ON THE SUPERCRITICALLY DIFFUSIVE MAGNETO-GEOSTROPHIC EQU ATIONS

SUSAN FRIEDLANDER, WALTER RUSIN, AND VLAD VICOL

ABSTRACT. We address the well-posedness theory for the magnetdrgpbie equation, namely an active
scalar equation in which the divergence-free drift velpistone derivative more singular than the active scalar.
In the presence of supercritical fractional diffusion givey (—A)” with 0 < v < 1, we discover that for

~ > 1/2 the equations are locally well-posed, while fox: 1/2 they are ill-posed, in the sense that there is no
Lipschitz solution map. The main reason for the strikingslo§regularity wheny goes belowl /2 is that the
constitutive law used to obtain the velocity from the actealar is given by an unbounded Fourier multiplier
which is both even and anisotropic. Lastly, we note that thisadropy of the constitutive law for the velocity
may be explored in order to obtain an improvement in the gagylof the solutions when the initial data and
the force have thin Fourier support, i.e. they are suppatea plane in frequency space. In particular, for such
well-prepared data one may prove the local existence arglienéess of solutions for all valuesfe (0, 1).

In fact, these solutions are global in time whek [1/2,1).
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1. INTRODUCTION

The geodynamo is the process by which the Earth’s magnelitisiereated and sustained by the mo-
tion of the fluid core which is composed of a rapidly rotatimgnsity stratified, electrically conducting
fluid. Recently Loper and Moffattl[7/] and Moffatt [20] proposed a model for the geodynamo which is a
reduction of the full magnetohydrodynamic system of PDHs Tiodel can be viewed as a nonlinear active
scalar equation in three dimensions. An explicit operdtbj©] encodes the physics of the geodynamo and
produces the divergence free drift velocli¥(t, ) from the scalar “buoyancy” fiel®(¢, x). We call this
active scalar equation the magnetogeostrophic equéfio@). It has some features in common with the
much studied two dimensional surface quasigeostrophiatequ SQG) (see R, 3, 4, 5, 6, 14, 16, 22, 27]
and references therein). However {iid G) equation has a number of novel and distinctive featuresalue t
the strongly singular and anisotropic nature of the operad{o

Thecritically diffusive (M G) equation is defined by the following system

80+ U VO =S+ rAO (1.1)
V.U =0 (1.2)

wherex > 0 is a physical parameter, arfl¢, x) is a C*°-smooth, bounded in time source term. The
velocity U is divergence-free, and is obtained frévia

U; = M0, (1.3)
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forall j € {1, 2,3}, where theM; are Fourier multiplier operators with symbols given exgljcoy

T (o) = 2l k2 — (323
M= e (5 4
(k) — —2uhslbl? — (5 /iy .

AQ2K |k + (B2 /n)?k3
7 (B> /m)k3 (ki + k3)
Ms(k) = (1.6)
)= 0PR + () H]
where the Fourier variable € Z3 is such thatez # 0. Note that]/\ij(k) is not defined orks = 0, since
for the self-consistency of the model it is assumed éandU have zerovertical mean It can be directly
checked that; - M;(k) = 0 for all k € Z*\ {ks = 0}, and hence the velocity fiel¥ given by (.3) is
indeed divergence-free. The physical parameters of theygeono are the followingf2 is the rotation rate
of the Earthy) is the magnetic diffusivity of the fluid core, is the thermal diffusivity, and is the strength
of the steady, uniform mean part of the magnetic field in thiel fbwre. The perturbation magnetic field
vectorb(t, z) is computed fromP (¢, x) via the operator

b = (B/n)(—A) 10, M,0, forall j € {1,2,3}. (1.7)

We observe that the presence of the underlying magnetic figflécted in the parametgf /5, produces a
non-isotropic structure in the symbalg;.

It is important to note that although the symbﬁ/lé are0-order homogenous under the isotropic scaling
k — Mk, due to their anisotropy the symbo@ are not bounded functions &. To see this, note that
whereas in the region of Fourier space where< max{ko, k3} the]\//fi are bounded by a constant, uni-
formly in |k, this is not the case on the “curved” frequency regions where O(1) andks = O(|k1|"),
with 0 < r < 1/2. In such regions the symbols are unbounded, sin¢g;as+ oo we have

M, (K, [k |75 )] = k|7 | My (ks (R |7 )]~ (k] (M (s (R |75 1)] ~ (ka2 (1.8)

In fact, it may be shown thaiM (k)| < C|k|, whereC(3,7,Q) > 0 is a fixed constant, and this bound
is sharp. The fact that symbols are at most linearipoundedn the whole of Fourier space implies that
M 0] is thederivative of a singular integral operator acting éh(see P] for details), as opposed to the
case of thé SQG) equation wherdJ is the Riesz transform d.

In [9] we studied a class of nonlinear active scalar equationshidtwthe (M G) system {.1)—(1.6) is a
member, namelyl(1) with

Uj = 9;T;;0 (1.9)

forall j € {1,2,3} whereT}; is a3 x 3 matrix of Calderon-Zygmund operators of convolution tygoeh
that 9;0;T;;¢ = 0 for any smooth functiorb. Inspired by the proof of Caffarelli and Vassej for the
global well-posedness of the critically diffusiv®é QG) equations, we used De Giorgi techniques to obtain
the global well-posedness of the critically diffusiy®/G) equations, namelyl(1)—(1.6). We remark that
for both the diffusive(M G) and (SQG) equationcriticality is defined with respect to the> maximum
principle. In [10] we considered the non-diffusive version of the G) equations, namelyl(1)—(1.6) with
x = 0. In contrast with the critically diffusive problem whereethM/ ) equation is globally well-posed
and the solutions ar€> smooth for positive time, we proved that when= 0 the equation is Hadamard
ill-posedin any Sobolev spacavhich embeds it/ 4.

In this present paper we study the fractionally diffusivesi@n of the( M/ G) equation withx > 0, namely

80 +U-VO =S — r(—A)O (1.10)
V.U=0, U= MI[6] (1.11)

IThe non-diffusive( M &) equations are however locally well-posed in spaces ofaralytic functions, cf.10].
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with U; = M;[©] where the symbolﬁ//fj are given by {.4—(1.6) and the parameter € (0,1). The main
observation is that the structureﬁfj (anisotropy, unboundedness, and evenness) antdldaksmoothing
effects of the nonlocal operatdrA)? combine to produce a sharp dichotomy across the valae1/2.
More precisely, ify > 1/2 the equations are locally well-posed, whileyif< 1/2 they are ill-posed in
Sobolev spaces, in the sense of Hadamard.

In section3 we use energy estimates to prove thatfoe (1/2,1) the fractionally diffusive(MG)
equations are locally well-posed in Sobolev spadégT?) for s > 5/2+ (1 —2+). With an additional small
data assumption we obtain a global well-posedness resolse& why one may not use energy estimates
to obtain local well-posedness of th&/G) equations whery < 1/2, we point out that in théZ® energy
estimate for {.10 there are only two terms for which more thanderivatives” fall on a single function:

Thad = / MU -VOAO  and  Typeq = / U - VA®© A*O (1.12)

where we denoted = (—A)Y/2. SinceV - U = 0, upon integrating by parts we hat,,; = 0. On
the other hand, the terffy,,; does not vanish in general. The diffusion competing Wih,; is given by
k||A*T7O||2,. Two issues arise. First, sinéé ~ A© andy < 1/2, and one cannot contrlA* U || .2
with ||AST70|| .2, and therefore boundinf,,, could only be achieved by exploring some extra cancellation
Second, since the symbd/l/@ are even the operatd/ is notanti-symmetric, thus one cannot re-writg,4
as— [ A*©-M[VO A*O] (note that if one could do this, a suitable commutator esgrn&Coifman-Meyer
type would close the estimates at the level of Sobolev spaséa B, 10]). Hence there is no a commutator
structure inTy,q, and the estimates do not seem to close at the level of Sobpémes whefl < v < 1/2.

In section4 we consider the case € (0,1/2) and prove that the solution map associated with the
Cauchy problem isiot Lipschitz continuous with respect to perturbations in thigdl data in the topology
of a certain Sobolev spacE. Hence the Cauchy problem is ill-posed in the sense of Hadhmkhis is
achieved by considering a specific steady prdife and constructing functions which are “close’@g, but
which in arbitrarily short time deviate arbitrarily far fro©,, when measured iX. The arguments hinge
on using techniques of continued fractions to exhibit antabile eigenvalue for the linearized equation
(cf. [8, 19]). These techniques producdaver bound on the growth rate of eigenvalues to the linearized
equations, and in the case where (0, 1/2) we prove that the magnitude of this lower bound can be made
arbitrarily large. Once unstable eigenvalues of arbiirdarge part have been obtained for the linearized
equations, the Lipschitz ill-posednedness of the full ioear equations may be obtained using classical
arguments (see, e.d.q, 11, 12, 21, 25]). We emphasize that the mechanism producing ill-posedisasot
merely the order one derivative loss in the ntap— U. Rather, it is the combination of the derivative loss
with the anisotropy of the symbdl/ and the fact that this symbol &ven We note that the even nature
of the symbol ofM plays a central role in the proof of the non-uniqueness gind@a3] for the L>°-weak
solutions of the non-diffusivéM G) equations.

