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1. INTRODUCTION

A fundamental equation in oceanography and meteorology is the 3 dimensional Navier-Stokes equation
in the context of a rapidly rotating, density stratified, viscous, incompressible fluid. Both the forces of
rotation and stratification impose a tendency toward 2 dimensionality on the 3 dimensional fluid motion,
and this leads to approximate and simpler mathematical models. Important non-dimensional parameters
are the Ekman number (the strength of the viscous term relative to rotation) and the Rossby number (the
strength of the nonlinearity relative to rotation). In manygeophysical problems these parameters are very
small. A set of approximations based on asymptotic expansions in powers of these small parameters yields
an approximate equation for the 3 dimensional pressure known as the general quasi-geostrophic equation
with appropriate boundary conditions. Further simplifying assumptions reduce the problem to the study of
a 2 dimensional equation which describes the evolution of the temperature field on a surface that bounds the
fluid. In the geophysical fluids literature this equation is known as the surface quasi-geostrophic equation. A
derivation of this equation and a discussion of its physicalrelevance can be found, for example, in Pedlosky
[Pe], Salmon [S], Held at al [HPGS]. The effects of viscosity are incorporated via a boundary layer analysis
and a mechanism known as Ekman layer pumping produces the dissipative term in the 2 dimensional quasi-
geostrophic equation.

In the mathematical literature this 2 dimensional equationis often called the dissipative quasi-geostrophic
equations (QG equation) with the wordsurfacebeing omitted since the equation is 2 dimensional. This
equation, for an unknown active scalarΘ(x, t) representing the temperature on the boundary surface, is
given by

∂tΘ+ U · ∇Θ+ (−∆)βΘ = f, (1.1)

whereU(x, t) is the velocity vector andf(x) is a given external force. The velocity is coupled with the
temperature via a stream functionΨ(x, t):

Θ = (−∆)1/2Ψ = ΛΨ, (1.2)

and

U = ∇⊥Ψ = (∂x2
Ψ,−∂x1

Ψ) = (R2Θ,−R1Θ), (1.3)

whereRi is the ith Riesz transform. Our analysis of (1.1) - (1.3) considersx in the 2 dimensional torus
[0, 2π] = T

2 andt ∈ [0,∞).
Both the non-dissipative and the dissipative QG equations have received much attention following seminal

article of Constantin et al [CMT]. They observed a number of similar features between the full 3 dimensional
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Euler and Navier-Stokes equations and the much simpler QG equations in terms of possible formation of
singularities. Recent results concerning the dissipativeQG equations include [CC, CCW, CV, CW, DD,
DP, J1, J2, KN, KNV, M, W] and references therein.

The appropriate powerβ of the Laplacian in the derivation from the general 3D viscous quasi geostrophic
models and Ekman boundary layer analysis isβ = 1/2. Dimensionally the 2D QG equation withβ = 1/2
is the analogue of the 3D Navier-Stokes equation.β = 1/2 is called the critical case. The first results con-
cerning regularity of solutions to the dissipative QG equation were given in the simpler (but non-physical)
subcritical case whereβ > 1/2: see, for example, Constantin and Wu [CW]. In the critical case,β = 1/2,
Constantin, Cordoba and Wu [CCW] proved existence of a unique global solution evolving fromany initial
data that are small inL∞. Very recently, the smallness assumption was removed independently in break-
through works of Caffarelli and Vasseur [CV] and Kiselev, Nazarov and Volberg [KNV]. In particular,
Caffarelli and Vasseur [CV] used harmonic extension to establish regularity of the Leray-Hopf weak solu-
tion. On the other hand, Kiselev et al [KNV] proved the global well posedness of the critical dissipative QG
equations with periodicC∞ data. Their argument is based on a certain non-local maximumprinciple for a
suitably chosen modulus of continuity.

In the present article we consider the question of nonlinearinstability of a steady solution of the forced
critical QG equations. We note that the above mentioned references concern the casef = 0, but in order to
ensure the existence of a large class of steady states we mustconsider the nontrivially forced problem. In
particular, we need to reprove certain results that are known to hold for the unforced equations but not in the
forced context, namely the nonlocal maximum principle of Kiselev et al [KNV].

The main result of this paper is that linear instability implies nonlinear Lyapunov instability forΘ, and
henceU , in the function spaceL2. Such results connecting linear and nonlinear instabilityhave been proven
under certain restrictions for the 2D Euler equations, see Bardos et al [BGS], Friedlander and Vishik [VF],
and Lin [L]. There the methods utilize a bootstrap technique where closure relies on the special property of
conservation of vorticity which is valid for 2D Euler but notfor 3D Euler, where the equivalent instability
result is still unproven. This property cannot be utilized for the QG equation because the relation between
the temperature and the stream function is not equivalent tothe relation between the vorticity and the stream
function in the 2D Euler equations. In fact this is one reasonwhy it is conjectured that the QG equations
might mimic possible singularity development in the 3D fluidequations.

