On the global regularity for the supercritical SQG equation
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ABSTRACT. We consider the initial value problem for the fractionally dissipative quasi-geostrophic equation
20 +R0-VO+AN0=0,  0(,0) =0

on T? = [0, 1]2, with € (0, 1). The coefficient in front of the dissipative term A” = (—A)/? is normalized
to 1. We show that given a smooth initial datum with |6 Hz/zz H00||};27/ ? < R, where R is arbitrarily large,
there exists 1 = v1(R) € (0,1) such that for v > ~1, the solution of the supercritical SQG equation with
dissipation A” does not blow up in finite time. The main ingredient in the proof is a new concise proof of
eventual regularity for the supercritical SQG equation, that relies solely on nonlinear lower bounds for the
fractional Laplacian and the maximum principle. October 12, 2014

1. Introduction

The supercritical dissipative surface quasi-geostrophic equation reads

00 +u-VO+AN6O=0,
u="R=VIA19, (SQG,)
6(0) = 6o,

where (7,t) € T?x[0, c0), and T2 = [0, 1]2. Throughout this paper we take y € [yo, 1), where vy € (0, 1) is
an arbitrarily small fixed value. The data and the solution have zero mean on T2, and we write A = (—A) 172,
Any sufficiently regular solution to (SQG, ) satisfies the L°° maximum principle

10(t) |l < [|60]| L=

for all ¢ > 0. This is the strongest known a priori bound for solutions to (SQG,). In fact one may show
that the L>° norm decays exponentially [6,9]. On the other hand the dissipative SQG equation has a nat-
ural scaling symmetry: if 6(z,t) is a T2-periodic solution to (SQG,) with datum 6y(z), then 0)(z,t) =
NL9(Az, AVt) is a T3 = [0, 1/A]2-periodic solution of (SQG,) with initial datum 6 »(z) = N ~10(Az).
If v = 1 the L*-norm is thus scaling invariant, i.e. ||fp \||r~ = ||fg||z~ for any A > 0, and this case
is referred to as critical. In the supercritical case v € (0, 1), examples of scale-invariant norms for the
initial datum include the Holder space C1~7 and the Sobolev space H2~" (both compactly embed in L°°).
However, we are not aware of any global in time a priori estimate available for such strong norms, which
makes studying the regularity of solutions with arbitrarily large initial datum a challenging problem.

While for the critical case v = 1 the question of global regularity of (SQG.,) with arbitrarily large datum
has been settled [1,6,7,17,19] (see also [11] for the logarithmically supercritical case), the corresponding
result for the supercritical equation v € (0, 1) remains open. The global existence is only known for data
that are small in a suitable scaling invariant space X . This program started with [S]. Roughly speaking, the
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a priori estimate that is usually proven for such results is of the type
d o 24112 2012
10l + IA720]% < Cl10]1x|A"20]%

where C is a sufficiently large constant that depends e.g. on ||R*||z»_ », and in particular C is larger than
1 (or a constant independent of ). Thus, if ||6p]|x < 1/C then ||0(t)||x < 1/C for all ¢ > 0 and the
global existence follows from the local existence theorem with data in X. Specifically, [9, 12, 15, 21, 26]
deal with the Sobolev space setting, showing that small initial data (with respect to the viscosity coefficient,
here normalized to 1) in X = H?~7 lead to the global existence of solutions. Similar results were obtained
in [2,4, 20,24, 25] for the critical Besov spaces X = B1 v+2/ P However, none of these results seems to
yield the global well-posedness of solutions for initial datum of size > 1.

In this paper we consider the scaling invariant norm || - || x = || - HW 2” ||1 /2 For v € (0, 1] we define

R, =sup{R > 0: forany 6y € H* with H00||7/2H00|| /2 < R, the unique smooth
solution of (SQG,,) with initial data 6y does not blow up in finite time}. (L.1)

From the small data results for v € (0, 1) we know that R, > 0, while from the global regularity results in
the critical case we have that Ry = oco. The question we address in this paper is whether or not R, — o0
as v — 1. We answer this question in the affirmative and show that:

THEOREM 1.1. Let 0y € H? with HHOH'Y/QHHOHl "2 < R. There exists 7 = 71(R) € (0,1) such that

for every vy € [y1,1) the initial value problem for the supercritical SQG equation (SQG.,) with initial datum
0o has a unique global in time solution 6 : T? x [0,00) — R, with

0 € Lis (0,00 H?) N L, (0, 00 H*7/2)
and is therefore 0 is a classical solution.
COROLLARY 1.2. For~y € (0,1) let R, be as defined in (1.1). Then R, — oo as y — 1.