In section5 we study the more subtle transitional case whea 1/2. In this case, if the initial data is
“small” with respect tox, we use energy estimates to prove that there exists a unigbel golution. In
dramatic contrast, there exists initial data which is “&rgvith respect ta<, and for which the associated
linear operator has arbitrarily large unstable eigenalwéich may be use to prove that the equations are
Hadamard ill-posed. Situations where the qualitative tiehaf the solution depends crucially on the norm
of initial data are also encountered for other evolutionatigms. For example, in the two-dimensional
Keller-Segel model of chemotaxis, properties of the sofutire strongly dependent on the total mass
of cells. If m < 8r, a global bounded solution of the initial value problem txignd is dispersed for
t — oo, while form > 8, blow-up in finite time occurs. The critical cagse = 8= is by now understood
and the result states that a global solution exists and ldgdsecomes unbounded as— oo (see [L3]
and references therein). We also mention that for the Rglyd€aylor and the Helmholtz problems it is
“geometric” conditions, rather than merely the size of thtagdwhich leads to ill-posedness (see, for instance

[7D.
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In section6 we take advantage of the anisotropy of the symbblg){(1.6) and observe an interesting
phenomenon: when the initial data and the source term aré-fwmepared” in an appropriate sense, it is
possible to prove stronger regularity results for the emgw@iolutions. More specifically, when the initial
data and the force have “thin” Fourier support, i.e. theysargported purely on a plare, = {k =
(ki, ko, k3) € Z3 : ko = qk1} in frequency space, whetgs a fixed non-zero rational number, the operator
M behaves like an operator of order zero. The reason is thd&idheer symbolsj/w\j are unbounded only

on curved regions in frequency space (&£8f above), but itk € P, the]\%(k) are bounded by a constant
depending ony. This observation, combined with the fact that when the dath source have frequency
support oriP,, then so does the solution of th&/G) equations at all later times, means that the smoothing
properties of the fractional diffusion term are strongertlthey are for the generic data situation. Hence
it is possible to prove stronger regularity results, andartipular the local existence and uniqueness of
Sobolev solutions hold®r all values ofy € (0,1). We note that this is not in contradiction with our results
proven in sectiong and5, since in order to obtain ill-posedness we need to gene 0 (so that we obtain
eigenvalues of the linear operator with arbitrarily largalmpart), whereas in the case of well-prepared data
the value ofg > 0 is fixed Other uses of thin Fourier support for different probleras be found, e.g. in

[1, 25].
2. PRELIMINARIES

This section contains a few auxiliary results used in theepapn particular, we recall the, by now
classical, product and commutator estimates, as well &8dhelev embedding inequalities. Proofs of these
results can be found for instance 5] 24, 25]. Let us denote\ = (—A)'/2. Recall that we work over the
domainT?, and the functions involved have zero mean over the peritaticain.

Proposition 2.1 (Product estimate). If s > 0, then for all f, g € H* N L*°, and we have the estimates

[A°(FllLe < C (I lo IA°gl Loz + |A°fllzes (gl zea) , (2.1)
wherel/p = 1/p1 + 1/p2 = 1/ps + 1/p4, andp, p2, ps € (1,00). In particular
[A°(fg)llr2 < C (I fllel[AgllLz + 1A% fllL2llgll o) - (2.2)

In the case of a commutator we have the following estimate.
Proposition 2.2(Commutator estimate). Suppose that > 0 andp € (1,00). If, f,g € S, then
1A°(fg) — FAglle < C (IV fllze A gllzes + [1A° f ]l zos||gllos ) (2.3)
wheres >0, 1/p =1/p1 + 1/p2 = 1/p3 + 1/ps, andp, pa, p3 € (1, 00).
We shall use as well the following Sobolev inequality.

Proposition 2.3(Sobolev inequality). Suppose tha > 1, p € [¢q,00) and1/p = 1/q — s/3. Suppose that
Asf e L9 thenf € LP and there is a constar@ > 0 such that

Iflle < C||A®f]| L. (2.4)
Throughout this paper we shall make use the following dédimiof solutions of {.1)—(1.3).

Definition 2.4 (Solution of the (M G) equation). Lets > 1/2, T > 0, x > 0, and~y € (0,1). Given
O € H*(T?) and S € L>(0,T; H*~7(T?3)) of zero mean, we call a zero mean function

O € L>(0,T; H*(T3)) N L*(0, T; H*™(T?)) (2.5)
a solutionof the Cauchy probler(iL.10—(1.11), if
t t t
/ (O(t,-) — ) pdx + Ii/ O(—A) pdxds — / OU - Vedxds = / / pSdxds (2.6)
T3 0 JT3 0 JT3 0 JT3

holds for all test functiong € C5°(T?), and allt € (0, T).
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3. THE REGIME 1/2 < v < 1: WELL-POSEDNESS RESULTS

It has been shown irf] that the system1(1)—(1.6) is globally well-posed whern = 1. In this section
we prove that in the range € (1/2,1) equations 1.1)—(1.6) are locally well-posed in7*(T?). With an
additional assumption on the size of the initial data andsthece term, we obtain a global well-posedness
result.?

Regarding arbitrarily large initial data, we obtain thddaling result.

Theorem 3.1(Local existence).Lety € (1/2,1), and fixs > 5/2 + (1 — 2v). Assume tha®, € H*(T?)
andS € L>(0, 00; H*7(T?)) have zero-mean ofi*. Then there exists a tinie > 0 and a unique smooth
solution

O € L>(0,T; H*(T3)) N L(0, T; H*™(T3)) (3.1)
of the Cauchy problertl.10—1.11).
Proof. We multiply equation.1) by A>*©, integrate by parts to obtain the followidg?*-energy inequality

li||A8®||%2 + k| ASTTO|2, < / SA*O| + U - VOA*0|. (3.2)
2dt R3 R3
We estimate the first term on the right side by
5A%6| < ATIS] 2[4 2 < 5 IATISIE, + SIATIO). (33)
R3
To handle the second term we proceed as follows. First nate th
U -VOA*0| = / AU - VO)A* O < |A*V(U - VO)||2[|[A*T7O)| 2. (3.4)
R3 R3
The estimate of the product term follows from Proposittoh Hence, we have
1" - VO)llz: < CATU Lo VOl 2, + AT VOl 22 [U]] 22,) (3.5)

for some2 < p < oo to be chosen later. Recall thet = M;©, where the symbol of the multiplie¥/;

enjoys a uniform bounqjﬁj(k:)\ < C|k|, for j = 1,2,3. ThereforeA~*M; are bounded operators @
(see P, Section 4] for details) and we obtain

AU | e < C|IA*H1O)| 1o (3.6)
and
Ul 2 <ClAB] 2 . (3.7
Lp=2 Lp—2

Hence, the product term is bounded by
IA*(U - VO)llz2 < CAO| 2, A0 1. (3.8)
We now fix an arbitrary such that
6
2(1—27)+3  5—4y

Note thatp > 2 sinces > 3/2, and the range fgy is non-empty since > 5/2+ (1 —2v). Fory € (1/2,1),
our choice ofp and the Sobolev embedding (Propositibf) gives

1A= 0 < [[A°O]| 14765, (3.9)

s—1 p

2For our convenience, we choose to work in sub-critical Sebspaces. The following proofs can be also carried out in the
setting of critical Besov spacés; ; or in generalB;, ,.
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where(¢ € (0,1) may be computed explicitly from¢ = 3/2 — 3/p + 1 — ~. In addition, since® has zero
mean, ang > 3/(s — 1), from the Sobolev embedding we obtain

\|A®|| 2, < CIA°O|| 2. (3.10)
Combining estimates3(2)-(3.10) gives
—HAS 78|32 + ClIACO[ R ATTTO 2 (3.11)

d S S
ZIA%BIZ: + RIATOE. <

where0 < ( < 1is as defined earlier. The second term on the right sid&.4fl) is bounded using the
e-Young inequality as

2(2— C)
||AS+7@||L2+CH e HAS@HLz : (3.12)

and we finally obtain the foIIowmg estimate
2(2 C)

d
ZIA%OIR, + SIATIOI, < [AS, + On”

(3.13)

Using Gronwall’s inequality, from estimat&.(L3 we may deduce the existence of a positive tilhe=
T(IIS]l o (0,1 15—, 1Ol 225, ) such thatd € L>°(0,T; H*(T?)) N L*(0,T; H*+7(T%)). Note that we
have2(2 — ()/(1 — ¢) > 2, and hence we may not obtain the global existence of sokifiam the energy
estimate 8.13), if the initial data has largé/® norm. These a priori estimates can be made formal using a
standard approximation procedure. We omit further details

To show that wherny > 1/2 the solutions are unique in the class1), consider two solution®) and
©® evolving from the same initial data. Their differen@e= ©(1) — ©(2) obeys

9,0+ k(=AY +UM . vo+U-ve? =0 (3.14)

with initial condition ©, = 0. Taking theL? inner product of 8.14) with © (which has zero mean, and
hence so doe®) and applying the Holder inequality yields

5101 + lnelE. < | [U-vele

< AU |AYA(TOD0)| 1
< CIAY20|p (IA*20@) sle] o +IVO@| o [IA20] s )
< CIN20] X706 1 -

< K|AO2, + —|!@|!L2|r@<2 (3.15)

”H& ¥

Here we used Propositich 1, Proposition2.3, the assumptions > 1/2, ands > 5/2 + (1 — 2v). Atlast,
since3 — v < s + 7, it follows from Gronwall’'s inequality and the fact thex?) e L2H; "7 n L H?, that
O(t,-) = 0for all t > 0, thereby proving uniqueness. It is clear that the proof alatks for the endpoint
casey = 1, for which global existence was proven #.[ O

The second main result of this section concerns global paskdness for € (1/2,1) in case of small
initial data.

