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ABSTRACT. We review recent developments in the field of mathematical fluid dynamics
which utilize techniques that go under the umbrella name convex integration. In the hy-
drodynamical context, these methods produce paradoxical solutions to the fluid equations
which defy physical laws. These counterintuitive solutions have a number of properties
that resemble predictions made by phenomenological theories of fluid turbulence. The
goal of this review is to highlight some of these similarities while maintaining an empha-
sis on rigorous mathematical statements. We focus our attention on the construction of
weak solutions for the incompressible Euler, Navier-Stokes, and magneto-hydrodynamic
equations which violate these systems’ physical energy laws.

1. INTRODUCTION

We experience turbulent fluids on a day to day basis. The plume rising from a lit candle
starts off as smooth and well organized (laminar) and quickly becomes wildly irregular, or
chaotic. The air flow around a car in motion is typically laminar around the front of the
car, and becomes chaotic (turbulent) in the wake of the car. Hydrodynamic turbulence has
received a tremendous amount of attention over the past century, both within the physics
and mathematics literature. This has resulted in a number of phenomenological theories,1

which have been very successful in making predictions about the statistics of turbulent
flows. Nonetheless, to date, we do not have an unconditional, mathematically rigorous,
bridge between these phenomenological theories and properties of the solutions to the
underlying partial differential equations (PDEs) which are meant to describe the fluid: the
Navier-Stokes equations and their infinite Reynolds number limit, the Euler equations.

A slightly less ambitious goal, which nonetheless would offer tremendous insight into
the nature of turbulent flows, is to start from experimental facts,2 translate them into math-
ematical properties for solutions of the fundamental fluids PDEs, and then prove that there
exist classes of solutions to these PDEs which exhibit the desired properties. In this pro-
cess a certain degree of mathematical idealization is inevitable, and thus one should view
such a program as showing that the PDE models are consistent with the physical reality of
turbulent flows, justifying their predictive usage in computer simulations.

Date: August 27, 2020.
1991 Mathematics Subject Classification. Primary 35Q35.
1Some of these phenomenological theories may be traced back to the works of O. Reynolds, L. Prandtl, T. von

Karman, G.I. Taylor, L.F. Richardson, W. Heisenberg, A. Kolmogorov, A. Obhukov, L. Onsager, L. Landau,
E. Hopf, G. Batchelor, R.H. Kraichnan or P.G. Saffman, and many others. The topic is too vast to review here
and we refer the reader to [9, 53, 133, 82, 74] for further references.

2By this we mean quantitative predictions about hydrodynamic turbulence, which are confirmed experimen-
tally both in a laboratory setting, and in computer simulations, to the point that these predictions are undoubted
in the physics community. Examples of such experimental facts include the anomalous dissipation of energy
in the infinite Reynolds number limit [158, 172] or Kolmogorov’s 4/5 law [159, 82]. In contrast, quantifying
the intermittent nature of fully developed turbulent flows, for instance by measuring the scaling of the pth order
structure functions for p 6= 3, is well-known to exhibit variations depending on the experimental setup [157, 82].
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The remarkable outcome of such attempts is that sometimes beautiful and deep mathe-
matical connections are revealed when trying to translate experimental facts into rigorous
questions about PDEs. This article is about one such program, which has brought the
method of convex integration (which has its roots in classical problems in geometry) into
the hydrodynamic context, where it played the key role in the resolution of the Onsager
conjecture [93, 20], the mathematical manifestation of an experimental fact in turbulence.

Building upon the seminal works of Scheffer [147] and Shnirelman [153, 152], De Lellis
and Székelyhidi Jr. developed in [55, 58] a systematic framework for applying convex
integration in fluid dynamics. Since then, the mathematical techniques have evolved, in
part by taking into account more detailed physical properties of the fluids equations, and
this mathematical evolution has been the subject of a number of review papers [57, 162,
60, 61, 22]. The goal of this article is to put in perspective some of the more recent results
in this program, such as the non-uniqueness of distributional solutions to the Navier-Stokes
equations [23, 16], and the existence of weak solutions to the ideal magneto-hydrodynamic
(MHD) equations which do not conserve magnetic helicity [10].

We discuss the three flavors of convex integration encountered in hydrodynamics, which
originated in the works [55], [58], and respectively [23]. The first is the classical L∞t,x con-
vex integration in which one relaxes the equation, constructs a suitable notion of subsolu-
tion, to which one then adds high frequency plane wave corrections of suitable amplitudes.
Through a powerful abstract functional analytic machinery originating in the field of dif-
ferential inclusions, this procedure may be shown to produce a sequence of approximate
solutions which converge weak-* to a bounded weak solution. The second flavor is theCαt,x
convex integration scheme, which is both motivated and also resembles the earlier schemes
of Nash and Kuiper for the isometric embedding problem. In this scheme, the approximate
solutions are built by incrementally adding oscillatory perturbations of higher and higher
frequencies. The oscillations themselves to leading order are exact stationary solutions
of the underlying PDEs. The convergence to a limiting continuous weak solution holds
because the error converges to zero in the uniform norm, and the approximating sequence
converges absolutely in Hölder spaces. The third flavor of convex integration, intermittent
convex integration, builds on aforementioned Nash-type scheme, but the analysis is per-
formed in Lebesgue spaces. This scheme explores the fact that if the building blocks are
to leading order exact solutions of the underlying PDEs, then some of the most danger-
ous error terms in the iteration are linear in terms of the highest frequency perturbation,
and thus via a decoupling argument these terms are smaller than initially expected when
measured in the correct Lebesgue space. In this intermittent convex integration scheme,
the cancellation of errors of smaller frequency3 is achieved in an average sense, rather than
pointwise, as is the case for the L∞t,x and Cαt,x variants of convex integration. One way to
emphasize the different types of results that may be obtained via these three approaches,
is to consider hydrodynamic PDEs with more than one conservation law such as the ideal
MHD equations. For this system, it is easy to discern the type of results which may be
obtained via the the various flavors of convex integration [10, 78], as they relate to the
conservation laws of the model.

3The cancelation of the previous error (Reynolds stress) in convex integration schemes essentially happens
through an infinite range backwards cascade, very much like how 2 cos2(nx) = 1 + cos(2nx) produces a
contribution of amplitude 1 at frequency 0, no matter how large n is! The weak solutions constructed via convex
integration schemes essentially retain the memory of anO(1) access to frequency infinity. In contrast, it is known
that in 3D turbulent flows kinetic energy mostly travels from low to high frequencies, and that the energy transfer
is very local, due to (2.12) below.
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It is fair to say that the limitations of convex integrations schemes in fluid dynamics are
not yet known, emphasizing the power and the flexibility of the machinery that De Lellis
and Székelyhidi have developed. A large number of physically motivated, mathematically
very interesting challenges remain to be explored and we have mentioned a number of open
problems and conjectures in Section 3.6, Section 4.4, and Section 5.3.

Acknowledgments. The authors are grateful to Susan Friedlander for stimulating dis-
cussions and for fruitful suggestions in improving this article. We also thank Rajendra
Beekie and Matthew Novack for helpful comments. T.B. was supported by the NSF grant
DMS-1900149 and a Simons Foundation Mathematical and Physical Sciences Collabora-
tive Grant. V.V. was supported by the NSF grant CAREER DMS–1911413.

2. ENERGY EQUALITIES AND THEIR VALIDITY

In this section, we discuss the energy balance relations for the Navier-Stokes, Euler, and
MHD equations, which are the fundamental models governing the motion of incompress-
ible homogenous viscous, inviscid, respectively magnetically conducting fluids. Through-
out this survey, we focus on the space dimension three, on occasion making reference to
two dimensional models. The physical domain in which the hydrodynamical models are
considered is the periodic box T3, putting aside the many interesting physical phenomena
and the mathematical difficulties which arise when considering these models in domains
with solid walls. For all PDEs considered, the initial data, the forcing terms, and thus solu-
tions satisfy periodic boundary conditions, have zero mean on T3, and are incompressible.