The result that linear instability implies nonlinear instability in L2 for the Navier-Stokes equations in any
dimension was proved in Friedlander et al [FPS] (see also the seminal text of Yudovich [Y]). In this case the
special ingredient that permits the bootstrap argument to close is the smoothing property of the Laplacian
with respect to the nonlinear term. The arguments in [FPS] carry over directly to the subcritical dissipative
QG equation (i.e.β > 1/2) because the dissipative term again smooths the nonlinear term in (1.1) - (1.3).
However the case of the critical QG equation is more subtle because the critical dissipative term (β = 1/2)
and the nonlinear term are now of the same order.

Hence to prove linear instability implies nonlinear instability in L2 for the critical dissipative QG equa-
tions via the bootstrap argument requires a different special ingredient. The one we use in this article is
the existence of a global bound on‖∇Θ(t)‖L∞ . This result for the unforced critically dissipative QG was
proved in [KNV] and a recent preprint of Kiselev and Nazarov [KN] shows that the result also holds for the
equation augmented by a dispersion term. The existence of this global bound for the forced equations is
proven in Section5.

We note that the fairly general abstract theorem of Friedlander et al [FSV] may be applied to the critical
QG equations - since the spectrum of the linearized operatoris discrete (see Section3) and so the spectral
gap condition is satisfied - and shows that linear instability implies nonlinear instability inHs, with s > 2.
The novel result of this present paper is to prove instability in the “physically natural” energy spaceL2.

Organization of the paper. In section2 we formulate the stability problem in terms of the temperature
Θ(x, t) perturbed about a steady stateθ0(x) ∈ C∞. Also in the same section we define nonlinear sta-
bility/instability and we state the main instability result, Theorem2.1. In section3 we study the linear
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operatorL for the dissipative QG equations in perturbation form. Thisoperator is elliptic of order1, with
compact resolvent, and hence its spectrum is purely discrete for x ∈ T

2. We prove certain properties ofL
that we will use in the bootstrap argument. Then in section4 we use this argument to prove Theorem2.1.
In section5 we prove, in the spirit of [KNV], that the forced equation has a globalC∞ solution and that
supt≥0 ‖∇Θ(t)‖L∞ < ∞. This result in used in the bootstrap argument that proves the main theorem.

Acknowledgements.We thank Hongjie Dong, Alexander Kiselev, Anna Mazzucato, Roman Shvydkoy and
Alexis Vasseur for very helpful discussions. The work of S.F. is supported by NSF grant DMS 0803268. The
work of N.P. is supported by NSF grant number DMS 0758247 and an Alfred P. Sloan Research Fellowship.

2. NOTATION AND FORMULATION OF THE RESULT

Let θ0 be the temperature of a smooth steady 2D flow with velocityq0, and smooth forcef , that is we
have

q0 · ∇θ0 + Λθ0 = f (2.1)

q0 = (R2θ0,−R1θ0). (2.2)

Here we considerθ0, q0, f ∈ C∞(T2). We linearize (1.1) about a the steady state(θ0, q0) by writing
Θ(x, t) = θ0(x) + θ(x, t) andU(x, t) = q0(x) + q(x, t). In such a way we obtain an equation that governs
the perturbationθ:

∂tθ = Lθ +N(θ), (2.3)

where the linear operatorL is defined by

Lθ = −q0 · ∇θ − q · ∇θ0 − Λθ, (2.4)

the velocity is coupled with the temperature via

q = (R2θ,−R1θ) (2.5)

and

N(θ) = −q · ∇θ. (2.6)

For simplicity of the presentation we letθ0, f, θ have zero mean on the torus, and in the following we shall
denoteHs = {v ∈ Hs(T2) :

∫
T2 vdx = 0}, for all s ≥ 0. We define a suitable version of stability (the

same definition was used, e.g. in [FPS], [VF]).

Definition. Let(X,Z) be a pair of Banach spaces. A solutionθ0 of (2.1)-(2.2) is called(X,Z) nonlinearly
stable if for anyρ > 0, there exists̃ρ > 0 so that ifθ(0) ∈ X and‖θ(0)‖Z < ρ̃, then we have

(i) there exists a global in time solution to(2.3) such thatθ(t) ∈ C([0,∞);X);
(ii) ‖θ(t)‖Z < ρ for a.e.t ∈ [0,∞).

An equilibriumθ0 that is not stable (in the above sense) is called Lyapunov unstable.

The Banach spaceX is the space where a local existence theorem for the nonlinear equations is available,
while Z is the space where the spectrum of the linear operator is analyzed, and where the instability is
measured. In the case of the critical dissipative QG we letX be the critical Sobolev spaceH1 (cf. [CC, CW,
DD, J1, J2, M]), while the growth of the perturbation is considered in theenergy spaceZ = L2. Now we
are ready to formulate the main result of the present paper.

