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1. INTRODUCTION

Anomalous dissipation of energy in three dimensional turbulence is one of the basic statements of physical
theory [54]. It has been verified experimentally to a large degree [74], but not mathematically. The statement
is about the average behavior of the energy dissipation rate

ε = ν〈|∇u|2〉
as ν → 0. Here ν is kinematic viscosity, u is the velocity (assumed to have mean zero), ∇ are spatial
gradients and 〈. . . 〉 represents an ensemble average or space-time average. The assertion of turbulence
theory is that ε is a positive number, and that it does not vanish with viscosity, in the limit of zero viscosity.
The term “anomalous dissipation” was imported from field theory in physics and it refers to the fact that, in
the limit of vanishing viscosity, there still is remanent dissipation, even though the limit equation conserves
energy.

There are two distinct approaches to the question of anomalous dissipation. In the first, the limit of
zero viscosity is taken on solutions of the initial value problem with fixed initial data. Under appropriate
conditions this leads to a solution of the corresponding initial value problem of the inviscid equation. This
equation conserves energy if solutions are smooth, but might dissipate energy if solutions are not sufficiently
smooth. This circle of ideas, and specifically the precise degree of smoothness needed, goes by the name of
“Onsager conjecture” [48, 46, 47, 14, 9, 35, 36, 37, 38, 34, 58]. This approach is therefore about the initial
value problem for the limit equations and it requires lack of smoothness of solutions. The blow up problem
is open for 3D incompressible Euler equations, and this allows to envision the possibility of existence of
dissipative solutions arising from smooth initial data. Anomalous dissipation of energy can be proven for
incompressible 2D Euler equations as well, for very rough solutions, although in 2D non-smooth solutions
cannot arise spontaneously from smooth ones. The class of dissipative solutions of the inviscid equations is
very large indeed.

The second way of looking at the anomalous dissipation issue is to take long time averages first, in order
to achieve a “permanent regime” of the viscous equations, and only then send the viscosity to zero. This
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second approach is espoused in this paper. Denoting by S(ν)(t, u0) the solution of the viscous equation at
time t ≥ 0 which started at time t = 0 from the initial data u0, the second approach looks at

〈|∇u|2〉 = lim
T→∞

1

T

ˆ T

0

ˆ
Rd

∣∣∣∇(S(ν)(t, u0))
∣∣∣2 dxdt

and asks if limν→0 ν〈|∇u|2〉 = ε is positive or not. A significant question is that of dependence of forcing
and initial data. In the absence of forcing the long time limit vanishes even for Leray weak solutions of 3D
Navier-Stokes equations: the “permanent regime” is trivial, and turbulence is decaying. One must then take
finite time averages, with times of durations that diverge with vanishing viscosity, but not too fast, nor too
slow. This unforced case is perhaps the only case in which a general global, a priori upper bound on ε that
is viscosity independent is rigorously known.

The long time averaged dissipation has a chance of being not trivial if the flow is forced, either at bound-
aries or if body forces stir the flow. A conceptual difficulty arises then because there exist situations in
which the rate of dissipation, as defined, is infinite. There are rigorous studies [40, 32, 33] where bounds for
ε are expressed in terms of the average kinetic energy of the solutions in the case of forced Navier-Stokes
equations; however, there are no viscosity (or Reynolds number) -independent a priori bounds on the aver-
age kinetic energy. The question of obtaining examples and a characterization of flows with uniform upper
bounds for ε is open. In fact, the opposite situation can be easily found: ε can be unbounded when we con-
sider spatially periodic 2D forces that are eigenfunctions of the Stokes operator. We write the Navier-Stokes
equation symbolically as

∂tu+ νAu+B(u, u) = f

where A = −P∆ is the Stokes operator with P the projector on divergence-free vectors and B(u, u) =
P(u · ∇u) is the quadratic nonlinearity. We take Af = λf with f and u periodic, divergence-free functions
of two spatial variables. We consider uf = 1

νλf . This is a smooth, time independent solution. Indeed,
uf satisfies the time-independent, unforced Euler equation B(uf , uf ) = 0, and, of course νAuf = f , as
well. If u0 = uf then 〈|∇uf |2〉 = ν−2λ−1‖f‖2L2 , where f does not depend on ν. This makes the limit
of ε infinite as viscosity vanishes. The steady solutions uf are perfectly admissible as 3D periodic flows
as well. They are unstable if λ is not the first eigenvalue of the Stokes operator, but stable in 2D if λ is
the first eigenvalue. Incidentally, the upper bound ε ≤ C(U3

√
λ + νλU) (with U = ‖uf‖L2) of [40] is

true in this case as well, and it is imprecise, with both left and right hand side diverging as ν → 0, but
at different rates. An interesting recent asymptotics and numerical study [55] reports finding solutions of
the 2D Navier-Stokes equation that “settle” to a condensate that has a nontrivial component in the first
eigendirection of the corresponding Stokes operator and has bounded amplitude as viscosity vanishes. This
of course is impossible for all initial data, as demonstrated above, but it is an intriguing possibility for parts
of the phase space. It is known that if we assume that an initial data u0 is smooth enough then the solution
of the Navier-Stokes equations with smooth forcing (even if not an eigenfunction of the Stokes operator)
converges to the corresponding solution of the forced Euler equation u(t) = S(0)(t, u0) on [0, T ], for any
T , a function that solves

∂tu+B(u, u) = f

with initial data u0. For Kolmogorov forcing, (forces which are eigenfunctions of the Stokes operator), the
putative existence of time independent solutions u(ν) which are uniformly bounded in ν in energy norm,
implies the convergence of (a subsequence of) u(ν) to a time independent solution u0 of the forced incom-
pressible Euler equations, B(u0, u0) = f . If the solutions S(ν)(t, u0) are at a bounded distance from u(ν)

uniformly in time, for large time, one can prove that S(0)(t, u0) are at a the same bounded distance from
u0 for large time. In particular, if S(ν)(t, u0) converge uniformly in time to u(ν), then S(0)(t, u0) converge
in time to u(0). Smooth steady solutions B(u(0), u(0)) = f of forced Euler equations with Kolmogorov
forcing can be easily constructed, but for which initial data solutions converge to them is another matter.
Such behavior, if it exists at all, must be rather special.
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The dynamics of the forced Euler equation, the existence of bounded sequences of stationary solutions
of the periodic, forced Navier-Stokes equations, and even of solutions with bounded average dissipation of
energy are open problems.

Bounds can be obtained for 2D forced Navier-Stokes equations with bottom drag (friction),

∂tu+ γu+ νAu+B(u, u) = f

where the friction coefficient γ > 0 is kept fixed. Then the energy is bounded (in terms of γ) uniformly for
small ν and actually even the enstrophy (H1 norm) is bounded uniformly in ν. Consequently, there is no
anomalous dissipation of energy. The absence of anomalous dissipation of enstrophy is more subtle because
there are no upper bounds for the average H2 norm, for arbitrary forces. The paper [19] proves nevertheless
that the dissipation of enstrophy vanishes in the limit of zero viscosity, for arbitrary time-independent forces.

