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ABSTRACT. We prove that linear instability implies non-linear insitéy in the energy norm for the critically
dissipative quasi-geostrophic equation.
Communications in Mathematical Physics. Volume 292, Nu@2009), 797-810.

1. INTRODUCTION

A fundamental equation in oceanography and meteorologyei8tdimensional Navier-Stokes equation
in the context of a rapidly rotating, density stratified, cass, incompressible fluid. Both the forces of
rotation and stratification impose a tendency toward 2 dgiogrality on the 3 dimensional fluid motion,
and this leads to approximate and simpler mathematical Imodeportant non-dimensional parameters
are the Ekman number (the strength of the viscous termvel&i rotation) and the Rossby number (the
strength of the nonlinearity relative to rotation). In maggophysical problems these parameters are very
small. A set of approximations based on asymptotic expassdiopowers of these small parameters yields
an approximate equation for the 3 dimensional pressure Rrasmhe general quasi-geostrophic equation
with appropriate boundary conditions. Further simplifyimssumptions reduce the problem to the study of
a 2 dimensional equation which describes the evolutionefemperature field on a surface that bounds the
fluid. In the geophysical fluids literature this equationn®wn as the surface quasi-geostrophic equation. A
derivation of this equation and a discussion of its physielvance can be found, for example, in Pedlosky
[P4, Salmon F], Held at al HPGS. The effects of viscosity are incorporated via a boundayel analysis
and a mechanism known as Ekman layer pumping produces sipatige term in the 2 dimensional quasi-
geostrophic equation.

In the mathematical literature this 2 dimensional equasarften called the dissipative quasi-geostrophic
equations (QG equation) with the wosdirfacebeing omitted since the equation is 2 dimensional. This
equation, for an unknown active scal@fx,t) representing the temperature on the boundary surface, is
given by

20 +U-VO+ (-A)e =, (1.1)

whereU |z, t) is the velocity vector and'(z) is a given external force. The velocity is coupled with the
temperature via a stream functidn(x, t):

0 = (—A)2U = AU, (1.2)
and
U=VU=(0,,7,-0,,¥) = (RO, —R,0), (1.3)
whereR; is thei?” Riesz transform. Our analysis of.() - (1.3) considersz in the 2 dimensional torus
[0,27] = T? andt € [0, 00).

Both the non-dissipative and the dissipative QG equatians received much attention following seminal
article of Constantin et aMT]. They observed a number of similar features between th8 flimensional
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Euler and Navier-Stokes equations and the much simpler Q@tieqs in terms of possible formation of
singularities. Recent results concerning the dissipa@@ equations includedC, CCW, CV, CW, DD,
DP, J1, J2 KN, KNV, M, W] and references therein.

The appropriate powet of the Laplacian in the derivation from the general 3D viscquasi geostrophic
models and Ekman boundary layer analysi§ is 1/2. Dimensionally the 2D QG equation with= 1/2
is the analogue of the 3D Navier-Stokes equatifn- 1/2 is called the critical case. The first results con-
cerning regularity of solutions to the dissipative QG etpratvere given in the simpler (but non-physical)
subcritical case wherg > 1/2: see, for example, Constantin and WEM]. In the critical casef = 1/2,
Constantin, Cordoba and WECW] proved existence of a unique global solution evolving frany initial
data that are small i.°°. Very recently, the smallness assumption was removed aramtly in break-
through works of Caffarelli and VasseutY] and Kiselev, Nazarov and VolberdKNV]. In particular,
Caffarelli and VasseurgV] used harmonic extension to establish regularity of theaddopf weak solu-
tion. On the other hand, Kiselev et ®{lVV] proved the global well posedness of the critical dissiga@G
equations with periodi€'*° data. Their argument is based on a certain non-local maxiprimgiple for a
suitably chosen modulus of continuity.

In the present article we consider the question of nonliirestability of a steady solution of the forced
critical QG equations. We note that the above mentionederées concern the cage= 0, but in order to
ensure the existence of a large class of steady states weconsstler the nontrivially forced problem. In
particular, we need to reprove certain results that are krtovinold for the unforced equations but not in the
forced context, namely the nonlocal maximum principle cdédev et al KNV].