2.1. The Navier-Stokes equations and the zeroth law of turbulence. The PDEs govern-
ing the motion of homogenous incompressible viscous fluid flows are the Navier-Stokes
equations, a manifestation of Newton’s second law of motion and the conservation of mass.
The unknowns are the velocity v : T3×R→ R3 and pressure p : T3×R→ R, satisfying

∂tv + (v · ∇)v +∇p = ν∆v + f ,(2.1a)
div v = 0 .(2.1b)

Here ν > 0 is the kinematic viscosity of the fluid and f is a zero mean incompressible
forcing term. We abuse notation and write ν−1 for the Reynolds number. The system (2.1)
is supplemented with an initial datum v0 which has zero mean, is incompressible, and is
square integrable. Note that one may rewrite the nonlinear term in (2.1a) in divergence
form as

(v · ∇)v = div (v ⊗ v) ,

which is important for defining distributional solutions to the system (see Definitions 2.1
and 2.2 below). The literature concerning these equations is vast, and we refer the inter-
ested reader to the books [42, 170, 67, 81, 114, 143, 171] for an overview of the field.

2.1.1. The energy balance and weak solutions. Fix ν > 0, an initial datum v0 and a forcing
term f which are smooth. Consider a smooth solution v ∈ C1

t C
2
x of the Navier-Stokes

system (2.1) with this datum, and take an inner product of the forced momentum equation
(2.1a) with v. Since v is smooth, we obtain the pointwise energy balance

∂t
|v|2

2
+ div

(
v

(
|v|2

2
+ p

)
− ν∇|v|

2

2

)
= f · v − ν|∇v|2.(2.2)
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Integrating (2.2) over T3, and using that the divergence of a smooth periodic function
vanishes, we obtain the kinetic energy balance

d

dt
E + ν

ˆ
T3

|∇v|2 =

ˆ
T3

f · v ,(2.3)

where we have denoted the kinetic energy by

E(t) =
1

2

ˆ
T3

|v(·, t)|2 .

Note that the second term on the left side of (2.3) is signed, and physically represents the
energy dissipation rate; the term on the right side denotes the total work of the force. We
emphasize that in deriving (2.3) the following cancelation played a key roleˆ

T3

v · ((v · ∇)v +∇p) =

ˆ
T3

v · ∇
(
|v|2

2
+ p

)
= −

ˆ
T3

div v︸︷︷︸
≡0

(
|v|2

2
+ p

)
= 0 .(2.4)

For f ∈ L2
t Ḣ
−1
x , the energy balance (2.3) implies that

E(t) +
ν

2

ˆ t

s

‖∇v‖2L2
x
≤ E(s) +

1

2ν

ˆ t

s

‖f‖2Ḣ−1
x

(2.5)

for any t ≥ s ≥ 0. The inequality (2.5) is the only known coercive a-priori estimate for
the 3D Navier-Stokes equations, and it gives an a-priori bound for the solution v in the so-
called energy space L∞t L

2
x ∩L2

t Ḣ
1
x , solely in terms of the input v0 ∈ L2 and f ∈ L2

t Ḣ
−1
x .

We emphasize however that knowledge that v lies in L∞t L
2
x ∩ L2

t Ḣ
1
x is not sufficient to

establish that the cancelation relation (2.4) holds (weakly in time). This point is important
to keep in mind, and will be revisited in Section 2.1.2 below.

Using (2.5), along a sequence of approximate solutions for which (2.3) is justified,
Leray [115] (and later Hopf [89] in the case of domains with boundary) proved that for
any finite energy initial datum there exists a global weak solution to the Navier-Stokes
equation. More precisely, Leray proved the global existence in the following class of weak
solutions:

Definition 2.1 (Leray-Hopf weak solution). A vector field v ∈ C0
weak([0,∞);L2(T3)) ∩

L2([0,∞); Ḣ1(T3)) is called a Leray-Hopf weak solution of the Navier-Stokes equations
if for any t ∈ R the vector field v(·, t) is weakly divergence free, has zero mean, satisfies
the Navier-Stokes equations distributionally:ˆ

R

ˆ
T3

v · (∂tϕ+ (v · ∇)ϕ+ ν∆ϕ+ f)dxdt+

ˆ
T3

v(·, 0) · ϕ(·, 0)dx = 0 ,(2.6)

for any divergence free test function ϕ ∈ C∞0 ([0,∞), C∞(T3)), and satisfies the energy
inequality (2.5) for t ≥ 0.4

While Leray-Hopf weak solutions are known to enjoy certain desirable properties such
weak-strong uniqueness [115, 142, 150, 176] (if a smooth solution exists, then any Leray-
Hopf weak solution with the same initial datum equals to this smooth one) or epochs of
regularity [115] (intervals for which the solution is smooth, leading to partial regularity in
time [145, 144, 111]), their uniqueness to date remains open. Regularity, and hence also

4A stronger form of the energy inequality holds by Leray’s construction: (2.5) holds for a.e. s ≥ 0 and all t >
s. Moreover, an a-priori stronger form of weak solution may be constructed by modifying Leray’s proof. These
so-called suitable weak solutions obey a version of the energy inequality which is localized in space and time,
which allows one to prove that they are smooth except for a putative singular space-time set with one-dimensional
parabolic Hausdorff measure which is zero [145, 146, 25]; see also the more recent reviews [114, 143, 140].
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uniqueness, is only known to hold under the extra assumption that the solution is bounded
in a scaling invariant space, such as LptL

q
x for 2/p + 3/q = 1, known as the Ladyženskaja-

Prodi-Serrin conditions [103, 142, 149, 72]. In fact, it has been conjectured [112, 97, 98]
that the uniqueness of Leray-Hopf weak solutions fails as soon as the Ladyženskaja-Prodi-
Serrin conditions are violated. In spite of compelling numerical evidence [87], to date this
question remains open.

Note that the distributional form of the Navier-Stokes equations (2.6) makes sense as
soon as v ∈ L2

tL
2
x, without requiring that v ∈ L2

t Ḣ
1
x . Thus, as in [150] one may define an

even weaker notion of solution to (2.1) as:

Definition 2.2 (Weak/mild solution). A vector field v ∈ C0
weak([0,∞);L2(T3)) is called

a weak or distributional solution of the Navier-Stokes equations if for any t the vector
field v(·, t) is weakly divergence free, has zero mean, and (2.6) holds for for any smooth
divergence free test function ϕ.

As shown in [75], the weak solutions of Definition 2.2 satisfy the integral equation

v(·, t) = eν∆tv(·, 0) +

ˆ t

0

eν∆(t−s)Pdiv (v(·, s)⊗ v(·, s))ds ,

and are called mild solutions [114, Definition 6.5]; here P is the Helmholtz projection. We
emphasize that this class of solutions is weaker than the Leray-Hopf weak solutions in Def-
inition 2.1 because solutions need not satisfy the energy inequality (2.5), and their energy
dissipation rate need not be finite. Similarly to Leray-Hopf ones, these weak solutions are
known to be regular under the additional assumption that one of Ladyženskaja-Prodi-Serrin
conditions is satisfied [75, 84, 120, 113, 109, 85]. However, as opposed to Leray-Hopf
weak solutions, for the weak solutions of Definition 2.2 it is by now known that uniqueness
fails. This was established by the authors of this review in [23] (see Theorem 4.1 below),
and then improved in a joint work with Colombo [16] to show that uniqueness fails even
if partial regularity in time holds (see Theorem 4.3 below). The proofs in [23, 16] rely on
a version of the convex integration scheme, called intermittent convex integration, which
will be discussed in Section 4 below.

2.1.2. Conditional proof of energy balance. We return to a question alluded to earlier:
consider a weak/mild solution of the Navier-Stokes equations which is known to lie in
the Leray-Hopf energy space L∞t L

2
x ∩L2

t Ḣ
1
x; does such a solution automatically obey the

energy equality/balance (2.3)? Currently, this question is open and only conditional criteria
are available. The issue lies in justifying the cancellation (2.4) in the sense of temporal
distributions. The classical results state that if in addition to v ∈ L∞t L2

x ∩ L2
t Ḣ

1
x one also

knows that v ∈ L4
tL

4
x [118], or more generally v ∈ LptLqx with 2/p + 2/q = 1 [151], then

(2.3) holds; see also [110, 32, 116, 33] for more recent refinements. We emphasize that
these conditional results assume less integrability on v than the Ladyženskaja-Prodi-Serrin
conditions, and this is a common theme in hydrodynamics: the energy equality may be
justified under much weaker conditions than those required for establishing the uniqueness
of solutions, i.e., the energy equality is a weaker notion of rigidity than uniqueness [104].

