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ABSTRACT. We prove finite-time vorticity blowup for smooth solutions of the 2D compressible Euler equa-
tions with smooth, localized, and non-vacuous initial data. The vorticity blowup occurs at the time of the first
singularity, and is accompanied by an axisymmetric implosion in which the swirl velocity enjoys full stability,
as opposed to finite co-dimension stability. July 10, 2024

1. INTRODUCTION

We consider the isentropic compressible Euler equations in multiple space dimensions

∂t(ρu) + div(ρu⊗ u) +∇p = 0 , (1.1a)

∂tρ+ div(ρu) = 0 , (1.1b)

where u : Rd × [0,∞) → Rd is the velocity vector field and ρ : Rd × [0,∞) → R+ is the strictly positive
density function. The pressure p : Rd × [0,∞)→ R+ is determined from the density via the ideal gas law

p = 1
γρ

γ , (1.1c)

where γ > 1 is the adiabatic exponent. We supplement the Euler equations with initial data

(u, ρ)|t=0 = (u0, ρ0), (1.1d)

which is as nice as it gets. By this, we mean that (u0, ρ0) ∈ C∞(Rd), ρ0 ≥ constant > 0 on Rd, and
(|u0(x)|, ρ0(x))→ (0, constant) as |x| → ∞, at a sufficiently fast rate; here, d ≥ 2 is the space dimension.

With these assumptions on (u0, ρ0), the classical well-posedness theory [39, 50, 52] guarantees the ex-
istence of a maximal time T > 0, and of a unique solution (u, ρ) ∈ C∞(Rd × (0, T )) of the Cauchy
problem for the Euler equations (1.1). Generically, we expect that T < ∞, a singularity forms in finite
time [49, 53, 67].

While it is well-known that at the time T of the first singularity the solution must develop infinite gra-
dients, i.e. lim supt �T ‖(∇u,∇ρ)(·, t)‖L∞(Rd) = ∞, a complete classification of all possible singularity
mechanisms attainable by smooth Euler solutions (u, ρ)(·, t) as t � T <∞ remains, to date, elusive.

For instance, while it is known that a pre-shock singularity [6,8–10,27,29,55,56] or an implosion singu-
larity [5,11,62,63] may form as t � T from smooth initial conditions, it is an outstanding open problem to
determine whether lim supt �T ‖ω(·, t)‖L∞(Rd) =∞, where ω = ∇× u denotes the fluid vorticity.

In the case that the Euler solution evolves to a stable gradient blowup at a time T < ∞, from generic,
compressive, and smooth initial data, the vorticity ω(·, t) remains uniformly bounded in C1/3(Rd) for t ∈
[0, T ], as was shown in [6, 8–10, 66]. The fact that the vorticity does not blow up at the time of the first
gradient singularity1 should not come as a surprise for d = 2, since the specific vorticity ω/ρ is transported
by the fluid velocity:

∂t

(ω
ρ

)
+ (u · ∇)

(ω
ρ

)
= 0 . (1.2)

Since the density in [6, 8–10, 66] remains bounded at the time of the first gradient blowup, and the initial
datum is non-vacuous, it follows from the maximum principle for (1.2) that ‖ω(·, T )‖L∞(R2) < ∞. For
d = 3, the proof of this upper bound for the maximum vorticity is more subtle (see [10]).

1The spacetime point at which the first gradient singularity forms is the point on the spacetime co-dimension-2 manifold of pre-
shocks, with a minimal time coordinate (see [66]).

1



2 J. CHEN, G. CIALDEA, S. SHKOLLER, AND V. VICOL

The specific vorticity transport equation (1.2) shows that for d = 2 the vorticity can blow up at time
T only if an implosion singularity simultaneously develops at time T , i.e. limt �T ‖ρ(·, t)‖L∞(R2). This,
however, need not be an if and only if statement. Indeed, the smooth implosions established in [5, 62, 63]
are confined to radially symmetric solutions, and hence ω(·, t) ≡ 0 for all t ∈ [0, T ]. The only rigorous
proof of a non-radially symmetric implosion from smooth initial data was recently established in [11] for
d = 3. Such non-radial imploding solutions possess non-trivial vorticity, but establishing vorticity blowup is
incongruous with the finite co-dimension stability framework employed in [11]. In particular, since vorticity
waves propagate along fluid-velocity characteristics2, there exists a distinguished initial fluid particle x∗
such that ω0(x∗) is “carried to” the implosion along the fluid-velocity characteristics, thereby determining
the vorticity ω(·, T ) at the point of the implosion. As the stability analysis in [11] requires ω0 to be a finite
co-dimension perturbation of the zero function, and does not specify the precise subspace associated to this
finite co-dimension, it is not possible to guarantee that ω0(x∗) 6= 0 (which must be ensured in order to
establish vorticity blowup). We shall explain this issue in greater detail in Section 2.7 below.

The goal of this paper is to give the first proof of finite-time blowup for the vorticity in the compressible
Euler equations, with smooth initial data — see Theorem 1.1 below.

1.1. The two-dimensional axisymmetric ansatz. In order to state our main result, it is convenient to first
introduce a symmetric form of the isentropic Euler system (1.1), in which the fundamental variables are the
fluid velocity u and the rescaled sound speed σ, which is defined by

σ = 1
α

√
dp
dρ = 1

αρ
α, α = γ−1

2 .

In terms of the unknowns u and σ the Euler equations (1.1) are equivalent to the following system3:

∂tu + u · ∇u + ασ∇σ = 0 , (1.3a)
∂tσ + u · ∇σ + ασ divu = 0 . (1.3b)

For the remainder of the paper, we restrict our analysis to the two-dimensional case: d = 2. As such, it
is convenient to rewrite (1.3) in polar coordinates (R, θ), defined as

R = |x|, θ = arctan
(
x2
x1

)
, eR = (cos θ, sin θ), eθ = (−sin θ, cos θ).

Throughout the paper, we shall use boldface font u,U, . . . to denote vectors, and standard unbolded font
u, U, . . . to denote scalars.

We analyze vorticity blowup within the class of two-dimensional axisymmetric flows, a class of flows
with built-in rotation. That is, we consider a velocity field u with the following axisymmetry4:

u = u(R, θ, t) = uR + uθ, uR = uR(R, t)eR, uθ = uθ(R, t)eθ, σ = σ(R, t). (1.4)

The vorticity and velocity-divergence associated to the axisymmetric ansatz (1.4) are given by

ω = ω(R, t) =
(

1
R + ∂R

)
uθ(R, t),

divu = divuR(R, t) =
(

1
R + ∂R

)
uR(R, t).

In general, for a smooth function f = f(|x|) : R2 → R we have div(feR) = R−1∂R(Rf(R)); as such, we
shall often abuse notation and simply write div(f(R)) = R−1∂R(Rf(R)) in place of div(feR).

In order to show that the two-dimensional axisymmetric ansatz (1.4) is preserved by the Euler evolution,
we note that the system (1.3) is equivalent (for smooth solutions) to the system (1.7) below, which provides

2The specific vorticity ω/ρ is transported when d = 2 (see (1.2)) and is Lie-advected when d = 3 (see (2.9)).
3In the full Euler system the specific entropy is transported along the flow of the vector field (∂t + u · ∇). As such, for isentropic
initial data (i.e., with constant specific entropy at time t = 0) the solution will remain isentropic up to the time T of the very first
singularity, which justifies the usage of the (1.1) and hence of (1.3) on [0, T ].
4If uθ ≡ 0 in (1.4), we recover radially symmetric functions (u, σ).
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evolution equations for (uR, uθ, σ) = (uR, uθ, σ)(R, t). For this purpose, it is convenient to recall the
following identities, which hold for smooth functions f = f(R):

uR · ∇f = uR∂Rf, uθeθ · ∇(feR) = 1
Ru

θfeθ, uθeθ · ∇(feθ) = − 1
Ru

θfeR. (1.5)

Using the ansatz (1.4) and the identities in (1.5), we may decompose the system (1.3) into radial and angular
parts, leading to the equivalent formulation

∂tu
R + uR · ∇uR + uθ · ∇uθ + ασ∇σ = 0 , (1.6a)

∂tu
θ + uR · ∇uθ + uθ · ∇uR = 0 , (1.6b)

∂tσ + uR · ∇σ + ασ divuR = 0 . (1.6c)

In terms of the scalar quantities (uR, uθ, σ) = (uR · eR,uθ · eθ, σ), the system (1.6) may be written as

∂tu
R + uR∂Ru

R + ασ∂Rσ = 1
R(uθ)

2 , (1.7a)

∂tu
θ + uR∂Ru

θ + 1
Ru

θuR = 0 , (1.7b)

∂tσ + uR∂Rσ + ασ div(uR) = 0 . (1.7c)

Both reformulations of the isentropic Euler system for two-dimensional axisymmetric flows, i.e. systems (1.6)
and (1.7), when transformed to self-similar variables and coordinates (see (2.1) below), play important roles
in the subsequent analysis. The self-similar version of (1.7) is used to study blowup profiles, while the
self-similar version of (1.6) is used for energy estimates and the majority of bounds on the solution.

1.2. The main result. As mentioned in the discussion following (1.2), in two space dimensions the vorticity
can blow up at time T only if an implosion singularity simultaneously develops at time T . Since we seek
smooth Euler solutions on [0, T ), we aim to construct a stable perturbation (for the angular velocity) of a
smoothly imploding self-similar solution, as was recently constructed in [62], and further refined in [5].

The self-similarity employed in [62], [5], and herein, is of the second kind. A similarity exponent r > 1
is determined as the solution of a nonlinear eigenvalue problem, and is then used to define the self-similar
space ξ = R

(T−t)1/r and time s = −1
r log(T − t) coordinates, together with self-similar state variables

(U,A,Σ)(ξ, s) = r(T − t)(r−1)/r(uR, uθ, σ)(R, t); see (2.1) below. The self-similar variables (U,A,Σ)
solve the self-similar version of the Euler system; see (2.3) below. Of particular interest for our analysis are
specialC∞-smooth stationary solutions (Ū , 0, Σ̄) to this self-similar system; we refer to the triplet (Ū , 0, Σ̄)
as the self-similar blowup profile.

We choose to work directly with the smooth imploding self-similar profiles (Ū , 0, Σ̄) from [62, Theorem
1.2, Corollary 1.3], as these profiles, together with their repulsive properties (see (2.4b) below), are readily
available for d = 2.5 The slight drawback of using the results from [62] is that we need to exclude an
exceptional countable sequence of adiabatic exponents Γ = {γn}n≥1, which is possibly empty, and whose
accumulation points can only be {1, 2,∞}. For each γ 6∈ Γ, it is shown in [62] (and recalled in Theorem 2.1
below) that there exists a discrete sequence of admissible blowup speeds {rk}k≥1 ⊂ (1, reye(α)), accu-
mulating at the value reye(α) defined in (2.2), such that the Euler equations (1.7) exhibit smooth, radially
symmetric (meaning that uθ, A ≡ 0), globally self-similar, imploding solutions with similarity exponent rk
and profile (Ū , 0, Σ̄) (see Section 2.1 below). With this notation fixed, we state our main result.

Theorem 1.1 (Main result). Fix a non-exceptional adiabatic exponent γ 6∈ Γ, let α = (γ − 1)/2, and let
r > 1 be an admissible blowup speed satisfying (2.2), as in [62]. Then, there exists initial data (uR0 , u

θ
0) ∈

C∞c (R2) and σ0 ∈ C∞(R2) with σ0 ≥ constant > 0,6 such that the solution (uR, uθ, σ) of (1.7) exhibits a

5While it is expected that the arguments in [5] also apply to the case that d = 2 (used in this paper), [5] only considers d = 3.
6The initial sound speed σ0 may be chosen to equal a constant outside a compact set in R2; see Section 4.
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finite time singularity at a time T < ∞. The radial velocity uR, the sound speed σ, and the vorticity ω all
blow up at time T . The blowup is asymptotically self-similar in the sense that

lim
t �T

r
(
T − t

)r−1
r uR((T − t)

1
r ξ, t) = Ū(ξ), (1.8a)

lim
t �T

r
(
T − t

)r−1
r uθ((T − t)

1
r ξ, t) = 0, (1.8b)

lim
t �T

r
(
T − t

)r−1
r σ((T − t)

1
r ξ, t) = Σ̄(ξ), (1.8c)

for ξ ∈ (0,∞), where Ū and Σ̄ are the similarity profiles from [62]. The vorticity blows up at R = 0 as

lim
t �T

(
T − t

)r−1
αr ω(0, t) = ω0(0)

(
Σ̄(0)
rσ0(0)

)1
α 6= 0, (1.8d)

and there are no singularities away from the point of implosion: (R, t) = (0, T ).

An outline of the proof of Theorem 1.1 is given in Section 2. Before turning to the proof, we make a few
comments concerning the statement of Theorem 1.1.

Remark 1.2 (The set of initial data for vorticity blowup). As explained in Remark 4.2 below, there exists
an open set X2 (a ball in a weighted Sobolev space) and a finite co-dimension set X1 such that the initial
data in Theorem 1.1 may be taken such that (uR0 , σ0) ∈ X1 and uθ0 ∈ X2. It is the fact that uθ0 belongs to
an open set which allows us to ensure that the initial vorticity ω0 does not vanish at R = 0.

Remark 1.3 (The curl blows up slower than the divergence). Since ω0(0) 6= 0, identity (1.8d) shows
that the vorticity blows up at R = 0 at the rate (T − t)−

r−1
αr . Moreover, since the admissible blowup speed

r satisfies the constraint (2.2), it follows that 0 < r−1
α r <

reye(α)−1
α reye(α) < 1 for all α > 0, and therefore∫ T

0 ‖ω(·, t)‖L∞dt ≈
∫ T

0 |ω(0, t)|dt < +∞. As the magnitude of vorticity is integrable in time, there
does not exist a Beale-Kato-Majda type blowup criterium for the compressible Euler equations. As to the
effects of compression, from (1.8a) and (2.4e), we have that |divu(0, t)| ≈ (T − t)−1(2/r)|Ū ′(0)| =

(T − t)−1(r − 1)/(αr), which implies that
∫ T

0 ‖divu(·, t)‖L∞dt = +∞. The fact that div u blows up
faster than ω indicates that sound waves steepen in compression much faster than particles can “swirl”.

Remark 1.4 (There are no singularities away from R = 0 and t = T ). While Theorem 1.1 shows that
the rescaled sound speed σ(0, t) and the magnitude of the gradients |∇u|(0, t) and |∇σ|(0, t) blow up as
t � T , we emphasize that, by construction, the Euler solution in Theorem 1.1 does not form singularities
for times t < T , and moreover, as t � T no singularities develop at points x ∈ R2 with x 6= 0. Indeed, for
x 6= 0 and t ∈ [0, T ) arbitrary, upper bounds for |u(x, t)| are obtained in (4.47a), upper and lower bounds
bounds for σ(x, t) are given by (4.48), while upper bounds for |∇u(x, t)| and |∇σ(x, t)| are established
in (4.47b). We refer to Section 4.5 for these details.

1.3. Recent results concerning singularity formation for Euler. The literature concerning the formation
and propagation of singularities for the compressible Euler equations (and related hyperbolic PDEs) is too
vast to review here.7 In this section, we shall focus only on results for the Euler equations,8 and review only
those results for the multi-dimensional problem.9

As noted above, it is well-known that the Euler equations develop finite-time gradient singularities from
initial data which is as nice as it gets. The first proof of this fact was given in [67], using a proof by

7In contrast, relatively few results have been established for the finite time singularity formation of the incompressible Euler
equations; for instance, finite-time vorticity blowup remains open for the incompressible Euler equations posed on Rd or Td,
for C∞c , respectively C∞, initial conditions. We note, however, that very recently, the finite time blowup for the vorticity was
established in the presence of smooth solid boundaries [22, 23], for the equations posed in conical domains [35], or in the absence
of boundaries for C1,α data with α very small [21, 30, 33, 34, 36].
8There is a large literature concerning singularity formation for quasilinear wave equations; see the recent review articles [43, 68].
9For a detailed exposition of the 1D theory we refer the reader to [16, 31, 54] and references therein.
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contradiction, inspired by the classical results [49, 53]. In recent decades, authors have given constructive
proofs of singularity formation, which yield a very precise description of the solution at the time of the first
gradient blowup. We categorize these constructive proofs into shock formation and smooth implosions.

1.3.1. Shock formation. Shock formation from smooth and localized initial conditions is, by now, well
understood, up to the time of the first gradient singularity. In the context of irrotational solutions for the
multi-dimensional Euler equations, blowup results based on ideas developed for second-order quasilinear
wave equations and general relativity were established in [2,3,27,29]; the latter two results were generalized
to allow for vorticity and entropy in the Euler solution [55,56]; results for 2D Euler solutions, with azimuthal
symmetry, using modulated self-similar analysis were proven in [7, 8]; results for 3D Euler solutions in
the absence of symmetry assumptions, based on modulated self-similar stability analysis were established
in [9, 10]. In the context of shock development, results for Euler solutions with spherical symmetry were
obtained in [28, 72], while results for Euler flows with azimuthal symmetry were proven in [6].

Very recently, shock formation past the time of the first singularity was analyzed in [66] and [1]. In [66]
the last two authors of this paper analyze the evolution of fast-acoustic characteristic surfaces and use this
smooth geometric information to describe the Euler solution up to a portion of the boundary of the maximal
globally hyperbolic development (MGHD) of smooth Cauchy data, which includes both the singular set as
well as the Cauchy horizon; the results of [1] evolve the Euler solution up to a portion of the boundary of
the MGHD, containing only the singular set.

1.3.2. Smooth Implosions. The classical Guderley problem [42] deals with the implosion of a converging
shock-wave, and the continuation as an expanding shock. In spite of the vast literature on this subject,
the existence of a finite-time smooth implosion (without a shock already present in the solution at the initial
time), was established only recently in [62,63], and further refined in [5,11]. While these results are inspired
by the ansatz and general strategy in [42], the existence of C∞ self-similar implosion profiles requires a
great deal of mathematical sophistication. Moreover, the stability of these solutions can only be established
for finite-co-dimension perturbations which are not precisely quantified (see the numerical work [4] which
attempts to quantify some of these instabilities). As explained in Section 2 below, this finite co-dimension
stability of the smooth implosion profiles is one of the fundamental obstacles in proving vorticity blowup.

1.3.3. Solutions evolving from a singular state. While throughout this paper we are only concerned with
smooth initial data, and we are only interested in the behavior of the resulting Euler solution up to the time
of the first gradient singularity, there are many physically important problems in which the Euler evolution
is initiated with data that already contains a singular state. A non-exhaustive list of examples includes the
following: the short time evolution of discontinuous shock fronts [59,60]; the shock reflection problem [14,
18]; the shock implosion [44] and shock explosion [45] problems; non-isentropic implosions with strictly
positive pressure fields [46,47]; the stability of rarefaction waves evolving from multi-dimensional Riemann
data [57, 58]; the long-time stability of an irrotational expansion fan bounded by two shock surfaces [40];
and the ill-posedness of the Euler equations in multiple space dimensions for admissible weak solutions [26,
32, 51]. We also mention that there is a vast literature on transonic shocks for Euler both in the context
of airfoils [15, 64] and in the setting of nozzles [69–71]; we refer the reader to the recent excellent review
articles [17, 19, 65] for an extensive literature review.

1.3.4. Other singularities. A complete classification of all possible singularities that multi-dimensional and
smooth Euler dynamics can reach in finite time is, to date, elusive. As discussed above, it is known that
for regular initial data, at the time T of the first singularity the Euler solution is capable of developing a
shock, an implosion, and the goal of this paper is to show that it can also develop a vorticity blowup. It
remains unsettled if these are the only possible first singularities attainable by smooth Euler evolution (with
the classical ideal gas law equation of state). It is, for example, an open problem to determine whether
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vacuum10 can form in finite time from smooth, localized, and non-vacuous initial data, in multiple space
dimensions.11

2. MAIN IDEAS OF THE PROOF AND COMPARISON WITH PREVIOUS RESULTS

Recall that in the two-dimensional setting of this paper, the specific vorticity ω/ρ is transported, see (1.2).
In order to prove Theorem 1.1, we construct initial data with non-trivial vorticity near R = 0, and for this
data we construct an imploding solution by perturbing the radial implosion from [62]. We emphasize that
the finitely many unstable modes of the self-similar blowup profile from [62] can potentially lead to either
trivial vorticity, or to the destruction of the smooth implosion mechanism. To overcome this difficulty, we
will crucially use the two-dimensional axisymmetric ansatz (1.4) and the structure of the equations (1.6), in
order to establish full-stability of the swirl velocity, and hence of the vorticity.

2.1. Self-similar coordinates. We introduce the self-similar coordinates, variables, and equations used in
our analysis. For r > 1 which satisfies (2.2) below, define the self-similar time and space coordinates via

s = log
1

(T − t)1/r
, y =

x

(T − t)1/r
, ξ = |y| = R

(T − t)1/r
. (2.1a)

Throughout the paper we will use y ∈ R2 to denote the self-similar vectorial space coordinate, and ξ = |y|
to denote the self-similar radial variable. The self-similar velocity components and rescaled sound speed are
then given by (

uR, uθ, σ
)
(R, t) = 1

r (T − t)
1
r
−1
(
U,A,Σ

)
(ξ, s). (2.1b)

It is convenient to also introduce the vectorial form of the self-similar velocity, that is

U(y, s) = U(ξ, s)eR, A(y, s) = A(ξ, s)eθ, (2.1c)

where as before, ξ = |y|. Throughout the paper we will assume that the parameter r appearing in (2.1a) and
(2.1b) satisfies the following inequalities12

1 < r < reye(α), reye(α) = 1+2α
1+α
√

2
, α > 1

2 , (2.2a)
1+2α

1+α
√

2
< r < reye(α), reye(α) = 1 + α

(
√
α+1)2 , 0 < α < 1

2 . (2.2b)

Using the vectorial self-similar variables introduced in (2.1c), and with the self-similar rescaled sound
speed from (2.1b), the two-dimensional axisymmetric Euler system (1.6) may be rewritten as

∂sU + (r − 1)U + (y + U) · ∇U + αΣ∇Σ = −A · ∇A, (2.3a)

∂sA + (r − 1)A + (y + U) · ∇A = −A · ∇U, (2.3b)

∂sΣ + (r − 1)Σ + (y + U) · ∇Σ + αΣ div(U) = 0. (2.3c)

The initial data is prescribed at the self-similar time

sin , −1
r log T,

which corresponds to t = 0 in (2.1a).

10By this we mean that at the time T of the first singularity, the density ρ(·, T ) is equal to 0, at at least one spatial point.
11In one space dimension, vacuum cannot dynamically arise form from nice initial data without a shock forming first [12, 13].
12The definition of reye is directly adapted from [62], upon letting d = 2 and γ = 1 + 2α; (2.2) is the same as [62, equation (1.15)].
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2.2. Globally self-similar blowup profiles. We summarize the results of [62, Theorem 1.2 and Corollary
1.3], which give the existence of smooth stationary self-similar profiles in R2, i.e. of smooth solutions
(Ū, 0, Σ̄) to (2.3) which are s-independent.

Theorem 2.1 (Existence of smooth similarity profiles [62]). There exists a (possibility empty) exceptional
countable sequence Γ = {γn}n≥1 whose accumulation points can only be {1, 2,∞} such that the following
holds. For each γ /∈ Γ, there exists a discrete sequence of blow up speeds {rk}k≥1 in the range (2.2),
accumulating at reye(

γ−1
2 ), such that the system (2.3) admits a C∞-smooth radially symmetric stationary

solution Ū(y) = Ū(ξ)eR, Ā = 0, Σ̄(ξ).

The requirements on γ and rk stated above are the same as in [62, Theorem 1.2], with d = 2. Throughout
the paper we will fix a non-exceptional adiabatic exponent γ 6∈ Γ, a similarity exponent r ∈ {rk}k≥1,
and a similarity profile (Ū , 0, Σ̄) in our analysis. We treat any constants related to the profile (Ū , 0, Σ̄), to
α = γ−1

2 , and to r ∈ (1, reye(α)), as absolute constants.
In the next lemma we collect some useful properties of the profiles (Ū , Σ̄) constructed in [62].

Lemma 2.2 (Properties of the similarity profiles). The radial vector field Ū(ξ)eR and the radially sym-
metric function Σ̄(ξ) > 0 are smooth. For every integer k ≥ 0 we have the following decay13 as ξ → ∞:

|∂kξ Ū(ξ)| .k 〈ξ〉1−r−k, |∂kξ Σ̄(ξ)| .k 〈ξ〉1−r−k. (2.4a)

There exists κ > 0 and ξ1 > ξs
14 such that

1 + ∂ξŪ(ξ)− α|∂ξΣ̄(ξ)| > κ, ξ ∈ [0, ξ1], (2.4b)

ξ + Ū(ξ)− αΣ̄(ξ) > 0, ξ > ξs, (2.4c)

1 + ξ−1Ū(ξ) > κ, ξ ≥ 0. (2.4d)

Lastly, since r lies in the range (2.2), we have

limξ→0+ξ−1Ū(ξ) = ∂ξŪ(0) = − r−1
2α > − r

2 . (2.4e)

Properties (2.4) of the profiles (Ū , Σ̄) were either stated as is in [62], or they follow from the proof given
there. For instance, the outgoing property of the flow (2.4c) follows from the phase portrait proved in [62]
and continuity. The limit (2.4e) has been proved in [62]. The interior repulsive property (2.4b) is proved
in [62, Lemma 1.6] for ξ ∈ [0, ξs]; since the solution is smooth, there exists ξ1 > ξs such the condition (2.4b)
holds for a domain [0, ξ1] strictly larger than [0, ξs]. The decay property (2.4a) was stated in [63, Theorem
2.3]. For the sake of completeness, we give a proof of Lemma 2.2 in Appendix B.

Remark 2.3 (No repulsive property in the far field). The repulsive property (2.4b) may not hold true in
the entire exterior domain ξ > ξs for the 2D compressible Euler equations, which is related to [62, Lemma
1.7]. We also quote

The Euler case in d = 2 and d = 3 for l ≤
√

3 requires special consideration. In those
cases, property (P) of (2.24), which ensures coercivity of the corresponding quadratic form
in (6.14), does not hold for Z > Z2.

from Section 8 on Page 846 in [63], which suggests that the exterior repulsive property does not hold. The
property (P) is related to the exterior repulsive property, and Z2 corresponds to ξs in (2.4b).