The main result of this paper is that linear instability ileplnonlinear Lyapunov instability fa®, and
hencel/, in the function spacé?. Such results connecting linear and nonlinear instaldilitye been proven
under certain restrictions for the 2D Euler equations, sael®s et alBGS, Friedlander and Vishik\[F],
and Lin [L]. There the methods utilize a bootstrap technique wheuctorelies on the special property of
conservation of vorticity which is valid for 2D Euler but nimr 3D Euler, where the equivalent instability
result is still unproven. This property cannot be utilized the QG equation because the relation between
the temperature and the stream function is not equivaleheteelation between the vorticity and the stream
function in the 2D Euler equations. In fact this is one reastiy it is conjectured that the QG equations
might mimic possible singularity development in the 3D flaglations.

The result that linear instability implies nonlinear irsitiy in Z? for the Navier-Stokes equations in any
dimension was proved in Friedlander etBPg (see also the seminal text of YudovicHi]). In this case the
special ingredient that permits the bootstrap argumenlogeds the smoothing property of the Laplacian
with respect to the nonlinear term. The argumentd-iag carry over directly to the subcritical dissipative
QG equation (i.es > 1/2) because the dissipative term again smooths the nonliegarin (.1) - (1.3).
However the case of the critical QG equation is more subtbaibge the critical dissipative termi & 1/2)
and the nonlinear term are now of the same order.

Hence to prove linear instability implies nonlinear instiépin L2 for the critical dissipative QG equa-
tions via the bootstrap argument requires a different gpéngredient. The one we use in this article is
the existence of a global bound §WO(t)|| . This result for the unforced critically dissipative QG was
proved in KNV] and a recent preprint of Kiselev and Nazar&N] shows that the result also holds for the
equation augmented by a dispersion term. The existencdasolibal bound for the forced equations is
proven in Sectiorb.

We note that the fairly general abstract theorem of Friatiaet al FSV] may be applied to the critical
QG equations - since the spectrum of the linearized opeiattiscrete (see Sectid) and so the spectral
gap condition is satisfied - and shows that linear instahititplies nonlinear instability irif4, with s > 2.
The novel result of this present paper is to prove instatiifithe “physically natural” energy spade .

Organization of the paper. In section2 we formulate the stability problem in terms of the tempamtu
©(z,t) perturbed about a steady st#gx) € C*°. Also in the same section we define nonlinear sta-
bility/instability and we state the main instability resul'heorem2.1 In section3 we study the linear
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operatorL for the dissipative QG equations in perturbation form. Topgrator is elliptic of ordet, with
compact resolvent, and hence its spectrum is purely destoet: € T2. We prove certain properties @f
that we will use in the bootstrap argument. Then in secfieve use this argument to prove Theor@ri.
In section5 we prove, in the spirit of KNV], that the forced equation has a gloli&t® solution and that
supysq ||[VO(t)|| L~ < oo. This result in used in the bootstrap argument that provesnin theorem.

Acknowledgements. We thank Hongjie Dong, Alexander Kiselev, Anna Mazzucatoyan Shvydkoy and
Alexis Vasseur for very helpful discussions. The work of. &Bupported by NSF grant DMS 0803268. The
work of N.P. is supported by NSF grant number DMS 0758247 andlifaed P. Sloan Research Fellowship.

2. NOTATION AND FORMULATION OF THE RESULT

Let 6y be the temperature of a smooth steady 2D flow with velogjtyand smooth force, that is we
have

qo- Vo + A0y = f (2.1)

qo = (Ra26, —R100). (2.2)

Here we considefly, g0, f € C*°(T?). We linearize {.1) about a the steady statéy, qo) by writing

O(x,t) = Oy(z) + 0(x,t) andU (z,t) = qo(z) + q(z, t). In such a way we obtain an equation that governs
the perturbatiord:

0,0 = LO+ N(0), (2.3)
where the linear operatdr is defined by
LO=—qy-VO—q-Vby— A0, (2.9
the velocity is coupled with the temperature via
q = (R20,—R10) (2.5)
and
N(9) =—q- V6. (2.6)

For simplicity of the presentation we |, f, 0 have zero mean on the torus, and in the following we shall
denote/* = {v € H*(T?) : [, vdz = 0}, for all s > 0. We define a suitable version of stability (the
same definition was used, e.g. FHY, [VF]).