In this paper we prove absence of anomalous dissipation of energy for surface quasi-geostrophic (SQG)
equations. These equations have generated a lot of attention in recent years [17, 56, 71, 70, 25, 18, 21, 26,
13, 76, 11, 3, 27, 7, 72, 24, 59, 77, 60, 28, 39, 68, 61, 8, 57, 65, 1, 6, 22, 42, 66, 43, 79, 23, 44, 45, 63, 53,
4, 5, 64, 41, 69, 73, 29, 49, 62, 20, 50, 31, 78, 30, 16].
We are interested in the question of anomalous dissipation for forced, viscous critical SQG. We consider the
equation

∂tθ + (R⊥θ) · ∇θ + γDθ − ν∆θ = f

in R2, where D = I + (−∆)
1
2 is the damping operator, R⊥ = (−R2, R1) are Riesz transforms, f ∈

L∞(R2)∩L1(R2) is time independent deterministic forcing, γ > 0 is fixed and ν > 0. We prove that there
is no dissipative anomaly,

lim
ν→0

ν〈|∇θ|2〉 = 0

where 〈· · · 〉 is space-time average on solutions. The proof of absence of anomalous dissipation follows the
same blueprint as the proof in [19]. We establish first that the viscous semi-orbits are relatively compact in
the phase space. Then we introduce the adequate statistical solutions for both viscous (ν > 0) and inviscid
(ν = 0) equations. These are measures in phase space, arising naturally as long time limits on solutions. The
next step is to prove that the zero viscosity limits of statistical solutions of the viscous equations are statistical
solutions of the inviscid equations, and that these preserve the energy balance. Once this is achieved, the
absence of anomalous dissipation follows by an argument by contradiction. There are a number of technical
difficulties encountered in the proof for SQG that are not present in the case of 2D Navier-Stokes. In order
to obtain the uniform integrability property on positive semiorbits we use nonlocal calculus identities. The
weak continuity of the nonlinear term is proved using a commutator structure of the nonlinearity, a structure
that was used already in [71]. The energy balance is proved using a formula for nonlinear fluxes [14] and a
bound in H

1
2 that is available for critical SQG, and that replaces the Besov space argument of [14, 9].

The rest of the paper is organized as follows. In section 2 we make more precise the comments about
Kolmogorov forced Navier-Stokes and Euler equations. In section 3 we present the forced viscous SQG
equations and prove some properties of solutions, including the relative compactness of positive semiorbits.
In section 4 we introduce the notion of stationary statistical solutions of the viscous equations. In section 5
we prove that inviscid limits of stationary statistical solutions are stationary statistical solutions of the forced
critical SQG equations which preserve the energy dissipation balance. In section 6 we construct stationary
statistical solutions using time averages and in section 7 we present the argument by contradiction and
concluding remarks.

2. 2D FORCED NAVIER-STOKES EQUATIONS

We consider 2D periodic incompressible Navier-Stokes equations

∂tu− ν∆u+ u · ∇u+∇p = f

where u : [−πL, πL]2× [0,∞)→ R2 is divergence-free,∇·u = 0, and periodic, u(x±2πLei, t) = u(x, t)
(here ei, i = 1, 2 is the canonical basis of R2). We take time independent f : [−πL, πL]2 → R2 that is
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divergence-free ∇ · f = 0, periodic of the same period 2πL, f(x ± 2πLei) = f(x), and an eigenfunction
of the Stokes operator, which in the case of divergence-free periodic function is just the Laplacian on each
component, −∆f = λf . We refer to such forcing as “Kolmogorov forcing”. We choose to measure lengths
in units of L, and because the force plays an important role and has units of [f ] = length × time−2, we

measure time in units of T =
√

L
F where F is the RMS force, F 2 = (2πL)−2

´
|xi|≤πL, i=1,2 |f(x)|2dx.

Rescaling, i.e considering u = L
T ũ( xL ,

t
T ), f = F f̃( xL), p = L2

T 2 p̃(
x
L ,

t
T ) and ν = L2

T ν̃, and dropping tildes,
we have thus

∂tu− ν∆u+ u · ∇u+∇p = f, ∇ · u = 0 (1)
with u : [−π, π]2 × [0,∞) → R2, f : [−π, π]2 → R2 of period 2π, with normalized L2 norm equal to 1,
and ν nondimensional, in fact the inverse Reynolds number. We still have∇ · f = 0 and

−∆f = λf (2)

with the nondimensional (new) λ equal to the dimensional (old) λ multiplied by L2. The Fourier series
representation of u is

u(x, t) =
∑
j∈Z2

û(j, t)eij·x (3)

with û : Z2 × [0,∞) → C2. Without loss of generality the average of u vanishes, û(0, t) = 0. Because
∇ · u = 0 and we are in two dimensions, without loss of generality

û(j, t) = uj(t)
j⊥

|j|
(4)

where j⊥ = (−j2, j1)∗ and v∗ is the transpose. Now uj(t) is a scalar complex valued function of time, and
the requirement that u be real valued implies the requirement that uj = −u−j (from û(j) = û(−j)). We
note that the stream function, defined by the relation u = ∇⊥ψ

ψ(x, t) =
∑
j∈Z2

ψ̂(j, t)eij·x,

has Fourier coefficients
ψ̂(j, t) = −i|j|−1uj ,

or, in other words uj = i|j|ψ̂(j). If u is divergence-free, it does not necessarily follow that u · ∇u is
divergence-free as well. The projector on divergence-free functions is computed for 2D Fourier series

v(x) =
∑

j∈Z2\{0}

v̂(j)eij·x

as
Pv(x) =

∑
j∈Z2\{0}

Pj v̂(j)eij·x

with

Pjv =

(
v · j

⊥

|j|

)
j⊥

|j|
.

The Stokes operator, denoted A, is
A = −P∆ (5)

and the projection of the bilinear term is

B(u, v) = P(u · ∇v). (6)

Using our convention that mean-free, divergence-free vectors are written as

v(x) =
∑

j∈Z2\{0}

vj
j⊥

|j|
eij·x
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with vj complex scalars, we obtain for divergence-free u and v,

[B(u, v)]l = i
∑

j+k=l, j,k,l 6=0

ujvk

(
j⊥

|j|
· k
)(

k⊥

|k|
· l
⊥

|l|

)
. (7)

In particular

[B(u, u)]l = i
∑

j+k=l, j,k,l 6=0

ujuk

(
j⊥ · k

)
(k · l) 1

|j||k||l|
(8)

and because of the antisymmetry of ujuk
(
j⊥ · k

)
1
|j||k| in j, k at fixed l, we have

[B(u, u)]l =
i

2

∑
j+k=l, j,k,l 6=0

ujuk

(
j⊥ · k

) (
|k|2 − |j|2

) 1

|j||k||l|
(9)

This shows that the only contributions to B(u, u) come from distinct energy shells , i.e. |j| 6= |k|. In
particular, any function whose Fourier support is on a single energy shell, solves B(u, u) = 0. This is the
case for eigenfunctions of the Stokes operator. In terms of the vorticity, if u = ∇⊥ψ and ∆ψ = λψ, it
follows that u · ∇ω = 0 because the vorticity ω = ∇⊥ · u is given by ω = ∆ψ. The 2D incompressible
unforced Euler equation can be written in vorticity formulation as

∂tω + u · ∇ω = 0

and therefore, if ∆ψ = λψ, we obtain time independent solutions of the Euler equations. Another way of
seeing that eigenfunctions of the Stokes operator are steady solutions of unforced Euler equations is via the
identity

AB(u, u) = B(u,Au)−B(Au, u). (10)
This is proven by observing that for 2D divergence-free vectors u,

∆(u · ∇ui)− u · ∇∆ui + ∆u · ∇ui = 2∂k((det∇u)δik).

