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ABSTRACT. We use a nonlocal maximum principle to prove the global existence of smooth solutions for a
slightly supercritical surface quasi-geostrophic equation. By this we mean that the velocity fieldu is obtained
from the active scalarθ by a Fourier multiplier with symboliζ⊥|ζ|−1m(|ζ|), wherem is a smooth increasing
function that grows slower thanlog log |ζ| as|ζ| → ∞.

1. INTRODUCTION

The surface quasi-geostrophic equation (SQG) has recentlybeen a focus of research efforts by many
mathematicians. It is probably the simplest physically motivated evolution equation of fluid mechanics for
which, in the supercritical regime, it is not known whether solutions stay regular or can blow up. The
equation is given by

∂tθ + (u · ∇)θ +Λαθ = 0, θ(·, 0) = θ0

u = ∇⊥Λ−1θ

on(x, t) ∈ T
2×[0,∞), whereΛ = (−∆)1/2. The SQG equation appeared in the mathematical literature for

the first time in [5], and since then has attracted significant attention, in part due to certain similarities with
three dimensional Euler and Navier-Stokes equations. The equation hasL∞ maximum principle [14, 4],
which makes theα = 1 dissipation critical. It has been known since [14] that the equation has global
smooth solutions (for appropriate initial data) whenα > 1. The global regularity in the critical case has
been settled independently by Kiselev-Nazarov-Volberg [13] (in the periodic setting) and Caffarelli-Vasseur
[1] (in the whole space as well as in the local setting). A third proof of the same result was provided recently
in [12]. All these proofs are quite different. The method of [1] is inspired by DeGiorgi iterative estimates,
while the approach of [12] uses appropriate set of test functions and estimates on their evolution. The
method of [13], on the other hand, is based on a new technique which can be called a nonlocal maximum
principle. The idea is to prove that the evolution (1.1) preserves a certain modulus of continuityω of the
solution. The control is strong enough to give a uniform bound on‖∇θ‖L∞ in the critical case, which is
sufficient for global regularity.

In the supercritical case, the only results available so far(for large initial data) have been on conditional
regularity and finite time regularization of solutions. Forinstance, it was shown by Constantin-Wu [6] and
Dong-Pavlovic [10] that if the solution isCδ with δ ≥ 1−α, then it is smooth. Finite time regularization has
been proved by Silvestre [15] for α sufficiently close to1, and for the whole dissipation range0 < α < 1
by Dabkowski [7] (with an alternative proof of the latter result given in [11]). The issue of global regularity
in the caseα ∈ (0, 1) remains an outstanding open problem.

Our goal here is to advance global regularity very slightly into the supercritical regime for the SQG
equation. For technical reasons, and inspired by [2], it is more convenient for us to introduce supercriticality

Date: March 20, 2012.
2000Mathematics Subject Classification.35Q35,76U5.
Key words and phrases.Surface quasi-geostrophic equation, supercritical, global regularity, active scalar, modulus of continuity,

nonlocal maximum principle.
1



2 MICHAEL DABKOWSKI, ALEXANDER KISELEV, AND VLAD VICOL

in the velocityu rather than in the dissipation. A similar approach was considered in [3], but with different
methods. Namely, letm(ζ) = m(|ζ|) be a smooth, radial, non-decreasing function onR

2, such thatm(ζ) ≥
1 for all ζ ∈ R

2. We shall consider the active scalar equation,

∂tθ + (u · ∇)θ + Λθ = 0, θ(·, 0) = θ0 (1.1)

u = ∇⊥Λ−1m(Λ)θ (1.2)

on (x, t) ∈ T
2 × [0,∞), wherem(Λ)θ is defined by its Fourier transform(m(Λ)θ)̂(ζ) = m(ζ)θ̂(ζ).