Theorem 3.2 (Global existence for small data).Let v and S be as in the statement of Theoréi,
and let®, € H*(T?) have zero-mean ofi*, wheres > 5/2 + (1 — 2v). There exists a small enough
constants > 0 depending on, such that if[|©o|%2 (|00l ;=" + Ol 22 S|l e.rs—) < € Where
a=1—(5/24+1-27)/s, then the unique smooth solutiéhof the Cauchy problerfl.10—(1.11) is global

in time, i.e.

0 € L>(0,00; H*(T?)). (3.16)
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Proof. We proceed as in the proof of Theor&i. The product term in3.5) is now estimated by

1A - VO)lle < CA UL VO] 2e, + IATTVON o U] 2, ), (3.17)
where
B 6
P= o0 2913
so that
|ASTI0| e < CASTO)| 2. (3.18)
With this choice ofp and the above embedding, the product estimate gives us
1A - VO)ll2 < CIVO 2, [A*T7O)| 2. (3.19)
Combining 38.19 with (3.2) and proceeding as ir3(13 we obtain
S SIABIZ + KIATTOIR < A S| 2 A0 2 + CIVOI s [N, (3:20)
which in turn |mpI|es
S S 1 S— S
L IABIE + SIATTOIR < AT + CIVO] n A0 (320
Observe that
IVOll p2vso-2 < Cl1O] 22146 2%, (3.22)
wherea =1 — (5/2 + 1 — 2v)/s. Therefore, if
lelz a0l < 1= (3.23)

estimate 8.21), combined with the Poincaré inequalith* 70| ;2 > ||[A*O]| .2, shows that

d S K S
@M@@+ymm@_|mww (3.24)
and hence, due to the damping we obtain
A0, )72 < [AO0llZ: + — HSHLOOHS ) (3.25)
for all t > 0. Note that taking theé.?-product of the equation wit® gives for anyt > 0
t
0t )13+ [ 1A76I2 dr < [l (3.26)
0

which gives us a basic uniform estimate ®fin Ly°L2. Hence, from 8.25 and 3.26) we obtain that
condition (3.23) is satisfied for alk > 0 as long as we have

190]|%214°@0ll 2 + €0l 22 1A* S (7, M 12 0sr2) < € (3.27)

wheree is sufficiently small, thereby concluding the proof of thedhem. O

4. THE REGIME( < 7 < 1/2: ILL-POSEDNESS RESULTS

We now turn to the situation when € (0,1/2), x > 0, and prove that there exists an example of an
initial datum and time independent force for which it is pbEsto prove that the fractionally diffusive
(M@G) equation is ill-posed in the sense of Hadamard. The arguisnthich we prove this follow the
lines of the proof in the case when= 0 in [10]. We sketch here the proof af € (0,1/2), but as we shall
prove below in Sectiol.1, the result is also true whenp = 1/2 and the initial data i¢arge in a suitable
sense.
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4.1. Linear ill-posedness inL?. The classical approach to Hadamard ill-posedness forineasl problems
is to first linearize the equations about a suitable steaatg 6, and then prove that the resulting linear
operatorL has eigenvalues with arbitrarily large real part in the alblst region (see for instanc&d, 11,
12, 21], and references therein). L& = a sin(ma3) for some positive amplitude and integer frequency
m > 1, and defineS = kam?7 sin(ma3). It is not hard to verify tha®, is indeed a steady state of
(1.1)—(1.2). We consider thdinear evolution of the perturbatiod = © — 0, obtained from linearizing
(1.)—-(1.2

0¢0 + am cos(maxz)M3z0 + k(—A)76 = 0, (4.1)

where we recall that/s is the Fourier multiplier with symbol defined if.g). The following theorem states
that the linear equationt(1) is Hadamard Lipschitz ill-posed ih?.

Theorem 4.1(Linear ill-posedness). The Cauchy problem associated to the linear evolution

00 = L6 4.2

where the linear operatof, and the steady stat® are given by
LO(x,t) = —Ms0(x,t) 0300(x3) — k(—A)70 (4.3)
Op(x3) = asin(mzs) (4.4)

for somea > 0, integerm > 1, and~y € (0,1/2), is ill-posed in the sense of Hadamard ovetr. More
precisely, for anyl’ > 0 and anyK > 0, there exists a real-analytic initial daté(0,x) such that the
Cauchy problem associated (6.2—(4.4) has no solutior® ¢ L>(0, T'; L?) satisfying

sup [|0(, )] 2 < K[[6(0, )|y (4.5)
tel0,T)
whereY is any Sobolev space embedded.

As we mentioned above, in order to prove Theorerhwe construct a sequence of eigenvalués of
the operatorl, which diverge tooc asj — oo. For this purpose, given arfixedinteger;j > 1 we seek a
solutiond to (4.2) of the form

O(t,x) = e sin(j%z1) sin(jxs) Z ¢p sin(mpxs) (4.6)
p=1

where the sequencg, decays rapidly ap — oco. We shall construct such a solutiénwith o real and
positive, and in addition obtain bounds on the value ofnserting ¢.6) into (4.1) and using the definition
of M3, we obtain

op Z cp sin(mpxs) + Z ;—p (sin(m(p + 1)z3) + sin(m(p — 1)z3)) = 0, 4.7
p>1 p>1 P
where we have denoted
op = o + k(5 + 5% + (mp)?)? (4.8)

and
22502 (mp)(5* + 4% + (mp)?) + 2475
a apmj?(j* + %)
for any integerp > 1 (note that; is fixed). Herey = $%/n. An essential feature of the coefficients

is that they grow rapidly witlp asp — oo. Equation §.9) gives the recurrence relation for the unknown
coefficientsc,,:

ap (4.9)

Cp+1 I Cp—1
Qp+1 Qp-1

opcp + =0, forp > 2 (4.10)

orer + 2 =0, forp = 1. (4.11)
Qa2
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Note that given any > 0 (which then uniquely defines, for all p > 1 cf. (4.8)) and given any; > 0,
one may use the recursion relatiodsl()—(4.11) to solve for allc, with p > 2. However, only for suitable
values ofo do thec,’s vanish sufficiently fast so thatis C> smooth. In this direction we prove:

Lemma 4.2. Let o, be defined by4.9), where the positive integers and j are fixed, andk, i, 2, a are
fixed physical parameters. Also, define= «;. Then there exists a real eigenvalue= ¢() > 0, and
rapidly decaying sequendg;, },>2 Which satisfieg4.10—4.11). Furthermore the lower bound

D04, 2
() apmg=(j" + j°) (1 am2)Y 412
g BPm2(GT + j2 1 4m?) 1 2021 R(J° 457 +4m?) (4.12)

holds, andt,, = O(C?/(p—1)!*) asp — oo, for some constan' which depends on'/), j and the physical
parameters.

Proof of Lemmat.2. We define

CpQlp_1
= —"—— (4.13)
Cp—10p
and write ¢.10—(4.11) in the form
1
OpQp + Mp+1 + o 0, p=2 (4.14)
P
o1 + 12 =0, p=1. (4.15)

Using @.14) to write 1o as an infinite continued fraction and equating withgiven by @.15 gives the
characteristic equation

1
g1 = 1 . (416)
o209 — 703043—

1

Qg —-..

Recalling the definition ob, for p > 1 cf. (4.8), we observe that4(16) is an equation with only one
unknown, namely. For real values of we define the infinite continued fractidr), (o) by

1
Fy(o) = - (4.17)
OpQly — i
P Pl G e
and the function
22
Opyy — yJos0s — 4 9
Gy(o) = L (4.18)
2 opayy + (/o202 — 4

for all p > 2, and allo such thab,a > 2. We note that due to the very rapid growth of thgs, for realo
the continued fractio), defines a function which is smooth except for a set of pointé suith ooy < 2.
For the rest of the proof we will always assume thas real such thatsas > 2, which also implies that
opay, > 2 forallp > 2.

