Seregin, Silvestre,Šverák, and Zlatoš [28] also use De Giorgi tech-
niques to prove Hölder regularity of solutions to a parabolic equation with drift velocities inL∞

t BMO−1
x .

Notation. In the following we shall use the classical function spaces:Lp - Lebesgue spaces,BMO -
functions with bounded mean oscillation,BMO−1 - derivatives ofBMO functions,Ḣs - homogeneous
Sobolev spaces, andCα - Hölder spaces. To emphasize the different integrabilityin space and time we
shall denoteLp([0,∞);Lq(Rd)) by Lp

tL
q
x for 1 ≤ p, q ≤ ∞, and similarly forLp

t Ḣ
1
x andLp

tBMOx. Also
Lp
t,x(I×B) = Lp(I;Lp(B)) for anyI ⊂ R andB ⊂ R

d. The ball inRd and the parabolic cylinder inRd+2

are classically denoted byBρ(x0) = {x ∈ R
d : |x− x0| < ρ} andQρ(t0, x0) = [t0 − ρ2, t0]×Bρ(x0) for

ρ > 0. Lastly, we shall write(f − k)+ = max{f − k, 0}.

2.1. Boundedness of the solution.The first step is to show that a weak solution is bounded for positive
time.

Lemma 2.5 (From L2 to L∞). Let θ ∈ L∞([0,∞);L2(Rd)) ∩ L2((0,∞); Ḣ1(Rd)) be a global weak
solution of (2.1)-(2.3) evolving fromθ0 ∈ L2(Rd), wherev ∈ L2((0,∞);L2(Rd)). Then for allt > 0 we
have

‖θ(t, ·)‖L∞(Rd) ≤
C‖θ0‖L2(Rd)

td/4
, (2.5)

for some sufficiently large positive dimensional constantC.

Proof. The proof of this lemma is mutatis-mutandis as in [2, 11], and requires only the fact thatv is diver-
gence free. The main idea is that sincey 7→ (y − h)+ is convex, for allh > 0 we have

∂t(θ − h)+ −∆(θ − h)+ + (v · ∇)(θ − h)+ ≤ 0,

and hence, multiplying by(θ − h)+ integrating by parts, and using thatdiv v = 0, we obtain the energy
inequality

∫

Rd

|(θ(t2, ·) − h)+|
2dx+ 2

∫ t2

t1

∫

Rd

|∇(θ − h)+|
2dxdt ≤

∫

Rd

|(θ(t1, ·)− h)+|
2dx, (2.6)

for all h > 0 and0 < t1 < t2 < ∞. For t0 > 0, andH > 0 to be chosen sufficiently large, we define
tn = t0 − t0/2

n, hn = H −H/2n, and

cn = sup
t≥tn

∫

Rd

|(θ(t, ·)− hn)+|
2dx+ 2

∫ ∞

tn

∫

Rd

|∇(θ − hn)|
2dxdt,

wheren ≥ 0. The inequality (2.6), the Gagliardo-Nirenberg-Sobolev inequality, and Rieszinterpolation
then imply that

cn+1 ≤
C

t0H4/d
2n(1+4/d)c1+2/d

n .

LettingH = Cc
1/2
0 /t

d/4
0 ≤ C‖θ0‖L2(Rd)/t

d/4
0 , for some sufficiently large dimensional constantC, implies

that cn → 0 exponentially asn → ∞, and thereforeθ(t0, ·) ≤ H. Applying the same procedure to−θ
concludes the proof of the lemma. We refer the reader to [2, 11] for further details. �

2.2. Local energy and uniform inequalities. In proving the boundedness of the solution we only required
thatv ∈ L2

t,x, anddiv v = 0. For the rest of the section we use the additional assumptionv ∈ L∞
t BMO−1

x .

Lemma 2.6 (First energy inequality). Let θ ∈ L∞
t L2

x ∩ L2
t Ḣ

1
x be a global weak solution of the initial

value problem associated to(2.1)–(2.3). Furthermore, assume thatVij ∈ L∞((0,∞);BMO(Rd)) for all
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i, j ∈ {1, . . . , d}, and(2.4) holds. Then for any0 < r < R andh ∈ R, we have

‖(θ − h)+‖
2
L∞

t L2
x(Qr)

+ ‖∇(θ − h)+‖
2
L2
t,x(Qr)

≤
C R

(R− r)2
‖(θ − h)+‖

2− 2
d+2

L2
t,x(QR)

‖(θ − h)+‖
2

d+2

L∞

t,x(QR), (2.7)

whereC = C(d, ‖Vij‖L∞

t BMOx) is a fixed positive constant, and we have denotedQρ = [t0 − ρ2, t0] ×

Bρ(x0) for ρ > 0 and an arbitrary(t0, x0) ∈ (0,∞) × R
d. Moreover, estimate(2.7) also holds withθ

replaced by−θ.

Remark 2.7. Note that from Lemma2.5we have thatθ ∈ L∞
t,x, and hence the right side of (2.7) is finite.

Remark 2.8. The classical local energy inequality (cf. [14, 19, 25], see also [2, 11]) does not contain the
term ‖(θ − h)+‖L∞

t,x(QR) on the right, since the velocity fieldv is not as singular as in our case. In this
section we prove that since in (2.7) the exponent2/(d+2) of ‖(θ−h)+‖L∞

t,x(QR) is “small enough”, the De
Giorgi program may still be carried out to obtain the Hölderregularity of weak solutions.

Proof of Lemma2.6. Fix h ∈ R and let0 < r < R be such thatt0/2−R2 > 0. Letη(t, x) ∈ C∞
0 ((0,∞)×

R
d) be a smooth cutoff function such that

0 ≤ η ≤ 1 in (0,∞) × R
d,

η ≡ 1 in Qr(x0, t0), andη ≡ 0 in c l{Qc
R(x0, t0) ∩ {(t, x) : t ≤ t0}},

|∇η| ≤
C

R− r
, |∇∇η| ≤

C

(R − r)2
, |∂tη| ≤

C

(R− r)2
in QR(x0, t0) \Qr(x0, t0),

for some positive dimensional constantC. Definet1 = t0 − R2 > 0 and lett2 ∈ [t0 − r2, t0] be arbitrary.
Multiply (2.1) by (θ − h)+η

2 and then integrate on[t1, t2]×R
d to obtain

∫ t2

t1

∫

Rd

∂t
(
(θ − h)2+

)
η2 dxdt− 2

∫ t2

t1

∫

Rd

∂jj(θ − h)+(θ − h)+η
2 dxdt

+

∫ t2

t1

∫

Rd

∂iVij ∂j
(
(θ − h)2+

)
η2 dxdt = 0. (2.8)

The main obstruction to applying classical the de Giorgi estimates (via theLp-based Caccioppoli inequality,
cf. [14, 19]) is that∂iVij ∈ L∞

t BMO−1
x , as opposed to the caseL∞

t W−1,∞
x considered by Osada [25] (see

also [27]). We overcome this difficulty by subtracting fromVij(t, ·) its spatial mean over{t}×BR, namely
V ij,BR

(t) (this does not introduce any lower order terms because∂xiV ij,BR
(t) = 0), and by appealing to

the John-Nirenberg inequality. More precisely, we define

Ṽij,R(t, x) = Vij(t, x)− V ij,BR
(t) = Vij(t, x)−

1

|BR|

∫

BR

Vij(t, y) dy, (2.9)

and note that∂iVij = ∂iṼij,R. Therefore, the third term on the left of (2.8) may be replaced by

∫ t2

t1

∫

Rd

∂iṼij,R ∂j
(
(θ − h)2+

)
η2 dxdt.

