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ABSTRACT. We consider the Navier-Stokes equations posed on the half space, with Dirichlet boundary con-

ditions. We give a direct energy-based proof for the instantaneous space-time analyticity and Gevrey-class

regularity of the solution, uniformly up to the boundary of the half space.
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1. Introduction

In this paper, we consider the Navier-Stokes system

∂tu−∆u+ u · ∇u+∇p = f

∇ · u = 0,
(1.1)

in the half-space

Ω =
{

x = (x1, . . . , xd) ∈ R
d : xd > 0

}

(1.2)

with the no-slip boundary condition

u
∣

∣

∂Ω
= 0 (1.3)

and the initial condition

u(x, 0) = u0(x), x ∈ Ω. (1.4)

For simplicity, we let d ∈ {2, 3}, but note that higher dimensions may be treated similarly. See e.g. [7,30,34]

for the well-posedness and further properties of the solutions to (1.1)–(1.4).

In Theorem 2.3 below we prove that the solution to (1.1)–(1.4) immediately becomes space-time real

analytic, with analyticity radius which is uniform up to the boundary ∂Ω, under the hypothesis that the force

is real analytic in space-time. The result only requires finite Sobolev regularity on the initial datum u0.

Assuming that f is space-time analytic in Ω × I , where Ω ⊆ R
3 and I is a complex neighborhood of

(0, T ), Masuda [26] proved that the interior analyticity of a solution u to the Navier-Stokes system follows

from that of the external force f (see also [15]), answering a question posed by Serrin [32]. Furthermore, in

the case that Ω is a bounded domain with analytic boundary ∂Ω, assuming that f is analytic uniformly up to

the boundary and that the solution (u, p) is C∞, Komatsu [17, 18] showed that (u,∇p) is globally analytic

in x up to the boundary ∂Ω and locally analytic in t. His technique is inspired by the previous work by

Kinderlehrer and Nirenberg [16] for second order parabolic equations, and is based on an induction scheme

on the number of derivatives (see also [23]). A semigroup approach for analyticity up to the boundary in

(1.1)–(1.4) was later given by Giga [11] (see also [29]), and a complex variables-based proof was given by

the second author and Grujić [13,14] (see also [5,6]). Establishing the analyticity of solutions to (1.1)–(1.4)

on domains with boundaries is particularly important in the context of the vanishing viscosity limit [31], or

equivalently, the infinite Grashof number limit in our context.

The proof of the instantaneous space-time analyticity uniformly up to the boundary of the half-space

given in this paper is based solely on L2
x,t energy estimates of the solution and its derivatives (see also [21] for

the non-homogeneous Stokes system). The main obstacle to energy-based proofs on domains with bound-

aries is that the normal derivatives of the solution do not obey good boundary conditions. We believe that our

approach will be useful in establishing real-analytic and Gevrey-class regularization results for semilinear

parabolic PDEs with different types of boundary conditions, by only appealing to energy estimates.
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We recall that in the case of no boundaries, Foias and Temam have developed in [10] a very efficient

method to prove analyticity, or more generally Gevrey-type regularity, which has in turn inspired many

works (cf. [1–4,8,9,12,19,22,25,27,28] and references therein). The technique in [10] is based on Fourier

analysis, which is unavailable in the case of domains with boundaries. One of the main aims of this paper

is to find a similarly direct approach for establishing analyticity, which is based on the summing Taylor co-

efficients, rather than on the Fourier techniques. Such methods were introduced in [20] for the propagation

of analyticity in the Euler equation, and this in turn led to be efficient in estimating the size of the uniform

radius in terms of the size of initial data. However, finding an analog in the case of the Navier-Stokes equa-

tions proved to be more difficult due to the Laplacian term. In [21], the last two authors of the present paper,

inspired by Komatsu’s work [18], have used classical energy inequalities for the heat and Laplace equations,

to achieve normal, tangential and time derivative reductions on terms of the form ti+j+k−3∂i
t∂

j
d∂̄

ku. Here ∂̄
and ∂d denote the tangential derivative component and the normal derivative component, respectively. This

derivative reduction method works for the heat equation and extends naturally to the inhomogeneous Stokes

system, yielding the desired regularization result in [21].

In order to address the Navier-Stokes system, we use a Gevrey type norm

φT (u) =
∑

i+j+k≥3

ǫiǫ̃j ǭkNi,j,k‖t
i+j+k−3∂i

t∂
j
d∂̄

ku‖L2([0,T ]×Ω) + ‖u‖H2([0,T ]×Ω)

where Ni,j,k represent certain binomial expressions which account for the possible growth of the Taylor

coefficients. Note that the finiteness of the norm φT (u) for some T > 0 implies that the function u is real-

analytic in space-time on (0, T )× Ω (see e.g. [28] and references therein). The main goal is to establish an

inequality of the type

φT (u) . Ku0
+ ‖f‖+Ku0

N
∑

j=1

Tαj (φT (u))
βj , (1.5)

where αj > 0, N ∈ N is fixed, and 0 < βj ≤ 2. Here ‖f‖ represents a suitable analytic norm of f ,

and Ku0
is a constant that depends on the Sobolev norm of the initial datum. From (1.5) and a standard

Grönwall-type barrier argument, we deduce that for short enough time φT (u) stays bounded from above by

a constant which depends on a Sobolev norm of u0 and a space-time analytic norm of f , establishing the

desired joint space-time analytic regularization. Although establishing (1.5) comes with some computational

difficulty due to the nonlinear term φT (u ·∇u), the logic behind the analyticity estimate remains as direct as

observed in the case of the nonhomogeneous heat equation. We believe that this method directly generalizes

to nonlinear Stokes systems with nonlinearity given by N(x, t, u,∇u), a space-time analytic function in

each of its variables.

The paper is organized as follows. In Section 2, we introduce some notation, define the Gevrey-class

norm φT , and state the main result (cf. Theorem 2.3). Also in Section 2 we recall the derivative reduction

estimates from [21]. In Section 3, we give the proof Theorem 2.3, assuming a suitable bound for the

nonlinear term, given by terms on the right side of (1.5) (cf. Lemma 3.1). The proof of this nonlinear

estimate is finally given in Section 4, and is split into three separate lemmas which each deal with one case

of the derivative reduction estimates (cf. Lemmas 4.4, 4.5, and 4.6).

2. Main result

Before stating the main result of this paper, Theorem 2.3 below, we first introduce some notation. For

r ≥ 1 we define the index sets

B =
{

(i, j, k) : i, j, k ∈ N0, i+ j + k ≥ r
}

and Bc = N
3
0\B.

For m ∈ N0 we define the real-analytic binomial coefficient

Nm =
mr

m!
.
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All the proofs and statements in this paper carry through for the Gevrey-class s binomial coefficients Nm =
mr/(m!)s, for s > 1. For simplicity of notation we only discuss the stronger (analytic) case s = 1.

For a fixed time horizon T ∈ (0, 1] and given small parameters ǫ̃ < ǭ < ǫ ∈ (0, 1], we consider the sum

φT (u) =
∑

B

Ni+j+kǫ
iǫ̃j ǭk‖ti+j+k−r∂i

t∂
j
d∂̄

ku‖L2
x,t([0,T ]×Ω) +

∑

Bc

‖∂i
t∂

j
d∂̄

ku‖L2
x,t([0,T ]×Ω)

= φ̄T (u) + φ0,T (u),

(2.1)

where ∂̄ denotes the vector of tangential derivatives ∂̄ = (∂1, . . . , ∂d−1). Above and in the sequel we use

the notational agreement that for k ∈ N0 we use ∂̄k to denote:

‖∂i
t∂

j
d∂̄

ku‖L2
x,t

=
∑

α∈N2
0
,|α|=k

‖∂i
t∂

j
d∂

αu‖L2
x,t
.

Moreover, if the domain in the Lebesgue/Sobolev space is not indicated, it is either Ω or Ω × (0, T ), and

this will be clear from the context. Throughout the paper we use the symbol a . b to mean that there exists

a sufficiently large constant C = C(Ω, r, d) ≥ 1 such that a ≤ Cb.

REMARK 2.1. In (2.1) we note that φ0,T (u) is the Hr−1([0, T ] × Ω) norm of the solution u of (1.1)–

(1.4). Under suitable smoothness and compatibility conditions on u0 and f , and for sufficiently small T , it

is known (cf. e.g. [33, Chapter III]) that φ0,T (u) is a priori bounded in terms of Sobolev norms of u0 and f .