Note thatm ≡ 1 gives us the usual critical SQG equation. We shall consider symbolsm(ζ) which for all
sufficiently large|ζ| satisfy the growth condition

lim
|ζ|→∞

m(ζ)

ln ln |ζ|
= 0. (1.3)

In addition we require that

lim
|ζ|→∞

|ζ|m′(ζ)

m(ζ)
= 0 (1.4)

and that the symbolm is of Hörmander-Mikhlin type, i.e., there existsC > 0 such that

|ζ|k|∂k
ζm(ζ)| ≤ Cm(ζ) (1.5)

holds for allζ 6= 0, and allk ∈ {0, . . . , d+ 2}. The main result of this paper is:

Theorem 1.1(Slightly supercritical SQG). Assume thatθ0 ∈ C∞(T2). If the symbolm satisfies(1.3)–
(1.5), then there exists a unique globalC∞ smooth solutionθ of (1.1)–(1.2).

Remark 1.2. The condition (1.4) can be improved to require onlylim|ζ|→∞ |ζ|m′(ζ)/m(ζ) < 1, but is
adapted here for the sake of simplicity.

The result we prove here is reminiscent of the slightly supercritical Navier-Stokes regularity result of Tao
[17]. The challenge in the SQG case is that while regularity for critical Navier-Stokes is easy to prove by
energy method, there is no similarly simple proof of regularity for the critical SQG. The criticality of the
SQG equation is controlled by theL∞ norm, and the order of differentiation is the same in the nonlinearity
and dissipation term. This makes global regularity for large data surprising at the first look. All three proofs
of global regularity for critical SQG are somewhat subtle and involved. Scaling plays a crucial role in all
existing proofs. The main contribution of this paper is to show that one can advance, at least a little, beyond
the critical scaling.

To prove Theorem1.1, we rely on the original method of [13]. This method is based on constructing a
modulus of continuityω(ξ), Lipshitz at zero and growing at infinity, which is respectedby the critical SQG
evolution: if the initial dataθ0 obeysω, so does the solutionθ(x, t) for every t > 0. By scaling, in the
critical regime any rescaled modulusωB(ξ) = ω(Bξ) is also preserved by the evolution. This allows, given
smooth initial dataθ0, to findB such thatθ0 obeysωB and thus, due to preservation ofωB, gain sufficient
control of solution for all times. The unboundedness ofω is crucial for this argument; applying it with
boundedω would correspond to controlling only initial data of limited size. It appears that the maximal
growth ofω one can afford in the critical SQG case is a double logarithm,dictated by balance of nonlinear
and dissipative term estimates. The idea of the proof of Theorem1.1, and the key observation of this paper,
is that it is possible to trade some of this growth inω for a slightly rougher velocityu (or, likely, slightly
weaker dissipation). In the process, one loses critical scaling, but the argument can be made to work by
manufacturing a family of moduliωB preserved by the evolution which are no longer a single rescaled
modulus.

We anticipate that the approach we develop here will have other applications. In particular, it can be
applied to a slightly supercritical Burgers equation. In this case, one can expect to prove global regularity
for a more singular equation, supercritical by almost a logarithmic multiplier. This is due to the existence
of moduli with logarithmic growth conserved by the evolution. Consideration of the Burgers equation, as
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well as applications to modified SQG, and the case of supercritical dissipation is postponed to a subsequent
publication [8].

2. PRELIMINARIES

The local and conditional regularity for the SQG-type equations is by now standard. In particular, we
have

Proposition 2.1(Local existence of smooth solution).Givenθ0 ∈ Hs(T2), for somes > 1, there exists
T > 0 and a solutionθ(·, t) ∈ C([0, T ],Hs)∩C∞((0, T ]×T

2) of (1.1)–(1.2). Moreover, the solution may
be continued as a smooth solution beyondT as long as‖∇θ‖L1(0,T ;L∞(T2)) < ∞.

The proof of a similar result with standard SQG velocity and critical or supercritical dissipation can be
found, for example, in [9].The addition of the multiplierm into u does not create any essential difficulties
in the argument.

