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ABSTRACT. The paper is devoted to the study of slightly supercritamive scalars with nonlocal diffusion.
We prove global regularity for the surface quasi-geostoffBQG) and Burgers equations, when the diffusion
term is supercritical by a symbol with roughly logarithmiehavior at infinity. We show that the result is sharp
for the Burgers equation. We also prove global regularityaslightly supercritical two-dimensional Euler
equation. Our main tool is a nonlocal maximum principle vahgontrols a certain modulus of continuity of the
solutions.

1. INTRODUCTION
Active scalars play an important role in fluid mechanics. Ative scalar equation is given by
00+ (u-V)0+ LO=0, 6(x,0) =0y(x), (1.2)

where/ is typically some dissipative operator, such as fractialisdipation, and. is the flow velocity that

is determined by. A common setting is either oR? or T¢. Active scalar equations are nonlinear, and
most active scalars of interest are nonlocal. This makesiladysis of these equations challenging. The
best known active scalar equations are the 2D Euler equéfborwhich u = V+(—A)~16), the surface
quasi-geostrophic (SQG) equatioh & 2, u = V+(—A)~'6), and one-dimensional Burgers equation
(v = #). The 2D Euler and Burgers equations are classical in fluidhaeics, while the SQG equation
was first considered in the mathematical literature by Comst, Majda and Tabal8[, and since then has
attracted significant attention, in part due to certain lsirities with three dimensional Euler and Navier-
Stokes equations.

Observe that for SQG and Burgers the drift velocitgnd the advected scaléiare of the same order of
regularity, while for 2D Euler is more regular by a derivative. The 2D Euler equation habajloegular
solutions, and can be thought of as critical case. For thg@arand SQG equations, fractional dissipation
L = A% whereA = (—A)l/2 is the Zygmund operator, have been often considered. Bakiesé equations
possesd.*® maximum principle 24, 6], and this makes: = 1 critical with respect to the natural scaling of
the equations. It has been known for a while that in the stibaricasen > 1 global regular solutions exist
for sufficiently smooth initial data (se€4] for SQG equation; the analysis for Burgers is very similar)
The critical casex = 1 has been especially interesting for the SQG equation stnisewell motivated
physically, with A§ term modeling so called Ekman boundary layer pumping effeet e.g. 23]). The
global regularity in the critical case has been settled pedédently by Kiselev-Nazarov-Volber@2] and
Caffarelli-Vasseur2]. A third proof of the same result was provided by Kiselev &takarov in R0], and
a fourth recently by Constantin and Vicol if][ All these proofs are quite different. The method 2f ik
inspired by DeGiorgi iterative estimates, while the dyadipproach of 20] uses an appropriate set of test
functions and estimates on their evolution. The proofQntdkes advantage of a new nonlinear maximum
principle, which gives a nonlinear bound on a linear opearaithe method of22], on the other hand, is
based on a technique which may be called a nonlocal maximimifle. The idea is to prove that the

Date March 28, 2012.
2000Mathematics Subject ClassificatioB5Q35,76U05.
Key words and phrasesSurface quasi-geostrophic equation, Burgers equatiqerstitical, global regularity, finite time blow-
up, nonlocal maximum principle, nonlocal dissipation.
1



2 MICHAEL DABKOWSKI, ALEXANDER KISELEV, LUIS SILVESTRE, AND VLAD VICOL

evolution (L.1) preserves a certain modulus of continuityof the solution. In the critical SQG case, the
control is strong enough to give a uniform bound||6ff || 7.--, which is sufficient for global regularity.

In the supercritical case, until recently the only resultailable (for large initial data) have been on
conditional regularity and finite time regularization ofigmns. It was shown by Constantin and \WAQ[
that if the solution isC? with § > 1 — «, then it is smooth (see also Silvest&s] for drift velocity that
is not divergence free). Dong and Pavlovid] later improved this result t6 = 1 — «. Finite time
regularization has been proved by Silves&B][for « sufficiently close tal, and for the whole dissipation
range0 < a < 1 by Dabkowski 1] (with an alternative proof of the latter result given it9]). The
issue of global regularity in the case€ (0,1) remains an outstanding open problem. Recently, a small
advance into the supercritical regime was madel], [where the SQG equation with velocity given by
u = V+A~tm(A)f was considered. Here is a Fourier multiplier which may grow at infinity at any rate
slower than double logarithm. The method d2]was based on the technique @P]. The main issue is that
even with very slow growth aofn, the equation loses scaling, which plays an important robvary proof of
regularity for the critical case. The work?] was partly inspired by the slightly supercritical Navietokes
regularity result of Tao47], and partly by the recent work 08[4] on generalized Euler and SQG models.

In this paper, we analyze a slightly supercritical SQG andyBrs equations. As opposed 1], we keep
the velocity definition the same as for classical SQG and &ustgand instead treat supercritical diffusion.
We also consider nonlocal diffusion terms more general frectional Laplacian, including cases where
the L> maximum principle does not hold. We show, roughly, that sgimisupercritical by a logarithm or
less lead to global regular solutions for both equationsr @ain technique is the control of appropriate
family of moduli of continuity of the solutions. For the Bung equation, when the conditions we impose
on the diffusion in order to obtain global regularity are matisfied, then we prove that some smooth initial
data leads to finite time blow up. In this respect, our wellgaipess result is sharp. For the SQG, the global
regularity proof is more sophisticated than for the Burgmygation. The upgrade from the double logarithm
supercriticality of [L2] to logarithmic one is made possible by exploiting the dute of nonlinearity, in
particular theV+ in v = V-A~14. This idea is based ori ], where this structure was exploited to prove
finite time regularization for power supercritical SQG. Weenthat Xue and Zhen@9] observed a similar
improvement fromog log to log in the context of supercritical velocity.

We also consider slightly supercritical 2D Euler equatiand generalize the results d][on global
regularity of solutions.

Below, we state main results proved in the paper. In Sed@jowe provide some basic background
results on the nonlocal maximum principles. Secfias devoted to proof of global regularity for slightly
supercritical SQG with nonlocal diffusions. The Burgersecés handled in Sectiof. In Section5, we
consider the case of dissipation given by Fourier multiplieSome natural multipliers can lead to non-
positive convolution kernels for the corresponding noaldatiffusion, and we generalize our technigue to
this case. Sectiofiis devoted to slightly supercritical 2D Euler equation.

To state our main results, we need to introduce some notation

1.1. Assumptions onm. Letm: (0,00) — [0, 00) be a non-increasing smooth function which is singular
at the origin, i.elim,_,o m(r) = oo, and satisfies the following conditions:

() there exists a sufficiently large positive constélgt> 0 such that
rm(r) < Cp forall r € (0,70) (1.2)

for somery > 0. The above condition is natural in the present contextesatherwise the dissipa-
tive operator defined below is subcritical, which is not thiegose of this paper.
(i) there exits somex > 0 such that

r*m(r) IS non-increasing. 1.3)

The above assumption is slightly stronger than just haxirig) be non-increasing.
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Throughout this paper we also denoteshythe radially symmetric functiom:: R\ {0} — (0, 00) such
thatm(y) = m(Jy|) for eachy € R4\ {0}. Note that the above conditions allow for to be identically
zero on the complement of a ball.

The examples of functions: which are relevant to this paper are those that are lesslaintnan:—!
nearr = 0. These functions yield dissipative nonlocal operators ((ct) below) that are less smoothing
than A, which makes the corresponding SQG and Burgers equatiparcritical The main examples we
have in mind are

1 1
m(r) = a and m(r) = 77“(105);(2/7“))“
with 0 < a < 1,0 < r < 1, coupled with enough regularity and decay for> 1. The first class
corresponds to power supercticality. The second classyertifcal by a logarithm, is relevant for the global
well-posedness results we prove. It is not hard to verify tha functions in {.4) verify (1.2—(1.3) on
(0, 1], and that they can be suitably extended bro).

