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ABSTRACT. We use a nonlocal maximum principle to prove the globalterise of smooth solutions for a
slightly supercritical surface quasi-geostrophic eqmatBy this we mean that the velocity fieldis obtained
from the active scala# by a Fourier multiplier with symbal¢ ™ |¢|~'m(|¢|), wherem is a smooth increasing
function that grows slower thadng log |(] as|(| — oo.

1. INTRODUCTION

The surface quasi-geostrophic equation (SQG) has recbatn a focus of research efforts by many
mathematicians. Itis probably the simplest physicallyivadéd evolution equation of fluid mechanics for
which, in the supercritical regime, it is not known whethefusions stay regular or can blow up. The
equation is given by

00+ (u-V)O+A*0 =0, 6(-,0) =6
u=VItATlo

on(z,t) € T?x [0, 00), whereA = (—A)'/2. The SQG equation appeared in the mathematical literatuare f
the first time in p], and since then has attracted significant attention, ihcha to certain similarities with
three dimensional Euler and Navier-Stokes equations. Ghat®n hasl.>® maximum principle 14, 4],
which makes thex = 1 dissipation critical. It has been known sincB]] that the equation has global
smooth solutions (for appropriate initial data) wher> 1. The global regularity in the critical case has
been settled independently by Kiselev-Nazarov-Volbégj (in the periodic setting) and Caffarelli-Vasseur
[1] (in the whole space as well as in the local setting). A thiralob of the same result was provided recently
in [12]. All these proofs are quite different. The method df is inspired by DeGiorgi iterative estimates,
while the approach of12] uses appropriate set of test functions and estimates andtelution. The
method of [L3], on the other hand, is based on a new technique which canllee @anonlocal maximum
principle. The idea is to prove that the evolutidn1j preserves a certain modulus of continuityof the
solution. The control is strong enough to give a uniform lwbon || V4|~ in the critical case, which is
sufficient for global regularity.

In the supercritical case, the only results available s¢ftarlarge initial data) have been on conditional
regularity and finite time regularization of solutions. kustance, it was shown by Constantin-Wa} &nd
Dong-Pavlovic 0] that if the solution isC® with § > 1—q, then itis smooth. Finite time regularization has
been proved by Silvestrd ] for « sufficiently close tol, and for the whole dissipation range< a < 1
by Dabkowski [F] (with an alternative proof of the latter result given iti]). The issue of global regularity
in the casex € (0, 1) remains an outstanding open problem.

Our goal here is to advance global regularity very slightljoithe supercritical regime for the SQG
equation. For technical reasons, and inspired2hyifis more convenient for us to introduce supercritigalit
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in the velocityw rather than in the dissipation. A similar approach was aw®rsd in B], but with different
methods. Namely, let2(¢) = m(|¢|) be a smooth, radial, non-decreasing functio®dnsuch thatn(¢) >
1 for all ¢ € R?. We shall consider the active scalar equation,
Ol + (u-V)0+ A0 =0, 6(,0) =0 (1.1)
u=V+A"tm(A)0 (1.2)
on (z,t) € T2 x [0,00), wherem(A)6 is defined by its Fourier transform(A)87(¢) = m(¢)8(C).

Note thatm = 1 gives us the usual critical SQG equation. We shall consigebslsm({) which for all
sufficiently large|(| satisfy the growth condition

m(¢)
o nin|c]

(1.3)

In addition we require that

[Clm’ (<)
11m
Cl=oe m(()
and that the symboh is of Hormander-Mikhlin type, i.e., there exists> 0 such that
[¢F[agm(Q)] < Cm(¢) (1.5)
holds for all¢ # 0, and allk € {0,...,d + 2}. The main result of this paper is:

Theorem 1.1(Slightly supercritical SQG). Assume thaly € C°°(T?). If the symboln satisfies(1.3)—
(1.5), then there exists a unique glob@P® smooth solutiord of (1.1)—1.2).

=0 (1.4)

Remark 1.2. The condition {.4) can be improved to require onlym¢|_, [¢|m'(¢)/m(¢) < 1, butis
adapted here for the sake of simplicity.