Definition 2.2 (Modulus of continuity). We call a functionω : (0,∞) → (0,∞) a modulus of continuity if
ω is increasing, continuous, concave, piecewiseC2 with one sided derivatives, and it additionally satisfies
ω′′(0+) = −∞. We say that a smooth functionf obeys the modulus of continuityω if |f(x) − f(y)| <
ω(|x− y|) for all x 6= y.

We recall that iff ∈ C∞(T2) obeys the modulusω, then‖∇f‖L∞ < ω′(0). In addition, observe that
a functionf ∈ C∞(T2) automatically obeys any modulus of continuityω(ξ) that lies above the function
min{ξ‖∇f‖L∞ , 2‖f‖L∞}.

We will construct a family of moduli of continuityωB that will be preserved by the evolution. To prove
this nonlocal maximum principle, we will use the following outline. The proofs of Lemmas2.3 and2.5
below can be found in [13].

Lemma 2.3 (Breakthrough scenario). Assumeω is a modulus of continuity such thatω(0+) = 0 and
ω′′(0+) = −∞. Suppose that the initial dataθ0 obeysω. If the solutionθ(x, t) violatesω at some positive
time, then there must existt1 > 0 andx 6= y ∈ T

2 such that

θ(x, t1)− θ(y, t1) = ω(|x− y|),

andθ(x, t) obeysω for every0 ≤ t < t1.

Let us consider the breakthrough scenario for a modulusω. A simple computation shows that

∂t (θ(x, t)− θ(y, t)) |t=t1 = u · ∇θ(y, t1)− u · ∇θ(x, t1) + Λθ(y, t1)− Λθ(x, t1)

≤ |u(x, t1)− u(y, t1)|ω
′(ξ) + Λθ(y, t1)− Λθ(x, t1). (2.1)

If we can show that the expression in (2.1) must be strictly negative, we obtain a contradiction:ω cannot be
broken, and hence it is preserved. To estimate (2.1) we need

Lemma 2.4(Modulus of continuity for the drift velocity). Assume thatθ obeys the modulus of continuity
ω, and that the drift velocity is given asu = ∇⊥Λ−1m(Λ)θ. Thenu obeys the modulus of continuityΩ
defined as

Ω(ξ) = A

(∫ ξ

0

ω(η)m(η−1)

η
dη + ξ

∫ ∞

ξ

ω(η)m(η−1)

η2
dη

)
(2.2)

for some positive constantA ≥ 1 that only depends on the functionm.

The proof of Lemma2.4shall be given in the Appendix. For the dissipative terms, wehave:
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Lemma 2.5(Dissipation control). Assume we are in a breakthrough scenario as in Lemma2.3. Then

Λθ(y, t1)− Λθ(x, t1) ≤ D(ξ) ≡
1

π

∫ ξ/2

0

ω(ξ + 2η) + ω(ξ − 2η)− 2ω(ξ)

η2
dη

+
1

π

∫ ∞

ξ/2

ω(2η + ξ)− ω(2η − ξ)− 2ω(ξ)

η2
dη. (2.3)

Given the three Lemmas above and (2.1), in order to verify the preservation ofω for all time, it is sufficient
to check thatΩ(ξ)ω′(ξ) +D(ξ) < 0 for everyξ > 0.

The conditions imposed on the symbolm have two consequences which shall be useful later:

Lemma 2.6(Further properties of m). Letm be smooth radially non-decreasing function which satisfies
(1.3) and (1.4). Then it holds that

lim
|ζ|→∞

m(ζ)(1 + ln |ζ|)

|ζ|
= 0 (2.4)

and we have
∫ |ζ|

0
m(r−1)dr ≤ 2|ζ|m(|ζ|−1) (2.5)

for all |ζ| which are sufficiently small, depending onm.

Proof of Lemma2.6. Estimate (2.4) follows directly from (1.3), and in fact it is easy to see thatm(ζ)/|ζ|a →
0 asζ → ∞ for everya > 0, but we will not need this stronger bound in the proof.