13Here and throughout the paper we denote by 〈·〉 the quantity
√

1 + | · |2.
14The value ξs corresponds to the point P2 in the phase portrait of [62] or to the point Ps in the 3D phase portrait of [5].
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2.3. Evolution of the perturbation. We consider a solution to the two-dimensional axis-symmetric Euler
system in self-similar coordinates (2.3) in perturbative form:

(U,A,Σ) = (Ū, 0, Σ̄) + (Ũ,A, Σ̃) = (Ū eR, 0, Σ̄) + (Ũ eR, A eθ, Σ̃). (2.5)

Our goal is to analyze the evolution of the perturbation

∂sŨ = LU (Ũ , A, Σ̃) +NU (2.6a)

∂sA = LA(Ũ , A, Σ̃) +NA (2.6b)

∂sΣ̃ = LΣ(Ũ , A, Σ̃) +NΣ (2.6c)

where the linearized operators are defined as

LU (Ũ , A, Σ̃) = LU (Ũ, Σ̃) = −(r − 1)Ũ− (y + Ū) · ∇Ũ− Ũ · ∇Ū− αΣ̃∇Σ̄− αΣ̄∇Σ̃ (2.6d)

LA(Ũ , A, Σ̃) = LA(A) = −(r − 1)A− (y + Ū) · ∇A−A · ∇Ū (2.6e)

LΣ(Ũ , A, Σ̃) = LΣ(Ũ, Σ̃) = −(r − 1)Σ̃− (y + Ū) · ∇Σ̃− Ũ · ∇Σ̄− αΣ̃ div(Ū)− αΣ̄ div(Ũ) (2.6f)

and the nonlinear terms are defined as

NU = −Ũ · ∇Ũ− αΣ̃∇Σ̃−A · ∇A (2.7a)

NA = −Ũ · ∇A−A · ∇Ũ (2.7b)

NΣ = −Ũ · ∇Σ̃− αΣ̃ div(Ũ). (2.7c)

The initial data for the system (2.6) is specified at self-similar time sin = log T−1/r.

2.4. Two key observations. First, in the linearized equations around the profile (Ū , 0, Σ̄), the evolution
of the perturbation A and those of the perturbation (Ũ, Σ̃) are decoupled. That is, in (2.6) the linearized
operators LU and LΣ do not depend on A. Therefore, we can perform linear stability analysis of (Ũ, Σ̃) and
A separately. We will show that the linearized equations for (Ũ, Σ̃) are stable upon modulating potentially
finitely many unstable directions, developing a simpler stability proof. See Section 2.5.

Second, from (2.6b) we deduce that the linearized equation satisfied by A(ξ, s)/ξ is given by15

∂t

(A
ξ

)
+ (ξ + Ū)∂ξ

(A
ξ

)
= −

(
r + 2

Ū

ξ

)(A
ξ

)
.

Our crucial observation is that the blowup profile satisfies r+ 2(Ū(ξ)/ξ) < 0 near ξ = 0, see (2.4e), which
suggests the linear stability of A(ξ)/ξ near ξ = 0. Using this property, and the outgoing property of the
self-similar velocity, namely that ξ + Ū(ξ) ≥ κξ for for some κ > 0 (see (2.4d)), we obtain that A is stable
in a suitably weighted space. These stability properties can also be captured by performing weighted L2

estimates with weights that are singular near ξ = 0. See Theorem 3.2.
In order to prove Theorem 1.1, we note that since the radial velocity Ū + Ũ has 0 vorticity, and since A

is stable, we can choose initial data for A in an open set (in the topology of a weighted Sobolev space) and
thus construct non-trivial initial vorticity. Moreover, since (U+ Ũ+A)(0, s) = 0, the origin is a stationary
point of the flow; thus, once we prove global nonlinear stability for (2.6)–(2.7), the finite-time blowup of
vorticity claimed in (1.8d) now follows.

15Recall from (2.1c) that A(y, s) = A(ξ, s)eθ , and thus the self-similar vorticity at ξ = 0 is related to limξ→0+ A(ξ, s)/(2ξ). We
note that for a smooth perturbation, we have A(0, s) = 0 and hence A/ξ is well-defined.
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2.5. A new stability proof of implosion. The goal of this paper is to also develop a new stability proof of
the implosion for the compressible Euler equations, which is simpler than the one given in [61, 63] (based
on estimates of nonlinear wave equation), and in [5] (based on the transport structure of Riemann-type
variables).

While in this paper we focus on the two-dimensional setting, the stability proof for the Euler equations
in Rd with radially symmetric data (around a profile satisfying the properties in Lemma 2.2) would be the
same, by setting A = 0 in Sections 3, and 4. Our stability proof consists of the following steps.

Step 1: Weighted energy estimates. In the linear stability analysis of Section 3.2 we perform weighted H2m

estimates, with sufficiently largem and a carefully designed weight ϕ2m, to obtain coercive estimates for the
“top order” terms. The interior repulsive property (2.4b) allows us to obtain a damping term proportional to
m in the region |y| = ξ ≤ ξ1, slightly beyond the sonic point ξs < ξ1. For |y| = ξ > ξs, we use the outgoing
property related to the transport term (2.4c). We design a radially symmetric weight ϕ2m(y) decreasing in
|y| = ξ for ξ ∈ [ξ1, R2], with R2 large enough. The monotonicity of the weight and the outgoing property
provides a strong damping term in the energy estimates, as seen in Lemma 3.1. For |y| = ξ > R2, due to
the natural decay of the profile (2.4a), the linear dynamics is purely governed by the scaling terms, and is
thus stable. The upshot of the linear stability analysis is that we obtain weighted H2m estimates of the kind

〈L(U,Σ), (U,Σ)〉Xm ≤ −λ‖(U,Σ)‖2Xm +

∫
|y|≤R4

Rmdy, (2.8)

for some inner product Xm,m ≥ m0 with m0 sufficiently large, a suitably chosen R4 > 0 and a coercive
parameter λ > 0 (uniform in m ≥ m0). Here, Rm denotes some “lower order” remainder terms (in terms
of regularity, when compared to ‖(U,Σ)‖2Xm), which is made explicit in (3.13a). For the stability estimates
of the A variable, we use the ideas discussed earlier in Section 2.4.

Step 2: Compact perturbation. To handle the lower order remainder term Rm in (2.8), for each m ≥ m0,
in Section 3.3 we use Riesz representation to construct a linear operator Km from a bilinear form similar to

〈Kmf, g〉Xm =

∫
χf · gdy,

where χ ≥ 0 is a smooth cutoff function with χ = 1 for |y| ≤ R4. The second term on the right side of (2.8)
then arises as 〈Kmf, f〉Xm for f = (U,Σ). Since the right hand side in the above display does not involve
derivatives on f and g, and since χ has a compact support, we can show that Km : Xm → Xm is compact
and that it has a smoothing effect Km : X 0 → Xm+3. Afterwards, we obtain that L − C̄Km is dissipative,
for C̄ > 0 chosen large enough.

Step 3: Construction of semigroup. To handle the compact perturbation, in Sections 3.4 and 3.5 we use
semigroup theory to estimate the growth bound for the semigroups e(L−Km)s and eLs. We prove a local
well-posedness (LWP) result of the linearized equations in the spaceXm in order to construct the semigroup.
Note that the linearized equations are a symmetric hyperbolic system, whose LWP theory is classical.

Step 4: Smoothness of unstable direction. To construct a smooth initial data, in Section 3.6 we show that
the potentially unstable directions of the linearized operators are spanned by smooth functions. An unstable
direction f satisfies a variant of the equation (L−λ)f = 0, for f ∈ Xm0 . Rewriting this as (L−Km−λ)f =
−Kmf , the smoothing effect of Km : X 0 → Xm+3, the invertibility (L − Km − λ)−1 : Xm → Xm, and
induction on m ≥ m0, allows us to prove prove f ∈ C∞. See Lemma 3.9.

We note that Steps 2 & 4 discussed above resemble the functional approach to solve the elliptic equations,
see e.g. [38]. The coercive estimates (2.8) allow us to construct the compact perturbation, which has a
smoothing effect. These steps do not depend on specific structure of the equations.
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Step 5: Nonlinear estimates. To close the nonlinear stability estimates, in Section 4 we decompose the
perturbation Ṽ = (Ũ,A, Σ̃) into a stable part Ṽ1 and an unstable part Ṽ2, following the splitting method
of [22]. For the unstable part, we represent Ṽ2 using Duhamel’s formula and estimate it using the semigroup
eLs. The stable part Ṽ1 is estimated purely using energy estimates. Such a decomposition allows us to
construct the global in self-similar time solution using a Banach fixed point argument and simpler bootstrap
assumptions; moreover, this decomposition implicitly determines the stable initial data in the correct finite
co-dimension space. See [36,48] for related constructions of a global-in-time self-similar solution based on
a Banach fixed point argument.

2.6. Comparison with the stability estimates in [63], [61] and [5]. Part of our stability estimates are
similar to those in [63], [61], and in [5]: high order weighted Sobolev estimates to extract the dissipation,
semigroup theory to estimate the compact perturbation, and finite co-dimension stability. Moreover, our
H2m stability estimates based on the variable (U,Σ) are inspired by [5] particularly in the region |y| = ξ ≤
ξs. There are however several significant differences between our estimates and those in [5, 61, 63].

First, we do not localize the linearized operator, nor do we use Riemann-type variables to perform trans-
port estimates. Instead, we exploit the outgoing properties of the flow (2.4c) by designing decreasing weights
and incorporate such an effect in the weighted H2m estimates. This allows us to obtain simpler nonlinear
estimates. We note that weighted energy estimates with singular weights and weights depending on the
profiles have been used successfully in a series of works by the first author and collaborators [20–22,24,25].

Second, we construct the semigroup based on the local well-posedness (LWP) of the linearized equations,
which is obtained by appealing to a classical result. See Step 2 mentioned above, and Theorem 3.5. In
contrast, in [5, 61], the construction is based on the notion of a maximal dissipative operator. Moreover,
using the functional approach outlined in Step 4 above, we do not need to solve specific ODE or PDE
problems as [5, 61], and hence we obtain simpler linear stability estimates.

Third, we use a Banach fixed point argument to obtain nonlinear finite co-dimension stability, different
from the topological arguments employed in [5, 62].

Finally, we do not use the exterior repulsive property of the profile in the stability proof, which is required
in [5], but may not hold for the similarity profile of 2D Euler equations (see the discussion in Remark 2.3).
Thus, we cannot adopt the stability proof in [5] to establish the finite co-dimension stability of (Ũ, Σ̃).

Our stability estimates can be extended to the compressible Navier-Stokes equations in the same settings
as in [5,63], with a minor modification since the diffusion is treated perturbatively, and the main term of the
diffusion in the weighted estimates still has a good sign after performing integration by parts.

2.7. Comparison with the non-radial implosion in [11]. There appear to be essential difficulties in us-
ing the non-radial imploding solutions built in [11] to exhibit vorticity blowup for the compressible Euler
equations in three space dimensions.

We recall that for d = 3, the specific vorticity of isentropic Euler satisfies the vector-transport equation

∂t

(ω
ρ

)
+ (u · ∇)

(ω
ρ

)
= (u · ∇)

(ω
ρ

)
. (2.9)

If we denote by X(a, t) the Lagrangian flow16 generated by u, then (2.9) can be rewritten as(ω
ρ

)
(X(a, t), t) = ∇aX(a, t)

(ω
ρ

)
(a, 0). (2.10)

If we imagine u and σ (and hence ρ = (ασ)1/α) to be exactly the self-similar solutions to (1.3) built in [62]
and [5], then the vorticity ω would just be identically 0 by radial symmetry.

Nevertheless, we can replace the ω(X(a, t), t) appearing on the right side of (2.10) with a generic quantity

f = f(X(a, t), t) = ρ(X(a, t), t)∇aX(a, t) f0

ρ0
(a),

16The Lagrangian flow X solves the ODE ∂tX(a, t) = u(X(t, a), t), with initial condition X(a, 0) = a.
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and ask whether ‖f(·, t)‖L∞ blows up as t � T , with T being the time of the implosion. In the next lemma
we observe that f remains uniformly bounded in a and t, as long as we choose the initial data f0 with a
high-enough vanishing order at a = 0.

Lemma 2.4 (Not all transported quantities blow up in a 3D implosion). Consider a self-similar profile
(Ū , Σ̄) as constructed in [62] or [5], and let (u, σ) be determined according to exact self-similarity from
this profile via (2.1). Then, there exists kvan > 0 such that for every smooth function f0 that satisfies
|f0(a)| . min(|a|kvan , 1), we have

sup
a∈R3,t∈[0,T )

|ρ(X(a, t), t)∇aX(a, t) f0

ρ0
(a)| < +∞.

The required vanishing order kvan is some constant that depends only on the profile (Ū , Σ̄), on r, and on α.

We defer the proof to Appendix A. At this stage we note that the finite co-dimension of the initial data
considered in [11] equals to the number of unstable directions of L, which is a (sufficiently large) finite rank
perturbation K to a maximally dissipative operator. Since the rank of K is used as a large parameter, the
number of unstable directions kuns is not quantified in [11], and therefore it is hard to determine whether
kuns < kvan. Moreover, it is not shown in [11] that the finite co-dimension set of initial data contain any
functions f0 violating the vanishing order f0 = O(|a|kvan) near a = 0. Therefore, in light of Lemma 2.4 it
is not clear whether the setting of [11] is at all amenable to vorticity blowup.

2.8. Notation. Next, we discuss the notation used in the paper.
We use A . B to mean that there exists a constant C = C(γ, r, Ū , Σ̄, T ) ≥ 1 such that A ≤ CB. We

use A � B to mean that both A . B and B . A. We use A , B to say that quantity A is defined to
be equal to quantity/expression B. In Section 4 we shall use the notation A = B + Oh(B′) if there exists
Ch = C(γ, r, Ū , Σ̄, T, h) ≥ 1 such that |A−B| ≤ C∗B′.

We will use η, ηs, λ, λ1 to denote constants related to the decay rates; see (3.47), (3.48), and (4.9). We use
κ1, κ2, κ3 to denote exponents for the weights; see (3.5), (3.15), and (3.20). We use ϕ1, ϕm, ϕb, ϕf , ϕg, ϕA
to denote various weights; see (3.5), (3.6), (3.15), (3.28), and useEk, E∞ for energy estimates (4.22), (4.50).
We use Xm,XmA ,Wm,Wm

A , Y1, Y2 to denote various functional spaces; see (3.14), (4.7), and (4.13).
We will use c, C to denote absolute constants that can vary from line to line, and use µ, ν, εm, C̄, µm, δ, δY

to denote some absolute constants that do not change from line to line.
Throughout Section 3, we shall use (U,Σ) to denote the perturbation (Ũ, Σ̃) mentioned earlier in (2.5),

since for linear stability analysis there is no ambiguity. In contrast, in the nonlinear stability of Section 4,
(U,Σ) is reserved for the full radial velocity and rescaled sound speed, consistently with (2.5) and (2.3).

3. LINEAR STABILITY

In this section, we perform weighted H2m estimates and study the asymptotic behavior of the linear
operators LU , LA, and LΣ defined in (2.6). The design of the weights is done in Section 3.1, while the
Sobolev energy estimates are performed in Section 3.2.

3.1. Choice of weights. In this section, we design the weight ϕ2m needed for weighted H2m estimates.

Lemma 3.1. There exists a radially symmetric weight ϕ1(y), and there exists a constant µ1 > 0, such that

ϕ1 � 〈ξ〉, |∇ϕ1| . 1, ξ = |y|, (3.1a)

(ξ + Ū)∂ξϕ1

ϕ1
+ `αΣ̄

∣∣∣∂ξϕ1

ϕ1

∣∣∣− (1 + ∂ξŪ − `α|∂ξΣ̄|) ≤ −
µ1

〈ξ〉
, (3.1b)

for all ξ ∈ (0,∞) and all ` ∈ {0, 1}. For m ≥ 1 and ϕ1 satisfying (3.1), define

ϕm(y) = ϕ1(y)m. (3.2)
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The quantity on the left hand side of (3.1b) appears in the damping term in the weighted H2k estimates.
The first term comes from the effect of the transport term. The last two terms come from the derivatives.
See (3.21), (3.23), (3.24).

Proof. Since αΣ̄ ≥ 0, we only need to prove the estimate for ` = 1.
To design the weights, we will introduce several parameters and determine them in the following order

R1  R2  c1  R3  κ2  ν  µ1, (3.3)

with parameters appearing later being allowed to depend on the previous ones. Since we fix the profiles
(Ū , Σ̄) and related parameters (e.g., κ, ξ1, ξs in Lemma 2.2), we drop the dependence of R1 and R2 from
(3.3) on these parameters.

Recall the parameters ξs, ξ1 from Lemma 2.2. We fix R1 with 1 < ξs < R1 < ξ1. From Lemma 2.2,
since ∂ξŪ , ∂ξΣ̄ decay, we can choose R2 such that for ξ > R2, we have

∂ξ(ξ + Ū)− α|∂ξΣ̄| > 1
2 , ξ > R2. (3.4)

For κ2, ν > 0 to be determined (see (3.9) below), we construct the weights as

ϕm(y) , ϕ1(y)m, ϕ1 , ϕ
κ2
b ϕf , ϕf (y) , 1 + ν〈y〉, (3.5)

where ϕb is chosen in (3.6) below. Here the sub-indices b, f are short for bulk, and far, respectively. We use
the bulk part to capture the outgoing effect (2.4c) for |y| > ξs, and the far part to capture the decay of the
perturbation. With ξs < R1 < ξ1 and R2 that have already been chosen, there exists c1 = c1(R1, R2) > 0
which allows us to define ϕb as a radially symmetric function with

ϕb(y) = 1, |y| ≤ ξs, (3.6a)

ϕb(y) = 1
2 , |y| ≥ R2 + 1, (3.6b)

∂ξϕb ≤ 0, ∀y ∈ R2, (3.6c)

∂ξϕb ≤ −c1 < 0, |y| ∈ [R1, R2]. (3.6d)

Denote the self-similar slow acoustic wave speed by

V̄ = ξ + Ū − αΣ̄.

From (2.4a), we can choose R3 large enough such that

− (1 + ∂ξŪ − α|∂ξΣ̄|) ≤ −1 + 1
8〈ξ〉

−1, V̄ + 2αΣ̄ ≤ ξ + 1
8 , ∀ξ ≥ R3. (3.7)

Next, we let

Dwg ,
(ξ + Ū)∂ξϕ1

ϕ1
+ αΣ̄

∣∣∣∂ξϕ1

ϕ1

∣∣∣ =
V̄ ∂ξϕ1

ϕ1
+ αΣ̄

(∣∣∣∂ξϕ1

ϕ1

∣∣∣+
∂ξϕ1

ϕ1

)
.

Using the definition of ϕ1 in (3.5), the monotonicity properties ∂ξϕb ≤ 0 and ∂ξϕf ≥ 0, and the identity
∂ξϕ1

ϕ1
= κ2

∂ξϕb
ϕb

+
∂ξϕf
ϕf

, we deduce∣∣∣∂ξϕ1

ϕ1

∣∣∣+
∂ξϕ1

ϕ1
≤ 2

∂ξϕf
ϕf

=
2νξ

〈ξ〉(1 + ν〈ξ〉)
, (3.8a)

Dwg ≤ κ2
V̄ ∂ξϕb
ϕb

+
V̄ νξ

〈ξ〉(1 + ν〈ξ〉)
+ 2αΣ̄

νξ

〈ξ〉(1 + ν〈ξ〉)
. (3.8b)

Next, our goal is to find positive constants κ2 (see (3.10)) and ν (see (3.11)), in order to ensure that

D0 , κ2
V̄ ∂ξϕb
ϕb

− (1 + ∂ξŪ − α|∂ξΣ̄|) ≤ −c < 0, (3.9a)

D1 , Dwg − (1 + ∂ξŪ − α|∂ξΣ̄|) ≤ D0 +
(V̄ + 2αΣ̄)νξ

〈ξ〉(1 + ν〈ξ〉)
≤ − µ1

〈ξ〉
, (3.9b)
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hold for some constants µ1 = µ1(R1, R2, R3, κ2, ν) > 0 and c = c(R1, R2) > 0. Here we recall that
V̄ = ξ + Ū − αΣ̄ > 0 due to (2.4c). Note that the estimate in (3.9b) is exactly the same as (3.1b).

In order to achieve (3.9), we first note that V̄ ∂ξϕb ≤ 0 by the definition of ϕb in (3.6). For ξ ∈ [0, ξ1] and
ξ ≥ R2, using the repulsive property (2.4b) and inequality (3.4), we get

D0 ≤ −(1 + ∂ξŪ − α|∂ξΣ̄|) ≤ max(−κ,−1
2) < 0.

For ξ ∈ [ξ1, R2], from (2.4c) we get V̄ > c2 > 0 for some c2 = c2(R2) > 0, and from (3.6) we have
∂ξϕb/ϕb ≤ −c1(R1, R2) < 0; together, these bounds imply

V̄ ∂ξϕb
ϕb

< −c1c2 < 0.

Since |1 + ∂ξŪ − α|∂ξΣ̄|| ≤ C holds by (2.4a), choosing κ2 = κ2(R1, R2) large enough,

D0 < −κ2c1c2 + C = −1
2κ2c1c2 , −c (3.10)

for some c = (R1, R2) > 0, as claimed in (3.9a).
In order to prove (3.9b), we note that for ν ≤ 1, using (3.7) we get that for all ξ ≥ R3 we have

D1 ≤ −(1 + ∂ξŪ − α|∂ξΣ̄|) +
(V̄ + 2αΣ̄)νξ

〈ξ〉(1 + ν〈ξ〉)
≤ −1 +

1

8〈ξ〉
+

νξ2

〈ξ〉+ ν(1 + ξ2)
+

1

8〈ξ〉

≤ − 〈ξ〉+ ν

〈ξ〉+ ν(1 + ξ2)
+

1

4〈ξ〉
≤ − 〈ξ〉

2〈ξ〉2
+

1

4〈ξ〉
= − 1

4〈ξ〉
.

For ξ ∈ [0, R3], using (3.9a) and choosing ν = ν(R1, R2, R3) > 0 small enough, we get

D1 ≤ D0 + ν‖V̄ + 2αΣ̄‖L∞[0,R3] ≤ −c+ ν‖V̄ + 2αΣ̄‖L∞[0,R3] < −1
2c. (3.11)

Combining the above two estimates, we establish (3.9b) for some µ1(R1, R2, R3, κ2, ν) > 0. This concludes
the proof of (3.1b).

It remains to establish (3.1a). Since ϕb is constant for |y| ≤ ξs and |y| ≥ R2 +1, from the definition (3.5),
we get ϕ1 � ϕf , |∇ϕ1| � |∇ϕf | . 1 in this region; the implicit constants depend on R1, R2, R3, ν, κ2

which have been already fixed. On the compact set ξ ∈ [ξs, R2 + 1], the claim (3.1a) follows since ϕf and
ϕb (hence ϕ1) are C1 smooth. �

3.2. WeightedH2m Coercive estimates. Throughout this section, since we are only concerned with linear
stability analysis, we will use (U,Σ) to denote the perturbation (Ũ, Σ̃); that is, we drop the ·̃ in (2.6).

Recall the weights ϕm defined in (3.5) and recall the definitions (2.6d)–(2.6f) of the linearized operators
LU ,LA, and LΣ. Note that the operators

L , (LU ,LΣ) (3.12)

and LA are fully decoupled, in the sense that A does not enter in the definition of L, and (U,Σ) do not enter
in the definition of LA; see (2.6). With this notation, we have the following coercive estimates.

Theorem 3.2. Denote L = (LU ,LΣ), with (LU ,LΣ) as defined in (2.6). There exists m0 ≥ 6, R4, C̄ > 0
large enough and λ > 0 small enough,17 such that the following statements hold true. For any m ≥ m0,
there exists εm = εm(m0, R4, C̄, λ) > 0 such that

〈L(U,Σ), (U,Σ)〉Xm ≤ −λ‖(U,Σ)‖2Xm + C̄

∫
|y|≤R4

(|U|2 + |Σ|2)ϕgdy, (3.13a)

〈LA(A),A〉XmA ≤ −λ‖A‖
2
XmA

, (3.13b)

17The parameters m0, R4, C̄ and λ depend only on the weight ϕ1 from Lemma 3.1, on γ > 1, r > 0, and on the profiles (Ū, Σ̄).
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for any (U,Σ) ∈ D(L) = {(U,Σ) ∈ Xm : L(U,Σ) ∈ Xm} and A ∈ D(LA) = {A ∈ XmA : LA(A) ∈
XmA }. Here, the Hilbert spaces Xm and XmA are defined as the completion of the space of C∞c (R2) radially-
symmetric18 scalar/vector functions, with respect to the norm induced by the inner products

〈f, g〉Xm := εm

∫
∆mf ·∆mg ϕ2

2mϕg + f · g ϕgdy, m ≥ 1, 〈f, g〉X 0 :=

∫
f · g ϕg, (3.14a)

〈f, g〉XmA := εm

∫
∆mf ·∆mg ϕ2

2mϕg + f · g ϕAdy, m ≥ 1, 〈f, g〉X 0
A

:=

∫
f · g ϕA, (3.14b)

where f, g : R2 → R`, ` ∈ {1, 2}.19 The inner products 〈·, ·〉Xm and 〈·, ·〉XmA , and the associated norms, are
defined in terms of the constants εm (defined in the last paragraph of Section 3.2.1), the weight ϕ2m = ϕ2m

1

defined in (3.2), in terms of the weight

ϕg = ϕg(y) , 〈y〉−κ1−2, κ1 = 1
4 , (3.15)

and in terms of the weight ϕA constructed in (3.28) below. At this stage we note that ϕA satisfies ϕA(y) �
|y|−β1〈y〉β1−κ1−2 for some β1 ∈ (3, 4), and thus ϕg � ϕA for |y| ≥ 1, and ϕg . ϕA for all |y| > 0.

