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ABSTRACT. We discuss recent results obtained by the authors in [FV11a, FV11b, FV12, FRV12], regarding
the analysis of the magneto-geostrophic equation: a model proposed by Moffatt and Loper [ML94, Mof08] to
study the geodynamo and turbulence in the Earth’s fluid core. We conclude this review by indicating some open
problems around the MG equation, that remain to be addressed in the future.

1. INTRODUCTION

Physicists have long realized the importance of the Earth’s magnetic field and that this field originates in
the Earth’s fluid core. The geodynamo is the process by which the rotating, convecting, electrically con-
ducting molten iron in the Earth’s fluid core maintains the geomagnetic field against ohmic decay. The
convective processes in the core that produce the velocity fields required for dynamo action are a combina-
tion of thermal and compositional convection. The full dynamo problem requires the examination of the full
three dimensional partial differential equations governing convective, incompressible magnetohydrodyam-
ics (MHD). In the past decades computer models have been used to simulate the actual geodynamo. See, for
example, the review articles by Roberts et al on modeling the geodynamo [BR95, GR97, RG00, RG01] and
references therein. However, as Glatzmaier et al [GOC04] remark, no three dimensional dynamo model has
been run at the spatial resolution required to simulate the broad spectrum of turbulence which surely exists
in the Earth’s fluid core.

Current computers and numerical methods require the imposition of diffusivities that are several orders of
magnitude larger than those which are realistic. It is therefore reasonable to attempt to gain some insight into
the geodynamo by considering a reduction of the full MHD equations to a system that is more tractable, but
one that retains many of the essential features of the problem. The magnetogeostrophic equation proposed
by Moffatt and Loper [ML94, Mof08] is one such model. The physical postulates of this model are the
following: slow cooling of the Earth leads to slow solidification of the liquid metal core onto the solid
inner core and releases latent heat of solidification that drives compositional convection in the fluid core.
The arguments for the appropriate ranges of the characteristic length, velocity, and perturbation density are
based on these physical postulates.

We first present the full coupled three-dimensional MHD equations for the evolution of the velocity vector
u(x, t), the magnetic field vector B(x, t) and the buoyancy field θ(x, t) in the Boussinesq approximation
and written in the frame of reference rotating with angular velocity Ω. The physical forces governing this
system are Coriolis forces, Lorentz forces, and gravity. Following the notation of Moffatt and Loper [ML94]
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we write the equations in terms of dimensionless variables. The orders of magnitude of the resulting non-
dimensional parameters are motivated by the physical postulates of the Moffatt and Loper model:

N2 [Ro (∂tu+ u · ∇u) + e3 × u] = −∇P + e2 · ∇b+Rmb · ∇b+N2θe3 + ε∆u (1.1)

Rm [∂tb+ u · ∇b− b · ∇u] = e2 · ∇u+ ∆b (1.2)
∂tθ + u · ∇θ = εκ∆θ + S (1.3)
∇ · u = 0,∇ · b = 0. (1.4)

Here S(x, t) is a given smooth function that represents the forcing of the system.
The mathematical statement of the geodynamo problem asks whether there are initial data for the MHD

system for which the evolution of the perturbation of the magnetic field b(x, t) grows for sufficiently long
time. This can be interpreted as a question of the existence of instabilities of (1.1)–(1.4).

The notation in (1.1)–(1.4) is the following. The Cartesian unit vectors are denoted by e1, e2, and e3.
For simplicity, we have assumed that the axis of rotation and the gravity g are aligned in the direction of
e3. We have assumed that the magnetic field B(x, t) consists of the sum of an underlying constant field
B0e2 and a perturbation b(x, t). Our choice of B0e2 as the underlying magnetic field is consistent with the
models where the magnetic field is believed to be predominantly toroidal (cf. [ML94]). The dimensionless
parameters are

N2 =
2Ωµ0ηρ

B2
0

, Ro =
V

2LΩ
, Rm =

V L

η
, ε =

νηµ0ρ

B2
0L

2
, εκ =

κ

LV
(1.5)

where the typical velocity scale V is chosen to be

V =
θ0g

2Ω
. (1.6)

Here θ0 is a typical amplitude of the buoyancy θ and L is a characteristic length scale. P is the sum of
the fluid and magnetic pressures, ν is the kinematic viscosity, η is the magnetic diffusivity, and κ is the
molecular diffusivity of the compositional variation that creates an ambient density ρ. The usual estimate
for η in the fluid core is 3m2 cm−1. The values of ν and κ are speculative, but likely to be extremely small.
For a more detailed discussion of plausible ranges of the physical parameters that are appropriate for the
geodynamo, we refer the reader to the book of Ghil and Childress [GC87].

For the regions in the Earth’s fluid core modeled by Moffatt and Loper, it is argued that the dimensionless
parameters are the following orders of magnitude. The inverse Elsasser number N2 will be of order unity,
or somewhat less in the condition of the fluid core, while the Rossby number Ro is of order 10−3. The value
of ε is somewhat uncertain since the viscosity ν is a matter of guess work, but plausibly ε ≤ 10−8 in the
core conditions. The inverse Peclet number εκ is also likely to be extremely small, perhaps of the order of
10−8. According to Moffatt and Loper [ML94], the magnetic Reynolds number Rm is relatively small in
the range of L considered. With these estimates of the sizes of the parameters the dominant balance of the
leading order terms in equations (1.1) and (1.2) give the following reduced system:

N2e3 × u = −∇P + e2 · ∇b+N2θe3 (1.7)
0 = e2 · ∇u+ ∆b (1.8)

along with the incompressibility condition

∇ · u = 0,∇ · b = 0. (1.9)

The linear system of equations (1.7)–(1.9) determine the differential operators that relate the vector fields
u(x, t) and b(x, t) with the scalar buoyancy θ(x, t). These operators encode the vestiges of the physics in
the problem, namely Coriolis force, Lorentz force, and gravity. Vector manipulations of (1.7)–(1.9) give the
expression[

N4(e3 · ∇)2∆ + (e2 · ∇)4
]
u = N4(e3 · ∇)∆(e3 ×∇θ) +N2(e2 · ∇)2∇× (e3 ×∇θ). (1.10)
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The sole remaining nonlinearity in the system comes from the coupling of (1.10) with the equation (1.4) for
the time evolution of the θ(x, t). We call this nonlinear active scalar equation the magnetogeostrophic (MG)
equation. It is the subject of this article.

We study the properties and behavior of the active scalar equation in T3

∂tθ + u · ∇θ = εκ∆θ + S (1.11)

u = M [θ] (1.12)

via an examination of the Fourier multiplier operator M obtained from (1.10), which relates u and θ. More
precisely,

uj = Mj [θ] = (M̂j θ̂)
∨

for j ∈ {1, 2, 3}, and the explicit expressions for the components of M̂ as functions of the Fourier variable
k = (k1, k2, k3) ∈ Z3

∗ := Z3 \ {k3 = 0} are

M̂1(k) =
(
N4k2k3|k|2 −N2k1k

2
2k3
)
D(k)−1 (1.13)

M̂2(k) =
(
−N4k1k3|k|2 −N2k32k3

)
D(k)−1 (1.14)

M̂3(k) =
(
N2k21k

2
2 +N2k42

)
D(k)−1 (1.15)

where

D(k) = N4|k|2k23 + k42. (1.16)

On {k3 = 0} we define M̂j(k) = 0, for all j ∈ {1, 2, 3}, since for self-consistency of the model we assume
that θ and u have zero vertical mean, i.e.

∫
θdx3 =

∫
udx3 = 0. Several important properties of the M̂j’s

are immediately obvious. Firstly, the functions are strongly anisotropic with respect to the dependence on
the integers k1, k2, and k3. This is a consequence of the interplay of the three above mentioned physical
forces. Secondly, the function M̂3 is an even function of k1, k2, and k3. Thirdly, we have M̂j(k)kj = 0 for
any k ∈ Z3 (we use the standard summation convention on repeated indices), which is built into the system
since the velocity field is divergence free

∇ · u = 0.

Lastly, although the symbols M̂j are bounded (by a constant that depends only on N ) in regions of Fourier
space where k2 ≤ max{k2, k3}, this is not the case in the “curved” regions where k3 = O(1), and k2 =
O(|k1|r) with 0 < r ≤ 1/2. In such regions the symbols are unbounded as |k1| → ∞ with

|M̂(k)| ≤ C|k|, (1.17)

for some suitable chosen constant C that is independent of N , and this bound is sharp. Hence the MG
equation falls in the class of abstract active scalar equations (see (2.1)–(2.2) below) where the relation
between the divergence-free velocity field u and the scalar θ is given as a singular operator of order 1. These
properties of M̂ make the MG equation interesting and challenging mathematically, as well as having a clear
physical basis in its derivation from the MHD equations.

FIGURE 1. From left to right: plot of M̂1(k1, k2, 1), M̂2(k1, k2, 1), and M̂3(k1, k2, 1), with
N = 1. The range of the frequencies is k1 ∈ [−103, 103] and k2 ∈ [−102, 102].