From (1.4) it follows that there existsr0 > 0 such that for all|ζ| ≥ r0 we have2|ζ|m′(ζ) ≤ m(ζ). To
prove (2.5), we note that the functionr1/2m(r−1) is non-decreasing onr ≤ r−1

0 . Thereforem(r−1) ≤

|ζ|1/2m(|ζ|−1)r−1/2, and (2.5) follows if |ζ| ≤ r−1
0 , by integrating inr. �

3. PROOF OFMAIN THEOREM

The main difference between our argument here and [13] is that since (1.1)–(1.2) is beyond the critical
scaling, one cannot useωB(ξ) = ω(Bξ) to construct the needed family of moduli of continuity, froma fixed
modulusω.

3.1. A suitable family of moduli of continuity. We fix a sufficiently small positive constantκ, to be chosen
later. ForB ≥ 1, we defineδ = δ(B) to be the unique solution of

Bδm(δ−1) = κ. (3.1)

To see thatδ exists and is unique, letg(δ) = δm(δ−1). Due to (2.4), we have thatg(δ) → 0 asδ → 0+,
and due to (1.4), we have thatg′(δ) = m(δ−1) − δ−1m′(δ−1) ≥ m(δ−1)/2 > 0, for all δ ≤ r−1

0 . Sog is
increasing (and continuous) at least untilr−1

0 , and hence ifκ is chosen such thatκ ≤ g(r−1
0 ) = r−1

0 m(r0),
sinceB ≥ 1, the equationg(δ) = κB−1 will have a unique solution. Note thatδ(B) → 0 asB → ∞ since
g(0+) = 0, andδ(B) is a strictly decreasing function ofB.

Having definedδ(B) for eachB ≥ 1, we shall consider the modulus of continuityωB defined as the
continuous function withωB(0) = 0 and

ω′
B(ξ) = B −

B2

8κ
ξm(ξ−1)

(
4 + ln

δ(B)

ξ

)
, for all 0 < ξ ≤ δ(B) (3.2)

ω′
B(ξ) =

γ

ξ(4 + ln(ξ/δ(B)))m(δ(B)−1)
, for all ξ > δ(B) (3.3)

whereκ = κ(A,m) andγ = γ(κ,A,m) are sufficiently small constants to be chosen later. To verify that
ωB is a modulus of continuity, we need to check monotonicity, concavity, that0 < ω′

B(0+) < ∞, and that
ω′′
B(0+) = −∞.
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From (2.4) we know thatξm(ξ−1)(1+ln |ξ|−1) → 0 asξ → 0+, and therefore, for everyB ≥ 1 we have
thatω′

B(0+) = B. Note that in fact we haveω′
B(ξ) < B, and henceωB(ξ) ≤ Bξ for all 0 < ξ ≤ δ(B).

Taking the derivative of (3.2) we obtain

ω′′
B(ξ) = −

B2

8κ

((
m(ξ−1)− ξ−1m′(ξ−1)

)(
4 + ln

δ(B)

ξ

)
−m(ξ−1)

)

≤ −
B2

8κ

(
1

2
m(ξ−1)

(
4 + ln

δ(B)

ξ

)
−m(ξ−1)

)

≤ −
B2

32κ
m(ξ−1)

(
4 + ln

δ(B)

ξ

)
(3.4)

which implies thatω′′
B(ξ) → −∞ as ξ → 0+ sincem(ξ−1) ≥ 1 for all ξ > 0. Note that in the first

inequality of (3.4) we have used2ξ−1m′(ξ−1) ≤ m(ξ−1), which holds for allξ ≤ δ(B) as long asδ(B)
is sufficiently small (how small it needs to be depends only onm). One can always ensure thatδ(B) is
small enough sinceδ(B) ≤ δ(1) for all B ≥ 1, andδ(1) can be made arbitrarily small by choosingκ to be
sufficiently small, depending only onm.