The result we prove here is reminiscent of the slightly scipizal Navier-Stokes regularity result of Tao
[17]. The challenge in the SQG case is that while regularity fisical Navier-Stokes is easy to prove by
energy method, there is no similarly simple proof of regtydfior the critical SQG. The criticality of the
SQG equation is controlled by tHe* norm, and the order of differentiation is the same in the imesalrity
and dissipation term. This makes global regularity foréeg@ta surprising at the first look. All three proofs
of global regularity for critical SQG are somewhat subtlel amvolved. Scaling plays a crucial role in all
existing proofs. The main contribution of this paper is towlthat one can advance, at least a little, beyond
the critical scaling.

To prove Theorem..1, we rely on the original method oiLB]. This method is based on constructing a
modulus of continuityw (&), Lipshitz at zero and growing at infinity, which is respecbscthe critical SQG
evolution: if the initial dataf, obeysw, so does the solutiofi(z,t) for everyt > 0. By scaling, in the
critical regime any rescaled modulus; () = w(B¢) is also preserved by the evolution. This allows, given
smooth initial datay, to find B such tha, obeyswp and thus, due to preservationwg, gain sufficient
control of solution for all times. The unboundednessvois crucial for this argument; applying it with
boundedw would correspond to controlling only initial data of limitesize. It appears that the maximal
growth ofw one can afford in the critical SQG case is a double logarittictated by balance of nonlinear
and dissipative term estimates. The idea of the proof of fidmaad.1, and the key observation of this paper,
is that it is possible to trade some of this growthu.irfor a slightly rougher velocity: (or, likely, slightly
weaker dissipation). In the process, one loses criticdlnggabut the argument can be made to work by
manufacturing a family of modulvp preserved by the evolution which are no longer a single tedca
modulus.

We anticipate that the approach we develop here will haverabpplications. In particular, it can be
applied to a slightly supercritical Burgers equation. lis ttese, one can expect to prove global regularity
for a more singular equation, supercritical by almost aiitiganic multiplier. This is due to the existence
of moduli with logarithmic growth conserved by the evolutioConsideration of the Burgers equation, as
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well as applications to modified SQG, and the case of supieadrdissipation is postponed to a subsequent
publication B].

2. PRELIMINARIES

The local and conditional regularity for the SQG-type et is by now standard. In particular, we
have

Proposition 2.1(Local existence of smooth solution) Givené, € H*(T?), for somes > 1, there exists
T > 0 and a solutiord(-, t) € C([0,T], H*) N C>((0,T] x T?) of (1.1)«1.2). Moreover, the solution may
be continued as a smooth solution beydnés long as| V|| 11 o 7,5 (12)) < 0.

The proof of a similar result with standard SQG velocity antaal or supercritical dissipation can be
found, for example, in9].The addition of the multipliern into « does not create any essential difficulties
in the argument.

Definition 2.2 (Modulus of continuity). We call a functionv: (0, 00) — (0, c0) a modulus of continuity if
w is increasing, continuous, concave, piecewiSewith one sided derivatives, and it additionally satisfies
w”(04+) = —oo. We say that a smooth functighobeys the modulus of continuityif | f(z) — f(y)| <

w(|z — y|) for all x # y.

We recall that iff € C°°(T?) obeys the modulus, then ||V f||~ < «’(0). In addition, observe that
a functionf € C°°(T?) automatically obeys any modulus of continuity¢) that lies above the function

min{¢||V f| oo, 2[| f[| oo}

We will construct a family of moduli of continuitywz that will be preserved by the evolution. To prove
this nonlocal maximum principle, we will use the followingitbne. The proofs of Lemmag.3 and 2.5
below can be found in13].