Theorem 2.1. Suppose thatθ0 is a smooth mean-free steady state solution of the critical dissipative QG,
i.e., it solves(2.1)-(2.2). If the associated linear operatorL, as defined in(2.4), has spectrum in the unstable
region, then the steady state is(H1, L2) Lyapunov nonlinearly unstable.
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3. LINEARIZED DISSIPATIVE QG

The linear operatorL defined in (2.4) via

Lθ = −q0 · ∇θ − q · ∇θ0 − Λθ

is a pseudo-differential operator with principal symbol

a(x, k) = −|k|+ iq0(x) · k,
which does not vanish onT2 × Z

2 \ {0}. ThereforeL is elliptic of order1. Sinceq0,∇θ0 ∈ C∞, for large
enoughα > 0, we have that(L− αI)−1 is a bounded operator fromL2 into H1. Moreover, the domain of
L

D(L) = {v ∈ H1(T2),

∫

T2

vdx = 0} ⊂ L2(T2) (3.1)

is compactly embedded inL2 by Rellich’s theorem, so that resolvent(L − αI)−1 is a compact operator.
ThusL has discrete spectrum.

Let µ be the eigenvalue ofL with maximal positive real part overL2. Let λ = Re µ andφ ∈ L2 be the
corresponding eigenfunction1. For a fixed0 < δ < Cλ, whereCλ > 0 is a constant depending onλ to be
determined later, we denote byLδ

Lδ = L− (λ+ δ)I. (3.2)

The shift ensures thatLδ generates a boundedC0-semigroup overL2 and that the resolvent set ofLδ contains
the right half plane. The following lemma shows thatLδ generates an analytic semigroup overL2.

Lemma 3.1. OverL2 the operatorLδ generates an analytic semigroup.

The proof of the lemma modifies the proof of [P, Theorem 7.2.7], which shows the analyticity of a
strongly elliptic operator of order2m overL2, to the case of the linearized QG operator, which is ellipticof
order 1.

Proof. Define the operatorG via

Gv = Λv + q0 · ∇v +R(v) · ∇θ0 + 2βv = −Lv + 2βv (3.3)

where we have denotedR(v) = (R2v,−R1v) andβ = ‖∇θ0‖L∞ . Sinceq0 is divergence-free we have that
G satisfies Gärding’s inequality

Re (Gv, v) ≥ ‖Λ1/2v‖2L2 + β‖v‖2L2 . (3.4)

In the above estimate we also used‖R(v)‖L2 ≤ ‖v‖L2 . Similarly, for everyv ∈ D(G), we have

|Im (Gv, v)| ≤ |(Gv, v)| ≤ ‖Λ1/2v‖2L2 + 3β‖v‖2L2 . (3.5)

Sincev is a scalar, it follows from (3.4) and (3.5) that the numerical rangeS(G) (cf. [P, pp. 12]) is contained
in the set

Sϑ0
= {λ ∈ C : −ϑ0 < arg λ < ϑ0}, (3.6)

whereϑ0 = arctan(3) < π/2. Choosingϑ0 < ϑ < π/2 and definingΣϑ = {z ∈ C : | arg z| > ϑ}, we
have that there is a constantC = C(ϑ, ϑ0) > 0 such that

dist(z, S(G)) ≥ C|z|, for all z ∈ Σϑ. (3.7)

We now claim that all realx < 0 are in the resolvent setρ(G) of the operatorG. Recall thatG = −L+2βI,
and moreover that the spectrum of the operatorL is contained in the half plane{z ∈ C : Re z ≤ λ}, where

1The steady flowq0 = (sinmx2, 0) gives an example for which the operatorL has unstable eigenvalues overL2. This follows
from an extension of the analysis in Friedlander and Shvydkoy [FS] to the dissipative equations (see also Meshalkin and Sinai
[MS]).
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0 < λ = Re µ, andµ is the eigenvalue ofL with largest real part with associated eigenfunctionφ. Sinceq0
is divergence free we also have that

µ‖φ‖2L2 = (Lφ, φ) = −‖Λ1/2φ‖2L2 − (R(φ) · ∇θ0, φ), (3.8)

and by taking real parts this implies thatλ ≤ ‖∇θ0‖L∞ = β; hence the spectrum ofG is contained in the
right half plane, proving the claim.

We have hence proven thatΣϑ is contained in the the complement ofS(G) and has non-empty intersection
with ρ(G); by [P, Theorem 1.3.9] we have thatΣϑ ⊂ ρ(G) and for everyz ∈ Σϑ we have the resolvent
estimate

‖R(z : G)‖L(L2) ≤
1

dist(z : S(G))
≤ 1

C|z| . (3.9)

Therefore−G is the infinitesimal generator of an analytic semigroup (cf.[P, Theorem 2.5.2]) and soLδ =
−G+ (2β − λ− δ)I generates an analytic semigroup onL2, since it is a bounded perturbation of−G. �

Now we state and prove the lemma that will be used in the proof of our main result, Theorem2.1.