From (3.3) and (3.4) it is clear that the concavity ofωB may only fail atξ = δ(B). However, from (3.1)
and (3.2) we obtain

ω′
B(δ(B)−) = B −

B2

2κ
δ(B)m(δ(B)−1) =

B

2
. (3.5)

On the other hand by (3.3) we have

ω′
B(δ(B)+) =

γ

4δ(B)m(δ(B)−1)
=

γB

4κ
<

B

4
(3.6)

for all γ < κ. Together, (3.5) and (3.6) show thatωB is concave.
To prove thatωB is monotonically increasing, it is sufficient to verify thatω′

B(ξ) > 0 for all 0 < ξ <
δ(B). Butω′

B(0) = B ≥ 1 andω′
B(ξ) is decreasing on(0, δ(B)) due to (3.4), so that we only need to verify

thatω′
B(δ(B)−) > 0. This follows directly from (3.5).

Let us denoteΩB(ξ) andDB(ξ) respectively the modulus of the velocityu given by (2.2) and dissipation
estimate (2.3) corresponding toωB(ξ). It is sufficient to prove two things: that each initial dataθ0 obeys
some modulus of continuityωB for a suitableB ≥ 1, and that the expression in (2.1) when computed for
eachωB is strictly negative for allξ > 0.

3.2. Modulus of continuity for the initial data. First we show that any initial dataθ0 ∈ C∞(T2) obeys
a modulus of continuityωB for some sufficiently largeB. As noted earlier, this is achieved if we find a
sufficiently largeB such thatωB(ξ) > min{ξ‖∇θ0‖L∞ , 2‖θ0‖L∞} for all ξ > 0. Observe that due to
concavity ofωB it is sufficient to findB such that

ωB

(
2‖θ0‖L∞

‖∇θ0‖L∞

)
≥ 2‖θ0‖L∞ .

However, note that for every fixeda > 0, we havea > δ(B) if B is sufficiently large, and
∫ a

δ(B)

γ

ξ(4 + ln(ξ/δ(B)))m(δ(B)−1)
dξ =

γ

m(δ(B)−1)
ln(1 + ln(a/δ(B))) → ∞

asB → ∞ due to our assumption (1.3) on growth ofm, and sinceδ(B) → 0 asB → ∞. This shows that
any smoothθ0 obeys a modulus of continuityωB if B is chosen large enough.

3.3. Conservation of the modulus of continuity. We shall now prove that ifκ is chosen sufficiently small
(depending only onm, andA), andγ is chosen sufficiently small (depending only onκ,m, andA), then the
expression (2.1) is strictly negative, i.e.ΩB(ξ)ω

′
B(ξ) + DB(ξ) < 0, for all ξ > 0. Note that neitherκ, nor

γ will depend onB ≥ 1.
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The case0 < ξ ≤ δ(B). We first observe thatω′
B(ξ) ≤ B for all ξ ∈ (0, δ(B)]. Using concavity ofωB

and the second order Taylor formula, as in [13] we may estimate

DB(ξ) ≤
2

π

∫ ξ/2

0
max

z∈[ξ−2η,ξ]
ω′′
B(z)dη.

In addition, it follows from the bound (3.4) on ω′′
B(z), which is monotone increasing inz, and the above

estimate that

DB(ξ) ≤ −
1

32πκ
B2ξm(ξ−1)

(
4 + ln

δ(B)

ξ

)
. (3.7)

The main issue is to estimate the contribution fromΩB(ξ). From (2.2) and (3.2) we have that

ΩB(ξ)ω
′
B(ξ) ≤ AB

(
B

∫ ξ

0
m(η−1)dη +Bξ

∫ δ(B)

ξ

m(η−1)

η
dη + ξ

∫ ∞

δ(B)

ωB(η)m(η−1)

η2
dη

)

≤ AB

(
2Bξm(ξ−1) +Bξm(ξ−1) ln

δ(B)

ξ
+ ξm(ξ−1)

∫ ∞

δ(B)

ωB(η)

η2
dη

)
. (3.8)

In the second inequality of (3.8) we have used the monotonicity ofm and the inequality (2.5), which holds
for all ξ ≤ δ(B), wheneverδ(B) is sufficiently small, depending only onm. But note that lettingκ be
sufficiently small, depending onm and not onB, we ensure thatδ(1) is sufficiently small, and the bound
δ(B) ≤ δ(1) for all B ≥ 1, justifies the applicability of (2.5) for all B ≥ 1.