REMARK 2.2. The finiteness of the norm φT (u) in (2.1), for some T > 0, implies that the function u is

real-analytic in space-time on (0, T )×Ω (see, e.g. [28]). Moreover, for any t0 ∈ (0, T ), the finiteness of the

sub-sums with i = 0 and i = 1 shows that u(·, t0) is real-analytic in space, uniformly up to the boundary

of the half space Ω. The radius of analyticity is bounded from below by a constant multiple of t0ǫ̃ and the

analytic norm is bounded from above by (1+ t
−1/2
0 )φT (u). Note also that by changing the binomial weight

Nm to mr/(m!)s, with s > 1, the finiteness of φT (u) implies the Gevrey-class s regularity of u.

In [21], the last two authors of this paper have showed that the solution u of the Cauchy problem for the

inhomogeneous Stokes system

∂tu−∆u+∇p = f, in Ω,

∇ · u = 0, in Ω,

u = 0, on ∂Ω

(2.2)

satisfies

φT (u) . φ0,T (u) +MT (f) (2.3)

where

MT (f) =
∑

i+j+k≥(r−2)+

Ni+j+k+2ǫ
iǫ̃j+2ǭk‖ti+j+k+2−r∂i

t∂
j
d∂̄

kf‖L2
x,t((0,T )×Ω)

+
∑

i+k≥(r−2)+

Ni+k+2ǫ
iǭk+2‖ti+k+2−r∂i

t ∂̄
kf‖L2

x,t((0,T )×Ω)

+
∑

i≥r−1

Ni+1ǫ
i+1‖ti+1−r∂i

tf‖L2
x,t((0,T )×Ω),

(2.4)

provided that

0 < ǫ̃ ≤ ǭ ≤ ǫ ≤ 1 (2.5)

are suitably chosen small constants depending on T , r, and d. For the sake of completeness, we recall

from [21] that the constants ǫ̃, ǭ, ǫ can be chosen as follows: There exists a constant C = C(r, d) ≥ 1 such
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that in addition to (2.5) we require

ǫ ≤
1

C
, T ǭ ≤

1

C
, (T ǫ̃)1/2 +

ǫ̃

ǫ
≤

1

C
. (2.6)

Since in this paper we consider T ∈ (0, 1], the above condition is satisfied as soon as we impose

ǫ ≤
1

C
, ǭ ≤

1

C
, ǫ̃1/2 +

ǫ̃

ǫ
≤

1

C
, (2.7)

where as before C = C(r, d) ≥ 1 is sufficiently large. Throughout this paper fix these values of ǫ, ǭ, ǫ̃
which obey (2.5) and (2.7), and emphasize that their values depend only on r and d. With this notation, the

following is our main result.

THEOREM 2.3. For d ∈ {2, 3} and r = 3 there exist ǫ, ǫ̃, ǭ ∈ (0, 1], such that the following statement

holds: For any divergence-free u0 ∈ H1
0 (Ω)∩H4(Ω) which satisfies suitable compatibility conditions, and

a space-time real-analytic f ∈ L∞(0, 1;H3(Ω)) ∩ Ẇ 1,∞(0, 1;H1(Ω)) ∩ Ẇ 2,∞(0, 1;L2(Ω)), for which

M1(f) < ∞, there exists T∗ ∈ (0, 1] such that the solution u of the Cauchy problem for (1.1)–(1.4) satisfies

the estimate

φT (u) . 1 +MT (f) (2.8)

for any T ∈ (0, T∗]. The implicit constant only depends on Ω, r, and d.

REMARK 2.4. In Theorem 2.3 the time T∗ depends on the datum through ‖u0‖H4 , and on the force

through ‖f‖L∞

t H3 + ‖∂tf‖L∞

t H1
x
+ ‖∂2

t f‖L∞

t L2
x
+M1(f), where M1(f) is as defined in (2.4).

REMARK 2.5. On the initial datum we have imposed, for simplicity, the requirement u0 ∈ H1
0 (Ω) ∩

H4(Ω), in addition to the usual compatibility conditions at the boundary of Ω. However, if we are only

interested in the space-time analyticity of the solution on (t0, T ] × Ω, for an arbitrarily small t0 > 0, we

may simply take u0 ∈ H1
0 (Ω). The local existence of the Cauchy problem to (1.1)–(1.4) with such initial

datum is classical, and the H4 regularity of u(·, t0/2) follows from the Sobolev smoothing properties of the

nonlinear Stokes equation [33], which allows us to apply Theorem 2.3 with initial datum ũ0 = u(·, t0/2).

The main idea in the proof of Theorem 2.3 is to apply the estimate (2.3) with f replaced by f − u · ∇u,

and to perform a nonlinear estimate on φT (u · ∇u) in terms of φ0,T (u) and φT (u). The goal is to arrive at

an estimate like (1.5), which then concludes the proof of the theorem upon choosing a suitable T .

The main idea behind the estimate (2.3) in [21] is to split the sum φT in (2.1) into several sub-sums, and

on each one perform a derivative reduction estimate. For convenience of the reader we recall from [21] these

derivative reduction estimates, for a solution of the non homogeneous Stokes system (2.2) on the half-space.

In all the below inequalities, we require i + j + k ≥ r. As shown in [21, Section 5.1], we may achieve a

normal derivative reduction for the Stokes operator

‖ti+j+k−r∂i
t∂

j
d∂̄

ku‖L2
x,t

+ ‖ti+j+k−r∂i
t∂

j−1
d ∂̄kp‖L2

. ‖ti+j+k−r∂i+1
t ∂j−2

d ∂̄ku‖L2
x,t

+ ‖ti+j+k−r∂i
t∂

j−1
d ∂̄k+1u‖L2

x,t

+ ‖ti+j+k−r∂i
t∂

j−2
d ∂̄k+2u‖L2

x,t
+ ‖ti+j+k−r∂i

t∂
j−2
d ∂̄ku‖L2

x,t

+ ‖ti+j+k−r∂i
t∂

j−2
d ∂̄kf‖L2

x,t
, j ≥ 2

(2.9)

which allows us to reduce the number of vertical derivatives (∂d) in the Gevrey (analytic) norm. On the

other hand, for j = 1, we have

‖ti+1+k−r∂i
t∂d∂̄

ku‖L2
x,t

+ ‖ti+1+k−r∂i
t ∂̄

kp‖L2
x,t

. ‖ti+1+k−r∂i+1
t ∂̄k−1u‖L2

x,t
+ ‖ti+1+k−r∂i

t ∂̄
k−1f‖L2

x,t
, k ≥ 1.

(2.10)
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For j = 1 and k = 0, we claim

‖ti+1−r∂i
t∇u‖L2

x,t
. ‖ti+1−r∂i

tu‖
1/2

L2
x,t

‖ti+1−r∂i+1
t u‖

1/2

L2
x,t

+ ‖ti+1−r∂i
tu‖L2 + ‖ti+1−r∂i

tf‖L2
x,t
, i ≥ r.

(2.11)

In order to reduce the number of tangential derivatives, we apply the estimate

‖ti+k−r∂i
t ∂̄

ku‖L2
x,t

+ ‖ti+k−r∂i
t ∂̄

k−1p‖L2
x,t

. ‖ti+k−r∂i+1
t ∂̄k−2u‖L2

x,t
+ ‖ti+k−r∂i

t ∂̄
k−2f‖L2

x,t
, k ≥ 2

(2.12)

given in [21, Section 5.2]. For k = 1, we use a special case (replace ∇ with ∂̄) of the inequality (2.11):

‖ti+1−r∂i
t ∂̄u‖L2

x,t
. ‖ti+1−r∂i

tu‖
1/2

L2
x,t

‖ti+1−r∂i+1
t u‖

1/2

L2
x,t

+ ‖ti+1−r∂i
tu‖L2 + ‖ti+1−r∂i

tf‖L2
x,t
, i ≥ r.

(2.13)

Lastly, for the pure time derivatives, we have

‖ti−r∂i
tu‖L2

x,t
. (i− r)‖ti−1−r∂i−1

t u‖L2
x,t

+ ‖ti−r∂i−1
t f‖L2

x,t
, i− 1 ≥ r (2.14)

as obtained in [21, Section 5.3]. The proofs of these reductions are based on simple H2 regularity consider-

ations for the linear parabolic type equations. The estimate (2.3) is obtained by summing over (i, j, k) ∈ B
the estimates (2.9)–(2.14), and to absorb all the u-dependent terms into the left side of the inequality by

choosing ǫ, ǭ, ǫ̃ such that (2.5) and (2.6) hold.