(1.4)

1.2. Dissipative nonlocal operators. Associated to any such functien we consider the nonlocal operator

LO(z) = /Rd (0(z) — 6(z + y))%dy. (1.5)

Above and throughout the rest of the paper the integral isntriegprincipal value sense, but we omit the
P.V.in front of the integral. For example, when(r) = r—“Cy , for a suitable normalizing consta@; .,
then£ = A®. The nonlocal operator§ we consider here are dissipative becausés singular at the
origin: due to (.3), we have thain(r) > m(1)r~ for somea > 0 whenr < 1, so thatl is at least as
dissipative as\*. It is now evident that whehm, o rm(r) = 0, the corresponding nonlocal operaidis
less smoothing thai. We emphasize that fér ¢ C°°(T?) the P.V. integral in1.5) converges only ifn is
sub-quadratic near= 0, i.e.

1
/ rm(r)dr < co
0

holds. In our case, the above condition is satisfied in vieassumption1.2). Convergence near infinity is
not an issue due to the assumptian3j.

All results in this paper can be generalized to a more gemdaas of dissipative operators. Namely, for
each functionn that satisfies(.2)—(1.3), consider the class of smooth radially symmetric kerdlsR? \
{0} — (0, c0) which satisfy

m(y) C'm(y)
Cly =W = Ty

for some constant’ > 0, and ally # 0. Associated to each such kerri€élwe may consider the dissipative
nonlocal operator

(1.6)

L(z) = /]Rd (0(z) — 0(z + y)) K (y)dy (1.7)

which generalizes the definition id.6). As we will see, such generalization will be useful when kitog
with dissipative operators generated by Fourier multiplieMoreover, as we will see later in the paper,
conditions onK can be relaxed further.

1.3. Main results. The generalized dissipative SQG equation reads
00 +u-VO+L0=0 (1.8)
w=V+ATlH (1.9)

where/ is as defined inX.5), andm is as described above. The main result of this paper witrertgp the
dissipative SQG equation is:
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Theorem 1.1(Global regularity for slightly supercritical SQG). Assume that, is smooth and periodic,
andm satisfies an additional assumption

1
lim m(r)dr = oo. (1.10)

e—=0+ /.

Then there exists a unique™ smooth solutior of the initial value problem associated (b.8)—1.9).

In analogy, one may consider the generalized dissipativgdss equation
0 —00,+L0=0 (1.11)
whereL andm are as before, andl= 1. Then we prove

Theorem 1.2(Global regularity for fractal Burgers). Assume tha#, is smooth and periodic, anch is
such that(1.2—(1.3) hold and

1
lim m(r)dr = oo. (1.12)

e—=0+ /.

Then there exists a unique™ smooth solutior® of the initial value problem associated ¢b.11).
In addition, in the case of the Burgers equation we provedbatlition (L.12) is sharp:

Theorem 1.3(Finite time blow-up for fractal Burgers). Assume thain is such tha{1.2)—(1.3) hold, and
in addition we have

rim/(r)] < Cm(r) (1.13)

for r > 0 and some constardt > 1. Furthermore, suppose that

1
El_l)lgl_i_ i m(r)dr < oo (1.14)
holds. Then there exists an initial datuim € C>°(T), andT" > 0 such thatlim;_,7 ||0,(t)|| L~ = oo, i.€e.
we have finite time blow up arising from smooth initial data.

A natural class of dissipation terms is associated with ieounultiplier operators. This representation
is closely related to the fornil(7). As noted above, whem(r) = r~*Cy for a suitable constar®y ,,
then L = A®, corresponding to the Fourier multiplier with symbBI () = |¢|*. One may generalize
this statement as follows. Ld&?({) be a sufficiently nice Fourier multiplier (see Lemniag and5.2 for
precise assumptions of), and letK (y) be the convolution kernel associated to the multipkgri.e.
Z\H(C) = P(C)@(C), where/L is the operator defined irl(7). Then there exists a positive consté@nthat
depends only o, such that {.6) holds for all sufficiently small;, with m(y) = P(1/{). This turns out to
be sufficient to prove an analog of Theorém (and Theoreni..2).

Theorem 1.4(Global regularity for slightly supercritical SQG). Let P be a radially symmetric Fourier
multiplier that is smooth away from zero, non-decreasimgiséesP(0) = 0, P({) — oo as|¢| — oo, as
well as conditiong5.3—5.4), and (5.9). Suppose also

P(|¢l) < C[¢] (1.15)
for all |¢| sufficiently large,
|C|”*P(|¢|) is non-decreasing (1.16)
for somex > 0, and
| Pucdi = o (1.17)

Then for any, that is smooth and periodic, the Cauchy problem for the pasie SQG equatio(b.1)—
(5.2) has a unigue global in time smooth solution.
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In particular, Theorem.4 proves global regularity of solutions for dissipative tergiven by multipliers
with behaviorP(¢) ~ |¢|(log |¢])~* for large(, where0 < a < 1. The details of the assumptions éhand
more discussion can be found in Sect®below.

2. POINTWISE MODULI OF CONTINUITY

Definition 2.1 (Modulus of continuity). We call a functionv: (0,00) — (0,00) a modulus of continuity
if w is non-decreasing, continuous, concave, piecewisewith one sided derivatives, and additionally
satisfiess’(0+) < oo andw”(0+) = —oo. We say that a smooth functigirbeysthe modulus of continuity

wif [f(z) — f(y)| <w(|lz —y]) forall z #y.

We recall that iff € C°°(T?) obeys the modulus, then ||V f||~ < «'(0) [22]. In addition, observe
that a functionf € C°°(T?) automatically obeys any modulus of continuity¢) that lies above the function

min{&|[V f||ze, 2| f| e }.

The following lemma gives the modulus of continuity of thee&4 transform of a given function.

Lemma 2.2 (Modulus of continuity under a Riesz transform). Assume that obeys the modulus of
continuityw, and that the drift velocity is given by the constitutive law= V-A~'4. Thenu obeys the
modulus of continuity) defined as

Q(¢) :A</O5 @dn—i—f/ﬁm %dn) (2.1)

for some positive universal constaat> 0.
Moreover, for any two points, y with |x — y| = £ > 0 we have

(u(z) = u(y)) - ‘x - y‘ )+ 95 () (2.2)
where
f(e) = A (w(©) +¢ A “Wan) 2.9
and
&/ 35/4 y
/ /6 ) =8 ) =000, =) 40 ) e (24)

whereA is a universal constant.

The proof of 2.1) may be found in22, Appendix], while ¢.2) was obtained in]9, Lemma 5.2], to
which we refer for further details.

Lemma 2.3 (Dissipation control). Let £ be defined as iff1.7), with K satisfying(1.6). Assume that
6 € C>(T?) obeys a concave modulus of continuity Suppose that there exist two pointsy with
|z —y| = & > 0 such thatd(z) — 0(y) = w(§). Then we have

L6(x) — LO(y) = D(&) + D(€) (2.5)
where
/2
pO=g [ (2 —w5+2n>—w<5—2n>>@dn
// 2w &) —w(€+2n) +w2n— §) (2.6)
2
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and
£/4 r3¢/4
D = [ Cuen) —8000) + bm0) bl ) 40, )

/€2
(&/2—m)*+v?

with some sufficiently large universal constaht> 0 (that we can, for simplicity of presentation, choose to
be the same as in Lemr2&?). The corresponding lower bound in one dimension includhdg theD term.

dndv (2.7)

Note thatD > 0 due to the concavity ofs, while D+ > 0 sinced obeys the modulus of continuity
w. The above lemma may be obtained along the lined@f$ection 5], where it was obtained f6r= A.
However, some modifications are necessary for more genéftadidns we consider, and we provide a proof
in AppendixA below. We conclude this section by establishing a boun®fef¢) in terms of D ().