The above result expresses a continuity of the solution map of (SQG.,) with respect to the parameter -,
as v — 1. The proof of Theorem 1.1 proceeds as follows. Given any large datum 6y € H?, there exists
a unique local in time solution on [0,77), for some 77 > 0 that depends on ||6p|| ;2 (cf. e.g. [15]). We
emphasize that 77 is not known a priori to depend solely on R, or any other scaling-critical norm of 6.
Moreover, on [0,77) the solution becomes smooth [12,13]. On the other hand we know that there exists
an eventual regularization time 7} such that if the solution does not blow up on [0, 7], then it cannot blow
up on [T, o) either (cf. [10, 16, 22]). It remains to show that 77 > T for ~y sufficiently close to 1, which
depends on the data only through the bound R. The difficulty in executing this plan lies in keeping track of
the precise dependence of all estimates in terms of =y, as v — 1, and on 6. For this purpose we need to have
an accurate estimate on how the eventual regularization time 7, depends on the initial datum and on the
power of the fractional Laplacian. We give a new proof of eventual regularity, that is based on the method
of [6], and in particular on nonlinear lower bounds for the fractional Laplacian established in [7]. Moreover
we obtain a quantitative upper bound for 7% that depends explicitly on v and ||fg|| L. Our result is:

THEOREM 1.3. Fixy € [,1), 0y € L™, and let o« € (1 — ~, 1) be arbitrary. Let C' > 0 be a positive
sufficiently large universal constant, and define the time

2(2=7) =
T, =Cao =7 [|0o]|;~ - (1.2)
If 0 € C>(T? x [0, T%]) is a smooth solution of (SQG.), then § € C°°(T? x [0, 0)), and the bound
yta—1
[B(t)]ce < Ca™ 77|60 (1.3)

holds for all t > T..
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The fact that T}, depends only on |||z, which for v < 1 is below the critical regularity level, com-
pensates for the fact that the local existence time depends on norms above the critical regularity level. This
observation is key for completing the proof of Theorem 1.1.

We note that Theorem 1.3 holds in fact for any global weak solution obtained from regularizations which
respect the maximum principle, e.g. viscosity solutions obtained as limits when ¢ — 0 from a hyper-viscous
—eA regularization. Note moreover that by passing v — 1, upon choosing o small enough depending on
||60|| 22, Theorem 1.3 shows that the critical SQG equation regularizes instantaneously from L> to C%.

The eventual regularity of weak solutions to supercritical SQG has been previously established in [22]
for  sufficiently close to 1, using the techniques of [1] (see also [3]), in [10] for the full range v € (0,1)
by means of the methods devised in [17], and finally in [16] for all v € (0, 1) through a modification of the
modulus of continuity approach that has been successfully employed in [16,18,19]. The simple proof given
in this paper is based on the arguments in [6, 7], cf. Section 3.5 below.

Organization of the paper. In Section 2 we recall the definitions of the operators and spaces used in
the paper. The proof of Theorem 1.3 is given in Section 3. In Section 4 we bound from below the local
existence time. Lastly, the proof of Theorem 1.1 is given in Section 5.

2. Preliminaries

Fractional Laplacian. The fractional Laplacian A%, can be defined for o € (0, 2) as the Fourier mul-
7, 0rin physical variables by

oz +y) / p(z) — p(z +y)
= ¢, dy = ¢, P.V. dy,
B ;7;/ ot W= PV | Ty

valid for ¢ € C7F¢(T?) for some £ > 0. In the above identity and throughout the paper we abuse notation
and still denote by ¢ the periodic extension of ¢ to the whole space. The precise form of the constant ¢, > 0
is not important for our purposes and for o € [, 1] we have ¢, bounded from above and below in terms of
universal constants and ~y. This is because we do not pass to the limits o — 0T or o — 27.