3. Proof of Theorem 2.3

We appeal to the results in [21] by rewriting the Navier-Stokes equation (1.1) as a forced Stokes equation

∂tu−∆u+∇p = −u · ∇u+ f

∇ · u = 0
(3.1)

on the three-dimensional half-space Ω = {x3 > 0}, with the Dirichlet boundary condition for u on ∂Ω.

Choosing to work with d = 3 is nonessential, and is convenient only in fixing the Sobolev-embedding

exponents in L∞(Ω) ⊆ H2(Ω) and L4(Ω) ⊆ H1(Ω). With this choice of dimension, it is possible to set

r = 3 in the definition of φ0,T (u) and φ̄T (u). We note that replacing H2 and H1 with higher order Sobolev

spaces, and increasing the value of r accordingly, we may treat (1.1) in any dimension d ≥ 2.

3.1. Local existence. In order to establish the boundedness of φ0(u) for a finite time horizon, we appeal

to a local existence result for the Navier-Stokes equations [33, Chapter III] (see also [24] for more general

local existence results for semi-linear parabolic problems with Dirichlet boundary conditions): Assume that

u0 ∈ H1
0 (Ω)∩H4(Ω) is divergence free and obeys suitable compatibility conditions, and that the forcing f

lies in L∞
loc([0,∞);H3(Ω)). Then there exists a time

T∗ = T∗(‖u0‖H4(Ω), ‖f‖L∞

loc
([0,∞);H3(Ω))) > 0 (3.2)

and a unique solution u to the Cauchy problem associated to (1.1)–(1.4) which obeys

sup
t∈[0,T∗]

‖u(t)‖H4(Ω) ≤ 2‖u0‖H4(Ω). (3.3)

Without loss of generality, in (3.2) we may take the T∗ ≤ 1. Furthermore, if we further assume that

∂tf ∈ L∞([0, 1];H1(Ω)) and ∂2
t f ∈ L∞([0, 1];L2(Ω)) we conclude from (1.1) and (3.3) that there exists a

constant C = C(d,Ω) ≥ 1 such that

sup
t∈[0,T∗]

(

‖u(t)‖H2(Ω) + ‖∂tu(t)‖H1(Ω) + ‖∂2
t u(t)‖L2(Ω)

)

≤ C(1 + ‖u0‖H4(Ω))
3 + ‖∂tf‖L∞([0,T∗];H1(Ω)) + ‖∂2

t f‖L∞([0,T∗];L2(Ω)) = C∗(u0, f).

(3.4)
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The upshot of (3.4) is that for any T ∈ (0, T∗] ⊂ (0, 1] we have

φ0,T (u) ≤ T 1/2C∗(u0, f). (3.5)

When T is sufficiently small, the above estimate implies the smallness of φ0,T (u), which is essential in

closing the nonlinear argument.

3.2. The Stokes estimate. From the result in [21], namely the estimates (2.3)–(2.4) for the nonlinear

Stokes equation (3.1), we obtain

φT (u) . φ0,T (u) +MT (f) +MT (u · ∇u)

= φ0,T (u) +MT (f) +
∑

i+j+k≥(r−2)+

Ni+j+k+2ǫ
iǫ̃j+2ǭk‖ti+j+k+2−r∂i

t∂
j
d∂̄

k(u · ∇u)‖L2
x,t

+
∑

i+k≥(r−2)+

Ni+k+2ǫ
iǭk+2‖ti+k+2−r∂i

t ∂̄
k(u · ∇u)‖L2

x,t

+
∑

i≥(r−1)+

Ni+1ǫ
i+1‖ti+1−r∂i

t(u · ∇u)‖L2
x,t

= φ0,T (u) +MT (f) +M1 +M2 +M3

(3.6)

where MT (f) is as defined in (2.4), and the parameters ǫ, ǫ̃, ǭ are fixed as in (2.5)–(2.7), so that they depend

only on d = 3 and r = 3. The bulk of the proof of Theorem 2.3 is to bound the sums M1,M2, and M3

appearing on the right side of (3.6), in terms of φ0,T (u) and φ̄T (u).

3.3. Bounds for the nonlinear term. These estimates for M1,M2, and M3 are performed in detail in

Section 4 below (cf. Lemmas 4.4, 4.5, and 4.6), and may be summarized as follows:

LEMMA 3.1. Fix T ∈ (0, 1], d ∈ {2, 3} and r = 3. Then we have

M1 +M2 +M3 . φ0,T (u)
1/2φT (u)

3/2 + T 1/2φT (u)
2, (3.7)

where the implicit constant depends only on r, d, and Ω, and is in particular independent of T .

From (3.6) and (3.7) we conclude that there exists C̄ = C̄(r, d,Ω) ≥ 1 such that

φT (u) ≤ C̄φ0,T (u)
1/2(φ0,T (u)

1/2 + φT (u)
3/2) + C̄MT (f) + C̄T 1/2φT (u)

2 (3.8)

for any T ∈ (0, T∗].

3.4. Conclusion of the proof of Theorem 2.3. In order to complete the proof of Theorem 2.3, it only

remains to combine (3.5) with (3.8). This is a standard barrier argument, which we sketch briefly. The goal

is to prove that for T sufficiently small, we have

φT (u) ≤ 4C̄ + 4C̄M1(f) = M (3.9)

where the constant C̄ is the one given in (3.8). Note that MT (f) ≤ M1(f). In order to prove (3.9) for T
sufficiently small, first use (3.5) and take T∗ ≤ 1/C∗(u0, f)

2, which ensures that

φ0,T (u) ≤ 1

for 0 < T ≤ T∗. Therefore, letting T∗ ≤ 1, from (3.5) and (3.8) we obtain

φT (u) ≤ C̄ + C̄(C∗(u0, f))
1/2T 1/4φT (u)

3/2 + C̄M1(f) + C̄T 1/2φT (u)
2. (3.10)

If our assertion (3.9) does not hold, there exists T̄ ≤ T∗ such that φ(T ) < M for T < T̄ and φ(T̄ ) = M .

Then, using (3.10) with T = T̄ , we get

M ≤ C̄ + C̄(C∗(u0, f))
1/2T̄ 1/4φT̄ (u)

3/2 + C̄M1(f) + C̄T̄ 1/2φT̄ (u)
2

≤
M

4
+ C̄(C∗(u0, f))

1/2T
1/4
∗ M3/2 + C̄T

1/2
∗ M2.

(3.11)



GEVREY REGULARITY FOR THE NAVIER-STOKES IN A HALF-SPACE 7

Restricting T∗ so that the last two terms are both less than or equal to M/4 gives M = 0, which leads to a

contradiction and thus proves Theorem 2.3.

4. Space-time analytic estimates for the nonlinear term

For the remainder of the proof, we omit the T -subindex in the quantities φT (u), φ̄T (u), and φ0,T (u),
and simply denote them as φ(u), φ̄(u), and φ0(u).

It is convenient to use the notation |(i, j, k)| = i+ j + k, which indicates the length of the multi-index,

and to denote

Ui,j,k :=

{

Ni+j+kǫ
iǫ̃j ǭk‖ti+j+k−r∂i

t∂
j
d∂̄

ku‖L2
x,t
, i+ j + k ≥ r,

‖∂i
t∂

j
d∂̄

ku‖L2
x,t
, 0 ≤ i+ j + k ≤ r − 1,

(4.1)

where we recall that Ni+j+k = |(i, j, k)|r/|(i, j, k)|!. Here the parameters ǫ, ǫ̃, ǭ are fixed as in (2.5)–(2.7).

With this notation we have

φ̄(u) =
∑

i+j+k≥r

Ui,j,k and φ0(u) =
∑

0≤i+j+k≤r−1

Ui,j,k. (4.2)

It shall be convenient to denote ∇ = (∂̄, ∂d) and u = (ū, ud), so that u · ∇u = ū · ∂̄u+ ud ∂du.

REMARK 4.1. We emphasize that throughout this last section the implicit constants in the . symbols

are allowed to depend on ǫm, ǫ̃m, and ǭm, where m ∈ Z is such that |m| ≤ 100. Indeed, since the ǫ̃, ǭ, ǫ have

been fixed solely in terms of Ω, d, and r, cf. (2.5)–(2.7), they are independent of time and thus any a-priori

finite power of these parameters may be hidden in the . symbol.