Lemma 2.3 (Breakthrough scenario). Assumev is a modulus of continuity such that0+) = 0 and
w”(0+) = —oo. Suppose that the initial dat#, obeysw. If the solutionf(z, t) violatesw at some positive
time, then there must exist > 0 andz # y € T? such that

H(wﬂtl) - 9(y7t1) - w(’w - y‘)a
andé(z,t) obeysw for every0 <t < t;.
Let us consider the breakthrough scenario for a modulus simple computation shows that

O (0(z,t) — 0y, 1)) [t=t, = u-VO(y,t1) —u-VO(z,t1) + A0(y,t1) — AO(x, t1)
< |u(z,ty) —u(y, t1)|w' (&) + AO(y, t1) — AO(z,t1). (2.1)

If we can show that the expression 1) must be strictly negative, we obtain a contradictiancannot be
broken, and hence it is preserved. To estimat#) fve need

Lemma 2.4(Modulus of continuity for the drift velocity). Assume tha# obeys the modulus of continuity
w, and that the drift velocity is given as = V+-A~'m(A)f. Thenu obeys the modulus of continuity
defined as

Q(e) = A (/05 W(n)ﬂ;(n‘l)dnu/:" W(n)?z(n‘l)dn> 2.2)

for some positive constaaAt> 1 that only depends on the functiom.

The proof of Lemma&.4 shall be given in the Appendix. For the dissipative termshae:
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Lemma 2.5(Dissipation control). Assume we are in a breakthrough scenario as in LerrBarhen

€2 (E 2 — 90
A9(y,t1)—A9(:c,t1)gp(g)zl/o (€+2n) + 5752 21) — 2 (g)dn

T Je/2 n

Given the three Lemmas above adlj, in order to verify the preservation affor all time, it is sufficient
to check that2(¢)w’ (&) + D(&) < 0 for everyé > 0.
The conditions imposed on the symbolhave two consequences which shall be useful later:

Lemma 2.6(Further properties of m). Letm be smooth radially non-decreasing function which satisfies
(1.3) and(1.4). Then it holds that

m(¢)(1 + I ¢])

lim =0 (2.4)
Il—+00 1q
and we have
<]
[t < 2icim(iel (2.5)

for all || which are sufficiently small, depending on

Proof of Lemm&.6. Estimate 2.4) follows directly from (L.3), and in fact it is easy to see that(¢) /|(|* —
0 as¢ — oo for everya > 0, but we will not need this stronger bound in the proof.

From (1.4) it follows that there exists, > 0 such that for all¢| > r¢, we have2|¢|m/(¢) < m(¢). To
prove @.5), we note that the function'/?m(r~") is non-decreasing on < r;*. Thereforem(r—!) <
I¢|Y2m(|¢|~1)r~Y/2, and @.5) follows if |¢| < 7y !, by integrating inv. O

3. PROOF OFMAIN THEOREM

The main difference between our argument here a83fli§ that since {.1)—(1.2) is beyond the critical
scaling, one cannot usg; () = w(B¢) to construct the needed family of moduli of continuity, franfixed
modulusw.

3.1. A suitable family of moduli of continuity. We fix a sufficiently small positive constanfto be chosen
later. ForB > 1, we defined = 6(B) to be the unique solution of

Bom(671) = k. (3.1)

To see that exists and is unique, let(§) = dm(5~'). Due to @.4), we have thay(5) — 0 asd — 0+,
and due to {.4), we have thay/ () = m(5~!) — s 'm/(67') > m(6")/2 > 0, forall § < ;. Sogis
increasing (and continuous) at least ungil', and hence i is chosen such that < g(rg ') = r5 'm(ro),
sinceB > 1, the equatiory(§) = xB~! will have a unique solution. Note thatB) — 0 asB — oo since
g(0+) = 0, anddé(B) is a strictly decreasing function d@.

Having defined)(B) for eachB > 1, we shall consider the modulus of continuity; defined as the
continuous function wittw(0) = 0 and

wp(€) =B — ggm(g—l) (4 +1In @) , forall0 < ¢ <46(B) (3.2)
/ o Y
wp(&) = EA T B mBE ) forall ¢ > 6(B) (3.3)
wherex = k(A, m) andy = ~(k, A, m) are sufficiently small constants to be chosen later. To yéhniht

wp is @ modulus of continuity, we need to check monotonicityaavity, that) < w';(0+) < oo, and that
!
wp(0+) = —o0.
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From @2.4) we know thatm (¢~ 1)(1+1n |¢|71) — 0 as¢ — 0+, and therefore, for everiz > 1 we have
thatw’;(0+) = B. Note that in fact we have’;() < B, and hencevp(§) < B¢ forall 0 < ¢ < 6(B).
Taking the derivative 0f3.2) we obtain