4 SUSAN FRIEDLANDER, WALTER RUSIN, AND VLAD VICOL

In Section 2 we state results proved in [FV11a, FV11b, FV12] for the diffusive MG equation, i.e., the
case when εκ > 0. We recall that in the fluid core εκ is positive but probably extremely small. In this case
the MG equation is globally well posed. To prove this fact we use the control on ‖θ(t)‖L∞ , a quantity that
is non-increasing along solutions, and which gives a bound on the drift velocity u in the space L∞t BMO−1x .
The latter information on the drift is “critical” for the natural scaling of the linear drift-diffusion equation

∂tθ + v · ∇θ = ∆θ. (1.18)

Indeed, for v ∈ L∞t BMO−1x ∩ L2
tL

2
x divergence-free, we proved in [FV11a] that the solution θ of (1.18)

becomes Hölder continuous in finite time, by appealing to the classical ideas of De Giorgi [DG57], in the
spirit of [CV10]. This result was also established independently in [SSŠZ12]. See also [Nas58, Osa87,
Zha04, MV06], the more recent [NU12, SV12, Fil12, IKR12], and references therein, for regularity issues
of linear parabolic equations with singular coefficients and divergence-free drift. The Hölder continuity of
solutions to the linear equation (1.18) may then be bootstrapped to show that the solutions of the dissipative
MG equations become smooth in arbitrarily short finite time [FV11b].

Having established the global well-posedness of (1.11)–(1.12) for any εκ > 0, we can proceed to examine
the stability of equilibria. We show that the existence of an unstable eigenvalue for the linearized equations
implies nonlinear (Lyapunov) instability of the nonlinear MG equation (see also [FSV97, BGS02, VF03,
FPS06, FPV09]). We then exhibit the existence of an unstable eigenvalue in a particular example, using the
method of continued fractions cf. [MS61, FSV97]. The magnitude of this eigenvalue is O(ε−1κ ) which, in
the context of the fluid core, is extremely large. Thus the MG equation can be used to model very rapid
exponential growth in time of θ, and hence, through (1.11)–(1.12), of the perturbation velocity and magnetic
fields, i.e. a dynamo type instability. We emphasize that this “MG-dynamo” instability requires the presence
of all three forces – Coriolis, Lorentz, and gravity – because the dimensionless parameterN2 (defined above
in (1.5)) must be strictly in the range (0,∞).

In Section 3 we examine the non diffusive MG equation and set εκ = 0 (cf. [FV11b]). The situation is
then dramatically different from the case εκ > 0. Without the Laplacian to control the unbounded operator
M , the MG equation is ill-posed in the sense of Hadamard in Sobolev spaces. Such a result utilizes in an
essential way both the unboundedness of M̂3 and the fact that it is an even function of k. The proof again
uses the existence of an unstable eigenvalue of the linearized equation, however when εκ = 0 it is possible
to construct such an eigenvalue that is arbitrarily large and it then follows that there is no Lipschitz solution
map at time t = 0 (see also [Tao06, Ren09, GVD10, GVN10, GN10]).

In Section 4 we describe results for the fractionally diffusive MG equation (cf. [FRV12]), i.e. replace the
Laplacian by −(−∆)γ , for γ ∈ (0, 1). This situation is non-physical but mathematically interesting in the
context of the tools required to treat the fractional Laplacian. We now have a dichotomy across the value
γ = 1/2. In the range 1/2 < γ < 1 the equation is locally well-posed, while it is Hadamard Lipschitz
ill-posed for 0 < γ < 1/2. At the critical value γ = 1/2 the problem is globally well-posed for suitably
small initial data (and source term), but is ill-posed for sufficiently large initial data. In terms of the non-
dimensional parameters introduced above in (1.5), this dichotomy can be seen as global well-posedness for
εκ � 1, and Lipschitz ill-posedness for εκ � 1. A further feature of interest is that the anisotropy of the
symbol can be explored to obtain an improvement in the regularity of the solutions when the initial data
and source are supported on a plane in Fourier space. For such well-prepared data the local existence and
uniqueness of solutions can be obtained for all values γ ∈ (0, 1), and the global existence holds for all initial
data when γ ∈ (1/2, 1).

We note that some of the theorems discussed in this article are valid for certain classes of partial differ-
ential equations cf. (2.1)–(2.2) below, and in any spatial dimension d ≥ 2. For such theorems, the three
dimensional MG equation is a particular example of an active scalar equation for which these results hold.

We conclude the manuscript with Section 5, in which we present a few remaining open problems regard-
ing the mathematical analysis of the MG equations.
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2. DIFFUSIVE MG EQUATION

In this section we discuss the global regularity of solutions to (1.11)–(1.12) and the Lyapunov stability of
steady states, in the case that εκ > 0.

2.1. Global regularity of singular drift-diffusion equations. In order to show that there is no finite time
loss of regularity of solutions to (1.11)–(1.12) with εκ > 0 let us first perform a rough derivative count. The
dissipation is smoothing by two derivatives, while the nonlinearity is also losing two derivatives: the first
coming from ∇θ, while the second one derivative loss is coming from the constitutive law u = M [θ], in
view of (1.17). In this sense we may call the problem “critical” (we make this more precise below).

Since the operator M relating u and θ is an order one pseudo-differenential operator with M̂(k) · k = 0
for any wave-number k, one may view the MG equation as an example of a more general class of of active
scalar equations:

∂tθ + (u · ∇)θ = ∆θ (2.1)
uj = ∂iTijθ, ∂juj = 0 (2.2)

with Tij a matrix of zero-order pseudo-differential operators, which is skew-symmetric, i.e. Tij = −Tji.
Here and throughout the paper we use the summation convention on repeated indices. We have dropped the
smooth source term S from (1.11) since it is not an obstacle to the well-posedness theory, have re-scaled the
time variable so that the diffusivity coefficient is 1 instead of εκ (this is not an issue since we will construct
global in time solutions). The matrix {Tij}3i,j=1 corresponding to the MG equations (1.12) is given by

T =

 0 N3 −N2

−N3 0 N1

N2 −N1 0

 ; where N = (−∆)−1∇×M. (2.3)

More explicitly, we have that that N is given as the Fourier multiplier operator with symbol

N̂1(k) =
(
N4k1k

2
3 +N2k32

)
D(k)−1 (2.4)

N̂2(k) =
(
N4k2k

2
3 −N2k1k

2
2

)
D(k)−1 (2.5)

N̂3(k) =
(
−N4k3(k

2
1 + k22)

)
D(k)−1 (2.6)

and D(k) is defined in (1.16). In particular, one may check from (2.4)–(2.6) that there exits C > 0 such
that |N̂j(k)| ≤ C for any k ∈ Z3 with k3 6= 0. Thus the matrix T given in (2.3), corresponding to the MG
equations, indeed has entries which are bounded Fourier multipliers, and hence a zero-order operators.

It is clear that any M such that ∂jMj = 0 may we written as Mj = ∂iTij for a skew-symmetric matrix
T (see also [SSŠZ12]). We call the class of active scalar equations (2.1)–(2.2) “singular” since the drift
velocity is given in terms of the advected scalar by a constitutive law which is losing derivatives. We
refer the interested reader in to the work of Chae, Constantin, Cordoba, Gancedo, and Wu [CCC+12] and
also [FGSV12, MX12] for further discussions about the well-posedness theory of singular active scalar
equations.

To make the idea of criticality more precise, we note that the active scalar equation (2.1)–(2.2) has a
natural scaling invariance built into it: if θ(t, x) is a solution, then θλ(t, x) = θ(λ2t, λx) is also a solution,
with corresponding drift given by uλ(t, x) = λu(λ2t, λx) = ∂iTijθλ(t, x). Hence L∞(Rd) is the critical
Lebesgue space with respect to the natural scaling of the equation. Additionally (2.1) is a scalar equation,
so that Lp norms are non-increasing in time for 1 ≤ p ≤ ∞, and hence the L∞ norm is the “strongest” a
priori controlled norm along solutions. In this sense we say that (2.1)–(2.2) is a “critical” equation.

Another active scalar equation derived from the Navier-Stokes equations for a rapidly rotating fluid in a
thin shell is the surface quasi-geostrophic equation, introduced by Constantin, Majda, and Tabak [CMT94]
(see also [CCW01, CC04, Wu05, Kis10] and references therein), which in the critically dissipative case
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reads

∂tθ + (u · ∇)θ = −(−∆)1/2θ, (2.7)

u = ∇⊥(−∆)−1/2θ ≡ (R2θ,−R1θ) (2.8)

and Ri represents the ith Riesz transform. There are strong analogies between the systems (2.7)–(2.8) and
(2.1)–(2.2). The velocity field is divergence free in both cases, and the L∞ norm is critical with respect
to the natural scaling of the equation. The main difference is that in for SQG the dissipative operator is
non-local, but the drift velocity is not more singular than the advected scalar.