4.1. Gagliardo-Nirenberg inequalities. We use a number of well-known space-time Gagliardo-Nirenberg

inequalities that we summarize next. For u ∈ H2(Ω), we shall frequently use the following estimates:

‖u‖L∞(Ω) . ‖u‖
d/4

Ḣ2(Ω)
‖u‖

1−d/4
L2(Ω)

+ ‖u‖L2(Ω) , u ∈ H2(Ω) , (4.3)

‖u‖L∞(Ω) . ‖u‖
d/4

Ḣ2(Ω)
‖u‖

1−d/4
L2(Ω)

, u ∈ H2(Ω), with u
∣

∣

∂Ω
= 0 , (4.4)

‖u‖L4(Ω) . ‖u‖
d/4

Ḣ1(Ω)
‖u‖

1−d/4
L2(Ω)

+ ‖u‖L2(Ω) , u ∈ H1(Ω) , (4.5)

‖u‖L4(Ω) . ‖u‖
d/4

Ḣ1(Ω)
‖u‖

1−d/4
L2(Ω)

, u ∈ H1(Ω), with u
∣

∣

∂Ω
= 0 . (4.6)

For v ∈ H1(0, T ) such that v|t=0 = 0, we use Agmon’s inequality

‖v‖L∞(0,T ) . ‖v‖
1/2
L2(0,T )

‖∂tv‖
1/2
L2(0,T )

, (4.7)

while in the case v|t=0 6= 0, a lower order term is needed in the above estimate, namely,

‖v‖L∞(0,T ) . ‖v‖
1/2
L2(0,T )

‖∂tv‖
1/2
L2(0,T )

+ ‖v‖L2(0,T ). (4.8)

Together, the estimates (4.3)–(4.8) imply that for u ∈ H1(0, T ;H2(Ω)), we have

‖u‖L∞

x,t
. ‖∂tu‖

1/2

L2
t Ḣ

2
x

‖u‖
1/2

L2
t Ḣ

2
x

+ ‖u‖L2
t Ḣ

2
x
+ ‖∂tu‖L2

x,t
+ ‖u‖L2

x,t
. (4.9)

Similarly, for u ∈ H1(0, T ;H1(Ω)), we may bound

‖u‖L∞

t L4
x
. ‖∂tu‖

1/2

L2
t Ḣ

1
x

‖u‖
1/2

L2
t Ḣ

1
x

+ ‖u‖L2
t Ḣ

1
x
+ ‖∂tu‖L2

x,t
+ ‖u‖L2

x,t
. (4.10)

The estimates (4.9)–(4.10) are used repeatedly throughout the next sections. We note that in view of the

three derivative loss in the first term on right side of (4.9), one in time and two in space, the smallest value

we may take for r in the definition of φ(u) is 3, which justifies our choice r = 3. In order to simplify
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the computations, we rewrite (4.9) and (4.10) for a function of the form tℓ+n+m∂ℓ
t∂

n
d ∂̄

mu. The former

inequality becomes

‖tℓ+n+m∂ℓ
t∂

n
d ∂̄

mu‖L∞

x,t

. ‖∂t(t
ℓ+n+m∂ℓ

t∂
n
d ∂̄

mu)‖
1/2

L2
t Ḣ

2
x

‖tℓ+n+m∂ℓ
t∂

n
d ∂̄

mu‖
1/2

L2
t Ḣ

2
x

+ ‖tℓ+n+m∂ℓ
t∂

n
d ∂̄

mu‖L2
t Ḣ

2
x

+ ‖∂t(t
ℓ+n+m∂ℓ

t∂
n
d ∂̄

mu)‖L2
x,t

+ ‖tℓ+n+m∂ℓ
t∂

n
d ∂̄

mu‖L2
x,t

.
(

‖tℓ+n+m∂ℓ+1
t ∂n

d ∂̄
mu‖

1/2

L2
t Ḣ

2
x

+ |(ℓ, n,m)|1/2‖tℓ+n+m−1∂ℓ
t∂

n
d ∂̄

mu‖
1/2

L2
t Ḣ

2
x

)

× ‖tℓ+n+m∂ℓ
t∂

n
d ∂̄

mu‖
1/2

L2
t Ḣ

2
x

+ ‖tℓ+n+m∂ℓ
t∂

n
d ∂̄

mu‖L2
t Ḣ

2
x
+ ‖tℓ+n+m∂ℓ

t∂
n
d ∂̄

mu‖L2
x,t

+
(

‖tℓ+n+m∂ℓ+1
t ∂n

d ∂̄
mu‖L2

x,t
+ |(ℓ, n,m)|‖tℓ+n+m−1∂ℓ

t∂
n
d ∂̄

mu‖L2
x,t

)

(4.11)

when ℓ + n +m ≥ 1. Note that since T ≤ 1, the second and third term in (4.11) is dominated by the first

and the last term, respectively.

In the following lemma, we express (4.11) using the notation Uℓ,n,m. Also, we denote

Vℓ,n,m = Uℓ,n,m + Uℓ,n−1,m+1 + Uℓ,n−2,m+2. (4.12)

LEMMA 4.2. For u ∈ H1(0, T ;H2(Ω)) and all multi-indices |(ℓ, n,m)| ≥ 1, we have

Nℓ+n+mǫℓǫ̃nǭm‖tℓ+n+m∂ℓ
t∂

n
d ∂̄

mu‖L∞

x,t

. V
1/2
ℓ+1,n+2,mV

1/2
ℓ,n+2,mT 1/2|(ℓ, n,m)|5/2 + Vℓ,n+2,mT 1/2|(ℓ, n,m)|5/2

+ Uℓ+1,n,m

(

T1ℓ+n+m=1 + T 2
1ℓ+n+m≥2

)

|(ℓ, n,m)|

+ Uℓ,n,m

(

T ℓ+n+m−1
1ℓ+n+m≤2 + T 2

1ℓ+n+m≥3

)

|(ℓ, n,m)|.

Similarly, we write the inequality (4.10) for the function tℓ+n+m−1∂ℓ
t∂

n
d ∂̄

mu with ℓ+ n+m ≥ 2,

‖tℓ+n+m−1∂ℓ
t∂

n
d ∂̄

mu‖L∞

t L4
x

. ‖∂t(t
ℓ+n+m−1∂ℓ

t∂
n
d ∂̄

mu)‖
1/2

L2
t Ḣ

1
x

‖tℓ+n+m−1∂ℓ
t∂

n
d ∂̄

mu‖
1/2

L2
t Ḣ

1
x

+ ‖tℓ+n+m−1∂ℓ
t∂

n
d ∂̄

mu‖L2
t Ḣ

1
x

+ ‖∂t(t
ℓ+n+m−1∂ℓ

t∂
n
d ∂̄

mu)‖L2
x,t

+ ‖tℓ+n+m−1∂ℓ
t∂

n
d ∂̄

mu‖L2
x,t

.
(

‖tℓ+n+m−1∂ℓ+1
t ∂n

d ∂̄
mu‖

1/2

L2
t Ḣ

1
x

+ |(ℓ, n,m)|1/2‖tℓ+n+m−2∂ℓ
t∂

n
d ∂̄

mu‖
1/2

L2
t Ḣ

1
x

)

× ‖tℓ+n+m−1∂ℓ
t∂

n
d ∂̄

mu‖
1/2

L2
t Ḣ

1
x

+ ‖tℓ+n+m−1∂ℓ
t∂

n
d ∂̄

mu‖L2
t Ḣ

1
x
+ ‖tℓ+n+m−1∂ℓ

t∂
n
d ∂̄

mu‖L2
x,t

+
(

‖tℓ+n+m−1∂ℓ+1
t ∂n

d ∂̄
mu‖L2

x,t
+ |(ℓ, n,m)|‖tℓ+n+m−2∂ℓ

t∂
n
d ∂̄

mu‖L2
x,t

)

.

(4.13)

Using the notation Uℓ,n,m, we rewrite (4.13) as follows.

LEMMA 4.3. For u ∈ H1(0, T ;H1(Ω)) and all multi-indices |(ℓ, n,m)| ≥ 2, we have

Nℓ+n+mǫℓǫ̃nǭm‖tℓ+n+m−1∂ℓ
t∂

n
d ∂̄

mu‖L∞

t L4
x

.
(

Uℓ+1,n+1,m + Uℓ+1,n,m+1

)1/2
(Uℓ,n+1,m + Uℓ,n,m+1)

1/2 T 1/2|(ℓ, n,m)|3/2

+ (Uℓ,n+1,m + Uℓ,n,m+1)T
1/2|(ℓ, n,m)|3/2 + Uℓ+1,n,mT |(ℓ, n,m)|

+ Uℓ,n,m (1ℓ+n+m=2 + T1ℓ+n+m≥3) |(ℓ, n,m)|.