We integrate by parts int the first term on the left of (2.8), and useη(t1, ·) ≡ 0. The second term we
integrate twice by parts inxj, and the third term on the left of (2.8) we integrate by parts first inxj (and use
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∂j(∂iṼij,R) = ∂i(∂jVij) = ∂jvj = 0) and then integrate by parts inxi, to obtain

1

2

∫

Rd

(θ(t2, ·)− h)2+η(t2, ·)
2 dx+

∫ t2

t1

∫

Rd

|∇(θ − h)+|
2η2 dxdt

=

∫ t2

t1

∫

Rd

(θ − h)2+η∂tη dxdt+

∫ t2

t1

∫

Rd

(θ − h)2+∂j(η∂jη) dxdt

−

∫ t2

t1

∫

Rd

Ṽij,R(θ − h)2+∂i(η∂jη) dxdt

− 2

∫ t2

t1

∫

Rd

Ṽij,R∂i(θ − h)+(θ − h)+η∂jη dxdt. (2.10)

Using the bounds on the time and space derivatives ofη, the fact thatη ≡ 1 onQr, t2 ≤ t0, the Hölder and
ε-Young inequalities, we obtain from (2.10)

∫

Br

(θ(t2, ·)− h)2+ dx+ 2

∫ t2

t1

∫

Rd

|∇(θ − h)+|
2η2 dxdt

≤
C

(R − r)2

∫∫

QR

(θ − h)2+ dxdt+
C

(R− r)2

∫∫

QR

|Ṽij,R| (θ − h)2+ dxdt

+

∫ t2

t1

∫

Rd

|∇(θ − h)+|
2η2 dxdt+

C

(R− r)2

∫∫

QR

|Ṽij,R|
2(θ − h)2+ dxdt. (2.11)

After absorbing the third term on the right of (2.11) into the left side, we take the supremum overt2 ∈
[t0 − r2, t0], to obtain

‖(θ − h)+‖
2
L∞

t L2
x(Qr)

+ ‖∇(θ − h)+‖
2
L2
t,x(Qr)

≤
C

(R− r)2
‖(θ − h)+‖

2
L2
t,x(QR) +

C

(R − r)2

∫∫

QR

|Ṽij,R| (θ − h)2+ dxdt

+
C

(R− r)2

∫∫

QR

|Ṽij,R|
2(θ − h)2+ dxdt. (2.12)

As a corollary of the celebrated John-Nirenberg inequality(cf. [14, 30]) we have that for any fixedR > 0,
t ∈ [t0 −R2, t0], and1 < p < ∞,

‖Ṽij,R(t, ·)‖Lp(BR) = ‖Vij(t, ·) − V ij,BR
(t)‖Lp(BR)

≤ C‖Vij(t, ·)‖BMO(Rd)|BR|
1/p,

whereC = C(d, p) > 0 is a fixed constant (recall thatC(d, p) → ∞ asp → ∞). The fact thatVij ∈

L∞([t0/2,∞);BMO(Rd)) implies that for allt ∈ [t0 −R2, t0] we have

‖Ṽij,R(t, ·)‖Lp(BR) ≤ C0|BR|
1/p (2.13)

for a positive constantC0 = C0(‖Vij‖L∞([t0/2,∞);BMO(Rd)), d, p). We fix0 < ε < 2 to be chosen later, and
using (2.13) and the Hölder inequality we bound

∫∫

QR

|Ṽij,R| (θ − h)2+ dxdt =

∫ t0

t0−R2

(∫

BR

|Ṽij,R(t, x)| (θ − h)2+(t, x) dx

)
dt

≤ C0|BR|
ε/2

∫ t0

t0−R2

‖(θ(t, ·) − h)+‖
2
L4/(2−ε)(BR)

dt.
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Using the interpolation inequality‖f‖Lp ≤ C‖f‖
2/p
L2 ‖f‖

1−2/p
L∞ , with p = 4/(2 − ε), we obtain from the

above estimate that
∫∫

QR

|Ṽij,R| (θ − h)2+ dxdt

≤ C0|BR|
ε/2

∫ t0

t0−R2

‖(θ(t, ·) − h)+‖
2−ε
L2(BR)

‖(θ(t, ·)− h)+‖
ε
L∞(BR) dt

≤ C0R
ε(d+2)/2‖(θ − h)+‖

2−ε
L2
t,x(QR)

‖(θ − h)+‖
ε
L∞

t,x(QR). (2.14)

Similarly, from (2.13), the Hölder inequality andLp interpolation, we obtain
∫∫

QR

|Ṽij,R|
2(θ − h)2+ dxdt ≤ C0R

ε(d+2)/2‖(θ − h)+‖
2−ε
L2
t,x(QR)

‖(θ − h)+‖
ε
L∞

t,x(QR). (2.15)

Combining estimates (2.12) with (2.14), (2.15), and the Hölder inequality, we conclude that

‖(θ − h)+‖
2
L∞

t L2
x(Qr)

+ ‖∇(θ − h)+‖
2
L2
t,x(Qr)

≤
C0R

ε(d+2)/2

(R− r)2
‖(θ − h)+‖

2−ε
L2
t,x(QR)

‖(θ − h)+‖
ε
L∞

t,x(QR). (2.16)

The proof of the lemma is concluded by lettingε = 2/(d + 2) in (2.16) above. �

By applying the Hölder inequality to the right side of (2.7) we then obtain:

Corollary 2.9. Letθ be as in Lemma2.6. Then we have

‖(θ − h)+‖
2
L∞

t L2
x(Qr)

+ ‖∇(θ − h)+‖
2
L2
t,x(Qr)

≤
CRd+2

(R− r)2
‖(θ − h)+‖

2
L∞

t,x(QR), (2.17)

for some positive constantC = C(d, ‖Vij‖L∞

t BMOx).

We now fix a point(t0, x0) ∈ (0,∞) × R
d and we prove the Hölder continuity ofθ at this point.

Throughout the following we denote byQρ the cylinderQρ(t0, x0), for anyρ > 0.
The following lemma gives an estimate on the supremum ofθ on a half cylinder, in terms of the supremum

on the full cylinder. A similar statement may be proven for−θ.

Lemma 2.10. Letθ be as in Lemma2.6. Assume thath0 ≤ supQr0
θ, wherer0 > 0 is arbitrary. We have

sup
Qr0/2

θ ≤ h0 +C

(
|{θ > h0} ∩Qr0 |

1/(d+2)

r0

)1/2(
sup
Qr0

θ − h0

)
(2.18)

for some positive constantC = C(d, ‖Vij‖L∞

t BMOx).