Inspired by the De Giorgi-type proof of global regularity for the critically dissipative SQG equation of
Cafarelli and Vasseur [CV10] (see also [KNV07, KN09, CV12] for different proofs of global well-posedness
of the critical SQG), to show that solutions of (2.1)–(2.2) do not blow up in finite time, we first look at the
associated linear problem, where the drift velocity is given and obeys the bounds that are a priori available
for weak solutions of the nonlinear problem: u ∈ L∞(0,∞;BMO−1) ∩ L2(0,∞;L2). In [FV11a] we use
a De Giorgi iteration technique to prove that a weak solutions of the linear drift-diffusion equation

∂tθ + (v · ∇)θ = ∆θ (2.9)
∇ · v = 0, vj = ∂iVij (2.10)

Vij ∈ L∞(0,∞;BMO) ∩ L2(0,∞;H1), Vij = −Vji (2.11)

instantly become Hölder continuous. More precisely, the result is:

Theorem 2.1 ([FV11a]). Let the initial data θ0 ∈ L2 and θ ∈ L∞(0,∞;L2) ∩ L2(0,∞;H1) be a weak
solution of (2.9), where the drift velocity v is given by (2.10)–(2.11) for a suitable matrix Vij . Then, for any
t0, there exists α > 0 such that θ ∈ Cα/2(t0,∞;Cα).

The above result was obtained independently by Sergin, Silvestre, Sverak, and Zlatos in [SSŠZ12]. See
also [NU12] for a closely related result. In view of the constitutive law (2.2) given explicitly by (2.3), a
direct corollary of Theorem 2.1 is that:

Corollary 2.2. Weak solutions θ of (2.1)–(2.2) are Hölder continuous in positive time, i.e. they obey θ ∈
L∞(t0,∞;Cα) for any t0 > 0, and a suitable α > 0.

In view of the above discussion about scaling, Hölder regularity is sub-critical information for (2.1)-(2.2)
and one may bootstrap to prove that the solution is classical:

Theorem 2.3 ([FV12]). Let θ ∈ L∞(t0,∞;Cα) be a weak solution of the initial value problem associated
to (2.1)–(2.2), with α ∈ (0, 1). Then θ ∈ L∞(t1,∞;C1+δ), for any t1 > t0, for some δ ∈ (0, 1).

The proof of Theorem 2.3 relies on a suitable bootstrap procedure in Besov spaces, in the spirit of [CW08].
Repeating the argument for the derivative of θ one may further obtain that the solution of (2.1)–(2.2) is in
fact C∞ smooth in finite time.

We conclude this subsection with a very brief discussion of the proof of Theorem 2.1. We refer the reader
to [FV11a] for all details. Along the lines of Caffarelli and Vasseur [CV10, Theorem 3] for the critical
SQG equation, the first step consists of showing that a weak solution is bounded in the spatial variable
(see [FV11a, Appendix A] for a construction of weak solutions which obey the energy inequalities). This
is achieved by proving that the function (θ − h)+ = max{θ − h, 0} has zero energy if h is chosen large
enough. The key ingredient is the inequality

∂t(θ − h)+ −∆(θ − h)+ + (v · ∇)(θ − h)+ ≤ 0 (2.12)

which can be shown to hold for weak solutions, in the sense of distributions. Indeed, given a weak solution
θ ∈ L∞t L2

x ∩ L2
tH

1
x , we have that for any φ which is Lipschitz continuous, that ∇φ(θ) ∈ L2

t,x, and since
v ∈ L2

t,x is divergence free, one may give meaning in the sense of distributions to the equality φ′(θ)v ·∇θ =
v · ∇φ(θ) = ∇ · (vφ(θ)). To obtain (2.12) one then approximates (θ− h)+ by φ(θ), for a suitable sequence
of C2 smooth, non-decreasing, convex functions φ. See e.g. [CV10, NU12] for details.
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Using that v is divergence-free and that v = ∇·V for a skew-symmetric matrix V = {Vij} ∈ L∞t BMOx,
or equivalently that (−∆)−1∇×v ∈ L∞t BMOx, one may use the argument in [MV06] to prove from (2.12)
that the energy inequality∫

Rd
|(θ(t2, ·)− h)+|2dx+ 2

∫ t2

t1

∫
Rd
|∇(θ − h)+|2dxdt ≤

∫
Rd
|(θ(t1, ·)− h)+|2dx, (2.13)

holds for all h > 0 and 0 < t1 < t2 < ∞. This was already observed in [NU12, pp. 100], where
the localized version of (2.13) is also discussed (see also [SSŠZ12]). The argument in [MV06] is quite
ingenious, and uses a hidden cancellation property which arises due to the skew-symmetry of V . Indeed,
one may show that the form

B(φ, η) =

∫ t2

t1

∫
Rd
∂iVij φ∂jη dxdt (2.14)

extends continuously to L2
tH

1
x × L2

tH
1
x , by factoring the form into determinants which have better than

expected regularity: using compensated-compactness the determinants may be shown to lie not just in
L1
t,x but in fact in L1

tH1
x (here H1 the Hardy space, precisely the dual of BMO). Since ∇ · v = 0 we

have B(φ, η) = −B(η, φ) for η, φ ∈ L2
tH

1
x , and in view of the above discussion we may therefore infer

B((θ − h)+, (θ − h)+) = 0, to obtain (2.13). We also refer the reader to [Kuk06] for the validity of the
energy inequalities for weak solutions of the Navier-Stokes equations, given a priori assumptions on only
the pressure. We note that the system under consideration in our present paper, being scalar, does not contain
a pressure term.

For t0 > 0, and H > 0 to be chosen sufficiently large, letting tn = t0 − t0/2n, hn = H −H/2n, and

cn = sup
t≥tn

∫
Rd
|(θ(t, ·)− hn)+|2dx+ 2

∫ ∞
tn

∫
Rd
|∇(θ − hn)|2dxdt,

it follows from (2.13) that

cn+1 ≤
C

t0H4/d
2n(1+4/d)c1+2/d

n

for some constant C > 0. Letting H = H(‖θ0‖L2(Rd), t
d/4
0 ) be sufficiently large, we thus obtain that

cn → 0 exponentially as n→∞, and hence θ(t0, ·) ≤ H .
Having established the boundedness of the weak solutions, the next step is to prove Hölder regularity,

which requires a more delicate argument. The main obstruction to applying the classical parabolic De
Giorgi estimates via an Lp-based Caccioppoli inequality (1 < p <∞), is that vj = ∂iVij is the derivative of
a BMO function. By essentially using the divergence-free nature of v, and appealing to the John-Nirenberg
inequality, we may however prove a suitable local energy inequality: for any 0 < r < R and h ∈ R, we
have

‖(θ − h)+‖2L∞t L2
x(Qr)

+ ‖∇(θ − h)+‖2L2
t,x(Qr)

≤ C R

(R− r)2
‖(θ − h)+‖

2− 2
d+2

L2
t,x(QR)

‖(θ − h)+‖
2
d+2

L∞t,x(QR)
,

(2.15)

where C = C(d, ‖Vij‖L∞t BMOx) is a fixed positive constant. Here we have denoted by Qρ the parabolic
cylinder [t0 − ρ2, t0]×Bρ(x0) for ρ > 0 and (t0, x0) ∈ (0,∞)×Rd. Moreover, estimate (2.15) also holds
with θ replaced by −θ. The bound (2.15) may be in turn used, using a suitable iteration argument to obtain
an improvement of oscillation result. Assume that h0 ≤ supQr0 θ, where r0 > 0 is arbitrary. Then we have

sup
Qr0/2

θ ≤ h0 + C

(
|{θ > h0} ∩Qr0 |1/(d+2)

r0

)1/2(
sup
Qr0

θ − h0

)
(2.16)

for some positive constantC = C(d, ‖Vij‖L∞t BMOx). We note that the prefactor of supQr0 θ−h0 of the right
side of (2.16) does not scale with r0. Besides estimate (2.16), the main ingredient in the proof of Hölder
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continuity is the following estimate on the growth of level sets of the solution. There exist κ0 ∈ (0, 1),
δ0 = δ0(κ0, ‖Vij‖L∞t BMOx), and n0 ≥ 2 such that for t1, R > 0 if we know that

|{θ(t1, ·) ≥ h} ∩Br| ≤
1

2
|Br|,

then for all t2 ∈ [t1, t1 + δ0r
2] we have

|{θ(t2, ·) ≥ H} ∩BR| ≤
7

8
|BR|, (2.17)

where r = κ0R, M = sup(t1,t1+δ0R2)×BR θ, m = inf(t1,t1+δ0R2)×BR θ, h = (M + m)/2, and H =

M − (M −m)/2n0 . To prove the above estimate one uses a suitable version of the local parabolic energy
inequality.