© =~ ((me ™)~ ¢ e) (1410 2E) —mie)
<2 (e (1w —mie )
< —?)B;—im({_l) (4 +1In @) (3.4)

which implies that;(¢) — —oo asé — 0+ sincem(¢71) > 1 for all € > 0. Note that in the first
inequality of @.4) we have use@¢—1m/(¢71) < m(¢71), which holds for allé < 6(B) as long asi(B)
is sufficiently small (how small it needs to be depends onlyr9n One can always ensure th&tB) is
small enough sincé(B) < 6(1) for all B > 1, andd(1) can be made arbitrarily small by choosirdo be
sufficiently small, depending only an.

From 3.3) and @.4) it is clear that the concavity @bz may only fail at{ = §(B). However, from 8.1)
and (3.2) we obtain

2
Wa(6(B)-) = B~ 5-6(Bym((B) ) = 2. (3.5)
On the other hand byd(3) we have
Wip(3(B)+) 7 _1B_5 (3.6)

T B(B)mEB))  4n 4
for all v < k. Together, 8.5) and @.6) show thatug is concave.

To prove thatvp is monotonically increasing, it is sufficient to verify thaf, () > Oforall 0 < £ <
§(B). Butwz(0) = B > 1 andw;(€) is decreasing of0, §(B)) due to 3.4), so that we only need to verify
thatw/;(6(B)—) > 0. This follows directly from 8.5).

Let us denoté) (&) andDp (§) respectively the modulus of the velocitygiven by @.2) and dissipation
estimate 2.3) corresponding tap(€). It is sufficient to prove two things: that each initial d#gaobeys
some modulus of continuity s for a suitableB > 1, and that the expression if.() when computed for
eachwp is strictly negative for alf > 0.

3.2. Modulus of continuity for the initial data. First we show that any initial dat&, ¢ C°°(T?) obeys

a modulus of continuitywp for some sufficiently large3. As noted earlier, this is achieved if we find a
sufficiently largeB such thatvp(§) > min{{||Vy| =, 2||6o]|z} for all £ > 0. Observe that due to
concavity ofwp it is sufficient to findB such that

2|60 || 1,00
B <M> > 2|60 ]| oo -

1V 8ol| Lo
However, note that for every fixed> 0, we havea > §(B) if B is sufficiently large, and
¢ Y gl
dé = ————In(1 +In(a/d6(B))) —
oy ST = e L Ieso )

asB — oo due to our assumptiori (3) on growth ofm, and since)(B) — 0 asB — oo. This shows that
any smoothty obeys a modulus of continuity if B is chosen large enough.

3.3. Conservation of the modulus of continuity. We shall now prove that i€ is chosen sufficiently small
(depending only omn, and A), and~ is chosen sufficiently small (depending only @nmn, and A), then the
expressionZ.1) is strictly negative, i.eQp(&)wiz(§) + Pr(§) < 0, for all ¢ > 0. Note that neithek, nor
~ will depend onB > 1.
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The case0 < ¢ < §(B). We first observe that’;(§) < B for all £ € (0,6(B)]. Using concavity ofup
and the second order Taylor formula, asiB][we may estimate

pae) <2 [ " (2)d
< — max whrpr(z .
P _77/0 sefe~ame BN

In addition, it follows from the bound3(4) on w/; (=), which is monotone increasing in and the above
estimate that

Y- (B)
Dy(e) < - Bem(e ) (4 fin T) | 3.7)
The main issue is to estimate the contribution flﬁ@({‘) From @.2) and @.2) we have that
‘1) > wp(n)m(n~')
Op(&wy <AB< /m dn+B§/ dn+§/5(B) > dn>

[e o]

(B

In the second inequality oB(8) we have used the monotonicity of and the inequality4.5), which holds
for all ¢ < 6(B), whenevers(B) is sufficiently small, depending only an. But note that letting: be
sufficiently small, depending om and not onB, we ensure thai(1) is sufficiently small, and the bound
d(B) < 4(1) for all B > 1, justifies the applicability ofZ.5) for all B > 1.