Lemma 2.4 (Connection betweenQ)- and D+). Let m be as in Sectiori.l, and assumé obeys the
modulus of continuitw. For Q+(¢) and D+ (¢) defined via2.3) and (2.7) respectively we have

m(€)QH (&) < A*DH(¢) (2.8)
for all ¢ > 0.

Proof of Lemm&.4. To prove @.8), first observe that sinadgobeysw, we haved (n, v) —0(—n,v) < w(2n)
and alsd(n, —v) — 0(—n, —v) < w(2n). Therefore we have that
|9(777 V) - 9(_77a V) - 9(777 _V) + 9(_777 _V)|
< 2w(2n) = 0(n,v) +6(=n,v) = 0(n, —v) + 0(—n, —v). (2.9)
holds, for any(n, v) € R2.
Next, we claim that for ang < v < ¢/4 and anyln — §/2| < £/4 we have

v m(§) - m(\/(§/2—77)2+V2)‘
((€/2—m2+2)°2 ~  (§/2=n?+0?
To prove @.10), we observe that in this range for, v) we have,/(£/2 — )2 + v2 < ¢, and due to the
monotonicity ofm it follows thatm(¢) < m(y/(€/2 — )% + v2). Sincev < /(£/2 —n)2 + 2, (2.10

holds. Recalling the definitions 6f+ andD-, it is clear that 2.8) follows directly from @.9) and @.10),
concluding the proof of the lemma. O

(2.10)

3. GLOBAL REGULARITY FOR SLIGHTLY SUPERCRITICALSQG

In this section we prove Theoreinl. The local well-posedness for smooth solutions to SQG-&me-
tions is by now standard. In particular, we have:

Proposition 3.1(Local existence of a smooth solution)Given a periodid, € C*°, there existd” > 0 and
a periodic solutiord(-,t) € C*° of (1.8)«1.9). Moreover, the smooth solution may be continued beyond
as long as| V|| 1 (o 110y < 00

The local in time propagation @f>° regularity may in fact even be obtained in the absence oipdigen,
sincew is divergence free. Since in.@—(1.9) we have a dissipative term, one may actually show l6&al
regularization of sufficiently regular initial data. Theopf may be obtained in analogy to the usual super-
critical SQG [L4], since in view of (L.3) £ is smoothing more than® for somea > 0. The presence of the
general dissipatiod instead of the usual® does not introduce substantial difficulties.

The main difficulty in proving Theorerh.1is the super-criticality of the dissipation ifi.8)—(1.9). Thus,
as opposed to the critical cas2?], here wecannotconstruct a single modulus of continuity¢) preserved
by the equation, and then use the scaling§) = w(B¢) to obtain a family of moduli of continuity such
that each initial data obeys a modulus in this family. Indtese will separately construct a modulus of
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continuitywp () for each initial data, and each such modulus will be presebyethe equation for all times
(see also12)).
Before constructing the aforementioned family of mode,us recall the breakthrough scenario2d][

Lemma 3.2 (Breakthrough scenario). Assumev is a modulus of continuity such that0+) = 0 and
w”(04) = —oo. Suppose that the initial dat# obeysw. If the solutiond(x, t) violatesw at some positive
time, then there must exist > 0 andz # y € T2 such that

O0(x,t1) — 0y, t1) = w(lz — yl),
andf(x,t) obeysw for every0 < t¢ < t;.

Let us consider the breakthrough scenario for a modulus wfiragty w. A simple computation 19,
combined with Lemma&.2and Lemma2.3yields

O (O(x,t) — 0(y, 1)) lt=t, =u-VO(y,t1) —u-VO(x,t1) + LO(y,t1) — LO(x,t1)

< |(ulent) = ) - ) + £800.1) ~ L8t
< min {Q(&), B(€) + 4(§) }'(€) - (D(&) + D*(©)) (3.1)

where(2, Q, QL. D, andD' are given in2.1), (2.3), (2.4), (2.6), and @.7) respectively. If we can show that
the expression on the right side &.1) must be strictly negative, we obtain a contradictiancannot be
broken, and hence it is preserved by the evolutibB)(

3.1. Construction of the family of moduli of continuity. We now construct a family of moduli of conti-
nuity wg, such that given any periodic*> functioné,, there exists3 > 1 such tha¥, obeyswp.

Fix a sufficiently small positive constant> 0, to be chosen precisely later in terms of the consthot
(2.3) and the functionm. For anyB > 1 we defined(B) to be the unique solution of

m(3(B)) = —. (3.2)

Sincem is continuous, non-increasing;(r) — +oo asr — 0+, and (L.3) holds, such a solution(B)
exists for anyB > 1 (if x is small enough). For convenience we can ensurefidy < ry/4 for any
B > 1, by using (.2) and choosing: < r¢/(4Cy). Note thatj(B) is a non-increasing function ds.

We letwp () to be the continuous function withz(0) = 0 and

2 I3 n
(€)= B — 25 : /0 S lmsf((g)/”) dn, for0 < ¢ < 8(B), (3.3)
wp(&) = ym(28), for & > 6(B), (3.4)

whereC,, = (1 + 3a)/a? andy > 0 is a constant to be chosen later in terms:ofl, and the functionn
(throughCy, a, 7o of assumptionsl(2)—(1.3)). We emphasize that neithemor~ will depend onB.

Let us now verify that the above defined functiog is indeed a modulus of continuity in the sense of
Definition 2.1 First notice that by constructian; (04+) = B andwp(§) < B¢ forall 0 < £ < §(B). To
verify thatwp is non-decreasing, sinee is non-negative, we only need to check thgt > 0 for £ < §(B).
This is equivalent to verifying that’; (6(B)—) > 0. Using (L.3) and the change of variablé$B)/n — ¢,
we may estimate

/5<B> 3+m(@(B)/m) , /5<B> 3+W@EB)/m) 1 /00 3+, Ca

0 nm(n) =)o weeBeme(B) " T m@(®B) ), e m(6(B))’

whereC,, = (1 + 3a)/a? may be computed explicitly. The above estimate éhé)(3.3) imply that
C,B? B

wp(6(B)—) > B~ m =5 (3.9)
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which concludes the proof that; > 0.
In order to verify thats’;(0+) = —oo, we use {.2) and @3.3) to obtain

B? §(B) B? 5(B)
niey — _ - In—2) < — In —=
B8 = =50 ) (3 B > = " 2CunCo <3 e >
which is strictly negative fof < £ < §(B), and also converges tooo as¢ — 0+.
Sincem is non-increasing, the concavity may only failéat 6(B). By (3.2) and @.5) we have

Wa(B(B)H) = ym(20(B)) < Am(5(B)) = 2 < T < ufy(5(B)-)

provided thaty < k, and thereforev; is concave or{0, oo). In will also be useful to observe that due to
the concavity ofuz and the mean value theorem we have

)(B)B
5
3.2. Each initial data obeys a modulus.In order to show that given ary € C°°(T?) there exitsB > 1
such that)y obeyswp (&), it is enough to find & such thatvp(§) > min{||Véy| =, 2|00 L=} for all
¢ > 0. Lettinga = 2||0g|| /|| V00| L, due to the concavity abp it is sufficient to findB > 1 such that
wp(a) > 2||0||z-. First, by choosing3 large enough we can ensure that §(B). Then, we have that

wp(a) =wp(d(B)) + /5(3) wi(n)dn > 7/5(3) m(2n)dn — oo asd(B) — 0 (3.7)

due to the assumptior (L0). Therefore each initial data obeys a modulus from the fatilz } 5> 1.