We note that by constructiof¥,, satisfies

1 1
Gp(o) = = . (4.19)
P opay — Gp(o)  opay, — o 11

Since we haver,a,, — oo asp — oo, we have thaty,(c) — 0 asp — oo for every fixedo. Also, we
clearly have

GQ(U) > Gg(O') > G4(O’) >...>0 (4.20)
and
Gpt1(0) < Gp(o) < opayy (4.21)
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for all p > 2. Hence, from4.19 and @.20) we obtain

1 1
G > >
2(0) o209 — G3(U) 090y —

T > 0. (4.22)

An inductive argument then gives

1
Ga(o) > . = (o) > 0 (4.23)
7202 = o303 —

for all o such that,as > 2. Repeating this constructive argument we obtain thgo) > Fz(o) > 0, and
hence
0 < o9aie — G3(0) < o909 — F3(0) < 0209 (4.24)
so that
1 1
> .
O‘Qag—Fg(U) 2092
In summary, we have proven that(cace) < Fa(o) < Ga(o) for all o such thatoaas > 2, and the

straight lineo o intersects both the graph of (o2c2) and the graph of72 (o) in this rage ofr. Hence, it
follows that there exists a real solutie®) of the equation

Fy(oW)y = eWay, (4.26)

Fy(o) =

(4.25)

with oy > 2, where we denote) = o) + k(j* + j2 + m?p2)7, for all p > 2. Thatis,c¥) is a real
positive solution of the characteristic equatienl@. Furthermore, due to4(23 and @.29 after a short
calculation we obtain an upper and a lower bound-6h, namely

— < O'gj)oéj) < —

. (4.27)
109 1009

For o) satisfying ¢.26), we now construct the sequencg which decays rapidly ap — oo. The
recursion relation4.14—(4.15 uniquely defines the values gf. After lettingc; = a4, we define

Cp = QpNpllp—1 - - - 12 (4.28)
for all p > 2. This sequence satisfie$.{0—(4.11) by construction. Furthermore, we observe that=
—F,(0\7)). Repeating the arguments which gade?@ and @.25 with 2 replaced by gives

. <<

op oy op oy

(4.29)

Moreover, from ¢.9) we have thaty, = O(p*) asp — oo, and hence from4(29 we obtain thaty, =
O(p~*). Thus it follows from ¢.28 thatc, — 0 asp — oo, and this convergence is very fast, namely
O(CP(p —1)!=*) asp — oo, for some positive constait = C'(c7), i, Q, a,m, j). Therefore the solution
0U)(z,t) given by @.6) with o replaced byr\7), andc, as defined by4.29), lies in any Sobolev space, it is
C* smooth, and even real-analytic.

We substitute fory; andas from (4.9) into the bound4.27) to obtain estimates an/) given by

apmy®(j* + %)

— k(G + 5 2 ()
Am=)7 4.30
PRt 2 Amd) T zyi PV I A <o (4.30)

and
2apmj*(j* + j%)
2392m2(j4 +j2 + m2) + 2N2j4
We recall the role of the constants in the above expressibB§){(4.31) for the bounds o). The
physical parameters arethe coefficient of thermal diffusivity() the rotation rate of the system,is related

oU) < — k(1 + 52+ m?). (4.31)
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to the underlying magnetic field, andis the magnitude of the steadyioyancy®,. Expressions4.30)
and ¢.31) indicate wide ranges of the physical parameters for whiehet exist eigenvalues’) which are
positive as postulated in the construction of the solutm@tl). We note that in the Earth’s fluid coreis
very small. O

Lemma 4.3. Lety € (0,1/2). Fix a,u,Q,x > 0 and an integerm > 1. There exists an integer
jo = jola,m,pu,Q, k,~) such that for allj > j, there exists a0 smooth initial datund?) (0, ) with
169)(0,-)||z2 = 1 and aC> smooth solutiordV) (¢, ;) of the initial value problem associated with the
linearized(M G') equation(4.2), such that

109 (2, )| L2 > exp (52Cit) (4.32)
forall t > 0, whereC, = C,(a,m, 1,2, K, jo) is @ positive constant defined (4.33) below.

Proof of Lemmat.3. For anyj > 1, Lemma4.2 guarantees the existence of an eigenvalti€of the linear
(M@G) operatorL, with associated”> smooth eigenfunctior@(j)(o,az) given by lettingt = 0 in (4.6).
ThenfU)(t,x) = exp(c?t)8U)(0, -) is a solution of 4.2). Itis clear that one may normaliz&’) (0, -) to
haveL? norm equal tal, and hence{d9) (¢, )| ;2 = exp(a¥)t).

The lemma is then proven if we pigklarge enough so thatl’) > ;2C, for some positive constardt,
(independent of). This is guaranteed by the lower bourd30) for o7, if we pick j > jo, wherej, is a
large enough fixed integer such that

a,um(jg +J§) R 4 .2 2
- 4m?)7 > 0. 4.33
2502m2(jg + j§ + 4m?) + 21255 j§ Uo +Jo 4 4m”) (4.33)

Note that wheny € (0,1/2) such aj, always exists, independently of the size of the physicapaters.
]

C*:

We now have all necessary ingredients to conclude the pifolfi@orem4. 1.

Proof of Theorend.1. LetT > 0 and K > 0 be arbitrary, and let” ¢ L? be a Sobolev space. Pick an
integerm > 1, and an amplitude > 0. For these fixed, m and physical parameters (2, x,y > 0, define
jo andC, as in Lemmad.3. For anyj > jo, Lemma4.3 guarantees that there exist€’& smooth initial
condition #9) (0, ) which we re-normalize to havgd)(0,-)|y = 1, such that the associated solution
0U)(t,x) of the Cauchy problemi(2)—(4.4) satisfies

109 (2, )| 2 > exp(52C4t)[|09(0, )| 12 (4.34)

for all ¢ > 0. We note that this solution to the linear equation is the uweligolution inL>(0, T; L?). We
now claim that there exists a sufficiently large> j, such that

109)(T/2, )| 12 > 2K (4.35)

which would then conclude the proof of the Theorem, sifgé+)(0,-)||y = 1. After a short calculation it
is clear that 4.35) follows from (4.34) if we manage to prove that

.2 )
exp <‘7*§*T) 1890, )2 > 2K. (4.36)

But from the definition obU+) cf. (4.6) above, we see thd8=) (0, -)||;2 > ¢; = a; > 1/(C52), for some
sufficiently large constan’, cf. (4.9) above. The fact that for every fixéd > 0 andC, > 0 the sequence
exp(72C.T/2)/(Cj?%) diverges ag — oo, shows that there exits some sufficiently lafgesuch that4.36)
holds, thereby concluding the proof of the theorem. O

3The proof of uniqueness of finite energy solutions to thedineguation follows from a representation of the solutioraas
Fourier series (seél.()], Proposition 2.8).
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4.2. Non-linear ill-posedness in Sobolev spaces$iaving established that tHmearized (M G) are ill-
posed inL2, we now turn to address the Hadamard ill-posedness dtitheonlinear (M ) equations. The
ill-posedness of non-linear partial differential equatianay have different sources, of varying degree of
gravity: finite time blow-up, non-uniqueness, or non-srhoess of the solution map, to name a few. As in
[1Q] for the casex = 0, here we show that the fractionally diffusivd/G) equations, with) < v < 1/2

do not posses a Lipschitz continuous solution map. Reaali#finition of Lipschitz well-posedness for the
nonlinear equation (seé2, Definition 1.1], or [LO, Definition 2.9]):

Definition 4.4 (Lipschitz local well-posedness)LetY ¢ X c W'* be Banach spaces. The Cauchy
problem for the( A/ G) equation

0 + U -VO + k(—A)O =S (4.37)
V.U =0, Uj = M0 (4.38)

is locally Lipschitz( X, Y') well-posed if there exist continuous functiofi K : [0, c0)? — (0, o), the time
of existence and the Lipschitz constant, so that for eveirygpanitial data ©(1)(0,-),03)(0,-) € Y there
exist unique solution®™), ©() ¢ L>(0,T; X) of the initial value problem associated (4.37)—(4.39),
that additionally satisfy

[0 (t,) — 0)(t, ) 1x < K[6D(0,) — 820, )lly (4.39
foreveryt € [0, 7], whereT = T(|01)(0,") v, [0 (0,-)ly) andK = K (|01 (0,-) v, [0 (0,-) ).

Remark 4.5. Clearly the time of existencé and the Lipschitz constadt also depend ofiS/|| o< (0,00;v)s

and onk, but we have omitted this dependence in Definitlofisince it is the same for both solutiofs")
ando®,

Remark 4.6. If ©2)(¢,.) = 0 and X = Y, Definition 4.4 recovers the usual definition of local well-
posedness with a continuous solution map. However, Defidtiballows the solution map to lose regularity,
which is usually needed in order to obtain Lipschitz coritinaf the solution map for first order quasi-linear
equations. Hence, the typical pairs of spac¥sY’) that we have in mind here a#é = H*, andY = H**!,
with s > 1+ 3/4.