In order to estimatg| 5"("3) wg(n)/n*dn, we integrate by parts and use the slow growtt gf(cf. (1.3)) to

< AB <ZB§m(§_1) + Bém(¢ M) 1n @ +em(EY / wp(n) dn> . (3.8)
4

obtain
> wp(n) wp(0(B)) > gl
/5(3> n? = 6(B) " /5(3> 772(4+ln(n/é(B)))m(é(B)‘l)dq7
¥ vB
§B+45(B)m(5(B)—1)_B+4 < 2B (3.9)

if v < &, sincem(5(B)~!) > 1. Combining B8.7) with (3.8) and (3.9) we obtain
Qp(€uip(©) +D5() < (4 ) Bemie ) (44052 ) <o (@10

for all ¢ € (0,0(B)] if we choosex so that32rxA < 1. To avoid a circular argument, note thatvas
chosen independently gfand B, it only depends om: and A.

The case¢ > 6(B). We observe that for eacB > 1 the modulus of continuitwp satisfies
wi(26) < Sw(e), forall€ > 6(B). (3.12)
Indeed due to the definitior8(3) of wp, we have
~
26) < T

for every¢ > §(B). But from the monotonicity ofup and the mean value theorem we havg(§) >
wp(0(B)) > §(B)wz(6(B)—), sincew’, is strictly decreasing of0, §(B)). By (3.1) and @.5) it follows
that takingy < « is sufficient for 3.11) to hold. Using 8.11), we estimate

1/“w3(2n+£)—wB(2n—£)—wB(2£)—%wB(é) 1 wp(§)
/2

Dp(€) < ~ . < 5%

which holds for all¢ > §(B). Next, let us bound the term arising frdp (£)w’ (€) in (2.1), namely

3 — 1
Aw(€) </0 %dnﬂ/g %@n)dn) (3.13)

(3.12)
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We first estimate

Swp(mmn™) J(B)m 1 ¢ wimmn)
/0 —dnSB/O (n )dn+/5 ———————dn

n (B) n
< 2B5(BYm(8(B)™Y) + ws(€)m(5(B) ) In %
— % + wp(E)m(3(B) ) In % (3.14)

forall ¢ > §(B). Above we used3.1) and @.5), which may be applied sincg B) is sufficiently small with
respect tan forany B > 1.
Furthermore, upon integration by parts we have

* w m(n~t *w

Ui

. _1\ [ wB(&) v > !
= &m(d(B) )< 3 +m(5(3)—1)/5 n2(4+ln(n/5(B)))dn>

<wp(©m((B)™1) +7. (3.15)
Therefore, inserting the bound3.{4) and 3.15) into (3.13, and lettingy < x, we obtain
Qu(E)ul6) < Autp(©) (1 + 20+ wa@m(6(B) ™) (1410 5752 ))
5 B ()
< T mREAEET (4 enOmoE™) (L g
< M%B@ (3.16)
sincex < 2wp(d(B))m(5(B)~1) < 2wp(¢)m(5(B)~1). Indeed, the latter holds since as above we have
)
on(6() 2 5By 63 = A - e
Lastly, from @.12 and @.16) it follows that
(€uip(€) + D(6) < (247 - 5 ) 2 <o 3.17)

as long agy is chosen small enough so thiatA~ < 1.

4. APPENDIX

Here we give details regarding the proof of Lem#né Letm(() be a continuous, radial, non-decreasing
function onR¢, smooth orR?¢, with m(¢) = m(|¢|) > 1 for all ¢ € R?. Assume thain () satisfies the
Hormander-Mikhlin-type condition (cffe])

[¢IF18Em(¢)] < Cm(C) (4.1)
forsomeC > 1, all ¢ # 0, and allk € {0,...,d + 2}. In addition we require that
_[¢Im/(¢)
1 =0. 4.2
00 m(C) -2

The following lemma gives estimates on the distributinwhose Fourier transform i&;[¢|~'m(¢), for
anyj € {1,...,d}.
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Lemma 4.1(Kernel estimate). Let K (z) be the kernel of the operatdr; A~'m(A), wherem is smooth on
R?, radial, non-decreasing in radial variable, and satisfiee tonditiong4.1)—(4.2). Then we have

K ()] < Cla|™*m(|z[") (4.3)
and
VK (2)| < Clz|~" 'm(|z~") (4.4)
forall z # 0 € R%.