In order to estimate
∫∞
δ(B) ωB(η)/η

2dη, we integrate by parts and use the slow growth ofωB (cf. (1.3)) to
obtain ∫ ∞

δ(B)

ωB(η)

η2
dη ≤

ωB(δ(B))

δ(B)
+

∫ ∞

δ(B)

γ

η2(4 + ln(η/δ(B)))m(δ(B)−1)
dη

≤ B +
γ

4δ(B)m(δ(B)−1)
= B +

γB

4κ
≤ 2B (3.9)

if γ < κ, sincem(δ(B)−1) ≥ 1. Combining (3.7) with (3.8) and (3.9) we obtain

ΩB(ξ)ω
′
B(ξ) +DB(ξ) ≤

(
A−

1

32πκ

)
B2ξm(ξ−1)

(
4 + ln

δ(B)

ξ

)
< 0 (3.10)

for all ξ ∈ (0, δ(B)] if we chooseκ so that32πκA < 1. To avoid a circular argument, note thatκ was
chosen independently ofγ andB, it only depends onm andA.

The caseξ > δ(B). We observe that for eachB ≥ 1 the modulus of continuityωB satisfies

ωB(2ξ) ≤
3

2
ωB(ξ), for all ξ ≥ δ(B). (3.11)

Indeed due to the definition (3.3) of ωB, we have

ωB(2ξ) ≤ ωB(ξ) +
γ

4m(δ(B)−1)

for every ξ ≥ δ(B). But from the monotonicity ofωB and the mean value theorem we haveωB(ξ) ≥
ωB(δ(B)) ≥ δ(B)ω′

B(δ(B)−), sinceω′
B is strictly decreasing on(0, δ(B)). By (3.1) and (3.5) it follows

that takingγ < κ is sufficient for (3.11) to hold. Using (3.11), we estimate

DB(ξ) ≤
1

π

∫ ∞

ξ/2

ωB(2η + ξ)− ωB(2η − ξ)− ωB(2ξ) −
1
2ωB(ξ)

η2
dη ≤ −

1

2π

ωB(ξ)

ξ
(3.12)

which holds for allξ > δ(B). Next, let us bound the term arising fromΩB(ξ)ω
′
B(ξ) in (2.1), namely

Aω′
B(ξ)

(∫ ξ

0

ωB(η)m(η−1)

η
dη + ξ

∫ ∞

ξ

ωB(η)m(η−1)

η2
dη

)
. (3.13)
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We first estimate
∫ ξ

0

ωB(η)m(η−1)

η
dη ≤ B

∫ δ(B)

0
m(η−1)dη +

∫ ξ

δ(B)

ωB(η)m(η−1)

η
dη

≤ 2Bδ(B)m(δ(B)−1) + ωB(ξ)m(δ(B)−1) ln
ξ

δ(B)

= 2κ+ ωB(ξ)m(δ(B)−1) ln
ξ

δ(B)
(3.14)

for all ξ > δ(B). Above we used (3.1) and (2.5), which may be applied sinceδ(B) is sufficiently small with
respect tom for anyB ≥ 1.