The main result of this section is the following theorem.

Theorem 4.7(Nonlinear ill-posedness in Sobolev spacesThe (M G) equations(4.37)—4.38), with~y €
(0,1/2) are locally Lipschitz(X,Y) ill-posedin Sobolev space¥ C X embedded it 14(T3), in the
sense of Definitiod.4.

For the purpose of our ill-posedness result, we shallde? (¢, «) be the steady stat®(z3) intro-
duced earlier in4.4). We considerX to be a Sobolev space with high enough regularity so dhat ¢
L>(0,T; L?), which implies tha® is weakly continuous off), 7'] with values inX, making sense of the
initial value problem associated td.87)—(4.38). The proof of Theorerd.7 follows from the strondinear
ill-posedness obtained in Theorehd and a fairly generic perturbative argument (2fL,[ Theorem 2] or25,
pp. 183]). The proof of Theorem.7 follows the lines of the proof for the non diffusive problenven in
[10].

Proof of Theorena.7. Since the Sobolev spacé embeds i/, andy € (0, 1/2), the linearized operator
LO = —M30 3300 — k(—A)7© mapsX continuously intoL.?, and sinceX ¢ Wh4, the nonlinearity
NO = —M;0 9;0 is bounded a§ NO||;» < VO3, < C||O]|%, for some constart’ > 0.

Fix the steady stat®,(z3) € Y, as given by 4.4). Also, fix a smooth functionyy € Y, normal-
ized to havel|iy|ly = 1, to be chosen precisely later. The proof is by contradictidssume that the
Cauchy problem for théM G) equation 4.37)—(4.39) is Lipschitz locally well-posed ii.X,Y"). Consider
0 (0, ) = Oy(x3), so thatd® (t, ) = Oy (z3) for anyt > 0. Also let

0°(0,x) = O¢(x3) + €vo(x),
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for every0 < € < ||©o|ly. To simplify notation we write9¢ instead of©<). By Definition 4.4, for
every e as before there exists a positive tifie= 7'(||©oly, ||©¢|ly) and a positive Lipschitz constant
K = (||©0]ly, |©¢]|y) such that by4.39 and the choice of, we have

10°(2,) = ©0(")l[x < Ke (4.40)

for all t € [0, 7. We note that sinc€0<(0, -)||y < [|O¢|ly + € < 2||©¢]|y, due to the continuity of" and
K with respect to the second coordinate, we may chdose K (||O¢|ly) > 0andT = T'(||O¢|ly) > 0
independent of € (0, ||©y]|y), such that4.40 holds on[0, T'].
Writing ©¢ as anO(e) perturbation o9, we define
©°(t, x) — Oo(x3)

Ve(t,x) = z—: , (4.41)

for all t € [0,7] and alle as before. It follows from4.40) thatv¢ is uniformly bounded with respect to
in L*>(0,T; X). Therefore, there exists a functign the weakx limit of ¢ in L>°(0,7"; X). Note thaty*
solves the Cauchy problem

O = LY© + eN(¢°) (4.42)
Y(0,-) = 1o. (4.43)

Due to the choice of, we have the bound
N9 2 < Cllge|% < CK?, (4.44)

and from ¢.42) we obtain tha®),«¢ is uniformly bounded with respect tan L°°(0, T'; L?). Therefore the
convergence)* — 1 is strong when measured fi¥. Sendinge to 0 in (4.42), and using 4.44), it follows
that

o = Ly
¢(07 ) = ¢0

holds inL>°(0, T'; L?), and this solution is unique since the problem is now lineae (@lso 10, Proposition
2.8]). In addition, the solutiom inherits from @.40 the upper bound

[(t, )2 < K (4.45)

for all ¢t € [0,7]. But this is a contradiction with Theoretl Due to the existence of eigenfunctions for
the linearized operator with arbitrarily large eigenvaluene may choosg, (as in Lemmas.3) to yield a
large enough eigenvalue so that in tiffig2 the solution grows to havé? norm larger thar2 K (similarly
to the proof of Theoremd. 1), therefore contradictingi(45). O

5. THE REGIME~y = 1/22 A DICHOTOMY IN TERMS OF THE SIZE OF THE DATA

If the initial data is small with respect tg, then one may use energy estimates to show that there exists a
unique global smooth solution evolving from this data (gfcton5.2 below). However, the proof does not
apply for the case of large data, not even to prove the lodstesce of solutions. In the case of large data,
we may construct a steady state such that solutions evofrng initial data which is arbitrarily close to
this steady state diverge from it at an arbitrarily large r&br positive time (cf. Sectioh.1 below), i.e. the
equations are Hadamard ill-posed.

5.1. lll-posedness fory = 1/2 and large data. In Section4 above we have shown that for< 1/2 the
(M @G) equations are Hadamard ill-posed in Sobolev spaces, irttseghat there is no Lipschitz continuous
solution map (see Theorem?). The main ingredient in the proof of ill-posedness foe (0,1/2) was to
show that the linearize@\/ G) operator

LO = —M300500 — K(—A)70 (5.1)
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where
©p = asin(mas) (5.2)

is a steady state associated to the source #rm ram?” sin(mzs), has a sequence of eigenvalugs
which diverge to infinity ag — oo (see Lemmad.2and4.3).

We emphasize that it isnly in the proof of Lemmat.3 where~y < 1/2, rather thany < 1/2 is used.
Indeed, in order to prove that givamyreala > 0 and any integem > 1 there exists some sufficiently large
integerjy such that the constant, of (4.33 is strictly positive,y < 1/2 is both necessary and sufficient.
In the casey = 1/2, we can prove the following alternative to Lemma, which states that only i is
sufficiently large with respect te (in terms ofu and(?), then one obtains a sequence of eigenvalues which
diverge toco. Namely:

Lemma5.1. Lety = 1/2. Fix a, u, 2, andm. For values ofz such that

apm
—_— 5.3
NS e + 22 (©-3)

and all integersj > m, the statement of Lemmda3 holds with the constant', given by
c, = Hm (5.4)

B02m?2 +2u2 "

Proof of Lemma.1 The proof follows from the lower bound(30) on the eigenvalue(?), similarly to the

proof of Lemma4.3. The role of condition.3) is to guarantee that there exists a large engiggtuch that
apm(jy + jg)

2302m2(jg + j§ + 4m?) + 2p2j]

K, . .
— = (o + 4§ +4m*)7 > 0.

Jo
To avoid repetition we omit further details. O

For those values af for which (5.3) holds, Lemm&.1shows that the operatérhas unbounded spectrum
in the unstable region, and hence one may prove with vistuedlmodificationgrom the~ € (0, 1/2) case,
that the equations are ill-posed. More precisely we have

Theorem 5.2(lll-posedness for large data).LetY ¢ X ¢ W4(T?) be Sobolev spaces, and fet= 1/2.
Givenk, 1,2 > 0, fix an integerm > 1. Leta > 0 be sufficiently large such thgb.3) holds and let

@(()1) = asin(mas) € Y be a steady state dfL.1). Then, given any’ > 0 and anyK > 0, there exists

an initial condition (982) € Y and a corresponding solutio®®) € L>°(0,7; X) of the Cauchy problem
(1.1)«1.3), such that

o] 10D (t,) — W1, )||x > 2K(02 — 6(|ly (5.5)
S El

where© (W (t, ) = @(()1). That is, the( M G) equations are locally Lipschitz (X,Y) ill-posed when théada
large.

The proof of Theoren®.2is the same as the proof of Theordn7 above. The only difference in the case
~v = 1/2is to use Lemm&.1to show that the linear equations have unbounded unstabtgram. We omit
details.

5.2. Well-posedness fory = 1/2 and small data. As shown in the previous section, we can exhibit initial
data, for which the systeni (1)—(1.2) is ill-posed in the above described sense. Note also, ieghroof of
Theorem3.1, fails for the valuey = 1/2. Thus,y = 1/2 indeed is the limit of the local well-posedness
theory. Nonetheless, we still can prove that the considgystem is globally well-posed for small data.
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Theorem 5.3(Global existence for small data).Lets > 5/2 and assume that the initial data, € H*(T?)
and S € L*>(0,00; H*~7(T?)) have zero-mean ofi*. There exists a sufficiently small constant- 0
depending on, such that ifi|©||%[|©ol| ;7-* + IS o< (0,00:115—+) < €, Wherea = 1 — (5/2)/s, then the
unique smooth solution

O € L°°(0,T; H*(T?)) (5.6)
of the Cauchy probler{iL.10—(1.11) is global in time.