We emphasize that the constants λ, C̄ appearing in (3.13a) are independent ofm. Note also that the norms
Xm and XmA only differ by the weighted L2 parts, i.e. ‖f‖2Xm − ‖f‖2XmA = ‖f‖2X 0 − ‖f‖2X 0

A
, see (3.14).

Before proving Theorem 3.2, we note the following simple nestedness property of the spaces Xm, which
follows from Lemmas C.2, C.3 with δ1 = 1, δ2 = −2− κ1.

Lemma 3.3. For n > m, we have ‖f‖Xm .n ‖f‖Xn and X n ⊂ Xm.

Next, we turn to the proof of Theorem 3.2. Since L and LA are decoupled (cf. (2.6) and (3.12)), we prove
(3.13a) and (3.13b) separately, in Sections 3.2.1 and 3.2.2, respectively.

3.2.1. Estimates for L. Applying the operator ∆m to the linearized operators LU = LU (U,Σ) and LΣ =
LΣ(U,Σ) defined in (2.6d), (2.6f), and using Lemma C.1 to extract the leading order parts from the terms
containing∇U,∇Σ, we get

∆mLU = −(y + Ū) · ∇∆mU− αΣ̄∇∆mΣ︸ ︷︷ ︸
TU

−(r − 1)∆mU− 2m∂ξ(ξ + Ū)∆mU− 2mα∇Σ̄∆mΣ︸ ︷︷ ︸
DU

−∆mU · ∇Ū− α∆mΣ∇Σ̄︸ ︷︷ ︸
SU

+RU,m, (3.16a)

∆mLΣ = −(y + Ū) · ∇∆mΣ− α div(∆mU)Σ̄︸ ︷︷ ︸
TΣ

−(r − 1)∆mΣ− 2m∂ξ(ξ + Ū)∆mΣ− 2mα∇Σ̄ ·∆mU︸ ︷︷ ︸
DΣ

−∆mU · ∇Σ̄− α div(Ū)∆mΣ︸ ︷︷ ︸
SΣ

+RΣ,m. (3.16b)

In (3.16) we have denoted byRU,m andRΣ,m remainder terms which are of lower order (in terms of highest
derivative count on an individual term); moreover, we have used the notation T ,D,S to single out transport,
dissipative, and stretching terms.

18By radially symmetric functions we mean f(y) = f(|y|) and by radially symmetric vectors we mean f(y) = f(|y|)eR or
f(y) = f(|y|)eθ; recall the definition (1.4).
19It is also convenient to denote X∞ = ∩m≥0Xm.
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Using Lemma C.1 and the decay estimates (2.4a), we obtain that the remainder terms are bounded as

|RU,m| .m
∑

1≤i≤2m−1

|∇2m+1−iŪ| |∇iU|+ |∇2m+1−iΣ̄| |∇iΣ|

.m
∑

1≤i≤2m−1

〈y〉−r−2m+i(|∇iU|+ |∇iΣ|), (3.17a)

|RΣ,m| .m
∑

1≤i≤2m−1

|∇2m+1−iŪ| |∇iΣ|+ |∇2m+1−iΣ̄| |∇iU|

.m
∑

1≤i≤2m−1

〈y〉−r−2m+i(|∇iU|+ |∇iΣ|). (3.17b)

Next, in order to bound the left side of (3.13a), we perform weighted H2m estimates with weight given
by ϕ2

2mϕg, as dictated by the definitions in (3.13a). To this end, we estimate the term∫
(∆mLU ·∆mU + ∆mLΣ ∆mΣ)ϕ2

2mϕg, (3.18)

by appealing to the decomposition in (3.16).
Estimate for TU , TΣ. Using the identity

∇∆mΣ ·∆mU + div(∆mU)∆mΣ = ∇ · (∆mU ·∆mΣ) (3.19)

and integration by parts, we obtain that the contribution of the transport terms in (3.16) to the expres-
sion (3.18) is given by

IT = −
∫ (

(y + Ū) · ∇∆mU ·∆mU + (y + Ū) · ∇∆mΣ ·∆mΣ

+ αΣ̄ · ∇∆mΣ ·∆mU + αΣ̄ div(∆mU)∆mΣ
)
ϕ2

2mϕg

=

∫
1

2

∇ · ((y + Ū)ϕ2
2mϕg)

ϕ2
2mϕg

(|∆mU|2 + |∆mΣ|2)ϕ2
2mϕg +

∇(αΣ̄ϕ2
2mϕg)

ϕ2
2mϕg

·∆mU∆mΣϕ2
2mϕg.

Recall from (3.2) and (3.15) that ϕ2m = ϕ2m
1 , and ϕg = 〈y〉−2−κ1 . Using the decay estimates in (2.4a),

the outgoing property ξ + Ū > 0 (2.4d), and denoting20

κ3 = min(2, r) = r > 1, (3.20)

we obtain

∂ξϕg
ϕg

= (−2− κ1)
ξ

1 + ξ2
, (ξ + Ū)

∂ξϕg
ϕg
≤ −2− κ1 + C〈ξ〉−2 + C〈ξ〉−r ≤ −2 + C〈ξ〉−κ3 .

Using the above inequality and (2.4a) (with k = 1), we estimate

1

2

∇ · ((y + Ū)ϕ2
2mϕg)

ϕ2
2mϕg

=
1

2

(
2 + div(Ū) + 4m(ξ + Ū)

∂ξϕ1

ϕ1
+ (ξ + Ū)

∂ξϕg
ϕg

)
≤ C〈ξ〉−κ3 + 2m(ξ + Ū)

∂ξϕ1

ϕ1
,∣∣∣∇(αΣ̄ϕ2

2mϕg)

ϕ2
2mϕg

∣∣∣ ≤ α|∇Σ̄|+ αΣ̄
(

4m
|∇ϕ1|
ϕ1

+
|∇ϕg|
ϕg

)
≤ 4mαΣ̄

|∂ξϕ1|
ϕ1

+ C〈ξ〉−κ3 ,

20The fact that r < 2 follows since for d = 2 (the case of this paper) the inequality r < reye(α) implies r < 2, see (2.2).
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where we have used |∇f | = |∂ξf | for any radially symmetric function f . Combining the above estimates
and using |ab| ≤ 1

2(a2 + b2) on ∆mU∆mΣ, we get

IT ≤
∫

1

2

(∇ · ((y + Ū)ϕ2
2mϕg)

ϕ2
2mϕg

+
|∇(αΣ̄ϕ2

2mϕg)|
ϕ2

2mϕg

)
(|∆mU|2 + |∆mΣ|2)ϕ2

2mϕg

≤
∫ (

2m
(

(ξ + Ū)
∂ξϕ1

ϕ1
+ αΣ̄

∣∣∣∂ξϕ1

ϕ1

∣∣∣)+ C〈ξ〉−κ3

)
(|∆mU|2 + |∆mΣ|2)ϕ2

2mϕg, (3.21)

with C > 0 independent of m.
Estimate of DU ,DΣ,SU ,SΣ. Recall the definitions of the terms DU ,DΣ,SU ,SΣ from (3.16). Using the
decay estimates (2.4a), we get

|SU |, |SΣ| . 〈ξ〉−r(|∆mU|+ |∆mΣ|).

For DU ,DΣ, using Cauchy-Schwarz inequality for the cross term

|∇Σ̄∆mΣ ·∆mU|+ |∇Σ̄ ·∆mU ·∆mΣ| ≤ |∇Σ̄|(|∆mΣ|2 + |∆mU|2), |∇Σ̄| = |∂ξΣ̄|, (3.22)

we obtain

ID+S =

∫ (
(DU + SU )∆mU + (DΣ + SΣ)∆mΣ

)
ϕ2

2mϕg

≤
∫ (
− (r − 1)− 2m(1 + ∂ξŪ) + 2mα|∂ξΣ̄|+ C〈ξ〉−r

)
(|∆mU|2 + |∆mΣ|2)ϕ2

2mϕg, (3.23)

with C > 0 independent of m.
Estimates ofRU ,RΣ. Recall that the remainder termsRU ,RΣ from (3.16) satisfy (3.17). Moreover, using
that ϕ2m �m 〈y〉2m from (3.1a), and recalling the definition of ϕg in (3.15), we obtain

ϕ2
2mϕg〈y〉−r−2m+i �m 〈ξ〉2m+i−r−κ1−2 = 〈ξ〉2m+i+2δ2 , δ2 = −r−κ1−2

2 .

At this stage we apply Lemma C.2 and Lemma C.3, with δ1 = 1 and δ2 as given in the line above, for
1 ≤ i ≤ 2m− 1, and an arbitrary ε > 0, to obtain∫

〈y〉−r−2m+i|∇iF ||∆mG|ϕ2
2mϕg

≤ ε‖〈y〉2m+δ2∆mG‖2L2 + Cm,ε‖〈y〉i+δ2∇iF‖2L2

≤ ε‖〈y〉2m+δ2∆mG‖2L2 + ε‖〈y〉2m+δ2∇2mF‖2L2 + Cm,ε‖〈y〉δ2F‖2L2

≤ 2ε‖〈y〉2m+δ2∆mG‖2L2 + 2ε‖〈y〉2m+δ2∆mF‖2L2 + Cm,ε‖〈y〉δ2F‖2L2 .

We may apply the above estimates to each term in (3.17). Using the bound 〈y〉2(2m+δ2) .m 〈y〉−rϕ2
2mϕg,

and using the fact that ε > 0 is arbitrary, we get

IR =

∫ ∣∣RU,m ·∆mU +RΣ,m ·∆mΣ
∣∣ϕ2

2mϕg

≤
∫
〈ξ〉−r

(
(|∆mU|2 + |∆mΣ|2)ϕ2

2mϕg + Cm(|U|2 + Σ2)ϕg

)
. (3.24)
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Combining the bounds (3.21), (3.23), (3.24), using the estimates in Lemma 3.1, and recalling (3.20), we
arrive at∫

(∆mLU ·∆mU + ∆mLΣ ∆mΣ)ϕ2
2mϕg = IT + ID+S + IR

≤
∫ (
−(r − 1) + 2m

(
(ξ + Ū)

∂ξϕ1

ϕ1
+ αΣ̄|

∂ξϕ1

ϕ1
| − (1 + ∂ξŪ − α|∂ξΣ̄|)

)
+ C〈ξ〉−κ3

)
× (|∆mU|2 + |∆mΣ|2)ϕ2

2mϕg + Cm

∫
(|U|2 + |Σ|2)ϕg

≤
∫ (
−(r − 1)− 2mµ1〈ξ〉−1 + a1〈ξ〉−κ3

)
(|∆mU|2 + |∆mΣ|2)ϕ2

2mϕg + Cm(|U|2 + |Σ|2)ϕg,

for some constant a1 > 0. Since κ3 = r > 1 (see (3.20)), there exists m0 sufficiently large, e.g. m0 =
d a1

2µ1
e+ 1, such that for any m ≥ m0, we get

−(r − 1)− 2mµ1〈ξ〉−1 + a1〈ξ〉−κ3 ≤ −(r − 1)− 2m0µ1〈ξ〉−1 + a1〈ξ〉−κ3 ≤ −(r − 1),

resulting in ∫
(∆mLU ·∆mU + ∆mLΣ ∆mΣ)ϕ2

2mϕg

≤ −(r − 1)

∫
(|∆mU|2 + |∆mΣ|2)ϕ2

2mϕg + Cm(|U|2 + |Σ|2)ϕg. (3.25)

Weighted L2 estimates. For m = 0, we do not have the lower order terms RU,0,RΣ,0 in (3.17) and we do
not need to estimate IR as in (3.24). Combining (3.21) and (3.23) (with m = 0), we obtain∫

(LU ·U + LΣ · Σ)ϕg ≤
∫

(−(r − 1) + C̄〈ξ〉−κ3)(|U|2 + |Σ|2)ϕg,

for some constant C̄ > 0, independent of m. Since r > 1 and κ3 > 0, there exists a sufficiently large R4

such that for all ξ = |y| ≥ R4 we have

−(r − 1) + C̄〈ξ〉−κ3 ≤ −(r − 1) + C̄〈R4〉−κ3 ≤ −1
2(r − 1).

Therefore, combining the two estimates above, we arrive at∫
(LU ·U + LΣ · Σ)ϕg ≤

∫ (
C̄1|y|≤R4

− 1
2(r − 1)

)
(|U|2 + |Σ|2)ϕg. (3.26)

Choosing the εm. In order to conclude the proof of (3.13a), we combine (3.25) and (3.26). Choosing εm
sufficiently small, e.g. εm = r−1

4Cm
, where Cm is as in (3.25), multiplying (3.25) with εm and then adding

to (3.26), we deduce (3.13a) for λ > 0 sufficiently small which is independent of m, e.g. λ = r−1
4 .

3.2.2. Estimates forLA. ForLA, the key step is to establish the weightedL2 estimate, i.e. the bound (3.13b)
for m = 0. For a radially symmetric weight ϕA which is to be chosen, using that A ·∇Ū = A Ū

ξ (see (1.5))
and integrating by parts, we obtain∫

LA(A) ·AϕAdy = −
∫ (1

2
(y + Ū) · ∇|A|2 +

(
r − 1 +

Ū

ξ

)
|A|2

)
ϕA = −

∫
DA(ϕA)|A|2ϕA,

where we have defined the damping term

DA(ϕA) , −∇ · ((y + Ū)ϕA)

2ϕA
+
Ū

ξ
+ (r − 1).
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Choice of weights. Our goal is to construct ϕA such that the above defined damping term satisfies

DA(ϕA)(ξ) ≥ λ̃ > 0, ∀ξ > 0, (3.27)

for some λ̃ > 0. We will achieve this by designing ϕA such that

ϕA = ξ−β1g(ξ)β2(1 + β3〈ξ〉)β1−2−κ1 , β1 ∈ (3, 4), β2 � 1, 0 < β3 � 1, (3.28a)

ϕA � ξ−β1〈ξ〉β1−2−κ1 , |∇ϕA| . ξ−1ϕA, (3.28b)

for a radial weight g � 1 (to be chosen), where κ1 is chosen in (3.15). Since A(0) = 0, for any sufficiently
smooth A, we have that |A2|ϕA is locally integrable near y = 0 ∈ R2 when β1 < 4. We use the singular
weight ξ−β1 to extract the damping effect of the transport operator (y + Ū) · ∇; a direct calculation yields

DA(ϕA) = −1

2

(ξ + Ū)∂ξϕA
ϕA

− 1

2
(2 + div(Ū)) +

Ū

ξ
+ (r − 1).

Recalling that∇ · Ū = ∂ξŪ + Ū
ξ , and using the formula for ϕA in (3.28), we further obtain

DA(ϕA) =
β1

2

ξ + Ū

ξ
− β2

2

(ξ + Ū)∂ξg

g
− β1 − 2− κ1

2

(ξ + Ū)β3ξ

(1 + β3〈ξ〉)〈ξ〉
+
(
r − 2− 1

2
∂ξŪ +

1

2

Ū

ξ

)
, I1(ξ) + I2(ξ) + I3(ξ) + I4(ξ).

We will choose 4− β1 > 0, β3 > 0 small, β2 > 0 large, and ∂ξg ≤ 0 with g � 1. Using (2.4a) and (2.4e),

lim
ξ→0+

(
I1 + I4

)
(ξ) = β1

2 (1 + ∂ξŪ(0)) + (r − 2) = (2∂ξŪ(0) + r)− (2− β1

2 )(1 + ∂ξŪ(0)),

lim
ξ→∞

(
I1 + I4

)
(ξ) = β1

2 + (r − 2).

Using that r > 1, 2∂ξŪ(0)+r > 0 (see (2.4e)), and 1+∂ξŪ(0) > 0 (see (2.4b)), we can choose β1 ∈ (3, 4)

close to 4 such that (2∂ξŪ(0) + r) − 1
2(4 − β1)(1 + ∂ξŪ(0)) ≥ 2c1 for some 0 < c1 ≤ 1

4 (which only
depends on Ū and r). Therefore, by also appealing to ∂ξg ≤ 0, ξ+ Ū > 0 (see (2.4d)), and to the continuity
of Ii(ξ) in ξ, there exist 0 < p < q such that

I1(ξ) + I4(ξ) + I2(ξ) ≥ I1(ξ) + I4(ξ) ≥ c1 > 0, ξ ∈ [0, p] ∪ [q,∞).

Next, we choose a smooth and radially symmetric function g such that

g(ξ) = 1, ξ ≤ p
2 , g(ξ) = 1

2 , ξ ≥ 2q, ∂ξg ≤ 0, ξ > 0, ∂ξg ≤ −c2, ξ ∈ [p, q].

for some c2 > 0 which only depends on p and q. Since (2.4d) implies that ξ + Ū > c31[p,q](ξ) for
c3 = pκ > 0, choosing β2 large enough we may ensure that

I1(ξ) + I2(ξ) + I4(ξ) ≥ β2

2 c2c3 − max
ξ∈[p,q]

(|I1(ξ)|+ |I4(ξ)|) > c1 > 0, ξ ∈ [p, q].

Thus, we have shown that by choosing the function g and the parameters β1 and β2, we may ensure that
I1(ξ) + I2(ξ) + I4(ξ) > c1 > 0 for all ξ > 0, for some c1 > 0.

Finally, we handle I3. Note that the remaining free parameter in the definition (3.28) of ϕA is β3, which
only enters the definition of I3. Since I2 ≥ 0 and β1 − 2− κ1 > 0, using the asymptotics (2.4a), the bound

β3ξ
(1+β3〈ξ〉)〈ξ〉 ≤

1
ξ , for ξ � 1 we have

DA ≥ I1 + I3 + I4 ≥
(β1

2
− β1 − κ1 − 2

2

)ξ + Ū

ξ
+ (r − 2)− C〈ξ〉−r ≥ κ1 + 2

2
+ (r − 2)− C〈ξ〉−r.

By also appealing to the previously established lower bound for I1 + I2 + I4, for ξ . 1 we have

DA ≥ I1 + I2 + I4 − Cβ3ξ ≥ c1 − Cβ3ξ.

Since κ1 > 0 and r − 1 > 0, the first of the two lower bounds for DA above imply that there exists q2 > 0
sufficiently large such that DA ≥ κ1

4 = 1
16 for all ξ ≥ q2. On the other hand, taking β3 > 0 small enough
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to ensure that c12 ≥ Cβ3q2, from the second of the two lower bounds for DA above, we obtain DA ≥ c1
2 for

all ξ ∈ (0, q2). Together, these bounds establish (3.27), for λ̃ = min{ 1
16 ,

c1
2 } > 0.

We also note that the properties of ϕA stated in (3.28b) follow from the definitions of g, ϕA.
Having established (3.27), we obtain the desired weighted L2 stability estimate∫

LA(A) ·AϕA ≤ −λ̃
∫
|A|2ϕA. (3.29)

Weighted H2m estimates. The weighted H2m estimates with weights ϕ2
2mϕg are similar to those for L

in Section 3.2.1. In analogy to the derivation in (3.16), we may apply ∆m to LA (as defined in (2.6e))
and then decompose the resulting expression into a transport, damping, stretching, and remainder term; to
avoid redundancy we do not spell out these details. Analogously to the bounds (3.21), (3.23), (3.24), and
recalling (3.20), we obtain∫

∆mLA(A) ·∆mAϕ2
2mϕgdy ≤

∫
DA,2m|∆mA|2ϕ2

2mϕg + Cm

∫
|A|2ϕg,

where
DA,2m = 2m(ξ + Ū)

∂ξϕ1

ϕ1
+ C〈ξ〉−κ3 − (r − 1)− 2m(1 + ∂ξŪ).

Compared to (3.21), (3.23), in the above estimates, we do not need to estimate cross terms (3.19), (3.22),
which contribute to the bounds αΣ̄|∂ξϕ1

ϕ1
| in (3.21) and 2mα|∂ξΣ̄| in (3.23). Using Lemma 3.1 with ` = 0,

and choosing m̃0 large enough, for m ≥ m̃0, we obtain

DA,2m ≤ −(r − 1)− 2mµ1〈ξ〉−1 + C〈ξ〉−κ3 ≤ −(r − 1),

uniformly in ξ > 0. Since ϕg . ϕA, combining the above estimates and (3.29), and then choosing εm small
enough, we obtain∫ (

εm∆mLA(A) ·∆mAϕ2
2mϕg + LA(A) ·AϕA

)
dy ≤ −λ̃1

∫ (
εm|∆mA|2ϕ2

2mϕg + |A|2ϕA
)
dy

for some λ̃1 > 0 independent of m. This proves (3.13b). Clearly, by choosing λ smaller, m0 larger, and εm
smaller, we can obtain the coercive estimates (3.13a), (3.13b) for the same set of parameters. This concludes
the proof of Theorem 3.2.

3.3. Compact perturbation via Riesz representation. In this section, using the estimates established ear-
lier in Theorem 3.2, we construct a compact operator Km such that L − Km is dissipative in Xm. For this
purpose we fix m0 ≥ 6. We also recall from Lemma 3.3 that the Hilbert spaces {X i}i≥0 are nested, with
X i+1 ⊂ X i ⊂ . . . ⊂ X 0 for all i ≥ 0; we will implicitly use this fact throughout this section.

Proposition 3.4. For any m ≥ m0, there exists a bounded linear operator Km : X 0 → Xm with:
(a) for any f ∈ X 0 we have

supp(Kmf) ⊂ B(0, 4R4),

where R4 is chosen in Theorem 3.2 (in particular, it is independent of m);
(b) the operator Km is compact from Xm → Xm;
(c) the enhanced smoothing property Km : X 0 → Xm+3 holds;
(d) the operator L −Km is dissipative on Xm and we have the estimate

〈(L −Km)f, f〉Xm ≤ −λ‖f‖2Xm (3.30)

for all f ∈ {(U,Σ) ∈ Xm : L(U,Σ) ∈ Xm}, L = (LU ,LS), and where λ > 0 is the parameter
from (3.13a) (in particular, it is independent of m).

Item (d) shows that L is a compact perturbation of the dissipative operator Dm , L − Km in Xm, for
any m ≥ m0. By further regularizing Km one could define Km : X 0 → X∞ = ∩m≥0Xm, but we do not
need this extra regularity and thus do not seek this refinement; we only need the Xm+3-regularity claimed
in item (c) in order to simplify the nonlinear estimates in Section 4.4.2.
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Proof. Fix R4 as in Theorem 3.2. We let 0 ≤ χ1, χ2 ≤ 1 be smooth cutoff functions such that

χ1(y) = 1, |y| ≤ 2R4, χ1(y) = 0, |y| ≥ 4R4, (3.31a)

χ2(y) = 1, |y| ≤ 4R4, χ2(y) = 0, |y| > 8R4. (3.31b)

Throughout this proof we also fix m ≥ m0, where m0 ≥ 6 is given by Theorem 3.2.
Riesz representation. We consider the bilinear form Bm(·, ·) : X 0 ×Xm → R defined by

Bm(f, g) ,
∑

1≤i≤3

∫
χ1fi gi,

for f = (U,Σ) = (U1, U2,Σ) ∈ X 0 and g = (U′,Σ′) = (U ′1, U
′
2,Σ

′) ∈ Xm.
We note that for ϕg as defined in (3.15), we have that 〈4R4〉−κ1−2 ≤ ϕg ≤ 1 on supp(χ1) and hence by

also recalling the nested property Xm ⊂ X 0 (cf. Lemma 3.3) we have the trivial estimate

|Bm(f, g)| . ‖f‖X 0‖g‖X 0 .m ‖f‖X 0‖g‖Xm . (3.32)

Here and throughout the proof the implicit constants in . are allowed to depend on R4. It is clear from the
above bound that Bm(·, ·) is well defined on the larger domain X 0 ×X 0, but we shall not use this fact.

For each fixed f ∈ X 0, since Bm(f, ·) is a bounded linear functional on the Hilbert space Xm, using the
Riesz representation theorem, there exists a unique Kmf ∈ Xm such that

〈Kmf, g〉Xm = Bm(f, g), ∀g ∈ Xm.

Using (3.32) and duality, we immediately obtain

‖Kmf‖Xm = sup
‖g‖Xm≤1

〈Kmf, g〉Xm = sup
‖g‖Xm≤1

Bm(f, g) .m ‖f‖X 0 . (3.33)

Since Bm(f, g) is linear in f , from (3.33) we deduce that Km is a bounded linear operator from X 0 to Xm.
Proof of item (a). For any f ∈ X 0, from the definitions of χ1 and Bm, we deduce that 〈Kmf, g〉Xm = 0
for all g ∈ Xm such that supp(g) ⊆ {y : |y| ≥ 4R4}. By the definition of the inner-product on Xm
(it is equivalent to the H2m inner-product on compact subsets), it follows that supp(Kmf) ⊂ B(0, 4R4).
Moreover, with χ2 as defined in (3.31) we have Bm(f, ·) = Bm(χ2f, ·) and hence Kmf = Km(χ2f). With
these two facts, it also follows that χ2Kmf = Kmf .
Proof of item (b). Since ϕ2m �m,Ω 1 and ϕg �Ω 1 on any compact set Ω ⊂ R2 (in particular, for Ω =

B(0, 4R4)), it follows that for any function h such that supp(h) ⊂ Ω, we have ‖h‖Xm �m,Ω ‖h‖H2m(Ω);
this norm equivalence will be used several times throughout the remainder of the proof.

To establish the compactness ofKm : Xm → Xm, we note that if {fk}k≥1 is a bounded sequence in Xm,
then using ‖χ2f‖Xm . ‖f‖Xm for any f ∈ Xm, and appealing to the above discussed norm equivalence,
we obtain that {χ2fk}k≥1 is a bounded sequence of functions in H2m(B(0, 8R4)). Using the Rellich-
Kondrachov compact embedding theorem, there exists a subsequence {χ2fkj}j≥1 which is convergent in
L2(B(0, 8R4)), and a-posteriori in X 0. By the continuity of Km it follows that {Km(χ2fkj )}j≥1 is con-
vergent in Xm, and since Km(χ2fkj ) = Km(fkj ) we deduce the desired pre-compactness of the sequence
{Km(fk)}k≥1 in Xm. We obtain that K is a bounded compact operator from Xm → Xm.
Proof of item (c). We fix f ∈ X 0. Using the definition of Xm in (3.14), the fact that ϕ2m �m 1 and
ϕg � 1 on B(0, 4R4), the middle inequality in (3.32), the inclusion in Lemma 3.3, the bound (3.33), and
the compact support property of Km established in item (a), we deduce∣∣∣∫ ∆m(Kmf) ·∆mg

∣∣∣ .m ∣∣〈Kmf, g〉Xm∣∣+
∣∣〈Kmf, g〉X 0

∣∣
.m ‖f‖X 0‖g‖X 0 + ‖Kmf‖X 0‖g‖X 0

.m ‖f‖X 0‖g‖X 0 + ‖Kmf‖Xm‖g‖X 0 .m ‖f‖X 0‖g‖X 0 . (3.34)

for any f ∈ X 0 and g ∈ Xm.
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We would like to set g = ∆m(Kmf) in (3.34), but this is not immediately possible since we only know
Kmf ∈ Xm, which provides insufficient regularity. As such, we need to regularize Kmf . We choose a
radially symmetric non-negative function φ ∈ C∞c with

∫
φ = 1 and define φε(y) = ε−2φ(y/ε). Let

F , ∆m(Kmf), Gε , φε ∗ (φε ∗ F ).