Lemma 3.2. For 0 ≤ γ ≤ 1 there exists a constantC > 0 such that

‖eLδtv‖L2→L2 ≤ C

tγ
‖v‖1−γ

L2 ‖Λ−1v‖γ
L2 , (3.10)

for all smooth functionsv ∈ L2, whereC = C(γ, δ, α, θ0).

Proof. Sinceq0 is divergence free, it is convenient to use the operatorAα, defined via

Aαv = −q0 · ∇v − Λv − αv = Lδv +R(v) · ∇θ0 − (α− λ− δ)v, (3.11)

whereα > max{λ+ δ, C‖θ0‖2H2+ǫ}, ǫ > 0, andC is a sufficiently large dimensional constant. We treatLδ

as a bounded perturbation ofAα. The operatorAα is also elliptic and has discrete spectrum, so by possibly
choosing a differentα, we have thatA−1

α ∈ L(L2).
First, we claim that

‖A−1
α Λv‖L2 ≤ C‖v‖L2 , (3.12)

for all smoothv ∈ L2 with zero mean. In order prove this, denoteh = A−1
α Λv, which also has zero mean,

and observe that (3.12) is equivalent to

‖h‖L2 ≤ C‖Λ−1Aαh‖L2 . (3.13)

The definition ofh implies that

(Λ−1Aαh, h) = −(Λ−1(q0 · ∇h), h)− ‖h‖2L2 − α‖Λ−1/2h‖2L2 ,

and therefore

‖h‖2L2 + α‖Λ−1/2h‖2L2 ≤ ‖Λ−1Aαh‖L2‖h‖L2 + |(q0 · ∇h,Λ−1h)|. (3.14)

Note that(q0 · ∇Λ−1/2h,Λ−1/2h) = 0 sincediv q0 = 0. Using Plancherel’s theorem, we write this inner
product in terms of Fourier coefficients (cf. [KV] and references therein)

(q0 · ∇h,Λ−1h) = (q0 · ∇h,Λ−1h)− (q0 · ∇Λ−1/2h,Λ−1/2h)

= i(2π)2
∑

j+k+l=0

q̂0j · k
(
|l|−1/2 − |k|−1/2

)
ĥk|l|−1/2ĥl. (3.15)

In the above summation, the Fourier frequenciesj, k, l ∈ Z
2 \ {0} becauseq0 andh are mean free, and̂hk

denotes thekth Fourier coefficient ofh. Since|l| = |j+ k| the triangle inequality gives||l| − |k|| ≤ |j|, and
therefore

|k|
∣∣∣∣

1

|l|1/2 − 1

|k|1/2

∣∣∣∣ ≤ |k| ||l|
1/2 − |k|1/2|
|l|1/2|k|1/2 ≤ |j||k|

|l|1/2|k|1/2(|l|1/2 + |k|1/2) ≤ |j|.
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Therefore, by (3.15) and the Cauchy-Schwartz inequality we have that

|(q0 · ∇h,Λ−1h)| ≤ C
∑

j+k+l=0

|j||q̂0j ||ĥk||l|−1/2|ĥl|

≤ C
∑

j∈Z2\{0}

|j||q̂0j |
∑

l∈Z2\{0,−j}

|ĥ−j−l||l|−1/2|ĥl|

≤ C‖h‖L2‖Λ−1/2h‖L2

∑

j∈Z2\{0}

|j|2+ǫ|q̂0j ||j|−1−ǫ

≤ C‖h‖L2‖Λ−1/2h‖L2‖Λ2+ǫθ0‖L2 . (3.16)

We plug this estimate into (3.14) and obtain

1

2
‖h‖2L2 + (α− C‖Λ2+ǫθ0‖2L2)‖Λ−1/2h‖2L2 ≤ ‖Λ−1Aαh‖2L2

Sinceα > C‖θ0‖2H2+ǫ , the above estimate proves (3.13) andA−1
α Λ ∈ L(L2).

Now we prove that for smoothv ∈ L2 we have

‖L−1
δ Aαv‖L2 ≤ C‖v‖L2 , (3.17)

for a sufficiently large constantC > 0. The inequality (3.17) follows by writing

L−1
δ Aαv = v + L−1

δ (R(v) · ∇θ0)− (α− δ − λ)L−1
δ v, (3.18)

and noting that the operatorL−1
δ is bounded onL2 (cf. [P, Lemma 2.6.3]). Together with the boundedness

of the Riesz-transforms onL2, (3.18) implies

‖L−1
δ Aαv‖L2 ≤ ‖v‖L2(1 + C(‖∇θ0‖L∞ + α− δ − λ)), (3.19)

which proves (3.17) and thereforeL−1
δ Aα ∈ L(L2).

