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1. Introduction

The three dimensional incompressible Euler equations are the basic equations of mathematical fluid
mechanics. The equations,

∂tu+ u · ∇u+∇p = 0, (1)

together with the incompressibility condition,

∇ · u = 0, (2)

are four equations for the four unknown functions, velocities u(x, t) ∈ R3, and pressure p(x, t) ∈ R,
which depend on four independent variables, x ∈ R3, t ∈ R. The pressure enforces the incompressibility
condition, and thus obeys

−∆p = ∇ · (u · ∇u) . (3)

The Euler equations are conservative: smooth solutions preserve the energy
∫
R3 |u(x, t)|2dx. If the pressure

p(x, t) belongs to L1(R3) at any instant of time, then∫
R3

ui(x, t)uj(x, t)dx = −δij
∫
R3

p(x, t)dx. (4)

This implies that the components of velocity are orthogonal and have equal norms in L2(R3), and the
integral of pressure is negative. Moreover, if u is Beltrami, i.e. if the curl of the velocity

ω = ∇× u (5)

is parallel to the velocity, and if u ∈ L2(R3), then u must be identically zero ([2], [12]). In fact, Liouville
theorems which assert the vanishing of solutions which have constant behavior at infinity are often true for
systems of the sort we are discussing. In contrast, vortex rings are examples of solutions of the 3D Euler
equations with compactly supported vorticity [7]. However, they have nonzero constant velocities at infinity.
Because of the Biot-Savart law

u(x, t) = − 1

4π

∫
R3

x− y
|x− y|3

× ω(y, t)dy, (6)

if ω is compactly supported, it is hard to imagine that u can also be compactly supported. In view of these
considerations, the following result of Gavrilov ([8]) is surprising.

THEOREM 1. (Gavrilov, [8]) There exist nontrivial time independent solutions u ∈
(
C∞0 (R3)

)3 of the
three dimensional incompressible Euler equations.
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The purpose of this paper is to describe a proof of the result above, inspired by the original proof
of Gavrilov, but starting from Grad-Shafranov equations, classical equations arising in the study of plas-
mas [9, 13] augmented by a localizability condition (see (21)). This point of view yields a general method
which can be applied to many other hydrodynamic equations, revealing a number of common features which
seem rather universal. The 3D incompressible Euler equations result which extends Theorem 1 is stated in
Theorem 2 below. An application providing multiscale steady solutions which are locally smooth, vanish
at ∂Ω, but globally belong only to Hölder classes Cα(Ω) is given in Theorem 3. Such solutions can be
constructed so that they belong to L2(Ω) ∩ C

1
3 (Ω) but not to any Cα(Ω) with α > 1

3 , they have vanishing

local dissipation u · ∇( |u|
2

2 + p) = 0, but have arbitrary large ‖|∇u||u|2‖L∞(Ω). These solutions conserve
energy, as they are stationary in time, and they have the regularity of the dissipative solutions recently con-
structed in connection with the Onsager conjecture (see review papers [1, 5]). Compactly supported weak
solutions which belong to Cα(Ω) but not to Cβ(Ω), 0 < α < β ≤ 1 can also be constructed. These
examples conclude the analysis of Sections 2 and 3. We construct by the same method time independent
solutions of the incompressible 2D Boussinesq system with compactly supported velocities and temperature
in Section 4 ( Theorem 4). It is known that smooth compactly supported solutions of the incompressible
porous medium equations are identically zero ([6]). In Section 5 we construct by the present method sta-
tionary solutions of the incompressible porous medium equation with velocities and temperature supported
in arbitrary non-vertical strips ( Theorem 5).

2. Steady Axisymmetric Euler Equations

The stationary 3D axisymmetric Euler equations are solved via the Grad-Shafranov ansatz

u =
1

r
(∂zψ)er −

1

r
(∂rψ)ez +

1

r
F (ψ)eφ (7)

where ψ = ψ(r, z) is a smooth function of r > 0, z ∈ R, and the swirl F is a smooth function of ψ alone.
It is known that smooth compactly supported velocities solving stationary axisymmetric 3D Euler equations
must vanish identically if the swirl F vanishes [10]. Above er, ez , eφ are the orthonormal basis of cylindrical
coordinates r, z, φ with the orientation convention er × eφ = ez , er × ez = −eφ, eφ × ez = er. Note that u
is automatically divergence-free,

divu = 0, (8)
and also that, by construction,

u · ∇ψ = 0. (9)
The vorticity ω = ∇× u is given by

ω = −1

r
(∂zψ)F ′(ψ)er +

1

r
(∂rψ)F ′(ψ)ez +

∆∗ψ

r
eφ (10)

where F ′ = dF
dψ and the Grad-Shafranov operator ∆∗ is

∆∗ψ = ∂2
rψ −

1

r
∂rψ + ∂2

zψ. (11)