Thus, if Au = λu then B(u, u) = 0, because A is invertible. In particular, if Af = λf then the time-
independent u = uf given by uf = 1

νλf solves the Navier-Stokes equation (1). Let us consider now
solutions u(t) of the initial value problem (1) with divergence-free smooth initial data (it is enough to
consider H1 initial data). These are unique, exist for all time, become instantly infinitely smooth, and
converge in time to a compact, finite dimensional attractor [15]. The attractor contains uf and its unstable
manifold. In particular, it follows that the largest norm of functions in the attractor (any norm) diverges with
ν. If the diameter of the attractor would be bounded, then ε would diverge as ν → 0, for any space time
average on trajectories.

Let us remark that if we fix smooth, divergence-free initial data u0 ∈ Hs, s > 2 then

lim
ν→0

S(ν)(t, u0) = S0(t, u0)

holds where S(0)(t, u0) is the unique global solution of

∂tu+B(u, u) = f (11)

with initial data u0. The convergence is in C([0, T ], Hs′), s′ < s, for any T . This follows from the global
existence of smooth solutions of the forced Euler equations and from convergence as long as these solutions
are smooth [2, 10, 67]. This result does not need f to be an eigenfunction of the Stokes operator, only to
be smooth enough. The long time behavior of S(0)(t, u0) and that of S(ν)(t, u0) for small ν can be very
different. In fact, if f = 0, the behavior is different, because the inviscid solution conserves the initial
energy, while the viscous solution converges to zero.

Let us consider now Kolmogorov forcing and any family of steady solutions u(ν) of the forced Navier-
Stokes equations

νAu(ν) +B(u(ν), u(ν)) = f. (12)
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Taking the scalar product with u(ν) and then with Au(ν), we have

ν‖u(ν)‖2H1 = (f, u(ν))L2

and
ν‖Au(ν)‖2L2 = λ(f, u(ν))L2

where we used the notation (f, u)L2 = 1
(2π)2

´
[−π,π]2(f · u)dx and the facts that ‖u‖2H1 = (u,Au)L2 ,

Af = λf , (B(u, u), u)L2 = 0, and (B(u, u), Au)L2 = 0. Subtracting we have

‖Au(ν)‖2L2 = λ‖u(ν)‖2L2 . (13)

Using the straightforward inequality
‖u‖2H1

‖u‖2
L2

≤
‖Au‖2L2

‖u‖2
H1

and assumimg that the family is uniformly bounded in L2:

‖u(ν)‖2L2 ≤ E, (14)

it follows that
‖Au(ν)‖2L2 = λ‖u(ν)‖2H1 ≤ λ2E. (15)

Now we can pass to a convergent subsequence, first weakly convergent in L2, but because of compact
embedding of H1, strongly in L2, and by the same argument, weakly in H2 and strongly in H1. There is
therefore enough control to show that the limit u(0) is a steady solution of the forced Euler equations,

B(u(0), u(0)) = f. (16)

Similarly, for time dependent solutions of (1), u(t) = S(ν)(t, u0), we bound the difference ‖u‖2H1−λ‖u‖2L2 .
Indeed, the evolution of the L2 and H1 norms are given by

d

2dt
‖u‖2L2 + ν‖u‖2H1 = (f, u)L2 (17)

and
d

2dt
‖u‖2H1 + ν‖Au‖2L2 = λ(f, u)L2 (18)

and subtracting we have

d

2dt

[
‖u‖2H1 − λ‖u‖2L2

]
+ ν

[
‖Au‖2L2 − λ‖u‖2H1

]
= 0. (19)

Let us denote
δ(t) = ‖u‖2H1 − λ‖u‖2L2 (20)

and

µ(t) =
‖u‖2H1

‖u‖2
L2

. (21)

Let us observe that
µ(t) ≥ λ1 = 1

where λ1 is the smallest eigenvalue of A, and that

‖Au‖2L2 − µ2‖u‖2L2 = ‖u‖2L2

∥∥∥∥(A− µ)
u

‖u‖L2

∥∥∥∥2
L2

Adding and subtracting ν‖u‖2L2µ
2, (19) becomes

d

2dt
δ(t) + ν‖u‖2L2

∥∥∥∥(A− µ)
u

‖u‖L2

∥∥∥∥2
L2

+ νµ(t)δ(t) = 0. (22)
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In particular
d

dt
δ + 2νµδ ≤ 0 (23)

and therefore
δ(t) ≤ δ(0)e−2ν

´ t
0 µ(s)ds. (24)

Note that if δ(0) ≤ 0 then this implies that δ(t) ≤ 0 for all t. If δ(0) > 0 then the right hand side of (24)
decays fast to zero. In either case (24) shows that δ(t) is bounded on solutions,

δ(t) ≤ δ+(0) = max{0, δ(0)}.

This implies an automatic viscosity independent and time independent bound on ‖u‖H1 given a viscosity
independent and time independent bound on ‖u‖L2 . Let us assume that

sup
ν>0,t≥0

‖S(ν)(t, u0)‖2L2 ≤ E. (25)

Then, we have that
sup

ν>0,t≥0
‖S(ν)(t, u0)‖2H1 ≤ λE + δ+(0). (26)

Let us assume now that the solutions S(ν)(t, u0) have the property that

‖Sν(t, u0)− u(ν)‖L2 ≤ γ

for t ≥ T , for fixed γ. Then, by passing to the limit, (on a subsequence for u(ν)) at each fixed t ≥ T , we
obtain that

‖S(0)(t, u0)− u(0)‖L2 ≤ γ
for all t ≥ T . If γ → 0 as T → ∞ we obtain convergence in time of S(0)(t, u0) to a solution of the steady
forced Euler equations. The same thing will happen in higher norms, under the corresponding assumptions.
It is relatively easy to construct Kolmogorov forces f such that the forced, time independent Euler equation

B(u, u) = f

has solutions. It is enough to take two eigenfunctions u1 and u2 corresponding to distinct eigenvalues of the
Stokes operator,

Aui = aiui, i = 1, 2,

with a1 < a2 and with orthogonal spectral support, i.e. j ⊥ k if û1(j) 6= 0, û2(k) 6= 0. After rotation of
axes, this means u1 is a function of one variable and u2 a function of the orthogonal variable, e.g.

ui = ∇⊥ψi
with

ψi = αi sin(kix1) + βi cos(kixi), i = 1, 2

a1 = k21 < a2 = k22 . Set u = u1 + u2 Then f = B(u, u) is an eigenfunction of the Stokes operator with
eigenvalue λ = a1 + a2. In general f 6= 0.