In order to conclude the proof of the lemma we use the fact thatLδ generates an analytic semigroup
(cf. Lemma3.1) and therefore (cf. [P, Theorem 2.6.13]) we have that

‖eLδtv‖L2→L2 = ‖Lγ
δ e

LδtL−γ
δ v‖L2→L2 ≤ C

tγ
‖L−γ

δ v‖L2 . (3.20)

Now we bound‖L−γ
δ v‖L2 by interpolating (cf. [P, Theorem 2.6.10]) as follows

‖L−γ
δ v‖L2 = ‖L1−γ

δ (L−1
δ v)‖L2 ≤ C‖v‖1−γ

L2 ‖L−1
δ v‖γ

L2

≤ C‖v‖1−γ
L2 ‖(L−1

δ Aα)(A
−1
α Λ)(Λ−1v)‖γ

L2

≤ C‖v‖1−γ
L2 ‖Λ−1v‖γ

L2 , (3.21)

where in order to obtain (3.21) we used (3.17) and (3.12). Now we conclude the proof of the lemma by
combining (3.20) and (3.21). �

4. PROOF OFTHEOREM 2.1

Here we prove Theorem2.1. In order to do this we must show that the trivial solutionθ = 0 of (2.3) is
(H1, L2) Lyapunov unstable. With this goal in mind, we consider a family of solutionsθε to

∂tθ
ε = Lθε +N(θε), (4.1)

θε|t=0 = εφ, (4.2)

whereφ is as above an eigenfunction ofL associated with the eigenvalue with maximal positive real partλ.
We will prove the following proposition that clearly implies the desired Lyapunov instability result.

Proposition 4.1. There exist positive constants̄C and ε̄ ≤ 1 such that for everyε ∈ (0, ε̄), there exists
Tε > 0 such that‖θε(Tε)‖L2 ≥ C̄.
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We remark that ifθε(x, t) solves (4.1)–(4.2), then the functionΘε(x, t) = θε(x, t) + θ0(x) solves the
forced QG equations (5.1)–(5.3), with initial dataΘε(x, 0) = θ0(x) + εφ(x) ∈ C∞(T2). Moreover, in
Lemma5.1 of Section5 we prove that the global smooth solution of the forced QG equations satisfies
‖∇Θε(t)‖L∞ ≤ Cε

0 for all t ≥ 0, where the constantCε
0 depends solely on theL∞ andW 1,∞ norms of

the initial data and the force. Forε ∈ (0, 1], we have‖Θε(0)‖L∞ ≤ ‖θ0‖L∞ + ‖φ‖L∞ , and similarly
‖∇Θε(0)‖L∞ ≤ ‖∇θ0‖L∞ + ‖∇φ‖L∞ , which are independent ofε, and therefore there exists a fixed
C0 > 0 such that‖∇Θε(t)‖L∞ ≤ C0, for all ε ∈ (0, 1] and for allt ≥ 0. We refer the reader to the proof of
Lemma5.1 for further details. The triangle inequality then implies that by possibly increasingC0 we have

sup
t≥0

‖∇θε(t)‖L∞ ≤ C0 (4.3)

for all ε ∈ (0, 1]. We will henceforth denoteθε simply asθ and will use the analogous notation forq. All
constants in the following areε-independent.

Proof of Proposition4.1. ForR > Cφ := ‖φ‖L2 to be chosen later, letT = T (R, ε) be the maximal time
such that

‖θ(t)‖L2 ≤ εReλt, for t ∈ [0, T ]. (4.4)

ClearlyT ∈ (0,∞] due to the strong continuity inL2 of t 7→ θ(t) and the chosen initial condition.
Using Duhamel’s formula we write the solution of (4.1)–(4.2) as

θ(t) = eLtεφ+B(t), (4.5)

where

B(t) =

∫ t

0
eL(t−s)N(θ)(s) ds. (4.6)

First, we shall prove that

‖B(t)‖L2 ≤ C1

(
εReλt

)1+γ/2
, (4.7)

whereγ ∈ (0, 1) andC1 = C(C0, λ, δ, γ) > 0 are constants. To show (4.7), we rewrite the operatorB and
then use Lemma3.2as follows:

‖B(t)‖L2 = ‖
∫ t

0
e(λ+δ)(t−s)eLδ(t−s)N(θ(s)) ds‖L2

≤
∫ t

0
e(λ+δ)(t−s)‖eLδ(t−s)N(θ(s))‖L2→L2 ds

≤ C

∫ t

0
e(λ+δ)(t−s) 1

(t− s)γ
‖N(θ(s))‖1−γ

L2 ‖Λ−1N(θ(s))‖γ
L2 ds, (4.8)

whereγ ∈ (0, 1) is arbitrary, andC > 0. In order to bound the factor‖Λ−1N(θ(s))‖L2 we recall the
explicit representation (cf. [CC]) of the nonlinear term

Λ−1(R(θ) · ∇θ) = Cn (R1(θR2(θ))−R2(θR1(θ))) , (4.9)

for some dimensional constantCn, and the fact that the Riesz transforms are bounded onL2 andL4, to
obtain that

‖Λ−1N(θ(s))‖L2 ≤ C‖θRiθ‖L2 ≤ C‖θ‖2L4 , (4.10)