In view of (7) and (10), the vorticity can be written as

ω = −F ′(ψ)u+
1

r

(
∆∗ψ +

1

2
(F 2)′

)
eφ. (12)

As it is very well known, the steady Euler equations

u · ∇u+∇p = 0 (13)

can be written as

ω × u+∇
(
|u|2

2
+ p

)
= 0, (14)
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and therefore the axisymmetric Euler equations are solved if ψ solves the Grad-Shafranov equation ([9, 13])

−∆∗ψ = ∂ψ

(
F 2

2
+ r2P

)
(15)

where the function P = P (ψ) represents the plasma pressure:

ω × u = ∇P. (16)

The analogy with the steady MHD equations u ↔ B, ω ↔ J motivates the name. Both the swirl F and
the plasma pressure P are arbitrary functions of ψ. The plasma pressure and the hydrodynamic pressure are
related via

p+
|u|2

2
+ P = constant. (17)

The constant should be time independent if we are studying time independent solutions, and it may be taken
without loss of generality to be zero.

In a remarkable paper, [8], Gavrilov showed that smooth compactly supported velocities (7) are possible.
The construction of [8] is explicit but somewhat obscure, as it starts not from the Grad-Shafranov ansatz,
but from a similar ansatz in terms of the hydrodynamic pressure p. The solution obtained by Gavrilov ends
up though by having the hydrodynamic pressure proportional to the stream function ψ. Gavrilov’s simple
but important insight in [8] is that, if

u · ∇p = 0, (18)

then, together with a solution u, p of (13, 8), any function

ũ = φ(p)u (19)

with φ smooth is again a solution of (13, 8) with pressure given by

∇p̃ = φ2(p)∇p. (20)

This can be used to localize solutions. In his construction Gavrilov obtained solutions u defined in the
neighborhood of a circle, obeying the Euler equations near the circle, and having a relationship |u|2 = 3p
between the velocity magnitude and the hydrodynamic pressure.

This motivates us to consider the overdetermined system formed by the Grad-Shafranov equation for ψ
(15) coupled with the requirement

|u|2

2
= A(ψ). (21)

This requirement is the constraint of localizability of the Grad-Shafranov equation, and it severely curtails
the freedom of choice of functions F and P . This localizability is in fact the essence and the novelty of the
method. Without this constraint many solutions (7) with ψ solving the Grad-Shafranov equation (15) exist,
including explicit ones ([14]), but they cannot be localized in space.

The method we are describing consists thus in seeking functions F, P,A of ψ such that the system{
−∆∗ψ = ∂ψ

(
1
2F

2(ψ) + r2P (ψ)
)
,

|∇ψ|2 + F 2(ψ) = 2r2A(ψ),
(22)

is solved. Then the function u given in the ansatz (7), and the pressure

p = −P (ψ)−A(ψ) (23)

together satisfy the steady 3D Euler equations (13, 8), and are localizable, meaning that (21) is satisfied. It
is important to observe that it is enough to find smooth functions F, P,A of ψ and a smooth function ψ in
an open set. This open set need not be simply connected, but once u and p are found using this construction,
any function φ(p)u is again a solution of steady Euler equations, and it is sometimes possible to extend this
solution to the whole space.
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REMARK 1. Note that the functions ρ =
√
r2 + z2, ρ = r2

2 and ρ = z are all in the kernel of ∆∗, i.e.

∆∗ρ = 0, (24)

and therefore, for ρ =
√
r2 + z2 and ρ = z the function ψ = f(ρ) solves the vacuum (P = 0) Grad-

Shafranov equation if f solves the ODE

− f ′′(ρ) = FF ′(f(ρ)) (25)

because |∇ρ| = 1 in both cases. A function ψ = f
(
r2

2

)
solves the Grad-Shafranov equation with F =

constant if f solves the ODE
− f ′′(ρ) = P ′(f(ρ)). (26)

All these ODEs can be integrated (multiplying by f ′(ρ)) but the solutions ψ cannot be compactly supported
in R3.

The two dimensional Euler equations have steady solutions with compactly supported velocities. Indeed,
any smooth radial stream function produces a steady solution of the Euler equations in 2D, and if it is
compactly supported in R2 \ {0} then the associated velocity is smooth and compactly supported.