Furthermore, upon integration by parts we have

ξ

∫ ∞

ξ

ωB(η)m(η−1)

η2
dη ≤ ξm(ξ−1)

∫ ∞

ξ

ωB(η)

η2
dη

= ξm(δ(B)−1)

(
ωB(ξ)

ξ
+

γ

m(δ(B)−1)

∫ ∞

ξ

1

η2(4 + ln(η/δ(B)))
dη

)

≤ ωB(ξ)m(δ(B)−1) + γ. (3.15)

Therefore, inserting the bounds (3.14) and (3.15) into (3.13), and lettingγ ≤ κ, we obtain

ΩB(ξ)ω
′
B(ξ) ≤ Aω′

B(ξ)

(
γ + 2κ+ ωB(ξ)m(δ(B)−1)

(
1 + ln

ξ

δ(B)

))

≤
Aγ

ξ(4 + ln ξ/δ(B))m(δ(B)−1)

(
3κ+ ωB(ξ)m(δ(B)−1)

(
1 + ln

ξ

δ(B)

))

≤
2AγωB(ξ)

ξ
(3.16)

sinceκ ≤ 2ωB(δ(B))m(δ(B)−1) ≤ 2ωB(ξ)m(δ(B)−1). Indeed, the latter holds since as above we have

ωB(δ(B)) ≥ δ(B)m′(δ(B)−) =
Bδ(B)

2
=

κ

2m(δ(B)−1)
.

Lastly, from (3.12) and (3.16) it follows that

ΩB(ξ)ω
′
B(ξ) +DB(ξ) <

(
2Aγ −

1

2π

)
ωB(ξ)

ξ
< 0 (3.17)

as long asγ is chosen small enough so that4πAγ < 1.

4. APPENDIX

Here we give details regarding the proof of Lemma2.4. Letm(ζ) be a continuous, radial, non-decreasing
function onRd, smooth onRd, with m(ζ) = m(|ζ|) ≥ 1 for all ζ ∈ R

d. Assume thatm(ζ) satisfies the
Hörmander-Mikhlin-type condition (cf. [16])

|ζ|k|∂k
ζm(ζ)| ≤ Cm(ζ) (4.1)

for someC ≥ 1, all ζ 6= 0, and allk ∈ {0, . . . , d+ 2}. In addition we require that

lim
|ζ|→∞

|ζ|m′(ζ)

m(ζ)
= 0. (4.2)

The following lemma gives estimates on the distributionK whose Fourier transform isiζj |ζ|−1m(ζ), for
anyj ∈ {1, . . . , d}.
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Lemma 4.1(Kernel estimate). LetK(x) be the kernel of the operator∂jΛ−1m(Λ), wherem is smooth on
R
d, radial, non-decreasing in radial variable, and satisfies the conditions(4.1)–(4.2). Then we have

|K(x)| ≤ C|x|−dm(|x|−1) (4.3)

and

|∇K(x)| ≤ C|x|−d−1m(|x|−1) (4.4)

for all x 6= 0 ∈ R
d.

Proof of Lemma4.1. Consider a smooth non-increasing radial cutoff functionη(ζ) = η(|ζ|) which is iden-
tically 1 on |ζ| ≤ 1/2, and vanishes identically on|ζ| ≥ 1. ForR > 0, let ηR(|ζ|) = η(|ζ|/R). Then, for
R > 0 to be chosen later, we decompose

K(x) = C

∫

Rd

ηR(ζ)m(ζ)iζj |ζ|
−1eiζ·xdζ + C

∫

Rd

(1− ηR(ζ))m(ζ)iζj |ζ|
−1eiζ·xdζ = K1(x) +K2(x).