The above estimate differs from the classical one cf. [19, Theorem 6.50] in that the power of|{θ >
h0}∩Qr0 |/|Qr0 | is 1/(2d+4) instead of1/(d+2). However, the key feature of (2.18) is that the coefficient
of (supQr0

θ − h0) does not scale withr0. It is convenient to introduce the following notation:

• A(h, r) = {θ > h} ∩Qr

• a(h, r) = |A(h, r)|
• b(h, r) = ‖(θ − h)+‖

2
L2
t,x(Qr)

• M(r) = supQr
θ

• m(r) = infQr θ
• osc(Q) = supQ θ − infQ θ
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Proof of Lemma2.10. Let 0 < r < R and0 < h < H. We have

b(h, r) = ‖θ − h‖2L2
t,x(A(h,r)) ≥ ‖θ − h‖2L2

t,x(A(H,r)) ≥ (H − h)2a(H, r). (2.19)

Let η(t, x) ∈ C∞
0 (R × R

d) be a smooth cutoff such thatη ≡ 1 onQr, η ≡ 0 onQc
(r+R)/2 ∩ {t ≤ t0}, and

|∇η| ≤ C/(R− r) for some universal constantC > 0. Then, by Hölder’s inequality and the choice ofη we
obtain

b(h, r) = ‖(θ − h)+‖
2
L2
t,x(Qr)

≤ a(h, r)2/(d+2)‖(θ − h)+‖
2

L
2(d+2)/d
t,x (Qr)

≤ a(h, r)2/(d+2)‖η(θ − h)+‖
2

L
2(d+2)/d
t,x ((−∞,t0)×Rd)

. (2.20)

Using the Gagliardo-Nirenberg-Sobolev inequality and Riesz interpolation

‖f‖2
L2(d+2)/d((−∞,t0)×Rd)

≤ C‖f‖2L∞

t L2
x((−∞,t0)×Rd) + C‖∇f‖2L2

t,x((−∞,t0)×Rd),

estimate (2.20) implies that

b(h, r) ≤ Ca(h, r)2/(d+2)
(
‖η(θ − h)+‖

2
L∞

t L2
x((−∞,t0)×Rd)

+ ‖∇
(
η(θ − h)+

)
‖2L2

t,x((−∞,t0)×Rd)

)

≤ Ca(h, r)2/(d+2)
(
‖(θ − h)+‖

2
L∞

t L2
x(Q(r+R)/2)

+ ‖∇(θ − h)+‖
2
L2
t,x(Q(r+R)/2)

+
1

(R − r)2
‖(θ − h)+‖

2
L2
t,x(Q(r+R)/2)

)

for some positive dimensional constantC. Using the first energy inequality, i.e., Lemma2.6, and the Hölder
inequality, we bound the far right side of the above and obtain

b(h, r) ≤ Ca(h, r)2/(d+2) R

(R− r)2
‖(θ − h)+‖

2−2/(d+2)

L2
t,x(QR)

‖(θ − h)+‖
2/(d+2)
L∞

t,x(QR)

≤ Ca(h, r)2/(d+2) R

(R− r)2
b(h,R)1−1/(d+2)‖(θ − h)+‖

2/(d+2)
L∞

t,x(QR) (2.21)

for some sufficiently large positive constantC = C(d, ‖Vij‖L∞

t BMOx). By combining estimates (2.19) and
(2.21) we obtain the main consequence of Lemma2.6, that is

b(H, r) ≤
C R

(H − h)4/(d+2)(R− r)2
b(h,R)1+1/(d+2)‖(θ −H)+‖

2/(d+2)
L∞

t,x(QR). (2.22)

The above estimates give the proof of the lemma as follows. Let rn = r0/2 + r0/2
n+1 ց r0/2, hn =

h∞ − (h∞ − h0)/2
n ր h∞, andbn = b(hn, rn+1), for all n ≥ 0, wherer0 andh0 are as in the statement

of the lemma, whileh∞ > 0 is to be chosen later. By lettingH = hn+1, h = hn, r = rn+2, andR = rn+1

in (2.22), we obtain

bn+1 ≤
Crn+1

(h∞ − h0)4/(d+2)r20
2n(2+4/(d+2))b1+1/(d+2)

n ‖(θ − hn+1)+‖
2/(d+2)
L∞

t,x(Qrn+1 )

≤
C(M(r0)− h0)

2/(d+2)

(h∞ − h0)4/(d+2)r0
2n(2+4/(d+2))b1+1/(d+2)

n , (2.23)

by using

‖(θ − hn+1)+‖L∞

t,x(Qrn+1)
= sup

A(hn+1,rn+1)
θ − hn+1

≤ sup
Qrn+1

θ − hn+1 ≤ sup
Qr0

θ − h0 = M(r0)− h0
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which holds sinceM(rn) ≤ M(r0) andhn ≥ h0. LetB = 24+2(d+2). We chooseh∞ large enough so that

C(M(r0)− h0)
2/(d+2)

(h∞ − h0)4/(d+2)r0
b
1/(d+2)
0 ≤

1

B
, (2.24)

then by induction we obtain from (2.23) thatbn ≤ b0/B
n, and thereforebn → 0 asn → ∞. This implies

thatsupQr0/2
θ ≤ h∞. A simple calculation shows that if we let

h∞ = h0 +
CB(d+2)/4(M(r0)− h0)

1/2b
1/4
0

r
(d+2)/4
0

(2.25)

then (2.24) holds. Lastly,b0 = b(h0, 3r0/4) may be bounded via (2.21) and the Hölder inequality as

b0 ≤ Ca(h0, r0)
1/(d+2)rd+2

0 (M(r0)− h0)
2. (2.26)

The proof of the lemma is concluded by combiningsupQr0/2
θ ≤ h∞ with (2.25) and (2.26). From the

above proof it follows that inequality (2.18) also holds withθ is replaced by−θ. �

As opposed to the elliptic case, in the parabolic theory we need an additional energy inequality to control
the possible growth of level sets of the solution.

Lemma 2.11(Second energy inequality).Let θ ∈ L∞
t L2

x ∩ L2
t Ḣ

1
x be a global weak solution of the ini-

tial value problem associated to(2.1)–(2.3). Furthermore, assume thatVij ∈ L∞
t BMOx for all i, j ∈

{1, . . . , d}, and (2.4) holds. Fix an arbitraryx0 ∈ R
d, let h ∈ R, 0 < r < R, and0 < t1 < t2. Then we

have

‖(θ(t2, ·)− h)+‖
2
L2(Br)

≤ ‖(θ(t1, ·)− h)+‖
2
L2(BR) +

C Rd(t2 − t1)

(R− r)2
‖(θ − h)+‖

2
L∞

t,x((t1,t2)×BR) (2.27)

for some sufficiently large positive constantC = C(d, ‖Vij‖L∞

t BMOx), where we have denotedBρ =
Bρ(x0) for ρ > 0.

Proof. Note that by Lemma2.5 we have thatθ ∈ L∞
t,x and hence the right side of (2.27) is finite. Let

η ∈ C∞
0 (Rd) be a smooth cutoff such thatη ≡ 1 onBr, η ≡ 0 onBc

R, and|∇η(x)| ≤ C/(R − r), for all
x ∈ R

d, for some constantC > 0. Multiply (2.1) by η2(θ − h)+ and integrate fromt1 to t2 to obtain
∫ t2

t1

∫

Rd

∂t

(
(θ − h)+

)2
η2dxdt− 2

∫ t2

t1

∫

Rd

∂jj(θ − h)+(θ − h)+η
2dxdt

= −

∫ t2

t1

∫

Rd

∂iVij ∂j

(
(θ − h)+

)2
η2dxdt

= −

∫ t2

t1

∫

Rd

∂iṼij,R ∂j

(
(θ − h)+

)2
η2dxdt,

where, as in (2.9), we have denoted̃Vij,R(t, x) = Vij(t, x) −
1

|BR|

∫
BR

Vij(t, y) dy. After integrating by
parts we get

∫

Rd

(θ(t2, ·)− h)2+η
2dx+

∫ t2

t1

∫

Rd

|∇(θ − h)+|
2η2dxdt

≤

∫

Rd

(θ(t1, ·)− h)2+η
2dx

+ C

∫ t2

t1

∫

Rd

(θ − h)2+

(
|∂j(η∂jη)|+ |Ṽij,R||∂i(η∂jη)| + |Ṽij,R|

2|∂iη∂jη|
)
dxdt.
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We bound the right side of the above estimate as in (2.14) and (2.15) to obtain that