3. Construction

The construction of solutions of (22) starts with a hodograph transformation. We seek functions U(r, ψ)
and V (r, ψ) defined in an open set in the (r, ψ) plane and a smooth function ψ(r, z) defined in an open set
of the (r, z) plane such that the equations

∂rψ(r, z) = U(r, ψ(r, z)), (27)

∂zψ(r, z) = V (r, ψ(r, z)) (28)
are satisfied. This clearly requires the compatibility

V ∂ψU = U∂ψV + ∂rV. (29)

Once the compatibility is satisfied then the solution ψ exists locally (in simply connected components). The
system (22) becomes {

∂rU + U∂ψU + V ∂ψV − 1
rU = −F∂ψF − r2∂ψP

U2 + V 2 + F 2 = 2r2A.
(30)

We traded a system of two equations in two independent variables (r, z) of total degree three, (22), for a
system of three first order equations (29, 30) in two independent variables (r, ψ). We integrate this locally.
We start by noticing that the first equation of (30) is

∂rU −
1

r
U +

1

2
∂ψ
(
U2 + V 2 + F 2

)
= −r2∂ψP, (31)

which, in view of the second equation in (30), becomes

∂rU −
U

r
= −r2∂ψ(A+ P ), (32)

and, using (23) we see that

∂ψp =
1

r
∂r

(
U

r

)
, (33)

which then can be used to determine p from knowledge of U . We observe that in order to have p = p(ψ) a
function of ψ alone, from (33) we have to have

U = r3M(ψ) + rN(ψ). (34)

for some functions M , N of ψ. Let us denote

Q2(r, ψ) = 2r2A(ψ)− F 2(ψ), (35)

Q3(r, ψ) = r3M(ψ) + rN(ψ), (36)
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and
Q6(r, ψ) = Q2(r, ψ)− (Q3(r, ψ))2 (37)

polynomials of degree 2, 3 and 6 in r with smooth and yet unknown coefficients depending only on ψ. We
note that, in view of (34),

U = Q3, (38)
and that the second equation in (30) yields

V 2 = Q6. (39)
Multiplying (29) by V results in

∂rQ6 +Q3∂ψQ6 − 2(∂ψQ3)Q6 = 0. (40)

Identifying coefficients in the 9th order polynomial equation (40) we observe that only odd powers appear,
the equations for powers 9 and 7 are tautological, and the remaining three equations become the ODE system{

2(N2 − 2A) +N(F 2)′ − 2N ′F 2 = 0,
8MN +M(F 2)′ − 2M ′F 2 +N(N2 − 2A)′ − 2N ′(N2 − 2A) = 0,

(41)

coupled with a separate equation for A,M , not involving N,F ,

A′M − 3M2 − 2AM ′ = 0. (42)

We recall that ′ = d
dψ . This system of 3 first order ODEs with four unknown functions is equivalent to the

compatibility relation (29). There is of course room to design solutions. Let us denote

α =
F 2

2A
(43)

and
β = −N

M
, (44)

assuming that A,M have been chosen satisfying (42). Then (41) can be written as

α′ =
2

M

1

α− β
+
M

A
(β − 3α), (45)

and
β′ =

1

M

1

α− β
. (46)

In order to localize the sought solution u in (r, z) space we need the pressure p to take a value at a point
(r0, z0) which is strictly separated from all the values it takes on a circle in (r, z) around that point. We seek
then conditions which result in a strict local minimum for the function ψ at the chosen point (r0, z0), and
then a similar behavior for the resulting p. Without loss of generality we may take this local minimum value
of ψ to be zero. We are lead thus to seek solutions of the ODEs (42, 45, 46)) in a small neighborhood of zero.
Because U and V represent derivatives of ψ we are lead to the requirement that the polynomials Q3 and Q6

both vanish at the point (r0, 0) in the (r, ψ) plane. This implies bothQ3(r0, 0) = 0 andQ2(r0, 0) = 0. Note
that

Q3(r, ψ) = rM(ψ)
(
r2 − β(ψ)

)
(47)

and
Q2(r, ψ) = 2A(ψ)

(
r2 − α(ψ)

)
. (48)

The ODEs (45,46) are singular at α = β. In order to still have vanishing of Q2, Q3, we choose solutions
with M(0) 6= 0 and A(0) = 0. The general solution of (42) with given nonvanishing M(t) and A(0) = 0 is

A(t) = 3M2(t)

∫ t

0

1

M(s)
ds. (49)

We choose the simplest one, the particular solution of (42)

A(t) = 3mt, M(t) = m (50)
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with m > 0 a constant. We wrote t instead of ψ for the one dimensional independent variable in order to
avoid confusion with the sought function of (r, z).