We recall a modern proof of the classical result of [118, 151], namely that v ∈ L4
tL

4
x ∩

C0
weak,tL

2
x ∩L2

t Ḣ
1
x implies (2.3); for details we refer the reader to [29, 154, 33]. The point

is that by interpolation, the assumption on v implies that v ∈ L3
tB

1/3
3,c0,x

, which means that

lim|z|→0
1
|z|

´ T
0

´
T3 |v(x + z, t) − v(x, t)|3dxdt = 0. The former condition is known due

to [68, 29] to imply (2.3). The more detailed argument is as follows.
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Denote by P≤κv the projection of v to its Fourier frequencies which have modulus
less than κ. Testing the Navier-Stokes equations with the smooth divergence free function
P≤κv = P2

≤κv, and using that P≤κ is self-adjoint on L2
x and commutes with space and

time derivatives, similarly to (2.3) we obtain that

d

dt

ˆ
T3

|P≤κv|2

2
dx+ ν

ˆ
T3

|∇P≤κv|2 =

ˆ
T3

P≤κf · P≤κvdx+ Πκ(2.7)

where we have denoted by Πκ the energy flux through frequencies ≈ κ by, i.e.

Πκ =

ˆ
T3

P≤κ(v ⊗ v) : ∇P≤κv .

First, we note that as soon as v ∈ C0
weak,tL

2
x ∩ L2

t Ḣ
1
x , by the dominated convergence

theorem, the terms on the left side of (2.7) converge as κ→∞ to the terms on the left side
of (2.3), when integrated in time. Second, if f ∈ L2

t Ḣ
−1
x , then also the first term on the

right side of (2.7) converges to the term on the right side of (2.3), when integrated in time.
The only question remains is whether the time integrated flux term in (2.7),

´ T
0

Πκdt,
vanishes as κ → ∞. In order to address this, one first uses that P≤κv is smooth, and thus
the cancellation (2.4) holds with v replaced by P≤κv. This allows one to rewrite

Πκ(v) =

ˆ
T3

(
P≤κ(v ⊗ v)− (P≤κv ⊗ P≤κv)

)
: ∇P≤κv =

ˆ
T3

Cκ(v, v): ∇P≤κv ,(2.8)

which reveals the importance of the quadratic commutator term

Cκ(v, w) =: P≤κ(v ⊗ w)− P≤κv ⊗ P≤κw .(2.9)

As was shown by Constantin-E-Titi in [41], we have

‖Cκ(v, w)‖
L

3/2
x

. κ−2α ‖v‖Bα3,∞,x ‖w‖Bα3,∞,x(2.10)

which may be combined with the bound ‖∇P≤κv‖L3
x
. κ1−α ‖v‖Bα3,∞,x to yield

|Πκ(v)| . κ1−3α ‖v‖3Bα3,∞,x(2.11)

which proves that as soon as v ∈ L3
tB

α
3,∞,x for any α > 1/3, then Πκ → 0 as κ → ∞,

thereby proving that the energy equality holds. In fact, this is exactly the proof given in [41]
for the rigid side of the Onsager conjecture; we discuss in Section 2.2 below.

Returning to our goal of proving the energy equality for the Navier-Stokes system (2.3),
we note that the assumption v ∈ L4

tL
4
x was not yet used. Using standard interpolation in-

equalities the information that v ∈ L4
tL

4
x∩C0

weak,tL
2
x∩L2

t Ḣ
1
x gives that v ∈ L3

tW
1/3,3
x and

thus that v ∈ L3
tB

1/3
3,∞,x and limi→∞ 2i ‖P≈2iv‖

3
L3
x,t

= 0, where P≈2i = P≤2i+1P≥2i−1 ;

i.e., v lies in the space L3
tB

1/3
3,c0,x

. This information is not good enough to apply (2.11)
since α = 1/3, it is however just good enough to prove that the flux vanishes as κ → ∞.
To see this, we recall a more detailed estimate on the commutator term Cκ(v, v), and thus
for the flux Πκ, which was obtained in [29] by using the Bony paraproduct decomposition
from Littlewood-Paley analysis:

|Π2j (v)| .
∞∑
i=1

2−
2/3|j−i|2i‖P≈2iv‖3L3 .(2.12)

Besides showing that the energy transfer from one dyadic scale to another is mainly local,
the above estimate shows that v ∈ L3

tB
1/3
3,c0,x

implies limκ→∞
´ T

0
Πκ = 0, thereby com-

pleting the conditional proof of (2.3). We note that estimate (2.12) gives the best known
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condition on v which ensures that the total energy flux vanishes, and this condition is sharp
in the case of the 1D Burgers equation [154]. We revisit these ideas in Section 2.2.

2.1.3. Anomalous dissipation of energy in the infinite Reynolds number limit. We have
seen in the previous section that the energy equality (2.3) is not necessarily satisfied for
weak solutions of the Navier-Stokes equations, even if they lie in the Leray-Hopf space.
The identity (2.7) does however show upon passing κ→∞ that

d

dt
E =

ˆ
T3

f · v + Π∞(v)− ν
ˆ
T3

|∇v|2(2.13)

holds in the sense of distributions in time, and Π∞(v) = limκ→∞Πκ(v) may or may
not equal to 0. It is thus natural to define the average energy dissipation rate on the time
interval [0, T ] as

εν,T := ν

 T

0

ˆ
T3

|∇v|2 −
 T

0

Π∞(v) .(2.14)

It is clear from the above definition that if the Navier-Stokes solutions maintain a certain
degree of regularity uniformly in ν � 1, for instance if at fixed ν > 0 we have v ∈ L4

tL
4
x

and if ν ‖v‖2L2
t Ḣ

1
x
→ 0 when ν → 0, then for any T > 0 we have limν→0 εν,T = 0.

The vanishing of the energy dissipation rate for turbulent solutions as ν → 0 (equiva-
lently, as the Reynolds number goes to∞) contradicts an experimental fact known as the
zeroth law of turbulence, which loosely speaking states that5

lim inf
ν→0

εν,∞ = ε > 0 ,(2.15)

for an ε ∈ (0,∞). The anomalous dissipation of energy postulated in (2.15) is the funda-
mental ansatz of Kolmogorov’s 1941 theory of fully developed turbulence [106, 107, 105],
and it has been verified experimentally to a tremendous accuracy [158, 141, 99]. The lit-
erature on this topic is vast, and we refer the interested reader to [82, 74, 154, 22] for
references.

To date it remains open to prove that (2.15) is a manifestation of the statistical be-
havior of solutions to the Navier-Stokes equations in the infinite Reynolds number limit.
Nonetheless, (2.15) provides unquestionable physical evidence that in the limit ν → 0
one should expect that Navier-Stokes solutions do not remain uniformly smooth, and that
(at best) they converge to non-smooth, possibly non-unique, weak solutions of the Euler
equations. Thus, in an attempt to translate predictions made by turbulence theories into
mathematically rigorous questions, such as the Onsager conjecture which we discuss next,
it is natural to work within the framework of weak solutions of the Euler equations.

2.2. The Euler equations and Onsager’s conjecture. The classical model for the mo-
tion of an incompressible homogenous inviscid fluid are the Euler equations, obtained by
formally letting ν = 0 in (2.1)

∂tv + (v · ∇)v +∇p = 0 ,(2.16a)
div v = 0 .(2.16b)

5Here, as in laboratory experiments, we consider the long (infinite) time average of the energy dissipation
rate, εν,∞, to signify that the solution has reached a stationary regime. For the sake of brevity we avoid the
important and subtle discussion about ensemble averages with respect to probability measures on L2 that encode
the statistics of the flow [79, 80], and about the impromptu ergodic hypothesis which is classical in statistical
mechanics. We refer the interested reader to [82] or other texts in turbulence.



8 TRISTAN BUCKMASTER AND VLAD VICOL

As with the Navier-Stokes equations, the literature concerning the incompressible Euler
equations is immense, and we refer the interested reader to the books [119, 28, 124, 125]
for an overview of the standard results in the field.

2.2.1. The energy equality and weak solutions. In direct correspondence to the discussion
presented in Section 2.1.1 for the Navier-Stokes equations, one may show that smooth
solutions v ∈ C1

t C
1
x of the Euler equations conserve their kinetic energy

d

dt
E = 0 .(2.17)

Indeed, (2.17) is nothing but (2.3) with ν = 0 and f = 0. Thus, any reasonable notion of
solution to the Euler equations should at least have a finite L∞t L

2
x norm.