Bounds (2.16) and (2.17) are the main ingredients in the De Giorgi iteration procedure, which at the end
of the day yields the improvement in oscillation(

sup
Q1

θ − inf
Q1

θ

)
≤ γ

(
sup
Q2

θ − inf
Q2

θ

)
(2.18)

for some γ ∈ (0, 1), where Q1 = [t1, t1 + δ0r
2]×B4, Q2 = [t1, t1 + δ0R

2]×BR, t1, R > 0 are arbitrary,
r = κ0R, and δ0, κ0 ∈ (0, 1) is as above. Since γ < 1, is then classical to show that (2.18) implies the
solution θ is Hölder continuous, with exponent that may be computed explicitly.

2.2. Lyapunov stability of steady states. In this subsection we consider the stability of steady states to
(1.11)–(1.12). First we prove for steady states of the the more general class of equations (1.11), with drift
velocity given by (2.2), that linear implies nonlinear instability. We then turn to the specific MG equations
(1.11)–(1.12), for which we construct an explicit unstable eigenvalue of the linear operator.

2.2.1. Linear implies nonlinear instability. Let Θ0 ∈ C∞ be a steady solution of (1.11)–(2.2), i.e.

U0 · ∇Θ0 = εκ∆Θ0 + S, U0j = ∂iTijΘ0, ∇ · U0 = 0, (2.19)

where S ∈ C∞ is a time independent force, εκ > 0, and Tij are zero order pseudo differential operators.
Writing the solution of (1.11)–(2.2) as θ + Θ0 we obtain that the perturbation temperature θ obeys

∂tθ = Lθ +Nθ, (2.20)

where the dissipative linear operator L is defined as

Lθ = −U0 · ∇θ − u · ∇Θ0 + εκ∆θ (2.21)

with uj = ∂iTijθ, and the nonlinear operator N is given by

Nθ = −u · ∇θ = −∇ · (uθ). (2.22)

Recall the following notion of Lyapunov stability:

Definition 2.4 ( [FSV97]). Let (X,Z) be a pair of Banach spaces. A steady state Θ0 is called (X,Z)
nonlinearly stable if for any ρ > 0, there exists ρ̃ > 0 so that if θ(·, 0) ∈ X and ‖θ(·, 0)‖Z < ρ̃, then

(i) there exists a global in time solution θ to the initial value problem (2.20)–(2.22) with θ ∈ C([0,∞);X);
(ii) and we have the bound ‖θ(·, t)‖Z < ρ for a.e. t ∈ [0,∞).

An equilibrium Θ0 that is not stable in the above sense is called Lyapunov unstable.

In the above definition, the Banach spaceX is the space where a local existence theorem for the nonlinear
equations is available (e.g. X = Hs), while Z is the space where the spectrum of the linear operator is
analyzed, and where the instability is measured (e.g. Z = L2). The following result states that the linear
Lyapunov instability of a steady state Θ0 implies the nonlinear one.
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Theorem 2.5 ([FV11b]). Let Θ0 be a smooth, mean zero solution of (2.19). If the associated linear operator
L, as defined in (2.21), has spectrum in the unstable region, then the steady state is (Hs, L2) Lyapunov
nonlinearly unstable, for arbitrary s > d/2.

The proof relies on a bootstrap argument that is by now well-known for fluids equations [FSV97, BGS02,
VF03, FPS06, FPV09], and an a priori time independent bound on the H2 norm of the solution, which we
obtain from the De Giorgi Cα estimate.

We only briefly sketch the argument given in full detail in [FV11b], to which refer the interested reader.
First, we fix a linearly unstable smooth eigenfunction φ, with eigenvalue of maximal real part λ. In order to
prove Theorem 2.5, for ε ∈ (0, ε∗] we consider solutions θε of

∂tθ
ε = Lθε +N(θε), θε|t=0 = εφ (2.23)

where L,N, and φ are as above, and show that there exits a constant C∗ > 0 such that for any ε ∈ (0, ε∗]
we may find a time Tε > 0 with

‖θε(Tε)‖L2 ≥ C∗. (2.24)

By Definition 2.4, the bound (2.24) shows that the trivial solution θ = 0 of (2.20)–(2.22) is (Hs, L2)
Lyapunov unstable: indeed, anO(ε) perturbation leads in finite time to anO(1) size solution, in finite time.

In order to prove (2.24) we use the following classical idea: the initial data being an eigenfunction of L,
will grow exponentially in time, while the nonlinear term may be suitably controlled iso that it cannot cancel
this exponential growth. To make this idea concrete, it is convenient to define Lδ = L − (λ + δ)I , where
0 < δ ≤ λ/8. Due to the shift, the resolvent of Lδ contains the full right-half of the complex plane, and
being a bounded perturbation of the Laplacian we also have that Lδ generates an analytic semigroup over
L2, and L−1δ is smoothing by two derivatives. Then from the Duhamel formula and the interpolation bound
‖L−7/8δ N(θε)‖L2 ≤ C‖θε‖9/8

L2 ‖∆θε‖
7/8
L2 , we obtain the estimate

‖θε(t)‖L2 ≤ ‖εeLtφ‖L2 +

∫ t

0
e(λ+δ)(t−s)‖L7/8

δ eLδ(t−s)‖L(L2)‖L
−7/8
δ N(θε(s))‖L2ds

≤ Cφεeλt + C

∫ t

0
e(λ+δ)(t−s)

1

(t− s)7/8
‖θε(s)‖9/8

L2 ‖∆θε(s)‖
7/8
L2 ds. (2.25)

The key step which allows us to close the estimates is proving the existence of a constantC∗ = C∗(Θ0, φ, S)
such that

‖∆θε‖L2 ≤ C∗ <∞ (2.26)

for all sufficiently small ε. The proof of estimate (2.26) relies on the Cα bound which may be obtained from
Theorem 2.1 and a suitable bootstrap procedure to reach theH2 regularity level (see [FV11b, Appendix A]).
Lastly, let R > Cφ := ‖φ‖L2 and T = T (R, ε) be the maximal time such that

‖θε(t)‖L2 ≤ εReλt for all 0 ≤ t ≤ T.

From (2.25) and (2.26) one may then obtain

‖θε(t)‖L2 ≤ Cφεeλt + C1

(
εReλt

)9/8
(2.27)

and then in turn that

T ≥ Tε = λ−1 log(C2/ε).

A lower bound on ‖θε(t)‖L2 , similar to (2.27) but with the linear term minus the 9/8 power term, may be
obtained from the Duhamel formula. In turn, this implies that ‖θε(Tε)‖L2 ≥ C2(2Cφ −R) =: C∗ > 0 and
concludes the proof of Theorem 2.5.
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2.2.2. The existence of unstable eigenvalues for the linearized MG operator. In order to apply Theorem 2.5
to the (nonlinear) MG equations (1.11)–(1.12), we need to find a steady state Θ0 for which the corresponding
linear operator L defined in (2.21), has unstable spectrum.

To achieve this we use an idea that dates back at least to [MS61] for Navier-Stokes and [FSV97] for
Euler. First, note that Θ0 = F (x3), with F smooth, is automatically a steady state, with associated velocity
U0 = 0, if we assume that the source term is given by S = −εκF ′′(x3). We thus consider the source term
to equal S = εκm

2 sin(mx3), for which we have a steady state solution of (1.11) given by

Θ0 = sin(mx3), U0 = 0. (2.28)

For the above choice of the steady states, the equation ∂tθ = Lθ becomes

∂tθ(x, t) = Lθ(x, t) = −mu3(x, t) cos(mx3) + εκθ(x, t), u3 = M3[θ], (2.29)

where M3 is the Fourier multiplier defined earlier in (1.15)–(1.16). Next, we make the ansatz that the
temperature θ which solves (2.29) has the form

θ(x, t) = eσt sin(k1x1) sin(k2x2)
∑
p≥1

cp sin(mpx3) (2.30)

for some fixed k1, k2 in Z∗, to be chosen precisely later. Using (1.15)–(1.16) we may compute from the
third component of the velocity field u associated with θ given by (2.30), insert this into (2.29) and obtain
that σ and {cp}p≥1 must solve

σp
∑
p≥1

cp sin(mpx3) +
∑
p≥1

cp
αp

(sin(m(p+ 1)x3) + sin(m(p− 1)x3)) = 0 (2.31)

where we have denoted

σp = σ + εκ
(
k21 + k22 + (mp)2

)
(2.32)

and

2

αp
= mN2 k22(k21 + k22)

N4(mp)2(k21 + k22 + (mp)2) + k42
(2.33)

with N being the non-dimensional constant in (1.5). An essential feature of the coefficients αp is that they
form an increasing sequence which grows rapidly, as p4 when p → ∞. Equation (2.31) gives a recurrence
relation for the sequence {cp}p≥1 (see e.g. [FV11b, FRV12]):

σpcp +
cp+1

αp+1
+
cp−1
αp−1

= 0, for p ≥ 2, (2.34)

σ1c1 +
c2
α2

= 0, for p = 1. (2.35)

We emphasize that given any σ > 0 (which then uniquely defines σp for all p ≥ 1) and given any c1 > 0,
one can solve for all {cp}p≥2 using the recursion relations (2.34)–(2.35). The key is however that only
for suitable values of σ do the cp vanish sufficiently fast so that θ defined by (2.30) is sufficiently smooth.
Solving for such σ amounts to solving the infinite continued fraction equation

σ1α1 =
1

σ2α2 − 1
σ3α3− 1

σ4α4−...