Using the equivalence of the norms ‖ · ‖Xm and ‖ · ‖H2m for functions which have compact support in
B(0, 4R4), from the fact that Kmf ∈ Xm and item (a) we deduce that F ∈ L2 has compact support, and
Gε ∈ C∞c ⊂ Xm. Inserting g 7→ Gε in (3.34), upon integrating by parts we deduce that

‖∇m(φε ∗ F )‖2L2 ≤m
∣∣∣∫ F ·∆m(φε ∗ (φε ∗ F ))

∣∣∣
.m ‖f‖X 0‖Gε‖X 0 .m ‖f‖X 0‖F‖L2 .m ‖f‖X 0‖Kmf‖Xm .m ‖f‖2X 0 .

Passing ε → 0, we deduce that ∇mF ∈ L2 and ‖∇mF‖L2 .m ‖f‖X 0 . Since Kmf has compact support,
we thus obtain

‖Kmf‖X b3m/2c .m ‖Kmf‖Ḣ3m .m

∫
|∇m∆m(Kmf)| = ‖∇mF‖L2 .m ‖f‖X 0 .

Since m ≥ 6, using the nested property from Lemma 3.3 we deduce the boundedness Km : X 0 → Xm+3.
Proof of item (d). Using the definitions of Bm and Km, the estimate (3.13a), recalling that ϕg ≤ 1, and
letting C̄ > 0 be exactly as in (3.13a), we deduce

〈(L − C̄Km)f, f〉Xm ≤ −λ〈f, f〉Xm + C̄

∫
(1|y|≤R4

− χ1)|f |2dx ≤ −λ〈f, f〉Xm ,

where f = (U,Σ),L = (LU ,LS). Upon re-defining Km to equal C̄Km, which does not alter the proofs of
items (a)–(c), we deduce the dissippativity claimed in (3.30). �

3.4. Construction of the semigroup. For any m ≥ m0 we construct the strongly continuous semigroups

eLs : Xm → Xm, eDms : Xm → Xm, L = (LU ,LΣ) = Dm +Km.

by directly solving the associated linear PDEs. HereKm is as constructed in Proposition 3.4. In this section,
without loss of generality we consider semigroups defined for s ≥ 0, although in applications for Section 4
the interval s ≥ sin is the relevant one.

3.4.1. From linear PDEs to semigroups. The relation between linear evolutionary PDEs and semigroups is
classical; see e.g. [37]. Following Definition 6.1, Chapter II of [37], we consider the abstract initial value
problem for a linear operator A : D(A) ⊂ X → X with domain D(A):

d
dtu(t) = Au(t), t ≥ 0, u(0) = x ∈ X, (3.35)

where X is a Banach space. A function u : R+ → X is a (classical) solution of (3.35) if u is continuously
differentiable with respect to X , u(t) ∈ D(A) for all t ≥ 0, and (3.35) holds in X for all t > 0. We use the
notation u(x, t) to denote a solution u from initial data x ∈ X , at time t. We recall:

Theorem 3.5 (Theorem 6.7, Chapter II, [37]). Let A : D(A) ⊂ X → X be a closed operator. The
following properties are equivalent:

(a) A generates a strongly continuous semigroup.
(b) For every x ∈ D(A), there exists a unique solution u(x, ·) of the initial value problem (3.35). The

operator A has dense domain, and for every sequence {xn}n≥1 ⊂ D(A) satisfying limn→∞ xn =
0, one has limn→∞ u(xn, t) = 0 uniformly on compact intervals [0, t0].

The above theorem states that A generates a strongly continuous semi-group if and only if the linear
PDEs is well-posed: (3.35) has a unique solution, and satisfies continuous dependence on the data.
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3.4.2. Solving linear PDEs. We define the domains of the operators L = (LU ,LΣ) and Dm = L −Km as

D(Dm) = D(L) , {(U,Σ) ∈ Xm,L(U,Σ) ∈ Xm}. (3.36)

Recall from (2.6d) and (2.6f) that the linearized operator L = (LU ,LΣ) is defined via

LU (U,Σ) = −(r − 1)U− (y + Ū) · ∇U−U · ∇Ū− αΣ∇Σ̄− αΣ̄∇Σ, (3.37a)

LΣ(U,Σ) = −(r − 1)Σ− (y + Ū) · ∇Σ−U · ∇Σ̄− α div(Ū)Σ− α div(U)Σ̄, (3.37b)

resulting in the linearized versions of the evolution equations (2.6a) and (2.6c)

∂s(U,Σ) = L(U,Σ) =
(
LU (U,Σ),LΣ(U,Σ)

)
. (3.37c)

Note that L does not involve A, so that (3.37) is a closed evolution for (U,Σ), which is why we drop the
dependence on A. We also emphasize that the linear operator L preserves radial symmetry (recall (1.5)),
and so for initial data in D(L) ⊂ Xm, we may expect the solution of (3.37c) to lie in Xm.

Denote V = (U,Σ) = (U1, U2,Σ) ⊂ R3. The linearized equations (3.37c) may be written in the form
of a symmetric hyperbolic system

∂sV +B1(y)∂1V +B2(y)∂2V = M(y)V, Bi(y) = (yi + Ūi(y))Id + αΣ̄(y)(Ei3 + E3i), (3.38)

where Eij ∈ R3×3 is the matrix with 1 at the (i, j) entry and 0s at all other entries, and the matrix M ∈
R3×3 depends only on the profiles (Ū, Σ̄). In particular, since the profiles (Ū, Σ̄) are smooth, so are the
coefficients Bi,M . For initial data V0 = V|s=0 ∈ C∞c (R2) the symmetric hyperbolic system (3.38)
has a unique, global-in-time, smooth solution V, and V(·, s) ∈ C∞c (R2); this fact may for instance be
established using the vanishing viscosity method (see e.g. [38, Section 7.3.2]), using the fact that the Bi and
M are bounded with bounded derivatives on any compact domain, and using finite speed of propagation.21

Next, we use approximation of the initial data to show that for V0 ∈ Xm the solution V of (3.38)
satisfies V(·, s) ∈ Xm for all s > 0. For any V0 ∈ Xm, there exists a radially symmetric V

(n)
0 ∈ C∞c

such that ‖V(n)
0 − V0‖Xm → 0 as n → ∞. For initial datum V

(n)
0 , we obtain a unique, global-in-

time, radially symmetric smooth solution V(n) such that V(n)(·, s) ∈ C∞c ⊂ Xm for s > 0. Using
that the evolution (3.38) is linear, we may apply the energy estimates in Theorem 3.2 (more precisely, the
bound (3.13a)) to both V(n) −V(n′) and V(n), to obtain

1
2
d
ds‖V

(n) −V(n′)‖2Xm ≤ −λ‖V(n) −V(n′)‖2Xm + C̄‖V(n) −V(n′)‖2X 0 ≤ C̄‖V(n) −V(n′)‖2Xm
1
2
d
ds‖V

(n)‖2Xm ≤ −λ‖V(n)‖2Xm + C̄‖V(n)‖2X 0 ≤ C̄‖V(n)‖2Xm

to deduce

‖(V(n) −V(n′))(·, s)‖Xm ≤ eC̄s‖V(n)
0 −V

(n′)
0 ‖Xm , ‖V(n)(·, s)‖Xm ≤ eC̄s‖V(n)

0 ‖Xm . (3.39)

Since {V(n)
0 }n≥1 is a Cauchy sequence in Xm, from (3.39) we deduce V(n)(·, s) → V(·, s) in Xm uni-

formly for s ∈ [0, T ], for any T > 0. Moreover, (3.39) yields ‖V(·, s)‖Xm ≤ eC̄s‖V0‖Xm .
In order to show that ‖V(·, s)−V0‖Xm → 0 as s→ 0, for n ≥ 1 we use the decomposition

‖V(·, s)−V0‖Xm ≤ ‖V(n)(·, s)−V
(n)
0 ‖Xm + ‖V(n)(·, s)−V(·, s)‖Xm + ‖V(n)

0 −V0‖Xm

≤ ‖V(n)(·, s)−V
(n)
0 ‖Xm + (eC̄s + 1)‖V(n)

0 −V0‖Xm . (3.40)

We thus only need to show that for any fixed n ≥ 1, we have V(n)(·, s) → V
(n)
0 in Xm as s → 0. Since

we already know that V(n)(·, s) ∈ C∞c (R2), with uniform compact support for s ∈ [0, 1], we deduce that
LV(n) ∈ L∞([0, 1];Xm), and so ∂sV(n) ∈ L∞((0, 1);Xm). Thus, lims→0 ‖V(n)(·, s) −V

(n)
0 ‖Xm = 0.

Finally, we first pass s→ 0, and then n→∞ in (3.40), to deduce lims→0 ‖V(·, s)−V0‖Xm = 0.

21A much more general existence and uniqueness theorem is established in [50].
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From the energy estimates in Theorem 3.2 and estimates similar to (3.39), we also obtain the uniqueness
of solutions to (3.38) (hence (3.37c)), from any initial data in Xm. Therefore, for any V0 ∈ Xm, we have
constructed the solution operator SL(s) for (3.37) satisfying

SL(s) : Xm → Xm, SL(s)SL(t) = SL(s+ t), s, t ≥ 0, (3.41a)

‖SL(s)‖Xm→Xm ≤ eC̄s, lim
s→0
‖SL(s)V0 −V0‖Xm = 0. (3.41b)

The semigroup property follows from the uniqueness of the solution. The growth rate C̄ is as in (3.13a).
In order to apply Theorem 3.5, we need to verify condition (b). Consider V0 ∈ D(L), as defined in (3.36).

Unique classical solvability requires that the solution V of (3.37) with initial data V0, i.e. V(·, s) =
SL(s)V0, satisfies V(·, s) ∈ D(L) for s > 0. In order to prove this we observe that [∂s,L] = 0 and
hence

∂s(∂sV) = L(∂sV), (∂sV)|s=0 = LV0 ∈ Xm.
Applying (3.41) to ∂sV, we obtain LV(·, s) = ∂sV(·, s) = SL(s)(LV0) ∈ Xm, for all s > 0, as desired.
This argument also shows that V ∈ Lip([0, T ],Xm). The continuous dependence of data required in
item (b) of Theorem 3.5 follows directly from the growth bound of SL(s), see (3.41).

Concluding, we apply Theorem 3.5 with (A, X) = (L,Xm), and obtain that L generates a strongly
continuous semigroup SL(s) = eLs, which satisfies the growth bound (3.41).

3.4.3. Semigroup forDm. In order to show thatDm = L−Km generates a strongly continuous semigroup,
we note that Km : Xm → Xm is bounded (see Proposition 3.4), and so the Bounded Perturbation Theorem
in [37, Theorem 1.3, Chapter III] applies directly. Using the coercive estimates (3.30), we moreover obtain

esDm : Xm → Xm, ‖esDm‖Xm ≤ e−λs. (3.42)

The decay estimate of the semigroup (3.42) further implies the following spectral property of Dm (see [37,
Theorem 1.10, Chapter II])

{z ∈ C : Re(z) > −λ} ⊂ ρ(Dm), (3.43)

where ρ(A) denotes the resolvent set of an operator A.
Note that the estimates (3.42) and (3.43) apply to all (Dm,Xm) for m ≥ m0, with λ independent of m.

3.5. Decay estimates of eLt. In this section, we follow [37] to obtain decay estimates for the semigroup
eLt. For a semigroup eAt : X → X on a Banach space X denote by σ(A) the spectrum of A, i.e., the set
{z ∈ C : z −A is not bijective}. We also introduce the spectral bound s(A), the growth bound ω0(A), and
the essential growth bound ωess(A), defined by

s(A) , sup
{

Re(z) : z ∈ σ(A)
}
,

ω0(A) , inf
{
ω ∈ R : there exists Mω ≥ 1 such that ‖eAt‖X→X ≤Mωe

ωt for all t ≥ 0
}
,

ωess(A) , inf
t>0

1
t log ‖eAt‖ess,

where the norm ‖ · ‖ess is defined as ‖T‖ess = infK : X→X is compact ‖T −K‖X→X . With this notation, we
have the following result:

Proposition 3.6 (Corollary 2.11, Chapter IV, [37]). Let eAt be a strongly continuous semigroup generated
by A : D(A) ⊂ X → X , a closed operator. Then

ω0(A) = max{ωess(A), s(A)}.

Moreover, for every ω > ωess(A), the set σc = σ(A)∩{z ∈ C : Re(z) ≥ ω} is finite, and the corresponding
spectral projection has finite rank.
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We apply Proposition 3.6 to (A, X) = (L,Xm), where L = (LU ,LΣ) = Dm + Km and Km is the
compact operator constructed in Proposition 3.4. From the decay estimate (3.42) we obtain ωess(Dm) ≤ −λ.
Since ωess is invariant under compact perturbations (see [37, Proposition 2.12, Chapter IV]), we get

ωess(L) = ωess(Dm) ≤ −λ. (3.44)

3.5.1. Hyperbolic decomposition. In this section, based on the estimate of ωess(L) from (3.44), we orthog-
onally decompose the spaceXm (see (3.45) below) and obtain decay estimates on eLs for the stable part, and
growth estimates for the unstable part. For this purpose, we first recall the following spectral decomposition
for a closed operator A, based on Riesz projections.

Proposition 3.7 (Theorem 2.1, Chapter XV, Part IV, page 326, [41]). Suppose A : D(A) ⊂ X → X is a
closed operator with specturm σ(A) = σ ∪ τ , where σ is contained in a bounded Cauchy domain ∆ such
that ∆̄ ∩ τ = ∅. Let Γ be the (oriented) boundary of ∆. Then:

(i) Pσ = 1
2πi

∫
Γ(z −A)−1dz is a projection,

(ii) the subspaces M = RgPσ (the image of Pσ) and N = kerPσ are A−invariant,
(iii) the subspace M is contained in D(A) and A|M is bounded,
(iv) σ(A|M ) = σ and σ(A|N ) = τ .

Our goal is to apply the above result to (A, X) = (L,Xm). From (3.44) and Proposition 3.6, we have that

ση , σ(L) ∩ {z ∈ C : Re(z) > −η}, where η , 4
5λ < λ,

only consists of finitely many eigenvalues of L, with finite multiplicity. Without loss of generality22 we have
that ση is isolated from σ(L)\ση. Applying Proposition 3.7 with A = L, X = Xm, and τ = σ(L)\ση, we
obtain the hyperbolic decomposition

Xm = Xmu ⊕Xms , σ(L|Xms ) = σ(L)\ση ⊂ {z : Re(z) ≤ −η}, σ(L|Xmu ) = ση. (3.45)

Moreover, from Proposition 3.6 it follows that we can decompose the unstable part as

Xmu =
⊕
z∈ση

ker((z − L)µz), µz <∞, |ση| < +∞. (3.46)

We will also show in Section 3.6 that Xmu is spanned by smooth functions.
Since Xms is L invariant, the restriction of the semigroup eLs on Xms is generated by L|Xms . Moreover,

since max(ωess(L), s(σ(L|Xms ))) ≤ −η, from Proposition 3.6 and the definition of ω0(L|Xms ) we obtain

‖eLsV0‖Xm ≤ Cme−sηs‖V0‖Xm , ∀V0 ∈ Xms , s > 0, where ηs , 3
5λ <

4
5λ = η. (3.47)

We also note that since Xmu has finite dimension, σ(L|Xmu ) = ση, the operator L|Xmu may be represented as
a matrix with eigenvalues > −η; therefore, we obtain

‖e−LsV0‖Xm ≤ Cmeηs‖V0‖Xm . ∀V0 ∈ Xmu , s > 0. (3.48)

3.5.2. Additional decay estimates of L. In order to localize the initial data (see (4.4a) below), we will need
the following decay estimates for the linear evolution (3.37c), with initial data supported in the far-field.

Proposition 3.8. Let R4 be as defined in Theorem 3.2. Consider (3.37) with initial data V0 = (U0,Σ0)

with supp(U0) ∪ supp(Σ0) ⊂ B(0, R){ for some R > 4R4 > ξs. For any m ≥ m0, the solution
V(s) = (U(s),Σ(s)) = eLsV0 satisfies

supp(V(s)) ⊂ B(0, 4R4){, ‖eLsV0‖Xm ≤ e−λs‖V0‖Xm .

22The rigorous argument would be as follows. For η̄ = 9
10
λ, we have that ση̄ = σ(L) ∩ {z ∈ C : Re(z) > −η̄} only consists

of finitely many eigenvalues of L, with finite multiplicity. As such, for a.e. θ ∈ ( 7
10
, 9

10
) the line in the complex plane with

real-abscisa −θλ does not intersect σ(L). We have assumed without loss of generality that this θ may be taken to equal 4
5

, but of
course the below arguments all hold as is if we replace η = 4

5
λ with η = θλ for some θ ∈ ( 7

10
, 9

10
).
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Proof. The proof of Proposition 3.8 uses that the support of the solution eLsV0 is moving away from y = 0,
remaining outside of B(0, 4R4) for all time. Since supp(Kmf) ⊂ B(0, 4R4) (item (a) in Proposition 3.4),
we get KmV(s) = 0 for all time s, and the desired decay estimate follows from (3.30) or (3.42).

Based on the above discussion, we only need to show that the solution V(y, s) = 0 for all y ∈ B(0, 4R4)
and s > 0. Let χ be a radially symmetric cutoff function with χ(y) = 1 for |y| ≤ 4R4, χ(y) = 0
for |y| ≥ R > 4R4, and with χ(|y|) decreasing in |y|. Our goal is to show that the weighted L2 norm∫

(|U(s)|2 + |Σ(s)|2)χ of the solution V = (U,Σ) of (3.37), vanishes identically for s ≥ 0. By assumption,
we have that

∫
(|U(0)|2+|Σ(0)|2)χ = 0, so it remains to compute d

ds of this weighted L2 norm using (3.37).
Recall the decomposition of L from (3.16) with m = 0 (hence, with RU,m = RΣ,m = 0). Performing

weighted L2 estimates analogous to the ones in the proof of Theorem 3.2, for the transport terms we obtain∫
(TU ·U + TΣ Σ)χ

= −
∫ (

(y + Ū) · ∇
(

1
2 |U|

2
)

+ (y + Ū) · ∇
(

1
2Σ2

)
+ αΣ̄∇Σ ·U + αΣ̄ div(U)Σ

)
χ

=

∫
1
2 div

(
(y + Ū)χ

)
(|U|2 + Σ2) + α∇(Σ̄χ) ·UΣ

≤
∫

1
2

(
(y + Ū) · ∇χ+ χdiv(y + Ū)

)
(|U|2 + Σ2) + α

(
Σ̄|∇χ|+ χ|∇Σ̄|

)
|UΣ|. (3.49)

We focus on the terms in (3.49) involving |∇χ|. Since χ is radially symmetric, we get (y + Ū) · ∇χ =
(ξ + Ū)∂ξχ. Using Cauchy-Schwarz, the fact that ∂ξχ(y) = 0, |y| ≤ 4R4 and ∂ξχ ≤ 0 globally, and using
that (2.4c) yields ξ + Ū(ξ)− αΣ̄(ξ) > 0 for ξ = |y| > ξs (hence for ξ > 4R4), we obtain

1
2

(
(y + Ū) · ∇χ

)
(|U|2 + Σ2) + αΣ̄|∇χ||UΣ| ≤ 1

2

(
(ξ + Ū)∂ξχ+ αΣ̄|∂ξχ|

)
(|U|2 + Σ2)

≤ 1
2(ξ + Ū − αΣ̄)∂ξχ(|U|2 + Σ2) ≤ 0.

For remaining contributions, resulting from the χ-terms in (3.49), and from the DU ,SU ,DΣ,SΣ-terms in
(3.16), in light of (2.4a) we have that

1
2χdiv(y + Ū)(|U|2 + Σ2) + αχ|∇Σ̄||UΣ| − (r − 1)χ(|U|2 + Σ2)− χ(U · ∇Ū ·U + U · ∇Σ̄ Σ)

≤ Cχ(|U|2 + Σ2)

for some sufficiently large C > 0 (depending on α, r, Ū, Σ̄). Thus, we obtain

1
2
d
ds

∫
(|U|2 + Σ2)χ =

∫
(LU ·U + LΣ Σ)χ ≤ C

∫
(|U|2 + Σ2)χ,

which implies via Grönwall that
∫

(|U(s)|2 + Σ(s)2)χ = 0 for all s ≥ 0. The claim follows. �

3.6. Smoothness of unstable directions. In this section, we show that the unstable space Xmu given in
(3.46) is spanned by smooth functions. This fact will be shown to follow from the following abstract lemma.

Lemma 3.9. Let {Xi}i≥0 be a sequence of Banach spaces with Xi+1 ⊂ Xi for all i ≥ 0. Assume that for
any i ≥ i0 we can decompose the linear operatorA : D(A) ⊂ Xi → Xi asA = Di +Ki, where the linear
operators Di and Ki satisfy

Di : D(A) ⊂ Xi → Xi, Ki : Xi−1 → Xi, {z ∈ C : Re(z) > −λ} ⊂ ρ(Di). (3.50)

Here, ρ(·) denotes the resolvent set of an operator and λ > 0 is independent of i ≥ i0. Fix n ≥ 0 and z ∈ C
with Re(z) > −λ. Assume that the functions f0, . . . , fn ∈ Xi0 satisfy

(z −A)f0 = 0, (z −A)fi = fi−1, for 1 ≤ i ≤ n.

Then, we have f0, . . . , fn ∈ X∞ , ∩i≥0X
i.
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Proof. It suffices to show that:

if f ∈ Xi0 satisfies (z −A)f = F ∈ X∞, then f ∈ X∞.
Indeed, the lemma then follows by induction on i ∈ {0, . . . , n}.

In order to prove the above claim, we further use induction on i ≥ i0 to show that:

if f ∈ Xi0 ∩Xi−1 satisfies (z −A)f = F ∈ X∞, then f ∈ Xi. (3.51)

The base case i = i0 in (3.51) holds true automatically. For the inductive step, for i − 1 ≥ i0 we assume
that f ∈ Xi−1 = Xi0 ∩ Xi−1. Using that A = Di + Ki and Ki : Xi−1 → Xi from (3.50), we get
(z − Di)f = F + Kif ∈ Xi. From (3.50) and the assumption Re(z) > −λ, we get z ∈ ρ(Di) and thus
f = (z −Di)−1(F +Kif) ∈ Xi. This proves (3.51). By induction on i, it follows that f ∈ X∞. �

We are now able to apply Lemma 3.9 with (A, {Xi}i≥i0)  (L, {Xm}m≥m0), and the decomposition
L = Dm+Km form ≥ m0, withKm as constructed in Proposition 3.4, in order to describe the regularity of
elements of ker((z − L)µz) for n µz <∞, and z ∈ ση (see (3.45) and (3.46)). Indeed, the assumptions
of Lemma 3.9 are satisfied in light of Lemma 3.3, Proposition 3.4, and (3.43).

We fix z ∈ ση = σ(L) ∩ {z ∈ C : Re(z) > −η}, where we recall −η > −λ. We also fix g ∈
ker((z −L)µz) ⊂ Xmu for some integer µz <∞, as constructed in (3.45) and (3.46). We apply Lemma 3.9
with fi = (z − L)µz−ig for 0 ≤ i ≤ µz , to deduce that {fi}µzi=0 ⊂ X∞ , ∩m≥m0Xm. Since

X∞ = ∩m≥m0Xm ⊂ C∞,
we deduce from (3.46) that Xmu is spanned by smooth radially-symmetric functions.

4. NONLINEAR STABILITY

The goal of this section is to prove Theorem 1.1, by constructing global solutions (U,Σ,A) to (2.3), with
a number of desirable properties, in the vicinity of the stationary profile (Ū, Σ̄, 0). Throughout this section
we fix m ≥ m0, where m0 is sufficiently large, as in Theorem 3.2.

4.1. Decomposition of the solution. We will use V = (U,Σ,A) to denote the nonlinear solution to (2.3).
As in (2.5), we denote the perturbation to the stationary profile as

Ṽ , (Ũ, Σ̃,A) , (U− Ū,Σ− Σ̄,A),

and recall that this perturbation solves (2.6)–(2.7). We shall further decompose the perturbation23 as Ṽ =
Ṽ1 + Ṽ2, with Ũ = Ũ1 + Ũ2, Σ̃ = Σ̃1 + Σ̃2, so that

V = (U,Σ,A) = Ṽ1 + Ṽ2 + V̄, Ṽ1 = (Ũ1, Σ̃1,A), Ṽ2 = (Ũ2, Σ̃2, 0), V̄ = (Ū, Σ̄, 0). (4.1)

The fields Ṽ1 and Ṽ2 are defined as the solutions of

∂sṼ1 = LV (Ṽ1)−Km(Ṽ1) +NV (Ṽ), (4.2a)

∂sṼ2 = L(Ṽ2) +Km(Ṽ1), (4.2b)

with initial data at time s = sin = log T−1/r given by Ṽ1,in as described in Theorem 4.1, and with Ṽ2,in as
given by (4.4d). The operator Km in (4.2) is as defined in Proposition 3.4, while the linear operators L, LV ,
and the nonlinear term NV are given in terms of (2.6)–(2.7) and

L = (LU ,LΣ), LV = (LU ,LΣ,LA), NV = (NU ,NΣ,NA).