‖(θ(t2, ·)− h)+‖
2
L2(Br)

≤ ‖(θ(t1, ·)− h)+‖
2
L2(BR) +

CRdε/2(t2 − t1)
ε/2

(R − r)2
‖(θ − h)+‖

2−ε
L2
t,x
‖(θ − h)+‖

ε
L∞

t,x

Letting ε = 2 in the above estimates concludes the proof of the lemma. The corresponding statement for
−θ also holds. �

The use of the second energy inequality is to bound|{θ(t2, ·) ≥ H} ∩ BR|/|BR|, whenever|{θ(t1, ·) ≥
h} ∩Br|/|Br| ≤ 1/2. More precisely, we have the following lemma.

Lemma 2.12. Fix κ0 = (4/5)1/d , let n0 ≥ 2 be the least integer so that2n0/(2n0 − 2) ≤
√
6/5, and let

δ0 = (1− κ0)
2/(12C0κ

2
0), whereC0 is the constant from(2.27). For t1, R > 0, if

|{θ(t1, ·) ≥ h} ∩Br| ≤
1

2
|Br|, (2.28)

then for allt2 ∈ [t1, t1 + δ0r
2] we have

|{θ(t2, ·) ≥ H} ∩BR| ≤
7

8
|BR|, (2.29)

wherer = κ0R, M = sup(t1,t1+δ0R2)×BR
θ, m = inf(t1,t1+δ0R2)×BR

θ, h = (M + m)/2, andH =

M − (M −m)/2n0 .

Proof. For t2 ∈ [t1, t1 + δ0r
2], we obtain from the second energy inequality (cf. (2.27)) that

‖(θ(t2, ·)− h)+‖
2
L2(Br)

≤ ‖(θ(t1, ·) − h)+‖
2
L2(BR) +

C0R
d(t2 − t1)

(R− r)2
‖(θ − h)+‖

2
L∞

t,x(Q2)

≤ ‖(θ(t1, ·) − h)+‖
2
L2(BR) +

C0R
dδ0r

2

(R − r)2
(M − h)2, (2.30)

whereQ2 = (t1, t1 + δ0R
2)×BR. The left side of the above estimate is bounded from below as

‖(θ(t2, ·)− h)+‖
2
L2(Br)

≥ ‖(θ(t2, ·)− h)+‖
2
L2(Br∩{θ(t2,·)≥H})

≥ (H − h)2|{θ(t2, ·) ≥ H} ∩Br|. (2.31)

From (2.30), (2.31), and the Hölder inequality, we obtain after dividing by|Br| that

|{θ(t2, ·) ≥ H} ∩Br|

|Br|
≤

(M − h)2Rd

(H − h)2rd

(
|{θ(t1, ·) ≥ h} ∩BR|

|BR|
+

C0δ0r
2

(1− r/R)2R2

)
.

Noting that by construction(M − h)/(H − h) = 2n0/(2n0 − 2) ≤
√

6/5, and recalling thatr/R = κ0 =

(4/5)1/d, we obtain from the previous estimate and the assumption of the lemma that

|{θ(t2, ·) ≥ H} ∩Br|

|Br|
≤

3

2

(
|{θ(t1, ·) ≥ h} ∩BR|

|BR|
+

C0δ0κ
2
0

(1− κ20)

)

≤
3

2

(
1

2
+

1

12

)
=

7

8
, (2.32)

concluding the proof of the lemma. �
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2.3. Hölder regularity of the solution. We now have all necessary ingredients to conclude the De Giorgi
argument for proving Hölder regularity of the weak solution.

Recall that sincediv v = 0, by Lemma2.5 we have thatθ ∈ L∞([t0,∞);L∞(Rd)) for any t0 >
0. Moreover, ifVij ∈ L∞([t0,∞);BMO(Rd)) for somet0 > 0, we obtain the energy inequalities of
Lemmas2.6 and2.11. In turn, these inequalities give control for the growth of the supremum on doubling
cylinders (cf. Lemma2.10), and for the growth of level sets of the solution (cf. Lemma2.12). The rest of
the proof follows as in [19], but we give a sketch for the sake of completeness.

Proof of Theorem2.1. The proof of the theorem is based on showing that there existsγ ∈ (0, 1) such that
osc(Q1) ≤ γ osc(Q2). The key observation is that ifγ is independent ofR, this estimate implies the Hölder
regularity of the solution, where the Hölder exponentα ∈ (0, 1) may be calculated explicitly fromγ.

Fix κ0, δ0, n0,M,m, h,H, r, andR as in Lemma2.12for the rest of this proof. We also fix two cylinders
Q1 = [t1, t1 + δ0r

2] × Br, andQ2 = [t1, t1 + δ0R
2] × BR, where we recall thatt1 > 0 andR > 0 are

arbitrary.
Recall thath = (infQ2 θ + supQ2

θ)/2. Without loss of generality we may assume|{θ(t1, ·) ≥ h} ∩
Br| ≤ |Br|/2. Otherwise , lettingh′ = (infQ2(−θ) + supQ2

(−θ))/2 we have|{−θ(t1, ·) ≥ h′} ∩ Br| =
|{θ(t1, ·) ≤ h} ∩Br| ≤ |Br|/2, and we work with−θ instead ofθ.

Forn ≥ n0, we defineHn = M − (M −m)/2n, and note thatH = Hn0 ≤ Hn ր M . We also letw be
θ truncated between levelsHn−1 andHn, namely

w = min{θ,Hn} −min{θ,Hn−1} =





0, θ < Hn−1

θ −Hn−1, Hn−1 ≤ θ < Hn

Hn −Hn−1, Hn ≤ θ.

Since|{θ(t1, ·) ≥ h} ∩Br| ≤ |Br|/2, by Lemma2.12, for everyt ∈ [t1, t1 + δ0r
2] we have

|{w(t, ·) = 0} ∩BR| = |{θ(t, ·) < Hn−1} ∩BR| ≥ |{θ(t, ·) < H} ∩BR| ≥
7

8
|BR|.