By interpolating, we have

‖θ‖L4 ≤ C‖θ‖1/3
L2 ‖θ‖2/3L8 . (4.11)
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On the other hand by the Gagliardo-Nirenberg inequality andthe Hölder inequality we have that (cf. [N])

‖θ‖L8 = ‖θ8/3‖3/8
L3 ≤ C‖∇(θ8/3)‖3/8

L6/5

≤ C‖θ5/3∇θ‖3/8
L6/5 ≤ C‖θ‖5/8

L2 ‖∇θ‖3/8L∞ . (4.12)

By combining (4.10) with (4.11) and (4.12) we obtain

‖Λ−1N(θ(s))‖γ
L2 ≤ C‖θ‖3γ/2

L2 ‖∇θ‖γ/2L∞ (4.13)

On the other hand, by Hölder’s inequality, and the boundedness of the Riesz transforms onL2, we have

‖N(θ)‖1−γ
L2 ≤ ‖θ‖1−γ

L2 ‖∇θ‖1−γ
L∞ . (4.14)

Recall that by (4.3) we have‖∇θ(t)‖L∞ ≤ C0, for all t ≥ 0. Using assumption (4.4) and the fact that
0 < δ < Cλ = λγ/2, we substitute the bounds (4.13) and (4.14) into (4.8), to conclude

‖B(t)‖L2 ≤ C1

(
εReλt

)1+γ/2
, (4.15)

for some positive constantC1 = C(C0, λ, δ, q, γ), proving (4.7). The Duhamel formula (4.5) and the bound
(4.7) imply

‖θ(t)‖L2 ≤ Cφεe
λt + C1

(
εReλt

)1+γ/2
. (4.16)

Observing thatR was chosen such thatR > Cφ, it follows that we have the following estimate on the
maximal timeT :

εeλT ≥
(

R− Cφ

C1R1+γ/2

)2/γ

=: C2 > 0, (4.17)

which clearly holds ifT = ∞. On the other hand, ifT is finite, (4.17) is obtained by combining the
continuity oft 7→ ‖θ(t)‖L2 , (4.4) and (4.16) to obtain

εReλT ≤ Cφεe
λT + C1R

1+γ/2εeλT
(
εeλT

)γ/2
,

which, in turn, implies (4.17). Therefore we haveT ≥ Tε, where we defined

Tε =
1

λ
ln

C2

ε
. (4.18)

To conclude the proof we must find a lower bound on‖θ(Tε)‖L2 . We use Duhamel’s formula (4.5), the
triangle inequality, and (4.15) to obtain

‖θ(Tε)‖L2 ≥ Cφεe
λTε − C1

(
εReλTε

)1+γ/2
. (4.19)

Using (4.18), with C2 given by (4.17), the lower bound (4.19) implies

‖θ(Tε)‖L2 ≥ C2(Cφ − C1R
1+γ/2 R− Cφ

C1R1+γ/2
)

= C2(2Cφ −R) := C̄ > 0,

by choosingCφ < R < 2Cφ. This concludes the proof of the proposition which, in turn,implies Theo-
rem2.1. �
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5. GLOBAL WELL -POSEDNESS FOR THE FORCEDQG EQUATION

In this section, by modifying the argument of Kiselev et al [KNV], we prove that the forced QG equation
has a unique global smooth solution. More precisely, we prove the following:

Lemma 5.1. Assume thatΘ0, f ∈ C∞ areT2-periodic functions with zero mean. Then there exists a unique
global in time smooth solution of

∂tΘ+ U · ∇Θ+ΛΘ = f, (5.1)

U = R(Θ) = (R2Θ,−R1Θ), (5.2)

Θ(0) = Θ0. (5.3)

Moreover for allt ≥ 0 we have

‖∇Θ(t)‖L∞ ≤ C0, (5.4)

whereC0 = C0(‖Θ0‖L∞ , ‖∇Θ0‖L∞ , ‖f‖L∞ , ‖∇f‖L∞) is a positive constant.

The proof of the lemma is in the spirit of [KNV], but we additionally need to treat the force term, which
a-priori could cause growth of the solution. SinceΘ(t) is mean free, it can be shown a-priori that‖Θ(t)‖Lp ,
with 2 ≤ p ≤ ∞, remains bounded for all time. However the same methods do not work for the subcritical
quantity‖∇Θ(t)‖L∞ , and therefore we need to prove the nonlocal maximum principle of [KNV] for the
forced QG equation (5.1)–(5.3). This is achieved by suitably choosing a scaling parameterB and making
use of the fact that due to periodicity we do not need to consider arbitrarily large length scales. We note that
the scaling parameterB is used only in the modulus of continuity, whereas the solutions to (5.1)–(5.3) are
not space-time rescaled.