It is clear, by definition, that a global solution Ṽ1, Ṽ2 of (4.2) provides via (4.1) a global solution V of (2.3).
In (4.2), and in the remainder of the section, we have abused notation two-fold. First, in (4.2a) we note

that the output of the Km operator is an element of Xm (hence, a U and a Σ) and so it does not contain
an A-component (as is required by the Ṽ1 representation in (4.1)); as such, in (4.2a) we write Km(Ṽ1) =

Km(Ũ1, Σ̃1) to mean (Km(Ũ1, Σ̃1), 0), i.e., Km(Ṽ1) does not act on the A-component. Second, we note

23We emphasize that the ·̃1 or ·̃2 sub-index denote different parts of the perturbation, they do not represent Cartesian coordinates.
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that the Ṽ2 representation in (4.1) has a 0 in the A-component; as such, in (4.2b) we identify Ṽ2 with the
pair (Ũ2, Σ̃2), which then matches the domain and range of the operators L and Km.

There are a few important advantages to the decomposition24 (4.1) and the definitions (4.2). First, the part
Ṽ2, which is used to capture unstable parts, is decoupled from the equation of Ṽ1 at the linear level, and so
we can obtain decay estimates for Ṽ1 directly using energy estimates and the dissipativity of (L−Km,LA)
(see (3.13b) and (3.30)), without appealing to semigroups. Second, we can obtain a representation formula
(and an estimate) for Ṽ2 by using Duhamel’s formula

Ṽ2(s) = eL(s−sin)Ṽ2,in +

∫ s

sin

eL(s−s′)Km(Ũ1, Σ̃1)(s′)ds′ (4.3)

for some initial data V2,in, to be chosen later. We note that for (4.2) without the nonlinear parts, we can first
obtain a decay estimate for Ṽ1, and then construct Ṽ2 using the above Duhamel formula, globally in time.
We obtain bounds for the full nonlinear system (4.2) by treating the nonlinear terms perturbatively.

The Duhamel representation (4.3) for the unstable part of the perturbation is deceivingly simple; this is
because we did not yet specify the initial data Ṽ2,in. In practice, we need to use the usual technique for
constructing unstable manifolds, and apply the semigroup backward-in-time on the unstable piece of Ṽ2.
Additionally, in order to obtain initial data with compact support, we modify (4.3) as follows

Ṽ2(s) , Ṽ2,s(s)− Ṽ2,u(s) + eL(s−sin)
(
Ṽ2,u(sin)

(
1− χ

( y
8R4

)))
, (4.4a)

Ṽ2,s(s) ,
∫ s

sin

eL(s−s′)ΠsKm(Ũ1, Σ̃1)(s′)ds′, (4.4b)

Ṽ2,u(s) ,
∫ ∞
s

e−L(s′−s)ΠuKm(Ũ1, Σ̃1)(s′)ds′, (4.4c)

where χ is a smooth radial cutoff function with χ(y) = 1 for |y| ≤ 2/3, and χ(y) = 0 for |y| ≥ 1, Πu is the
orthogonal projection from Xm to Xmu (see (3.45)–(3.46)) and Πs , Id − Πu. It is not difficult to see that
(4.4) agrees with (4.3) for initial data taken as

Ṽ2,in = −Ṽ2,u(sin)χ
( y

8R4

)
= −χ

( y
8R4

) ∫ ∞
sin

e−L(s′−sin)ΠuKm(Ũ1, Σ̃1)(s′)ds′. (4.4d)

Since the cutoff χ and elements ofXm (the range of ΠuKm being a subset) are radially symmetric, if follows
that so is Ṽ2,in. The detailed representation (4.4) shows that Ṽ2 is computed as a function of (Ũ1, Σ̃1); for
later purposes it is useful to codify this relation as a map, T2, and to denote

T2(Ũ1, Σ̃1) , Right Side of (4.4a). (4.5)

4.2. Functional setting. We introduce the following space for the perturbation Ṽ1 = (Ũ1, Σ̃1,A):

Z i := X i ×X i ×X iA. (4.6)

Next, we introduce the spacesWm+1 andWm+1
A , which are used for closing nonlinear estimates. Our goal

is to perform both weightedH2m and weightedH2m+2 estimates on (4.2), using the same compact operator
Km and the same projections Πs,Πu appearing in (4.2) and (4.4b)–(4.4c); that is, we do not wish to change
Km into Km+1 for the weighted H2m+2 bound.

Fix an arbitrary m ≥ m0. For some µm+1 > 0 to be chosen sufficiently small, using Theorem 3.2,
Proposition 3.4 (which in particular gives that Km : X 0 → Xm+1), and the fact that by definition we have

24This decomposition was first developed in [22] for stable blowup analysis of the 3D incompressible Euler equations.
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‖ · ‖X 0 ≤ ‖ · ‖Xm , we obtain

〈(L −Km)f, f〉Xm + µm+1〈(L −Km)f, f〉Xm+1

≤ −λ‖f‖2Xm + µm+1

(
〈Lf, f〉Xm+1 + ‖Kmf‖Xm+1‖f‖Xm+1

)
≤ −λ‖f‖2Xm + µm+1

(
−λ‖f‖2Xm+1 + C̄‖f‖2X 0 + Cm‖f‖X 0‖f‖Xm+1

)
≤ − 9

10λ
(
‖f‖2Xm + µm+1‖f‖2Xm+1

)
+
(
− 1

10λ+ µm+1(C̄ + 5
λC

2
m)
)
‖f‖2Xm ,

for all f ∈ {(U,Σ) ∈ Xm+1 : L(U,Σ) ∈ Xm+1}. Choosing µm+1 > 0 small enough in terms of m and
λ, from the above bound we obtain the coercive estimate

〈(L −Km)f, f〉Xm + µm+1〈(L −Km)f, f〉Xm+1 ≤ − 9
10λ
(
‖f‖2Xm + µm+1‖f‖2Xm+1

)
.

Note that coercive estimates for LA in both XmA and Xm+1
A are directly available from Theorem 3.2.

In light of the above coercive bounds, with µm+1 > 0 chosen as above, we define the Hilbert spaces
Wm+1 ⊂ Xm+1,Wm+1

A ⊂ Xm+1
A according to the inner products

〈f, g〉Wm+1 , µm+1〈f, g〉Xm+1 + 〈f, g〉Xm , ‖f‖2Wm+1 = 〈f, f〉Wm+1 , (4.7a)

〈f, g〉Wm+1
A
, µm+1〈f, g〉Xm+1

A
+ 〈f, g〉XmA , ‖f‖2Wm+1

A
= 〈f, f〉Wm+1

A
, (4.7b)

and obtain that

〈(L −Km)f, f〉Wm+1 ≤ −λ1‖f‖2Wm+1 , 〈LAf, f〉Wm+1
A
≤ −λ1‖f‖2Wm+1

A
, λ1 = 9

10λ, (4.8)

for all f ∈ {(U,Σ) ∈ Xm+1 : L(U,Σ) ∈ Xm+1}, respectively for all f ∈ {A ∈ Xm+1
A : LA(A) ∈

Xm+1
A }. Estimate (4.8) shows that we can use the same compact operator Km to simultaneously obtain

coercive estimates in weighted H2m+2 and weighted H2m spaces.

4.3. Nonlinear stability and the proof of Theorem 1.1. We recall from (3.47) (shifted so that the initial
time is s = sin instead of s = 0) and (4.8), that the decay rates ηs, η, and λ1 are given by

(ηs, η, λ1) =
(

3
5 ,

4
5 ,

9
10

)
λ, ηs < η < λ1 < λ. (4.9)

We also recall that the regularity parameter m ≥ m0 has been fixed. The goal of this section is to prove:

Theorem 4.1 (Nonlinear stability). Fix m ≥ m0. There exists a sufficiently small δ > 0 such that for
any initial data Ṽ1,in = (Ũ1(sin), Σ̃1(sin),A(sin)) which is smooth enough25 to ensure Ṽ1,in ∈ Zm+2

(see (4.6)) and small enough to ensure

‖(Ũ1(sin), Σ̃1(sin))‖2Wm+1 + ‖A(sin)‖2Wm+1
A

< δ2, (4.10)

there exists a global solution Ṽ1 to (4.2a) with initial data Ṽ1,in, and a global solution Ṽ2 of (4.2b) given
by (4.4), satisfying the bounds

‖(Ũ1(s), Σ̃1(s))‖2Wm+1 + ‖A(s)‖2Wm+1
A

< 4δ2e−2λ1(s−sin), (4.11a)

‖(Ũ2(s), Σ̃2(s))‖Xm+2 .m δY e
−ηs(s−sin), where δY , δ

2/3, (4.11b)

for all s ≥ sin. We emphasize that we cannot prescribe the initial data Ṽ2,in = (Ũ2(sin), Σ̃2(sin)); rather,
this data is constructed via (4.4d) (simultaneously with the solution Ṽ1) to lie in a finite-dimensional sub-
space of Xm+2.

25We require the Zm+2-regularity of Ṽ1,in, a space which is stronger than Zm+1, in order to obtain the local-in-time existence
of a Zm+2-solution (see Footnote 27); in turn, this allows us to justify a few estimates, e.g. (4.8) for (Ũ1, Σ̃1) which requires
L(Ũ1, Σ̃1) ∈ Xm+1. Note that this regularity requirement is only qualitative, and we only use Theorem 4.1 with an C∞ initial
perturbation (see (4.12)) in order to prove Theorem 1.1.The only quantitative assumption on the initial data is given by (4.10).
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Remark 4.2. The initial data for (U,Σ,A) is obtained from Theorem 4.1 and the decomposition (4.1) at
time s = sin. In light of Theorem 4.1, we identify the space X2 mentioned in Remark 1.2 with an open
ball in the weighted Sobolev spaceWm+1

A defined in (4.7). On the other hand, the space X1 mentioned in
Remark 1.2 consists of functions which are given as the sum of an element (Ũ1(sin), Σ̃1(sin)) which lies
in open ball in the weighted Sobolev spaceWm+1 (see definition (4.7)) and the element (Ũ2(sin), Σ̃2(sin))
constructed in (4.4d), which lies in a finite-dimensional subspace of Xm+2.

Using the above Theorem 4.1, we are now ready to prove Theorem 1.1. We note though that Theorem 4.1
implies more than what was claimed in Theorem 1.1; these additional fine properties of the solution are
discussed in Section 4.5.

Proof of Theorem 1.1. We choose an initial perturbation

Ṽ1,in(y) = (Ũ1(y, sin), Σ̃1(y, sin),A(y, sin)) = (Ũ1(ξ, sin)eR, Σ̃1(ξ, sin), A(ξ, sin)eθ)

as in Theorem 4.1, where ξ = |y|. By definition, this initial data consists of radially-symmetric vectors/s-
calars. Moreover, this initial perturbation may be chosen to ensure that

Ũ1(·, sin) + Ū ∈ C∞c (R+), A(·, sin) ∈ C∞c (R+), ∂ξA(0, sin) 6= 0, Σ̃1(·, sin) + Σ̄ = 1, ξ ≥ Cin,

for some Cin ≥ 1 large enough, to be chosen below. For example, we can choose

Ũ1(ξ, sin) = −Ū(ξ)
(

1− χ
( ξ
Cin

))
, (4.12a)

Σ̃1(ξ, sin) =
(
1− Σ̄(ξ)

)(
1− χ

( ξ
Cin

))
(4.12b)

A(ξ, sin) = ξ
Cin

χ(ξ), (4.12c)

where Cin > 0 is to be determined, and χ : R+ → [0, 1] is a radially symmetric and smooth cutoff function
with χ(ξ) = 1 for 0 ≤ ξ ≤ 1/2, and χ(ξ) = 0 for ξ ≥ 1.

In order to verify that the data presented in (4.12) satisfies the assumption of Theorem 4.1, we need to ver-
ify (4.10).26 Letting F (y) = (Ũ1(y, sin), Σ̃1(y, sin)), we note from (2.4a) that |F (y)| . 1|y|≥Cin/2〈y〉1−r ∈
L2(ϕg), where ϕg is as defined in (3.15). Similarly, for i ∈ {m,m + 1}, from (2.4a) we have |∇2iF | .i
1|y|≥Cin/2〈y〉1−2i−r ∈ L2(ϕ2

2iϕg), with ϕ2i as defined in (3.15). Thus, by the dominated convergence
theorem we have that ‖F‖Xm → 0 and ‖F‖Xm+1 → 0 as Cin → ∞. In particular, we may ensure
‖(Ũ1(sin), Σ̃1(sin))‖Wm+1 ≤ δ/2 by choosing Cin sufficiently large. Next, we note that the function
F (y) = ξχ(ξ)eθ = CinA(y, sin), is C∞ smooth and has compact support in the unit ball. Moreover,
using that the weight ϕA defined in (3.28) satisfies ϕA(ξ) � ξ−β1 with β1 ∈ (3, 4), we deduce that
‖F‖2X 0

A
.
∫
|ξ|≤1 ξ

2ξ−b1ξdξ � 1. Thus, ‖F‖Wm+1
A

.m 1, and hence ‖A(sin)‖Wm+1
A

≤ δ/2 for Cin
sufficiently large. Thus, the initial data in (4.12) satisfies (4.10) whenever Cin is sufficiently large.

Without loss of generality, we may choose Cin > 16R4, and thus definitions (4.12a)–(4.12b) imply
that supp(Ũ1(sin), Σ̃1(sin)) ⊂ B(0, 8R4){. Moreover, we have supp(Ũ1(sin) + Ū,−1 + Σ̃1(sin) +

Σ̄) ⊂ B(0, Cin) and supp(A(sin)) ⊂ B(0, 1); combined with supp(Ṽ2,in) = supp(Ũ2(sin), Σ̃2(sin)) ⊂
B(0, 8R4) (see (4.4d)), we deduce from (4.1) that the initial data (U(·, sin),Σ(·, sin)− 1,A(·, sin)) to (2.3)
has compact support in R2. Additionally, the initial datum has no vacuum regions. Indeed, we have already
shown that Σ(y, sin) = 1 for |y| > 8R4. For |y| ≤ 8R4, we use the fact that Σ̃1(y, sin) = 0, so that by (4.11)
we obtain Σ(y, sin) = Σ̄(y) + Σ̃2(y, sin) ≥ min|y|≤8R4

Σ̄(y) − CmδY ≥ 1
2 min|y|≤8R4

Σ̄(y) > 0, since
δY = δ2/3 was taken to be sufficiently small, and since ‖ · ‖L∞ .m ‖ · ‖Xm+1 for functions of compact
support. Thus, the initial data for (2.3) is bounded away from vacuum.

26Indeed, initial data such as the one in (4.12) clearly satisfies the smoothness assumptions of Theorem 4.1 since the profile (Ū , Σ̄)
is C∞ smooth, radially-symmetric, and decays as ξ →∞ according to (2.4a).
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By construction (see (4.12c)), we have that ∂ξA(ξ, sin)|ξ=0 = C−1
in > 0. Moreover, since ω0(R, t)|t=0 =

ω0(R) = (R−1 + ∂R)uθ0(R), using the ansatz (2.1b) we obtain

ω0(0) = lim
ξ→0+

1
rT

(
1
ξ + ∂ξ

)
A(ξ, sin) = 2

rT ∂ξA(0, sin) = 2
rTCin

6= 0.

Moreover, note that for all t ∈ [0, T ) we have u(0, t) = 1
r (T−t)

1
r
−1(U(0, s)+A(0, s)) = 0, because U and

A are smooth radially-symmetric vectors (hence, they vanish linearly in ξ as ξ → 0+, for all s ≥ sin); thus
the Lagrangian flowX(a, t) emanating from a = 0 is frozen at 0, i.e., X(0, t) = 0 for all t ∈ [0, T ). In light
of the specific vorticity transport (1.2), the relation ρ = (ασ)1/α, and taking into account the self-similar
transformation (2.1b), we deduce

ω(0, t) = ρ(0, t)ω0(0)
ρ0(0) = ω0(0)

((
1− t

T

)1/r−1 Σ(0,s)
Σ(0,sin)

)1/α
= ω0(0)

(
1− t

T

)−(r−1)/(rα)( Σ̄(0)+Σ̃(0,s)

Σ̄(0)+Σ̃(0,sin)

)1/α
,

for all t ∈ [0, T ). Since the perturbation Σ̃ satisfies Σ̃(0, s)→ 0 as s→∞ (equivalently, as t→ T ), expo-
nentially fast in light of (4.11), and since ω0(0) 6= 0, we obtain the desired vorticity blowup as t → T . In
fact, the above identity also proves (1.8d). For a fixed y 6= 0, the asymptotic convergence claimed in (1.8a)–
(1.8b) follows from the ansatz (2.1b) and the exponential decay of the perturbation (Ũ(·, s), Σ̃(·, s), Ã(·, s))
as the self-similar time s→∞ (equivalently, as t→ T ), established in (4.11). �

4.4. The proof of Theorem 4.1. The goal of this subsection is to prove Theorem 4.1.
Since the formula for Ṽ2 (see (4.4c)) involves the future of the solution (Ũ1, Σ̃1), and since Ṽ2 enters the

evolution (4.2a) for Ṽ1 through the nonlinear term, we cannot solve for the perturbation Ṽ1 directly. Instead,
we reformulate (4.2a) as a fixed point problem. We fix the initial data Ṽ1(sin) = (Ũ1, Σ̃1,A)|s=sin ∈ Zm+2

(4.6) sufficiently smooth, and sufficiently small such that (4.10) holds. We define the spaces Y1 and Y2,
which capture the decay of the solutions in time

‖(Ũ1, Σ̃1,A)‖Y1 , sup
s≥sin

eλ1(s−sin)
(
‖(Ũ1(s), Σ̃1(s))‖2Wm+1 + ‖A(s)‖2Wm+1

A

)1/2
, (4.13a)

‖(Ũ1, Σ̃1,A)‖Y2 , sup
s≥sin

eλ1(s−sin)
(
‖(Ũ1(s), Σ̃1(s))‖2Xm + ‖A(s)‖2XmA

)1/2
. (4.13b)

Showing (Ũ1, Σ̃1,A) ∈ Yi for i ∈ {1, 2} implies that suitable norms of Ũ1(s), Σ̃1(s),A(s) decay with a
rate e−λ1s as s→∞; recall cf. (4.9) that λ1 = 9

10λ. During the proof we sometimes abuse notation to write

‖(Ũ1, Σ̃1)‖Y2 = ‖(Ũ1, Σ̃1, 0)‖Y2 , (4.14)

i.e., when the A-component is irrelevant for an estimate.
Next, we define an operator T (see (4.17)), whose fixed point (see (4.18)) is the desired solution of (4.2a).

We remark that throughout the remainder of this proof, we distinguish the (U,Σ)-components of an input
of a map (e.g. T , or T2) by variables with a “hat” (e.g. (Û1, Σ̂1)), and the output of these maps by variables
with a “tilde” (e.g. (Ũ1, Σ̃1)). With this notational convention in place, the two-step process is:

• first, for (Û1, Σ̂1) ∈ Y2, we define

Ṽ2 = T2(Û1, Σ̂1), (4.15)

where the linear map T2 is defined by (4.5), via (4.4);
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• second, we define Ṽ1 = (Ũ1, Σ̃1,A) as the solution27 of a modified version of (4.2a), namely

∂sṼ1 = LV (Ṽ1)−Km(Ṽ1) +NV (Ṽ1 + T2(Û1, Σ̂1)), (4.16a)

Ṽ1|s=sin = (Ũ1(sin), Σ̃1(sin),A(sin)) as in Theorem 4.1, (4.16b)

where we recall the notation Km(Ṽ1) = (Km(Ũ1, Σ̃1), 0), and Ṽ1 + T2(Û1, Σ̂1) = ((Ũ1, Σ̃1) +

T2(Û1, Σ̂1),A); that is, neither Km nor T2 act on the A-component.

Concatenating the two steps given above defines a map which takes as input (Û1, Σ̂1) and outputs the
solution of (4.16):(

(Ũ1, Σ̃1),A
)

= Ṽ1
(4.16)
= T (Û1, Σ̂1) =

(
TU,Σ(Û1, Σ̂1), TA(Û1, Σ̂1)

)
. (4.17)

Denoting by TU,Σ the restriction of T to the (U,Σ)-components, we have thus reformulated the system (4.2)
as a fixed point problem: find (Ũ1, Σ̃1) such that

(Ũ1, Σ̃1) = TU,Σ(Ũ1, Σ̃1), (4.18)

with A and (Ũ2, Σ̃2) computed as TA(Ũ1, Σ̃1) and T2(Ũ1, Σ̃1), respectively.
The proof of Theorem 4.1 reduces to establishing that the operator TU,Σ is a contraction with respect to

the norm in (4.14), in a small vicinity of the zero state, characterized by the smallness parameters

δY = δ2/3, δ �m 1, (4.19)

as in the statement of Theorem 4.1. The proof of Theorem 4.1 is broken down in two steps, according to
Proposition 4.3 (which shows that the map TU,Σ maps the ball of radius δY in Y2 into itself), and Proposi-
tion 4.4 (which shows that TU,Σ is a contraction for the topology Y2).

Proposition 4.3. There exists a positive δ0 �m 1 such that for any δ < δ0 and any (Û1, Σ̂1) ∈ Y2 with
‖(Û1, Σ̂1)‖Y2 < δY , we have

‖T (Û1, Σ̂1)‖Y1 < 2δ, ‖TU,Σ(Û1, Σ̂1)‖Y2 < δY , ‖T2(Û1, Σ̂1)(s)‖Xm+3 .m δY e
−ηs(s−sin),

for all s ≥ sin.

Proposition 4.4. There exists a positive δ0 �m 1 such that for any δ < δ0 and any pairs (Û1,a, Σ̂1,a),
(Û1,b, Σ̂1,b) ∈ Y2 with ‖(Û1,a, Σ̂1,a)‖Y2 < δY and ‖(Û1,b, Σ̂1,b)‖Y2 < δY , we have

‖TU,Σ(Û1,a, Σ̂1,a)− TU,Σ(Û1,b, Σ̂1,b)‖Y2 <
1
2‖(Û1,a, Σ̂1,a)− (Û1,b, Σ̂1,b)‖Y2 .

From Proposition 4.3 and Proposition 4.4 we directly obtain:

27To construct the solution of (4.16) locally in time, we use an iterative scheme, and arguments similar to those in Section 3.4.2.
For a fixed Ṽ2 = T2(Û1, Σ̂1), we first construct a C∞c solution to an ε-regularized version of (4.16), in which the operator Km(·)
and the term Ṽ2 are replaced by C∞c approximations Km,ε(·) and Ṽ2,ε. We start with initial data G0 = Ṽ1,ε|s=sin ∈ C

∞
c and

iteratively for n ≥ 0 construct Gn+1 by solving

∂sGn+1 = LV (Gn+1)−Km,ε(Gn+1) + N̂V (Gn + Ṽ2,ε, Gn+1 + Ṽ2,ε), Gn+1|s=sin = G0,

where we rewrite the quadratic nonlinearityNV (·) from (2.7) as the bilinear form N̂V (·, ·) with the derivative acting on the second
entry (e.g. N̂U ((U,Σ,A), (U′,Σ′,A′)) = −U·∇U′−αΣ∇Σ′−A·∇A′). Clearly N̂V (Ṽ, Ṽ) = NV (Ṽ). The above equation
is a linear symmetric hyperbolic system for Gn+1, which can be solved following the arguments in Section 3.4.2. By proving
convergence as n → ∞ of the Picard iterates {Gn}n≥0, and afterwards taking the regularization parameter ε → 0, similarly to
Section 3.4.2 we obtain the local existence of a L∞s (Zm+1) solution, where we recall cf. (4.16) that Zi = X i × X i × X iA. We
emphasize that for initial data Ṽ1,in ∈ Zm+2, e.g. for the initial data from Theorem 4.1, since K(·) : X 0 → Xm+3, Ṽ2 ∈ Xm+3

(item (c) in Proposition 3.4 and Lemma 4.6), the above described construction procedure via C∞c approximations also gives the
local existence of a solution with this higher Zm+2 regularity, so that locally in time L(Ũ1, Σ̃1) ∈ Xm+1 and LA(Ã) ∈ Xm+1

A .
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Proof of Theorem 4.1. Propositions 4.3 and 4.4 allow us to apply a Banach fix-point theorem for the operator
TU,Σ, in the ball of radius δY around the origin in Y2; this results in a unique fixed point (Ũ1, Σ̃1) in this
ball, as claimed in (4.18). Upon defining A , TA(Ũ1, Σ̃1) and (Ũ2, Σ̃2) , T2(Ũ1, Σ̃1), by construction
we have that Ṽ1 = (Ũ1, Σ̃1,A) solves (4.2a) and Ṽ2 = (Ũ2, Σ̃2, 0) solves (4.2b). In view of the definition
of the Y1 norm in (4.13a) and the bound ‖T (Ũ1, Σ̃1)‖Y1 < 2δ (which follows from the first estimate in
Proposition 4.3), we deduce that (4.11a) holds. Similarly, the third estimate in Proposition 4.3 (applied to
(Ũ1, Σ̃1)) yields (4.11b), thereby concluding the proof of Theorem 4.1. �

The remainder of this subsection is dedicated to the proof of Propositions 4.3 and 4.4. In subsection 4.4.1,
we obtain suitable estimates for the linear map T2; in particular, in Lemma 4.5 we demonstrate a smoothing
effect for Ṽ2, which allows us to overcome the loss of a space derivative due to the term∇Ṽ2, present
in the first equation of (4.2). In subsection 4.4.2 we prove Proposition 4.3, while in subsection 4.4.3, we
prove Proposition 4.4; here we emphasize that due to the transport term U · ∇U, estimating the difference
TU,Σ(Û1,a, Σ̂1,a) − TU,Σ(Û1,b, Σ̂1,b) is made possible because in (4.13) we have chosen Y2 (modeled on
Xm and XmA ) to be less regular than Y1 (modeled on Xm+1 and Xm+1

A ) .

4.4.1. Estimates on T2. Recall the decomposition (3.45) of Xm into stable and unstable modes. In light of
definitions (4.4b) and (4.4c), we establish the following decay and smoothing estimates for the stable and
unstable parts of Km:

Lemma 4.5. For f ∈ Xm, we have

‖eL(s−sin)ΠsKmf‖Xm+3 .m e−ηs(s−sin)‖f‖Xm ,

‖e−L(s−sin)ΠuKmf‖Xm+3 .m eη(s−sin)‖f‖Xm ,

for all s ≥ sin, where η and ηs are as in (4.9).