Definition. Let(X, Z) be a pair of Banach spaces. A soluti@nof (2.1)-(2.2) is called(X, Z) nonlinearly
stable if for anyp > 0, there existg > 0 so that ifd(0) € X and||#(0)||z < p, then we have

(i) there exists a global in time solution (8.3) such that)(¢) € C ([0, ); X);
(i) |6(t)||z < pfora.e.t € [0,00).

An equilibriumé, that is not stable (in the above sense) is called Lyapunotables

The Banach spac¥ is the space where a local existence theorem for the nonkageations is available,
while Z is the space where the spectrum of the linear operator iyzewl and where the instability is
measured. In the case of the critical dissipative QG w&lek the critical Sobolev spadé! (cf. [CC, CW,
DD, J1, J2 M]), while the growth of the perturbation is considered in émergy space = L2. Now we
are ready to formulate the main result of the present paper.

Theorem 2.1. Suppose thaf, is a smooth mean-free steady state solution of the criticaiplative QG,
i.e., it solveq2.1)-(2.2). If the associated linear operatdr, as defined irf2.4), has spectrum in the unstable
region, then the steady state(i#*, L?) Lyapunov nonlinearly unstable.
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3. LINEARIZED DISSIPATIVE QG
The linear operatof. defined in 2.4) via
LO=—qy-VO—q-Vby— A0
is a pseudo-differential operator with principal symbol
a(z, k) = —|k| +iqo(z) - k,

which does not vanish ofi? x Z? \ {0}. ThereforeL is elliptic of order1. Sinceqy, V, € C, for large
enougha > 0, we have thatL — al)~! is a bounded operator fro¥ into H'. Moreover, the domain of
L

D(L)={ve Hl(ﬂr?),/ vdr = 0} C L*(T?) (3.1)
T2
is compactly embedded ih? by Rellich’s theorem, so that resolveflt — aI)~! is a compact operator.
ThusL has discrete spectrum.
Let 1. be the eigenvalue af with maximal positive real part ovet®. Let A = Re p and¢ € L? be the

corresponding eigenfunctibnFor a fixed) < § < Cy, whereC, > 0 is a constant depending onto be
determined later, we denote iy

Ls=L—(\+6)I (3.2)

The shift ensures thdt; generates a boundét-semigroup over.? and that the resolvent set bf contains
the right half plane. The following lemma shows ttiatgenerates an analytic semigroup o¥&r

Lemma 3.1. Over L? the operatorLs generates an analytic semigroup.

The proof of the lemma modifies the proof d? [Theorem 7.2.7], which shows the analyticity of a
strongly elliptic operator of ordem over L?, to the case of the linearized QG operator, which is ellipfic
order 1.

Proof. Define the operatafr via
Gv=Av+qy-Vv+ R(v)-Vby+ 28v=—Lv+25v (3.3)

where we have denoted(v) = (Rav, —Riv) andg = || V6| L. Sinceq is divergence-free we have that
G satisfies Garding’s inequality

Re (Gv,v) 2 |AY20][T + Bllv].- (3.4)
In the above estimate we also ugg@l(v)|| ;2 < ||v||z2. Similarly, for everyv € D(G), we have
[lm (Gv,v)| < [(Go,v)| < [|A?0]|7. + 3807 (3.5)

Sincew is a scalar, it follows from3.4) and @.5) that the numerical rang€(G) (cf. [P, pp. 12]) is contained
in the set

Sy, ={A e C: =Yy < arg X < Yo}, (3.6)

wheredy = arctan(3) < m/2. Choosingdy < ¥ < n/2 and definingty = {z € C : |arg z| > ¥}, we
have that there is a constafit= C (¢, ¢) > 0 such that

dist(z, S(G)) > C|z|, forall z € Zy. (3.7)
We now claim that all reat < 0 are in the resolvent se{G) of the operato(7. Recall thalG = — L+ 251,
and moreover that the spectrum of the operditds contained in the half planfz € C : Re z < A}, where