On the other hand, as mentioned in Section 2.1.3 the zeroth law of turbulence motivates
the study of weak solutions to the Euler equations, defined as:

Definition 2.3 (Weak solution). A vector field v ∈ L∞(I;L2(T3)) is called a weak so-
lution of the Euler equations on an open I ⊂ R if for any t ∈ I the vector field v(·, t) is
weakly divergence free, has zero mean, and v satisfies (2.16) in the sense of distributions,
that is: ˆ

R

ˆ
T3

v · (∂tϕ+ (v · ∇)ϕ)dxdt = 0 ,

holds for any divergence free test function ϕ ∈ C∞0 (I;C∞(T3)). The pressure can be
recovered by the formula −∆p = div div (v ⊗ v) with p of zero mean.

2.2.2. Onsager’s conjecture and its variants. The validity of (2.17) for weak (instead of
smooth) solutions of the Euler equations is the subject of the Onsager conjecture, one of
the most celebrated connections between phenomenologies in turbulence and the rigorous
mathematical analysis of PDEs arising in fluid dynamics. In [138], Onsager considered
the possibility that energy dissipation in the infinite Reynolds number limit is not caused
by a remnant of viscous effects, i.e. from the term −ν ‖∇v‖2L2 present on the right side
of (2.13), but instead, because the solutions of the limiting equation at ν = 0, namely the
Euler equation, are not sufficiently smooth to ensure that Π∞ = 0. As explained in [73],
the argument that the energy equality (2.17) holds for a finite energy solution v of the
Euler equations if and only if the total energy flux vanishes, i.e. limκ→∞Πκ(v) = 0 when
time integrated, is essentially already contained in [138]. Onsager’s remarkable analysis
(see also [74]) went further and made a precise statement about the threshold regularity of
v which is necessary in order to justify (2.17); in modern mathematical terms Onsager’s
conjecture6 is now a theorem due to [41, 93, 20]:

Theorem 2.4 (Onsager’s conjecture in Hölder spaces).
(a) Any weak solution v belonging to the Hölder space Cαx,t for α > 1/3 conserves its

kinetic energy.
(b) For any α < 1/3 there exist weak solutions v ∈ Cαx,t which dissipate kinetic energy, i.e.

the kinetic energy E(t) is a non-increasing function of time.

The rigidity, part (a) of Theorem 2.4, is discussed in Section 2.2.3, while the flexibility,
part (b), is presented in Section 3.

Remark 2.5 (Onsager’s conjecture on other Banach scales). In Theorem 2.4, the threshold
between rigidity and flexibility is measured here on the Hölder Cαt,x scale, with threshold

6For a discussion of the Onsager conjecture for the 2D Euler equations, we refer the reader to [44, 29, 30].
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value α = 1/3. However, since the energy flux Πκ is trilinear in v (see (2.8)) it is most natu-
ral to measure this dichotomy on an L3 based space, such as the scale of spaces L3

tB
α
3,∞,x.

The bound (2.11) again suggests that the threshold value on the L3-based Banach scale is
α = 1/3, and indeed the proof of Theorem 2.4 establishes this fact. Lastly, we note that
the threshold between rigidity (a) and flexibility (b) may alternatively be measured on L2

based spaces in x, such as the L3
tH

α
x , with α ≥ 0. These spaces are classically related

to Fourier analytic measurements of energy spectra (such as the Kolmogorov-Obhukov
5/3 power spectrum), and to the scaling of second order structure functions in turbulent
flows [82]. On this Sobolev scale the value of the threshold exponent is however unclear.
It is known for a while [160, 32] that the kinetic energy is conserved if v ∈ L3

tH
α
x with

α > 5/6. However, as a byproduct of the proof of the flexibility part (b) of Theorem 2.4, we
only have the existence of weak solutions which violate the energy equation for α < 1/3.
Based on physical considerations and on the experimentally measured anomalous scaling
of second order structure functions in fully developed turbulent flows [82], it is safe to con-
jecture that the threshold exponent on the L3

tH
α
x is strictly larger than 1/3; it is however

not clear whether it should be equal to 5/6, or another smaller value.7 Conservatively, we
conjecture (see also Open Problem 5 in [22]) that the Onsager threshold exponent on the
L2 based Sobolev scale is strictly larger than 1/3:

Conjecture 2.6 (Deviation from the Kolmogorov-Obhukov power spectrum). There exists
an α ∈ (1/3, 5/6) and infinitely many weak solutions v ∈ CtH

α
x of the 3D Euler equa-

tions (2.16), which dissipate kinetic energy.

2.2.3. The proof of rigidity in Onsager’s conjecture. Part (a) of the Onsager conjecture
was partially established by Eyink in [73], and later proven in full by Constantin, E and Titi
in [41]. Indeed, the commutator bound (2.11) established in [41] shows that if v ∈ L3

tC
α
x

with α > 1/3, then automatically by embedding we have v ∈ L3
tB

α
3,∞,x, and so

lim
κ→∞

ˆ T

0

|Πκ(v)| . lim
κ→∞

κ1−3α ‖v‖3L3(0,T ;Bα3,∞) = 0 ,

thereby proving (2.17). The argument in [41] was further refined in [68], where the
energy dissipation measure was introduced, in [29] where the bound (2.12) is proven,
and in the more recent paper [156], which discusses several geometric constraints which
ensure the conservation of energy for the threshold value α = 1/3. We note that the
proof of rigidity on the L2 based scale, i.e. for v ∈ L3

tH
α
x with α > 5/6, also follows

from the bound (2.12) established in [29] by additionally using the Bernstein inequality
‖P≈2iv‖L3 . 2

i
2 ‖P≈2iv‖L2 .

2.2.4. Helicity. We mention that besides the kinetic energy E , the 3D Euler system also
posses one more nontrivial invariant [71] which is not coercive but has deep geometric
meaning [131]; this is the helicity

Hω,ω(t) =

ˆ
T3

v(·, t) · ω(·, t) ,

where ω = ∇× v is the vorticity. Here we use the generalized helicity notation [4]

Hf,g =

ˆ
T3

(
∇× (−∆)−1f

)
· g dx ,(2.18)

7For a dyadic shell model of the 3D Euler equations, for which the energy flux is unidirectional, it was shown
in [31] the threshold α = 5/6 is sharp.
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which will appear several times in Section 2.3. As opposed to the kinetic energy, which is
well-defined for weak solutions in the sense of Definition 2.3, the fluid helicity requires a
minimal regularity of v ∈ L2

t Ḣ
1/2
x to be well-defined, via the duality pairing between Ḣ1/2

and Ḣ−1/2. However, it is not known whether for any weak solution v ∈ L3
t Ḣ

1/2
x we have

d

dt
Hω,ω = 0 .

Due to [29], we know that if v ∈ L3
t (B

2/3
3,c0,x

∩ Ḣ1/2
x ), then the fluid helicity for that weak

solution is a constant function of time. In terms of rigidity, this condition is expected to be
sharp. An alternative condition in which velocity and vorticity obey different assumptions
was obtained in [63].

On the other hand, in terms of flexibility we note that for the weak solutions constructed
for part (b) of Theorem 2.4, the helicity is not well-defined, as C1/3 does not embed into
Ḣ

1/2. In fact, to date the following question remains widely open:

Conjecture 2.7 (Helicity flexibility). There exists a weak solution v of the 3D Euler equa-
tions (2.16), with v ∈ CtḢα

x for some α ≥ 1/2, such that the helicityHω,ω is not a constant
function of time.

The difficulty is that on the one hand for the weak solutions obtained from the convex
integration constructions in Section 3, the kinetic energy can be always made to be a non-
constant function of time; on the other hand, if one works on the Hölder scale Cα and
wishes to have a well-defined helicity, then one has to take α ≥ 1/2; but in turn this implies
that the kinetic energy must be conserved due to part (a) of Theorem 2.4. It is conceivable
that in order to attack Conjecture 2.7 one has to work on the L2 based Sobolev scale
L∞t H

α
x , and that the intermittent convex integration which we will describe in Section 4

should be employed instead. Even so, Conjecture 2.7 is strictly harder than Conjecture 2.6.