wp(3(B)) = 6(B)ws(3(B)—) = (36)

a a

3.3. The moduli are preserved by the evolution.It is left to verify that the above constructed family of
moduli of continuity satisfy

min { Qp(6), 0 (€) + Q) } wh(©) — (Da(&) + DA(E)) <0 (3.8)
foranyé > 0andB > 1. HereQ)p et al. are defined just d% et al., but withw replaced bywg.
The case > §(B). First we observe that by Lemn2a4 and the fact that. is non-increasing, we have

wp(©)QB(E) = 1m(26)Q5(6) < ym(E)QB(E) < ¥A’D() < D5 (&)
for all ¢ > 6(B) if we choosey < 1/A2. In view of (3.9) it is left to prove that
Qp(§wp(€) — Dr(€) <0
for all ¢ > ¢(B). In order to do this we claim that for &l > 6(B) we have
wp(28) < cawn(§), (3.9)

wherec, = 1+ (3/2)~%, anda > 0 is as in assumptionl(3). Note that by definitionl < ¢, < 2. We
postpone the proof 0f3(9) to the end of this subsection. Using Lemi&, (3.9), the concavity and the
monotonicity ofwp, we may bound-Dpg as

—Dp(§) < %/5;: (wB(€ 4 2n) —wp(2n — &) — wp(28) — (2 — ca)wn(§)) m(?7277) dn
2~ cCa ¢ m(2n) 2 —ca
= wrld /5/2 —y s T wesm(20). (3.10)

We emphasize that for the upper bouBdL() only the contribulion fromy € (£/2,¢) was used.
On the other hand, integrating by parts the contributiomffdg may be rewritten as

Qp(6) _ Fwp(m) = m(2n)
A =en© e [ 2y = 2p(e) e [ 00
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Using (1.3), we may bound
* m(2 * 1 m(2
/ Mdn S gam(2£)/ 1+ad77 S ( é)
3 n e N

(67

wherea > 0 is given. Hence, we obtain

Qi}é) < %) + vén;(%) (3.11)
Now, for§(B) < ¢ < 26(B), by (1.3) we have
L’;@f) < Ls()-5(B)*m(8(B)) < %5(3)2 < B‘SéB) <wp(d(B) <wp(€)  (3.12)

by (3.6), if v is small. On the other hand, fgr> 25(B) we have¢ — §(B) > £/2 and therefore

3
op(© >y [ m(zin > yme)(e - o(m) > EE
6(B)
Combining the above estimates with11) leads to a bound
p(6) < A (2 n %) wi(E). (3.13)

From (3.4), and the bounds3(10 and (3.13 we hence obtain

(€uip(€) - Do(©) < (40222 - 22 ) p(@m(26) <0

forall ¢ > 6(B), if we sety small enough, depending only oh C, o, andc,.

Proof of estimatg3.9). To verify (3.9) for §(B) < ¢ < 24(B) is straightforward since by the mean value
theorem andX(.3), similarly to (3.12), we obtain

wp(26) < wp(§) +Ewp(§) = wa(§) +1Em(2)
< wn(€) + 2L BS(B) < wp(€) + (ca ~ Dwn(3(B)),

by choosingy small enough.
Now for £ > 26(B), by (3.4) and 3.6) we have

3

2¢
cawn(€) — wp(26) = (ca — Dwp(8(B)) + (ca — 1)7 /6 PRI /5 m(2n)ds

2¢
> (o - DB [ meznan
2 2—§(B)

§
7 [ (o = Dm(20) = m(2n -+ 26~ 25(B))) dn.
5(B)

We next note that fof > 26(B), due to the monotonicity af:, we have

B&(B)
2

2¢
v [ mendy <a8Bm(B) = 1BAE) < (c0 - 1)
2¢6—6(B) K
by letting~ be small enough. We next verify that

(ca —1)m(2n) = m(2n + 26 — 26(B))

holds for alln € (6(B),&). Using (L.3), and recalling that, = 1 + (3/2)~¢, the above inequality follows
once we check that

(3/2)7%(2n +2¢ — 26(B))* = (2n)*
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holds for alln € (6(B), ). But since¢ > 25(B), we have
n+E=0(B) | §-d(B) 3
- -2

3
thereby concluding the proof. O

The casel) < £ < 6(B). For small values of we prefer to bound the contribution from the advective term
using€2p instead of2 5 + Q3. Itis sufficient to prove that

Qp(Qwp(§) —Dp(é) <O0.
Using the concavity oz and the mean value theorem, we may estimate

1 [€/2 2 c , €/2
—Dp(¢) < Z/o (wp(§ +2n) +wp(§ - 2n) — 2w3(£))wdn < ZWB(@/O nm(2n)dn.
From (L.3) we obtainn®m(2n) > (£/2)*m(§) forn € (0,£/2). Sincew’;(§) < 0 we may further bound

£/2
~D(9) < SulplO€mie) [ vty < SuhOeme) (314

0
The contribution from the advecting velocity is bounded as

Qp(€ 3 6(B) 00
B(&) :/0 an(n)dnJrE/g ngU)dn+£/5(B) ngn)dU

A ) "
§(B) wp(d(B)) < m(2n)
< BE+ BEIn = +5< 5 ﬂ/(s(B) - dn>. (3.15)

Here we used thatz(n) < Bnforn € (0,0(B)). Using (L.2)—(1.3) and @.2) we bound
/ (), m20(B) _ B _B
5

B N o T ok Ty
for v < ak. Therefore, 8.15 gives

Qp(€) < AB¢ (3 + log 5(5)> . (3.16)
From (3.3) and the bounds3(14) and (3.16), we obtain
)
Qp(€)uip(€) ~ D(€) < ABE (3 + 1o 2 ) + GEmE6)
d(B) C
< AB%*¢ (3 + log T) (1 — 2A20M> (3.17)

forany¢ € (0,0(B)), if we choosex small enough. Here we used the explicit expressian/pfor small¢.
Note that the choice of is independent of and B, which is essential in order to avoid a circular argument.
This concludes the proof of Theorelril.

4. GLOBAL REGULARITY VS. FINITE TIME BLOW-UP FOR SLIGHTLY SUPERCRITICALBURGERS
In this section we prove Theorein2 (global regularity) and Theoreth3 (finite time blow-up).

Proof of Theoremi..2. Due to evident similarities to the SQG proof given in Seci@bove, we only sketch
the necessary modifications. See ag for more detalils.
First, we note that a modulus of continuity; is preserved byl(11) if

wp(§wp(§) —Dp(§) <0 (4.1)
whereDy is defined as byA.6), with w replaced byvi. We will consider exactly the same family of moduli
of continuity wp as in the SQG case, defined via3)—(3.4).
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We need to verify that4.1) holds for any¢ > 0. In the cas&€ > §(B), by using 8.10, we have

wB(Ewlp() ~ D(€) < wp(€)ym(26) — Swn(E)m(2e) <0 (42)

if v < /8. On the other hand, faf € (0,d(B)), we use 8.14) and obtain

wp(E)wp (&) = Dp(€) < B&wi(©) + CEMEWE()

s CB6 (. 8B)\_ (. 3C

if K <3C/(2C,). This concludes the proof of Theorehr?. O

Proof of Theoreni.3 The proof will use ideas fromlp], which builds an appropriate Lyapunov functional
to show blow up. Throughout this section we assume that thag)(holds, i.e.

/1 m(r)dr = A < 0. (4.4)
0

Let 6y € C*° be periodic and odd, withy(0) = 0. For simplicity we may také, to beT = [—, 7]
periodic, and consider that = 1 in (1.2). Itis clear that the proof carries over for any period lénghd
for any value ofry > 0, with obvious modifications. Assume the solutiéfx, t) of (1.11) corresponding
to this initial data lies inC'(0, T; W1°°) for someT" > 0, and is henc&> smooth on0, 7']. The Burgers
equation preserves oddness of a smooth solution, so thatwedf0,¢) = 0 for ¢t € [0,7], and also
0(z,t) = —0(—x,t) forall x € T andt € [0, 7.