The initial datum for β is determined by the choice of the location r0. We take thus β0 =
√
r0 and

β(0) = β0. (51)

In view of the vanishing of A at zero, in order for the equation (45) to be nonsingular for small t we need
then to require

α0 =
β0

3
. (52)

It is possible to locally solve the system (45, 46) with this choice of A,M . The solution of (45, 46) with
coefficients (50) and initial data (51, 52) is most transparent if we write

z(t) = β(t)− 3α(t), (53)

with initial datum z(0) = 0, and

ζ(t) =
1

β(t)− α(t)
, (54)

with initial datum ζ(0) = 1
2α0

= ζ0. The system (45, 46) becomes

z′ = −z
t

+
5

m
ζ (55)

coupled to

ζ ′ =
z

3t
ζ2 − 1

m
ζ3. (56)

We solve this with the ansatz

z(t) =
∞∑
j=1

zjt
j , ζ(t) =

∞∑
j=0

ζjt
j (57)

and obtain from the first equation

zj =
5

m(j + 1)
ζj−1, j ≥ 1. (58)

Equating coefficients of tj−1 in the second equation we have

jζj =
1

3

(
zζ2
)
j
− 1

m

(
ζ3
)
j−1

(59)

where (f(t))j means the coefficient of tj in the expansion of the function in power series. Using (58) it
follows that

ζj =
5

3mj(j + 1)
ζ2

0ζj−1 + Cj(ζ) (60)

where Cj is a cubic convolution term with bounded coefficients and depending on the earlier variables ζk,
k ≤ j − 1. This proves that the solution exists for short time t and is analytic. Consequently, α and β exist
and are analytic. In order to remove unnecessary parameters, let us rescale

φ =
ψ

mβ2
0

, (61)

r =
√
β0(1 + x), (62)

z = y
√
β0, (63)

a(φ) =
α(ψ)

β0
, (64)

b(φ) =
β(ψ)

β0
, (65)
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and define, after rescaling

P3(x, φ) =
Q3(r, ψ)

mβ
3
3
0

= (1 + x)[(1 + x)2 − b(φ)] (66)

and

P2(x, φ) =
Q2(r, ψ)

m2β3
0

= 6φ[(1 + x)2 − a(φ)], (67)

resulting in

P6(x, φ) =
Q(r, ψ)

m2β3
0

= 6φ[(1 + x)2 − a(φ)]−
{

(1 + x)[(1 + x)2 − b(φ)]
}2
. (68)

These rescalings are natural for the Euler equations, they only look a bit unusual with our choice of constants.
The length scale is ` =

√
β0 and the time scale is τ = (m

√
β0)−1.

The ODEs solved by a and b are the rescaled (45, 46) with the rescaled (50):
da

dφ
=

2

a− b
+

1

3φ
(b− 3a), a(0) =

1

3
, (69)

and
db

dφ
=

1

a− b
, b(0) = 1. (70)

By the previous argument using (55, 56) with m = 1, α0 = 1
3 , their solutions are defined and analytic a

small interval
φ ∈ I = [−ε, ε]. (71)

The functions a(φ), b(φ), Q2(x, φ), Q3(x, φ), Q6(x, φ) are well defined and analytic for any x, and φ ∈ I ,
for small and fixed ε > 0. Moreover the compatibility equation (40) is satisfied there

∂xP6 + P3∂φP6 − 2(∂φP3)P6 = 0. (72)

The equations (27), (28) become

∂xφ(x, y) = (1 + x)[(1 + x)2 − b(φ(x, z))] = P3(x, φ(x, z)) (73)

and

(∂yφ(x, y))2 = 6φ[(1 + x)2 − a(φ(x, y))]−
{

(1 + x)[(1 + x)2 − b(φ(x, y))]
}2

= P6(x, φ(x, y)). (74)

These need to be solved in the neighborhood of x = 0, y = 0, and to yield a C1 function φ with φ(0, 0) =
0, and φ > 0 locally near (0, 0). There are no more parameters in the problem, and the equations are
nondimensional.

We are thus interested in the open set D in the (x, φ) plane

D = {(x, φ) | φ ∈ I, P6(x, φ) > 0} (75)

Note that (0, 0) is in the boundary of this set. Also, if φ(x, y) is differentiable in x and solves (73) alone,
irrespective of its initial datum, then

d

dx
P6(x, φ(x, y)) = 2(∂φP3(x, φ(x, y)))P6(x, φ(x, y)) = −2(1 + x)b′(φ(x, y))P6(x, φ(x, y)). (76)

Consequently, if some (x0, φ(x0, y0)) ∈ D, then the locally (x, φ(x, y0)) must be in D. Furthermore, if
P6(x0, φ0) = 0, then on the solution it stays zero: the boundary ∂D is characteristic.