Proof. Denote F (s) = eL(s−sin)ΠsKmf . Since Πu projects onto the finite-dimensional space Xmu , defined
in (3.46), which is spanned by X∞ smooth functions (see Section 3.6), we have the equivalence

‖Πug‖Xn �n,m ‖Πug‖Xm , ∀g ∈ Xm, n ≥ m. (4.20)

Using (4.20), the fact that Πs = Id − Πu,Πu : Xm → Xm, and the smoothing property Km : Xm →
Xm+3 ⊂ Xm (which follows from item (c) in Proposition 3.4), we obtain

‖F (sin)‖Xm+3 ≤ ‖Kmf‖Xm+3 + ‖ΠuKmf‖Xm+3

.m ‖f‖Xm + ‖ΠuKmf‖Xm .m ‖f‖Xm + ‖Kmf‖Xm .m ‖f‖Xm .

Using the decay property (3.47) of the semigroup and the fact that F (sin) ∈ Xms , we deduce

‖F (s)‖Xm ≤ Cme−ηs(s−sin)‖F (sin)‖Xm ≤ Cme−ηs(s−sin)‖f‖Xm .

Combining the above bound with the energy estimates on Xm+3, which follow from Theorem 3.2 (more
specifically, (3.13a)), we obtain

1
2
d
ds‖F (s)‖2Xm+3 ≤ −λ‖F (s)‖2Xm+3 + C̄‖F (s)‖2X 0 ≤ −λ‖F (s)‖2Xm+3 + C̄C2

me
−2ηs(s−sin)‖f‖2Xm .

Since ηs = 3
5λ < λ, integrating the above estimate in time we deduce the first inequality of Lemma 4.5.

From Proposition 3.7 we have that Xmu is L-invariant and L|Xmu is bounded. Using (4.20) and (3.48), we
establish

‖e−L(s−sin)ΠuKmf‖Xm+3 .m ‖e−L(s−sin)ΠuKmf‖Xm .m eη(s−sin)‖Kmf‖Xm . eη(s−sin)‖f‖Xm ,

which is the second inequality claimed in Lemma 4.5. �
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Using Lemma 4.5 and the fact that L generates a semigroup, we obtain a direct estimate for the operator
T2, as defined in (4.4). We recall from (4.13b) and (4.14) the definition of the norm Y2.

Lemma 4.6. For (Û1, Σ̂1) ∈ Y2, for all s ≥ sin we have

‖T2(Û1, Σ̂1)(s)‖Xm+3 .m e−ηs(s−sin)‖(Û1, Σ̂1)‖Y2 .

Proof. Denote M = ‖(Ũ1, Σ̃1)‖Y2 , and recall from (4.4a) that T2(Û1, Σ̂1)(s) is given by the sum of three
terms. We also recall from (4.9) that ηs < η < λ1. Applying Lemma 4.5 to Ṽ2,s (as defined in (4.4b)), and
to Ṽ2,u (as defined in (4.4c)), we obtain

‖Ṽ2,s(s)‖Xm+3 .m

∫ s

sin

e−ηs(s−s
′)‖(Û1(s′), Σ̂1(s′))‖Xmds′

.m M

∫ s

sin

e−ηs(s−s
′)e−λ1(s′−sin)ds′ .m Me−ηs(s−sin), (4.21a)

‖Ṽ2,u(s)‖Xm+3 .m

∫ ∞
s

eη(s′−s)‖(Û1(s′), Σ̂1(s′))‖Xmds′

.m M

∫ ∞
s

eη(s′−s)e−λ1(s′−sin)ds′ .m Me−λ1(s−sin). (4.21b)

The second estimates in particular implies ‖Ṽ2,u(sin)‖Xm+3 .m M . Denote g = Ṽ2,u(sin)(1 − χ( y
8R4

)),
corresponding to the third term on the right side of (4.4a). By definition supp(g) ∩ B(0, 5R4) = ∅. Since
(1−χ( y

8R4
)) is a smooth function and since∇i(1−χ( y

8R4
)) has compact support for each i ≥ 1, using the

Leibniz rule and Proposition 3.8, we obtain

‖eL(s−sin)g‖Xm+3 ≤ e−λ(s−sin)‖g‖Xm+3 .m e−λ(s−sin)‖Ṽ2,u(sin)‖Xm+3 .m e−λ(s−sin)M. (4.21c)

Combining the bounds obtained in (4.21a)–(4.21c) with the definition of the operator T2 via (4.4a), and with
the ordering (4.9) of the parameters, we complete the proof of the lemma. �

4.4.2. Proof of Proposition 4.3. Before proving Proposition 4.3, we record the following product estimate
for the nonlinear terms appearing on the right side of (4.2a).

Lemma 4.7. Let NU ,NΣ,NA be the nonlinear terms defined in (2.7). For any k ≥ m0, we have∥∥∥ϕ2kϕ
1/2
g

(
∆kNU (Ũ, Σ̃,A) + Ũ · ∇∆kŨ + αΣ̃∇∆kΣ̃ + A · ∇∆kA

)∥∥∥
L2
.k ‖(Ũ, Σ̃,A)‖2Xk ,∥∥∥ϕ2kϕ

1/2
g

(
∆kNΣ(Ũ, Σ̃,A) + Ũ · ∇∆kΣ̃ + αΣ̃ div(∆kŨ)

)∥∥∥
L2
.k ‖(Ũ, Σ̃)‖2Xk ,∥∥∥ϕ2kϕ

1/2
g

(
∆kNA(Ũ, Σ̃,A) + Ũ · ∇∆kA + A · ∇∆kŨ

)∥∥∥
L2
.k ‖(Ũ,A)‖2Xk .

Note that since ϕg . ϕA, we may a-posteriori bound the norm ‖A‖Xk appearing on the right side of the
above estimates with ‖A‖XkA .

Proof. We estimate a typical term, for instance Ũ · ∇Ũ, appearing inNU . Using the Leibniz rule, recalling
the definitions of the weights ϕ2k (see (3.2) with (3.1a)) and ϕg (see (3.15)), and using Lemma C.4, we have∥∥∥ϕ2kϕ

1/2
g

(
∆k(Ũ · ∇Ũ)− Ũ · ∇∆kŨ

)∥∥∥
L2
.k

∑
1≤i≤2k

∥∥∥ϕ2kϕ
1/2
g |∇iŨ| · |∇2k+1−iŨ|

∥∥∥
L2
.k ‖Ũ‖2Xk .

All other terms appearing in the nonlinear terms NU ,NΣ and NA (see (2.7)) are estimated similarly. �
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Next, we prove Proposition 4.3. Recall the different notations from the beginning of Section 4, in partic-
ular (4.1), and (4.5). Per the assumption of Proposition 4.3, let ‖(Û1, Σ̂1)‖Y2 < δY for some δY small to be
determined. Define Ṽ2 using (4.15), and then define Ṽ1 as the solution of (4.16). Denote

Ṽ2 = T2(Û1, Σ̂1), Ṽ = Ṽ1 + Ṽ2, Ũ = Ũ1 + Ũ2, Σ̃ = Σ̃1 + Σ̃2, (4.22a)

Ê = ‖(Û1, Σ̂1)‖Y2 < δY , (4.22b)

Em+1(s) ,
(
‖(Ũ1(s), Σ̃1(s))‖2Wm+1 + ‖A(s)‖2Wm+1

A

)1/2
, (4.22c)

E(s) = Em+1(s) + ‖Ṽ2(s)‖Xm+2 . (4.22d)

Then, by the above definitions and (4.7) we have

‖(Ũ, Σ̃)‖Xm+1 + ‖A‖Xm+1
A

+ ‖Ṽ2‖Xm+2 .m ‖(Ũ1, Σ̃1)‖Xm+1 + ‖A‖Xm+1
A

+ ‖Ṽ2‖Xm+2 .m E . (4.23)

Note that since ϕg . ϕA, the bound (4.23) also gives ‖A‖Xm+1 .m E , an estimate we use occasionally.
The term Ṽ2 is already bounded in light of Lemma 4.6. In order to estimate Ṽ1 = (Ũ1, Σ̃1,A), we

performingWm+1-energy estimates on (4.16), to obtain

1
2
d
dsE

2
m+1 = 1

2
d
ds

(
‖(Ũ1, Σ̃1)‖2Wm+1 + ‖A‖2Wm+1

A

)
= IL + IN , (4.24a)

IL , 〈(L −Km)(Ũ1, Σ̃1), (Ũ1, Σ̃1)〉Wm+1 + 〈LA(A),A〉Wm+1
A

, (4.24b)

IN , 〈(NU (Ṽ),NΣ(Ṽ)), (Ũ1, Σ̃1)〉Wm+1 + 〈NA(Ṽ),A〉Wm+1
A

. (4.24c)

For the linear contributions appearing in (4.24b), using (4.8), we obtain the dissipative bound28

IL ≤− λ1‖(Ũ1, Σ̃1)‖2Wm+1 − λ1‖A‖2Wm+1
A

= −λ1E
2
m+1. (4.25)

Thus, it is left to estimate the contribution to (4.24a) from the nonlinear terms in (4.24c).
Estimate of nonlinear terms. We treat the nonlinear terms in (4.24c) perturbatively. Our goal is to prove

|IN | .m E2Em+1. (4.26)

We first estimate the contribution to (4.24c) from the nonlinear term NU (Ṽ), focusing on the terms con-
taining most derivatives, with respect to the Xm+1-inner product. Using Lemma 4.7, the Cauchy-Schwarz
inequality, and the bound (4.23) to absorb the lower-order terms, we get

IN ,U ,
∫
ϕgϕ

2
2m+2∆m+1NU (Ṽ) ·∆m+1Ũ1

= −
∫
ϕgϕ

2
2m+2

(
Ũ · ∇∆m+1Ũ + αΣ̃∇∆m+1Σ̃ + A · ∇∆m+1A

)
·∆m+1Ũ1 +Om(E2Em+1).

Since ϕk = ϕk1, ϕ1 � 〈y〉 & 1, using Lemma C.4 (with i = 0, j = 2m+ 3, m→ m+ 1, n = m+ 2), and
the bound (4.23), for G ∈ {Ũ, Σ̃,A} and F ∈ {Ũ2, Σ̃2} we get

‖ϕ2m+2ϕ
1/2
g G∇∆m+1F‖L2 .m ‖〈y〉2m+2ϕ1/2

g G∇∆m+1F‖L2 .m ‖G‖Xm+1‖F‖Xm+2 .m E2.

Thus, combining the two displayed estimates above, we can reduce bounding IN ,U to bounding the main
terms, which involve∇∆m+1Ṽ1; that is, we have

IN ,U = −
∫
ϕgϕ

2
2m+2

(
Ũ · ∇∆m+1Ũ1 + αΣ̃∇∆m+1Σ̃1 + A · ∇∆m+1A

)
·∆m+1Ũ1 +Om(E2Em+1).

28Here we use that the solution Ṽ1 of (4.16) has sufficient regularity to justify the applicability of (4.8); see Footnote 27.
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In order to estimate the contribution of the transport term Ũ · ∇∆m+1Ũ1, using Lemma 3.1, the definition
of ϕ2m+2 in (3.2), the definition of ϕg in (3.15), estimate (4.23), and the embedding (C.5), we obtain

|∇(ϕ2
2m+2ϕg)| .m ϕ2

2m+2ϕg〈y〉−1, (4.27a)

|∇(ϕ2
2m+2ϕgG)| .m ϕ2

2m+2ϕg
(
〈y〉−1|G|+ |∇G|

)
.m ϕ2

2m+2ϕgE , (4.27b)

for any G ∈ {Ũ, Σ̃,A}. Since (Ũ · ∇)∆m+1Ũ1 ·∆m+1Ũ1 = 1
2(Ũ · ∇)|∆m+1Ũ1|2, using integration by

parts and (4.27) we obtain∣∣∣ ∫ ϕgϕ
2
2m+2(Ũ · ∇)∆m+1Ũ1 ·∆m+1Ũ1

∣∣∣ .m E ∫ ϕ2
2m+2ϕg|∆m+1Ũ1|2 .m EE2

m+1.

For the lower order 〈·, ·〉Xm-terms (which already contain the 〈·, ·〉X 0-contribution) present in the inner
product 〈·, ·〉Wm+1 (see (4.7)), using Lemma C.4 and estimate (4.23), we get

‖NU (Ṽ)‖Xm .m ‖Ṽ‖2Xm+1 .m E2.

Upon recalling the definition (4.7) of the inner productWm+1, and the definitions of the inner products
Xm+1 and Xm in (3.14), we may combine the above estimates to obtain

〈NU (Ṽ), Ũ1〉Wm+1 = εm+1µm+1IN ,U +Om(‖NU (Ṽ)‖Xm‖Ũ1‖Xm)

= −εm+1µm+1

∫
ϕgϕ

2
2m

(
αΣ̃∇∆m+1Σ̃1 + (A · ∇)∆m+1A

)
·∆m+1Ũ1 +Om(E2Em+1). (4.28)

In a similar fashion, for the contribution to (4.24c) from the nonlinear termNΣ(Ṽ), by using Lemma 4.7
and the same arguments/estimates as above, we may obtain

〈NΣ(Ṽ), Σ̃1〉Wm+1 = −εm+1µm+1

∫
ϕgϕ

2
2m+2

(
αΣ̃ div(∆m+1Ũ1)

)
∆m+1Σ̃1+Om(E2Em+1). (4.29)

It thus remains to estimate the contribution to (4.24c) from the nonlinear termNA(Ṽ). Note that the inner
products on XmA and Xm, and henceWm

A andWm, differ only at the weighted-L2 level, where the weight
ϕg needs to be replaced by ϕA; see definitions (3.14) and (4.7). At this weighted-L2 level, using (4.23) and
the embedding (C.5), we first obtain

|∇Ũ|+ |y|−1|Ũ| .m ‖∇Ũ‖L∞ .m E .

Then, using integration by parts and the bound |∇ϕA| . |y|−1ϕA (see (3.28)), we deduce∣∣∣∫ NA(Ṽ) ·AϕA
∣∣∣ ≤ ∫ (∣∣∣∇ · (ŨϕA)

2ϕA

∣∣∣+ ‖∇Ũ‖L∞
)
|A|2ϕA . E‖A‖2X 0

A
. EE2

m+1.

For the terms in 〈NA(Ṽ),A〉Wm+1
A

which contain derivatives, the bounds and arguments are nearly identical

to those of employed earlier to handle 〈NU (Ṽ), Ũ1〉Wm+1 . Thus, using the same arguments as those leading
up to (4.28) and (4.29), and by appealing to the estimate displayed above, we may show

〈NA(Ṽ),A〉Wm+1
A

= −εm+1µm+1

∫
ϕ2

2m+2ϕg
(
(A · ∇)∆m+1Ũ1

)
·∆m+1A +Om(E2Em+1). (4.30)

To conclude, we estimate the term IN defined in (4.24c) by combining the bounds (4.28), (4.29), and (4.30).
Using the identities

(A · ∇)∆m+1Ũ1 ·∆m+1A + (A · ∇)∆m+1A ·∆m+1Ũ1 = (A · ∇)(∆m+1Ũ1 ·∆m+1A), (4.31a)

αΣ̃ div(∆m+1Ũ1)∆m+1Σ̃1 + αΣ̃∇∆m+1Σ̃1 ·∆m+1Ũ1 = αΣ̃ div(∆m+1Ũ1 ∆m+1Σ̃1), (4.31b)
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integration by parts, and the estimates (4.27), we establish

|IN | =
∣∣〈NU (Ṽ), Ũ1〉Wm+1 + 〈NΣ(Ṽ), Σ̃1〉Wm+1 + 〈NA(Ṽ),A〉Wm+1

A

∣∣
.m

∫
| div(ϕ2

2m+2ϕgA)||∆m+1Ũ1 ·∆m+1A|+ α|∇(ϕ2
2m+2ϕgΣ̃)| · |∆m+1Ũ1∆m+1Σ̃1|+ E2Em+1

.m E
∫
ϕ2

2m+2ϕg
(
|∆m+1Ũ1 ·∆m+1A|+ |∆m+1Ũ1∆m+1Σ̃1|

)
+ E2Em+1 .m E2Em+1. (4.32)

This concludes the proof of (4.26).
Conclusion of the proof. Combining (4.24a), (4.25), and (4.26), we obtain the energy estimate

1
2
d
dsE

2
m+1 ≤ −λ1E

2
m+1 + CmE2Em+1.

Applying Lemma 4.6, recalling that Ê = ‖(Û1, Σ̂1)‖Y2 , and using the definition of E in (4.22), we obtain

E ≤ Em+1 + ‖Ṽ2(s)‖Xm+2 = Em+1 + ‖T2(Û1, Σ̂1)(s)‖Xm+2 ≤ Em+1 + Cme
−ηs(s−sin)Ê. (4.33)

From the above two estimates we thus deduce
d
dsEm+1 ≤ −λ1Em+1 + C̄mE

2
m+1 + C̄me

−2ηs(s−sin)Ê2, (4.34)

for some constant C̄m > 0.
We consider the bootstrap assumption

Em+1(s) < 2δe−λ1(s−sin), ∀s ≥ sin. (4.35)

Using the assumption (4.10) in Theorem 4.1, we have Em+1(sin) < δ, so that (4.35) holds at s = sin.
We also recall from (4.22) and (4.19) that by assumption Ê < δY = δ2/3. Thus, since 2ηs − λ1 > 0

(see (4.9)), by integrating (4.34) in time, and using the bootstrap (4.35), we deduce that for all s ≥ sin:

Em+1(s) ≤ δ + C̄m

∫ ∞
sin

(
4δ2e−λ1(s−sin) + δ2

Y e
−(2ηs−λ1)(s−sin)

)
ds

= δ + C̄m
(
4λ−1

1 δ2 + (2ηs − λ1)−1δ4/3) =
(
1 + 40

9 λ
−1C̄mδ + 10

3 λ
−1C̄mδ

1/3
)
δ.

Choosing δ0 �m 1 small enough to ensure 40
9 δ0 + 10

3 δ
1/3
0 ≤ λC̄−1

m , we deduce from the above estimate that
for any δ < δ0, the bootstrap assumption (4.35) is closed.

Recalling the definition of the Y1 norm in (4.13a), it is clear that (4.35) is equivalent to the first estimate
in Proposition 4.3. From (4.7) and (4.13) it follows that ‖ · ‖Y2 ≤ ‖ · ‖Y1 , and hence (4.35) gives

‖TU,Σ(Û1, Σ̂1)‖Y2 ≤ ‖(Ũ1, Σ̃1)‖Y1 ≤ sups≥sine
λ1(s−sin)Em+1(s) < 2δ < (2δ

1/3
0 )δY . (4.36)

The second bound in Proposition 4.3 thus follows as soon as 2δ
1/3
0 ≤ 1. The third estimate claimed in

Proposition 4.3 was previously established in Lemma 4.6. This concludes the proof of Proposition 4.3.

4.4.3. Proof of Proposition 4.4. As in the assumption of the proposition, let {Û1,`, Σ̂1,`}`∈{a,b} ∈ Y2 be
such that Ê` = ‖Û1,`, Σ̂1,`‖Y2 < δY . According to (4.15), (4.16), and (4.17), denote the associated solutions

Ṽ2,` = T2(Û1,`, Σ̂1,`) = (Ũ2,`, Σ̃2,`, 0), Ṽ1,` = T (Û1,`, Σ̂1,`) = (Ũ1,`, Σ̃1,`,A`), Ṽ` = Ṽ1,`+ Ṽ2,`,

for ` ∈ {a, b}. Here and throughout this proof, we use the subscript ` ∈ {a, b} to denote two different
solutions, and we adopt the notation introduced (4.22); e.g. Em+1,` and E`, for the “energies” of these two
solutions. Additionally, we denote the difference of two solutions by a ∆-sub-index:

(Û1,∆, Σ̂1,∆) = (Û1,a, Σ̂1,a)− (Û1,b, Σ̂1,b) (4.37a)

Ṽ1,∆ = Ṽ1,a − Ṽ1,b, Ṽ2,∆ = Ṽ2,a − Ṽ2,b, NV,∆ = NV (Ṽa)−NV (Ṽb), (4.37b)

Em,∆(s) , (‖(Ũ1,∆, Σ̃1,∆)‖2Xm + ‖A∆‖XmA )1/2, E∆(s) , Em,∆(s) + ‖Ṽ2,∆(s)‖Xm+2 . (4.37c)
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With this notation, proving Proposition 4.4 amounts to showing that

‖(Ũ1,∆, Σ̃1,∆,A∆)‖Y2 = sups≥sine
λ1(s−sin)Em,∆(s) < 1

2‖(Û1,∆, Σ̂1,∆, 0)‖Y2 . (4.38)

In order to perform energy estimates for Em,∆, we use (4.16) and deduce that Ṽ1,∆ = (Ũ1,∆, Σ̃1,∆,A∆)
solves the equation

∂sṼ1,∆ = LV (Ṽ1,∆)−Km(Ṽ1,∆) +NV,∆, Ṽ1,∆|s=sin = 0. (4.39)

Similarly to (4.24), appealing to (3.30) for L −Km and to (3.13b) for LA, we obtain

1
2
d
dsE

2
m,∆ = 1

2
d
ds

(
‖(Ũ1,∆, Σ̃1,∆)‖2Xm + ‖A∆‖2XmA

)
= 〈(L −Km)(Ũ1,∆, Σ̃1,∆), (Ũ1,∆, Σ̃1,∆)〉Xm + 〈LA(A∆),A∆〉XmA + IN ,∆

≤ −λE2
m,∆ + IN ,∆, (4.40a)

where we have denoted

IN ,∆ , 〈(NU,∆,NΣ,∆), (Ũ1,∆, Σ̃1,∆)〉Xm + 〈NA,∆,A∆〉XmA . (4.40b)

For the nonlinear term defined in (4.40b), in analogy to (4.26), our goal is to establish the bound

|IN ,∆| .m (Ea + Eb)E∆Em,∆, (4.41)

where {E`}`∈{a,b} is defined according to the last line in (4.22), and E∆, Em,∆ are defined in (4.37).
Estimate of nonlinear terms. From (2.7) we have that NV,∆ = NV (Ṽa)−NV (Ṽb) is given by

NU,∆ = NU,∆(Ṽa)−NU,∆(Ṽb)

= −Ũ∆ · ∇Ũa − αΣ̃∆∇Σ̃a −A∆ · ∇Aa − Ũb · ∇Ũ∆ − αΣ̃b∇Σ̃∆ −Ab · ∇A∆, (4.42a)

NΣ,∆ = NΣ,∆(Ṽa)−NΣ,∆(Ṽb)

= −Ũ∆ · ∇Σ̃a − αΣ̃∆ div(Ũa)− Ũb · ∇Σ̃∆ − αΣ̃b div(Ũ∆), (4.42b)

NA,∆ = NA,∆(Ṽa)−NA,∆(Ṽb)

= −Ũ∆ · ∇Aa −A∆ · ∇Ũa − Ũb · ∇A∆ −Ab · ∇Ũ∆. (4.42c)

In order to simplify our estimates for the terms in (4.42), we note that by (4.23) (a bound which is applicable
since {(Û1,`, Σ̂1,`)}`∈{a,b} satisfy the assumptions of Proposition 4.3), for ` ∈ {a, b} we have

‖Ṽ`‖Xm+1 + ‖Ṽ2,`‖Xm+2 .m ‖(Ũ1,`, Σ̃1,`)‖Xm+1 + ‖A`‖Xm+1
A

+ ‖(Ũ2,`, Σ̃2,`)‖Xm+2 .m E`. (4.43a)

Moreover, by the definition of Em,∆ and E∆ in (4.37), and the fact that XmA ⊂ Xm, Xm+2 ⊂ Xm, we have

‖Ṽ∆‖Xm ≤ ‖Ṽ1,∆‖Xm + ‖Ṽ2,∆‖Xm+2 .m E∆. (4.43b)

First, we focus on the contribution of NU,∆ to (4.40b), and denote

IU,∆ = 〈NU,∆, Ũ1,∆〉Xm .

From (4.42a), (4.43a), (4.43b), using the Leibniz rule, Lemma 4.7, and Lemma C.4, similarly to the proof
of (4.28), we obtain

IU,∆ = −εm
∫
ϕ2

2mϕg
(
Ũb · ∇∆mŨ1,∆ + αΣ̃b∇∆mΣ̃1,∆ + Ab · ∇∆mA∆

)
·∆mŨ1,∆

+Om
(
(Ea + Eb)E∆Em,∆

)
. (4.44a)
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For the contributions of NΣ,∆ and NA,∆ to (4.40b), by using (4.42b)–(4.42c), (4.43a), (4.43b), the Leibniz
rule, Lemma 4.7, and Lemma C.4, similarly to the proofs of (4.29)–(4.30), we obtain

IΣ,∆ = 〈NS,∆, Σ̃1,∆〉Xm = −εm
∫
ϕ2

2mϕg
(
Ũb · ∇∆mΣ̃1,∆ + αΣ̃b div(∆mŨ1,∆)

)
·∆mΣ̃1,∆

+Om
(
(Ea + Eb)E∆Em,∆

)
, (4.44b)

IA,∆ = 〈NA,∆,A∆〉XmA = −εm
∫
ϕ2

2mϕg
(
Ũb · ∇∆mA∆ + Ab · ∇∆mŨ1,∆

)
·∆mA∆

+Om
(
(Ea + Eb)E∆Em,∆

)
. (4.44c)

Finally, we sum the three identities in (4.44), appeal to the vector calculus identities in (4.31), integrate by
parts, use (4.27) with 2m+ 2 replaced by 2m and with G ∈ {(Ũ`, Σ̃`,A`) : ` ∈ {a, b}}, and appeal to the
bound (4.43a), to conclude

IN ,∆ = IU,∆ + IΣ,∆ + IA,∆

= −εm
∫
ϕ2

2mϕg

(
1
2(Ũb · ∇)

∣∣∆mṼ1,∆

∣∣2
+ αΣ̃b div

(
∆mΣ̃1,∆∆mŨ1,∆

)
+ Ab · ∇

(
∆mA∆ ·∆mŨ1,∆

))
+Om

(
(Ea + Eb)E∆Em,∆

)
= Om

(
(Ea + Eb)E2

m,∆

)
+Om

(
(Ea + Eb)E∆Em,∆

)
.