(4.14)
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We have used once again T ≤ 1 to have the second and third term in (4.13) dominated by the first and

the last term, respectively.

4.2. Terms with only time derivatives. In this section we estimate M3 in (3.6). From the Leibniz rule

we obtain that

M3 ≤
∑

i≥2

i
∑

ℓ=0

(

i

ℓ

)

Ni+1ǫ
i
(

‖ti−2∂ℓ
t ū · ∂i−ℓ

t ∂̄u‖L2
x,t

+ ‖ti−2∂ℓ
tud ∂

i−ℓ
t ∂du‖L2

x,t

)

.

Recalling the notation (4.2) we assert that:

LEMMA 4.4. For solution u of the Cauchy problem (1.1)–(1.3), we have

M3 . φ0(u)
1/2φ(u)3/2 + T 1/2φ(u)2 (4.15)

for 0 < T ≤ 1.

PROOF OF LEMMA 4.4. We split M3 into sums M31 and M32 corresponding to i = 2 or i ≥ 3, respec-

tively. Then

M31 . ‖u‖L∞

x,t

(

‖∂2
t ∂̄u‖L2

x,t
+ ‖∂2

t ∂du‖L2
x,t

)

+ ‖∂tu‖L∞

t L4
x

(

‖∂t∂̄u‖L2
tL

4
x
+ ‖∂t∂du‖L2

tL
4
x

)

+ ‖∂2
t u‖L2

tL
4
x

(

‖∂̄u‖L∞

t L4
x
+ ‖∂du‖L∞

t L4
x

)

where the three terms correspond to ℓ = 0, 1, 2. Using the notation ⌊x⌋ = [x] and ⌈x⌉ = [x] + 1, we have

M32 ≤
∑

i≥3

⌊i/2⌋
∑

ℓ=1

(

i

ℓ

)

Ni+1ǫ
i‖tℓ∂ℓ

tu‖L∞

x,t

(

‖ti−ℓ−2∂i−ℓ
t ∂̄u‖L2

x,t
+ ‖ti−ℓ−2∂i−ℓ

t ∂du‖L2
x,t

)

+
∑

i≥3

Ni+1ǫ
i‖u‖L∞

x,t

(

‖ti−2∂i
t ∂̄u‖L2

x,t
+ ‖ti−2∂i

t∂du‖L2
x,t

)

+
∑

i≥3

i−1
∑

ℓ=⌈i/2⌉

(

i

ℓ

)

Ni+1ǫ
i‖tℓ−2∂ℓ

tu‖L2
tL

4
x

(

‖ti−ℓ∂i−ℓ
t ∂̄u‖L∞

t L4
x
+ ‖ti−ℓ∂i−ℓ

t ∂du‖L∞

t L4
x

)

+
∑

i≥3

Ni+1ǫ
i‖ti−2∂i

tu‖L2
tL

4
x

(

‖∂̄u‖L∞

t L4
x
+ ‖∂du‖L∞

t L4
x

)

= M321 +M322 +M323 +M324,

(4.16)

where we separated away ℓ = 0 and ℓ = i from the main sums. We start by bounding M31. Since

∂ℓ
tu
∣

∣

∂Ω
= 0 for ℓ ≥ 1, we may apply (4.9) and (4.10) to conclude

M31 .
(

‖∂tu‖
1/2

L2
t Ḣ

2
x

‖u‖
1/2

L2
t Ḣ

2
x

+ ‖u‖L2
t Ḣ

2
x
+ ‖∂tu‖L2

x,t
+ ‖u‖L2

x,t

)(

‖∂2
t ∂̄u‖L2

x,t
+ ‖∂2

t ∂du‖L2
x,t

)

+
(

‖∂2
t u‖

1/2

L2
t Ḣ

1
x

‖∂tu‖
1/2

L2
t Ḣ

1
x

+ ‖∂tu‖L2
t Ḣ

1
x
+ ‖∂2

t u‖L2
x,t

+ ‖∂tu‖L2
x,t

)

×
(

‖∂t∂̄u‖
d/4

L2
t Ḣ

1
x

‖∂t∂̄u‖
1−d/4

L2
x,t

+ ‖∂t∂du‖
d/4

L2
t Ḣ

1
x

‖∂t∂du‖
1−d/4

L2
x,t

+ ‖∂t∂du‖L2
x,t

)

+
(

‖∂2
t u‖

d/4

L2
t Ḣ

1
x

‖∂2
t u‖

1−d/4

L2
x,t

)

×

(

‖∂t∂̄u‖
1/2

L2
t Ḣ

1
x

‖∂̄u‖
1/2

L2
t Ḣ

1
x

+ ‖∂̄u‖L2
t Ḣ

1
x
+ ‖∂t∂̄u‖L2

x,t
+ ‖∂̄u‖L2

x,t

+ ‖∂t∂du‖
1/2

L2
t Ḣ

1
x

‖∂du‖
1/2

L2
t Ḣ

1
x

+ ‖∂du‖L2
t Ḣ

1
x
+ ‖∂t∂du‖L2

x,t
+ ‖∂du‖L2

x,t

)

.
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Therefore,

M31 .
(

φ0(u)
1/2φ̄(u)1/2 + φ0(u)

)

φ̄(u)

+
(

φ0(u)
1/2φ̄(u)1/2 + φ0(u)

)(

φ̄(u)d/4φ0(u)
1−d/4 + φ0(u)

)

+ φ̄(u)d/4φ0(u)
1−d/4

(

φ̄(u)1/2φ0(u)
1/2 + φ0(u)

)

. φ0(u)
2 + φ0(u)

1/2φ(u)3/2.

(4.17)

For M32, we note that i ≥ 3 for each of the sums. We start with the boundary sums M322 and M324,

and treat M321 and M323 further below. Using (4.9), we have

M322 .
∑

i≥3

Ni+1ǫ
i
(

‖∂tu‖
1/2

L2
t Ḣ

2
x

‖u‖
1/2

L2
t Ḣ

2
x

+ ‖u‖L2
t Ḣ

2
x
+ ‖∂tu‖L2

x,t
+ ‖u‖L2

x,t

)

×
(

‖ti−2∂i
t ∂̄u‖L2

x,t
+ ‖ti−2∂i

t∂du‖L2
x,t

)

. (φ0(u) + φ0(u)
1/2φ̄(u)1/2)

∑

i≥3

Ni+1ǫ
i
(

‖ti−2∂i
t ∂̄u‖L2

x,t
+ ‖ti−2∂i

t∂du‖L2
x,t

)

. (φ0(u) + φ0(u)
1/2φ̄(u)1/2)φ̄(u) . φ0(u)φ(u) + φ0(u)

1/2φ(u)3/2.

(4.18)

For M324 we proceed with the Gagliardo-Nirenberg inequalities (4.5)–(4.10) and write

M324 .
∑

i≥3

Ni+1ǫ
i
(

‖ti−2∂i
tu‖

d/4

L2
t Ḣ

1
x

‖ti−2∂i
tu‖

1−d/4

L2
x,t

)

×
(

‖∂t∂̄u‖
1/2

L2
t Ḣ

1
x

‖∂̄u‖
1/2

L2
t Ḣ

1
x

+ ‖∂̄u‖L2
t Ḣ

1
x
+ ‖∂t∂̄u‖L2

x,t
+ ‖∂̄u‖L2

x,t

)

+
∑

i≥3

Ni+1ǫ
i
(

‖ti−2∂i
tu‖

d/4

L2
t Ḣ

1
x

‖ti−2∂i
tu‖

1−d/4

L2
x,t

)

×

(

‖∂t∂du‖
1/2

L2
t Ḣ

1
x

‖∂du‖
1/2

L2
t Ḣ

1
x

+ ‖∂du‖L2
t Ḣ

1
x
+ ‖∂t∂du‖L2

x,t
+ ‖∂du‖L2

x,t

)

.

Expressing the estimates in terms of Ui,j,k we get

M324 .
∑

i≥3

Ni+1ǫ
i (Ui,1,0 + Ui,0,1)

d/4 U
1−d/4
i,0,0

× (φ̄(u)1/2φ0(u)
1/2 + φ0(u))

(

(i+ 1)!