. (2.36)

Solving (2.36) is the main difficulty in this argument, since we need not just show there is a solution, but also
give bounds on it in terms of the αp. We omit these details and summarize the results obtained in [FV11b,
Lemma 2.6], [FRV12, Lemma 4.2], and [FGSV12, Theorem 2.2] as follows.
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Lemma 2.6 (Bound of solution to continued fraction equation). Let αp, σp be defined by (2.32) and
(2.33) respectively, and let c1 = α1. There exits a real eigenvalue σ∗ = σ∗(k1, k2,m,N, εκ) > 0 which
solves (2.36), and we have the estimate

1

α1α2
≤ σ1σ2 ≤

2

α1α2
. (2.37)

Moreover, the corresponding sequence {cp}p≥1 decays exponentially in p.

A direct consequence of estimate (2.37) is that the eigenvalue σ∗ obeys the upper and lower bounds

σ∗ ≥
mN2

2

k22(k21 + k22)

4N4m2(k21 + k22 + 4m2) + k42
− εκ(k21 + k22 + 4m2) (2.38)

σ∗ ≤ mN2 k22(k21 + k22)

N4m2(k21 + k22 +m2) + k42
− εκ(k21 + k22 +m2). (2.39)

For N, εκ,m fixed, we hence obtain from (2.39) that there exists at most finitely many frequency pairs
(k1, k2) ∈ Z2

∗ for which σ∗ > 0. Moreover, one may show that in the parameter range of the geodynamo,
i.e. 0 < εκ � 1, for suitable (k1, k2) the left side of (2.38) is positive (see (2.40) below), thereby proving:

Theorem 2.7 ([FV11b]). Associated to the steady state Θ0 defined in (2.28), the linearized MG operator L
defined in (2.29), has unstable spectrum.

Lastly, note that one may optimize in (k1, k2), and compute a lower bound for the largest eigenvalue of
L in terms of the physical parameters N, εκ, and of m. More precisely, we have that

sup
k1,k2∈Z∗

(
mN2

2

k22(k21 + k22)

4N4m2(k21 + k22 + 4m2) + k42
− εκ(k21 + k22 + 4m2)

)
≥ 1

28εκ
− 8m2εκ, (2.40)

with the lower bound being attained e.g. for (of course, we need to take integer part)

k1 =
1

16εκ
and k2 =

N
√
m√

8εκ
, for 0 < εκ � 1.

In particular, we note that as εκ → 0 the lower bound given by the right hand side of (2.40) blows up (this
will be important in Sections 3 and 4). Moreover, for the above choice of k1 and k2, we have k1k−22 →
1/(2N2m) as εκ → 0. This is in precise accordance to the fact that the absolute value of the Fourier
multiplier associated to M grows at the fastest rate when |k2| = O(|k1|1/2) as |k1| → ∞. See (1.17).

Combining the results in this subsection with Theorem 2.5, we have thus constructed an example of
solutions to the MG equations which displays strong (exponential) growth in θ and hence in the velocity
field u by (1.12) and also in the magnetic field b(x, t) through (1.8). The rate of this growth can be shown
to be proportional to exp(t/28εκ) which is consistent with the dynamo instability scenario.

3. NON-DIFFUSIVE MG EQUATION

As discussed in the introduction, in the fluid core the value of εκ, given by the quotient of κ the molecular
diffusivity coefficient, and LV , the product of the typical length scale and typical velocity in the fluid, is
very small.

Therefore, from the physical point of view it is natural to study the non-diffusive (unforced) MG equation

∂tθ + (u · ∇)θ = 0 (3.1)

u = M [θ], ∇ · u = 0 (3.2)

or the corresponding non-diffusive singular active scalar equation when (3.2) is replaced by (2.2), i.e. uj =
∂iTijθ. As we shall see below, the system (3.1)–(3.2) is ill-posed in Sobolev spaces, in the sense that there
is no operator which is Lipschitz in time at t = 0.
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3.1. On the (lack of) well-posedness for the MG equation in Sobolev spaces. Before we discuss the
issue of ill-posedness, let us briefly discuss why the evenness of the operator M breaks the classical proof
of local existence in Sobolev spaces for the class of singular active scalar equation (3.1)–(3.2). The standard
energy-approach to local existence inHs would entail applying the (−∆)s/2 to (3.1), and then take L2 inner
products with (−∆)s/2θ. Morally speaking (this is rigorous when s/2 is an integer in view of the Leibniz
rule) we have only one term which seem to prevent closing the estimates at the Hs level:

T =

∫
(−∆)s/2u · ∇θ (−∆)s/2θ dx =

∫
Mj(−∆)s/2θ ∂jθ (−∆)s/2θ dx (3.3)

Indeed, the other term where more than s derivatives lie on a single function is
∫
u·∇(−∆)s/2θ(−∆)s/2θdx,

but this term vanishes upon integrating by parts since ∇ · u = 0. The only hope to treat the term T would
be to discover a commutator structure. However, since M is not anti-symmetric, i.e. even in Fourier space,
we cannot write T = −S , where

S =

∫
Mj

(
(−∆)s/2θ ∂jθ

)
(−∆)s/2θ dx = T +

∫
[Mj , ∂jθ](−∆)s/2θ (−∆)s/2θdx = T + C (3.4)

and [·, ·] is the usual commutator bracket. Instead for the MG, we have T = S, and we cannot explore the
fact that C may be bounded in terms of ‖θ‖3Hs (if s > 2). This is the main reason why we do not seem to be
able to close estimates at the Sobolev level.

On the other hand, it was observed in [CCC+12], see also [FV11b], that if we replace u = M [θ] (cf. (3.2))
by a certain class of singular constitutive laws uj = ∂iTijθ (cf. (2.2)), and the matrix Tij is such that

〈Tijf, g〉 = 〈f, Tijg〉

for any f, g and i, j (here 〈·, ·〉 is the usual L2 inner product), then the corresponding singular active scalar
equation (3.1)–(2.2) is locally well posed in Hs for s > 2. The main reason is that under these assumptions
the operator ∂iTij is anti-symmetric, and we are able to write 2T = C, using the notation of (3.3) and (3.4).
The commutator term C would enable one estimates to close at the Hs level.

Lastly, we mention that for analytic initial data, the non-diffusive MG equation is indeed locally well-
posed in the class of real-analytic functions, since each term in the equation loses at most one derivative.
This was proven in [FV11b, Theorem 2.1] by using a Cauchy-Kowalewski-type argument, in the spirit of the
Gevrey-class regularity proof of [FT89] (see also [LO97, OT00, KV09]). In particular, this result justifies
the short time numerical simulations of the MG equation are justified, as they only keep track of finitely
many Fourier modes (hence the associated functions are real analytic).

3.2. Hadamard ill-posedness for the non-diffusive MG equation. A Cauchy problem for a certain partial
differential equation is called well-posed in X in the sense of Hadamard, if for any initial data in X , the
problem has a unique solution in L∞(0, T ;X), with T depending only on the initial data in theX-norm, and
the solution map Y 7→ L∞(0, T ;X) satisfies some continuity properties, for a suitable space Y ⊂ X . If one
of these properties fail, the Cauchy problem is called ill-posed. In this section we discuss the failure of the
solution map for the non-diffusive MG equation to be Lipschitz continuous with respect to perturbations in
the initial data (in the topology of a Sobolev space X) around a specific steady profile Θ0. Such results have
been recently obtained for several models in fluid dynamics, see e.g. [Gre00, BP08, Ren09, CS10, GVD10,
GVN10, GN10, DQS11, FGSV12, FR12] and references therein.

The proof consists of a linear and a nonlinear step. We construct a steady state and a sequence of eigen-
functions, with arbitrarily large eigenvalues, for the linearized MG equation around this steady state. Once
these eigenvalues are exhibited, one may use a fairly robust argument (see, e.g. [Ren09]) to show that this
severe linear ill-posedness implies the Lipschitz ill-posedness for the nonlinear problem. We emphasize that
the key feature of the MG constitutive law (1.12) which gives this ill-posednes is the evenness and unbound-
edness of the symbol associated toM . In fact, the evenness also gives non-uniqueness for for bounded weak
solutions of the non-diffusive MG equation, as was recently established by Shvydkoy [Shv11].
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3.2.1. Linear ill-posedness. Let m ≥ 1 be a positive integer. We use the steady state

Θ0 = sin(mx3), (3.5)

with associated velocity field U0 = 0. Similarly to (2.29), we consider the associated linearized (non-
diffusive) MG operator defined by

Lθ = −M3[θ]∂3Θ0 (3.6)

where the M3 operator is defined in terms of its Fourier symbol (1.15)–(1.16). With this notation, we have

Theorem 3.1 ([FV11b]). The Cauchy problem associated to the linearized MG equation

∂tθ = Lθ (3.7)

is ill-posed in the sense of Hadamard over L2. That is, for any T,K > 0, there exits a real-analytic initial
datum θ(0, ·), such that the IVP associated to (3.7) does not have a solution θ ∈ L∞(0, T ;L2), which obeys

sup
t∈[0,T ]

‖θ(t, ·)‖L2 ≤ K‖θ(0, ·)‖Y (3.8)

where Y is any Sobolev space that embeds compactly in L2.