2.3. The MHD equations and Taylor’s conjecture. The incompressible MHD equations
are the classical macroscopic model coupling Maxwell’s equations to the evolution of an
electrically conducting incompressible fluid [12, 52]. The unknowns are the velocity field
v, magnetic field B, and the scalar pressure p, which we take to have zero mean on T3.
The ideal, i.e. inviscid and non-resistive, version of these equations is

∂tv + (v · ∇)v − (B · ∇)B +∇p = 0(2.19a)

∂tB + (v · ∇)B − (B · ∇)v = 0(2.19b)
div v = divB = 0.(2.19c)

The viscous (ν > 0) and resistive (µ > 0) MHD equations are given by

∂tv + (v · ∇)v − (B · ∇)B +∇p = ν∆v(2.20a)

∂tB + (v · ∇)B − (B · ∇)v = µ∆B(2.20b)
div v = divB = 0.(2.20c)

Setting B = 0 in (2.19) we recover the Euler equations (2.16), while letting B = 0 in
(2.20) we arrive at the Navier-Stokes equations (2.1). As such, the local in time theory
for smooth solutions of the MHD equations, as well as the global in time theory for weak
solutions, closely mimics the one for the Euler and Navier-Stokes systems; see [69, 148].
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2.3.1. Ideal MHD conservation laws and weak solutions. The ideal MHD equations (2.19)
posses a number of global invariants [101], two of which are obtained via a direct analogy
with the Euler equation, namely the total energy and the cross helicity, and one more which
is intrinsic to the Lie-transport of the magnetic field (2.19a), namely the magnetic helicity.
The fact that these conservation laws are not defined at the same level of spatial regularity,
makes the analysis in a sense more challenging than for 3D Euler.

The total energy

E(t) =
1

2

ˆ
T3

|v(·, t)|2 + |B(·, t)|2 .(2.21)

gives the only known coercive conserved quantity (and in fact the Hamiltonian [173, 101]
of the system), for smooth solutions of (2.19). In order to verify that E(t) is a constant
function of time, it is convenient to rewrite (2.19) in terms of the Elsässer variables

z+ = v +B and z− = v −B ,(2.22)

so that the system (2.19) becomes

∂tz± + (z∓ · ∇)z± +∇q = 0 , q = p+
|B|2

2
,(2.23a)

div z± = 0 .(2.23b)

Testing the momentum equation for z± with z±, integrating over T3, and using that both
z+ and z− are incompressible, similarly to (2.17) we obtain that if v,B ∈ C1

t C
1
x (and thus

z± ∈ C1
t C

1
x), then

d

dt

ˆ
T3

|z+(·, t)|2 =
d

dt

ˆ
T3

|z−(·, t)|2 = 0 .(2.24)

On the other hand, from (2.22) we have that

E(t) =
1

4

ˆ
T3

|z+(·, t)|2 + |z−(·, t)|2(2.25)

which combined with (2.24) shows that E is conserved for smooth solutions.
Besides the total energy, the MHD system posses one more Elsässer invariant [2], the

cross helicity

Hω,B =

ˆ
T3

v(·, t) ·B(·, t) =
1

4

ˆ
T3

|z+(·, t)|2 − |z−(·, t)|2 .(2.26)

Here and throughout the paper we use the notation in (2.18). Again, (2.24) shows that
Hω,B is conserved for smooth solutions.

We note that both E andHω,B are bounded functions of time as soon as v,B ∈ L∞t L2
x,

and in view of the positivity of the total energy, any meaningful notion of solution for
(2.19) should at the very least assume this amount of regularity. This motivates the notion
of weak solution for the ideal MHD system (in analogy to Definition 2.3 for Euler):

Definition 2.8 (Weak/distributional solution). We say (v,B) ∈ L∞(I;L2(T3)) is a weak
solution of the ideal MHD system (2.19) on an open interval I ⊂ R, if for any t ∈ I the
vector fields u(·, t) and B(·, t) are divergence free in the sense of distributions, they have
zero mean, and (2.19) holds in the sense of distributions, i.e.ˆ

R

ˆ
T3

∂tϕ · v +∇ϕ : (v ⊗ v −B ⊗B)dxdt = 0

ˆ
R

ˆ
T3

∂tϕ ·B +∇ϕ : (v ⊗B −B ⊗ v)dxdt = 0
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hold for all divergence free test functions ϕ ∈ C∞0 (I;C∞(T3)).

The validity of (2.24) for weak solutions of the ideal MHD system gives rise to an
Onsager-type analysis, which we discuss in Section 2.3.2 below.

As alluded to at the beginning of the section, the ideal MHD system has one more
conservation law, the magnetic helicity, which is defined as [177, 178, 131]

HB,B(t) =

ˆ
T3

A(·, t) ·B(·, t) ,(2.27)

where A is a vector potential for B, i.e. a zero mean periodic field such that curlA = B.
As we work on the simply connected domain T3 and B is incompressible, the value of
HB,B(t) is independent of the gradient part of A; thus A may be chosen without loss of
generality such that divA = 0, so that A = ∇× (−∆)−1B. Thus, the definition (2.27) is
consistent with the definition (2.18) introduced earlier.

In order to see that for smooth solutions (v,B) of (2.19) we have

d

dt
HB,B = 0 ,(2.28)

one may proceed as follows. Since the Biot-Savart operator B 7→ A = ∇ × (−∆)−1B
is self-adjoint, and since for divergence free v and B we may rewrite B · ∇v − v · ∇B =
∇× (v ×B), we have

d

dt
HB,B = 2

ˆ
T3

(∇× (−∆)−1B) · ∂tB

= 2

ˆ
T3

(∇× (−∆)−1B) · (∇× (v ×B))

= 2

ˆ
T3

∇× (∇× (−∆)−1B) · (v ×B)

= 2

ˆ
T3

B · (v ×B)︸ ︷︷ ︸
≡0

= 0 .(2.29)

In the second to last equality we have used the identity∇× (∇×B) = ∇(∇ ·B)−∆B.
We emphasize that as opposed to the total energy and the cross helicity which require

(v,B) ∈ L∞t L2
x in order to be well-defined, the magnetic helicity is well-defined as soon

as B ∈ L∞t Ḣ
−1/2
x , a negative level of regularity. This difference is manifested in the

context of reconnection events in magneto-hydrodynamic turbulence, via a phenomenon
whose mathematical aspects is described by Taylor’s conjecture [168, 169, 11, 132], see
Section 2.3.4 below.

Remark 2.9 (2D Euler and SQG). This situation encountered here in which the hydrody-
namic model has conservation laws at different levels of regularity (E vs HB,B), is not
uncommon. Another occurrence is in the context of the 2D SQG and 2D Euler equations.
For both of these equations smooth solutions conserve the L2 norm (in fact all the Lp

norms with 1 ≤ p ≤ ∞) of the temperature θ (vorticity for the potential velocity [21])
for SQG, respectively the scalar vorticity ω = ∇⊥ · u for 2D Euler. With respect to these
so-called Casimirs, the respective Hamiltonians of these systems lie at a negative level of
regularity: ‖θ‖Ḣ−1/2 for SQG, respectively ‖ω‖Ḣ−1 = ‖u‖L2 for 2D Euler. As such, much
of the discussion presented in this paper concerning the MHD system has an analogue in
the context of the SQG [96, 21, 94] and 2D Euler equations [29, 30].
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2.3.2. Onsager-type dichotomies. Similarly to the Onsager conjecture for the 3D Euler
equations, it is natural to analyze the regularity threshold at which weak solutions of (2.19)
(in the sense of Definition 2.8) respect the ideal MHD conservation laws for the energy
E , the cross helicity Hω,B , and the magnetic helicity HB,B [1, 2]. Given a Banach scale
used to measure the regularity of weak solutions, we wish to identify a critical/threshold
exponent, above which all weak solutions obey the given conservation law (rigidity), while
below this exponent there exist weak solutions which violate it (flexibility).8

Conjecture 2.10 (Onsager-type conjecture for the Elsässer energies).
(a) Any weak solution (v,B) of the ideal MHD system (2.19) belonging Cαx,t, respectively

L3
tB

α
3,∞,x, for α > 1/3, conserves the total energy E and the cross helicityHω,B .

(b) For any α < 1/3 there exist weak solutions (v,B) ∈ Cαx,t, respectively L3
tB

α
3,∞,x,

which dissipate the total energy E , and for which the cross helicity Hω,B is not a
constant function of time.