Proof. We proceed as in the proof of Theorén? and obtain the energy estimate
1d
2dt

The second term on the right side is estimated using the ptedtimate in Propositiok.1. Thus we obtain,
similarly to (3.9)

1022 + K[|AS 2012, < [|AS 25| 2 [|AT20)| 2 +

/AS—%(U-V@)AS+%@. (5.7)
T3

_1 sl
[A*72(U - VO)|l2 < C(|IVOlree + U ||1) [ AT 20| 2. (5.8)
Sinces > 5/2, we get
U= + VO] = < C|1O]|72[IA°O|;2*, (5.9)
wherea = 1 — (3/2 4+ 1)/s. Combining estimate$(7)—(5.9) gives
1d s sl 1 s— 1 Ropgtd @ s —a|As+i
5 g IA%lE: + KIATEOIS. < - [ATT2 S| + SIATEOT + CO]3 | AO] 2 |AT 2O,
(5.10)
which in turn leads to
1d s 2 K s+1 2 1 s—1 2 a s -« s+1 2
51Ol + FIAT20I5. < S [ATES L. + OO F A0 [AT 0] .. (5.11)
We obtain the desired result as in the proof of TheoBn O

Remark 5.4. Note that conditions in Theoref2are consistent with the above theorem if weset 1/2.

Remark 5.5. We note that the ill-posedness result in the case 1/2 requires the constant defined in
(5.4 to be positive. This does not hold when the value:a$ sufficiently small (depending om, 1, and

1) no matter what value aofn > 1 is picked. Recalling that measures the magnitude of the initial data
associated witl{O || .2, we observe that the well-posedness result when1/2 is only proven in the case
of small data and small force (see Theorerg), and hence fou sufficiently small. Therefore our large data
ill-posedness result is consistent with the small-datd-p@dedness result when= 1/2.

6. IMPROVEMENT IN REGULARITY FOR“WELL-PREPARED DATA AND SOURCE

In this section we explore the following observation: if thequency support 0® lies on a suitable
plane, then the operatdv is “mild” when it acts on©, i.e. it behaves like an ordéroperator, and hence
the corresponding velocit§/ is as smooth a®. This enables us to obtain improved well-posedness results
over the generic setting when no conditions on the Fouriectspm of the initial data (and source term) are
imposed. For instance the local existence and uniquenesaaith solutions holds even(f< v < 1/2, a
setting in which we know that for generic initial data thelgeon is ill-posed.

To be more precise let € Q be a rational numbémith ¢ # 0. We define the frequency plari, to be
the set

Py ={k = (k1,ka,ks) € Z°: ky = qk1}. (6.1)
We shall need the following straightforward observation:

4Since we are in the periodic setting when the frequency ipatipd onZ>.
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Proposition 6.1. Assumef, g are smootil® periodic functions, with frequency supp@ntpp(f), supp(g) C
P, for someg € Q \ {0}. Then we haveupp(f + g),supp(fg),supp(M;f) C Py, forall j € {1,2,3}.

Proof of Propostior6. 1 Clearlysupp(f/—-l-\g) = supp(f + §) C supp(f) U supp(§) C P,. To see that
that the frequency support of the functidd; f lies onP,, we just note thatupp(M;g) = supp(M; f) C
supp(M;) Nsupp(f) C P,. To analyze the frequency support ff = f = g, note thatsupp(f * g) C

~

supp(f) + supp(g) C Py, sinceP, is closed under addition of vectors, concluding the proof. O

Lemma 6.2. If f is a smootHl'™ periodic function Withf(kl, ka,0) = 0 for all k1, ks € Z, and such that

~

supp(f) C P, for someg € Q \ {0}, then there exists a universal constant = C.(q, €2, 5,7) > 0 such
that

~

(OL;)(k)| = |3, (k) )| < CuI (k)] (6.2)
for all k € Z3, and for allj € {1,2,3}. Additionally, the constant’, blows-up as; — 0.

Proof of Lemm&.2 It is clear that 6.2) has to be proven only fde such thatcs = 0, since otherwise we
have thatf(k) = 0 and the statement holds trivially. We now consider each efddses € {1,2,3}.
Without loss of generality take > 0.

Forj = 1, a short algebraic computations gives
|1 [P [Ks| + [Ka [ K]
202k3 + ¢*8*/n?ki

‘Ml(k)‘ < (2Q(2¢ + ¢°) + ¢*8°/n) (6.3)

from which it follows that]]\//fl(k)] < C, for a suitable constant', by using the inequalityk; ||ks| +
|k1]|ks]® < Kk + k3. Similarly to 6.3) it follows that fork € P, we have

k1 [P [ks| + [Fey || ks |

B(0)] < (200246 +¢°B/1) gt g (6.4)
and
17 2 2\ 92 kil
Ms(0)] < (0 + )5 0) g 6.5)
which concludes the proof of the lemma. O

6.1. Local existence and uniqueness fab < v < 1. The main result of this section is:

Theorem 6.3(Local existence).Lety € (0,1), and fixs > 5/2 — 4. Assume tha®, € H*(T?3) and
S € L°(0, 00; H¥~7(T?)) have zero-mean ofi* and are such that

supp(@o) C P, and Supp(g(t, 1)) C Py, (6.6)
for some fixeds € Q \ {0} and allt > 0. Then there exists & > 0 and a unique smooth solution
© € L>=(0,T; H5(T3)) N L*(0, T; H**7(T3)) (6.7)
of the Cauchy problerflL.10—1.11), such that
supp(6(t,-)) C P, (6.8)

forall ¢t € [0,7).

Proof of Theoren®.3. In order to construct the local in time solutigh, with frequency support of®,,
consider the sequence of approximati¢fs, },,>1 given by the solutions of

8,01 + (—A)0, = S (6.9)
©.(0,-) = g (6.10)
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and respectively

800 +Up_1-VO, + (—A)O, = S (6.11)
U,_1 = MO,_, (6.12)
0,(0,-) = Oy (6.13)

for all n > 2. One may solve.9—(6.10 explicitly using Duhamel’s formula, and noting that thesogtor
exp((—A)7t) is a Fourier multiplier with non-zero symbol given byp(|k|7t), it follows from Proposi-

tion 6.1thatsupp((:)\1(t, -)) C Py forallt > 0. In addition, we have the bound
IA* 1|70 0,7522) + 1A O1[720 72y < IAO0l[Z2 + TS| Z e 0,715 (6.14)

for all T > 0. On the other hand, in order to solv@ 11)—(6.13 we appeal to TheorerA.1. Indeed, by

the inductive assumption we have tff_; € L°°(0,7; H®) and a|SOsupp(@/n:(T, 1)) C P, for all
T > 0. Hence, by applying Lemm@&.2we haveU,_; € L*°(0,7; H®) and by Propositiorb.1 we have

supp(fn:(t, -)) C P, forall t > 0. Therefore all the conditions of Theoreil are satisfied, by letting
v = U,,_1, and there hence exists a unique solutiypec L>°(0,T; H*)NL2(0,T; H**7) of (6.11)—(6.13),

—

such thasupp(©,(t,-)) C P, forallt € [0,T").
To prove that the sequené®,,} converges, we first prove that it is bounded. Fix a tifh& be chosen

later such thaf” < ||A8®0H%Q/HSH%OO(0 7,115+ lthence follows from§.14) that

1A*O1[7 oo 0.7, 12 + 1A T7O 172,72y < 2/ A°Bll72 (6.15)

holds whenj = 1. We assume inductively thaé.(L5 holds for alll < j < n — 1, and proceed to prove that
it holds forj = n. SinceU,,_; is obtained fromO,,_; by a bounded Fourier multiplier (cf. Lemn&a2),
there exists a positive constaflf, depending o (and on the physical parametés;3, ), such that

A U1t )72 < CollA*Ona(t,-)|[72 (6.16)

for all t > 0. Applying A® to (6.11) and taking ar.? inner product withA*®,, we hence obtain

1d,, s
5 7|2l + 1AF70, 2

< A*On |2 [[Un—1 - V, A%]On | L2 + [|AT7O, | 12 A" S| 2

< CllA*On]| 2 (IVU -l /2 [1A°Onll o529 + A Un—1ll 2| VOnllzoe) + AT [ 12 A7 S| 2

< CIA* Ol 2 |A U1l 2| AT O 2 + [|A*T7On | L2 [ A7 S| 2

1 S S S S—
< SIIATTOMT2 + Con A TUnall72]A"OlIZz + 1A )17 (6.17)

whereCs,, > 0 is a constant. Above we have used the fact WatU,,_; = 0 in order to write the
commutator, and also Propositiobs—2.3. Using the boundf.16), and the inductive assumptiof.(5), it
follows from (6.17) that

d S S S S S—
7 1A Oullzz + AT Oull72 < 4C,, CollA* G072 [IAO 172 + 2] A S]I72 (6.18)

and hence

t
1A%0n(t, )12 + /0 1A 10, (r, )|2adr

\ t .
< [0y e PO OulEat [ A N Ol o5 )
0

s 2
< ACurCallA* 60l (H A*Oy|2, + tusuim(OmHH)) (6.19)
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forall t € (0,T). Therefore, letting

, |A*075 In4/3
T < min , (6.20)
{QHSHM,@;HM) ACsCallA*Gollz:

we obtain that from&.19 that 6.15 holds forj = n, and so by induction it holds for gl > 1. This shows
that the sequend®,, is uniformly bounded in.>° (0, 7; H*) N L*(0, T; H**Y).