3. FORCED, VISCOUS CRITICAL SQG

We consider the equation
∂tθ + u · ∇θ + γDθ − ν∆θ = f (27)

for a scalar valued θ : R2 × [0,∞)→ R. Here

u = R⊥θ (28)

with R⊥ = (−R2, R1), and R = ∇(−∆)−
1
2 the Riesz transforms. The damping operator D is given by

D = Λ + 1 (29)
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with Λ = (−∆)
1
2 . The coefficient γ > 0 is fixed throughout the work and the coefficient ν > 0 is a

parameter that we will let vary. The force f ∈ L1(R2) ∩ L∞(R2) is fixed and time independent. We recall
here that Λ is defined at the Fourier transform level by

Λ̂φ(ξ) = |ξ|φ̂(ξ)

where

φ̂(ξ) =

ˆ
R2

e−ix·ξφ(x)dx

and also

Λφ(x) = cP.V.

ˆ
R2

φ(x)− φ(y)

|x− y|3
dy

for an appropriate constant c and smooth enough φ. We will use also the pointwise identity [24, 12]

2φ(x) · Λφ(x) = Λ(|φ|2)(x) +D[φ](x) (30)

with

D[φ](x) = c

ˆ
R2

(φ(x)− φ(y))2

|x− y|3
dy. (31)

Proposition 1. Let ν > 0, f ∈ L1(R2) ∩ L∞(R2), θ0 ∈ L1(R2) ∩ L∞(R2). The solution θ(x, t) =

S(ν)(t, θ0) of (27) exists for all time, is unique, satisfies the energy equation

d

2dt
‖θ‖2L2(R2) + γ‖θ‖2

H
1
2 (R2)

+ ν‖∇θ‖2L2(R2) = (f, θ)L2(R2) (32)

and the bounds

‖θ(·, t)‖Lp(R2) ≤ e−γt
{
‖θ0‖Lp(R2) −

1

γ
‖f‖Lp(R2)

}
+

1

γ
‖f‖Lp(R2) (33)

for 1 ≤ p ≤ ∞. Moreover the positive semi-orbit

O+(θ0) = {θ = θ(·, t) | t ≥ 0} ⊂ L2(R2)

is uniformly integrable: for every ε > 0, there exists R > 0 such thatˆ
|x|≥R

|θ(x, t)|2dx ≤ ε (34)

holds for all t ≥ 0.

We used the notation

(f, g)L2(R2) =

ˆ
R2

f(x)g(x)dx

and we note that
‖θ‖2

H
1
2 (R2)

= (Dθ, θ)L2(R2).

The proof of existence, uniqueness and regularity follows along well established lines and will not be pre-
sented here. The bounds (33) follow from the maximum principles and nonlocal calculus identities of which
(30) is the quadratic example [24] and which imply thatˆ

R2

φp−1Λφdx ≥ 0

if p is even or if φ is nonnegative. The uniform integrability property (or “no-travel” property [19]) is proved
here below. We consider the function

YR(t) =

ˆ
R2

χ
( x
R

)
θ2(x, t)dx
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where χ is a nonnegative smooth function supported in {x ∈ R2 | |x| ≥ 1
2} and identically equal to 1 for

|x| ≥ 1. We take (27), multiply by 2χ( xR)θ(x) and integrate. The more challenging term we encounter is

2γ

ˆ
R2

(Λθ(x))χ
( x
R

)
θ(x, t)dx.

Using (30) we have
2γ
´
R2(Λθ(x))χ

(
x
R

)
θ(x, t)dx

≥ γ
´
R2 Λ(θ(x)2)

(
1−

(
1− χ

(
x
R

)))
dx

= −γ
´
R2(θ(x)2)Λ

(
1− χ

(
x
R

))
dx

where Λ(1−χ) is well defined because 1−χ ∈ C∞0 . Moreover 1−χ
(
x
R

)
= φ

(
x
R

)
and therefore, in view

of the fact that Λ(φ( xR)) = 1
R(Λφ)( xR) and |Λφ(x)| ≤ C,

2γ

ˆ
R2

(Λθ(x))χ
( x
R

)
θ(x, t)dx ≥ −Cγ

R
‖θ(·, t)‖2L2(R2)

The contribution of the nonlinear term u · ∇θ is bounded by integrating by parts and using

‖u‖L3(R2) ≤ C‖θ‖L3(R2).

The contribution of the forcing term is bounded by

2

∣∣∣∣ˆ
R2

fχθdx

∣∣∣∣ ≤ C‖θ(·, t)‖L2(R2)

√ˆ
|x|≥R

2

|f(x)|2dx

We obtain
d
dtYR(t) + 2γYR(t)

≤ C
R

[
‖θ(·, t)‖3L3(R2) + γ‖θ(·, t)‖2L2(R2)

]
+ Cν

R2 ‖θ(·, t)‖2L2(R2)

+C‖θ(·, t)‖L2(R2)

√´
|x|≥R

2
|f(x)|2dx.

Because of (33) and the fact that f2 is integrable, the right hand side is as small as we wish, unfiormly in
time, provided R is chosen large enough. The choice of R depends only on γ, f and on norms of θ0 in L2

and L3, and can be made uniformly in ν for bounded ν, although we do not need this. Once we chose R so
that the right-hand side is less than γε we have the inequality

YR(t) ≤ e−2γtYR(0) +
ε

2

and the uniform integrability follows from the fact that YR(0) is small for large R.

4. STATIONARY STATISTICAL SOLUTIONS

We introduce first the notion of stationary statistical solution for forced viscous SQG, in the spirit of [51,
52] and [19]

Definition 1. A stationary statistical solution of (27) is a Borel probability measure µ(ν) on L2(R2) such
that ˆ

L2(R2)
‖θ‖2H1dµ

(ν)(θ) <∞ ((a))

ˆ
L2(R2)

(N (ν)(θ),Ψ′(θ))L2(R2)dµ
(ν)(θ) = 0 ((b))

for all Ψ ∈ T , andˆ
E1≤‖θ‖

H
1
2
≤E2

(
γ‖θ‖2

H
1
2

+ ν‖∇θ‖2L2(R2) − (f, θ)L2(R2)

)
dµ(ν)(θ) ≤ 0 ((c))

for all E1 ≤ E2.
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Here
N (ν)(θ) = R⊥θ · ∇θ + γDθ − ν∆θ − f (35)

and the class of cylindrical test functions T is defined by

Definition 2. Ψ ∈ T if there exist N , w1, . . . , wN ∈ C∞0 (R2), ε ≥ 0 and ψ : RN → R, smooth, such that

Ψ(θ) = ψ((Jε(θ), w1)L2(R2), . . . , (Jε(θ), wN )L2(R2))

with Jε a standard mollifier, i.e. convolution with ε−2j(xε ), j ∈ C∞0 (R2), j ≥ 0, j(−x) = j(x),´
R2 j(x)dx = 1, if ε > 0, and Jε = I if ε = 0.