The statement of the corresponding dichotomy for the magnetic helicity is slightly mod-
ified, to avoid spaces of negative regularity, which are not consistent with Definition 2.8. In
particular, in the flexibility statement, we relax the integrability exponent not the regularity
assumptions of the weak solutions.

Conjecture 2.11 (Onsager-type conjecture for the magnetic helicity).
(a) Any weak solution (v,B) of the ideal MHD system (2.19) belonging to L3

tL
3
x , respec-

tively L3
tB

0
3,c0,x, conserves the magnetic helicityHB,B .

(b) For any p ∈ [2, 3), there exist weak solutions (v,B) ∈ L3
tL

p
x, respectively L3

tB
0
p,∞,x,

for which the magnetic helicityHB,B is not a constant function of time.

The rigidity parts of the above conjectures are discussed in Section 2.3.3 below, while
progress towards the flexibility parts is outlined in Section 5. As opposed to the Onsager
conjecture for 3D Euler, which is by now a theorem, the flexibility statements part (b) of
Conjecture 2.10 and part (b) of Conjecture 2.11 remain to date open. We only mention at
this stage that for B ≡ 0 and any v as constructed in part (b) of Theorem 2.4, the resulting
pair (v,B) is a weak solution with the regularity required by the flexible part of Conjec-
ture 2.10, and for which the total energy is dissipated. However, for any such solution the
cross helicity and the magnetic helicity are trivial since B is trivial (i.e., identically equal
to zero) and thusHB,B = Hω,B = 0 are constants in time.

2.3.3. The proof of rigidity in Onsager-type conjectures for MHD. We start by discussing
part (a) of Conjecture 2.10. Recall that the conservation of E andHω,B is equivalent to the
conservation of the Elsässer energies, i.e. the validity of (2.24). Inspecting the momentum
equation in (2.23) we see that the only difference to 3D Euler is that z∓ appears as the
transport velocity for the z± evolution. With this modification in mind, one may define
two fluxes Πκ+ (for the z+ evolution) and Πκ− (for the z− evolution) in analogy to (2.8).
The energy equality again boils down to whether limκ→∞

´ T
0

Πκ± = 0 or not. The former
question has been resolved by repeating the argument in [45], which gives a bound for the
commutator Cκ(z∓, z±) as in (2.10). This proof was carried through in [26] where it is
shown that |Πκ±| . κ1−3α ‖z+‖3Bα3,∞,x + κ1−3α ‖z−‖3Bα3,∞,x and thus the conservation of

energy and cross helicity holds for any weak solutions (v,B) ∈ L3
tB

α
3,∞,x with α > 1/3.

We also refer the reader to [100] where the methods of [29] and used to establish the
endpoint case for rigidity in Conjecture 2.10, namely v ∈ L3

tB
1/3
3,c0,x

.

8See [104], where this question is posed for general nonlinear, supercritical, Hamiltonian evolution equations.
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Concerning the rigidity part (a) of Conjecture 2.11, we note that in the integrand of
(2.29) is zeroth order in B and v. This suggests that justifying (2.29) for weak solutions
of (2.19), should require less regularity on v and B, than was required in order to justify
(2.24). Indeed, it is shown in [26] that HB,B is conserved by weak solutions of (2.19) as
soon as (v,B) ∈ Bα3,∞ with α > 0, so that the threshold regularity is α = 0. The idea
is as follows. We want to use a version of (2.29), with B replaced by P≤κB. Then, the
conservation in time ofHB,B is equivalent to the vanishing as κ→∞ (integrated in time)
of the magnetic flux term, defined in analogy to (2.8) as

πκ(v,B) := 2

ˆ
T3

P≤κB · (P≤κ(v ×B)− (P≤κv × P≤κB)) .

Using the commutator estimate of [41] (see (2.10)), one then immediately obtains

|πκ(v,B)| . κ−3α ‖v‖Bα3,∞,x ‖B‖
2
Bα3,∞,x

which concludes the proof when α > 0, upon integrating in time and passing κ → ∞.
The endpoint case α = 0 was reached in [100, 1, 76], where it is proven that magnetic
helicity is conserved for any weak solution (in the sense of Definition 2.8) as soon as
(v,B) ∈ L3

x,t ∩ C0
weak,tL

2
x. The slightly sharper statement concerning rigidity for the

endpoint Besov space stated in part (a) of Conjecture 2.11 may be achieved by repeating the
argument of [29] to establish a bound for the magnetic flux at dyadic scales: |π2j (v,B)| .∑∞
i=1 2−

2/3|j−i|‖P≈2iv‖L3‖P≈2iB‖2L3 , which is nearly the same as (2.12), except that the
2i term on the right side is absent.

We note that for the 2D MHD equations much stronger types of rigidity may be estab-
lished (when compared to the 3D case discussed in this paper), and we refer the interested
readers to [76, 77, 78].

2.3.4. Taylor’s conjecture for weak ideal limits. While turbulent low-density plasma con-
figurations are observed to dissipate the total energy E [127, 50], it is commonly accepted
knowledge in the plasma physics literature, and an experimental fact, that the magnetic
helicity HB,B is conserved [139] in the infinite conductivity limit. This striking phenom-
enon manifests itself mathematically as Taylor’s conjecture [168, 169, 11, 132]. Here we
discuss its rigorous foundations, following [26, 77].

We start from the viscous and resistive MHD system (2.20), where ν, µ > 0. In analogy
to the energy inequality (2.5) for the Navier-Stokes equations, sufficiently smooth solutions
of (2.20) satisfy the following energy inequality for the total energy E defined in (2.21):

E(t) + ν

ˆ t

s

‖∇v‖2L2 + µ

ˆ t

s

‖∇B‖2L2ds ≤ E(s) ,(2.30)

for t ≥ s. Based on (2.30) it is classical [69] to build a theory of Leray-Hopf weak
solutions for (2.20); these are solutions with v,B ∈ C0

weak,tL
2
x ∩L2

t Ḣ
1
x which obey (2.30)

for a.e. s ≥ 0 and all t > s. In physically realistic regimes, we are interested in ν, µ� 1;
however, in the ideal limit (ν, µ) → (0, 0), (2.30) only gives bounds for the L∞t L

2
x norms

of v and B. Following [77, Definition 1.1] we recall the definition:

Definition 2.12 (Weak ideal limit). Let (νj , µj) → (0, 0) be a sequence of vanishing vis-
cosities and resistivities. Associated to a sequence of divergence free initial data converg-
ing weakly (v0,j , B0,j) ⇀ (v0, B0) in L2(T3), let (vj , Bj) be a sequence of Leray-Hopf



CONVEX INTEGRATION CONSTRUCTIONS IN HYDRODYNAMICS 15

weak solutions of (2.20). Any pair of functions (v,B) such that (vj , Bj)
∗
⇀ (v,B) in

L∞(0, T ;L2(T3)), are called a weak ideal limit of the sequence (vj , Bj).9

Taylor’s conjecture states that weak ideal limits of MHD Leray-Hopf weak solutions
conserve magnetic helicity. This was proven recently in [77], and we recall the statement:

Theorem 2.13 (Taylor’s conjecture; Theorem 1.2 in [77]). Suppose (u,B) ∈ L∞t L
2
x is

a weak ideal limit of a sequence of Leray-Hopf weak solutions. Then HB,B is a con-
stant function of time. In particular, finite energy weak solutions of the ideal MHD equa-
tions (2.19) which are weak ideal limits, conserve magnetic helicity.