By the above estimate and the Poincaré inequality we obtain∫

Br

|w(t, ·)|dx ≤ Cr

∫

Br

|∇w(t, ·)|dx

for all t ∈ [t1, t1 + δ0r
2], whereC = C(d) is a universal positive constant. Integrating the above estimate

in time over[t1, t1 + δ0r
2] and using the Hölder inequality we get∫∫

Q1

|w|dxdt ≤ Cr

∫∫

Q1

|∇w|dxdt

≤ Cr|{Hn−1 ≤ θ < Hn} ∩Q1|
1/2‖∇(θ −Hn−1)+‖L2

t,x(Q1). (2.33)

We bound the far right side of (2.33) by using Corollary2.9, to obtain
∫∫

Q1

|w|dxdt ≤ Cr|{Hn−1 ≤ θ < Hn} ∩Q1|
1/2‖∇(θ −Hn−1)+‖L∞

t,x(Q2)
|Q2|

1/2

R− r

≤ C
κ0

1− κ0
|{Hn−1 ≤ θ < Hn} ∩Q1|

1/2|Q2|
1/2(M −Hn−1) (2.34)

The left side of (2.34) is bounded from below as∫∫

Q1

|w|dxdt ≥

∫∫

Q1∩{θ≥Hn}
|w|dxdt ≥ (Hn −Hn−1)|{θ ≥ Hn} ∩Q1|. (2.35)

By combining and squaring estimates (2.34) and (2.35) we obtain

|{θ ≥ Hn} ∩Q1|
2 ≤

C|Q2|(M −Hn−1)
2

(Hn −Hn−1)2
|{Hn−1 ≤ θ < Hn} ∩Q1|

≤ C|Q2| (|{θ ≥ Hn−1} ∩Q1| − |{θ ≥ Hn} ∩Q1|) , (2.36)
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where we used the fact that, by construction,(M −Hn−1)/(Hn −Hn−1) = 2. Hence,
∑

n≥n0+1

|{θ ≥ Hn} ∩Q1|
2 ≤ C|Q2||{θ ≥ Hn0} ∩Q1|,

and since the sequence|{θ ≥ Hn} ∩Q1| is decreasing, we obtain

|{θ ≥ Hn} ∩Q1| ≤
C|Q2|

1/2|{θ ≥ H} ∩Q1|
1/2

(n− n0)1/2

for all n ≥ n0 + 1. By Lemma2.12we have that|{θ ≥ H} ∩ Q1| ≤ 7|Q1|/8, and therefore the above
estimate implies

|{θ ≥ Hn} ∩Q1| ≤
Crd+2

(n− n0)1/2
, (2.37)

where we have used thatr = κ0R, andκ0 = κ0(d). By Lemma2.10, the fact thatδ0 < 1, and the estimate
(2.37) we obtain

sup
Q1

θ ≤ Hn + C

(
|{θ ≥ Hn} ∩Q1|

1/(d+2)

r

)1/2

(M −Hn)

≤ Hn +
C

(n− n0)1/(4d+8)
(M −Hn),

for some positive constantC = C(d, ‖Vij‖L∞

t BMOx), which is independent ofr. Therefore there exists a
sufficiently largen1 = n1(d, ‖Vij‖L∞

t BMOx) ≥ n0 + 1 such that

sup
Q1

θ ≤ Hn1 +
1

2
(M −Hn1).

Recalling the definition ofHn,m, andM , a simple calculation shows that the above estimate implies

osc(Q1) = sup
Q1

θ − inf
Q1

θ ≤ Hn1 −m+
1

2
(M −Hn1) =

(
1−

1

2n1+2

)
(M −m)

=

(
1−

1

2n1+2

)(
sup
Q2

θ − inf
Q2

θ

)
= γ osc(Q2), (2.38)

whereγ = 1−1/2n1+2 ∈ (0, 1) is independent ofr. Recall that in (2.38) we haveQ1 = [t1, t1+δ0κ
2
0R

2]×
Bκ0R(x0) andQ2 = [t1, t1 + δ0R

2] × BR(x0), with κ0, δ0 fixed positive constants, andR > 0 arbitrary.
This classically implies Hölder continuity ofθ at the arbitrary point(t1, x0) ∈ (0,∞)×R

d, concluding the
proof of the theorem. �

3. GLOBAL REGULARITY FOR A NONLINEAR PARABOLIC EQUATION

We address the global regularity of solutions to the initialvalue problem

∂tθ −∆θ + (u · ∇)θ = 0 (3.1)

div u = 0 (3.2)

uj = ∂iTijθ (3.3)

θ(0, ·) = θ0, (3.4)

where{Tij}
d
i,j=1 is a matrix of Calderón-Zygmund singular integral operators such that∂i∂jTijf = 0 for

any Schwartz functionf . As an elementary example, ifd = 2 we may considerT11 = T22 = 0, and
T12 = −T21 = T , for some Calderón-Zygmund operatorT (for instanceT = Ri, a Riesz-Transform). In
this case the velocity would beu = ∇⊥Tθ. Whend = 3, a physical example of such a matrix{Tij} arises
in the MG system (cf. Section4 below).
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Theorem 3.1 (The nonlinear problem). Let θ0 ∈ L2(Rd) be given. A Leray-Hopf weak solutionθ ∈
L∞([0,∞);L2(Rd)) ∩ L2((0,∞);H1(Rd)) of (3.1)–(3.4), evolving fromθ0, is a classical solution, that is
θ ∈ C∞((0,∞) ×R

d).

Lemma 3.2 (Boundedness).A Leray-Hopf weak solutionθ of (3.1)-(3.4) is bounded fort > 0, i.e., θ ∈
L∞([t0,∞);L∞(Rd)) for anyt0 > 0.

Proof. The proof of this lemma is the same as the proof of Lemma2.5 (cf. [2, 11]), and only uses the fact
thatdiv u = 0, whereu ∈ L2

t,x((0,∞) × R
d). �

Sinceθ ∈ L∞
t,x, it follows from the Calderón-Zygmund theory of singular integrals thatTijθ =: Vij ∈

L∞([t0,∞);BMO(Rd)), for any t0 > 0, wherei, j ∈ {1, . . . , d}. Therefore, we may treat (3.1) as
a linear evolution equation (see also [2, 11]), where the divergence-free velocity fieldu is given, and
u ∈ L2((0,∞);L2(Rd)) ∩ L∞([t0,∞);BMO−1(Rd)), for any t0 > 0. This is precisely the setting of
Theorem2.1 for the linear evolution equation. Hence Theorem2.1can be applied to the nonlinear problem
to give Hölder regularity of the solution. Therefore we obtain:

Lemma 3.3(Hölder regularity). A Leray-Hopf weak solutionθ of (3.1)-(3.4) is Hölder smooth for positive
time, i.e., for anyt0 > 0, there existsα > 0 such thatθ ∈ Cα([t0,∞)× R

d).

Lastly, since the Hölder regularity is sub-critical for the natural scaling of (3.1)-(3.4) one may bootstrap
to prove that the solution is in a higher Hölder class:

Lemma 3.4 (Higher regularity). Let θ ∈ L∞([t0,∞);Cα(Rd)) be a Leray-Hopf weak solution of the
initial value problem associated to(2.1)–(2.3), withα ∈ (0, 1). Thenθ ∈ L∞([t1,∞);C1+δ(Rd)), for any
t1 > t0, for someδ ∈ (0, 1).

For 1/2 < α < 1, the proof is the same as the proof of higher regularity for the modified surface quasi-
geostrophic equation [8, Theorem 2.2] (see also [10, Theorem 3.1] for the supercritical quasi-geostrophic
equation). These elegant proofs use the natural characterization of Hölder spaces in terms of Besov spaces,
and energy inequalities at the level of frequency shells.

For 0 < α ≤ 1/2, theCα smoothness ofθ is weak relative to the roughness of the velocityu, and it is
therefore necessary to modify the techniques of [10, 8] for the proof of higher regularity. In [13] we give
the details of this modification which uses the extra information thatu ∈ L2

t,x and employs estimates in the
Chemin-Lerner (cf. [5]) space-time Besov spaces.

We give a very brief outline of the proof of lemma 3.4 in the tworanges for alpha and refer the reader to
[10, 8] and [13] for detailed estimates.