IThe steady flowjo = (sin ma2, 0) gives an example for which the operafohas unstable eigenvalues ovet. This follows
from an extension of the analysis in Friedlander and Shwydk& to the dissipative equations (see also Meshalkin and Sinai
[MS])).
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0 < A = Re u, andy is the eigenvalue of. with largest real part with associated eigenfunctiorSinceq
is divergence free we also have that

ulloliz = (Lo, ¢) = —[AY?]72 — (R(¢) - Voo, 9), (3.8)
and by taking real parts this implies that< ||V6y||z = §; hence the spectrum @f is contained in the
right half plane, proving the claim.

We have hence proven they is contained in the the complement$fG) and has non-empty intersection
with p(G); by [P, Theorem 1.3.9] we have thaly C p(G) and for everyz € ¥y we have the resolvent

estimate

1 1
R(z: G < — < . 3.9
1R Ol < dist(z : 5(G)) ~ Cll (59
Therefore—G is the infinitesimal generator of an analytic semigroup [ef.Theorem 2.5.2]) and sbs =
—G + (28 — X — §)I generates an analytic semigroup foh since it is a bounded perturbation-efz. [

Now we state and prove the lemma that will be used in the prbofiomain result, Theorera. 1
Lemma 3.2. For 0 < v < 1 there exists a constaidt > 0 such that

Lst

C
le™*vll 22 < HUHLJIIA "l (3.10)

for all smooth functions € L?, whereC = C(v, 5, a,0p).
Proof. Sinceq is divergence free, it is convenient to use the operdtgrdefined via
Agv = —qo- Vv —Av —av = Lsv+ R(v) - VOy — (. — A — d)v, (3.11)
wherea > max{\ + 6, C||6o||%2+. }, € > 0, andC is a sufficiently large dimensional constant. We treat
as a bounded perturbation df,. The operatord,, is also elliptic and has discrete spectrum, so by possibly

choosing a different, we have thati;! € £(L?).
First, we claim that

145 A 2 < Clo]l 2, (3.12)
for all smoothv € L? with zero mean. In order prove this, denate= A, ' Av, which also has zero mean,
and observe thaB(12 is equivalent to

Bl L2 < ClIATT Agh| 2. (3.13)
The definition ofh implies that
(A7 Ak h) = (A" (a0 - VA), h) = |72 — al|A~2R|17,
and therefore
IRl172 + alA™2R||72 < A" Akl 2 |[Bl| 2 + (g0 - VA, A7 R)]. (3.14)

Note that(qgo - VA~Y/2h, A=1/21h) = 0 sincediv gy = 0. Using Plancherel’s theorem, we write this inner
product in terms of Fourier coefficients (cKY] and references therein)

(g0 - Vh, A" h) = (g0 - Vh, A" h) — (qo - VA™Y2h, A=/2h)

—i2n)? Y Gy (m—l/? - \k]‘1/2> hooll| V2. (3.15)
J+k+1=0
In the above summation, the Fourier frequengigs [ € Z? \ {0} becausey, andh are mean free, ankl,
denotes thé&'" Fourier coefficient of.. Since|l| = |j + k| the triangle inequality gives!| — |k|| < |j], and
therefore
B Ll il <
- U2 1R MR R2 (L2 + [R[2)

I "W e
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Therefore, by 8.15 and the Cauchy-Schwartz inequality we have that
(qo - Vi, ATIRY <€ lldog w22l

Jj+k+1=0
<C Z 1711051 Z |12 |
JEZ2\{0} 1€22\{0,—5}
< C||h|| g2 |A7Y2R)| 2 Z 1312 dogl15])
JEZ2\{0}
< C||h| 2| A2 R L2 | A*T00 | 2. (3.16)

We plug this estimate int®B(14) and obtain
1 c _ _
SIBlZe + (@ = CIA Go||Z2) 1A~ 2R 7> < [IA™" Aahl |7,