Proof of Lemma5.1. We recall that a continuous, increasing, unbounded, concave functionω : [0,∞) →
[0,∞), with ω(0) = 0 is a modulus of continuity for a functionf if

|f(x)− f(y)| ≤ ω(|x− y|), (5.5)

for all x, y ∈ R
2. The modulus isstrict if the strict inequality holds in (5.5). We consider a modulus of

continuity that also satisfiesω′(0) < ∞, andlimξ→0+ ω′′(ξ) = −∞, namely, as in [KNV] we let

ω(ξ) =

{
ξ − ξ3/2, 0 ≤ ξ ≤ δ,

δ − δ3/2 + γ log(1 + 1
4 log(ξ/δ)), ξ > δ,

(5.6)

whereδ > γ > 0 are sufficiently small fixed constants.
SinceΘ0 ∈ C∞, there exists a sufficiently largeB > 0 such thatΘ0 hasstrict modulus of continuity

ωB(ξ) = ω(Bξ). The scaling parameterB may be chosen as

B = C‖∇Θ0‖L∞ exp(exp(C‖Θ0‖L∞)), (5.7)

whereC is a sufficiently large positive constant. Moreover, sinceω is unbounded, by possibly increasingB
we may ensure that

AB2 ≥ ‖∇f‖L∞ , (5.8)

where the fixed dimensional constantA is as in [KNV, Lemma], and also

ωB(d)

d
≥ 4π‖f‖L∞ , (5.9)

whered = diam(T2) = 2π
√
2 will be fixed throughout this section. We fix aB that satisfies (5.7)–(5.9)

and recall that the modulus of continuity is given by

ωB(ξ) = ω(Bξ) =

{
Bξ − (Bξ)3/2, 0 ≤ ξ ≤ δ

B ,

δ − δ3/2 + γ log(1 + 1
4 log(

Bξ
δ )), ξ > δ

B .
(5.10)
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DenoteωB
′(ξ) = Bω′(Bξ) andωB

′′(ξ) = B2ω′′(ξ). We claim thatωB(ξ) is preserved by the evolution
(2.3), so thatΘ is a global solution. We extendΘ, U,Θ0, f to T

2-periodic functions onR2.
The first step of the proof is to show that ifΘ(t) has strict modulus of continuityωB for t ∈ [0, T ],

then there existsτ > 0 such thatΘ(t) has strict modulus of continuityωB on t ∈ [0, T + τ). Since
‖∇Θ(t)‖L∞ < ωB

′(0), we have thatΘ(t) ∈ C∞ for all t ∈ [0, T ], and by the local regularity theorem
(cf. [CC, J1, J2, M]) for some timeτ > 0 beyondT . We must show that by possibly shrinkingτ , we have
that

|Θ(x, t)−Θ(y, t)| < ωB(|x− y|) (5.11)

for all t ∈ (T, T + τ) andx 6= y ∈ R
2.

Define the compact setK = [−2π, 2π]2 × [−2π, 2π]2 ⊂ R
4. SinceΘ is T

2-space periodic, we have
that for any(x, y) ∈ R

4, with x 6= y, there exist(x′, y′) ∈ K, with x′ 6= y′, such that|x′ − y′| ≤ |x − y|,
Θ(x, t) = Θ(x′, t), andΘ(y, t) = Θ(y′, t). BecauseωB is increasing, if (5.11) holds for all(x′, y′) ∈ K
with x′ 6= y′, then we have that for allx 6= y ∈ R

2

|Θ(x, t)−Θ(y, t)| = |Θ(x′, t)−Θ(y′, t)| < ωB(|x′ − y′|) ≤ ωB(|x− y|).

Therefore it is sufficient to prove that there existsτ > 0 such that (5.11) holds forx 6= y, with (x, y) ∈ K.
By assumption, there existsǫ > 0 such that‖∇Θ(T )‖L∞ < ωB

′(0) − 2ǫ, and by continuity, for small
enoughτ we have that‖∇Θ(t)‖L∞ < ωB

′(0) − ǫ for all t ∈ [T, T + τ). Therefore for(x, y) ∈ K, with
0 < |x− y| = ξ < ρ, whereρ ≤ min(δ/B, ǫ2/B3), we have

|Θ(x, t)−Θ(y, t)| ≤ ξ‖∇Θ(t)‖L∞ < ξ(B − ǫ) ≤ Bξ − (Bξ)3/2 = ωB(ξ),

for all t ∈ [T, T+τ). On the other hand, due to the continuity in time of|Θ(x, t)−Θ(y, t)|, the compactness
of the set{(x, y) ∈ K : |x − y| ≥ ρ}, and and the fact that (5.11) holds att = T , we have that there is a
sufficiently smallτ > 0 such that (5.11) holds for all(x, y) ∈ K, x 6= y, andt ∈ [T, T + τ).