Let us consider the boundary of D more closely. By the implicit function theorem, in view of the fact
that

∂φP6(0, 0) = 4 6= 0, (77)
we have the existence of a smooth function δ : [−ε, ε]→ R,

x 7→ δ(x), (78)
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with δ(0) = 0 and satisfying on I × I
P6(x, φ) = 0⇔ φ = δ(x). (79)

We might need to shrink the size of I , but we use the same ε as in the definition (71) of I , without loss of
generality, in order not to clutter the notation. From the definition of P6 and the fact that a(0) = 1

3 it follows
that in fact

δ(x) ≥ 0, for x ∈ I. (80)
Also, computing with the aid of (72) we see that

dδ

dx
(x) = −∂xP6(x, δ)

P ′6(x, δ)
= P3(x, δ)− 2P ′3(x, δ)

P6(x, δ)

P ′6(x, δ)
, (81)

(where ′ = d
dφ ) and, using (79) we deduce, importantly

dδ

dx
(x) = P3(x, δ(x)). (82)

Consequently
dδ

dx
(0) = 0, (83)

and
d2δ

dx2
(0) = ∂xP3(0, 0) = 2. (84)

Therefore δ(0) = 0 is the strict local minimum of δ(x), and locally D is the supergraph

D = {(x, φ) ∈ I × I | φ > δ(x)}, (85)

which means that if (x0, φ0) ∈ D then (x0, φ) ∈ D for φ ∈ I , φ > φ0. We define now for (x, φ) ∈ I×I∩D
and y 6= 0,

V (x, y, φ) =

{ √
P6(x, φ), when y > 0

−
√
P6(x, φ), when y < 0,

(86)

i.e.,
V (x, y, φ) = sgn (y)

√
P6(x, φ), (87)

and we recall that, independently of y,

U(x, φ) = P3(x, φ). (88)

We set
φ(x, 0) = δ(x) (89)

for all x ∈ I . We remark that, in view of (82), we have

δ(x) =

∫ x

0
P3(ξ, δ(ξ))dξ. (90)

Then, for y > 0 and y < 0, (each case separately), we define

φ(x, y) =

∫ y

0
V (0, η, φ(0, η))dη +

∫ x

0
P3(ξ, φ(ξ, y))dξ (91)

where φ(0, η) is the positive smooth solution of

d

dy
φ(0, y) = V (0, y, φ(0, y)) (92)

with initial data φ(0, 0) = 0. This requires a discussion because this is a non-Lipschitz ODE with infinitely
many solutions, including an identically zero one. The function

π(φ) = P6(0, φ) = 6φ(1− a(φ))− (1− b(φ))2 (93)
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is positive for φ > 0 and vanishes like 4φ at φ = 0. The primitive

Y (φ) =

∫ φ

0

dt√
π(t)

(94)

is positive, increasing, vanishes at 0, is smooth on (0, ε], and has

Y ′(0) =∞. (95)

Because of monotonicity, Y −1 is locally defined, and we put

φ(0, y) = Y −1(y) (96)

for y ≥ 0. Note that
d

dy
φ(0, y) = V (0, y, φ(0, y)) (97)

holds fror all 0 ≤ y ≤ ε. A similar construction is done for y ≤ 0. In fact we are constructing via (91) two
functions, φ±(x, y), one for y ≥ 0 and one for y ≤ 0, glued by (89, 90) and satisfying by construction

φ−(x,−y) = φ+(x, y). (98)

Obviously P3(x, φ(x, y)) = ∂xφ(x, y), that is (73), is true by construction from (91) and from (82).
Now we claim that φ(x, y) ∈ D. Indeed,

d

dx
(φ(x, y)− δ(x)) = P3(φ(x, y))− P3(δ(x)) = I((φ(x, y)− δ(x)) (99)

where I = I(x, y) =
∫ 1

0 P
′
3(δ(x) + t(φ(x, y)) − P3(δ(x)))dt is bounded. The initial data is positive

φ(0, y) − 0 > 0. Therefore φ(x, y) − δ(x) > 0 and φ ∈ D. (The same conclusion follows also from (76)
which needs only (73)).

The vertical derivative is obtained differentiating the construction (91) and we see that it is given by

∂yφ(x, y) = V (0, y, φ(0, y)) +

∫ x

0
P ′3(ξ, φ(ξ, y))∂yφ(ξ, y)dξ (100)

Its x derivative at fixed y obeys
d

dx
Z(x) = P ′3(x, φ(x, y))Z(x) (101)

and this is also the equation obeyed by V (x, y, φ(x, y)) in virtue of the fact that φ ∈ D and the compatibility
equation (72). This again uses only (73). The values at x = 0 equal both V (0, y, φ(0, y)) and because
P ′3(x, φ(x, y)) is bounded it follows that

dφ(x, y)

dy
= V (x, y, φ(x, y)) (102)

for y > 0, respectively y < 0. We have thus the nontrivial solution φ(x, y) ∈ D for y 6= 0, and, from the
compatibility (72) we have the equations (73) and (74) verified. We note that, in view of (82) we have that

φ(x, y) =

∫ x

0
P3(ξ, φ(ξ, 0))dξ +

∫ y

0
V (x, η, φ(x, η))dη. (103)

which is natural because once φ ∈ C1 has been constructed and (73) and (74) have been verified, then the
one form

P3(x, φ(x, y))dx+ V (x, y, φ(x, y))dy (104)
is closed. The function φ is C1 near the origin, and the functions V (x, y, φ) and P3(x, φ(x, y) are continu-
ous. Successive differentiations of (73) and (74) imply that φ is actually smooth.