Letw(x) be defined as theddfunction with

w(x) =1—x, forz € (0,1)
w(z) =0, forxz > 1. (4.5)

Associated to this function we define the Lyapunov functional

oo 1
L(t):/o H(w,t)w(w)dw:/o Oz, t)w(x)dz. (4.6)

Then, due to the maximum principl@(-,t)|z~ < ||0o||z= which holds on[0, T], and the definition of
w(z), we have

L(t)

IN

1160|| 1,00 4.7)

for all ¢ € [0, 7). We will next show, using our assumption tiflat C'(0,7; W°°), that if T"is sufficiently
large the bound47) is violated. This shows that our assumption has been wiamdy] has finite time blow
up in theW > norm - concluding the proof of Theorein3.

To proceed, we first need the following lemma.

Lemma 4.1. If £ is a diffusive operator defined I§¢.5) with m satisfying(4.4) in additional to our usual
assumptions, and is given by(4.5), then

/wa(xn da < oo.

Proof. It is sufficient to estimate the integral over positivsinceLw(z) is odd.
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The caser > 1. Here we havev(xz) = 0 andw is odd, hence

mlxr — 1 mlxr — 0 mixr —
Lula) = [ (wle) - w(y) ™Y g, - / win) "y — [ =,

|z —yl |z —y -1 [z —y
_ ™=y Lotz Y)
= /0 (y) P dy+/0 (y) T+l dy
e (mE—y) m(z+y)
e (P e e

Using the mean value theorem and the monotonicity:afle estimate

me )PSO gy HOLEMD o e y)
‘x - y’ "T + y’ n rélz—y,z+y] 2 ‘x - y‘2

But the above bound is only convenient whep» 2, and in this range we obtain

/2 | Lw(x |d3:<4C’/ / (1—y |2 dyd:n<40/ / (1—y 1)|2dyd:£<0m( ).

(4.9)

On the other hand, when € [1, 2], it is convenient to work with4.8) directly. By the monotonicity ofn
we have that

! — x
|Lw(z)| < /0 (1-y) <m|3(33:_ yﬁl) |:(E _:_;( ) dy < 2/ m(1 — =24 (4.10)

foranyz € [1,2), by using @.4). Therefore f1 |Lw(x)|dz < 2A, and by using4.9) we obtain that

/ |Lw(z)|dx < 2A + CCy =: C4. (4.11)
1

The case) < = < 1. Here we havev(z) = 1 — z and therefore

00 1—x
Ew(m):/l (1—w)#dy+/_ y#dy

ﬂ z |yl

—x —x—1
+/ (@44 "W) )dy+/ (1— )Wy,

— [yl Yl
= Ty (z) + To(z) + Ts(x) + Ty(x). (4.12)

Using condition {.3) we may easily bound’; andTy. More precisely, using a change of variables> —y
in T, we may write

1+xm () am
i) + Tu(a)| = (1) | Y gy 4 91 - o[ W) 4,

1
—x —+x Y ta

Y
1+xm &0
S(l_;p)/l_ #d 4—2(1—m)(1+:13)°‘m(1—I—a:)/lJr yl%dy

and therefore

! ! 2Co Co
/ Ty (x) + Ty(x)|dx < 2/ xm(1l — z)dx + o (1 —z)dr < 2A+ - (4.13)
0 0 0
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To bound7’ we recall thatn is even and hencé;(z) = fl “m(y)dy, which in turn implies

1/2 fl-z
/ |To(x \dw</ / dydx+//2/1 dydac</ m(y (4.14)

Lastly, due to the monotonicity ofi we have that

1 x+1 x+1
|T3(x)|§2/ #derQ/ ’ m(y)d +/ " )y

! m(1)
_2/#0@4—2/ d+/m dy—l—/m

tm(y)

<2 [ %4y 4 2m(1)log2 + A+ m(1)
Yy

/yT3 ydx<2// ;ydydx+3m() +A

and therefore

< 2/ / ") Grdy 1 3Co + A < 3(Co + A). (4.15)

Summarizing4.13, (4.14), and @.15 we obtain that
/01 |Lw(x)|dx < 6A+ 3CH+ % =: (. (4.16)
g

Coming back to our Lyapunov functionél(t), using the evolution1(.11) and integrating by parts, we

obtain
/ O (z, t)w(x)dx —/ <8x9(x2’t)2 - EQ(z,t)) w(x)dz

1 00
:——/ H(w,t)zwx(x)dx—/ O(z,t)Lw(x)dz. (4.17)

Here we employed the identi%oo LO(-, t)w = fo t)Lw. This equality can be derived by using odd-
ness obothd andw, evenness af,, and Lemmat. 1ensur|ngL‘w( ) € L' (see [L5, (2.8)] for more details).
Also, the integration by parts in the first term @f.17) is justified since by our assumptighvanishes as
Clz| whenz — 0, with C = supyq 71 [VO(-, 1) || o-.

Now, sincew,, = —1 for 0 < z < 1, and using the Cauchy-Schwartz inequality, we obtain

= (/01 9(x,t)w(m)da:>2 < /1 O(z,t)%dx /1w(;g)2d3:

/Hazt :——/Gmtww
Therefore, by4.17) on [0, 7] we have

SL) > L - /0°°w<w,t>ucw<x>\dwzL<t>2—Heoum /Owr.cwm\dw. (4.18)

By Lemma4.1, we then have

d

L) > L(t)* = (Cr + Co)llfo]l o~ (4.19)
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But (4.19 implies thatL(¢) blows up in finite time provided that
2

1
0 < L0 — (C1 + Co) ]| - = ( / (1—x>eo<x>dw> (O + o))l

It is easy to design initial data satisfying this conditi@nd thus leading to finite time blow up. This
completes the proof of Theorein3. O

5. GLOBAL REGULARITY WITH DISSIPATIVE FOURIER MULTIPLIER

In this section we establish a connection between the glagpllarity results obtained fod (8)—(1.9)
when the dissipative non-local operatdisare replaced by dissipative Fourier multiplier operatars ap-
proach that has been more standard in fluid dynamics. Momisetg, we will replaceCf(x) by

~ Y
(P©IQ) (@)

for a nice enough radially symmetric Fourier multiplier dyoh P, and consider the global regularity for the
slightly supercritcal SQG equation

80 +u-Vo+ (PF)Y =0 (5.1)

u= VAo (5.2)
The setting can be eith&? or R? with decaying initial data. In the latter case, an additiargument is
needed for Lemma&.2to remain valid due to lack of compactness; sE&.[We will focus on the periodic
case. Note that working ofi? is equivalent to working ofR? with 6(z,t) extended periodically. We will
henceforth pursue this strategy, thinking of Fourier nplisr P and its corresponding convolution kernel
Kin R,

Intuitively, the Fourier multiplier corresponds to a naraboperator’ as defined in1.5), with m(y) that

is comparable td’(1/|y|). We make this connection more precise in the following tworigas.

Lemma 5.1 (Dissipative operator associated to Fourier multiplier - Ugper bound). Let P(¢) = P(|¢|)
be a radially symmetric function which is smooth away frompb,zeon-negative, non-decreasing, with
P(0) =0andP(¢) — oo as|¢| — oo. In addition assume that

(i) P satisfies the doubling condition:

P2[¢]) < epP(¢]) (5.3)

for some doubling constar, > 1.
(i) P satisfies the Ermander-Mikhlin condition:

2EP©O)] 161 < enP(C) (5.4)

for some constant; > 1, and for all multi-indicesk € Z¢ with |[k| < N, with N depending only
on the dimensioa and on the doubling constany,.
(iii) P has sub-quadratic growth atb, i.e.

1
/O PO YICldlc] < oo. (5.5)

Then the Fourier multiplier operator with symb@!(¢{) is given as a non-local operator defined as the
principal value of

(POIO) @) = [ (06) = b6+ 1) K vy (56)
and the radially symmetric kerné{’ satisfying
K (y)| < Cly[~*P(ly| ™) (5.7)
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for all y # 0, for some positive constaat > 0. Similarly |V K (y)| < C|y|~41P(|y|~!) for y # 0.