(i+ 1)3ǫi

)d/4( i!T

i3ǫi

)1−d/4

. T 1−d/4(φ̄(u)1/2φ0(u)
1/2 + φ0(u))

∑

i≥3

(Ui,1,0 + Ui,0,1)
d/4 U

1−d/4
i,0,0

. T 1−d/4(φ̄(u)1/2φ0(u)
1/2 + φ0(u))φ(u) . T 1−d/4φ0(u)φ(u) + T 1−d/4φ0(u)

1/2φ(u)3/2

(4.19)

where we have used 1/C ≤ ǫ̃ ≤ ǭ ≤ ǫ ≤ 1.

For M321, we express ‖ti−ℓ−2∂i−ℓ
t ∂̄u‖L2

x,t
and ‖ti−ℓ−2∂i−ℓ

t ∂du‖L2
x,t

in terms of Ui−ℓ,1,0 and Ui−ℓ,0,1

and write, using (4.11),

M321 .
∑

i≥3

⌊i/2⌋
∑

ℓ=1

‖tℓ∂ℓ
tu‖L∞

x,t
(Ui−ℓ,1,0 + Ui−ℓ,0,1)

(i+ 1)2ǫℓ

ℓ!(i− ℓ+ 1)2
. (4.20)
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Then, we utilize Lemma 4.2 (which we have derived from (4.9)) and ℓ ≤ ⌊i/2⌋ to obtain

M321 . T 1/2
∑

i≥3

⌊i/2⌋
∑

ℓ=1

V
1/2
ℓ+1,2,0V

1/2
ℓ,2,0 (Ui−ℓ,0,1 + Ui−ℓ,1,0)

+ T 1/2
∑

i≥3

⌊i/2⌋
∑

ℓ=1

Vℓ,2,0 (Ui−ℓ,0,1 + Ui−ℓ,1,0)

+
∑

i≥3

⌊i/2⌋
∑

ℓ=1

Uℓ+1,0,0 (Ui−ℓ,0,1 + Ui−ℓ,1,0)
(

T1ℓ=1 + T 2
1ℓ≥2

)

+
∑

i≥3

⌊i/2⌋
∑

ℓ=1

Uℓ,0,0 (Ui−ℓ,0,1 + Ui−ℓ,1,0)
(

T ℓ−1
1ℓ≤2 + T 2

1ℓ≥3

)

.

By appealing to the discrete Young’s inequality and the definition of φ0(u), we get

M321 . T 1/2φ̄(u)2 + T φ̄(u)2 + Tφ0(u)φ̄(u) + T 2φ0(u)φ̄(u) + T 3φ̄(u)2 + φ0(u)φ̄(u) + T 2φ̄(u)2.

Once again using T ≤ 1 and keeping the dominant terms , we obtain:

M321 . φ0(u)φ(u) + T 1/2φ(u)2. (4.21)

Lastly, we treat M323 in a similar manner. We split the sum into two parts, as done above for M321, by

appealing to (4.6):

M323 .
∑

i≥3

i−1
∑

ℓ=⌈i/2⌉

(

i

ℓ

)

Ni+1ǫ
i
(

‖tℓ−2∂ℓ
tu‖

d/4

L2
t Ḣ

1
x

‖tℓ−2∂ℓ
tu‖

1−d/4

L2
x,t

)

‖ti−ℓ∂i−ℓ
t ∂̄u‖L∞

t L4
x

+
∑

i≥3

i−1
∑

ℓ=⌈i/2⌉

(

i

ℓ

)

Ni+1ǫ
i
(

‖tℓ−2∂ℓ
tu‖

d/4

L2
t Ḣ

1
x

‖tℓ−2∂ℓ
tu‖

1−d/4

L2
x,t

)

‖ti−ℓ∂i−ℓ
t ∂du‖L∞

t L4
x

= M3231 +M3232.

For M3231 we use Lemma 4.3 for the triple (i− ℓ, 0, 1) and obtain

M3231 . T 1/2
∑

i≥3

i−1
∑

ℓ=⌈i/2⌉

(Uℓ,1,0 + Uℓ,0,1)
d/4 U

1−d/4
ℓ,0,0

× (Ui−ℓ+1,1,1 + Ui−ℓ+1,0,2)
1/2 (Ui−ℓ,1,1 + Ui−ℓ,0,2)

1/2

+ T 1/2
∑

i≥3

i−1
∑

ℓ=⌈i/2⌉

(Uℓ,1,0 + Uℓ,0,1)
d/4 U

1−d/4
ℓ,0,0 (Ui−ℓ,1,1 + Ui−ℓ,0,2)

+ T
∑

i≥3

i−1
∑

ℓ=⌈i/2⌉

(Uℓ,1,0 + Uℓ,0,1)
d/4 U

1−d/4
ℓ,0,0 Ui−ℓ+1,0,1

+
∑

i≥3

i−1
∑

ℓ=⌈i/2⌉

(Uℓ,1,0 + Uℓ,0,1)
d/4 U

1−d/4
ℓ,0,0 Ui−ℓ,0,1(1i−ℓ=1 + T1i−ℓ≥2).

(4.22)
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Applying the discrete Young’s inequality and using the definition of φ0(u), we get

M3231 . T 1/2φ0(u)
1−d/4φ̄(u)1+d/4 + T 1/2φ̄(u)2 + Tφ0(u)

2−d/4φ̄(u)d/4 + Tφ0(u)φ̄(u)

+ T 2φ0(u)
1−d/4φ̄(u)1+d/4 + T 2φ̄(u)2 + Tφ0(u)

1−d/4φ̄(u)1+d/4 + T φ̄(u)2

+ φ0(u)
2−d/4φ̄(u)d/4 + φ0(u)φ̄(u) + Tφ0(u)

1−d/4φ̄(u)1+d/4 + T φ̄(u)2.

(4.23)

In estimating M3232, we follow the same steps as in (4.22), as the only difference is due to having the

differential ∂d in M3232 instead of ∂̄. We obtain that M3232 obeys the same exact estimate as M3231 in

(4.23), from which we obtain the desired bound for M323, namely

M323 . φ0(u)φ(u) + T 1/2φ(u)2. (4.24)

Combining all the terms in (4.17), (4.18), (4.19), (4.21), (4.24), and selecting the maximal prefactors in T
we obtain the estimate (4.15). �

4.3. Terms with no normal derivatives. In this section we estimate M2.

LEMMA 4.5. For solutions u of the Cauchy problem (1.1)–(1.3), we get

M2 . φ0(u)
3/2φ(u)1/2 + Tφ0(u)

1/2φ(u)3/2 + T 3/4φ(u)2 (4.25)

for 0 < T ≤ 1.

PROOF OF LEMMA 4.5. Writing u · ∇u = ū · ∂̄u+ ud · ∂du and separating the terms with i+ k = 1,

we obtain

M2 ≤
∑

i+k≥2

i+k
∑

|(ℓ,m)|=0

(

i

ℓ

)(

k

m

)

Ni+k+2ǫ
iǭk

×
(

‖ti+k−1∂ℓ
t ∂̄

mū · ∂i−ℓ
t ∂̄k+1−mu‖L2

x,t
+ ‖ti+k−1∂ℓ

t ∂̄
mud ∂

i−ℓ
t ∂̄k−m∂du‖L2

x,t

)

+ ‖∂t(ud · ∂du) + ∂t(ū · ∂̄u)‖L2
x,t

+ ‖∂̄(ud · ∂du) + ∂̄(ū · ∂̄u)‖L2
x,t

= M21 +M22 +M23.

We start with the lower order terms. Using Hölder’s inequality, we get

M22 +M23 . ‖∂tu‖L∞

t L4
x

(

‖∂̄u‖L2
tL

4
x
+ ‖∂du‖L2

tL
4
x

)

+ ‖u‖L∞

x,t

(

‖∂t∂̄u‖L2
x,t

+ ‖∂t∂du‖L2
x,t

)

+ ‖∂̄u‖L∞

t L4
x

(

‖∂̄u‖L2
tL

4
x
+ ‖∂du‖L2

tL
4
x

)

+ ‖u‖L∞

x,t

(

‖∂̄2u‖L2
x,t

+ ‖∂̄∂du‖L2
x,t

)

and recalling the definition of φ̄(u) and φ0(u), we obtain

M22 +M23 . φ̄(u)1/2φ0(u)
3/2 + φ0(u)

2. (4.26)

Now, we split M21 into two parts as

M21 .
∑

i+k≥2

⌊(i+k)/2⌋
∑

|(ℓ,m)|=0

(

i

ℓ

)(

k

m

)

Ni+k+2ǫ
iǭk‖tℓ+m∂ℓ

t ∂̄
mu‖L∞

x,t

×
(

‖t(i+k)−(ℓ+m)−1∂i−ℓ
t ∂̄k+1−mu‖L2

x,t
+ ‖t(i+k)−(ℓ+m)−1∂i−ℓ

t ∂̄k−m∂du‖L2
x,t

)

+
∑

i+k≥2

i+k
∑

|(ℓ,m)|≥⌈(i+k)/2⌉

(

i

ℓ

)(

k

m

)

Ni+k+2ǫ
iǭk‖tℓ+m−1∂ℓ

t ∂̄
mu‖L∞

t L4
x

×
(

‖t(i+k)−(ℓ+m)∂i−ℓ
t ∂̄k+1−mu‖L2

tL
4
x
+ ‖t(i+k)−(ℓ+m)∂i−ℓ

t ∂̄k−m∂du‖L2
tL

4
x

)

= M211 +M212.