Moreover, we may show that the sequef€g,} is Cauchy inL>(0,7; H*~'*7). To see this, consider
the difference of two iterate@n =0, — 0,_1. It follows from (6.11) thatén is a solution of

90, + (~A)O0, +Up_1-VO, +Up_1 - VO, =0 (6.21)

0,(0,-) =0 (6.22)

for all n. > 2, where we also denotdd,, = M©,,. Applying A*~'*7 to (6.21), taking anL? inner product
with A*~1t70,,, usingV - U,,_; = 0, and the calculus inequalities of Propositidri, we obtain

1d

2 dt

457116, [2, + |4 218,12,
< A0 [Tt - V, AT 802 + 1A, 2 |A* Y (@t - VO 12
< ColIAT 8, e (VU o 57578 |2 + AT 7T 13|V 1)

+ AT, e (1T -l A Ol 2 + 1A T i 12 VO )

< Cogl A8z (A 10ntllp [T 760 2 + AT 6] 12 A6 12
(6.23)

In the last inequality above we have used the assumption5/2 — -, and the estimate5(16). It hence
follows from (6.23), (6.15, and the Cauchy-Schwartz inequality that

sup [|A°H0, (¢, )| 2
te[0,7)

o~ T s
< sup A0, 4 (t )12 / A0, (¢, )| el 147 Onall2dr) gy
0

te[0,7)
< sup A0, 1 (¢, )|l 12 V2T Cy o | A g || p2e V2T ConallA*O0ll2 (6.24)
te[0,T
Recalling 6.20), if we letT" be such that
AsOg|? C?
T = min H2 ollz2 , In4/3 —, 5.4 (6.25)
2HSHL°°(O,OO;HS*“/) 405,—quHAS@0”L2 8 eXp(\/ 21n 4/3037(]/\ / CsﬁCq)
we obtain from 6.23) that
~ 1 ~
sup [[A*T70,(t,-)|[2 < 5 sup (A0, (8|2 (6.26)
te[0,T] 2 te[0,T

Thus®,, is Cauchy inL>(0,T; H5~'*7), and hence,, converges strongly t& in L>(0,T; Hs~*7).
Noting thats — 1 + v > 3/2, this shows that the strong convergence occurs in a Holeecesrela-
tive to =, which is sufficient to prove that the limiting functigh € L°°(0,7; H*) N L*(0,T; H**7) N
Lip(0,T; H™»(s=27.5-1)) js a solution of the initial value problem. (1)—(1.2).

To conclude the proof of the theorem, we note th& ) and®® are two solutions of{.1)—(1.2), then
0 =0 —e® solves

9,0+ (—AYe+UW.vo+U-ve® =g (6.27)
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with initial condition ©(0,-) = 0. An L? estimate on&.27) shows tha©(t,-) = 0 for all t € [0, ), since
02 ¢ 1°°(0,T; H*) and since ii0(") and©®) have frequency support dh,, so does. O

Corollary 6.4 (Local existence for well-prepared data).Let j;,j> € Z \ {0}, and fixs,~ as in the
statement of Theoref®.3. Assume tha®, € H*(T?3) is such thatOg(ki, ks, ks) # 0 if and only if
(k1,k2) = £(j1,j2) . Similarly, assume that forcing € L>(0, Ty; H*~7) is such thatS (k1 , ko, ks, t) # 0

if and only if (k1, k2) = +(j1,j2), forall ¢ € [0,T5). Then there exist¥’ € (0, 7] and a unique solution
© € L>(0,T; H%) N L?(0,T; H**7) of the initial value problen{1.1)—(1.2), and in addition we have that
é(k)l, ko, k3, t) =0 WheneVElkg/kl 75 ]2/]1

Proof of Corollary6.4. Let ¢ = j2/j1 € Q. The conditions on the initial data and the force imply in
particular that their frequency support likes on the pl&je The existence of a uniqgue smooth solutn
with frequency support lying o, follows directly from Theoren®.3. But (k1, k2, k3) € P, is equivalent

to kQ = qkl = jgkl/jl, SO that@(kl,kg,kg) 75 0 only if kg/kl = jg/jl O

6.2. Global existence and uniqueness for well-prepared dataln the previous section we have proven
that for~ € (0, 1), given initial data®, and source terns which are well-prepared, i.e. they have Fourier
support on a plan@, for someg > 0, then there exists a local in time solutiéhof the Cauchy problem
(1.1)—(1.3), which has the property that its Fourier support also lie$g. In this section we show that for
v € [1/2,1) the local in time solution may be continued for all time, vehih the case € (0, 1/2) the same
result holds but under the additional assumption that tiialiclata is small with respect te.

Theorem 6.5(y > 1/2: Global existence for large data). Let s, 0y and S be as in the statement of
Theorem6.3. If v > 1/2, the unique smooth solutiod of the Cauchy problerfil.10—1.11) is global in
time.

Proof of Theoren®.5. Given the conditions on the initial data and of the sourcentemd using the prop-
erties exhibited in Propositiof.1, the solution constructed in Theore3 SatiSfieSsupp(é) C Py
By Lemma6.2 we have thatlJ is obtained from®© by a boundedFourier multiplier, and hence by the
Hormander-Mikhlin theorem we have

U lwse < C|O]ws.r (6.28)

forall 2 < p < oo, and alls > 0. Therefore the regime > 1/2 becomes “sub-critical” for such solutions,
since the ma® — U is bounded in Sobolev spaces. Therefore, energy estimdities @re similar to
those used to prove the global regularity of the sub-cli&®G equation (cf.g]), may be used with minor
modifications to prove Theoref5in the settingy > 1/2.

The casey = 1/2 is slightly more delicate. In the case of the critical (SQ@J)a&tion, global regularity in
the critical case has only been established recentlyZci€] ). Due to the anisotropic nature of the symbol
M, it turns out that it is slightly easier to see that the De Gilamspired proof of 2] also takes care of the
v = 1/2 case of this theorem. The only fact we must verify is that wles L>°, andsupp(@) € Py,
ther? U = M[O] € BMO. Once we prove this, the De Giorgi iteration scheme2bfghows thad(t, -)
is Holder continuous fot > 0, and one may use energy arguments to conclude the proof ofdiné.5,
similarly to [10, Appendix]. Lastly, to verify thall' ¢ BM O, define a new operata¥, as the Fourier
multiplier with symbol]\?(k)@q(k), wherey, (k) is a function which is identically onP,, and vanishes
identically at a fixed distance away frgRy. The advantage is th@tl , is now a periodic pseudo-differential
operator of ordef), and hence maps> to periodic BM O (cf. [18]). This is attributed to boundedness of
]\/Zlq, inherited from the symbold1;, and follows from the fact tha®P, and its collar neighborhood are
not entirely contained in the curved region of the frequesigsice wheré\A@ become unbounded. Lastly
one may verify that whesupp(©) C P,, then M ,[0] = M]|[6)], thereby concluding the proof of the
theorem. 0

SNote that for generi® € L functionsM[O] does not belong t& MO, but rather taBM O~ (cf. [9, Section 4]).
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Theorem 6.6(y < 1/2: Global existence for small data). Let, s, ©y and S be as in the statement of
Theorem6.3. If v < 1/2, there exists a sufficiently small constant- 0, such that ifH@oH%zH@oH}{so‘ +
H@0H%2HSHlL;a(O,OO;Hs—w) < &, whereaw = 1 — (5/2 — ~)/s, then the unique smooth solutiéh of the
Cauchy problen{1.10—1.11) is global in time.

Proof of Theoren®.6. Since M acts as an operator of orderwhen applied to functions with frequency
support onP,, from the point of view of energy estimates the situation weia is exactly the same as
for the super-critical (SQG) equation. The proof of the tieao follows from the same arguments used
in [6, 14, 27] to show the global well-posedness of small solutions tostiyger-critical (SQG) equation.]

APPENDIXA. SMOOTH SOLUTIONS TO A LINEAR EQUATION FOR DATA WITH“THIN” FOURIER
SUPPORT

The goal of this appendix is to prove the existence of smoaititisns to the scaldinear equation
00 +v-VO+ (-A)§=1S5 (A1)
O]i—0 = o (A.2)

where the initial datun#y, the givendivergence-free drift velocity field, and the external source tersh
all have frequency support in the same pldhei.e.

supp(6o), supp(S(t, ), supp(3(t, -)) C P, (A-3)
forallt € [0,T1], for someg € Q, ¢ # 0. The main result is:

Theorem A.1 (Existence of solutions with support on a plane).Lety € (0,1), d > 2, and fixs >
d/2+1—+. Givendy € H*(T?), a divergence-free € L>(0,T; H*(T%)), andS € L>(0,T; H*~7(T%)),
such that(A.3) holds, there exists a unique solution

0 € L°°(0,T; H*(T%)) N L2(0, T; H¥TV(T%))
of the initial value problenfA.1)—(A.2), and we have that

~

supp(0(t,-)) C Py
holds for allt € [0, T].