Velocity constitutive law. The velocity vector field u in (SQG,) is divergence-free and determined by
0 through the relation w = R0 = VLA710 = (=0, A710,0,, A10) = (—R20, R10), where

1 yi +2mk; 2k,
Rip(z) = —P.V. )d J AL d
(@) = o / ¥ |3<p (z +y)dy + Z/ <|y+2ﬂk3 ‘QWk‘g,) oz +y)dy

1 Yj
=_—PV. [ ZL dy.
3V e o

In the last line the principal value is taken both as |y| — 0 and |y| — oc.

Spaces. Throughout the article we consider mean-zero solutions to (SQG, ), so that we will not make a
distinction between homogenous and inhomogenous spaces. For p € [1, oo] the Lebesgue norm is denoted
by || - |[z», for s € R the Sobolev norms are denoted by || - || ;. = ||A® - || 12, and for a € (0, 1) the usual

Holder norm is given by ||¢||ca = [|¢|| L + [¢]ca, Where [p]ca = sup, s er2 [9(2) — @(y)|lz —y[~*

Notation. Throughout the paper, C will denote a generic positive constant, whose value may change
even in the same line of a certain equation. In the same spirit, ¢, cg, ¢y, ... will denote fixed constants
appearing in the course of proofs or estimates, which have to be referred to specifically. In an essential way,
throughout this paper the dependence of various constants on the parameters v € [y, 1) and o € (1 —+,1)
will be emphasized only when v — 1 or o — 0.
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3. Eventual regularity for supercritical SQG

In this section we give the proof of Theorem 1.3. Since o > 1 — ~, in view of the conditional regularity
results of [8, 14] (which are known to be sharp in the case of linear drift-diffusion equations [23]) once
6 € L>(0,T;C%) we automatically have § € L>°(0,T;C") and thus the solution is classical on [0, T).
Further regularity follows from standard parabolic bootstrap arguments. Thus, our proof of Theorem 1.3
only consists in proving the bound (1.3). We start with a number of preliminary results and the proof is
postponed to Section 3.5 below.

3.1. Finite differences and Holder norms. In order to estimate C'®-seminorms it is natural to consider
the finite difference

0nb(z,t) = 0(x + h,t) — 0(z, 1),
which is periodic in both = and h, where x, h € T2. As in [6,7], it follows that
L(0,0)? + D, [61,0] = 0, (3.1

where L denotes the differential operator

L=0;+u-Vi+ (dpu) -V, +A". (3.2)
and
2
— +
Dy lp)(x) = ¢y /R ) L ‘yﬁiﬁ dl dy. (33)

Here we have used that for v € (0,2) and ¢ € C°°(T?), cf. [9] we have that
20(x)Ap(z) = A7 (p(2)?) + Dy[e)(@),
pointwise for z € T?. Let £ : [0,00) — [0,00) be a bounded decreasing differentiable function to be
determined later. For
a€(l—~9,1), (3.4)
we want to study the evolution of the quantity v(z, ¢; h) defined by
(5h9(x, t)
(£(8)2 + |n[2)/2

v(z, t;h) = (3.5)

The main point is that when £(¢) = 0 the quantity

o(t)l1z, = esssup [o(a, £ h)
’ z,heT?2

is equivalent to the Holder seminorm [0(¢)] ¢, while for £(¢) > 0 we have that [|v(¢) |, < 2/[0(2)[[ L€ (2) 7.
From (3.1) we learn that

1 N h
L2—|—7D 0,0l =2 > 92— .5 2
U @ e Dot = 200 ey 20 e - v
e, | ,
< . T S i — .
_2a|§|£2+|h|20 +2a(£2+|h|2)|6hu|v (3.6)

where §,u = R16,0. The goal of this section is to provide a suitable uniform bound on v by deriving a
number of estimates on the right-hand side of (3.6).
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3.2. Nonlinear lower bounds. We begin by deriving a lower bound on D.,[0;,6], which we state in the
following lemma.

LEMMA 3.1. Lety € [y0,1) and a € (1 —~,1). Then there exists a positive constant co = co(o) such
that

-
1 [v(x; h)| e 2
D.[6,0](x) > onb(z)|”, 3.7
’Y[ ]( ) Co‘hh [HUHL?}L | ( )|
holds for any x, h € T2. Consequently,
2
1 1| |u(ah)] ] 2
—————D.[6;0](x) > v(x;h (3.8)
(£2+|h|2)a 'Y[ h ]( ) C()|h|'y [HUHL?;}L ( ( ))

holds pointwise.