(4.27)
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We start with the first sum in (4.27), namely M211. We apply Lemma 4.2 on ‖tℓ+m∂ℓ
t ∂̄

mu‖L∞

x,t
except when

|(ℓ, 0,m)| = 0. Singling out |(ℓ, 0,m)| = 0, we have

M211 .
∑

i+k≥2

ǫiǭkNi+k+2 (Ui,0,k+1 + Ui,1,k)

(

T

Ni+k+1ǫiǭk

)

×

(

‖∂tu‖
1/2

L2
t Ḣ

2
x

‖u‖
1/2

L2
t Ḣ

2
x

+ ‖u‖L2
t Ḣ

2
x
+ ‖∂tu‖L2

x,t
+ ‖u‖L2

x,t

)

+
∑

i+k≥2

⌊(i+k)/2⌋
∑

ℓ+m=1

ǫiǭk
(

i

ℓ

)(

k

m

)

Ni+k+2 (Ui−ℓ,0,k+1−m + Ui−ℓ,1,k−m)

×

(

T

Ni+k−ℓ−m+1ǫi−ℓǭk−m

)

(ℓ+m)!

ǫℓǭm

×

(

T 1/2

(ℓ+m)1/2
V

1/2
ℓ+1,2,mV

1/2
ℓ,2,m +

T 1/2

(ℓ+m)1/2
Vℓ,2,m

+
1

(ℓ+m)2

(

Uℓ+1,0,m(T1ℓ+m=1 + T 2
1ℓ+m≥2)

+ Uℓ,0,m(T ℓ+m−1
1ℓ+m≤2 + T 2

1ℓ+m≥3)
)

)

.

Note that when |(ℓ,m)| ≤ ⌊(i+ k)/2⌋, we may bound

Ni+k+2(ℓ+m)!

Ni+k−ℓ−m+1)(ℓ+m)1/2

(

i

ℓ

)(

k

m

)

.

(

i
ℓ

)(

k
m

)

(

i+k
ℓ+m

) . 1. (4.28)

Then we get

M211 . Tφ0(u)φ(u) + Tφ0(u)
1/2φ(u)3/2 + T 3/2φ(u)2. (4.29)

Next, we split M212 into two parts as

M212 =
∑

i+k≥2

i+k
∑

|(ℓ,m)|=⌈(i+k)/2⌉

(

i

ℓ

)(

k

m

)

Ni+k+2ǫ
iǭk‖tℓ+m−1∂ℓ

t ∂̄
mu‖L∞

t L4
x

× ‖t(i+k)−(ℓ+m)∂i−ℓ
t ∂̄k+1−mu‖L2

tL
4
x

+
∑

i+k≥2

i+k
∑

|(ℓ,m)|=⌈(i+k)/2⌉

(

i

ℓ

)(

k

m

)

Ni+k+2ǫ
iǭk‖tℓ+m−1∂ℓ

t ∂̄
mu‖L∞

t L4
x

× ‖t(i+k)−(ℓ+m)∂i−ℓ
t ∂̄k−m∂du‖L2

tL
4
x

= M2121 +M2122.
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Both terms are treated analogously, and thus we only bound the first one.

M2121 .
∑

i+k≥2

i+k
∑

|(ℓ,m)|=⌈(i+k)/2⌉

(

i

ℓ

)(

k

m

)

Ni+k+2ǫ
iǭk‖tℓ+m−1∂ℓ

t ∂̄
mu‖L∞

t L4
x

× (Ui−ℓ,0,k+2−m + Ui−ℓ,1,k+1−m)d/4 (Ui−ℓ,0,k+1−m)1−d/4

×

(

T1ℓ+m≤i+k−1 + 1ℓ+m=i+k

Ni+k+2−ℓ−mǫi−ℓǭk−m

)d/4

×

(

T 2
1ℓ+m≤i+k−2 + T i+k−ℓ−m

1ℓ+m≥i+k−1

Ni+k+1−ℓ−mǫi−ℓǭk−m

)1−d/4

,

(4.30)

where we used 1/C ≤ ǫ̃ ≤ ǭ ≤ ǫ ≤ 1. Note that the last two factors in (4.30) are bounded from above by

(

T 2−d/4
1ℓ+m≤i+k−2 + T i+k−ℓ−m

1ℓ+m≥i+k−1

ǫi−ℓǭk−m

)

(i+ k − ℓ−m)!

(i+ k − ℓ−m)2−d/4
. (4.31)

Denote

Ai,k
ℓ,m(u) = (Ui−ℓ,0,k+2−m + Ui−ℓ,1,k+1−m)d/4 (Ui−ℓ,0,k+1−m)1−d/4

×

(

T 2−d/4
1ℓ+m≤i+k−2 + T i+k−ℓ−m

1ℓ+m≥i+k−1

ǫi−ℓǭk−m

)

(i+ k − ℓ−m)!

(i+ k − ℓ−m)2−d/4
.

Applying Lemma 4.3 on the term ‖tℓ+m−1∂ℓ
t ∂̄

mu‖L∞

t L4
x
, we obtain

M2121 .
∑

i+k≥2

i+k
∑

|(ℓ,m)|=⌈(i+k)/2⌉

(

i

ℓ

)(

k

m

)

Ni+k+2ǫ
iǭkAi,k

ℓ,m(u)

×

(

T 1/2

ǫℓǭm
(ℓ+m)!

(ℓ+m)3/2
(Uℓ+1,1,m + Uℓ+1,0,m+1)

1/2(Uℓ,1,m + Uℓ,0,m+1)
1/2

+
T 1/2

ǫℓǭm
(ℓ+m)!

(ℓ+m)3/2
(Uℓ,1,m + Uℓ,0,m+1) +

(ℓ+m)!

(ℓ+m)2
Uℓ+1,0,m

T

ǫℓ+1ǭm

+
(ℓ+m)!

(ℓ+m)2
Uℓ,0,m

1ℓ+m=2 + T1ℓ+m≥3

ǫℓǭm

)

.

(4.32)

For i+ k − ℓ−m ≥ 2, we have

(

i

ℓ

)(

k

m

)

Ni+k+2(i+ k − ℓ−m)!

(i+ k − ℓ−m)2−d/4

(ℓ+m)!

(ℓ+m)3/2
.

(

i
ℓ

)(

k
m

)

(

i+k
ℓ+m

) . 1.

Then, using Young’s inequality in (4.32), we deduce

M2121 . T 1/2φ0(u)φ̄(u) + φ0(u)
2 + Tφ0(u)

1−d/4φ̄(u)d/4
(

T 1/2φ̄(u) + φ0(u)
)

+ T 1/2φ̄(u)
(

T 2−d/4φ̄(u) + Tφ0(u)
1−d/4φ̄(u)d/4 + φ0(u)

)

. φ0(u)
2 + T 1/2φ0(u)φ(u) + T 3/2φ0(u)

1−d/4φ(u)1+d/4

+ Tφ0(u)
2−d/4φ(u)d/4 + T 3/2−d/4φ(u)2.

(4.33)

Since M2122 is nearly identical to M2121, the right side of (4.33) gives us an estimate for M212. Finally,

using that d ∈ {2, 3}, we add the estimates (4.26), (4.29), and (4.33) to get (4.25) in Lemma 4.5. �



GEVREY REGULARITY FOR THE NAVIER-STOKES IN A HALF-SPACE 15

4.4. Terms with all mixed derivatives. In this section we estimate M1.

LEMMA 4.6. For solutions u of the Cauchy problem (1.1)–(1.3), we have

M1 . φ0(u)
3/2φ(u)1/2 + T 1/2φ0(u)φ(u) + T 3/2φ(u)2 (4.34)

for all 0 < T ≤ 1.