At the heart of the proof of Theorem 2.13 given in [77] (who also consider domains
which are not simply connected) lies the observation that for µ, ν > 0, by interpolation we
have that MHD Leray-Hopf weak solutions lie in L

10/3
t,x , which is a stronger space than the

L3
t,x which is required in part (a) of Conjecture 2.11. Thus, in analogy to the proof of (2.3)

discussed earlier, at fixed µj , νj > 0 one may justify the magnetic helicity equality

HBj ,Bj (t) + 2µj

ˆ t

0

ˆ
T3

(∇×Bj) ·Bj = HBj ,Bj (0) .(2.31)

The bounds provided by (2.30) immediately imply that the second term on the left side of
(2.31) may be bounded by (tµj)

1/2E(0), and thus this term vanishes in the ideal limit µj →
0. The proof of Theorem 2.13 is then concluded by showing that due to the compactness
of the embedding L2 ⊂ Ḣ−

1/2 for the subsequential limits in Definition 2.12 we have
Bj → B strongly in CtḢ

−1/2
x , and so Aj → A strongly in CtḢ

1/2
x . By the definition of

magnetic helicity in (2.27), this information is sufficient to show that HBj ,Bj → HB,B
uniformly in time, and thus letting j →∞ in (2.31) concludes the proof.10

Remark 2.14. In closing, we note that Theorem 2.13 does not contradict part (b) of Con-
jecture 2.11. Theorem 2.13 does indeed show that if (v,B) is a weak ideal limit (cf. Defini-
ton 2.12) and also a weak solution of the ideal MHD equations (cf. Definiton 2.8), then it
conserves magnetic helicity, although it may have regularity as weak as L∞t L

2
x. This is far

less spatial integrability than the L3
tL

3
x condition required in part (a) of Conjecture 2.11,

which points to the fact that weak ideal limits are seeing a ghost of the energy inequal-
ity (2.30). Nonetheless, the flexible part of Conjecture 2.11 is that there may exist weak
solutions of ideal MHD which do not arise in the vanishing viscosity/resistivity limit, leav-
ing open the possibility that for such solutions HB,B is not constant in time. This specific
result is established in Theorem 5.2 below.

3. CONVEX INTEGRATION AND NASH SCHEMES FOR THE EULER EQUATIONS

While the rigid part of the Onsager conjecture (part (a) of Theorem 2.4) is essentially
understood since the 1990’s, systematic progress towards the resolution of the flexible
part (b) did not occur until the 2010’s and the groundbreaking works [55, 58] of De Lellis
and Székelyhidi Jr. These works have developed the mathematical framework of the L∞t,x
and the C0

t,x flavors of convex integration in fluid dynamics, and have laid out some of

9Note however that a weak ideal limit (v,B) need not be a weak solution of the ideal MHD equations in the
sense of Definition 2.8, for the same reason that a vanishing viscosity limit of Leray-Hopf weak solutions of the
3D Navier-Stokes equations need not be a weak/distributional solution of the 3D Euler equations; only measure
valued solutions are known to be achieved as subsequential limits [66].

10We note that similar arguments were previously used to prove the conservation of the Hamiltonian for the
2D Euler [30] and 2D SQG equations [43], for weak solutions which arise from vanishing viscosity limits.
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the key ideas which have eventually led to the solution of the flexible part of the Onsager
conjecture by Isett [93] (in the context of solutions with compact support in time); and in
a subsequent work by B.-De Lellis-Székelyhidi-V. [20] (for dissipative weak solutions).
This sequence of developments has already been discussed in great detail in the review
papers [57, 162, 60, 61, 22], so in this section, we only give a succinct presentation. We
emphasize that the L∞t,x convex integration scheme used to prove Theorems 3.1 and 3.2 has
a number of key similarities, but is also conceptually different, from the Cαt,x Nash-type
convex integration method used to prove Theorems 3.3, 3.4, and 3.5.

3.1. The flexible part of the Onsager conjecture: first paradoxical examples. In the
seminal work [147], Scheffer demonstrated the existence of non-trivial weak solutions of
the 2D Euler system (2.16), which lie in L2

x,t and have compact support in time and space!
Strictly speaking the weak solutions of Scheffer are not dissipative, as dissipative solutions
are required to have non-increasing energy; nonetheless, [147] is considered to be the first
result concerning the flexible part (b), of the Onsager conjecture.

A different construction of a nontrivial weak solution to the 2D Euler equations, which
are periodic in space and have compact support in time, was given by Shnirelman in [153].
The existence of dissipative weak solutions to the Euler equations was first proven by
Shnirelman in [152], where he constructions weak solutions which lie in L∞t L

2
x.

These results, which were initially referred to as the Scheffer-Shnirelman paradox, rep-
resent not just a proof of non-uniqueness for weak solutions to the Euler equations, but a
drastic failure of determinism within this class of solutions.

3.2. The L∞x,t results. The first example of a bounded in space and time, dissipative weak
solution of the Euler equations (one for which the kinetic energy is a non-increasing func-
tion of time), in any dimension n ≥ 2, was obtained in a groundbreaking work by De
Lellis-Székelyhidi Jr. [55]. Their main result is:

Theorem 3.1 (Theorem 4.1 in [55]). For any open bounded space-time domain Ω ⊂ Rn×
R, there exists a weak solution of the Euler equations (2.16) (v, p) ∈ L∞(Rn × R), in the
sense of Definition 2.3, such that |v(x, t)| = 1 for a.e. (x, t) ∈ Ω, and v(x, t) = p(x, t) =
0 for a.e. (x, t) ∈ Ωc. Moreover, there exists a sequence of functions (vq, pq, fq) ∈ C∞0 (Ω)
such that:

• ∂tvq + div (vq ⊗ vq) +∇pq = fq , and ∇ · vq = 0
• fq → 0 in H−1 as q →∞
• ‖vq‖L∞ + ‖pq‖L∞ is uniformly bounded in q
• (vq, pq)→ (v, p) in Lr for any r <∞.

The first part of the theorem establishes the existence of a weak solution which is
compactly supported in space and time, while the second part is a manifestation of the
proof: the limiting weak solution (v, p) is obtained from a smooth approximating sequence
(vq, pq), which solves a relaxed Euler system, whose right side fq vanishes in a weak sense
as q → ∞. This paper also introduced the ideas of a subsolution and of a Reynolds stress
for the Euler system (2.16). Maybe more important than the result itself, which was later
improved by the same authors, is the fact that [55] relates the construction of paradoxi-
cal weak solutions of the Euler equations with a classical technique in geometry, convex
integration, and the notion of h-principles for soft partial differential equations.

The method of convex integration can be traced back to the work of Nash, who used it
to construct exotic counter-examples to the C1 isometric embedding problem [135]. The
method was later refined by Gromov [86] and it evolved into a general method for solving
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soft/flexible geometric partial differential equations [70]. In the influential paper [134],
Müller and Šverák adapted convex integration to the theory of differential inclusions, see
also [102], leading to renewed interest in the method as a result of its greatly expanded
applicability. Inspired by the works [134, 102], and building on the plane-wave analysis
introduced by Tartar [165, 166] and Di Perna [64], De Lellis and Székelyhidi Jr., in [55],
applied convex integration in the context of bounded weak solutions to the Euler equations.

We refer the interested reader to the review papers [57, 162, 61] for a detailed discus-
sion connecting convex integration in the context of differential inclusions, and also h-
principles, to the type of constructions that were initiated by [55]. In particular, analyzing
the toy example presented in [57, Section 5.1] is particularly accessible, yet insightful.

The work [55], has since been extended and adapted by various authors to various prob-
lems arising in mathematical physics [56, 46, 155, 174, 161, 163, 39, 6, 36, 37, 38, 47, 27],
just to mention a few. Here we single out the work [56] which considers the question of
whether imposing additional admissibility criteria on the weak solutions of the Euler equa-
tions could rule out the construction of examples such as those in Theorem 3.1. Physically
motivated admissibility criteria, based on energetic arguments such as those discussed in
Section 2 are (ordered by least restrictive to most restrictive):

(i) weak energy inequality: the kinetic energy satisfies E(t) ≤ E(0) for all t > 0;
(ii) strong energy inequality: the kinetic energy satisfies E(t) ≤ E(s) for all t > s > 0;

(iii) local energy inequality: the distribution ∂t
|v|2
2 + div (v(p + |v|2

2 )), defined as soon
as for v ∈ L3

loc,t,x, is non-negative.

The main result of [56] may be summarized as follows:

Theorem 3.2 (Theorem 1 in [56]). For any dimension n ≥ 2, there exists bounded, com-
pactly supported divergence-free initial data v0 ∈ L∞x ∩L2

x, for which there exist infinitely
many weak solutions v ∈ L∞x,t ∩ C0

t L
2
x of the Euler equations, such that the admissibility

conditions (i), (ii), and (iii) hold.

This result shows that “wild” weak solutions of the Euler equations (as constructed by
Theorem 3.1 and Theorem 3.2) cannot be ruled by the local energy inequality. Indeed, the
Euler equations are not scalar conservation laws!