Proof of Lemm&.1 As in Littlewood-Paley theory, consider a smooth, radiaijynmetric functionsp,
supported orl /2 < [¢| < 2, such that
1=Y ¢(277¢) (5.8)
JEL

holds for¢ € R?\ {0}. We write p;(¢) = ¢(277¢), and note thatP({)p;(¢) is smooth, compactly
supported with”(0)¢;(0) = 0. Hence

Ky == | PO

is family of L! kernels, which are smooth at the origin, radially symmetiw have zero mean @&f. Thus
we may write (in order to avoid principal value integrals vee wouble differences)

(POROI0) @)= [ Ks(w) 20@) - b0z )~ 0(a + ) dy.

Fory # 0, letjo = [log, |y|~1] and fix N > d + log, cp to be an even integer. B%()—(5.4) we have

> Iy |—Z||K||Loo+§j/ SOy

J<Jjo Jj=jo

< IR+ X | / AP0 (O)e i

j<io J=jo
<3 [ PQeeou o S o | P(Q)d¢
JZJ:) jZJ:O 2i-1<|¢|<2i+1
< P( 230 Z/ (27 JC Yd¢ + Cly|~ N Z 9—J(N—d) p (2j+1)
I<0 Jj=jo
< OP(20) Y~ 24 Oy Nom oV Y 7 o U (Nd) p(gio) oo
i< i>Jo
< CP(ly|™lyl= + CP(ly| Yy~ Y 27 0ol (V=d-logs ep)

Jj=Jo
which shows that the suit (y) = Zj K;(y) converges absolutely for ajl # 0, and provesq.7). The

purpose of conditions.5) is now evident. For a smooth functigh(say at least of clas§?), in order to
make sense of the integral

K(y) (0(z —y) + 0(z +y) — 20(x)) dy,

ly|<1

in view of (5.7) we need to assume thﬁg‘<1 P(ly|™ Y|y~ 2dy < 400, which is equivalent to5.5). The
bound for|VK|(y) is analogous and we omit further details. O

Lemma 5.2 (Dissipative operator associated to Fourier multiplier - Laver bound). Let the Fourier
multiplier P and its associated kerné{ be as in Lemma&.1. Assume additionally that

(v) P satisfies
()2 P(¢) > et P(Q)|¢| 42 (5.9)

for all |¢| sufficiently large (say larger tham, > 0), for some constanty > 1.
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Then the kernek corresponding taP (see(5.6)) may be bounded from below as
K(y) > C ™ y[~"P(ly|™") (5.10)
for all sufficiently smally|, for some sufficiently large constafit> 0.

Proof of Lemmé&.2. From our assumptions, the symilis aC?t2? smooth function except perhaps at the
origin. Without loss of generality we can assuifd@o be smooth at the origin as well. Otherwise, we can
write P = P+ R whereP is aC%*2 function everywhere wittP(¢) = P(¢) for all |¢] > ¢, P(0) = 0 and
(=A)N/2P bounded inR?. The remaindei? is a bounded compactly supported function wittn) = 0.
Therefore, the Fourier multiplier operator with symijols the sum of the operators with multiplief%and
R. For P we apply the proof below and obtain a kernel satisfyid (), and for the remaindeR we have
(RB)Y = R x 6 andR" is a bounded, mean zeid kernel. Thus, addingz" will not destroy the estimate
(5.10 for small enoughy.

If P is smooth nea¢ = 0, we have thaQ(¢) = (—A)**2/2P(¢) € L'(RY). Indeed, [ -, |Q(¢)]d¢
is finite sinceP’ is smooth, while by%.4) and £.5) we have

0o 1
[ 1Q@dc < en [P PQdc=en [ IEPACDAC = en [Pl < oc.
¢1>1 ¢[>1 1 0
We may hence define the functidd, the inverse Fourier transform efQ) as
M) =~ [ @ = [ Q)eosty- C)dc
R4 Rd

where we have used the fact thatis radially symmetric and real. Moreover, note thahas zero mean,
since in view of Lemm&.1we have the bounV (z)| < |z|™2|PY(x)| < C|z|?P(|z|~) — 0 as|z| — 0
sinceP is sub-quadratic at infinity5(5). Thus we may rewrité/(y) as

M) = [ QO —costy- 03¢ = [ QO = cos(Crlu)ic 511)
by using that) is radially symmetric. In order to appeal t6.9) we further split
M) = [ QOO costld + [ QO - cos(Galyh)e. (5.12)
I¢I<co ¢I>co

For all |y| < ¢;", the first integral in .12 can be estimated by from below byCq|y|?, whereCyy =
f\g‘\<co |Q(¢)|d¢. Then using §.9), for |y| < c; ' we obtain

M(y) > ~Colyl® + ¢ / ¢~ P(C)(1 — cos(Caly]))de

[¢|=>co
> —Colyl* + 01}1|y|2/ 2|~ P(2ly| ) (1 — cos(z1))dz
|z[>colyl
> —Colyl® + ' lyl? /2>| - 2]~ Paly| 1) (1 — cos(z1))dz

> Colyl? + el @Dy PPy /2 s
Z|Z| 2

> —Coly +2C 7 y*P(ly| ) (5.13)

for some sufficiently large consta6t > 0 that depends only oy andd. The assumption that(¢{) — oo
as|¢| — oo, combined with §.13 shows that

M(y) > CylP(ly| ™)

holds for all sufficiently smally|.
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To conclude, we note that sindd = —Q = —(—A)@+2/2P we have thatk (y) = —PV(y) =
ly|~(4+2) M (3) in the sense of tempered distributions, and hence we olftairidr sufficiently smally| the
boundK (y) > C~ty|~?P(|y|~") holds, concluding the proof of the lemma. O

Remark 5.3 (Examples of symbolsP). The conditions %.3—(5.5) that were assumed on the symliidin
order to obtain the upper bound for the associated kerrefaaty common assumptions in Fourier analysis.
For all symbols for interest to us in this paper, conditiér) also naturally holds. The dimension relevant
to the SQG equation i§ = 2. WhenP(¢) = |¢|(log(|¢|))~“ for sufficiently large|¢| and0 < a < 1,
corresponding tol(4), one may verify that—A)2P(¢)|¢[*/P(¢) — 1 as|¢| — oo, so that we may take
cg = 21in (5.9 if ¢¢ is sufficiently large. Thus conditiorb(9) is not restrictive for the class of symbols we
have in mind.

The proof of Theorem..4 combines the estimates in Lemnfag and5.2above, with the argument given
in Section3. One complication arises due to the fact tHaf () only holds for small enougly|. In fact, for
the class of multipliers® that we consider, positivity of the kernél is not assured. Because of thaf?®
maximum principle is no longer available. However, therariseasy substitute which is sufficiently strong
for our purpose.

Lemma 5.4. Assume that smooth functié(, t) solveg(5.2). Suppose that the kern&l(y) corresponding
to the multiplierP via (5.6) satisfieg K (y)| < Cly|~?P(|y|~") forall y and K (y) > C~ty|~¢P(|y|~") for
all |y| < 20, whereo, C are positive constants. Then there exikfs = M., (P, 6y) such that|6(z,t)|| e <
M forall t > 0.