Remark A.2. The main difficulty in proving Theorem.1 is in designing an iteration scheme which is both
suitable for energy estimates, and preserves the feataréntieach iteration step the frequency support of
the approximation lies of®,. In this direction we note that a scheme such #haf,; is given in terms

of v - V6, automatically preserves the frequency supporfPpnn view of Lemma6.1, but is not suitable
for closing the estimates at the level of Sobolev spaces. h@rother hand, if we considé;d("+1) to
depend omv - V#,,+1, while energy estimates are now clear, it seems difficulinthuctively obtain that

~

supp(@s1) C Py

Proof of TheorenA.1 Since the iteration scheme which is suitable for contrgllime frequency support of
the solution is “loosing” a derivative, we regulariz&.{)—(A.2) with hyper-dissipation as

WO +v-VO° + (—A)0° — A =S (A.4)
65(0,-) = 6o (A.5)
for e € (0, 1], and later pass to the limit— 0 in order to obtain a solution of the original system. Since

and.S are smooth, and is divergence-free, it follows from our earlier pap8f fhat there exists a unique
global (or as long as andS permit) smooth solutiof® of (A.4)—(A.5), with

6° € L>=(0,T; H*) N L*(0,T; H™) NeL?(0,T; H*™). (A.6)
and the solution is bounded in the above spacdspendently of € (0, 1].
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The advantage of considering the systefj—(A.5) over (A.1)—(A.2), is that for the hyper-dissipative
system, we caronstructa smooth solution (as will be shown below), which has fregyesupport lying
in P,. Since A.4) is linear, and we work in the smooth category, i.€.> d/2 + 1 — ~, the unique

smooth solution of £.4)—(A.5) satisfie5supp(§€(t, ) € P, forallt € [0,T). We note already that the
e-independent bounds in the regularity cladss), will allow us to pass to a limit — 0, ase — 0, and
this limiting function will automatically satisfyupp(g) C Py, since the latter space is closed and discrete.

We now proceed to construct a solutiéh of (A.4)—(A.5), which has the desired frequency support
property. We consider the following iterative scheme: th& fterate is given by the solution of

005 + (—A)0 — eAGE = S (A.7)
65(0,-) = 6o (A8)

forall t € [0,T), while then + 1% iterate is given as the unique solution of

D05 1 + v VO + (~AV05, — A5, =S (A.9)
6:.1(0,-) = o (A.10)

for all n > 1. We note that the solutions of\(7)—(A.8) and (A.9)—(A.10) respectively, may be written
explicitly using the Duhamel formula

t
05 (1) = cE-AI A L / A=A (1) (A.11)
0

t
© (b)) = AT / eECAFEAET) (7. (v 05)(7) + S(7)) dr. (A.12)
0

Since the operatoexp ((e(—A) 4+ (—A)7)t) is given explicitly by the Fourier multiplier wittmon-zero
symbolexp ((¢|k| + |k|7)t), this operator does not alter the frequency support of thetion it acts on.
Therefore, it follows directly from Propositiof.1, our assumptions on the frequency supporﬂ@andS
thatsupp(ﬂa( -)) C Py forall¢t € [0,T). We proceed inductively and note thatifpp(65) C P,, then by
our assumption on the frequency support)@fnd Propositior6.1 we also haveupp(v/e\,i) C P4. Hence,
we obtain, as in the case= 0, thatsupp(0;+1( -)) C P, forallt € [0,T), concluding the proof of the
induction step. This proves that the frequency supportldgheliterates);, lies onP,.

It is left to prove that the sequengé: },~, converges to a functiof which lies in the smoothness class
(A.6). Note that there is no cancellation of the highest orden terthe nonlinearity:[ A*(v- V65 )A%6: ;.
However, since at least for naw> 0 is fixed we may use the full smoothing power of the Laplacian. First,
note that from A.4) it follows that for anyt € (0,7 we have

t
Rat) = sup NG5 )+ [ IAM 01 e < [ 1A 610, e
0

[0,t]
< A%00]2 + / IS (r, ) [2adr. (A13)
0

Hence, there exists a tini € (0,7 such thatR(77) < 2|[A%6,]|7., e.g., anyl} such that

[A%60]7
Th <
1513

(A.14)
°0(0,T;H=")

is sufficient. We proceed inductively, and assume that

t
Ra(t) :=sup||A*60; (7, )72 +/ [A* 0 (7 )HiszJre/ 1A 10,0 (7, ) 1727 (A.15)
[0,¢] 0
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is such thafR,, (1) < 2[|A%6o||7.. We now show that il is chosen appropriately, in termsaffy, v and
S, we haveR,, 1 (T1) < 2|[A%6[2. too. From Q.9), the fact thatV - v = 0, integration by parts, and
5> d/2 + 1 —~ > d/2 which makesH* an algebra, we obtain

L malze + IAT05 172 + e A0 4 12

< A O |2 1A 05l + A0 +1”L2”A8 75|

2dt

< £||A8U||%2HA592||L2 +5 ||A8+198+1||L2 + —IIASHG allfe + —HAS 7Sl (A.16)

from which it follows that

S 1 Tl S S Tl S—
Rosa(T1) < 88003+ [ IA0(r R IA Ol + [ 1478 ) e

S 2 S
< 18601 + T3 (200l A0l + 18T e ) - (a17)

Hence, it follows from A.13) that if we let
5”A890”2L2

Mol o 7oz 16012 + €15 ey

T = (A.18)

then we haver,, .1 (T1) < 2||[A%6]|2.. Since the choice df; cf. (A.18) is independent, of, itis clear that
the inductive argument may be carried through, and h&gd) < 2||A*6,||. independently of > 1.
To pass to a limit im, we consider the difference of two iterates, and note that

at( w1 — 0) + (=) (0540 — 0;) —eA(0p, —0,) +v-V(0, —0,,) =0 (A.19)
for all n > 2. Similarly to (A.16), it follows from (A.19) that

" t
Ra(t) = 147 Gy — 05) )+ /O A By — 05)(r, )| 2o

t
e / A (01 — 02)(7, ) [2adr

<2 [ INo(r a0t s (n21)
and therefore
~ 271, s ~
Ra(T1) < ——lvllze o,1;119) Rn-1(T1) (A.22)
for all n > 2. Thus, due to our choice df; cf. (A.18), we have that
g
< —5—— (A.23)
TP

and henceR,,(T1) < R(T})/2, which implies that the sequendéc },,~; is not just bounded, but also a
contraction in

L®(0,Ty; H) N L2(0,Ty; H54Y) N eL?(0,Ty; H5H). (A.24)

Hence there exists a limiting functid in the category4.24). In addition, since for every > 1 we have
supp(#;) C P,, and the seP, is closed (and even discrete), we automatically obtainstap(6¢) C P,.
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To show that)® may be continued in the categori.24) up to timeT’, we note that|A*6(T})||7, <
2|[A%6o[|%., and hence repeating the above argument with initial cimmdit*(7}), we obtain a solution
0° € L>®(0,Ty + To; H®) N L2(0, Ty + To; H¥T7) NeL?(0, Ty + Ty, H**1), where

ST om0y T 001 22 + 215 e oo )

which is such thaf A*6°(Ty + T5) |2, < 4[|6o]|%.. Since the series

2k || A%0,||2
Y ” 20”” 5 (A.26)
k>0 2 HUHLoo(QT;Hs)HA 90HL2 + €| S| o0 (0,T;H*=")

diverges for every fixed > 0, the above argument may be terminated after finitely marmpsstoncluding
the construction of the solutidff in the categoryA.6).

In order to conclude the proof of the lemma we need to passitnindse — 0. By construction we
have that® is uniformly bounded, with respect toin L>°(0, T; H*) N L?(0, T; H**7), and from @.4) we
obtain thatd;6¢ is uniformly bounded, with respect tg in L%(0, T; H5~2*7). Thus, by the Aubin-Lions
compactness lemma (see for instan2@]); we obtain a weak limit) € L°°(0,7; H®) N L?(0,T; H**7),
so that the convergend® — @ is strong inL?(0,T; H*). Since the evolution is linear andis large
enough, it follows that this limiting function is the unigselution of (A.1) which lies inL>°(0,7; H®) N
L%(0,T; H**7). Lastly, since for every > 0 we hav&supp(@f) C Py, and sinceP, is closed, we obtain
that the limiting function also has the desired support proyp i.e. supp(@) C P,, which concludes the
proof of the theorem. O

T, (A.25)
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