PROOF OF LEMMA 4.6. Using the Leibniz rule we obtain

M1 ≤
∑

i+j+k≥1

i
∑

ℓ=0

j
∑

n=0

k
∑

m=0

(

i

ℓ

)(

j

n

)(

k

m

)

Ni+j+k+2ǫ
iǫ̃j ǭk

×

(

‖ti+j+k−1∂ℓ
t ∂̄

n
d ∂

mū · ∂i−ℓ
t ∂j−n

d ∂̄k−m+1u‖L2
x,t

+ ‖ti+j+k−1∂ℓ
t∂

n
d ∂̄

mud ∂
i−ℓ
t ∂j−n+1

d ∂̄k−mu‖L2
x,t

)

.

We separate the case |(i, j, k)| = 1 from the sum and then split the rest into two parts, leading to

M1 .
∑

i+j+k=1

(

‖u‖L∞

x,t
‖∇∂i

t∂
j
d∂̄

ku‖L2
x,t

+ ‖∂i
t∂

j
d∂̄

ku‖L∞

t L4
x
‖∇u‖L2

tL
4
x

)

+
∑

i+j+k≥2

⌊(i+j+k)/2⌋
∑

|(ℓ,n,m)|=0

(

i

ℓ

)(

j

n

)(

k

m

)

Ni+j+k+2ǫ
iǫ̃j ǭk‖tℓ+n+m∂ℓ

t∂
n
d ∂̄

mu‖L∞

x,t

×

(

‖t(i+j+k)−(ℓ+n+m)−1∂i−ℓ
t ∂j−n

d ∂̄k−m+1u‖L2
x,t

+ ‖t(i+j+k)−(ℓ+n+m)−1∂i−ℓ
t ∂j−n+1

d ∂̄k−mu‖L2
x,t

)

+
∑

i+j+k≥2

i+j+k
∑

|(ℓ,n,m)|=⌈(i+j+k)/2⌉

(

i

ℓ

)(

j

n

)(

k

m

)

Ni+j+k+2ǫ
iǫ̃j ǭk‖tℓ+n+m−1∂ℓ

t∂
n
d ∂̄

mu‖L∞

t L4
x

×

(

‖t(i+j+k)−(ℓ+n+m)∂i−ℓ
t ∂j−n

d ∂̄k−m+1u‖L2
tL

4
x

+ ‖t(i+j+k)−(ℓ+n+m)∂i−ℓ
t ∂j−n+1

d ∂̄k−mu‖L2
tL

4
x

)

= M11 +M12 +M13.

The contribution from |(i, j, k)| = 1 is bounded as

M11 . φ0(u)
2 + φ0(u)

3/2φ(u)1/2. (4.35)

For M12 and M13, we follow the same strategy as in the last section. Starting with M12, we apply

Lemma 4.2 to estimate ‖tℓ+n+m∂ℓ
t∂

n
d ∂̄

mu‖L∞

x,t
in terms of the analyticity norm (4.2). Denote

Bi,j,k
ℓ,n,m(u) = ‖t(i+j+k)−(ℓ+n+m)−1∂i−ℓ

t ∂j−n
d ∂̄k−m+1u‖L2

x,t

+ ‖t(i+j+k)−(ℓ+n+m)−1∂i−ℓ
t ∂j−n+1

d ∂̄k−mu‖L2
x,t
.

Next, using the notation (4.1)

Bi,j,k
ℓ,n,m(u) . (T1ℓ+n+m≤i+j+k−2 + 1ℓ+n+m=i+j+k−1)

(i+ j + k − ℓ− n−m+ 1)!

(i+ j + k − ℓ− n−m+ 1)3

×

(

Ui−ℓ,j−n,k−m+1

ǫi−ℓǫ̃j−nǭk−m
+

Ui−ℓ,j−n+1,k−m

ǫi−ℓǫ̃j−nǭk−m

)

.
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Estimating ‖tℓ+n+m∂ℓ
t ∂̄

n
d ∂̄

mu‖L∞

x,t
, the factorial terms obey

(

i

ℓ

)(

j

n

)(

k

m

)

(ℓ+ n+m)!

(i+ j + k)!

(i+ j + k − ℓ− n−m)!

(i+ j + k − ℓ− n−m)2
1

(ℓ+ n+m)1/2
≤ 1.

Therefore,

M12 . Tφ0(u)φ̄(u) + Tφ0(u)
1/2φ̄(u)3/2 + T 1/2φ0(u)φ̄(u) + φ0(u)

2

+ T 3/2φ̄(u)2 + Tφ
1/2
0 φ̄(u)3/2 + Tφ0(u)φ̄(u)

. φ0(u)
2 + T 1/2φ0(u)φ(u) + T 3/2φ(u)2.

(4.36)

Lastly, we deal with M13. Similarly to M212, we split M13 into two parts

M13 .
∑

i+j+k≥2

i+j+k
∑

|(ℓ,n,m)|=⌈(i+j+k)/2⌉

(

i

ℓ

)(

j

n

)(

k

m

)

Ni+j+k+2ǫ
iǫ̃j ǭk‖tℓ+n+m−1∂ℓ

t ∂̄
n
d ∂̄

mu‖L∞

t L4
x

×

(

‖t(i+j+k)−(ℓ+n+m)∂i−ℓ
t ∂j−n

d ∂̄k−m+1u‖L2
tL

4
x

)

+
∑

i+j+k≥2

i+j+k
∑

|(ℓ,n,m)|=⌈(i+j+k)/2⌉

(

i

ℓ

)(

j

n

)(

k

m

)

Ni+j+k+2ǫ
iǫ̃j ǭk‖tℓ+n+m−1∂ℓ

t∂
n
d ∂̄

mu‖L∞

t L4
x

×

(

‖t(i+j+k)−(ℓ+n+m)∂i−ℓ
t ∂j−n+1

d ∂̄k−mu‖L2
tL

4
x

)

= M131 +M132,
(4.37)

and consider M131. Denote

Ai,j,k
ℓ,n,m(u) =

(

‖t(i+j+k)−(ℓ+n+m)∂i−ℓ
t ∂j−n

d ∂̄k−m+1u‖L2
tL

4
x

)

.

Using (4.5)–(4.6), and (4.2) we bound Ai,j,k
ℓ,n,m(u) from above by

Ai,j,k
ℓ,n,m(u) . (Ui−ℓ,j−n+1,k−m+1 + Ui−ℓ,j−n,k−m+2)

d/4 (Ui−ℓ,j−n,k−m+2)
1−d/4

×

(

(i+ j + k − ℓ− n−m)!

(i+ j + k − ℓ− n−m+ 1)2−d/4

)

×
1

ǫi−ℓǫ̃j−nǭk

(

T 2−d/4
1ℓ+n+m≤i+j+k−2 + T i+j+k−ℓ−n−m

1ℓ+n+m≥i+j+k−1

)

+ Ui−ℓ,j−n,k−m+1
(i+ j + k − ℓ− n−m)!

(i+ j + k − ℓ− n−m+ 1)2
1

ǫi−ℓǫ̃j−nǭk

×
(

T 2
1ℓ+n+m≤i+j+k−2 + T i+j+k−ℓ−n−m

1ℓ+n+m≥i+j+k−1

)

.

Applying Lemma 4.3 to ‖tℓ+n+m−1∂ℓ
t∂

n
d ∂̄

mu‖L∞

t L4
x

and using Young’s inequality, we obtain

M131 . (φ0(u) + T 1/2φ̄(u))
(

φ0(u) + Tφ0(u)
1−d/4φ̄(u)d/4

)

+ T 1/2φ̄(u)
(

φ0(u) + Tφ0(u)
1−d/4φ̄(u)d/4 + T 2−d/4φ̄(u)

)

.
(4.38)

Note that in the above line we use T ≤ 1. Comparing the two sums M131 and M132 in (4.37), we observe

that they have the same prefactor ti+j+k−ℓ−n−m and the same total number of derivatives. As a result, M132
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too is dominated by the right hand side of (4.38). Selecting the maximal coefficients in T , we write

M13 . φ0(u)
2 + Tφ0(u)

2−d/4φ(u)d/4 + T 1/2φ0(u)φ(u)

+ T 3/2φ0(u)
1−d/4φ(u)1+d/4 + T 5/2−d/4φ(u)2.

(4.39)

Adding (4.35), (4.36), and (4.39), we arrive at the conclusion in Lemma 4.6. �
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