In order to understand this better let us compare with the (simpler to compute) case in which we need to
solve ODEs (

dφ(x, y)

dy

)2

= φ(x, y)− δ(x), φ(x, 0) = δ(x) (105)
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In this case P6(x, φ) = φ− δ(x), D = {φ > δ(x)}. There is no uniqueness, the boundary ∂D is character-
istic, and, in addition to the solution φ(x, y) = δ(x) we have the analytic solution φ(x, y) = y2

4 + δ(x) and
infinitely many discontinuous solutions

φ(x, y) =

{
δ(x), for |x| < ε1,
y2

4 + δ(x), for ε1 ≤ |x| < ε
(106)

for any ε1 < ε. The case of the true P6(x, φ) is similar.
We have proved therefore

THEOREM 2. Let ` > 0, τ > 0 ∈ R be given. There exists ε > 0 and a function ψ ∈ C∞(B),
where B = {(r, z) | |r − `|2 + |z|2 < ε2`2} satisfying ψ(`, 0) = 0, ψ > 0 in B and such that (22) holds
with A, P and F 2 real analytic functions of ψ. The Grad-Shafranov equation (15) is solved pointwise and
has classical solutions in B. The associated velocity u given by the Grad-Shafranov ansatz (7) is Hölder
continuous in B. The Euler equation (13, 8) holds weakly in B. The pressure is given by p = 1

`τψ. The
vorticity is bounded, ω ∈ L∞(B) and (14) holds a.e. in B.

We wrote the theorem in a nondimensional form. In order to return to dimensional variables we translate
in z, so that z0 = 0 dilate in r so that r0 = ` =

√
β0 and choose 2m = 1

`τ . We note that F (ψ) vanishes like√
ψ. Therefore, while the ansatz (7) gives a bounded swirl and a Hölder continuous velocity, the vorticity is

not smooth. In fact, in view of (12) the vorticity equals

ω(r, z) = −F ′(ψ)u(r, z) + smooth. (107)

Thus, ω ∈ L∞(B), because u vanishes to first order at (`, 0), but the r derivative of the z component of
vorticity is infinite there.

Once ψ has been constructed so that it has a local minimum at (`, 0), then p has also a local minimum
there, because, by (33),

p = 2mψ =
ψ

`τ
(108)

is monotonic in ψ.
Theorem 1 holds because the cutoff can be chosen so that the point (`, 0) is omitted. By choosing a

suitable cutoff function φε(p), the solution ũ = φε(p)u is supported in the region A = {(r, z) | 1
2`

2ε2 <

|r − `|2 + |z|2 < ε2`2}.
An immediate consequence of Theorem 2 is the following.

THEOREM 3. Let 0 ≤ α < 1. In any domain Ω ⊂ R3 there exist steady solutions of Euler equations
belonging to Cα(Ω) and vanishing at ∂Ω, but such that they do not belong to Cβ(Ω) for β > α. There exist
such solutions which are locally smooth, meaning that for every x ∈ Ω there exists a neighborhood of x
where the solution is C∞. For any Γ > 0, there exist steady solutions u which belong to L2(Ω) ∩ C

1
3 (Ω),

vanish at ∂Ω, are locally smooth and have

sup
x∈Ω
|∇u(x)||u(x)|2 ≥ Γ,

while the local dissipation vanishes, i.e. u · ∇( |u|
2

2 + p) = 0 in the sense of distributions. There exist steady
solutions which are locally smooth and whose Lagrangian trajectories have arbitrary linking numbers. For
any 0 < α < β ≤ 1 there exist weak solutions which are compactly supported in Ω, belong to Cα(Ω) but
not to Cβ(Ω).