Proof of Lemmat.1 Consider a smooth non-increasing radial cutoff functég) = 7(|¢|) which is iden-
tically 1 on|¢| < 1/2, and vanishes identically dg| > 1. For R > 0, letnr(|¢|) = n(|¢|/R). Then, for
R > 0 to be chosen later, we decompose

e / nr(Qm(Q)iG; ¢ e wdc + C / (1= nr(Q)m(Q)iG |c| e %dc = Ky (z) + Ka(x).

Sincem(¢) is increasing, angx is supported oBr, we may bound K (z)| < CR¥m(R). On the other
hand, upon integrating by parés+ 2 times, using 4.1) and the fact thad: (1 — nr(¢)) is supported on
R/2 < |¢| < R, we obtain

| Ky(z)| < Cla| 7472 /R ) 183*2 ((1- nR><<>m<c>z‘<jr<r‘1)1d<

< Clz| =2 (R—H / m(¢)d¢ + / [ (>d<> (4.5)
R/2<|CISR [C|>R/2

Observe that condition4(2) shows there exists some> 0 such that for al|¢| > r we have2|(|m/({) <
m(¢), and hence the functidg|~'/2m(|¢|) is non-increasing fol¢| > . Consider first smalt, || < 1/2r.
Letting R = |2|~!, we have tha?/2 > r. Using the facts thai:(|¢|) is non-decreasing, and|~/2m(|¢|)
is non-increasing oft| > r, we obtain

|[Ka(2)| < Cla|~m(|a] ™) (4.6)

which upon recalling the earlier bound &y concludes the proof o#(3) for smallz. For|z| > 1/2r, we
can setk = 1 and obtain that

|[K(2)| < Cla| "2,
since due to4.2) and the continuity ofn we havelm(¢)| < C(m)|¢|*/2. On the other hand,

= [ (mOm©OiGKI +9(0) €7 .
wherep(¢) € Cg°. This gives the bound
|[K1(2)] < Cla|™,

which together with 4.6) implies @.3) for || > 1/2r. The bounds folV K (z) are obtained in the same
fashion, the only difference being an extra factot ah the estimates. O

Having estimated the kernel of the operafor> u, we are now ready to estimate the modulus of conti-
nuity of the velocityu, in terms of the modulus of continuity of the active scdlar

Proof of Lemm&.4. The proof is similar to that of][3, Appendix]. Fixx # y, and let¢ = |z — y|. Since

u=V* (A~'m(A)0) we have thayf,,_, K (z)do(z) = 0, and hence we may bound

we) )= [ K06 0@ [ K= 2)06) o)

ly—z[<2¢

b K20 e [ Ky 06) o)
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where the integrals are taken in the principal value sens®z a= (= + y)/2. Using the estimates on the
kernel K from Lemma4.1, we obtain

2% o (mDw
) —ul < 0 [Ty [ a2 - K- 266 ~ 002

+ (K@= ) + Ky — =)D 6() - 6(:)]d=. @.7)
3¢/2<|2—2|<3¢
To estimate the second integral on the right hand side, hatddr|z — z| > 3¢, by the mean value theorem
and @.4), we have
|K(x—2) = K(y — 2)| < C¢&lz — 2[Pm(]z — 2| 71).

Here we use thain(sr) < s“m(r) holds by @.1) for s > 1. The third integral on the right hand side of
(4.7) is bounded using4(3) and we obtain

3¢ m -1 w 0 m -1 w
ue) — ()| < € [ I gy 4 e [T, (4.9
0 n 3¢ n
for all £ # 0. The final result then follows from4(8) using the concavity oo and the monotonicity of
m. ]
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