Sincem(ζ) is increasing, andηR is supported onBR, we may bound|K1(x)| ≤ CRdm(R). On the other
hand, upon integrating by partsd + 2 times, using (4.1) and the fact that∂ζ(1 − ηR(ζ)) is supported on
R/2 ≤ |ξ| ≤ R, we obtain

|K2(x)| ≤ C|x|−d−2

∫

Rd

∣∣∣∂d+2
ζ

(
(1− ηR)(ζ)m(ζ)iζj |ζ|

−1
)∣∣∣ dζ

≤ C|x|−d−2

(
R−d−2

∫

R/2≤|ζ|≤R
m(ζ)dζ +

∫

|ζ|≥R/2
|ζ|−d−2m(ζ)dζ

)
. (4.5)

Observe that condition (4.2) shows there exists somer > 0 such that for all|ζ| ≥ r we have2|ζ|m′(ζ) ≤

m(ζ), and hence the function|ζ|−1/2m(|ζ|) is non-increasing for|ζ| ≥ r. Consider first smallx, |x| ≤ 1/2r.

LettingR = |x|−1, we have thatR/2 ≥ r. Using the facts thatm(|ζ|) is non-decreasing, and|ζ|−1/2m(|ζ|)
is non-increasing on|ζ| ≥ r, we obtain

|K2(x)| ≤ C|x|−dm(|x|−1) (4.6)

which upon recalling the earlier bound onK1 concludes the proof of (4.3) for smallx. For |x| ≥ 1/2r, we
can setR = 1 and obtain that

|K2(x)| ≤ C|x|−d−2,

since due to (4.2) and the continuity ofm we have|m(ζ)| ≤ C(m)|ζ|1/2. On the other hand,

K1(x) = C

∫

Rd

(
m(0)η1(ζ)iζj|ζ|

−1 + ϕ(ζ)
)
eiζ·x dζ,

whereϕ(ζ) ∈ C∞
0 . This gives the bound

|K1(x)| ≤ C|x|−d,

which together with (4.6) implies (4.3) for |x| ≥ 1/2r. The bounds for∇K(x) are obtained in the same
fashion, the only difference being an extra factor ofζ in the estimates. �

Having estimated the kernel of the operatorθ 7→ u, we are now ready to estimate the modulus of conti-
nuity of the velocityu, in terms of the modulus of continuity of the active scalarθ.

Proof of Lemma2.4. The proof is similar to that of [13, Appendix]. Fixx 6= y, and letξ = |x − y|. Since
u = ∇⊥

(
Λ−1m(Λ)θ

)
we have that

∫
|x|=1K(x)dσ(x) = 0, and hence we may bound

u(x)− u(y) =

∫

|x−z|≤2ξ
K(x− z)(θ(z) − θ(x))dz −

∫

|y−z|≤2ξ
K(y − z)(θ(z)− θ(y))dz

+

∫

|x−z|≥2ξ
K(x− z)(θ(z)− θ(z̄))dz −

∫

|y−z|≥2ξ
K(y − z)(θ(z)− θ(z̄))dz
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where the integrals are taken in the principal value sense, and z̄ = (x + y)/2. Using the estimates on the
kernelK from Lemma4.1, we obtain

|u(x)− u(y)| ≤ C

∫ 2ξ

0

m(η−1)ω(η)

η
dη +

∫

|z̄−z|≥3ξ
|K(x− z)−K(y − z)||θ(z)− θ(z̄)|dz

+

∫

3ξ/2≤|z̄−z|≤3ξ
(|K(x− z)|+ |K(y − z)|) |θ(z)− θ(z̄)|dz. (4.7)

To estimate the second integral on the right hand side, note that for|z− z̄| ≥ 3ξ, by the mean value theorem
and (4.4), we have

|K(x− z)−K(y − z)| ≤ Cξ|z − z̄|−3m(|z − z̄|−1).

Here we use thatm(sr) ≤ sCm(r) holds by (4.1) for s > 1. The third integral on the right hand side of
(4.7) is bounded using (4.3) and we obtain

|u(x)− u(y)| ≤ C

∫ 3ξ

0

m(η−1)ω(η)

η
dη + Cξ

∫ ∞

3ξ

m(η−1)ω(η)

η2
dη (4.8)

for all ξ 6= 0. The final result then follows from (4.8) using the concavity ofω and the monotonicity of
m. �
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[6] P. Constantin and J. Wu,Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation.
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