Proof. Taking a smooth template uB constructed in Theorem 2 and compactly supported in the toroidal
shell B in R3

B = {(r, z) | 1

2
< (|r − 1|2 + z2 < 1}, (109)
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we write

u(x) =

∞∑
n=1

UnRnuB

(
RTn (x− xn)

`n

)
=

∞∑
n=1

un(x) (110)

where the positive numbers Un > 0, `n > 0, the rotations Rn ∈ O(3) with their transposed RTn , and the
vectors xn ∈ R3 are arbitrary. We may take for instance an helicoidal curve of infinite length in Ω and
decorate it with small disjoint toroidal shells of scales `n, centered at points xn on the curve and whose
symmetry axes are tangent to it (determing thusRn). Then the supports of the terms in the sum are mutually
disjoint and u given above is a steady solution of the incompressible Euler equations, because uB is one,
and thus, by scaling and rotating,

un · ∇un +∇pn = 0. (111)
The supports of the gradients of pressure ∇pn of the individual terms in the sum are mutually disjoint. The
norm of u in Wm,p is proportional to

‖u‖Wα,p(Ω) ∼

( ∞∑
n=1

Upn`
(3−pα)
n

) 1
p

(112)

for any α ≥ 0, 1 ≤ p ≤ ∞. In particular, we can find square integrable time independent solutions u such
that u ∈ C

1
3 (Ω) but u /∈ Cβ(Ω) for β > 1

3 . The L∞(Ω) norms of ∂αu are of the order supn≥1 Un`
−α
n .

4. 2D Boussinesq

The time independent 2D Boussinesq system ([11], [3, Section 2.4]) is u · ∇u+∇p = θe2,
u · ∇θ = 0,
∇ · u = 0,

(113)

in R2. The function u = (u1, u2) is the incompressible velocity, θ is the temperature and e2 is the direction
of gravity. We write this as

ωu⊥ = ∇P + θe2 (114)
where ω = ∂1u2−∂2u1 is the vorticity and u⊥ = −u2e1 +u1e2. In terms of the stream function ψ we have

u = ∇⊥ψ, (115)

ω = ∆ψ. (116)
The equation (114) is therefore

− (∆ψ)∇ψ = ∇P + θe2 (117)
and choosing

θ(x) = Θ(ψ(x)) (118)
and

P (x) = −x2Θ(ψ(x))−G(ψ(x)) (119)
with G(ψ) an arbitrary function, we see that the steady Boussinesq equation is satisfied if ψ satisfies the
corresponding Grad-Shafranov-like equation

∆ψ = x2Θ′(ψ) +G′(ψ) (120)

where, like before ′ = d
dψ . Identifying the hydrodynamic pressure, and requiring it to be a function of ψ

alone we see that
p(ψ) = G+ x2Θ− 1

2
|∇ψ|2. (121)

Let us seek solutions of (120, 121) by hodograph transformation

∂2ψ(x1, x2) = U(x2, ψ(x1, x2)) (122)
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and
∂1ψ(x1, x2) = V (x2, ψ(x1, x2)). (123)

The compatibility equation is
V U ′ = ∂2V + UV ′ (124)

and the Grad-Shafranov-like equation (120) becomes

UU ′ + ∂2U + V V ′ = x2Θ′ +G′. (125)

Using (121) we deduce that
∂2U(x2, ψ) = p′(ψ). (126)

This requires U to be a linear polynomial

U = p′(ψ)(x2 − β(ψ)). (127)

Defining the polynomial
Q1(x2, ψ) = 2(x2Θ(ψ) +H(ψ)) (128)

where
H(ψ) = G(ψ)− p(ψ) (129)

we see that (121) becomes
V 2 = Q1 − U2. (130)

To summarize, after the transformation, we arrived at the equations (124), (127) and (130). Now (124), after
multiplication by V becomes a polynomial identity,

2V 2U ′ = ∂2V
2 + U(V 2)′ (131)

which, using (130) simplifies to read

2Q1U
′ − UQ′1 + 2U∂2U − ∂2Q1 = 0. (132)

Identifying coefficients in the ensuing ODEs we deduce

Θ = k(p′)2, (133)

with k a constant, which of course we need to be nonzero,

Θ = −2p′β′(βΘ +H), (134)

and
(p′)2 − 2Θp′β′ + 2Hp′′ − p′H ′ = 0. (135)

Now we would like to localize, so we would need U and V to vanish at (x0
2, 0). From (127) this requires

either p′(0) = 0 or x0
2 = β(0). If the latter, then the vanishing of V requires the vanishing of Q1 and that

implies β(0)Θ(0)+H(0) = 0. But, in view of (134) this, in turn implies that Θ(0) = 0 or p′β′ to be infinite
at 0. If p′β′ is finite, then by (133) we are lead to p′(0) = 0. So, if we wish to localize we take

p′(0) = 0. (136)

We denote
q = p′ (137)

and define α via
H = αq2. (138)

The equations for α and β become

qα′ = 1 +
k2

α+ kβ
(139)

and

qβ′ = − k

2(α+ kβ)
. (140)
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Introducing
γ = α+ kβ (141)

we deduce

qγ′ = 1 +
k2

2γ
(142)