This concludes the proof of (4.41).
Conclusion of the proof. Combining the estimates (4.40)–(4.41), we deduce

d
dsEm,∆ + λEm,∆ .m (Ea + Eb)E∆, (4.45)

where we recall that Ea, Eb, E∆ are defined in (4.37). In order to bound the right side of (4.45), we note that
since T2 is a linear map, Ṽ2,∆ = T2(Û1,∆, Σ̂1,∆), and so using Lemma 4.6, we obtain

E∆(s)− Em,∆(s) = ‖Ṽ2,∆(s)‖Xm+2 .m e−ηs(s−sin)‖(Û1,∆, Σ̂1,∆)‖Y2 .

On the other hand, for the term Ea + Eb, using (4.33) and (4.35) (applicable since {(Û1,`, Σ̂1,`)}`∈{a,b}
satisfy the assumptions of Proposition 4.3), we obtain

E`(s) = Em+1,` + ‖T2(Û1,`, Σ̂1,`)‖Xm+2 ≤ 2δe−λ1(s−sin) + Cme
−ηs(s−sin)δY ,

for ` ∈ {a, b}. From the two estimates above and (4.45), we obtain

d
dsEm,∆ + λEm,∆ ≤ C̃m(δe−λ1(s−sin) + e−ηs(s−sin)δ2/3)

(
Em,∆ + e−ηs(s−sin)‖(Û1,∆, Σ̂1,∆)‖Y2

)
,

for some constant C̃m ≥ 1. Since ηs < λ1 < λ (see (4.9)), we may choose δ0 ∈ (0, 1] small enough to
ensure C̃m(δ0 + δ

2/3
0 ) ≤ λ− λ1, and thus, for all s ≥ sin and any δ ≤ δ0 we have

d
dsEm,∆ + λ1Em,∆ ≤ 2C̃mδ

2/3
0 e−2ηs(s−sin)‖(Û1,∆, Σ̂1,∆)‖Y2 .

To conclude, recall that Em,∆(sin) = 0, and 2ηs > λ1 (see (4.9)), so that by integrating the above estimate
we arrive at

eλ1(s−sin)Em,∆(s) ≤ 2C̃mδ
2/3
0 ‖(Û1,∆, Σ̂1,∆)‖Y2

∫ ∞
sin

e−(2ηs−λ1)(s−sin)ds = 20
3 λ
−1C̃mδ

2/3
0 ‖(Û1,∆, Σ̂1,∆)‖Y2 .

Upon further decreasing δ0, to also ensure that 20
3 λ
−1C̃mδ

2/3
0 < 1

2 , the above estimate proves (4.38), thus
concluding the proof of Proposition 4.4.
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4.5. Additional estimates of the solution from Theorem 1.1. In this section we establish sharp spatial
decay estimates for the self-similar solution (U,Σ,A) = (Ũ1 + Ũ2 + Ū, Σ̃1 + Σ̃2 + Σ̄,A) constructed
in Theorem 4.1, with initial data as specified in (4.12); that is, for the self-similar solution described by
Theorem 1.1. We claim that:

|U(y, s)|+ |A(y, s)| . 〈y〉1−r (4.46a)

|∇U(y, s)|+ |∇Σ(y, s)|+ |∇A(y, s)| . 〈y〉−r, (4.46b)

pointwise for y ∈ R2, for all s ≥ sin, where we recall that r > 1 (see (2.2)). Note that (4.46a) is missing
a decay estimate for Σ; this is due to the fact that we have chosen the rescaled sound speed Σ to equal a
constant in the far-field at the initial time (see (4.12b)).

The purpose of the decay estimates (4.46) is to prove that there are no singularities in the Euler solution
(u, σ) (in original (x, t) variables) away from (x, t) = (0, T ), as claimed in Remark 1.4. Indeed, using the
decay estimates in (4.46) and the self-similar relation (2.1), which gives x = y(T − t)1/r and T − t = e−rs,
for any t ∈ [0, T ) and x 6= 0 (so that |y| = |x|(T − t)−1/r →∞ as t � T ) we obtain

|f(x, t)| = 1
r (T − t)

1
r
−1|F (y, s)|

. (T − t)
1
r
−1〈y〉1−r ≤ |x|1−r, ∀(f, F ) ∈

{
(uR,U), (uθ,A)

}
, (4.47a)

|(∇f)(x, t)| = 1
r (T − t)−1|∇F (s, y)|

. (T − t)−1〈y〉−r ≤ |x|−r, ∀(f, F ) ∈
{

(uR,U), (σ,Σ), (uθ,A)
}
. (4.47b)

As a consequence of (4.47), we have that u,∇u,∇σ may only blow up at the origin x = 0, at time t = T .
In order to control the undifferentiated rescaled sound speed (missing from (4.47)), we estimate σ via

the Lagrangian flow associated to u. By choosing δ to be sufficiently small in Theorem 4.1, the estimates
established in Theorem 4.1 imply that the total self-similar radial velocity U = Ũ1 + Ũ2 + Ū satisfies
the assumption of Lemma A.1. Let a 7→ X(a, t) be the flow map (recall, Footnote 16) associated with
u = uR + uθ, where uR and uθ are given in terms of U and A via (2.1b)–(2.1c). Fix x 6= 0. For any
0 ≤ t < T , denote x0 = X−1(x, t), i.e. X(x0, t) = x. From Lemma A.1, for 0 ≤ t′ < t < T , we have

|x| = |X(x0, t)| . |x0|, Rl(x) , |x|min(1, |x|c1) . |x0|min(1, |x0|c1) . |X(x0, t
′)| . |x0|, (4.48)

for some positive constant c1. In particular, the above bounds imply that x 6= 0 ⇔ x0 6= 0. Next, we
use (1.3b) and the definition x = X(x0, t) to write

σ(x, t) = σ0(x0) exp
(
−α

∫ t

0
(divu)(X(x0, t

′), t′)dt′
)
.

Since for axisymmetric flows we have (divu)(x′, t) = ( 1
R + ∂R)uR(|x′|, t), by (4.47) and (4.48) it follows

that |(divu)(X(x0, t
′), t′)| . |X(x0, t

′)|−r ≤ Rl(x)−r, for all t′ ∈ [0, t]. Therefore, we deduce

‖σ−1
0 ‖

−1
L∞ exp

(
−CRl(x)−r

)
≤ σ(x, t) ≤ ‖σ0‖L∞ exp

(
CRl(x)−r

)
(4.49)

for all x 6= 0 and t ∈ [0, T ), for some constant C > 0 which is allowed to depend on T but not on x. In
particular, we obtain that σ(x, t) does not become vacuous and does not blow up away from (x, t) = (0, T ).

The goal of the remaining part of this section is to prove (4.46).

4.5.1. Sharp decay estimates of the solution. Recall cf. (2.4a) that the steady state (Ū, Σ̄, 0) satisfies the
bounds (4.46). We thus only need to perform weighted W i,∞ estimates, for i ∈ {0, 1}, on the perturbation
Ṽ = (U − Ū,Σ − Σ̄,A) = (Ũ, Σ̃,A) = Ṽ1 + Ṽ2 (see (4.1)). Adding the equations for Ṽ1 and Ṽ2 in
(4.2), we obtain

∂sṼ = LV (Ṽ) +NV (Ṽ),

where LV = (LU ,LΣ,LA) and NV = (NU ,NA,NΣ) are defined in (2.6). In order to establish (4.46), we
consider the weighted quantity

F , (φ2
0(|Ũ|2 + |A|2) + φ2

1|∇Ṽ|2)1/2, where φ0 = 〈y〉r−1, φ1 = 〈y〉r, (4.50a)
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and note that (4.46) is a consequence of the uniform boundedness of the associated “energy”

E∞(s) , ‖F (·, s)‖L∞ , (4.50b)

for s ≥ sin. Note that since Σ̃ does not decay, we do not include the term φ0|Σ̃| in the definition of F .
In order to estimate E∞(s), for f ∈ {Ũ, Σ̃,A} we first focus on the linear terms (r − 1)f and y · ∇f

present in (2.6d)–(2.6f); accordingly, we re-write (2.6a)–(2.6c) as

∂sf + y · ∇f = (1− r)f + Lf,R +Nf , (4.51a)

LU,R = −Ū · ∇Ũ− Ũ · ∇Ū− αΣ̃∇Σ̄− αΣ̄∇Σ̃, (4.51b)

LA,R = −Ū · ∇A−A · ∇Ū, (4.51c)

LΣ,R = −Ū · ∇Σ̃− Ũ · ∇Σ̄− αΣ̃ div(Ū)− αΣ̄ div(Ũ) (4.51d)

for terms Lf,R,Nf , which are quadratic in either the perturbation or the profile, and which decay faster than
the linear terms; we will treat these perturbatively and think of them as lower order.

For (i, f) ∈ {(0, Ũ), (0,A), (1, Ũ), (1, Σ̃), (1,A)}, a direct computation yields

∂s(φi∇if) + y · ∇(φi∇if) =
(

(1− r)− i+
y · ∇φi
φi

)
(φi∇if) + φi∇i(Lf,Rf +Nf ). (4.52)

Since r > 1 we may directly verify that

(1− r)− i+
y · ∇φi
φi

= (1− r)− i+ (r − 1 + i)
|y|2

〈y〉2
= −(r − 1 + i)

1

〈y〉2
≤ 0 (4.53)

for all y ∈ R2. For the contribution of the lower order terms present on the right side of (4.52), in Sec-
tions 4.5.2 and 4.5.3 below, we will establish the pointwise estimates

|φi∇iLf,R| . ‖Ṽ‖Xm , |φi∇iNf | . ‖Ṽ‖2Xm , (4.54)

for all (i, f) ∈ {(0, Ũ), (0,A), (1, Ũ), (1, Σ̃), (1,A)}.
Multiplying equation (4.52) with φi∇if , summing over (i, f) ∈ {(0, Ũ), (0,A), (1, Ũ), (1, Σ̃), (1,A)},

recalling the definition of F in (4.50), and combining the resulting identity with the bounds (4.53) and
(4.54), we deduce

∂sF
2 + y · ∇F 2 ≤ C‖Ṽ‖Xm(1 + ‖Ṽ‖Xm)F.

Upon dividing both sides by F , composing with the Lagrangian flow of the operator ∂s + y · ∇, which
is given explicitly as Y (y0, s) = y0e

s−sin , and using the nonlinear estimate ‖Ṽ(s)‖Xm . δ2/3e−ηs(s−sin)

established29 earlier in Theorem 4.1, we obtain
d
dsF (Y (y0, s), s) ≤ Cδ2/3e−ηs(s−sin)(1 + Cδ2/3e−ηs(s−sin))

for some C > 0 independent of δ and of (y0, s). Using that by definition F (y0, sin) ≤ E∞(sin) for all
y0 ∈ R2, integrating the above ODE with respect to s ≥ sin, then taking the supremum over y0 (here we use
that the map y0 7→ Y (y0, s) is a bijection of R2 for any s) we arrive at

E∞(s) ≤ E∞(sin) + Cδ2/3

∫ s

sin

e−ηs(s
′−sin)ds′ + C2δ4/3

∫ s

sin

e−2ηs(s′−sin)ds′

≤ E∞(sin) + Cδ2/3η−1
s + Cδ4/3(2ηs)

−1,

for all s ≥ sin. Combining the above estimate with the boundedness of E∞(sin) (which follows from
the definition of the initial data in (4.12), from the decay of the self-similar profiles (Ū , Σ̄) in (2.4a), and
from the fact that Ṽ2(sin) has compact support (4.4d)), we deduce that the function F defined in (4.50a) is
uniformly bounded in space and time, thereby proving (4.46).

It only remains to establish (4.54), which we achieve in the next two subsections.

29The normsWm+1,Wm+1
A ,Xm+2 are stronger than the Xm norm; see (3.14), the bound ϕg . ϕA, Lemma 3.3, and (4.7).
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4.5.2. Estimates of the linear terms. In this section, we establish the first estimate in (4.54), which concerns
the linear terms defined in (4.51b)–(4.51d). From Lemma C.4, we have

|∇iṼ| . ‖Ṽ‖Xm〈y〉−i+κ1/2, κ1 = 1
4 , 0 ≤ i ≤ 2m− 2. (4.55)

For the sake of brevity, we estimate only two “typical” terms appearing in the definition of φi∇iLf,R for
(i, f) ∈ {(0, Ũ), (0,A), (1, Ũ), (1, Σ̃), (1,A)}; see (4.51b)–(4.51d). More precisely, we consider Σ̃∇Σ̄

and Σ̄∇Σ̃, which arise when f = Ũ. Recall the decay estimates of the profile in (2.4a) and the fact that
κ1 ∈ (0, 1). Applying (4.55), for i ∈ {0, 1}, we obtain

〈y〉i+r−1|∇i(Σ̃∇Σ̄)| . 〈y〉i+r−1(|∇iΣ̃| |∇Σ̄|+ |Σ̃| |∇1+iΣ̄|)

. 〈y〉i+r−1‖Ṽ‖Xm〈y〉−i+κ1/2−r . ‖Ṽ‖Xm ,

〈y〉i+r−1|∇i(Σ̄∇Σ̃)| . 〈y〉i+r−1(|∇iΣ̄| |∇Σ̃|+ |Σ̄| |∇1+iΣ̃|)

. 〈y〉i+r−1‖Ṽ‖Xm〈y〉−i+κ1/2−r . ‖Ṽ‖Xm .
All the other terms present in (4.51b)–(4.51d) are estimated similarly; we omit these details and conclude
the proof of the first estimate in (4.54).

4.5.3. Estimates of the nonlinear terms. In this section, we establish the second estimate in (4.54), which
concerns the nonlinear terms defined in (2.7).

We note that each nonlinear terms Nf in (2.7) can be written as a sum of terms of the kind F∇G for
F,G ∈ {Ũ, Σ̃,A}. By using estimate (4.55), we obtain

φ0|F∇G| . φ0 ‖Ṽ‖Xm〈y〉κ1/2 ‖Ṽ‖Xm〈y〉−1+κ1/2 = 〈y〉r−2+κ1‖Ṽ‖2Xm .
At this stage, we recall from (3.15) that κ1 = 1/4, and from (2.2) that r < reye(α). Moreover, since (2.2)
gives an explicit expression for reye(α), we may directly verify that reye(α) <

√
2 for all α > 0. Therefore,

r − 2 + κ1 <
√

2− 2 + 1
4 < 0. (4.56)

The above two bounds proves the second estimate in (4.54) for i = 0.
It thus remains to consider the second bound in (4.54) for i = 1 and f ∈ {Ũ, Σ̃,A}. We proceed as

above, using (4.50) and (4.55) we deduce

φ1|∇(F∇G)| . φ1|∇F | |∇G|+ φ1|F | |∇2G|

. φ1 ‖Ṽ‖Xm〈y〉−1+κ1/2 ‖Ṽ‖Xm〈y〉−1+κ1/2 + φ1 ‖Ṽ‖Xm〈y〉κ1/2 ‖Ṽ‖Xm〈y〉−2+κ1/2

= ‖Ṽ‖2Xm〈y〉r−2+κ1 .

Appealing to (4.56), the above estimate yields φ1|∇(F∇G)| . ‖Ṽ‖2Xm for F,G ∈ {Ũ, Σ̃,A}. This
concludes the proof of (4.54).

APPENDIX A. TRAJECTORY ESTIMATES AND THE PROOF OF LEMMA 2.4

In this section, we first establish a trajectory estimate and then prove Lemma 2.4 using the properties of
the profile in Lemma 2.2 .

Lemma A.1. Assume that the physical space velocity u is self-similar according to the transformation (2.1).
In particular let U = U(y, s) = U(|y|, s)eR denote the self-similar radial velocity, and recall that x =
ye−s and T − t = e−rs. Suppose that U ∈ C1

y,s and that U satisfies the quantitative bound

|U(s, y)− Ū(y)| ≤ 1
2 min(κ, r−1

2α ) min(|y|, |y|1−ε), (A.1)

for all y ∈ R2, s ≥ sin, and some ε > 0, where Ū = ŪeR and the parameters κ, r, α > 0 satisfy (2.4).
Then, there exists a sufficiently small c1 > 0, with c1 = c1(ε, κ, r, α, Ū , T ), such that the Lagrangian flow
map a 7→ X(a, t) associated with u(x, t) in physical space variables, satisfies the uniform estimates

C−1|a|min(1, |a|c1) ≤ |X(a, t)| ≤ C|a|, (A.2)
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for all a ∈ R2 and all t ∈ [0, T ), for some constant C = C(ε, κ, r, α, Ū , T ) ≥ 1.

Proof. Fix a 6= 0. According to (2.1a), define the radial component of the corresponding self-similar
trajectory to be

R(s) ,
|X(a, t)|

(T − t)1/r
= |X(a, t)|es.

Since U(y, s) = U(|y|, s)eR, it follows from d
dtX(a, t) = u(X(a, t), t) and the definition (2.1) of the

self-similar transformation that R(s) solves the ODE

∂sR(s) = R(s) + U(R(s), s), R(sin) = |a|T−
1
r = |a|esin .

By (2.4d), the assumption (A.1) on U we get

∂sR(s) ≥ R(s) + Ū(R(s))− 1
2κR(s) ≥ 1

2κR(s) ⇒ R(s) ≥ e
1
2
κsR(sin) = e

1
2
κ(s−sin)|a|esin . (A.3)

The above estimates show that R(s) is increasing and diverges exponentially as s→∞.
Since by the definition of R(s) we have |X(a, t)| = R(s)e−s, we compute

d
ds

(
R(s)e−s

)
=
(
R(s)e−s

)U(R(s),s)
R(s) ,

and therefore

R(s)e−s = |a|eI(s), where I(s) ,
∫ s

sin

U(R(s′),s′)
R(s′) ds′, (A.4)

resulting in an exact implicit formula for e−sR(s). The usefulness of (A.4) is seen once we recall the decay
estimate (2.4a) and the assumption (A.1); together with (A.3), these facts imply that the exponent appearing
and (A.4) satisfies

|I(s)| .
∫ s

sin

min(1, R(s′)−c)ds′ .
∫ ∞
sin

min
(

1, |a|−ce−csine−
1
2
cκ(s−sin)

)
ds

where c = min(r, ε) > 0. Denoting s+ = max(sin, (1 − 2
κ)sin − 2

κ log |a|), we obtain from the above
estimate that

|I(s)| .
∫ s+

sin

1ds+ |a|−ce−csin
∫ ∞
s+

e−
1
2
cκ(s−sin)ds

. s+ + |a|−ce−csine−
1
2
cκ(s+−sin) . s+ + e−

1
2
cκsin ≤ c1 max

(
1,− log |a|

)
, (A.5)

where c1 = c1(ε, κ, r, α, Ū , T ) > 0 is a constant. From (A.4) and (A.5) we deduce

|X(a, t)| = R(s)e−s ≥ |a|e−|I(s)| ≥ |a|e−c1 max(1,− log |a|) = |a|min(|a|, 1
e )c1 , (A.6)

which concludes the proof of the lower bound in (A.2).
In order to prove of the uper bound in (A.2), we seek an upper bound for I(s), without absolute values.

Since by (2.4e) we have ∂ξŪ(0) = − r−1
2α < 0, by the continuity of Ū and assumption (A.1) on U, there

exists a constant ξb > 0 such that for all ξ ∈ [0, ξb] we have

Ū(ξ) ≤ −1
2
r−1
2α ξ, U(ξ) ≤ Ū(ξ) + |U(ξ)− Ū(ξ)| ≤ 0, ∀ξ ∈ [0, ξb].

Then, since R(s) is increasing and diverges as s → ∞ (see (A.3)), there exists a time sb = sb(|a|) ≥ sin
such that R(sb) = max(|a|esin , ξb). From (A.3) we obtain R(s) ≥ R(sb)e

1
2
κ(s−sb) ≥ ξbe

1
2
κ(s−sb) for all

s ≥ sb. On the other hand, by construction we have that for s ∈ [sin, sb) we have either sb = sin or
R(s) ≤ ξb (and hence U(R(s), s) ≤ 0). Putting this information together, we deduce

I(s) =

∫ sb

sin

U(R(s′),s′)
R(s′) ds′ +

∫ s

sb

U(R(s′),s′)
R(s′) ds′ ≤

∫ s

sb

|U(R(s′),s′)|
R(s′) ds′.
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Using the decay estimates |U(ξ, s)| . ξ1−c for c = min(r, ε) (which follows from (2.4a) and the assumption
(A.1)), we get

I(s) .
∫ s

sb

(R(s′))−cds′ .
∫ ∞
sb

(
ξbe

1
2
κ(s′−sb))−cds′ . 1 (A.7)

where the implicit constant depends on ε, κ, r, α, Ū , T . We deduce

|X(a, t)| = R(s)e−s = |a|eI(s) ≤ C|a|,
for some C = C(ε, κ, r, α, Ū , T ) ≥ 1, which concludes the proof of the upper bound in (A.2).

In order to conclude the proof, we note that if a = 0, since U(0, s) = 0, we get X(0, t) = 0 for all
t ∈ [0, T ), and in this case the bound (A.2) holds trivially. �

Remark A.2 (The three-dimensional case). We note that while Lemma A.1 was stated in two space dimen-
sions, the same proof applies “as is” to the three-dimensional case; the only requirements are that the radial
part of the self-similar velocity U can be written as U(ξ, s)eR with U(0, s) = 0, U is at least C1 smooth
in space and time, satisfies the bound (A.1), and that the profile Ū satisfies (2.4a), (2.4d), and ∂ξŪ(0) < 0
(we did not use the precise formula (2.4e), only negativity of the slope near the origin).

With Lemma A.1 and Remark A.2, we turn to the proof of Lemma 2.4.

Proof of Lemma 2.4. We adopt the notation from the proof of Lemma A.1. Applying Lemma A.1, respec-
tively Remark A.2, with U = Ū (so that U is smooth, radially symmetric, and trivially satisfies (A.1)), we
get from (A.6) that

R(s)e−s ≥ Rl(a), Rl(a) , |a|min(1
e , |a|)

c1 , (A.8)
for all s ≥ sin and some constant c1 > 0. From (2.1a), (2.1b), (2.4a), and (A.8), we get the estimate

σ(X(a, t), t) . es(r−1)Σ̄(R(s)) . es(r−1)R(s)−(r−1) = (e−sR(s))−(r−1) . Rl(a)−(r−1). (A.9)

Similarly, from (2.1a), (2.1b), (2.4a), and (A.8), we have

|(∇u)(X(a, t), t)| . (T − t)−1|(∇Ū)(R(s))| . (T − t)−1〈R(s)〉−r

. min((T − t)−1, (e−sR(s))−r) = min((T − t)−1, Rl(a)−r). (A.10)

We now proceed to estimate ∇aX(a, t). We observe that ∇aX(a, t) solves the ODE: ∂t∇aX(a, t) =

∇u(X(t), t)∇aX(a, t), with initial data∇aX(a, 0) = Id. Introducing t+ = t+(a) , max(T −Rl(a)r, 0)
we have min(T,Rl(a)r) ≤ T − t+ ≤ Rl(a)r, and so by (A.10) we find

|∇aX(a, t)| . exp

(∫ t

0
|∇u(X(a, t′), t′)|dt′

)
. exp

(
C

∫ t

0
min((T − t′)−1, Rl(a)−r)dt′

)
. exp

(
C

∫ t+

0
(T − t′)−1dt′ + C

∫ T

t+

Rl(a)−rdt′
)

= exp(C log T − C log(T − t+) + (T − t+)Rl(a)−r)

. min(T,Rl(a)r)−C . max(1, Rl(a)−c2) (A.11)

for some constant c2 > 0.
In the assumption of Lemma 2.4, we choose kvan ≥ (c2 + r−1

α )(c1 + 1), where c1 is as in (A.8) and c2

is as in (A.11); with this choice, if |f0(a)| . min(1, |a|kvan), since the initial data is bounded away from
vacuum, by combining (A.9) and (A.11) we obtain

|ρ(X(a, t), t)∇aX(a, t) f0

ρ0
(a, t)| . ‖ρ−1

0 ‖L∞ max(1, Rl(a)−c2−
(r−1)
α ) min(1, |a|kvan)

. max(1, |a|−kvan) min(1, |a|kvan) . 1,

uniformly for all 0 ≤ t < T and all a 6= 0. If a = 0, then the assumption on f0 implies f0(0) = 0 and so
ρ(X(0, t), t)∇aX(0, t)f0(0) = 0 for 0 ≤ t < T , which concludes the proof of Lemma 2.4. �
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APPENDIX B. ADDITIONAL PROPERTIES OF THE PROFILE

The goal of this appendix is to clarify the proof of Lemma 2.2, based on the arguments in [62]. For this
purpose, we recall from [62] the properties of autonomous ODE for the profile (Ū , Σ̄). Denote

W (x) = −ξ−1Ū(ξ), S(x) = αΣ̄(ξ), x(ξ) = log ξ, l = 1
α = 2

γ−1 , We = l(r−1)
d , (B.1)

with d = 2. Here, the quantities (W,S, l) are the same as (w, σ, l) in [62]. The notation in (B.1) is only
used in this appendix, and it does not affect the rest of the paper.

B.1. Repulsive properties. We recall that the interior repulsive property (2.4b) is proved in [62, Lemma
1.6] for ξ ∈ [0, ξs]. By continuity, there exists ξ1 > ξs such that the condition (2.4b) holds for a domain
[0, ξ1], thereby proving (2.4b).