We note that the test functions are locally bounded and sequentially weakly continuous in L2(R2). We
remind the elementary but important fact that weak continuity of real valued functions implies strong conti-
nuity, but in general continuity does not imply weak continuity. We identify Ψ′(θ) as an element of L2(R2)
defined by

(φ,Ψ′(θ))L2(R2) =
N∑
k=1

(
∂ψ

∂yk
(y(θ))

)
(Jε(φ), wk)L2(R2) (36)

with
y(θ) =

(
(Jε(θ), w1)L2(R2), . . . , (Jε(θ), wN )L2(R2)

)
, (37)

that is

Ψ′(θ)(x) =
N∑
k=1

(
∂ψ

∂yk
(y(θ))

)
(Jεwk)(x). (38)

We extend the definition (36) to more general φ: this is the sense in which (N (ν)(θ),Ψ′(θ))L2(R2) is com-
puted,

(N (ν)(θ),Ψ′(θ))L2(R2) = F1(θ) + νF2(θ) + F3(θ) (39)
with

F1(θ) = γ(θ,DΨ′(θ))L2(R2) − (f,Ψ′(θ))L2(R2), (40)

F2(θ) = (θ, (−∆)Ψ′(θ))L2(R2) (41)
and

F3(θ) = −(θR⊥θ,∇Ψ′(θ))L2(R2). (42)

Let us note that the Borel σ-algebra associated to the strong topology in L2(R2) is the same as the Borel σ
algebra associated to the weak topology because any open ball is a countable union of closed balls, which
are convex, hence weakly closed. The function θ 7→ ‖θ‖2H1(R2) is a Borel measurable function in L2(R2)

because it is everywhere the limit of a sequence of continuous functions θ 7→ ‖Jεθ‖2H1(R2). The same of
course applies to ‖θ‖2

H
1
2 (R2)

. Therefore conditions (a) and (c) in Definition 1 make mathematical sense.

Moreover, condition (c) implies that µ(ν) is supported in the ball

‖θ‖
H

1
2 (R2)

≤ 1

γ
‖f‖L2(R2) (43)

as it is easily seen by taking E1 ≥ γ−1‖f‖L2(R2). The integrand in condition (b) is locally bounded and
weakly continuous:

Lemma 1. For any fixed Ψ ∈ T the maps
θ 7→ Fi(θ)

i = 1, 2, 3 are locally bounded in L2(R2) and weakly continuous in L2(R2) on bounded sets of L2(R2) ∩
Lp(R2), 1 ≤ p < 2. In particular

θ 7→ (N (ν)(θ),Ψ′(θ))L2(R2)

is locally bounded and weakly continuous on bounded sets of L2(R2) ∩ Lp(R2), 1 ≤ p < 2.
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After inspection of the definitions (40, 41, 42) it is clear that the only nontrivial statement is about F3. It
is only for F3 also that we need the bound in Lp(R2) for p < 2. If θn is weakly converging to θ in L2(R2),
then the vectors y(θn) defined in (37) converge to the vector y(θ) and because the sequence θn is bounded
in L2(R2), it follows that y(θn) belong to a fixed compact set in RN . The functions ∂ψ

∂yk
are continuous, so

all we need to check is the convergence

(θnR
⊥θn,∇Jεwk)L2(R2) → (θR⊥θ,∇Jεwk)L2(R2).

In order to do this we make use of the assumed bound

sup
n
‖θn‖Lp(R2) ≤ Ap.

We note first that θ, the weak limit in L2(R2), also obeys

‖θ‖Lp(R2) ≤ Ap.

This follows by essentially restricting θp−1 (or sign θ if p = 1) on large compacts, integrating against θn,
passing to the limit in n and then letting the compacts grow to the whole space. The weak continuity of the
nonlinearity in SQG is proved using the representation [71]

(θR⊥θ,∇φ)L2(R2) =
1

2

ˆ
R2

(Λ−1θ)(x) [Λ,∇φ] (R⊥(θ)(x)dx (44)

for smooth compactly supported φ, with [Λ, a]b = Λ(ab)− aΛb, the commutator of the operators Λ and of
multiplication by a. In our case φ = Jεwk.

In order to make sense of the terms in (44) let us recall that the Riesz potential is given by [75]

Λ−1θ(x) = c

ˆ
R2

θ(x− y)

|y|
dy

for an appropriate constant c. If θ ∈ Lp(R2) ∩ L2(R2) then Λ−1θ ∈ L2(R2) + L∞(R2). Indeed,

sup
x

∣∣∣∣∣
ˆ
|y|≥1

1

|y|
θ(x− y)dy

∣∣∣∣∣ ≤ C‖θ‖Lp(R2)

because |y|−1 ∈ Lq(|y| ≥ 1), q > 2, q−1 + p−1 = 1, and∥∥∥∥∥
ˆ
|y|≤1

1

|y|
θ(x− y)dz

∥∥∥∥∥
L2(dx)

≤ C‖θ‖L2(R2)

as it is easily seen by duality or by Fourier transform. Then, we note that

Λ(ab)(x)− a(x)Λb(x) = cP.V.

ˆ
R2

b(y)
a(x)− a(y)

|x− y|3
dy

and therefore, if a is compactly supported in a ball of radius L and if |x| ≥ 2L, then, pointwise

|Λ(ab)(x)− a(x)Λb(x)| ≤ C|x|−3‖a‖L2(R2)‖b‖L2(R2).

Thus, if L is the radius of a ball in R2 containing the support of φ = Jεwk and we denote

Cφ(θ)(x) = [Λ,∇φ] ·R⊥θ
we have, for ρ ≥ 2L,∣∣∣∣∣

ˆ
|x|≥ρ

(Λ−1θ)(x)Cφ(θ)(x)dx

∣∣∣∣∣ ≤ Cρ−1‖θ‖Lp(R2)‖θ‖L2(R2) + Cρ−2‖θ‖2L2(R2)

We have thus ∣∣∣∣∣
ˆ
|x|≥ρ

(Λ−1θn)(x)Cφ(θn)(x)dx

∣∣∣∣∣ ≤ ε
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uniformly for all n and also for θ, provided ρ is large enough so that ρ ≥ 2L and

Cρ−1ApA2 + Cρ−2A2
2 ≤ ε

where A2 is the bound on ‖θn‖L2(R2). It is well-known and easy to show that

θ 7→ Cφ(θ) = [Λ,∇φ]R⊥θ

is a bounded linear operator in L2(R2) for fixed φ ∈ C∞0 (R2). Thus,∣∣∣∣∣
ˆ
|x|≤ρ

(Λ−1θ)(x)Cφ(θ)(x)dx

∣∣∣∣∣ ≤ C‖Λ−1θ‖L2(B(0,ρ))‖θ‖L2(R2)

The proof of the identity (44) is best explained by denoting ψ = Λ−1θ and u = R⊥θ = ∇⊥ψ. Then we
have

(θR⊥θ,∇φ)L2(R2) =
´
R2(Λψ)(u · ∇φ)dx

=
´
R2 ψ ([Λ,∇φ] · u) dx+

´
R2 ψ∇φ · Λudx

=
´
R2 ψ ([Λ,∇φ] · u) dx+

´
R2 ψ∇φ · ∇⊥θdx

=
´
R2 ψ ([Λ,∇φ] · u) dx− (θR⊥θ,∇φ)L2(R2).

In order to obtain the last term we integrated by parts and used ∇⊥ · ∇φ = 0. Now the weak continuity
follows by writing´

R2(Λ−1θn)(x)Cφ(θn)(x)dx−
´
R2(Λ−1θ)(x)Cφθ(x)dx =´

B(0,ρ)(Λ
−1(θn − θ))(x)Cφ(θn)(x)dx+

´
B(0,ρ)(Λ

−1θ)(x)Cφ(θn − θ)(x)dx

+
´
|x|≥ρ(Λ

−1θn)(x)Cφ(θn)(x)dx−
´
|x|≥ρ(Λ

−1θ)(x)Cφθ(x)dx.