We integrate the latter, denoting

q
d

dψ
=

d

dτ
(143)

and we obtain

γ − k2

2
log

(
γ +

k2

2

)
= τ + C. (144)

We choose
γ(0) = 1 (145)

by adjusting C in (144) appropriately. We then have from (144), which we solve implicitly, a unique smooth
function

γ = γ(τ), (146)

that is defined for small τ and is bounded away from zero. The equations (139, 140) are

dα

dτ
= 1 +

k2

γ(τ)
(147)

and
dβ

dτ
= − k

2γ(τ)
. (148)

These yield functions
α(τ), β(τ) (149)

which are smooth, finite for small τ , and remain close to values α(0), β(0) that are not restricted, except by
our choice of γ(0) = 1,

α(0) + kβ(0) = 1. (150)

We abused notation by using the same letters α, β for the functions of τ solving the explicit ODEs in
τ (147, 148). In fact a more precise notation would have been to use different letters, α̃, β̃ and write
α(ψ) = α̃(τ), β(ψ) = β̃(τ) where τ(ψ) is determined by the defining relation (143),

dτ

dψ
= q−1. (151)

If we set
q = ψs, (152)

with 0 < s < 1, and seek ψ > 0, then

τ =
1

1− s
ψ1−s. (153)

Returning to the equation (130) for V , we see that

V 2 = q2
(
−x2

2 + 2x2(k + β) + 2α− β2
)
. (154)

Choosing for instance x0
2 = β(0) gives that the term in paranthesis equals 2 at ψ = 0. Thus, we have that

V = ψs
√
−x2

2 + 2x2(k + β) + 2α− β2 (155)

and
U = ψs(x2 − β) (156)
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are Hölder continuous. For instance, if s = 1
2 we obtain equations for

√
ψ with coefficients which depend

smoothly on
√
ψ. These can be integrated locally easily with the result that

ψ(x0) = 0 (157)

and ψ ∈ C∞(B), where B is a small ball around x0. Notice that

p =
1

1 + s
ψ1+s (158)

yields then a regular function with local minimum at x0 and therefore we can localize the system.
By taking ũ = φ(p)u, θ̃ = φ(p)θ and ∇p̃ = φ2(p)∇p with appropriate smooth cutoff φ we have

obtained thus the following result.

THEOREM 4. There exist smooth nontrivial time independent solutions of (113) such that (u, θ) are
compactly supported.

5. Incompressible Porous Medium Equation

The 2D time independent inviscid porous medium (IPM) equation ([4], [3, Section 2.3]) is u · ∇θ = 0,
∇ · u = 0,
u = θe2 +∇p,

(159)

where e2 is the direction of gravity. We write u = ∇⊥ψ and require

p = p(ψ) (160)

and
θ = Θ(ψ). (161)

The equations are {
−∂yψ = p′∂xψ,
∂xψ = p′∂yψ + Θ

(162)

Consequently

∂xψ =
Θ(ψ)

1 + (p′(ψ))2
= U(ψ) (163)

and

∂yψ = − Θ(ψ)p′(ψ)

1 + (p′(ψ))2
= V (ψ). (164)

In view of the fact that ∂xψ = U(ψ) and ∂yψ = −p′(ψ)U(ψ) the compatibility equation is

p′(ψ) = k (165)

where k is a constant. Because
∂yψ = −k∂xψ (166)

then the solution must depend on a single variable

ψ(x, y) = f(x− ky). (167)

The equations (163, 164) reduce to

f ′(z) =
1

1 + k2
Θ(f(z)) (168)

where
z = x− ky. (169)

Because we seek to localize, we look for functions Θ(ψ) which vanish at ψ = 0. Taking for instance

Θ(ψ) = ψs (170)
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with 0 < s < 1 we obtain

f(z) =

(
(1− s)(z − z0)

1 + k2

) 1
1−s

(171)

and then we have

ψ(x, y) =

(
(1− s)(x− x0 − k(y − y0))

1 + k2

) 1
1−s

, (172)

and

p(x, y) = k

(
(1− s)(x− x0 − k(y − y0))

1 + k2

) 1
1−s

. (173)

If s = 1
2 we obtain parabolas, ψ = ckz

2, p = kψ which can be localized in the z variable.
By setting ũ = φ(p)u, θ̃ = φ(p)θ and ∇p̃ = φ(p)∇p with appropriate smooth cutoff φ, we have thus

proved the following result.

THEOREM 5. Let S be any strip in R2 of finite width, and whose direction is not parallel to the direction
of gravity e2. There exist smooth time independent solutions of the incompressible porous medium equation
(159) for which the velocities u and the temperature θ vanish outside the strip S.
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