The proof of the above theorem builds on the construction of unstable eigenvalues in the critically diffu-
sive case, more specifically on Lemma 2.6.

As in Section 2.2.2, cf. (2.30) we make the ansatz that θ is given in terms of a Fourier sine series

θ(t, x) = eσt sin(k1x1) sin(k2x2)
∑
p≥1

cp sin(mpx3),

with k1 and k2 to be chosen precisely later. Note that since we are in the non-diffusive case, we need
to set εκ = 0, and hence cf. (2.32) we have σp = σ for any p ≥ 1. The value of αp remain however
unchanged. Using Lemma 2.6, we obtain an eigenvalue σ∗ = σ∗(k1, k2), and an exponentially decaying
sequence {cp}p≥1, such that cf. (2.38) the bound

σ∗ = σ∗(k1, k2) ≥
mN2

2

k22(k21 + k22)

4N4m2(k21 + k22 + 4m2) + k42
(3.9)

holds. We set k1 = j2 and k2 = j in (3.9), where j ≥ 2m is a positive integer, and obtain the lower bound

σ∗,j := σ∗(j
2, j) ≥ j · mN2

24N4m2 + 2
=

j

C1
(3.10)

on the eigenvalue, associated to this choice of (k1, k2). Here C1 = C1(m,N). We also denote by θ(j)

the eigenfunction constructed in this way. Using an additional argument, which requires suitably bounding
the exponentially decaying sequence {cp}p≥1 which defines our eigenfunction, one may in fact additionally
normalize θ and prove (cf. [FV11b, Lemma 2.7], [FRV12, Lemma 4.3]) that

‖θ(j)(0, ·)‖Y = 1, and ‖θ(j)(0, ·)‖L2 ≥
1

C2j2
, (3.11)

where C2 = C2(m,N, Y ) is a sufficiently large constant. For example, if Y = Hs with s > 0, we may
explicitly compute a suitable such constant.

We conclude the proof of Theorem 3.1 by using a contradiction argument. If such a solution would exist,
for a fixed T and K, we pick j = j(T,K,m,N, Y ) large enough so that

exp(Tj/(2C1))

C2j2
≥ 2K

holds. The linear problem (3.7) can be shown to have a unique L2 solution, and hence by construction we
have

θ(j)(t, x) = θ(j)(0, x) exp(σ∗,jt),
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the assumed estimate (3.8) is contradicted by our choice of j and the lower bound (3.10). This concludes
the proof of Theorem 3.1.

3.2.2. Nonlinear ill-posedness. Before stating our main ill-posedness result, let us recall the definition of
Lipschitz well-posedness.

Definition 3.2 ([GN10, FV11b]). Let Y ⊂ X ⊂ W 1,4 be Sobolev spaces. The Cauchy problem for the
non-diffusive MG equation is locally Lipschitz (X,Y ) well-posed, if there exist continuous functions T,K :

[0,∞)2 → (0,∞), so that for every pair of initial data θ(1)(0, ·), θ(2)(0, ·) ∈ Y there exist unique solutions
θ(1), θ(2) ∈ L∞(0, T ;X) of the initial value problem associated to (3.1)–(3.2), that additionally satisfy

‖θ(1)(t, ·)− θ(2)(t, ·)‖X ≤ K‖θ(1)(0, ·)− θ(2)(0, ·)‖Y (3.12)

for every t ∈ [0, T ], where T = T (‖θ(1)(0, ·)‖Y , ‖θ(2)(0, ·)‖Y ) and K = K(‖θ(1)(0, ·)‖Y , ‖θ(2)(0, ·)‖Y ).

We note that Defintion 3.2 allows the solution map to lose regularity. Since the MG equation is first order,
the typical pairs of spaces (X,Y ) that we have in mind here areX = Hs, and Y = Hs+1, with s > 1+3/4.

The main result of this section is then:

Theorem 3.3 ([FV11b]). The non-diffusive MG equations (3.1)–(3.2), are locally Lipschitz (X,Y ) ill-posed
in Sobolev spaces Y ⊂ X embedded in W 1,4, in the sense of Definition 3.2.

The proof of the above result is based on the severe linear ill-posedness obtained in Theroem 3.1, and a
standard perturbative argument [Ren09, Theorem 2] or [Tao06, pp. 183], which we breifly sketch below.

Let Θ0 = sin(mx3) be the steady state defined above in (3.5), let Lθ = −M3[θ]∂rΘ0 be its associated
linearized MG operator, and denote the MG nonlinearity by N(θ) = Mj [θ]∂jθ. By our assumptions on X
and Y , we have

‖Lθ‖L2 ≤ C1‖θ‖X and ‖N(θ)‖L2 ≤ C1‖θ‖2X (3.13)

for some constant C1 = C1(Θ0) > 0. Also, let C0 = ‖Θ0‖Y .
In definition (3.2), we chose θ(2)(0) = Θ0 = θ(2)(t) be the steady state, and let θ(1)(0) = θ

(1)
δ (0) =

Θ0 + δψ0, for some smooth function ψ0 to be chosen later. Assume by contradiction that the problem is
Lipschitz locally well-posed in (X,Y ). One may then show that there exist T = T (C0) and K = K(C0)
such that

sup
t∈[0,T ]

‖θ(1)δ (t)−Θ0‖X ≤ Kδ

for any δ ∈ (0, δ0(C0)]. Writing the solution θ(1)δ (t) as an order δ perturbation around the steady state,
θ(1)(t) = Θ0 + δψδ(t) we thus have

sup
t∈[0,T ]

‖ψδ(t)‖X ≤ K (3.14)

and ψδ solves the Cauchy problem

∂tψδ = Lψδ + δN(ψδ), ψδ(0) = ψ0. (3.15)

The key observation is that when combined with (3.13), estimate (3.14) yields

δ‖N(ψδ)‖L2 ≤ C1δK
2

for any t ∈ [0, T ]. Therefore, when passing δ → 0, the nonlinearity in (3.15) disappears, and we should ob-
tain the linear limiting equation. Indeed, from (3.14), (3.15), and the bounds (3.13), we obtain the necessary
estimates to apply the Aubin-Lions compactness argument and show that ψδ → ψ strongly in L∞(0, T ;L2)
and on this time interval the limiting function obeys

∂tψ = Lψ, ψ(0) = ψ0. (3.16)
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But ψ also inherits the bound (3.14) from the sequence ψδ, which contradicts Thereom 3.1 – choose ψ0 an
eigenfunction of L as constructed in Section 3.2.1, so that in time T/2 the exponential growth of the L2

norm caused the solution to exceed the level 2K. This concludes our sketch of the proof of Theorem 3.3.

4. FRACTIONALLY DIFFUSIVE MG EQUATION AND WELL-PREPARED INITIAL DATA

The fractionally diffusive MG equation, although non-physical, presents a very challenging and interest-
ing mathematical problem. Replacing the Laplacian in (1.11) by −(−∆)γ , for γ ∈ (0, 1), we obtain the
active scalar equation

∂tθ + u · ∇θ = εκ(−∆)γθ + S (4.1)

u = M [θ], (4.2)

θ(0, ·) = θ0 (4.3)

where the symbol of the Fourier multiplier M is given by (1.13)–(1.16). Note that here we work with the
non-dimensional variables, so that the initial data and the source term are normalized to be of size unity.

The main feature of this situation is that the structure of M̂j (anisotropy, evenness, and unboundedness)
and a relatively weak smoothing effect of the nonlocal operator (−∆)γ produce a sharp dichotomy across
the value γ = 1/2, as follows. If 1/2 < γ < 1 the equation is locally well-posed, while it is Hadamard
Lipschitz ill-posed for 0 < γ < 1/2. At the threshold value γ = 1/2 the problem is globally well-posed
for εκ � 1, respectively ill-posed for εκ � 1. Furthermore, the anisotropy of the symbols M̂j can be used
to improve the regularity of the solutions when the initial data and source have a suitably chosen Fourier
support. For such well-prepared data the local existence and uniqueness of solutions can be obtained for all
values γ ∈ (0, 1), and the global existence holds for all initial data when γ ∈ (1/2, 1). We remark that in all
above mentioned regimes, the problem is super-critical in the sense described in Section 2.

4.1. Regime of well-posedness in Sobolev spaces. In Section 2 we stated the well-posedness result when
the diffusion in the equation is given by the full Laplacian. If the diffusion in the equation is introduced by
the fractional operator (−∆)γ , γ ∈ (1/2, 1), then we have the following result.