We pick ε > 0 and fix it. We choose ρ > 0 large enough so that the last two terms are less than ε each. We
fix ρ. The function (Λ−1θ)χB(0,ρ) is a fixed function in L2(R2) (here χB(0,ρ) is the characteristic function),
and, because Cφ is a bounded linear operator in L2(R2) the sequence Cφ(θn − θ) converges weakly to zero
in L2(R2). Thus, letting n→∞ the ante-penultimate term converges to zero. Finally, for the first term∣∣∣∣∣

ˆ
B(0,ρ)

(Λ−1(θn − θ))(x)Cφ(θn)(x)dx

∣∣∣∣∣ ≤ CA2‖Λ−1(θn − θ)‖L2(B(0,ρ))

and this converges to zero because θn − θ converges weakly to zero in L2(R2) and is bounded in Lp(R2),
p < 2. Indeed, by the previous considerations about Λ−1, for χ ∈ C∞0 (R2) we have that χΛ−1(θn − θ) is
bounded in H1(R2) and converges weakly to 0 in L2(R2). Thus Λ−1(θn − θ) converges strongly to zero
in L2(B(0, ρ)) implying that the first term converges to zero. We conclude that the limit difference is in
absolute value less than 2ε and ε is arbitrary.

Definition 3. A stationary statistical solution of the forced critical SQG equation

∂tθ +R⊥θ · ∇θ + γDθ = f (45)

is a Borel probability measure µ on L2(R2) such thatˆ
L2(R2)

‖θ‖2
H

1
2 (R2)

dµ(θ) <∞, (46)

and the equation ˆ
L2(R2)

(N(θ),Ψ′(θ))L2(R2)dµ(θ) = 0 (47)

holds for all cylindrical test functions Ψ ∈ T , where

N(θ) = R⊥θ · ∇θ + γDθ − f. (48)
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We say that the stationary statistical solution satisfies the energy dissipation balance ifˆ
L2(R2)

{
γ‖θ‖2

H
1
2 (R2)

− (f, θ)L2(R2)

}
dµ(θ) = 0. (49)

Theorem 1. Let µ(ν) be a sequence of stationary statistical solutions of the viscous forced critical SQG
equation (27) with f ∈ L1(R2) ∩ L2(R2), with ν → 0. Assume that there exists 1 ≤ p < 2 and Ap such
that the supports of the measures µ(ν) are included in

Bp =
{
θ ∈ Lp(R2) ∩ L2(R2) | ‖θ‖Lp(R2) ≤ Ap

}
. (50)

Then there exists a subsequence, denoted also µ(ν) and a stationary statistical solution µ of the forced
critical SQG equation (45) such that

lim
ν→0

ˆ
L2(R2)

Φ(θ)dµ(ν)(θ) =

ˆ
L2(R2)

Φ(θ)dµ(θ) (51)

holds for all weakly continuous, locally bounded real valued functions Φ.

As we saw in (43) the support of the measures µ(ν) is included in

B =

{
θ ∈ H

1
2 (R2) | ‖θ‖

H
1
2 (R2)

≤
‖f‖L2(R2)

γ

}
. (52)

The set Ap = B ∩ Bp is weakly closed in L2(R2) and it is a separable metrizable compact space with
the weak L2(R2) topology. By Prokhorov’s theorem the sequence µ(ν) is tight and therefore has a weakly
convergent subsequence. The limit µ is a Borel probability on Ap. The extension of µ to L2(R2), denoted
again by µ and given by µ(X) = µ(X ∩Ap) is a Borel measure because Ap is weakly closed. The measure
µ satisfies (46) because it is supported in B. The equation (47) is satisfied because we may pass to the limit
in (b) of Definition 1 in view of Lemma 1.

5. INVISCID LIMIT AND ENERGY DISSIPATION BALANCE

In this section we prove

Theorem 2. Let µ(ν) be a sequence ν → 0 of stationary statistical solutions of the forced viscous SQG
equation (27) supported in

A =

{
θ | ‖θ‖Lp(R2) ≤ Ap, ‖θ‖L∞(R2) ≤ A∞, ‖θ‖H 1

2 (R2)
≤
‖f‖L2(R2)

γ

}
. (53)

Let µ be any weak limit of µ(ν) in L2(R2). Then µ is a stationary statistical solution of the forced critical
SQG equation (45) that satisfies the energy dissipation balance (49).

In fact, by Theorem 1, we know that any weak limit is a stationary statistical solution of the forced critical
SQG equation. We check that it is supported on A. The set A is weakly closed in L2(R2), and because its
complement U is weakly open and

µ(U) ≤ lim inf
ν→0

µ(ν)(U) = 0

it follows that µ is supported in the set A. The rest of the proof is done by showing that (47) and the fact
that µ is supported in A imply (49).

We take a sequence wj ∈ C∞0 (R2) that is an orthonormal basis of L2(R2). We fix ε > 0 and consider the
sequence of test functions

Ψm(θ) =
1

2

m∑
k=1

(Jε(θ), wj)
2
L2(R2)
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i.e. we take ψ(y) = 1
2

∑m
k=1 y

2
k in Definition 2. We note that

(N(θ),Ψ′m(θ))L2(R2) =
m∑
k=1

(Jε(θ), wj)L2(R2)(Jε(N(θ)), wj)L2(R2).

This is uniformly bounded in m because∣∣(N(θ),Ψ′m(θ))L2(R2)

∣∣ ≤ ‖Jεθ‖L2(R2)‖JεN(θ)‖L2(R2).

On A, the right hand side is bounded uniformly in θ∣∣(N(θ),Ψ′m(θ))L2(R2)

∣∣ ≤ A2((2 + ε−
1
2 )‖f‖L2(R2) + ε−1A2A∞)

and, by Parseval, it converges to (Jε(θ), Jε(N(θ)))L2(R2) pointwise, as m → ∞. So, we deduce from (47)
and the Lebesgue dominated convergence theorem thatˆ

L2(R2)
(Jε(θ), Jε(N(θ)))L2(R2)dµ(θ) = 0

for any ε > 0. This can be written as
Iε +Kε = 0 (54)

where the two terms are

Iε =

ˆ
L2(R2)

(Jε(θ), Jε(γDθ − f))L2(R2)dµ(θ) (55)

and

Kε =

ˆ
L2(R2)

(Jε(θ), Jε((R
⊥θ) · ∇θ))L2(R2)dµ(θ). (56)

Now
(Jε(θ), Jε(u) · ∇Jε(θ))L2(R2) = 0

in view of the incompressibility of u = R⊥θ, so

Kε =

ˆ
L2(R2)

(Jε(θ),∇ · ρε(u, θ))L2(R2)dµ(θ). (57)

where
ρε(u, θ) = Jε(uθ)− (Jε(u))(Jε(θ)). (58)

We show that limε→0Kε = 0. We use the identity [14]

ρε(u, θ) = rε(u, θ)− (u− Jε(u))(θ − Jε(θ))
with

rε(u, θ)(x) =

ˆ
R2

j(z)(δεz(u)(x))(δεz(θ)(x))dz,

δεz(u)(x) = u(x− εz)− u(x)

and
δεz(θ)(x) = θ(x− εz)− θ(x).