PROOF OF LEMMA 3.1. In what follows, we will neglect the dependence on ¢ of the functions involved.
It is understood that all the estimates below are valid pointwise in ¢ > 0. Also, it is enough to prove (3.7),
as (3.8) follows directly from the definition of v(x; h).

Let x be a smooth radially non-increasing cutoff function that vanishes on |z| < 1 and is identically 1
for |x| > 2 and such that |y , we have

2
[646(x) \_yf;i(x +y)] (lyl/R)dy

D, [640](x) > Cv/

RQ

s [ x(sl/R) 5100 1)
> et [ X ay - 2e s | [ 2TEED i/ may

T 2
> ¢, P0DE o 0] ‘/R [0z +y) - H(x)]éthy‘

|01 () 6,0(2)] (& + [y[H)/?
> cy———— — c1c|0n0(x)| |h
T Ry y[6n0(z)| Al >R 2+ |y’2)a/2 ly|3+7
|00 ()| > (& +pH)/?
- C’YT — C]_C»y|5h0(ﬂf)‘ |h‘ ||’[)”th - po, (39)
for some constant ¢; > 1. First, notice that
(& + pQ)Oé/z ap-1—y Seytay _ @2 (€° 1
/R T an dp < c2(&*RT7+ R )=% 7+ pa ) (3.10)
for some co > 1. We now choose R > 0 as
1 1
derea (€2 + )20l pes, 1 70 [vllzes, |7
= o ’h‘ 401627 ’h‘ (3.1D
[ 516()] foa:h)]

Since cicg > 1 and v(z; h) < |[v||Le, , it is apparent from (3.11) that

R > 473 |h| > 4]h),

where the last inequality follows from the assumption o« < 1. By using (3.11) and the trivial estimates

1

[v(x;h>r]”<v<x;h>r i [1 ]fa< 1

[vllzee, [vllzee, 4ere ~ dejey’




6 M. COTI ZELATI AND V. VICOL

we rewrite the bound (3.10) as
1

JATa Yl R T E S (G510
R p*+y TR\ (dereo) e |n) | 00, derealh' = vl Lz,
1 (fa Vl“) |v(z; h)|
~ 4RV \|h[  |h] ) lvlLe,
1 (52 + |h‘2)a/2 |v(z; h)| _ 1 i |0R0 ()] 3.12)
T 20 RY || [ollzee,  2e1RY [A] ||v]Lee,
Hence, combining the estimate in (3.9) with the above (3.12), we arrive at
Cy 2
Dy [6n8](2) 2 507 1006 (2)I".
Estimate (3.7) now follows immediately from the expression of R in (3.11). ]

3.3. The differential equation for £&. We now establish the differential equation that £ has to satisfy to
control the first term of the right-hand side of (3.6) with a fraction of the nonlinear lower bound (3.8).

LEMMA 3.2. Lety € [y0,1) and o € (1 — v, 1). There exists a positive constant ¢, = c«(7yp) such that

if
§= =, (3.13)
then the estimate
20| St < L2 (3.14)

v v,
&+ |2 — 8co|h|Y
holds pointwise for x, h € T?, where cq is the same constant appearing in (3.8).

PROOF OF LEMMA 3.2. The constant ¢, > 0 will be determined at the end of the proof. If £ obeys
(3.13), then

: § 2 &, (f2+|h’2>177/2 2 2¢4 9 _ 2Ck o
20lél—S 2 =9, > 2 <9 = .
WaThe” =2 arme” < ernp " - @+hppn’ St

Thus, the claim follows by setting ¢, = 1/(16¢g). O

We observe here that the initial condition for the differential equation (3.13) is yet to be determined. Its
value will be computed in the subsequent paragraph. Given £(0) = £p > 0, a solution to (3.13) is given by

1/
[gg _ Bt} T ifteo, T,
«

£t) =
0, ift € (T4, ),

where

y— (3.15)
VCx

3.4. Estimates on the nonlinear term. Following the ideas of [6,7], we now consider the second term
in the right-hand side of (3.6), in order to derive a suitable upper bound in terms of the dissipation. We begin
with a result involving solely the term dpu.