Theorem 4.1 ([FRV12]). Let γ ∈ (1/2, 1), and fix s > 5/2 + (1 − 2γ). Assume that θ0 ∈ Hs(T3) and
S ∈ L∞(0,∞;Hs−γ(T3)) have zero-mean on T3. Then there exists a time T > 0 and a unique smooth
solution θ ∈ L∞(0, T ;Hs(T3)) ∩ L2(0, T ;Hs+γ(T3)) of the Cauchy problem (4.1)–(4.2).

Under an additional assumption on the size of εκ (equivalently, the size of the initial data in the unscaled
equations), we obtain a global existence result.

Theorem 4.2 ([FRV12]). Let γ and S be as in the statement of Theorem 4.1, and let θ0 ∈ Hs(T3) have zero-
mean on T3, where s > 5/2+(1−2γ). There exists a large enough number C̄, such that if εκ ≥ C̄, then the
unique smooth solution θ of the Cauchy problem (4.1)–(4.2) is global in time, i.e. θ ∈ L∞(0,∞;Hs(T3)).

Remark 4.3. Note that in [FRV12] we did not use the non-dimensional variables with which we are working
here. Therefore, the global well-posedness condition stated in [FRV12] is that the initial data and source,
have to be sufficiently small, compared to the diffusivity coefficient κ. In this paper however, the data and
source have been normalized to be of order unity, and the only coefficient remaining is εκ. It is hence
natural that the small data condition turns to a large enough εκ condition. This remains valid throughout
this section.

The detailed proofs of Theorems 4.1 and 4.2 are given in [FRV12], and rely mainly on energy methods
and the use of suitable commutator estimates. We omit these details here.
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4.2. Regime of ill-posedness in Sobolev spaces. In this subsection we consider the stability of steady
states to (4.1)–(4.2). The construction follows the outline described in Section 2.2.2. In this case, we choose
Θ0 = sin(mx3) and S = εκm

2γ sin(mx3), for some integer m ≥ 1. As before, the first step in proving
that the Cauchy problem (4.1)–(4.2) is Lipschitz ill-posed is to consider the linearized problem around the
given steady state, and exhibit the existence of unstable eigenvalues with arbitrarily large real part. Thus,
we consider

∂tθ = Lθ, (4.4)

where the linear operator L is given by

Lθ(x, t) = −M3θ(x, t)∂3θ0(x3)− εκ(−∆)γθ.

We seek the temperature θ which solves (4.4) and has the form

θ(t, x) = eσt sin(k1x1) sin(k2x2)
∑
p≥1

cp sin(mpx3) (4.5)

for some fixed k1, k2 ∈ Z∗ to be chosen later. Inserting (4.5) into (4.4) and using the definition of M3, we
obtain that (2.31) holds, but with σp denoted by

σp = σ + εκ(k21 + k22 + (mp)2)γ (4.6)

and with αp given by (2.33) above. As before, these assumptions lead to solving the continued fraction
equation (2.36) for some real σ > 0. This is achieved by suitably modifying Lemma 2.6 to obtain:

Lemma 4.4. Let αp, σp be defined by (2.33) and (4.6) respectively, and let c1 = α1. There exists a real
eigenvalue σ∗ > 0, and a rapidly decaying sequence {cp}p≥2 so that the function θ defined by (4.5) solves
(4.4). Furthermore, we have the lower bound

σ∗ ≥
mN2

2

k22(k21 + k22)

4N4m2(k21 + k22 + 4m2) + k42
− εκ(k21 + k22 + 4m2)γ . (4.7)

In particular, setting for instance k1 = j2 and k2 = j in (4.7), for each j ≥ 2mwe obtain a real eigenvalue
σ∗,j of L, which is bounded from below as

σ∗,j ≥ j2γ
(
j1−2γ

mN2

24N4m2 + 2
− 3εκ

)
. (4.8)

Moreover, given a Sobolev space Y that is compactly embedded in L2, we may ensure the existence of a
constant C2 = C2(m,N, Y, γ) such that the smooth eigenfunction θ(j) corresponding to σ∗,j obeys (3.11).
The immediate consequence of estimate (4.8) is that due to 1− 2γ > 0, we have

σ∗,j →∞, as j →∞.
The above construction proves that the linearized problem (4.4) is ill-posed in L2, as we have exhibited
eigenvalues of arbitrarily large real part. Following the argument outlined in Section 3.2.2, this type of
strong ill-posedness for the linearized problem, automatically implies that the nonlinear problem is Lipschitz
ill-posed in Sobolev spaces (recall Defintion 3.2 of Lipschitz well-posedness). Thus we obtain:

Theorem 4.5 ([FRV12]). The Cauchy problem (4.1)–(4.3), with γ ∈ (0, 1/2) is locally Lipschitz (X,Y )
ill-posed in Sobolev spaces Y ⊂ X embedded in W 1,4(T3).

4.3. The threshold case γ = 1/2. The value γ = 1/2 marks the threshold for proving the local well-
posedness in Sobolev spaces for (4.1)–(4.3). If the initial datum is small with respect to κ, or equivalently, if
εκ is sufficiently large (see Remark 4.3 above), then one may use energy estimates to show that there exists
a unique global smooth solution evolving from this data. In this direction we have:

Theorem 4.6 ([FRV12]). Let s > 5/2 and assume that θ0 ∈ Hs(T3) and S ∈ L∞(0,∞;Hs−γ(T3)) have
zero-mean on T3. There exists a sufficiently large number C̄, such that if εκ ≥ C̄, then the unique smooth
solution θ ∈ L∞(0, T ;Hs(T3)) of the Cauchy problem (4.1)–(4.3) is global in time.
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As in the case of γ ∈ (1/2, 1), the proof is based on the classical Kato-Ponce commutator estimate. The
proof however does not apply for the case of “small” εκ (large data), not even to prove the local existence
of solutions.

In the case where εκ is suitably small, we may construct a steady state such that solutions evolving from
initial data which is arbitrarily close to this steady state diverge from it at an arbitrarily large rate, i.e. the
problem is Hadamard ill-posed. More precisely, we have:

Theorem 4.7 ([FRV12]). Let Y ⊂ X ⊂ W 1,4(T3) be Sobolev spaces, let γ = 1/2, and fix the integer
m = 1. Consider the steady state solution of (4.1) given by θ(1)0 = sin(mx3) ∈ Y , with source term
S = εκm sin(mx3), and assume that

εκ <
1

26
√

3
. (4.9)

Then, given any T > 0 and any K > 0, there exists an initial condition θ(2)0 ∈ Y and a corresponding
solution θ(2) ∈ L∞(0, T ;X) of the Cauchy problem (4.1)–(4.2), such that

sup
t∈[0,T ]

‖θ(2)(t, ·)− θ(1)(t, ·)‖X ≥ 2K‖θ(2)0 − θ
(1)
0 ‖Y

where θ(1)(t, ·) = θ
(1)
0 . That is, the problem (4.1)–(4.2) is locally Lipschitz (X,Y) ill-posed when εκ � 1.

To prove the above result, we follow the ill-posedness result in the case γ ∈ (0, 1/2). The main difference
is that while for γ ∈ (0, 1/2) by (4.8) we have real eigenvalues of arbitrarily large real part, when γ = 1/2
the lower bound (4.8) only blows up for εκ sufficiently small, depending on N2 and our choice of m. This
condition is rather unsatisfactory, since it implies εκ → 0 asN2 → 0. In fact, we can establish a more robust
smallness condition on εκ, in the sense that it is independent of N2 (and m). To see this, insert k1 = j2N−2

and k2 = jm1/2 in the lower bound (4.7), where j ≥ max{N4m, 4m}. We obtain the lower bound

σ∗,j ≥
mN2

2

j6mN−4

12N4m2j4N−4 + j4m2
−
√

3εκj
2N−2 = j2N−2

(
1

26
−
√

3εκ

)
. (4.10)

Therefore, under the assumption (4.9), which is independent of m or N , the right side of (4.10) diverges
to ∞ as j → ∞ and hence we again have a sequence of unstable eigenvalues of the linear problem, with
arbitrarily large real part. Combined with the nonlinear argument presented in Section 3.2.2 this concludes
the sketch of the proof of Theorem 4.7.

4.4. Well-prepared initial data. In this subsection we present results which take advantage of the curved
nature (paraboloid-type) of the regions in frequency space where the symbol M̂(k) grows like |k|. We
observe that if the support of θ̂ lies on a plane, then the operator M behaves like an operator of order zero
acting on this θ, and hence the velocity u is as smooth as θ. This allows us to improve the well-posedness
results in the range εκ > 0 and 0 < γ < 1, over the generic case when no conditions on the Fourier
transforms of the initial data (and source term) are imposed.