Sincea > C||0y||3;2+., the above estimate proves {3 and A A € L£(L?).
Now we prove that for smooth € L? we have

IL5 ! Aavllz2 < Cllollzz, (3.17)
for a sufficiently large constardt > 0. The inequality 8.17) follows by writing
Ly'Agv = v+ LY (R(v) - V) — (o — 6 — A\) Lz ', (3.18)

and noting that the operatdirg1 is bounded orL.? (cf. [P, Lemma 2.6.3]). Together with the boundedness
of the Riesz-transforms ob?, (3.18) implies

L5 Avpz < |vllp2 (1 + C(|V8olLe +a — 35— X)), (3.19)

which proves §.17) and thereford.; ' 4, € £(L?).
In order to conclude the proof of the lemma we use the fact fjajenerates an analytic semigroup
(cf. Lemma.1) and therefore (cf.R, Theorem 2.6.13]) we have that

_ c. __
le"s vl ooype = L3 Ly 0| o2 < 7 11Ls v 2. (3.20)
Now we bound|L; "v|| 2 by interpolating (cf. P, Theorem 2.6.10]) as follows
_ 1— _ 1— _
L5 " vllg2 = [1L; (L5 )|z < Clloll " 115 0117

< Clloll 27 I(L5 A (A A) (A o) 17

< Cllollz " IA ], (3.21)
where in order to obtain3(21) we used §.17) and 3.12. Now we conclude the proof of the lemma by
combining .20 and @.21). O

4. PROOF OFTHEOREM 2.1

Here we prove Theorera. 1 In order to do this we must show that the trivial soluttbe-= 0 of (2.3) is
(H', L?) Lyapunov unstable. With this goal in mind, we consider a famf solutionsé® to

0% = L6° + N(6°), (4.1)
0%|i=0 = €9, (4.2)

whereg is as above an eigenfunction bfassociated with the eigenvalue with maximal positive real j.
We will prove the following proposition that clearly impéighe desired Lyapunov instability result.

Proposition 4.1. There exist positive constants andz < 1 such that for every € (0,2), there exists
T. > 0 such thatl|0°(T%)||;2 > C.
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We remark that i°(z, t) solves §.1)—(4.2), then the functior®®(z,t) = 6°(z,t) + 6y(x) solves the
forced QG equations5(1)—(5.3), with initial data©®(z,0) = 6y(z) + ep(z) € C*°(T?). Moreover, in
Lemmab.1 of Section5 we prove that the global smooth solution of the forced QG touga satisfies
[VOs(t)||L~ < C§ for all t > 0, where the constands depends solely on the> and W 1> norms of
the initial data and the force. Fare (0,1], we have||©%(0)||z~ < ||fol|z + ||¢| L, and similarly
|[VO(0)||ree < [|[Vbpl|lLee + ||V L, Which are independent af and therefore there exists a fixed
Cy > 0 such thal| VO©(t)| L~ < Cy, foralle € (0, 1] and for allt > 0. We refer the reader to the proof of
Lemmab.1for further details. The triangle inequality then implibat by possibly increasing, we have

sup ||[VO*(t)|| L~ < Cp 4.3)
>0

for all € € (0, 1]. We will henceforth denoté® simply asf and will use the analogous notation far All
constants in the following areindependent.

Proof of Propositiod.1. For R > Cy := ||¢|| .2 to be chosen later, |&6f = T'(R, <) be the maximal time
such that

10(t)|| 2 < eReM, forte[0,T]. (4.4)

Clearly T € (0, cc] due to the strong continuity ih? of t — 0(t) and the chosen initial condition.
Using Duhamel’s formula we write the solution @f.{)—(4.2) as

0(t) = eltep + B(2), (4.5)

where
t
B(t) = / LIS N(0)(s) ds. (4.6)
0

First, we shall prove that

>1+~,/2

1Bl < Cr (sRe™) (4.7)

wherey € (0,1) andC; = C(Cy, A, 0,v) > 0 are constants. To show.{7), we rewrite the operataB and
then use Lemma.2 as follows:

t
1B 12 = ”/ LOH0)-9) o9 N (8(s)) ds
0
t
< [ eI b IN(B(s)) 12 2 s
0
t
1
Otd)(t—s) 1 Lt x o1 R
SC/O ‘ = VOGN IATN (). ds, (4.8)

wherey € (0,1) is arbitrary, andC' > 0. In order to bound the factdfA=' N (0(s))| ;2 we recall the
explicit representation (cfJC]) of the nonlinear term