LEMMA 3.3. Let p > 4|h| be arbitrarily fixed. Then

Plllvllzee, €% |Rlllv]lzze
1/2+ z,h + z,h

Sru(@)| < O |p7(D[616)(a)) p P

, (3.16)

holds pointwise in x, h € T2.



ON THE GLOBAL REGULARITY FOR SUPERCRITICAL SQG 7

PROOF OF LEMMA 3.3. Let us fix p > 4|h|. As before, let x be a smooth radially non-increasing
cutoff function that vanishes on |z| < 1 and is identically 1 for || > 2 and such that |x/| < 2. We split the
vector dxu in an inner and an outer part

1 1
opu(r) = P.V./ y—s [5h¢9(x +y) — 5h9(1:)]dy = JpUin () + SpUout (),
27 r2 |yl

by using that the kernel of R has zero average on the unit sphere, where

1
Iptin(z) = %P.V. /R2 éﬁ [1 — X(\y|/p)] [5h9(m +y) — 5h9(x)]dy,
and
1
Spout(T) = %P.V. /R2 ’Zﬁx(hﬂ/,{)) [5h9(:x +y) — 5h«9($)]dy

1
= %P.V. /RQ S_n [‘yypx(\yl/p)] [0(x + y) — 0(z)]dy.

For the inner piece, in light of the Cauchy-Schwartz inequality, we obtain

1 1
i) < 50 [ LI 9) 00wy

vi<p 1Y
1/2
<Ll [ / (G0 +) = 8:0)” 1"
=21 [ Jiyisp 9P R2 ly[*+
< Cp?2(D,[640)(2)) . (3.17)
Regarding the outer part, the mean value theorem entails
2 2\ar/2 _
+ O(x + 0(x
wizp2 Yl (&2 +y?)
52 + |y 2\a/2
<Clullplz, [ S,
" Jlyl>p/2 ]
£ 1
< Clhlllvllree, | =+ =1 (3.18)
hlp p
The conclusion follows by combining (3.17) and (3.18). ]

Using Lemma 3.3 we are able to properly compare the nonlinear term in (3.6) with the lower bound on
the dissipation term given by (3.8).

LEMMA 3.4. Let vy € [y0,1), « € (1 — 7, 1), and assume that

4|60 || 1,0
[vllzee, < M := Hg(!‘ (3.19)
0
There exists a constant ¢c1 = c1(9) > 1 such that if
€0 = (c1a]|fo]| oo )/ A=), (3.20)
then the estimate "
1 1
20————=|9, LR L — I ) /] R R— 3.21
Y = s e I s (32D
holds pointwise for every

z,heT?  with  |h| <&,

where cq is the constant appearing in (3.8).
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PROOF OF LEMMA 3.4. The nonlinear term in (3.6) can be estimated using (3.16) as

|| 2 || 2 12 |blllollze=, € [hlllvllees, |,
20&m|5hu|v §Camc p"// (Dry[(&)‘h@](ﬂf)) + P + pl—a v
1
< —n———D [6,0
— 2(52_,_ |h|2)a 7[ h ]
|h|? av? [ollze, €% vllzes, |
c i : hlp2 (3.2
FOEL R @y Ty e | O

We first focus on the last term in the above inequality. We choose p as
p =4+ |hH)2.
Obviously p > 4|h|. Now, using that & + v — 1 > 0 and (3.19), we find that

av” Wi 1003 1
N 4 e =] 2\v/2 01| 1,00
({2 + ’h’Q)l—ap < Ca ({2 + ’h’Q)l_a (5 + |h| ) < Ca 53(1_7) ‘h"y (323)

In the last inequality above, we have recalled the definition of M in (3.19) and used the bound
&+ py . C
o L e T

which holds since ae + v > 1, we have chosen |h| < &y, and by definition we have £(¢) < &. This is in fact
the only place in the proof where the restriction |h| < & is used. For the other two terms in (3.22), we have