Proof of Lemma3.4. Let Ḃs
p,q be the classical homogenous Besov space (cf. [8, 10]), and recall thatL∞ ∩

Ḃs
∞,∞ = Cs is the Hölder space with indexs. The proof of the lemma in the caseα ∈ (1/2, 1) is

based on first noting that ifθ is as in the statement of the lemma, thenθ ∈ L∞([t0,∞); Ḃ
αp
p,∞), where

αp = (1− 2/p)α, andp ∈ [2,∞) is fixed, to be chosen later. Then, forj ∈ Z fixed, we have

1

p

d

dt
‖∆jθ‖

p
Lp +

∫
|∆jθ|

p−2∆jθ(−∆)∆jθ = −

∫
|∆jθ|

p−2∆jθ∆j(u · ∇θ). (3.5)

Upon integration by parts (see also [4]), the dissipative term is bounded from below
∫

|∆jθ|
p−2∆jθ(−∆)∆jθ dx ≥

22j

C(d, p)
‖∆jθ‖

p
Lp , (3.6)

whereC(d, p) > 0 is a constant depending on the dimension andp. The main difficulty lies in estimating the
convection term. This is achieved in [8, 10] by using the Bony paraproduct formula, the Hölder inequality,
the Bernstein inequalities, a commutator estimate, and thefact that‖u‖Cαp−1 ≤ C‖θ‖Cαp . The latter holds
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sinceuj = ∂iTijθ and the fact that Calderón-Zygmund operators are bounded on Hölder spaces. Ifαp < 2
these operations give

∣∣∣∣
∫

|∆jθ|
p−2∆jθ∆j(u · ∇θ) dx

∣∣∣∣ ≤ C2(2−2αp)j‖θ‖Cαp‖θ‖Ḃαp
p,∞

. (3.7)

Combining (3.5)–(3.7), using the Grönwall inequality, and then taking the supremum in j gives thatθ ∈

L∞([t1,∞); Ḃ
2αp
p,∞(Rd)) for anyt1 > t0. Using the Besov embedding theorem we obtain that

θ ∈ L∞([t1,∞); Ḃ
2α−ǫp
∞,∞ (Rd))

, for anyt1 > t0, whereǫp = (4α + d)/p < (4 + d)/p. Lettingp > (4 + d)/(2α − 1) concludes the proof
of the lemma in the caseα ∈ (1/2, 1).

In the caseα ∈ (0, 1/2] the proof is based on proving that the additional information θ ∈ L2([t1, t2]; Ḣ
1),

impliesθ ∈ L2([t1, t2]; Ḃ
1+d/p
p,1 ) for some large enoughp > 2, and for anyt2 > t1. This is achieved by using

the smoothing effect of the Laplacian on high frequencies ofθ, so that we need to work in the space-time
Besov spaces introduced by Chemin and Lerner (cf. [5]). By the endpoint Sobolev embedding theorem we
thus obtain that∇θ ∈ L2([t1, t2];B

0
∞,1) ⊂ L2([t1, t2];L

∞). From here, standard energy estimates imply

thatθ ∈ L∞([t′1, t2]; Ḣ
m) for all m ≥ 2, andt′1 ∈ [t1, t2], concluding the proof of the lemma after applying

the Sobolev embeddingHm ⊂ C1,β with m > 1 + d/2. We refer to [13] for details.
�

Proof of Theorem3.1. The existence of a global in time Leray-Hopf weak solution of(3.1)–(3.4), evolving
from θ0 ∈ L2, is proven in AppendixA. The argument is to construct solutions to an approximate system,
and then to pass to the limit in the weak formulation of the problem, using the Aubin-Lions compactness
lemma (cf. [20]).

The proof of Theorem3.1now follows from Lemmas3.2, 3.3, 3.4. For anyβ ∈ (0, 1), after finitely many
applications of Lemma3.4 the solution is shown to be inL∞([t0,∞);C1+β(Rd)), for any t0 > 0, and is
hence a classical solution. Higher regularity is standard. �

4. GLOBAL REGULARITY OF THE MG SYSTEM

There is a vast literature studying mathematical models forthe Earth’s dynamo (see, for example Glatz-
maier, Ogden, and Clune [15] and references therein). However, at present, no computational dynamo model
can encompass the fine scale resolution required to simulatethe turbulent processes believed to exist in the
Earth’s core. It is therefore reasonable to examine models that are simpler than the full system of PDE
governing rotating, convective, magneto-hydrodynamic flows, but that retain some of the essential features
relevant to the physics of the Earth’s core. One such model for magnetostrophic turbulence was recently pro-
posed by Moffatt [22]. He postulates that the magnetic fieldB(t, x) in the core consists of a mean partB0,
which results from dynamo action and can be considered as locally uniform and steady, and a perturbation
field b(t, x) induced by the flowu(t, x) acrossB0.

It is assumed that the scaleL of convective turbulence lies in the rangeV/Ω ≪ L ≪ η/V , whereV is
the average magnitude of the upward buoyant velocity,Ω is the angular velocity of the Earth, andη is the
magnetic diffusivity of the fluid medium. This assumption implies that the Rossby numberV/ΩL and the
magnetic Reynolds numberV L/η are both small. The turbulent Reynolds number in the core is expected to
be very large. The dominant terms in the three dimensional equations of motion and the induction equation
give the followinglinear system

2Ωe3 × u = −∇P + (B0 · ∇)b− θg (4.1)

0 = (B0 · ∇)u+ η∆b (4.2)

div u = 0 (4.3)

div b = 0, (4.4)
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whereP (t, x) is the sum of the fluid and magnetic pressures,θ(t, x) is the buoyancy field (e.g. perturbation
of the temperature), andg is the gravitational acceleration. We use Cartesian coordinates in the reference
frame rotating about the axise3 = (0, 0, 1).

Equations (4.1)-(4.4) establish a linear relation between the variablesu(t, x), b(t, x), andθ(t, x). The sole
remaining nonlinearity from the full convective MHD systemoccurs in the advection-diffusion equation for
the buoyancyθ(t, x):

∂tθ + (u · ∇)θ = S + κ∆θ, (4.5)

whereS is a source term. The diffusivityκ in the core is very small, hence the nonlinear advection termis
dominant and cannot be neglected.

The system (4.1)-(4.5) gives an active scalar model for magneto-geostrophic dynamics, which we call the
MG equations. As Moffatt observes, (4.1)-(4.5) has some similarities with the dissipative Burgers equation,
but it has a clearer physical basis and the velocityu(t, x) is three-dimensional. We remark that the system
has closer similarities to the surface quasi-geostrophic equation (SQG), which is also derived in the context
of a rapidly rotating system dominated by Coriolis’ force. However, the operator that connectsu andθ via
(4.1)-(4.4) has features that are distinct from the analogous operatorin the SQG system as we shall now
discuss.

For simplicity we will examine (4.1)-(4.4) in the case whereB0 is a vector that is constant in magnitude
and direction in the plane perpendicular toe3. We write

B0 = βe2.

We assume that gravity acts parallel to the axis of rotation,i.e. g = e3. With these assumptions we are
examining a local tangent plane model for the Earth’s fluid core that ignores the sphericity, but retains the
essence of the mathematical structure of the active scalar equation (4.5), with u constructed fromθ via
(4.1)-(4.4). Manipulation of the linear system (4.1)-(4.4) gives, in component form,

u1 = D−1 (−2Ω∂2P − Γ∂1P ) (4.6)

u2 = D−1 (2Ω∂1P − Γ∂2P ) (4.7)

∂3u3 = D−1Γ∆HP (4.8)

∂3θ =
(
Γ2∆HD−1 + ∂33

)
P, (4.9)

where the operatorsΓ,D, and∆H are defined as

Γ = −
β2

η
(−∆)−1∂22 (4.10)

D = 4Ω2 + Γ2, (4.11)

∆H = ∂11 + ∂22, (4.12)

wherex = (x1, x2, x3) ∈ R
2 × T. We note that a more general choice of the mean, steady, locally uniform

magnetic fieldB0 or of the gravitational vectorg results in the same structure of the leading order terms. It
is the anisotropy that is produced byB0 that is a distinctive and crucial feature of the MG system.