It thus remains to prove (2.4a) and (2.4c)–(2.4e). From [62, Section 2], we have that (W,S) solve the
2× 2 system of autonomous ODEs

dW
dx = −∆1

∆ , dS
dx = −∆2

∆ , (B.2a)

where

∆ = (1−W )2 − S2, (B.2b)

∆1 = W (W − 1)(W − r)− d(W −We)S
2 = (W −W1(S))(W −W2(S))(W −W3(S)), (B.2c)

∆2 = S
l

(
(l + d− 1)W 2 −W (l + d+ lr − r) + lr − lS2

)
= S(l+d−1)

l (W −W−2 (S)(W −W+
2 (S)),

(B.2d)

where {Wi(S)}3i=1 are the roots of the cubic polynomial ∆1, and {W±2 (S)} are the roots of the quadratic
polynomial ∆2. Here, (W±2 ,Wi) are the same as (w±2 , wi) in [62]. From [62, Lemma 2.1] for the roots W±2
of ∆2, and from [62, Lemma 2.3] for the roots of Wi for ∆1, we have the following properties:

(W−2 )′(S) < 0, W−2 (S) ≤W+
2 (S), ∀S > S

(0)
2 , (B.3a)

W ′1(S) < 0, W ′2(S) < 0, W1(S) ≤ 0 < We < W2(S) ≤ 1 < r ≤W3(S), ∀S > 0. (B.3b)

From the proof of [62, Lemma 2.1], the value S(0)
2 ≥ 0 is chosen such that if S(0)

2 > 0, then for any fixed
S ∈ (0, S

(0)
2 ) the equation ∆2(W,S) = 0 does not have a real root W . From the definition of ∆2, this

implies that

∆2(W,S) > 0, ∀ S ∈ (0, S
(0)
2 ), W ∈ R. (B.4)

To prove (2.4c) and (2.4d), we rewrite ξ + Ū(ξ)− αΣ̄(ξ), 1 + ξ−1Ū(ξ) as

ξ + Ū(ξ)− αΣ̄(ξ) = ξ(1−W − S), ξ + Ū(ξ) = ξ(1−W ). (B.5)

Denote30 by P2 = (P2,S , P2,W ) and P3 = (P3,S , P3,W ) the sonic points, where ∆ = ∆1 = ∆2 = 0, and by
P5 = (P5,S , P5,W ) other root of ∆1 = ∆2 = 0. In particular, we have P2,S + P2,W = P3,S + P3,W = 1.
From Location in [62, Lemma 2.4], P2, P3, P5 are on the curve of the middle root (S,W2(S)), which along
with (B.3) implies

Pi,W = W2(Pi,S) > 0, i = 2, 3, 5. (B.6)

From Position of the middle root in [62, Lemma 2.4], we have the properties

S +W2(S) < 1, P3,S < S < P2,S . (B.7)

The following properties are proved in [62, Lemma 3.2].

30We use (QS , QW ) to denote the coordinates of a point Q in the system of (S,W ).
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Lemma B.1. Assume (2.2). Let W (S) be the solution to (B.2) and W2(S) be the middle root to ∆1 (B.3),
(B.2). Suppose that W (S) intersects W2(S) at S∗ with P5,S < S∗ < P2,S and S∗ + W (S∗) < 1.31 Then
we have:

(a) W (S) ∈ C∞(0, S∗] and
limS→0W (S) = 0.

Moreover, S → 0 corresponds to x → ∞ and there exists (W∞, S∞) ∈ R × R∗+ such that for
x→∞, we have

S(x) = S∞e
−rx(1 +O(e−rx)), W (x) = W∞e

−rx(1 +O(e−rx)). (B.8)

(b) W (S) ∈ C∞[S∗, P2,S) and

W2(S) < W (S) < W−2 (S), ∀S∗ < S < P2,S , limS→(P2,S)−W (S) = P2,W . (B.9)

Using the above properties and (B.5), we are ready to prove (2.4c), which is equivalent to

1−W (S)− S > 0, S < P2,S . (B.10)

The proof essentially justifies the phase portrait for S < S∗ in [62, Figure 3], which is omitted in [62].

Proof of (B.10). From P2,W > 0 (B.6) and P2,S + P2,W = 1, we get

P2,S < 1. (B.11)

Since W−2 (S) is only defined for S > S
(0)
2 ≥ 0, we define its extension on (0,∞) as

W−2,e(S) = W2(S
(0)
2 ), S < S

(0)
2 , W−2,e(S) = W−2 (S), S ≥ S(0)

2 . (B.12)

Note that S∗ + W (S∗) = S∗ + W2(S∗) < 1. If W (S̃) + S̃ = 1 for some S̃ ∈ (S∗, P2,S), since the
smooth solution (S,W (S)) can only cross the sonic line 1 = W + S at P2 or P3, where ∆2 vanishes, we
get ∆2(S̃,W (S̃)) = 0. However, since S̃ ∈ (S∗, P2,S), from (B.9), (B.2), (B.3), we get

W (S̃) < W−2 (S̃) ≤W+
2 (S̃), ∆2(S,W2(S̃)) > 0,

which contradicts ∆2(S̃,W (S̃)) = 0. Thus, by continuity, we get

W (S) + S < 1, S ∈ [S∗, P2,S).

Next, we consider (B.10) for S < S∗. Since W (S∗) = W2(S∗) and W2(S) is a root of ∆1(S,W ) = 0,
we get ∆1(S∗,W (S∗)) = 0 and dW (S)

dS |S=S∗ = 0. Moreover, using W ′2(S∗) < 0, (W−2 )′(S∗) < 0 (B.3)
and 0 < We ≤W (S∗) = W2(S∗) ≤W−2 (S∗) (B.9), we obtain

W1(S) ≤ 0 < W (S) ≤W (S∗) < W2(S),W−2 (S), 1− S, S ∈ [S∗ − ε, S∗),
for some small ε > 0.

Let 0 ≤ Sa < S∗ − ε be the largest value, where W (S) intersects the curves W2(S),W−2,e(S), 1− S, or
W1(S). If such a point does not exist, we choose Sa = 0. Then for S ∈ (Sa, S

∗), we obtain

W1(S) < W (S) < W2(S),W−2,e(S), 1− S,
which along with (B.2), (B.3) implies

∆2(S,W (S)) > 0, ∆1(S,W (S)) > 0, dW
dS = ∆1

∆2
> 0, S ∈ (Sa, S

∗).

We have ∆2 > 0 for the following reasons. If S < S
(0)
2 , we obtain ∆2 > 0 from (B.4); if S ≥ S

(0)
2 , from

(B.12), we obtain W (S) < W−2,e(S) = W−2 (S), which along with (B.2), (B.3) implies ∆2 > 0.

31The additional assumption S∗ +W (S∗) < 1 (absent in the statement of [62, Lemma 3.2]), that the point P∗ , (S∗,W (S∗)) =
(S∗,W2(S∗)) lies below the sonic line, can be inferred from the phase portrait in [62, Figures 1, 2], where P∗ is the intersection
between the pink and red curves.
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The monotonicity of W (S) implies W (S) < W (S∗), S ∈ (Sa, S
∗). For S ∈ (Sa, S

∗), we prove

S +W (S) < W (S∗) + S∗ < 1.

If Sa = 0, we prove (B.10). If Sa > 0, since W2(S),W−2,e(S), 1 − S are decreasing on (Sa, S
∗), (B.3)

andW (S) is increasing on (Sa, S
∗),W (S) cannot intersect these three curves at Sa. Therefore,W (S) must

intersect W1(S) at Sa: W (Sa) = W1(Sa). Since W ′1(S) < 0 (B.3), W1(S) is a root of ∆1(S,W ), and
∆2(Sa,W (Sa)) 6= 0 (the double roots satisfies Pi,W > 0 ≥W (Sa) (B.6))

dW
dS |S=Sa = 0, W (Sa) = W1(Sa),

and ∆(W,S) > 0 forW ≤ 0, S ≤ S∗ < P2,S < 1 (B.11), we getW (S)−W1(S) < 0 for S ∈ (Sa−ε2, Sa)
with some small ε2. If W (SI) = W1(SI) ≤ 0 for some SI ∈ (0, Sa), since the roots Pi of ∆1 = 0,∆2 = 0
satisfies Pi,W > 0 (B.6), we obtain ∆2(SI ,W1(SI)) 6= 0. Thus, using

d(W−W1)
dS

∣∣∣
S=SI

= ∆1(SI ,W1(SI))
∆2(SI ,W1(SI)) −W

′
1(SI) = 0−W ′1(SI) > 0,

we get that W1(S) is a upper barrier of W (S) for S ∈ (0, Sa). From (B.3) and (B.7), for S ≤ Sa < S∗ <
P2,S < 1, we get W (S) ≤W1(S) ≤ 0, W (S) + S ≤ S < 1. We complete the proof of (B.10). �

The following property of W (S) for S > P2,S is proved in item (2) Original variables and item (3)
Reaching P2 in [62, Lemma 3.1].

Lemma B.2. Assume (2.2). We have W (S) ∈ C∞(P2,S ,∞) and

W−2 (S) < W (S) < W2(S), limS→(P2,S)+W (S) = P2,W , limS→∞W (S) = We.

For S0 > P2,S large enough, the curve (S,W (S)) with S > S0 corresponds to the spherically symmetric
profile (Σ̄(|y|), Ū(y)) (see Theorem 2.1) defined on |y| ∈ [0, y0] for some y0 > 0.

Proof of (2.4d) and (2.4e). Below, we prove (2.4d), (2.4e).
Since We,W2(P2,S) = P2,W = 1− P2,S < 1,W2(S) ≤ 1 (B.3), using Lemma B.2, we obtain

W (S) < c < 1, ∀S ≥ P2,S

for some c > 0. For 0 < S < P2,S , using (B.10) and continuity, we obtain

W (S) < c2 < 1, ∀S < P2,S .

By combining the above two inequalities, we have thus proven that W (S) ≤ c3 < 1 for any S ≥ 0. Using
(B.5), the inequality (2.4d) now follows.

From (B.1), we have We = r−1
2α for d = 2. Since S(x) → ∞ corresponds to ξ → 0, using Lemma B.2

and W (x) = − Ū
ξ (B.1), we obtain

limξ→0ξ
−1Ū(ξ) = − lim

S→∞
W (S) = −We = − r−1

2α .

The bound − r−1
2α > − r

2 follows from (2.2). We establish (2.4e).

B.2. Decay of the profile for large ξ. In this section, we prove (2.4a). For x > xl with xl sufficiently large,
using (B.8) in Lemma B.1, we obtain |W | � 1, |S| � 1,∆ > 1

2 . We focus on this region. For x > xl, we
use induction on k ≥ 0 to prove

|∂kxW | .k min(1, e−rx), |∂kxS| .k min(1, e−rx). (B.13)

The base case k = 0 follows from (B.8). Suppose that (B.13) holds for k ≤ n − 1, n ≥ 1. To estimate
∂n−1
x W , we take ∂n−1

x on both sides of the ODEs (B.2) for W,S. Since ∆1,∆2,∆ (B.2) are polynomials of
W,S, using Leibniz’s rule, the inductive hypothesis, and (min(1, e−rx))l ≤ min(1, e−rx), l ≥ 1, we yield

|∂ix∆1|, |∂ix∆2|, |∂jx∆| .n min(1, e−rx), 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1.
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We need j ≥ 1 so that the constant 1 in ∆ vanishes in ∂jx∆ (B.2). Since ∆ ≥ 1
2 , using Leibniz’s rule again,

we obtain

|∂nxW | =
∣∣∂n−1
x

(
∆1
∆

)∣∣ .n min(1, e−rx), |∂nxS| =
∣∣∂n−1
x

(
∆2
∆

)∣∣ .n min(1, e−rx).

Note that in the full expansion of ∂n−1
x (∆i/∆), i = 1, 2, the numerator only involves ∂jx∆1, j ≥ 1. We

prove the estimates for the case of k = n and establish (B.13) by induction.
Using the relations ∂xW (x) = ξ∂ξW (x(ξ)),W (x) = −ξ−1Ū(ξ), and x = log ξ (see (B.1)), for ξ > exl ,

we obtain ∣∣(ξ∂ξ)i(ξ−1Ū(ξ)
)∣∣ .i 〈ξ〉−r, i ≥ 0.

Applying the above estimate and the Leibniz rule to Ū = (Ū/ξ) · ξ, we obtain |(ξ∂ξ)iŪ | .i 〈ξ〉−r+1 for
ξ > exl . Using induction on i, we further obtain |∂iξŪ | .i 〈ξ〉−r+1−i for ξ > exl . Since Ū ∈ C∞, for
ξ ≤ exl , the bound |∂iξŪ | .i 〈ξ〉−r+1−i is trivial. The decay estimate of Σ̄ is similar, thereby proving (2.4a).

APPENDIX C. FUNCTIONAL INEQUALITIES

The goal of this appendix is to gather a few functional analytic bounds that are used throughout the paper.
First, we record a Leibniz rule for radially symmetric vectors/scalars.

Lemma C.1 ([5]). Let f, g be radially symmetric scalar functions over Rd and let F = FeR = (F1, .., Fd)
and G = GeR = (G1, .., Gd) be radially symmetric vector fields over Rd. For integers m ≥ 1 we have

|∆m(F · ∇Gi)− F · ∇∆mGi − 2m∂ξF ∆mGi| .m
∑

1≤j≤2m

|∇2m+1−jF| · |∇jGi|,

|∆m(f∇g)− f∇∆mg − 2m∇f∆mg| .m
∑

1≤j≤2m

|∇2m+1−jf | · |∇jg|,

|∆m(F · ∇g)− F · ∇∆mg − 2m∂ξF ∆mg| .m
∑

1≤j≤2m

|∇2m+1−jF| · |∇jg|

|∆m(f div(G)− f div(∆mG)− 2m∇f ·∆mG| .m
∑

1≤j≤2m

|∇2m+1−jf | · |∇jG|,

whenever f, g, {Fi}di=1, {Gi}di=1 are sufficiently smooth.

Lemma C.1 was established for d = 3 in the proof of [5, Lemma A.4]. The proof given in [5] also works
for any dimension d ≥ 2, so we do not repeat these arguments here.

Next, we focus on Gagliardo-Nirenberg-type interpolation bounds with weights. In all of the following
lemmas, we do not assume that the functions are radially symmetric.

Lemma C.2. Let δ1 ∈ (0, 1] and δ2 ∈ R. For integers n ≥ 0 and sufficiently smooth functions f on Rd, we
denote

βn , 2nδ1 + δ2, In ,
∫
|∇nf(y)|2〈y〉βndy, Jn , In + I0, (C.1)

where as usual we let 〈y〉 = (1 + |y|2)1/2. Then, for n < m and for ε > 0, there exists a constant
Cε,n,m = C(ε, n,m, δ1, δ2, d) > 0 such that

In ≤ εIm + Cε,n,mI0. (C.2a)

Moreover, for p < r < q we have the following interpolation inequality on Rd:

Jr ≤ Cp,q,rJαp J1−α
q , where α = q−r

q−p , (C.2b)

for some constant Cp,q,r = C(p, q, r, δ1, δ2, d) > 0.
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Proof. Throughout the proof, all implicit constants depend on the index n of In or Jn, and on the parameters
δ1, δ2. Using integration by parts, we have

In =
∑
i

∫
∂i∇n−1f · ∂i∇n−1f〈y〉βn

= −
∑
i

∫ (
∆∇n−1f · ∇n−1f〈y〉βn + βn∂i∇n−1f · ∇n−1fyi〈y〉βn−2

)
Using that δ1 ≤ 1 we have βn − 1 ≤ 1

2(βn−1 + βn), while by definition we have βn = 1
2(βn−1 + βn+1);

thus, by the Cauchy-Schwarz inequality we obtain

In ≤ (In+1In−1)1/2 + βn(InIn−1)1/2, n ≥ 1. (C.3)

To prove (C.2a), it is sufficient to show that for any n ≥ 0 and ε > 0, there exists Cε,n > 0 such that

In ≤ εIn+1 + Cε,nI0. (C.4)

We prove (C.4) by induction on n. The base case n = 0 is trivial, with Cε,0 = 1. For the induction step, let
n ≥ 1. We use (C.3), the inductive hypothesis for n− 1, and the Cauchy-Schwartz inequality, to conclude

In ≤ εIn+1 + 1
2In + Cε,nIn−1 ≤ εIn+1 + 3

4In + Cε,nI0.

The above estimate concludes the proof of the induction step for (C.4); thus, we have proven (C.2a).
Combining (C.3) and (C.4) we obtain

In ≤ (In+1In−1)1/2 + 1
2In + CnIn−1 ≤ (In+1In−1)1/2 + 3

4In + CnI0.

It follows that for all n ≥ 1,

Jn = In + I0 ≤ 4(In+1In−1)1/2 + CnI0 ≤ CnJ1/2
n+1J

1/2
n−1.

Iterating the above estimate, we deduce (C.2b). �

Lemma C.3. Let δ1 ∈ (0, 1], δ2 ∈ R, and define βn = 2nδ1 + δ2. Let ϕ̃n be a weight satisfying the
pointwise properties ϕ̃n(y) �n 〈y〉βn and |∇ϕ̃n(y)| .n 〈y〉βn−1. Then, for any ε > 0 and n ≥ 0, there
exists a constant Cε,n = C(ε, n, δ1, δ2, d) > 0 such that32∫

|∇2nf |2ϕ̃2n ≤ (1 + ε)

∫
|∆nf |2ϕ̃2n + Cε,n

∫
|f |2〈y〉β0 ,

for any function f on Rd which is sufficiently smooth and has suitable decay at infinity.

Proof. We use the standard summation convention on repeated indices. Using integration by parts, we get

Bn ,
∫
|∆nf |2ϕ2n =

∑
i1,...,in

∑
j1,...,jn

∫
∂2
i1∂

2
i2 . . . ∂

2
inf ∂

2
j1∂

2
j2 . . . ∂

2
jnf ϕ̃2n

= −
∑
i1,...,in

∑
j1,...,jn

∫
∂i1∂

2
i2 . . . ∂

2
inf

(
∂i1∂

2
j1 . . . ∂

2
jnf ϕ̃2n + ∂2

j1 . . . ∂
2
jnf ∂i1ϕ̃2n

)
=
∑
i1,...,in

∑
j1,...,jn

∫
∂i1j1∂

2
i2 . . . ∂

2
inf ∂i1j1∂

2
j2 . . . ∂

2
jnf ϕ̃2n

+

∫
∂i1∂

2
i2 . . . ∂

2
inf
(
∂i1∂j1 . . . ∂

2
jnf∂j1ϕ̃2n − ∂2

j1 . . . ∂
2
jnf ∂i1ϕ̃2n

)
, I + II.

32Throughout the paper we denote by |∇kf | the Euclidean norm of the k-tensor∇kf , namely, |∇kf | = (
∑
|α|=k |∂

αf |2)1/2.
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The term II in the above identity involves a derivative of the weight and we do not further perform inte-
gration by parts for it. For the first term, we iteratively integrate by parts with respect to ∂2

il
and ∂2

jl
, with

l ∈ {2, . . . , n}, to obtain

Bn ≥
∫
|∇2nf |2ϕ̃2n − Cn

∫
|∇2n−1f | |∇2nf | |∇ϕ̃2n|.

By assumption we have δ1 ≤ 1, so that

|∇ϕ̃2n| .n 〈y〉β2n−1 . 〈y〉β2n−1/2〈y〉β2n/2 . |ϕ̃2n−1|1/2|ϕ̃2n|1/2.

Using the Cauchy-Schwarz inequality, for any ε > 0 we obtain

Bn ≥ (1− ε)
∫
|∇2nf |2ϕ2n − Cn,ε

∫
|∇2n−1f |2ϕ2n−1.

In analogy to the proof of (C.2a) in Lemma C.2 (we need to replace the weight 〈y〉βn with ϕ̃n, which is
permissible in light of the assumed properties of ϕ̃n), we may further show that for any ε′ > 0,∫

|∇2n−1f |2ϕ̃2n−1 ≤ ε′
∫
|∇2nf |2ϕ̃2n + Cε′,n

∫
|f |2ϕ̃0.

Since ε, ε′ > 0 are arbitrary and ϕ̃0 � 〈y〉β0 , rewriting the above two inequalities completes the proof. �
Lastly, we record the following product estimates for the functional spaces Xm defined in (3.14). It is

convenient to state estimates for a general dimension d, not just for d = 2. For this purpose, we recall
from (3.15) that ϕg = 〈y〉−κ1−d, with κ1 = 1/4 ∈ (0, 1). Moreover, we recall from Lemma 3.1 that the
weights ϕm satisfy ϕm(y) �m 〈y〉m, and |∇ϕm(y)| .m ϕm−1(y).

Lemma C.4. Let m ≥ d/2. For f : Rd → R which lies in Xm and 0 ≤ i ≤ 2m− d, we have

|∇if(y)| .m ‖f‖Xm〈y〉−i+
κ1
2 , (C.5)

pointwise for y ∈ Rd. Moreover, for any i ≤ 2m, j ≤ 2n, with i ≤ 2m − d or j ≤ 2n − d, and for any
β ≥ κ1/2, we have

‖∇if ∇jg 〈y〉i+j−βϕ1/2
g ‖L2 .m,n,β ‖f‖Xm‖g‖Xn . (C.6)

Proof. Fix 1 ≤ i ≤ 2m−d. By a standard density argument we can assume that∇if ∈ C∞c (Rd). Consider
the cone with vertex at y extending towards infinity: Ω(y) , {z ∈ Rd : zjsgn(yj) ≥ |yj |, ∀1 ≤ j ≤ d}. In
particular, for any z ∈ Ω(y) have |z| ≥ |y|. By integrating on rays extending to infinity, we have

|∇if(y)| .
∫

Ω(y)
|∂1∂2..∂d∇if(z)|dz.

Upon letting δ2 = −(κ1 + d) and δ1 = 1 (choices with are consistent with the weights in (3.14)), from
Cauchy-Schwartz, Lemma C.2 with βn = 2n + δ2 (applicable since i + d ≤ 2m), and Lemma C.3 with
ϕ̃n = ϕnϕ

1/2
g � 〈y〉nϕ1/2

g , we deduce

|∇if(y)| . ‖〈z〉i+d+
δ2
2 ∇i+df(z)‖L2(Ω(y))

(∫
|z|≥|y|

〈z〉−2i−2d−δ2dz
)1/2

. ‖〈z〉
1
2
βi+d∇i+df(z)‖L2(Rd)

(∫ ∞
|y|
〈R〉−2i−2d+(κ1+d)Rd−1dR

)1/2

.
(
‖〈z〉

1
2
β2m∇2mf(z)‖L2(Rd) + ‖〈z〉

1
2
β0f(z)‖L2(Rd)

)(∫ ∞
|y|
〈R〉−2i+κ1−1d〈R〉

)1/2

. ‖f‖Xm〈y〉−i+
κ1
2 .

For the last inequality we have crucially used that 2i− κ1 > 0, which holds since i ≥ 1.
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For i = 0, the aforementioned inequality (namely, 2i − κ1 > 0) does not hold, and so the integral
appearing in the above estimates does not converge. Instead, using the fundamental theorem of calculus and
the decay estimate for |∇f | obtained above, we have

|f(y)| ≤ |f(0)|+
∫ |y|

0
|∇f |

( ty
|y|

)
dt . |f(0)|+ ‖f‖Xm

∫ |y|
0
〈t〉−1+

κ1
2 dt . |f(0)|+ ‖f‖Xm〈y〉

κ1
2 .

To conclude the proof of (C.5) for i = 0, we note that |f(0)| . ‖f‖Xm . To see this, let χ be a smooth bump
function 0 ≤ χ ≤ 1 with χ ≡ 1 for |y| ≤ 1/2 and χ ≡ 0 for |y| ≥ 1. Then, we have |f(0)| ≤ ‖χf‖L∞ .
‖χf‖H2m . ‖χf‖Xm . ‖f‖Xm , where the last inequality holds by Lemma C.2 and Lemma C.3.

In order to prove (C.6), assume without loss of generality that i ≤ 2m − d. Using (C.5), and recalling
that ϕg = 〈y〉−κ1−d, we have

‖∇if∇jg〈y〉i+j−βϕ1/2
g ‖L2 .m ‖〈y〉i−

κ1
2 ∇if‖L∞‖∇jg〈y〉j−β+

κ1
2 ϕ1/2

g ‖L2 .m ‖f‖Xm‖∇jg〈y〉j−β−
d
2 ‖L2 .

Next, Lemma C.2 with δ1 = 1 and δ2 = −(κ1 + d), to obtain

‖∇jg〈y〉j−β−
d
2 ‖L2 . ‖∇jg〈y〉j+

δ2
2 ‖L2 .m ‖g‖Xm ,

where we have used that −β − d/2 ≤ δ2/2, which holds since β ≥ κ1/2. �
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[30] Diego Córdoba, Luis Martı́nez-Zoroa, and Fan Zheng. Finite time singularities to the 3D incompressible Euler equations for

solutions in C∞(R3 \ {0}) ∩ C1,α ∩ L2. arXiv preprint arXiv:2308.12197, 2023.
[31] Constantine M Dafermos. Hyperbolic conservation laws in continuum physics, volume 3. Springer, 2005.
[32] Tomasz Debiec, Jack Skipper, and Emil Wiedemann. A general convex integration scheme for the isentropic compressible

Euler equations. J. Hyperbolic Differ. Equ., 20(1):95–117, 2023.
[33] Tarek M Elgindi. Finite-time singularity formation for C1,α solutions to the incompressible Euler equations on R3. Annals of

Mathematics, 194(3):647–727, 2021.
[34] Tarek M. Elgindi, Tej-Eddine Ghoul, and Nader Masmoudi. On the stability of self-similar blow-up for C1,α solutions to the

incompressible Euler equations on R3. Camb. J. Math., 9(4):1035–1075, 2021.
[35] Tarek M. Elgindi and In-Jee Jeong. Finite-time singularity formation for strong solutions to the axi-symmetric 3D Euler

equations. Ann. PDE, 5(2):Paper No. 16, 51, 2019.
[36] Tarek M Elgindi and Federico Pasqualotto. From instability to singularity formation in incompressible fluids. arXiv preprint

arXiv:2310.19780, 2023.
[37] Klaus-Jochen Engel and Rainer Nagel. One-parameter semigroups for linear evolution equations, volume 194 of Graduate

Texts in Mathematics. Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune,
G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt.

[38] Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Society, 2022.
[39] Kurt Otto Friedrichs. Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math., 7:345–392, 1954.
[40] Daniel Ginsberg and Igor Rodnianski. The stability of irrotational shocks and the Landau law of decay. arXiv preprint

arXiv:2403.13568, 2024.
[41] Israel Gohberg, Seymour Goldberg, and Marinus A Kaashoek. Classes of Linear Operators Vol. I. Operator Theory: Advances
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