The second part is to rule out the case in which there existsT > 0 andx 6= y ∈ R
2 such thatΘ(x, T )−

Θ(y, T ) = ωB(|x − y|) (cf. [KNV]). Note that by the periodicity ofΘ, for suchx 6= y ∈ R
2 fixed, there

existx′, y′ ∈ T
2 such that

ωB(|x− y|) = Θ(x, T )−Θ(y, T )

= Θ(x′, T )−Θ(y′, T ) ≤ ωB(|x′ − y′|) ≤ ωB(d),

and sinceωB is increasing, we must have0 < ξ = |x− y| ≤ d = diam(T2). We conclude by showing that

d
dt(Θ(x, t)−Θ(y, t))|t=T < 0, (5.12)

contradicting the fact that thestrict modulus of continuity is lost att = T . In the following we suppress the
time dependence ofΘ andU , since we work att = T fixed.

SinceΘ has modulus of continuityωB(ξ), we know (cf. [KNV, Lemma]) thatU has modulus of conti-
nuity ΩB(ξ), where we defined

ΩB(ξ) = A

(∫ ξ

0

ωB(η)

η
dη + ξ

∫ ∞

ξ

ωB(η)

η2
dη

)
,

for some positive constantA. Then as in [KNV, Section 4] we have that

|(U · ∇Θ)(x)− (U · ∇Θ)(y)| ≤
∣∣∣∣ lim
h→0+

ωB(ξ + h|U(x) − U(y)|) − ωB(ξ)

h

∣∣∣∣
≤ |U(x)− U(y)|ωB

′(ξ) ≤ ΩB(ξ)ωB
′(ξ). (5.13)
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The dissipative terms are estimated as in [KNV, Section 5], namely by the negative quantity

MB(ξ) =
1

π

∫ ξ/2

0

ωB(ξ + 2η) + ωB(ξ − 2η)− 2ωB(ξ)

η2
dη

+
1

π

∫ ∞

ξ/2

ωB(2η + ξ)− ωB(2η − ξ)− 2ωB(ξ)

η2
dη. (5.14)

Lastly, the force term is estimated using the mean value theorem

|f(x)− f(y)| ≤ FB(ξ) =

{
ξ ‖∇f‖L∞ , 0 ≤ ξ ≤ δ

B ,

2 ‖f‖L∞ , ξ > δ
B .

(5.15)

Thus, in order to conclude the proof of (5.12), we must show that for all0 < ξ ≤ d, we have

ΩB(ξ)ωB
′(ξ) + FB(ξ) +MB(ξ) < 0. (5.16)

First we treat the case0 < ξ ≤ δ/B. By keeping track ofB, and using condition (5.8), similar arguments
as in [KNV, Section 7] show that

ΩB(ξ)ωB
′(ξ) + FB(ξ) +MB(ξ) ≤ AB2ξ(3 + log

δ

Bξ
) + ξ‖∇f‖L∞ +

ξ

π
ωB

′′(ξ)

≤ B2ξ

(
A(4 + log

δ

Bξ
)− 3

4π
(Bξ)−1/2

)
.

Since we have0 < Bξ ≤ δ, the above quantity is strictly negative ifδ is sufficiently small. Note thatδ does
not depend onB.

For the caseδ/B ≤ ξ ≤ d, we follow the estimates in [KNV, Section 8] to conclude that ifγ andδ are
sufficiently small, independent ofB, then

ΩB(ξ)ωB
′(ξ) + FB(ξ) +MB(ξ) ≤ Aγ

ωB(ξ)

ξ
+ 2‖f‖L∞ − 1

π

ωB(ξ)

ξ
.

But B was chosen so that (5.9) is satisfied, i.e.2‖f‖L∞ ≤ ωB(d)/2πd. Because on[δ/B,∞) the function
ωB(ξ)/ξ is decreasing, for anyξ ∈ [δ/B, d] we have that2‖f‖L∞ ≤ ωB(d)/2πd ≤ ωB(ξ)/2πξ. Thus

Aγ
ωB(ξ)

ξ
+ 2‖f‖L∞ − 1

π

ωB(ξ)

ξ
≤

(
Aγ +

1

2π
− 1

π

)
ωB(ξ)

ξ
< 0,

if γ is sufficiently small, independent ofB. Therefore (5.16) holds for all0 < ξ ≤ d, and so (5.12) is proven.
Therefore the solutionΘ(t) exists for all time and has strict modulus of continuityωB , which implies that
‖∇Θ(t)‖L∞ < ωB

′(0) = B for all t ≥ 0, concluding the proof of the lemma. �

Remark 5.2. We note that it is also possible to adapt the De Giorgi-type techniques used by Caffarelli and
Vasseur [CV] to treat the forced QG equation. First one proves boundedness of the solution inL2 using
energy estimates, and then the similarly to [CV, Section 2] one obtains boundedness (not decay) for all time
of Θ(t) in L∞ and ofU(t) in BMO. The second step is to show that the solution is actually Hölder and
that it remains bounded in this space for allt ≥ 0, i.e. adding a smooth force does not create additional
difficulties. Since this is already subcritical regularity, in the third step it is standard to bootstrap to higher
regularity and prove that theW 1,∞ norm ofΘ(t) is bounded in time.
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