[vllzee, & llvllzes, I 1
x, x, < M
= e ]
o (£2 2\ (a+y—1)/2 - 1
< ool (€ + 1AP) cololee 1
€6 A &7 Ih
In light of (3.23) and (3.24), we can rewrite (3.22) as
A 2 1 |h[? [00ll7 | [1follzee | 1
200————=|0pulv < ————-—D,[00] + C« « + — v
g b = e e PO Com e | @y TS | e
1 1607 | [16ollz | 1
<——————D. [6,0] +Ca |« — v°. (3.25)
2(&2 + |h|?)> 1100 53(1—7) gé Y |h|Y

Henceforth, we require &y big enough so that

603 lollz=] _ 1
55(1—’}/) é—(]);*"{ — 8607

Co |«

where cg > 0 is the constant appearing in (3.8). The above requirement is fulfilled in particular if we impose

[follz~ 1
5(1)*7 ~ 16Ccoa’

namely the lower bound
&7 = 16Ccoal|fo]| o=,

which concludes the proof of the lemma. ([l
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3.5. Proof of Theorem 1.3. We are now ready to prove Theorem 1.3. Define & as in (3.20). From the

definition of v in (3.5), it is immediate to see that
2[0ollLe M

HU(O)HL;f’h < T "

Define
to =sup{t > 0: [[v(7)[[ze, < M, V7 € [0,]}.

In other words, ¢y is the first time for which |[v(¢)|| L, reaches the value M. We claim that g = co. Since
t— o)l Lee, is a continuous function, we clearly have that ¢y > 0.

Due to the smoothness of v in x and h, and the periodicity of §,0(z) in both = and h, there exist
(z,h) € T? x T? with |v(Z,to; h)| = HU(tO)HL;‘jh = M. At this stage we note that the maximum being
attained at (, h) imposes an upper bound for |k/|. Indeed, for every |h| > &, since 0 < £ < &, we have

2[00~ _ 2[00l _ M

v(, 3 h)| < < =
PSSR = T T

This shows that we must have |h| < &.
Using Lemmas 3.2 and 3.4 we bound the right-side of (3.6), and obtain that for ¢ € (0, 9] we have

1 1,
- < - -
@5 pye D108 < gy D0

pointwise in #,h € T?, with |h| < &. On the other hand, the lower bound (3.8) on (a fourth of) the
dissipation entails

Lv2 + 5h9] +

e B

1 | |7 1
Lv? + vVt ——— D640
4%W7hﬂqj i@+ ey )

Consequently, for ¢ € (0, to], by again using (3.8), we have

1 2
< — 7.
= 4eolh|Y

v

% =

1 v e 1 |v] -

Lv? + — 1]+ v? <0 (3.26)
deg|h[ [HUHL;fJ deolh7 | [[vllzes,

pointwise in z, h € T2, with |h| < &.

Lett € [to — €, o) be arbitrary, where € > 0 is small enough so that [[v(t)| £, > 3M /4 for all ¢ in this
interval. In particular, this ensures that the maximum of |v(z, ¢; h)| cannot be attained at an h with |h| > &.
For such ¢ close to tg, we evaluate estimate (3.26) above at a point (Z,h) = (Z(t),h(t)) € T? x T?
at which v2(t) attains its maximum value of M. Since, at that point, dyv? = 9,v? = 0, Av? > 0,
|v(Z,t; h)| = Hv(t)”Lgfh and |h| < &, we arrive at

o (BM/4)? ~ Az, h
(o) . 1:) + B LS 400/53) < Lo*(3,;h) + 4&0]5}7)

Here we used that the second term on the left of (3.26) vanishes at (z, h) since |v(Z,t; h)|||v(t) ||Zioh =1
Consequently, "

9M?
~ 64col]
forall ¢t € [tg — €,1). Following an argument in [6, Appendix B], one may show that for almost every ¢ in
[to — €,tp) we have

(00*)(Z,;h) <

(3.27)

M2
64coly

d o
3O, < () (@,t:h) <
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from which it follows upon using the fundamental theorem of calculus that ||[v(t)| e, < M. We may thus
conclude that tg = oo, or in other words

o)z, <M, ¥Vt >0.
Notice that £(t) = 0 for all ¢t > T, where T} is given by (3.15). Hence,
4160 L=

0@l = [lo(®)llLe, <M = o
0

Vt Z T*7
and the proof is completed.

4. A lower bound for time of local existence

In this section, we explicitly compute a lower bound on the local time of existence of solutions to the
supercritical SQG equation. As mentioned earlier, such a time will depend on norms which are not scaling-
critical. Precisely, we have the following result.