ATY(R(0) - VO) = Cy, (R1(0R2(0)) — Ra(0R1(6))) (4.9)

for some dimensional constaft,, and the fact that the Riesz transforms are boundedand L*, to
obtain that

[ATEN(0(s))ll 2 < ClIOR6| > < C[6][74, (4.10)
By interpolating, we have
100+ < CIOIL 1617 (4.12)
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On the other hand by the Gagliardo-Nirenberg inequalitytaedHolder inequality we have that (cN])

3/8 3/8
16]1 s = 116537 < CIv (6%,

3/8 5/8 3/8
< 6PV, < CloIL Vel (4.12)

By combining .10 with (4.11) and @.12) we obtain
IAIN(@(s)) ]2 < Cll6)3Y 2 Va2 (4.13)
On the other hand, by Holder’s inequality, and the boundesof the Riesz transforms @, we have

IN@O)}27 < 110)27 1V = (4.14)

Recall that by 4.3) we have||VO(t)||r~ < Cy, for all ¢ > 0. Using assumption4(4) and the fact that
0 < ¢ < Oy = \y/2, we substitute the bound$.(3 and @.14) into (4.8), to conclude

1+~/2
) vz (4.15)

IB()]z2 < C1 (eRe™

for some positive constaidt; = C(Cy, A, d, q,7), proving @.7). The Duhamel formula4(5) and the bound
(4.7) imply

>1+”/2. (4.16)

102 < C¢E€)‘t +C (ERe)‘t

Observing thatR was chosen such thd& > Cy, it follows that we have the following estimate on the
maximal timeT":

R—Cy \*
€&T2<E§ﬁﬁ%> =:Cy >0, (4.17)

which clearly holds ifl" = oo. On the other hand, if" is finite, 4.17) is obtained by combining the
continuity oft — ||6(¢)||z2, (4.4) and @.16) to obtain

v/2
eReM < CyeeT + Oy R/ 2T (66)\T> ,

which, in turn, implies 4.17). Therefore we havé’ > T., where we defined

n-tn® (4.18)
A €

To conclude the proof we must find a lower bound |BH7%)||;2. We use Duhamel’s formula(5), the
triangle inequality, and4( 15 to obtain

1+4+/2
memzqwm—q@&m)y. (4.19)

Using @.19, with C'5 given by @.17), the lower bound4.19 implies
R—-Cy
ClRl-i-'y/Z

= 02(2C¢ —R):= C > 0,

16(T2) |2 > Ca(Cy — Cy R/ )

by choosingCy, < R < 2C,. This concludes the proof of the proposition which, in tumplies Theo-
rem2.1 g
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5. GLOBAL WELL-POSEDNESS FOR THE FORCERQG EQUATION

In this section, by modifying the argument of Kiselev etkdN|V ], we prove that the forced QG equation
has a unique global smooth solution. More precisely, wegthe following:

Lemma5.1. Assume tha®, f € C> are T2-periodic functions with zero mean. Then there exists auiq
global in time smooth solution of

0©+U-VO+AO = f, (5.1)
U= R(0) =(R:0,—R;10), (5.2)
0(0) = ©y. (5.3)
Moreover for allt > 0 we have
IVO(t)| = < Co, (5.4)

whereCy = Co(||O0|| e, [[VOo|| oo, | fllLee, |V fllz) IS a positive constant.

The proof of the lemma is in the spirit dKNV], but we additionally need to treat the force term, which
a-priori could cause growth of the solution. Sir@€&) is mean free, it can be shown a-priori thi& (¢)|| z»,
with 2 < p < oo, remains bounded for all time. However the same methods tward for the subcritical
quantity [[VO(t)| -, and therefore we need to prove the nonlocal maximum pimap[KNV] for the
forced QG equation(1)—(5.3). This is achieved by suitably choosing a scaling paramBtand making
use of the fact that due to periodicity we do not need to camsidbitrarily large length scales. We note that
the scaling parametds is used only in the modulus of continuity, whereas the sohgito 6.1)—(5.3) are
not space-time rescaled.