Proof. Letting M (t) = ||6(-, )|z, we prove that there exist®/, > M (0), sufficiently large, such that
M(t) < M, forallt > 0. If not, then for any fixedV/, there exits &, > 0, such thatM (¢.) = M., and
0y M (t,) > 0. For this fixedt, let z be a point of maximum fof (-, ¢..). We have

£160(7) > / @) 06 Ky
o<|y[<oco

Pyl ) Py "
> cM*/ I gy — €102 / W) gy
o<|y|<20 |Z/|d | HL2(T ) ( o<y |y|2d

> M, P((20)™") = Cl00o]l 2(ray P(0™ ) o~? (5.14)

We used that” > 0 implies [|0(-, )| ,2(re) < [[0o]l2(ray in the above calculation. The estimate1(?)
proves that, M (t.) must be negative i\, is large enough, depending only éh(thougho and other
constants) andy. It follows that M (t) will never exceed the larger of this bound ||| .. O

Proof of Theoreni..4. The first two lemmas of this section show that for the mukipl satisfying 6.3)—
(5.5 and 6.9) we have thal P8)" (z) = [(0(x) — 0(x + y))K (y)dy, with K being radial and smooth
away from zero. Moreovers satisfies K (y)| < Cly|~?P(|y|~* for all y and K (y) > c|y|~¢P(|y|~! for
all |y| < 20, whereC, ¢, o are positive constants depending only/an

Consider a smooth radially decreasing functigf(y) that is identicallyl on |y| < o and vanishes

identically on|y| > 20. We decompose

K(y) = K(y)¢o(y) + K(y)(1 —o(y)) =: Ki(y) + Ka(y),
so that

(P)"(@) = [ (0a) =0+ u)Ka(0) + | (0la) = 0la+ p)Kaly) = £160(2) + L26(a)

The nonlocal operatof; is of type (L.7), since by letting
m(r) = CrP(r~Y)po(r) (5.15)
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we have that

Ki(y) = m(ly|) |y~

for all y and someC' > 0. It is clear that the above defined satisfies propertiesl(2—(1.3) and (.10
in view of assumptions1(15—(1.17) imposed onP. Therefore for£, we will be able to directly use the
estimate in Lemma.3, which relies only lower bounds for the kernel associatedto

On the other hand, we observe tié ¢ L'(R?) since K, (y) = 0 for y < o, and we have

[Ka(y)| < [K(y)] < CP(ly[™Y)ly[™ < o*P(o™ )|y~

forany|y| > o, by using (.16). Let us fix the constant’y = || K2|[ 1 (gae). Thenifé(-,¢) obeys the modulus
of continuityw(¢) it is clear that

|L20(w,t) — L260(y,t)| < 2C min{w(§), My}, (5.16)

whereM, is the L> norm bound from Lemma.4, holds for allz, y € R?, where|z — y| = £.

Now the argument of Sectidhgoes through with minor changes. We provide an outline oatgement
to verify this. First,, similarly to 8.7) we may prove that foB large enough (now depending eras well)
we havewp (o) > 3M, > 3||6(-,t)|| L, SO that the modulus of continuity can only be broken at \sabfe
¢ € (0,0). Let Dy andDg be the bounds obtained from the dissipative operétovia Lemma2.3. Note
that the only contribution from the integral definifig; that is used in the estimates is fpre (0, &) (see
(3.10 and @.14), and for us¢ < o so all the bounds on the dissipation given in the proof of Taenl.1
require no modification. Therefore, providedind~ are chosen sufficiently small, we have

min {25(6). 856 + 250} i(6) ~ (525(6) + DEO)) <0

forany B > 1 and¢ € (0, 0), exactly as in the proof of Theorefinl. The proof is hence completed once
we show that the contribution @, is controlled:

2y min{uws (€), 201} < 3Di(6) (5.17)

forany¢ € (0,0) and anyB > 1. The rang€ € (0,d(B)) is clear since herep(¢) < B¢ and by @3.14)
we have

CB2

c 1" o(B 3C
Dgp(§) = —Z§2m(§)w3(§) = mf (3 +1In (5 )> > QRCQABg > 4Cy B¢ > 4Cwp(§)

by letting < be small enough (independentB8f> 1).

We next consider the rangec (6(B), o). In view of (3.10), we haveDg(¢) > Cwp(§)m(2£), where
C = (2 —c¢a)/A. SinceP({) — oo as|¢| — oo, we have thal'm(2§) > 4Cs, for all € € (§(B), k), for
somex > 0. If k > o the proof is completed, but this cannot be guaranteed, saweetb also consider the
casex < 0. For¢ € (k,0), we have

R

Ds(€) 2 Cup(€)m(26) > Con(wym(s) > Cm(a)y [ RO (5.18)

By making B large enough we can ensure that the right hand side.8(is larger thar2 M., completing
the proof. O

6. GLOBAL WELL-POSEDNESS FOR 2D EULER-TYPE EQUATION WITH MORE SINGULAR VELOCITY
In this section we address the issue of global regularityHfeiviscid active scalar equation

0 —u-VO=0 (6.1)

u=V+AT2P(A)f (6.2)
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where the multiplierP(¢) = P(|¢]) is a radially symmetric function which is smooth, non-desiag, with
P(0) = 0andP({) — oo as|¢| — oo. In addition, we assume thét satisfies a doubling property,

P(2[¢]) < epP([C]) (6.3)
for some doubling constarf, > 1, that
|¢|~“P(|¢|) is non-increasing (6.4)

for somea € (0, 1), and a Hormander-Mikhlin type condition
2EPQ]161M < enP(Q) (6.5)

holds for some constani; > 1, for all multi-indicesk € Z<, with |k| < N, whereN depends only on the
dimensiond and on the doubling constant. Condition €.4) is quite natural in view of@.7) below, while
conditions 6.3) and 6.5) are standard in Fourier analysis. We remark that while ifiima this paper, we
have learned of a recent related wotk]which proves a result very similar to the one proved in teisti®n
under slightly less restrictive assumptionsian

Using the technique of Lemm@al, one may show usings(3) and .5 that the convolution kernel
K corresponding to the operat®-A~2P(A), i.e. to the Fourier multipliei¢*|¢|~2P([¢|), satisfies the
following estimates

K (2)] < Cla| "™ P(j2|7Y),  |[VE ()| < Cla|"P(27!),  |[VAK(x)| < Cla|~*2P(|z|") (6.6)

for all x # 0. Moreover we note thak' integrates td around the unit sphere, and hence convolution with
K annihilates constants.

The study of Euler equations with more singular velocit{€s])—(6.2), was recently initiated by Chae,
Constantin, and Wu in3]. They prove the global global regularity for the Loglogi&uequation; namely,
the prove global regularity in the case that arises wR¢) = [In(1 + In(1 + |¢[?))]?, for v € [0,1].
Their approach relies on estimates for the Fourier locdlgmdient of the velocity for a particular class of
symbols. Our aim here is to provide a proof of global regtydir a slightly more general class of symbols
P, via the modulus of continuity method. The main result of thection is the following:

Theorem 6.1(Global regularity for the P-Euler equation). Let P be a smooth radially symmetric func-
tion which is smooth, non-decreasing, wii0) = 0 and P({) — oo as|(| — oo and satisfies assumptions
(6.3—6.5). If 6, is periodic and smooth, and we assume that

/ M__dr asM — (6.7)
1 rIn(2r)P(r) o o '

then theP—Euler equation(6.1)—(6.2) has a global in time smooth solution.

Remark 6.2 (Integral formulation ). In fact, our proof provides a stronger result if we state thestitutive
law relatingu andé@ in terms of an integro-differential operator instead of afi@r multiplier

ulw) = [ 0+ 0Ky

whereK is any kernel which satisfies the hypothegi) for any functionP for which (6.3), (6.4) and 6.7)
hold, but not necessarilys (5).

In the previous sections, we constructed autonomous fenilf moduli of continuity preserved by the
dynamics of the respective equations. In the inviscid caseyill construct a single modulus of continuity
and then scale it autonomously. The following lemma makestove observation precise:

Lemma 6.3 (Modulus of continuity under pure transport). Letwu be a Lipschitz vector field and |ét
solve the transport equation

80 +u-VO=0 (6.8)
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If 6o = 0(-,0) has some modulus of continuity¢), thend(-,¢) has the modulus of continuity(B(¢)&)
t

whereB(t) is given by
B(t) = exp ( / ||VU('>8)HL°<>> |

Equivalently,B(t) solvesB(0) = 1 and B(t) = ||Vu(-,t)|| L B(t).