To be more precise let us introduce some notation. For a rational number q ∈ Q with q 6= 0, define
frequency plane Pq as

Pq = {k = (k1, k2, k3) ∈ Z3 : k2 = qk1}.
One may show that whenever q 6= 0,

|M̂j(k)| ≤ Cq <∞, for all k ∈ Pq and j ∈ {1, 2, 3}. (4.11)

This observation, combined with the fact that when the data θ0 and source S have frequency support on Pq,
then so does the solution θ(t, ·) of the Cauchy problem (4.1)–(4.3) at all later times t > 0, means that the
smoothing properties of the fractional diffusion term are stronger than they are for the generic data situation.
Hence it is possible to prove stronger regularity results, and in particular the local existence and uniqueness
of Sobolev solutions holds for all values of γ ∈ (0, 1).
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Theorem 4.8 ([FRV12]). Let γ ∈ (0, 1), and fix s > 5/2 − γ. Assume that θ0 ∈ Hs(T3) and S ∈
L∞(0,∞;Hs−γ(T3)) have zero-mean on T3 and are such that supp(θ̂0) ⊂ Pq and supp(Ŝ(t, ·)) ⊂ Pq
for some fixed q ∈ Q \ {0} and all t ≥ 0. Then there exists a T > 0 and a unique smooth solution θ ∈
L∞(0, T ;Hs(T3)) ∩ L2(0, T ;Hs+γ(T3)) of the Cauchy problem (4.1)–(4.3), such that supp(θ̂(t, ·)) ⊂ Pq
for all t ∈ [0, T ).

We note that the above theorem holds even if γ ∈ (0, 1/2), a setting in which we know that for generic
initial data the problem is ill-posed. Moreover, one may also prove that if the initial data is small with respect
to κ, or equivalently, εκ � 1 in the non-dimensional setting of this manuscript, the solution obtained in
Theorem 4.8 is global in time.

The main difficulty in the proof of Theorem 4.8 is the construction and uniqueness of solutions, which live
on the frequency plane Pq. This relies on constructing of a suitable sequence of approximations supported
on the Fourier space on Pq and showing its convergence using energy methods. The main obstacle one has
to overcome is designing an iteration scheme which is both suitable for energy estimates, and is such that
in each iteration step the frequency support of the approximation lies on Pq. More explicitly, a scheme
in which ∂tθn+1 is given in terms of v · ∇θn preserves the frequency support on Pq, however is not good
for closing the estimates at the level of Sobolev spaces. On the other hand if we define ∂tθn+1 in terms of
v ·∇θn+1, the energy estimates are now clear but it seems difficult to inductively prove that θ̂n+1 is supported
on Pq. Therefore, we work with a regularized problem, where we introduce an artificial term −ε∆θ. The
advantage of considering a stronger dissipative problem is that we can construct smooth solutions which
have frequency support lying onPq. For details of the construction we refer the interested reader to [FRV12].
Lastly, we pass to the limit ε→ 0 and obtain a solution of (4.1)–(4.3) with desired properties.

If the initial data θ0 and the source term S have Fourier support in Pq, we show that for γ ∈ [1/2, 1) the
local in time solution may be continued for all time.

Theorem 4.9 ([FRV12]). Let s, θ0 and S be as in the statement of Theorem 4.8. If γ ≥ 1/2, the unique
smooth solution θ of the Cauchy problem (4.1)–(4.3) is global in time.

The proof hinges on the observation that the solution constructed in Theorem 4.8 satisfies supp(θ̂) ⊂ Pq.
Then, in view of (4.11) and the Hörmander-Mikhlin theorem we have ‖u‖W s,p ≤ C‖θ‖W s,p for all 2 ≤
p < ∞, s ≥ 0, and so the velocity u is as smooth as the scalar θ. Hence, the case γ > 1/2 is “sub-critical”
for the a priori controlled quantities, and energy estimates in the spirit of those used to prove the global
regularity of the sub-critical SQG equation [CW99, CC04, Wu05], may be used to prove Theorem 4.9. The
case γ = 1/2 in Theorem 4.9 is more subtle, and is analogous with the problem of global regularity for
the critical SQG equation [CV10, KNV07, KN09, CV12]. The anisotropic nature of the symbol M , makes
it more convenient to apply the De Giorgi-inspired proof of [CV10] in the context of the fractional MG
equation with γ = 1/2. The main ingredient is that if θ ∈ L∞ and supp(θ̂) ∈ Pq, then u ∈ BMO. Hence,
considering first the linear problem with divergence-free BMO drift we obtain Hölder continuity of the
solution. The later norm is sub-critical and one may bootstrap to higher regularity. We refer the interested
reader to [FRV12] for details.

5. CONCLUSIONS

We have proven that the magneto-geostrophic model proposed by Moffatt and Loper is capable of sus-
taining dynamo action. The MG-dynamo instability exhibited here relies crucially on the fact that the di-
mensionless parameter N2 (1.5) is neither 0, nor∞. The exponential growth is of order O(exp(t/εκ)), for
all N2 ∈ (0,∞), and 0 < εκ � 1. In terms of the physics in the model, this condition on N2 requires that
all three forces, Coriolis, Lorentz, and gravity, are non-zero, making the MG-instability somewhat different
in nature from the usual Rayleigh-Taylor instability.

At the level of mathematical analysis several problems remain to be addressed, including some well/ill-
posedness issues. For the non-diffusive equation, is there a “stronger” form of ill-posedness such as norm
inflation or even finite time blowup? Can we refine the well-posedness results for the fractionally diffusive
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problem in the range 1/2 < γ < 1? That is, can one establish the global existence of smooth solutions or
on the contrary, prove finite time blowup?

Several, interesting, mathematical issues arise when returning to the derivation of the MG equation from
the full three dimensional MHD equations in the spirit of [ML94, Mof08]. In particular, we note that
Moffatt’s and Loper’s initial discussion includes the kinematic viscosity ν, which is directly proportional
to ε in (1.1). The values of ε and εκ are highly conjectural, but both are believed to be extremely small.
Therefore, as opposed to the MG system, if we keep ε > 0 we derive from (1.1)–(1.4) the system

N2e3 × u = −∇P + e2 · ∇b+N2θe3 + ε∆u (5.1)
0 = e2 · ∇u+ ∆b (5.2)
∂tθ + u · ∇θ = εκ∆θ + S (5.3)
∇ · u = 0,∇ · b = 0. (5.4)

The presence of the Laplacian term in (5.1) makes the constitutive law relating u and θ “better”, in the sense
that the M operator corresponding to (5.1)–(5.4), now depends both on N and ε, and is in fact smoothing
of degree 2 (see equations (29)–(30) in [ML94]). Hence, in this case the constitutive law is even better than
that for the two-dimensional Euler equation in vorticity form, implying that: in the range ε > 0, the system
(5.1)–(5.4) is globally well-posed, even if εκ = 0.

This observation is interesting in view of the much more challenging problem of establishing properties
of the solutions to (5.1)–(5.4) in the vanishing parameters limits ε→ 0 and εκ → 0, as proposed by Moffatt
and Loper. The later question is directly related to the turbulent scaling regime for θ conjectured by Moffatt
in [Mof08]. “Turbulence” in the framework of vanishing diffusivity εκ for the forced system (5.1)–(5.4),
and the presence of anomalous dissipation of energy for θ, or “thetargy”, may be plausible for very weak
solutions (below Onsager critical) of the non-diffusive equation.
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[MS61] L.D. Mešalkin and J.G. Sinaı̆. Investigation of the stability of a stationary solution of a system of equations for the
plane movement of an incompressible viscous liquid. J. Appl. Math. Mech., 25:1700–1705, 1961.

[MV06] V.G. Maz’ya and I.E. Verbitsky. Form boundedness of the general second-order differential operator. Comm. Pure Appl.
Math., 59(9):1286–1329, 2006.



MG SURVEY 21

[MX12] C. Miao and L. Xue. Global well-posedness for a modified critical dissipative quasi-geostrophic equation. Journal of
Differential Equations, 252(1):792–818, 2012.

[Nas58] J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80:931–954, 1958.
[NU12] A.I. Nazarov and N.N. Ural’tseva. The harnack inequality and related properties for solutions of elliptic and parabolic

equations with divergence-free lower-order coefficients. St. Petersburg Math. J, 23:93–115, 2012.
[Osa87] H. Osada. Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ., 27(4):597–619,

1987.
[OT00] M. Oliver and E.S. Titi. Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes

equations in Rn. J. Funct. Anal., 172(1):1–18, 2000.
[Ren09] M. Renardy. Ill-posedness of the hydrostatic Euler and Navier-Stokes equations. Arch. Ration. Mech. Anal.,

194(3):877–886, 2009.
[RG00] P.H. Roberts and G.A. Glatzmaier. Geodynamo theory and simulations. Reviews of modern physics, 72(4):1081, 2000.
[RG01] P.H. Roberts and G.A. Glatzmaier. The geodynamo, past, present and future. Geophysical &amp; Astrophysical Fluid

Dynamics, 94(1-2):47–84, 2001.
[Shv11] R. Shvydkoy. Convex integration for a class of active scalar equations. J. Amer. Math. Soc., 24(4):1159–1174, 2011.
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