Proof of Lemm&.1 We recall that a continuous, increasing, unbounded, cenftaxctionw : [0, 00) —
[0, 00), with w(0) = 0 is @ modulus of continuity for a functiofi if

[f(@) = f(y)| < w(lz—yl), (5.5)
for all z,y € R%. The modulus istrict if the strict inequality holds ing.5). We consider a modulus of
continuity that also satisfies' (0) < oo, andlimg_,o+ w”(§) = —oo, namely, as INKNV] we let

o 5_53/27 ngé(;,
wi&) = {5 — 53/% 4 ylog(1 + Llog(£/0)), € >4,

whered > v > 0 are sufficiently small fixed constants.
Since®y € C°, there exists a sufficiently larg8 > 0 such that9, hasstrict modulus of continuity
wp(§) = w(BE). The scaling parametds may be chosen as

B = C||VOq|| = exp(exp(C|Ool|=)), (5.7)

where(C' is a sufficiently large positive constant. Moreover, sinds unbounded, by possibly increasify
we may ensure that

(5.6)

AB? > |V |1, (5.8)
where the fixed dimensional constahis as in KNV, Lemma], and also

wp(d

2D > sl 59

whered = diam(T?) = 27+/2 will be fixed throughout this section. We fix/ that satisfiesg.7)—(5.9)
and recall that the modulus of continuity is given by

BS_ (36)3/27 0
6 — %2 4+ log(1+ flog(5), ¢

IN
el

wp(§) = w(BE) = { (5.10)

\ARVAN
e I



10 SUSAN FRIEDLANDER, NATASA PAVLOVIC, AND VLAD VICOL

Denotewp’(¢) = Buw'(B¢) andwp”(€) = B2W"(£). We claim thatwg (&) is preserved by the evolution
(2.3), so that® is a global solution. We exterd, U, O, f to T2-periodic functions o2,

The first step of the proof is to show that@f(¢) has strict modulus of continuityp for ¢t € [0,7],
then there exists > 0 such that©(¢) has strict modulus of continuityp ont € [0,7 + 7). Since
[VO(t)||= < wp'(0), we have thaB(t) € C> for all t € [0,7], and by the local regularity theorem
(cf. [CC, J1, 32 M]) for some timer > 0 beyondT'. We must show that by possibly shrinkingwe have
that

O(x,t) — O(y, )| <wp(|r —y|) (5.11)

forallt € (T, T + ) andx # y € R%,

Define the compact sét = |27, 27]? x [-27,27])? C R%. Since® is T?-space periodic, we have
that for any(z, y) € R*, with = # 3, there exist(z’,y') € K, with 2’ # o/, such thafz’ — /| < |z — ¥,
O(z,t) = ©(a/,t), andO(y,t) = O(y/,t). Becausev is increasing, if .11) holds for all(2/,y’) € K
with 2 # 3/, then we have that for alt # y € R?

©(z,t) = O(y, t)] = |O(a',1) — Oy, 1)| <wp (|2’ —¥/|) <ws(|z —y)).

Therefore it is sufficient to prove that there exists- 0 such that%.11) holds forz # y, with (z,y) € K.
By assumption, there exists> 0 such that| VO(T')|[.~ < wp'(0) — 2¢, and by continuity, for small
enoughr we have that| Vo (t)| L~ < wp'(0) — eforallt € [T, T + 7). Therefore for(z,y) € K, with
0 < |z —y| =& < p, wherep < min(§/B, €2/ B3), we have

Oz, 1) = O(y, )| <E[VO(H)|r < (B —€) < BE— (B = wa(§),

forallt € [T, T+ 7). Onthe other hand, due to the continuity in time®fz, t) —©(y, )|, the compactness
of the set{(z,y) € K : |z — y| > p}, and and the fact thab(11) holds att = T, we have that there is a
sufficiently small- > 0 such that%.11) holds for all(z,y) € K,z # y,andt € [T, T + 7).