The operatorD given by (4.11) is invertible since its Fourier symbol does not vanish onR
2×Z, justifying

the use ofD−1. In order to uniquely determineu3 andθ from (4.8) and (4.9), we restrict the system to the
function spaces whereθ andu3 are periodic in thex3-variable, with zero vertical mean, i.e.

∫ 2π
0 θ dx3 =∫ 2π

0 u3 dx3 = 0. In fact, without such a restriction the system is not well defined. We integrate (4.9) and
use the zero-mean assumption to obtain

θ = A[P ]. (4.13)
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whereA is formally defined as the Fourier multiplier with symbol

Â(k1, k2, k3) =
4Ω2k23|k|

2 + (β2/η)2k42
ik3(4Ω2|k|4 + (β2/η)2k42)

(4.14)

for all k3 6= 0 (by our vertical mean-free assumption), wherek = (k1, k2, k3) ∈ R
2 × Z. ThereforeA is

invertible on the space of functions with nullx3-average. Note that∂3A[P ] = (Γ2∆HD−1 + ∂33)P in the
physical space. We now use (4.6)-(4.8) to representu1, u2, andu3 in terms ofθ:

u1 = D−1(−2Ω∂2 − Γ∂1)(A
−1[θ]) ≡ M1[θ] (4.15)

u2 = D−1(2Ω∂1 − Γ∂2)(A
−1[θ]) ≡ M2[θ] (4.16)

u3 = (D−1Γ∆H)(D−1Γ∆H + ∂33)
−1[θ] ≡ M3[θ]. (4.17)

To investigate the properties of the operatorM = (M1,M2,M3), we note that it is a vector of Fourier
multipliers, with explicit Fourier symbols given by

M̂1(k) =
2Ωk2k3|k|

2 − (β2/η)k1k
2
2k3

4Ω2k23 |k|
2 + (β2/η)2k42

(4.18)

M̂2(k) =
−2Ωk1k3|k|

2 − (β2/η)k32k3
4Ω2k23 |k|

2 + (β2/η)2k42
(4.19)

M̂3(k) =
(β2/η)k22(k

2
1 + k22)

4Ω2k23|k|
2 + (β2/η)2k42

(4.20)

for all k3 6= 0. Since by assumption̂θ(k1, k2, 0) = û(k1, k2, 0) = 0, in order to have a uniquely defined
symbolM̂(k) on all ofR2 × Z, without loss of generality we may let̂M1(k1, k2, 0) = M̂2(k1, k2, 0) = 0,
andM̂3(k1, k2, 0) = M̂3(k1, k2, 1). Note thatuj = Mj[θ] is defined via the inverse Fourier transform from

ûj(k) = M̂j(k)θ̂(k), for all k ∈ R
2 × Z, (4.21)

for all j ∈ {1, 2, 3}. Also, sincediv u = 0, we have thatk · M̂(k) = 0.
When the frequency vectork = (k1, k2, k3) has components such thatk1 ≤ max{k2, k3}, then the

symbolsM̂j are bounded for allj ∈ {1, 2, 3}. However this is not the case for “curved” regions of frequency
space wherek3 = O(1), k2 = O(|k1|

σ), where0 ≤ σ ≤ 1/2, and|k1| ≫ 1. In such regions the symbols
(4.18)–(4.20) are unbounded, since as|k1| → ∞ we have

|M̂1(k1, |k1|
σ , 1)| ≈ |k1|

σ, |M̂2(k1, |k1|
σ, 1)| ≈ |k1|, |M̂3(k1, |k1|

σ, 1)| ≈ |k1|
2σ ,

whereσ ∈ (0, 1/2], and we writea ≈ b if there exists a constantC > 0 such thata/C ≤ b ≤ Ca. It
follows from (4.18)–(4.20) that

|M̂j(k)| ≤ C∗|k| (4.22)

for all k ∈ R
2×Z, and allj ∈ {1, 2, 3}, whereC∗ = C∗(β, η,Ω) > 0 is a fixed constant. From the previous

remark it is clear that along certain curves in frequency space the bound (4.22) is sharp.
We now prove that the active scalar equation (cf. (4.1)-(4.5) with S = 0)

∂tθ + (u · ∇)θ = κ∆θ (4.23)

div u = 0 (4.24)

u = M [θ] (4.25)

with M given by (4.15)-(4.17), or equivalently by its Fourier symbol (4.18)-(4.20), satisfies the conditions
of the abstract problem studied in Section3. First note that we can write

uj = Mj [θ] = ∂iTij [θ] = ∂iVij , (4.26)
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where we have denoted

Tij = −∂i(−∆)−1Mj. (4.27)

By (4.22) we have that|T̂ij(k)| ≤ C∗ for all k ∈ R
2 × Z, and hence it follows directly from Plancherel’s

theorem thatTij : L
2(R2 × T) 7→ L2(R2 × T) is a bounded map.

It remains to prove thatTij : L
∞(R2 × T) 7→ BMO(R2 × T) boundedly. This reduces to proving that

Nj = (−∆)−1/2Mj : L
∞ 7→ BMO is a bounded map, since Riesz-transforms are bounded onBMO. The

later holds becauseNj is a pseudo-differential operator of order0 (cf. [21, 26, 30]). The main idea is that
one may extend̂Nj from R

2 × Z to a symbolN̂ ′
j defined onR3 such that they agree onR2 × Z, and such

thatN̂ ′
j is the symbol of a classical Hörmander-class pseudo-differential operator of order0 (cf. Stein [30]).

More precisely, letN̂ ′
j(k) = M̂j(k)/|k| for all k ∈ R

3 with |k3| ≥ 1, while for |k3| < 1, replace the
denominator4Ω2k23 |k|

2 + (β2/η)2k42 by the quantity4Ω2ϕ(k3)
2(k21 + k22 + ϕ(k3)

2) + (β2/η)2k42 , in the
definitions (4.18)-(4.20) of M̂j(k). Hereϕ(·) is C∞ smooth monotone increasing function that coincides
with the identity on|k3| ≥ 1/2, and is constantly equal to1/2 on |k3| ≤ 1/4. This construction ensures
the smoothness of the symbol near the origin, while the bound|∂α

k N̂
′
j(k)| ≤ Cα(1 + |k|)−|α| follows by

inspection. To close the argument, note that the operatorsNj andN ′
j differ by a compact operator in the

symbol classS−∞(cf. [21, 26] and references therein). This concludes the proof of the boundedness of
Tij : L

∞ 7→ BMO.
The abstract Theorem3.1 may therefore be applied to the MG equations in order to obtain the global

smoothness of weak solutions, and hence we have proven:

Theorem 4.1(The MG system). Let θ0 ∈ L2(Rd) be given. There exists aC∞ smooth classical solution
θ(t, x), of (4.23)–(4.27), evolving fromθ0.