Proof of Lemma&.3. The solution to the transport equation can be obtained bgwoig the flow of the

vector field backwards. Indeefl,z, t) = 6y(X (t)) whereX solves the ordinary differential equation
X(s) =u(X(s),t —s), X(0)=uz.

If X(¢) andY (t) are two such trajectories starting andndy respectively, from Gronwall’s inequality

) -0 < e ([ 199l ) = vl = BlOJe — ).
Therefore
10z, 1) — 0y, t)] < [00(X(2)) — Oo(Y (1))| < w(B(t)|z — yl)
which concludes the proof of the lemma. O
Proof of Theoren®.1. Let us consider an initial da# whose Lipschitz> and L? norm are bounded by

an arbitrary constant. Applying Lemma6.3with w(§) = A, we obtain thab(-,¢) obeys the modulus of
continuity AB(t)¢, i.e. it is Lipschitz continuous with Lipschitz constant

[VO(-, 1)L~ < AB(t), (6.9)

whereB(0) = 1 andB = ||Vu(-, )|z~ B(t).

By the maximum principle||0(-,t)||z < ||6o|| < A for any timet. Moreover, since: is divergence-
free, |0(-, )|z < ||6o]lr2 < A for any timet. In order to combine the last two estimates, we have to
estimate the Lipschitz norm af at timet. Let¢(y) be a radially non-increasing non-negative function that
is constantl on |y| < 1/2 and vanishes fofy| > 1. For somer € (0, 1) to be chosen later, we split the
integral definingVw into three pieces to estimate

Vuw) =| [ V@O + 0y < [ [960mEGI 6 + ) - 0wy

+ / V(1 — (/) o) K ()] 16z + y)|dy
Rd

+

V(0= K@)+ )y

Using the bounds o/ and its derivatives obtaine@.©), and the fact thad is Lipschitz with constant given
by (6.9), we may further bound

P(lyl™")
ly|<r ly|?

L [(=A)V((L =K ®)| [(=A)'0(x + y)|dy (6.10)
P(p~h)
p

P(ly|™)

|yl

Vu(x) < C 8(x +y) — 0(x)|dy + C / 10(z + )|dy
r/2<]y|<1

r 1
<CAB®) [ Pl dp+ Cloali= [ / dp
0 r/2

P(ly|™)
|42 dy

Ol A) ] o /

ly[>1/2

< CAB(t)rP(r—Y) + CAP(r™ 1) 1n§ + CAP(2). (6.11)
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In the last inequality above we have additionally used tvatstafirst, that by §.4) we havefor P(p~Ydp <
CrP(r~!); and second, that sineeis periodic and has zero mean on the torus, we can use theeSobol
inequality and estimatg(—A) 10| e ga) = [[(=A) "0l poo(pay < C|l0]|2(ray < CA. By choosing
r = B(t)~" in (6.11), which is allowed sincé3(0) = 1 andB > 0, we arrive at
V(- )| oo < C’A(l + P(B(1)(1 + ln2B(t))).

Finally we rewrite the differential equation fd?(¢)

B(t) = ||Vu(-,t)||p= B(t) < CA(l + P(B(t))(1 +1n 2B(t)))B(t).
Clearly this ODE has a global in time solutidrand only if

/ [ S N
L rin(2r)P(r) >
holds, which finishes the proof. O

APPENDIXA. ESTIMATE ON THE DISSIPATIVE OPERATOR AT POINTS OF MODULUS BREKDOWN

Here we prove Lemma.3. Our argument parallels that df9], but is slightly simpler and more general,
as we use the integral representation of the diffusion geoer instead of generalized Poisson kernels
employed by 19].

Proof of Lemm&.3. Due to translation invariance and radial symmetry, we mayme without loss of
generality thatr = (— 0) andy = (— g,o). For a point(n,v) € R? we write K (1, v) for the dissipation
kernel corresponding t6. Then we have

ﬁe(g,o)—ze(—g,o):/R/R(e(g,o)—e(—g,o)—9(§+n, V) +0(—5 +n,v)) K (n,v)dndv. (A.1)

Note that since obeys the modulus of continuity, one may bound:@( 0) — £0(—— 0) from below

by the expression on the right side @f.{), but instead ofK (n, ) with a lower bound for it, such as
m(y/n% +v2)(n? + v*)~! (1.6). We will henceforth writeK as a shortcut for the latter expression, and
assume without loss of generality tHdtis radially non-increasing and non-negative, since 3o is (1.6).

£9(5.0) — £o(-5 // € 4 )4 0 — ) K o)
// S+mv)+0(=5 —n,v)K(n,v)dndv
¢/2
w(€) — O(=5 — e—n ,
+/R/—g/2( (€) = (=5 = n.v) +0(5 +1,)) K (=€ — n,v)dnd

://oo w(&)(K(n,v)+ K(=§ —n,v))
RJ—¢£/2

- (9(%+777V)—9(_%—7%”))(}{(777’/)—K(§+U7V))d77dV

://OO w(&)(K(n,v) + K(=§ —n,v))
RJ—=£/2

—w(&+2n)(K(n,v) — K&+ n,v))dndv

+ /R / SO (K ) + K (€= n.0)

+ (w(f +2n) — 9(% +n,v) + 9(—% -, 1/)) (K(n, v)— K(+n, I/))d?]dl/
=7l +7t
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Note thatK (n,v) — K(§+n,v) > 0forn > —% due to the monotonicity oK™ (or that of its lower bound).
Hence, using that obeys the modulus of continuity, we see thai™ > 0. To obtain a useful lower bound
for T, we only retain the singular piece centered abput 0. Changing variableg + £/2 — 1 we have

/ / w(2n) — 0(n,v) + 6(—n, 1/)) (K(n — %,y) - K(n+ %,I/))d’l’}dl/. (A.2)

When|v| < ¢/4 and|n — £/2| < £/4, using thatn is radially non-increasing, we have that

_m< (n—§)2+v2> ) (W)

35 2 (n— %)%+ (n+§)2 +v?
1 1
2m< (77—%)2+V2> <(n—§)2+u2_(n+§)2+vz>
= ; 1 :K(T}_%>V)
2m< (n—135)? +V>2((77_%)2+1/2> 2 . A2

Inserting estimateA.3) into expressionA.2), and recalling thafl obeysw, we obtain

£/4 35/4 §
/5/4/5 w(2n) = O(n,v) +6(=n,v))K(n — 5,v)dndv

2
On the other hand, the dissipation contribution from thedation parallel taz — y may be rewritten as

T”=//OO w(&) (K (n,v) + K(=€ —n,v)) —w(&+2n)(K(n,v) — K(&+n,v))dndv
£/2
5/2
w -2 ,v)dndv ) —w 2n)) K (n,v)dndv
// €) +w(—€ — 20)) K (n,v) 77+//5/2 (& +2m)) K (n,v)dn

—£/2
=/; ((8+w(§—%DK(Mn+/ (w(€) — wlé +20)) B (n)dn

¢/ 3&/4 -
/ / —0(n,v) +0(-n,v) —9(77,—1/)—1-9(—77,—1/))}((77— %,y)dndy: —

00 —-£/2
£/2 - 00 ~
= /0 (20(8) — w(& +2n) — w(€ —2n)) K (n)dn + /ﬁ/2 (2w(8) = w(& +2n) +w(2n — €)) K (n)dn
where we have denoted
- [ K@)

Sincew is concave, the proof of the lemma is concluded once we ésttatiie existence of a positive
constant”' such that

Cm(2n)

K(n) >

for all n > 0. But the above estimate is immediate simeés non-increasing, and hence
K T dv Cm(2n)
Kn,uduz/Kn,desz277/ > )
R [ Koy o | mme
thereby concluding the proof of the lemma. O

Remark A.1 (One-dimensional version).lt is clear that the above proof also holds in the one-dinmadi
case relevant for the Burgers equation. In fact this cadenigler since there is no need to introduke
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