The second part is to rule out the case in which there eXistsO andx # y € R? such tha®(z, T) —
O(y,T) = wgp(|z — y|) (cf. [KNV]). Note that by the periodicity 0®, for suchz # y € R? fixed, there
exista’,y’ € T? such that

=0, T) -0y, T) <wp(jz' —y|) < wp(d),
and sincev is increasing, we must have< ¢ = |z — y| < d = diam(T?). We conclude by showing that
(0@ 1) = Oy, t)|e=r <0, (5.12)

contradicting the fact that thetrict modulus of continuity is lost at= 7'. In the following we suppress the
time dependence @& andU, since we work at = 7" fixed.

Since® has modulus of continuity (&), we know (cf. KNV, Lemma]) thatU has modulus of conti-
nuity Q5 (£), where we defined

() :A</O§ WB(n)dn+£/§oo wB(n)dn>7

U n?
for some positive constant. Then as in KNV, Section 4] we have that

iy 2EHAVE) U] — nlE)
h—0t h

< |U(x) = Uy)lws'(§) < Qp(§)ws'(S)- (5.13)

(U-VO)(x) - (U-VO)(y)| <
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The dissipative terms are estimated asdiiy/, Section 5], namely by the negative quantity

¢/ — -
M) = %/ > wp(§ + 2n) +WB77(25 211) 2(’“}B(g)dn
0
+%/°° wp(2n+¢) —WB(2277—5) _2w3(§)d77. (5.14)
€/2 K

Lastly, the force term is estimated using the mean valuaémeo

EVEllLe, 0<E< L,

2”f”L°°7 §> %

Thus, in order to conclude the proof &.(2), we must show that for all < ¢ < d, we have
Qp(§ws'(€) + Fp(§) + Mp(§) < 0. (5.16)

First we treat the cade < £ < §/B. By keeping track o3, and using condition5(8), similar arguments
as in KNV, Section 7] show that

|f(@) = fy)| < Fp(§) = { (5.15)

(' (€) + Fnl€) + Mp(€) < ABE(3 +log 30) + €IV 1= + Swn(©
3

b
< B* <A(4 +log B_S) — E(Bg)—W) :

Since we hav@ < B¢ < 4, the above quantity is strictly negativedifs sufficiently small. Note thaf does
not depend orB.

For the casé/B < ¢ < d, we follow the estimates inrNV, Section 8] to conclude that if andd are
sufficiently small, independent @, then

/ 1 WB(&)
Qp(§ws'(§) + FB(£) + Mp(§) < Ay + 2/ £l i

But B was chosen so thab Q) is satisfied, i.e2||f||~ < wp(d)/2rd. Because ofy/B, co) the function
wp(§)/¢ is decreasing, for any € [6/B, d] we have tha®|| f||z~ < wp(d)/2rd < wp(§)/2mE. Thus

AVWB(&’) o f e — %WB(@ < (A,YJF 1 %) wi(E) _ 0,

wp(§)
§

§ £ 2m £
if ~ is sufficiently small, independent &. Therefore $.16) holds for all0 < ¢ < d, and s0%.12) is proven.
Therefore the solutio®(¢) exists for all time and has strict modulus of continuity, which implies that
IVO(t)||L~ < wp'(0) = B forall t > 0, concluding the proof of the lemma. O

Remark 5.2. We note that it is also possible to adapt the De Giorgi-typangues used by Caffarelli and
Vasseur CV] to treat the forced QG equation. First one proves boundedoéthe solution inl.? using
energy estimates, and then the similarly@y] Section 2] one obtains boundedness (not decay) for all time
of O(t) in L> and of U(t) in BMO. The second step is to show that the solution is actuallyléettdnd
that it remains bounded in this space forzl> 0, i.e. adding a smooth force does not create additional
difficulties. Since this is already subcritical regularity the third step it is standard to bootstrap to higher
regularity and prove that thid’ !> norm of ©(¢) is bounded in time.
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