PROPOSITION 4.1. Let 0y € H? be given, and consider the unique local in time solution of the super-
critical SQG equation (SQG,)

0 € L>(0,Ty; H?) N L?(0, Ty; H*H7/?)

originating from 0y. There exists a universal constant Cy > 0 such that the lower bound

1
T >

— 2 2—~/2
Collfoll 75 16011%,"

“4.1)

holds.

Before giving the proof of (4.1), we recall a number of useful inequalities involving the fractional
Laplacian. We recall the Gagliardo-Nirenberg inequality

1—2
[fllze < Coll A4 2,
valid for ¢ € [2, c0) and mean zero functions f. Two particularly useful cases are
IFllgern < CAIA2f|l 2, and ||l g < Cyl A2 f]ILe, (4.2)

where the constant C., is bounded uniformly from above for vy € [, 3/2], so that the dependence on  will
be dropped. We will make use of the interpolation inequality

110 < CUAIZ 1152 (4.3)

valid for o € [0, 2], with constant C' independent of . Lastly we shall use that |R*||zr_z» < Cp for
p > 2, with C' > 0 a universal constant. In particular we apply this bound for p = 4/~v and p = 4/(2 — ~)
and in this case the operator norm of R+ on L? is bounded independently of y € [y, 3/2].

PROOF OF PROPOSITION 4.1. The existence of such a solution # on a maximal time interval [0, 7})
follows e.g. from [15]. The proof of the proposition consists of an a priori H? estimate. First, recall that
since V - u = 0 we immediately have

t
10022 < 60l — /0 1AY20(s)]2ads < [0 2. (4.4)

Taking an inner product of (SQG-) with A0, using that V - u = 0, and the bounds (4.2) and (4.3) we obtain
1d
iaHGHip + H@HEHW/Q = —/A(u -VO)AOdz = —/Au -VOAO dz — Q/Vu - V29A0 dx

< [[Au| L2Vl ar [ DO a7 2=y + 2Vl o (V20| 2 | A /)

1 4=~ /2 2
< OOl g2 101l gro—rs2 101l a2 < 5”‘9||§;2+w/2 + C||9HH2W H9||Zé NG
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Letting y(t) = ||6(t)|| 72, from (4.5) above and the L? maximum principle (4.4) it follows that
§< A2 where A= Coll6o]| 1

and Cp > 0 is a fixed universal constant. Solving the above ODE it follows that
Yo

y(t) < — (4.6)
(1= (2= 7/2)Ays Pt/ =/
From (4.6) it follows that the H2 norm of 6 does not blow before
1 1 1
(2—7/2)Ays " 249377 200]100 1171160115,
which concludes the proof. (|

5. Proof of Theorem 1.1

Given 6 in H?, by the local existence theorem (cf. Proposition 4.1) we have that the solution of (SQG,)
with initial datum 6y does not blow up until

1
%mmﬂmﬁw

On the other hand, by the eventual regularity theorem (cf. Theorem 1.3) we know that after time

7. = oo™ (ol 21601142)

the solution remains smooth, where & € (1 — ~, 1) is arbitrary. Here we used that in two dimensions we
have the bound ||6p|| o= < C’H90H1/2H00||1/2 Also Cy > 2 is a universal constant.
The proof is concluded once we show that for ~ sufficiently close to 1 we may choose a suitably small
a € (1 —~,1) such that
T, <T.
This is equivalent to

42— y(2—v) 2-v?

= 16l 72 160l ;- (5.1)

_a2—y +2
Cy2a™ 55 > 00| 257 2 0025

Assuming that
3 a2
160l 72l160ll ;2 < R
it follows by raising both sides to the power (2 — v)/(1 — +) that

y(2— v) (2-7)?

1601 5 160l 72~ < R~

and thus (5.1) holds if we choose « such that

_ 2=y 2—y 2(1=7)

2 15 >R & R, >a (5.2)

To conclude, we let

o = min {2(1 _ ), ;}

which combined with (5.1)—(5.2) imply that there exists v; = y1(R) € [70, 1), such that for all v € [v1,1)
T, < T. This shows that the solution cannot blow up in finite time, concluding the proof.
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