APPENDIX A. EXISTENCE OF WEAK SOLUTIONS TO(3.1)–(3.4)
Here we sketch the proof of existence of global Leray-Hopf weak solutions of (3.1)–(3.4) evolving

from θ0 ∈ L2(Rd). We follow the general strategy used to construct weak solutions of the Navier-Stokes
equations (cf. [31]). The main obstacle is the fact thatu is obtained fromθ via a nonlocal operator of order
1.

Denote by(−∆)1/2 = Λ the square root of the Laplacian. Letφ ∈ C∞
0 (Rd) be positive, with

∫
Rd φ dx =

1. Thenφǫ = ǫ−dφ(x/ǫ), for ǫ > 0, is a standard family of mollifiers. We first consider the approximating
system

∂tθ
ǫ + (uǫ · ∇)θǫ −∆θǫ = −ǫΛ3θǫ (A.1)

div uǫ = 0, uj = ∂iTijθ
ǫ (A.2)

θǫ(0, ·) = θǫ0, (A.3)

whereθǫ0 = φǫ ∗ θ0 represents the mollified initial data, andTij are Calderón-Zygmund operators. Note that
‖θǫ0‖L2 ≤ ‖θ0‖L2 for anyǫ > 0.

Let s > d/2 + 1 and fix ǫ > 0. SinceΛsθǫ0 ∈ L2(Rd), and sinceǫΛ3 gives a sub-critical dissipation,
from standard energy arguments it follows that

sup
t∈[0,T ]

‖Λsθǫ(t)‖L2 ≤ C(ǫ, d, φ, T, ‖θ0‖L2),

whereC(ǫ, d, φ, T, ‖θ0‖L2) > 0 is a positive constant which is finite for anyT < ∞. This a-priori estimate
and a standard Galerkin approximation procedure ensures the global existence of a strongHs solution to
(A.1)-(A.3). Moreover, for anyǫ > 0 we have the uniform inǫ energy inequality

‖θǫ(T )‖2L2(Rd) + 2

∫ T

0
‖∇θǫ(s)‖2L2(Rd) ds ≤ ‖θ0‖

2
L2(Rd), (A.4)
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for anyT > 0, and thus

θǫ is bounded inC([0, T ];L2(Rd)) ∩ L2(0, T ; Ḣ1(Rd)). (A.5)

This guarantees that, up to a subsequence,θǫ converges weakly to some functionθ ∈ L∞(0, T ;L2) ∩

L2(0, T ; Ḣ1) (this convergence is weak-∗ in L∞(0, T ;L2)). This does not suffice to pass to the limit in the
weak formulation of (A.1)-(A.3). We next claim that for any compact setK ⊂ R

d we have

∂tθ
ǫ is bounded inL4/3(0, T ;W−2, 2d

2d−1 (K)). (A.6)

Indeed, from (A.5), the Gagliardo-Nirenberg inequality, and interpolation, it follows that θǫ is bounded
in L4(0, T ;L2d/(d−1)(Rd)). SinceTij are bounded onL2(Rd), by (A.5) it follows that uǫ is bounded in
L2(0, T ;L2(Rd)). By Hölder’s inequality,div(uǫθǫ) is bounded inL4/3(0, T ;W−1,2d/(2d−1)(Rd)). Lastly,
ǫΛ3θǫ is bounded inL2(0, T ;H−2(Rd)), and∆θǫ is a bounded family inL2(0, T ;H−1(Rd)). Therefore,
by (A.1), restricting to a compactK, we obtain that∂tθǫ is bounded in

L4/3(0, T ;W−1, 2d
2d−1 (K)) + L2(0, T ;H−2(K)) + L2(0, T ;H−1(K)),

and hence inL4/3(0, T ;W−2, 2d
2d−1 (K)) by the Sobolev inequality, proving (A.6).

Since the injectionH1(K) into L2(K) is compact, the injection ofL2(K) into W−2,2d/(2d−1)(K) is
continuous, it follows from the Aubin-Lions compactness lemma [31, Theorem 3.2.1] (cf. [20]) that

θǫ → θ strongly inL2(0, T ;L2
loc(R

d)) (A.7)

sinceK was arbitrary. Passing to the limit in the weak formulation of (A.1)-(A.3) is nontrivial only for the
nonlinear term. For anyϕ ∈ C∞

0 ((0,∞) × R
d), upon recalling thatuj = ∂iTij[θ], and an integration by

parts inxi, we have∫∫
(θǫuǫ · ∇ϕ− θu · ∇ϕ)

=

∫∫
(θǫ − θ)u · ∇ϕ−

∫∫
∂iθ

ǫ Tij [θ
ǫ − θ] ∂jϕ−

∫∫
θǫ Tij [θ

ǫ − θ] ∂i∂jϕ

= Iǫ + IIǫ + IIIǫ. (A.8)

Sinceu ∈ L2
tL

2
x, by (A.7) and the Hölder inequality it follows thatIǫ → 0 as ǫ → 0. To obtain the

convergence ofIIǫ andIIIǫ, we claim that

Tij[θ
ǫ − θ] → 0 strongly inL2(0, T ;L2

loc(R
d)). (A.9)

The proof of (A.9) is similar to that of (A.7). SinceTij is bounded onL2(Rd) and onḢ1(Rd), it follows
from (A.5) that

Tij[θ
ǫ] is bounded inC([0, T ];L2(Rd)) ∩ L2(0, T ; Ḣ1(Rd))

Also,Tij is bounded onL2d/(2d−1)(Rd), so that we obtainTij [u
ǫ θǫ] is bounded inL4/3(0, T ;L2d/(2d−1)(Rd)).

Fix a compactK and a test functionφ supported onK. Applying Tij to (A.1), integrating againstφ, and
integrating by parts, we obtain

|〈∂tTij [θ
ǫ], φ〉| = |〈Tij [u

ǫ θǫ],∇φ〉+ 〈∇Tij [θ
ǫ],∇φ〉+ ǫ〈ΛTij [θ

ǫ],∆φ〉|

≤ ‖Tij [u
ǫ θǫ]‖

L
4/3
t L

2d/(2d−1)
x

‖φ‖
L4
tW

1,2d
0

+ ‖Tij [θ
ǫ]‖L2

t Ḣ
1
x
‖φ‖L2

tW
2,2
0

≤ C‖uǫ θǫ‖
L
4/3
t L

2d/(2d−1)
x

‖φ‖
L4
tW

2,2d
0

+ C‖θǫ‖L2
t Ḣ

1
x
‖φ‖

L4
tW

2,2d
0

.

In the last estimate we have also used the Hölder and Poincaré inequalities. The above proves that

∂tTij [θ
ǫ] is bounded inL4/3(0, T ;W−2, 2d

2d−1 (K)).

The claim (A.9) now follows directly from the Aubin-Lions lemma (cf. [20, 31]). Moreover, this shows that
in (A.9) we haveIIIǫ → 0 andIIǫ → 0 asǫ → 0.
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This proves thatθ is a weak solution to the limit system, i.e., (3.1)-(3.4). By construction it satisfies the
energy inequality, concluding the proof of existence of theLeray-Hopf weak solutions to (3.1)-(3.4).
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[13] S. Friedlander and V. Vicol,Higher regularity of Hölder continuous solutions of parabolic equations with singular drift
velocities. arXiv:1102.0585v1 [math.AP].

[14] M. Giaquinta,Introduction to regularity theory for nonlinear elliptic systems. Lectures in Mathematics ETH Zrich. Birkhäuser
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