Clearly also

(Jεu− u)(Jεθ − θ) =

ˆ
R4

j(z1)j(z2)(δεz1u)(δεz2θ)dz1dz2.

The inequality
‖δεzθ‖2L4(R2) ≤ C(ε|z|)

1
2 ‖θ‖L∞(R2)‖θ‖H 1

2 (R2)
. (59)

and its consequence (because of the boundeness of R⊥ in L4(R2))

‖δεzR⊥θ‖2L4(R2) ≤ C(ε|z|)
1
2 ‖θ‖L∞(R2)‖θ‖H 1

2 (R2)
(60)
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follow from the elementary inequality

‖δεzθ‖L2(R2) ≤ C(ε|z|)
1
2 ‖θ‖

H
1
2 (R2)

(61)

which is proved by Fourier transform. Consequently,

‖ρε(R⊥θ1, θ2)‖L2(R2) ≤ Cε
1
2 ‖θ1‖

1
2

L∞(R2)
‖θ2‖

1
2

L∞(R2)
‖θ1‖

1
2

H
1
2 (R2)

‖θ2‖
1
2

H
1
2 (R2)

. (62)

The integrand in Kε is bounded∣∣(∇Jε(θ), ρε(u, θ))L2(R2)

∣∣ ≤ C‖θ‖L∞(R2)‖θ‖2
H

1
2 (R2)

(63)

and converges to 0 as ε→ 0, for fixed θ ∈ H
1
2 (R2) ∩ L∞(R2). Indeed, the trilinear map

(θ1, θ2, θ3) 7→ (∇Jε(θ1), ρε(R⊥θ1, θ2))L2(R2)

is separately continuous from H
1
2 (R2) to R uniformly on A and uniformly in ε. This can be seen from the

expression

(∇Jε(θ3), ρε(R⊥θ1, θ2))L2(R2) = −1

ε

ˆ
∇zj(z)(δεzθ3, ρε(R⊥θ1, θ2))L2(R2)dz

and the bound obtained from (61) and (62)∣∣(∇Jε(θ3), ρε(R⊥θ1, θ2))L2(R2)

∣∣
≤ C‖θ3‖

H
1
2 (R2)

‖θ1‖
1
2

L∞(R2)
‖θ2‖

1
2

L∞(R2)
‖θ1‖

1
2

H
1
2 (R2)

‖θ2‖
1
2

H
1
2 (R2)

.
(64)

This explains (63) and also shows the pointwise vanishing of the integrand in Kε as ε→ 0: the integrand in
(57) obviosly tends to zero for smooth θ, and θ inA can be approximated in the norm ofH

1
2 (R2) by smooth

functions. Therefore, from the Lebegue dominated convergence theorem

lim
ε→0

Kε = 0.

It remains to consider the limit of Iε, but this is quite straightforward,

lim
ε→0

Iε =

ˆ
L2(R2)

(γ‖θ‖2
H

1
2 (R2)

− (θ, f)L2(R2))dµ(θ)

and thus the proof is complete.

6. LONG TIME AVERAGES

In this section we consider long time averages of solutions and the stationary statistical solutions they
generate. We start by recalling the concept of generalized (Banach) limit:

Definition 4. A generalized limit (Banach limit) is a bounded linear functional

Limt→∞ : BC([0,∞))→ R
such that

1. Limt→∞(g) ≥ 0, ∀g ∈ BC([0,∞)), g ≥ 0.
2. Limt→∞(g) = limt→∞ g(t) whenever the usual limit exists.

The space BC([0,∞)) is the Banach space of all bounded continuous real valued functions defined on
[0,∞) endowed with the sup norm. It can be shown that the generalized limit always saitisfies

lim inf
t→∞

g(t) ≤ Limt→∞(g) ≤ lim sup
t→∞

g

for all g ∈ BC([0,∞)). Moreover, given a fixed g0 ∈ BC([0,∞)) and a sequence tj → ∞ for which
limj→∞ g0(tj) = l exists, a generalized limit can be found which satisfies Limt→∞(g0) = l. This implies
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that one can choose a generalized limit that obeys Limt→∞(g0) = lim supt→∞ g0(t). With this language
at our disposal, we now state the result about long time averages of viscous forced critical SQG.

Theorem 3. Let f ∈ L1(R2) ∩ L∞(R2) and θ0 ∈ L1(R2) ∩ L∞(R2). Let Limt→∞ be a Banach limit.
Then the map

Φ 7→ Limt→∞
1

t

ˆ t

0
Φ(S(ν)(s, θ0))ds (65)

for Φ ∈ C(L2(R2)) (strongly continuous, real valued) defines a a stationary statistical solution µ(ν) of the
viscous forced SQG equation (27):ˆ

L2(R2)
Φ(θ)dµ(ν)(θ) = Limt→∞

1

t

ˆ t

0
Φ(S(ν)(s, θ0))ds. (66)

The measure is supported in the set

A =

{
θ | ‖θ‖

H
1
2 (R2)

≤
‖f‖L2(R2)

γ
, ‖θ‖Lp(R2) ≤ Ap, 1 ≤ p ≤ ∞

}
(67)

with

Ap = ‖θ0‖Lp(R2) +
‖f‖Lp(R2)

γ
, 1 ≤ p ≤ ∞.

The inequality ˆ
L2(R2)

[
ν‖∇θ‖2L2(R2) + γ‖θ‖2

H
1
2 (R2)

− (f, θ)L2(R2)

]
dµ(ν)(θ) ≤ 0 (68)

holds.

The positive semiorbit
O+(θ0) = {θ | ∃s ≥ 0, θ = S(ν)(s, θ0)}

is relatively compact in L2(R2) because it is bounded in H1(R2) and uniformly integrable by Proposition 1,
(34). For any Φ ∈ C

(
O+(θ0)

)
the function s 7→ 1

t

´ t
0 Φ(S(ν)(s, θ0))ds is a bounded continuous function

on [0,∞) so we may apply Limt→∞ to it. (Of course, C(L2(R2)) ⊂ C
(
O+(t0, θ0)

)
.) The map

Φ 7→ Limt→∞
1

t

ˆ t

0
Φ(S(ν)(s, θ0))ds

is a positive functional on C
(
O+(θ0)

)
. Because of the Riesz representation theorem on compact spaces,

it follows that there exists a Borel measure representing it, i.e. (66) holds. The measure is supported on
O+(θ0). We take a test function Ψ ∈ T . Thenˆ

L2(R2)
(N (ν)(θ),Ψ′(θ))L2(R2)dµ

(ν)(θ) = Limt→∞
1

t

ˆ t

0

d

ds
Ψ(S(ν)(s, θ0))ds

holds and the right hand side vanishes, verifying (b) of Definition (1). Because of (33) the semiorbit is
included in the set

{θ | ‖θ‖Lp(R2) ≤ Ap, 1 ≤ p ≤ ∞}.

The fact that the support of µ(ν) is included in A follows as shown before from property (c) of Definition 1.
In order to check (a), (c) of Definition 1 we would like to take long time averages in the energy balance (32).
In order to do so, we first mollify the equation. This is due to the fact that ‖∇θ‖2L2(R2) is not continuous in
L2(R2). We put

θε(x, t) = Jε(S
(ν)(t, θ0))(x), uε(x, t) = JεR

⊥(S(ν)(t, θ0)),
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and applying Jε to (27), multiplying by θε and integrating we deduce

1
t

´ t
0

[
γ‖θε(s)‖2

H
1
2 (R2)

− (Jεf, θε(s))L2(R2) + ν‖∇θε(s)‖2L2(R2)

]
ds

= 1
2t

[
‖θε(0)‖2L2(R2) − ‖θε(t)‖

2
L2(R2)

]
+ 1

t

´ t
0 (ρ(uε(s), θε(s)),∇θε(s))L2(R2)ds.

We obtain ´ [
γ‖Jεθ‖2

H
1
2 (R2)

− (Jεf, Jεθ)L2(R2) + ν‖∇Jεθ‖2L2(R2)

]
dµ(ν)(θ)

= Limt→∞
1
t

´ t
0 (ρ(uε(s), θε(s)),∇θε(s))L2(R2)ds.

(69)

Because of (32) and (33)

lim supt→∞
1
t

´ t
0

[
γ‖S(ν)(s, θ0)‖2

H
1
2 (R2)

+ ν‖∇S(ν)(s, θ0)‖2L2(R2)ds

]
≤ 1

γ ‖f‖
2
L2(R2)

(70)

and because Jε does not increase L2 norms, we deduce from (70) that

sup
0<ε

ˆ
L2(R2)

[
γ‖Jεθ‖2

H
1
2 (R2)

+ ν‖∇Jεθ‖2L2(R2)

]
dµ(ν)(θ) ≤ 1

γ
‖f‖2L2(R2).

The functions ‖θ‖2
H

1
2 (R2)

and ‖∇θ‖2L2(R2) are Borel measurable and so, by Fatou, we obtain (a) of Definition

1. Using the H1 ∩ L∞ information we have

‖ρε(R⊥θ, θ)‖L2(R2) ≤ C
√
ε‖θ‖L∞(R2)‖∇θ‖L2(R2)

and thus
Limt→∞

1
t

´ t
0 ρ(uε(s)θε(s)),∇θε(s))L2(R2)ds

≤ Cε
[
‖θ0‖L∞(R2) + 1

γ ‖f‖L∞(R2)

]
1
νγ ‖f‖

2
L2(R2).

This implies that the right hand side of (69) converges to zero as ε→ 0. This proves (68) by Fatou. In order
to prove (c) of Definition 1 we take χ′(y), a smooth, nonnegative, compactly supported function defined for
y ≥ 0. Then χ(y) =

´ y
0 χ
′(e)de is bounded on R+ and

d

dt
χ(‖θε(t)‖2L2(R2)) = χ′(‖θε(t)‖2L2(R2))

d

dt
‖θε(t)‖2L2(R2).

We proceed as above and obtain
´
L2(R2) χ

′(‖θ‖2L2(R2))

{
ν‖∇θ‖2L2(R2) + γ‖θ‖2

H
1
2 (R2)

− (f, θ)L2(R2)

}
dµ(ν)(θ)

≤ 0.

We let χ′(y) converge pointwise to the characteristic function of the interval [E2
1 , E

2
2 ] with 0 ≤ χ′(y) ≤ 2.

This proves (c) of Definition 1 and concludes the proof of this theorem.

7. CONCLUSION

Theorem 4. Let θ0, f ∈ L1(R2) ∩ L∞(R2). Then

lim
ν→0

ν

(
lim sup
t→∞

1

t

ˆ t

0
‖∇S(ν)(s, θ0)‖2L2(R2)ds

)
= 0.

We argue by contradiction. If the conclusion would be false, then there would exist δ > 0, a sequence
νk → 0, and, for each νk, a sequence of times tj →∞ such that

νk
tj

ˆ tj

0
‖∇S(νk)(s, θ0)‖2L2(R2)ds ≥ δ
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holds for all tj . Because of (32)

δ ≤ νk
tj

´ tj
0 ‖∇S

(νk)(s, θ0)‖2L2(R2)ds =

1
tj

´ tj
0

[
−γ‖S(νk)(s, θ0)‖2

H
1
2 (R2)

+ (f, S(νk)(s, θ0))L2(R2)

]
ds

+ 1
2tj

[
‖θ0‖2L2(R2) − ‖S

(νk)(t, θ0)‖2L2(R2)

]
It follows that

lim sup
t→∞

1

t

ˆ t

0

[
−γ‖S(νk)(s, θ0)‖2

H
1
2 (R2)

+ (f, S(νk)(s, θ0))L2(R2)

]
ds ≥ δ. (71)

By Theorem 3 there exists a stationary statistical solution of the forced viscous SQG equation, µ(νk) sup-
ported in A such that ˆ

L2(R2)

{
−γ‖θ‖2

H
1
2 (R2)

+ (f, θ)L2(R2)

}
dµ(νk)(θ) ≥ δ > 0. (72)

Passing to a weakly convergent subsequence (denoted again µ(νk)), we find using Theorem 1 and Theorem
2 a stationary statistical solution µ of the forced critical SQG equation that satisfies the energy dissipation
balance (49). The function θ 7→ (f, θ)L2(R2) is weakly continuous, so

lim
k→∞

ˆ
L2(R2)

(f, θ)dµ(νk)(θ) =

ˆ
L2(R2)

(f, θ)dµ.

On the other hand, by Fatouˆ
L2(R2)

‖θ‖2
H

1
2
dµ(θ) ≤ lim inf

k→∞

ˆ
L2(R2)

‖θ‖2
H

1
2
dµ(νk)(θ).

Using (72) we obtain ˆ
L2(R2)

[
γ‖θ‖2

H
1
2
− (f, θ)L2(R2)

]
dµ(θ) ≤ −δ < 0

contradicting (49). This concludes the proof of the theorem.
The forced critical SQG equation is dissipative, and the main result here shows that additional viscous

dissipation does not leave any anomalous remanent dissipation. The same result is true for spatially peri-
odic boundary conditions, and for additional dissipation of the type ν(−∆)α. The problem of absence of
anomalous dissipation is open for the forced SQG equation without the Λ term in D, i.e. with friction that
does not grow like |k| for high wave-numbers k.

The method of proof of [19] and of this paper is quite general, and is applicable for a large class of
equations where no uniform bound on the dissipation is readily available. The main ingredients necessary
for the success of the method are: an energy dissipation balance for viscous solutions, relative compactness
of viscous semiorbits, weak continuity of the nonlinearity, and enough bounds to control the nonlinear
fluxes. The forced SQG equation with wave-number independent friction and the supercritical forced SQG
equation have all the mentioned ingredients, except the last one, so what is missing is proving the energy
dissipation balance for the long time averages of solutions of the inviscid equation.
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Phys., 290(3):801–812, 2009.
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[52] C. Foiaş. Statistical study of Navier-Stokes equations. II. Rend. Sem. Mat. Univ. Padova, 49:9–123, 1973.
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