3.3. The C0+
x,t result: a Nash-type convex integration scheme. The L∞x,t constructions

described in the previous subsection are based on writing the Euler equations as a differen-
tial inclusion, and then applying a machinery from Lipschitz differential inclusions, which
either uses a Baire-category argument, or equivalently, an explicit convex integration ap-
proach. These methods face a serious difficulty in constructing continuous weak solutions
of (2.16), since it seems impossible to extract a uniform continuity estimate for approxi-
mating sequences (vq, pq). The breakthrough was made by De Lellis and Székelyhidi Jr.
in their seminal papers [58, 59], where they developed a new convex integration scheme,
motivated and resembling in part the earlier schemes of Nash and Kuiper [135, 108]. In
[58], De Lellis and Székelyhidi Jr. prove the existence of continuous weak solutions v to
the Euler equations satisfying a prescribed kinetic energy profile, which in particular may
be decreasing:

Theorem 3.3 (Theorem 1.1 in [58]). Assume e : [0, 1] → (0,∞) is a smooth function.
Then there is a continuous vector field v : T3 × [0, 1] → R3 and a continuous scalar field
p : T3 × [0, 1] → R which solve the incompressible Euler equations (2.16) in the sense of
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distributions, and such that

e(t) =
1

2

ˆ
T3

|v(·, t)|2(3.1)

for all t ∈ [0, 1].

The proof of Theorem 3.3 departs from the arguments based on functional analysis,
which were used to construct bounded weak solutions, and implements a hard analysis
scheme, in which the constructions of the building blocks are not plane waves anymore,
instead they are adapted to the geometry of steady states of the Euler equations (Beltrami
flows), and the estimates involve precise singular integral bounds and Schauder estimates.

3.3.1. Overview of the proof of Theorem 3.3 and of Nash-type convex integration schemes.
The summary given here is similar to the one we have given in [22, Section 4.1].

For each q ∈ N0 by induction one constructs smooth functions (vq, R̊q), which solve
the Euler-Reynolds system

∂tvq + div (vq ⊗ vq) +∇pq = div R̊q(3.2a)
div vq = 0 .(3.2b)

The pressure pq is always given by pq = (−∆)−1div div (vq ⊗ vq − R̊q). The stress R̊q is
symmetric and has zero trace (since its trace is absorbed in to the pressure term). The goal
is to construct the sequence (vq, R̊q) such that R̊q converges uniformly to 0 as q →∞, and
that at the same time the sequence vq converges uniformly to a Hölder continuous weak
solution to the Euler equations, which satisfies (3.1). The iterates (vq, R̊q) constructed via
the convex integration scheme are approximately the spatial averages of the final solution
v at length scales λ−1

q , which are decreasing with q. In view of the analogy to theories in
fluid turbulence, one refers to the symmetric tensor R̊q as the Reynolds stress.

At each inductive step, the goal is to design a perturbation

wq+1 = vq+1 − vq(3.3)

such that the new velocity vq+1 and pressure pq+1 solve the Euler-Reynolds system (3.2)
at level q+ 1, but with a smaller Reynolds stress R̊q+1. Subtracting the equations for vq+1

and vq we obtain the following decomposition of the Reynolds stress at level q + 1:

div R̊q+1 −∇(pq+1 − pq)(3.4)

= div (wq+1 ⊗ wq+1 + R̊q)︸ ︷︷ ︸
oscillation error

+ ∂twq+1 + vq · ∇wq+1︸ ︷︷ ︸
transport error

+wq+1 · ∇vq︸ ︷︷ ︸
Nash error

.

Note that not all the terms on the right side of (3.4) are written in divergence form, which
necessitates the use of a negative one order linear Fourier multiplier operator R which
formally acts as div−1 and outputs symmetric traceless matrices.11

For an increasing sequence of frequency parameters {λq}q≥0, the approximate solutions
at level (vq, R̊q) are essentially localized at Fourier frequencies . λq . On the other hand,
the perturbation wq+1 = vq+1 − vq is constructed as a sum of highly oscillatory building
blocks (denoted by Wξ in (3.5) below) which live at the high frequency λq+1 � λq .

11For v of zero mean one may define (Rv)k` = ∆−1(∂kv
` + ∂`v

k)− 1
2

(
δk` + ∂k∂`∆

−1
)

div ∆−1v.
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Roughly speaking, the principal part of the perturbation, which we label as w(p)
q+1, will

be of the form

w
(p)
q+1 ≈

∑
ξ

aξ(R̊q)Wξ ,(3.5)

where the ξ range over a finite set, the Wξ represent the building blocks oscillating at
frequency λq+1, and the coefficient functions aξ are chosen such that∑

ξ

a2
ξ(R̊q)

 
T3

Wξ⊗̊Wξ = −R̊q .(3.6)

Here ⊗̊ denotes the trace-free part of the tensor product. The amplitude functions aξ are
designed in order to obtain a cancellation between the low frequencies of the quadratic
term w

(p)
q+1 ⊗ w

(p)
q+1 and the old Reynolds stress error R̊q , thereby reducing the size of

the low frequency part of the oscillation error. More precisely, if we take into account that
Wξ⊗Wξ′ are chosen to have no low frequency (meaning λq) contribution when ξ 6= ξ′, the
need to minimize the low frequency part of the oscillation error, R̊q+P.λq (w

(p)
q+1⊗w

(p)
q+1),

dictates the choice (3.6).
To leading order, with respect to the large parameter λq+1, the zero mean T3-periodic

building blocks Wξ are chosen to be solutions of the stationary Euler equations, i.e. they
satisfy div (Wξ ⊗ Wξ) + ∇P = 0 for a suitable pressure P , and divWξ = 0. The
importance of this choice becomes apparent when one takes into account the ansatz (3.5),
and uses it to compute the high frequency part of the oscillation error on the right side
of (3.4), namely P�λq (w

(p)
q+1 ⊗ w

(p)
q+1). The building blocks used in [58, 59], are the so-

called Beltrami waves, which are families of complex eigenfunctions of the curl operator
at the same eigenvalue, λq+1. Starting with [51], the later works [20, 92, 93] use the
so-called Mikado flows, which are straight pipe flows with pairwise disjoint supports (see
Section 3.5). These building blocks are used in an analogous fashion to the Nash twists
and Kuiper corrugations employed in the C1 embedding problem [135, 108].

The principal part of the perturbation presented in (3.5) needs to be modified in order to
minimize the transport error in (3.4), i.e., to ensure it is the divergence of a small Reynolds
stress. This is achieved by flowing the building blocks Wξ along the ODE flow generated
by vq (we will return to this issue in Section 3.4). Additionally, in order to ensure that
wq+1 is divergence free, one introduces a corrector w(c)

q+1 which ensures that wq+1 =

w
(p)
q+1 +w

(c)
q+1 is divergence free. The size of this incompressibility corrector w(c)

q+1 is much

smaller than the size of w(p)
q+1, roughly by a factor of λqλ−1

q+1, because the building blocks
Wξ are divergence-free by definition, and the aξ oscillate at the old frequency, λq .

In order to ensure that the inductive scheme converges to a Hölder continuous velocity
v with Hölder exponent > 0, the perturbation’s amplitude is required to satisfy the bound

‖wq+1‖C0
t,x
≤ λ−βq+1(3.7)

for some β > 0. Here, we note that it is convenient to use a super-exponentially growing
sequence of frequencies λq which obeys λq+1 ≈ λbq , for some b > 1. In view of (3.6), this
necessitates that the Reynolds stress R̊q obeys the estimate∥∥∥R̊q∥∥∥

C0
t,x

≤ λ−2β
q+1 .(3.8)
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Consistent with the definition

vq = v0 +
∑
q′<q

wq′ ,(3.9)

and with the bound (3.7), the scheme of [58] also propagates the estimate

‖∇vq‖C0
t,x

. λ1−β
q .(3.10)

It is not hard to see that if the bounds (3.7)–(3.10) are propagated throughout the scheme,
then as q →∞ we have that (vq, R̊q)→ (v, 0) uniformly, where v is a Hölder continuous
weak solution of the Euler equations. Indeed, for any θ ∈ (0, β), the following series of
increments is summable∑

q≥0

‖wq+1‖C0
tC

θ
x
.
∑
q≥0

‖wq+1‖1−θC0
t,x
‖∇wq+1‖θC0

t,x

.
∑
q≥0

λ
−β(1−θ)
q+1 λ

θ(1−β)
q+1 .

∑
q≥0

λθ−βq+1 . 1

where the implicit constant is universal. Thus, we may define a limiting function v =
limq→∞ vq which lies in C0([0, 1];Cθ). Moreover, v is a weak solution of the Euler equa-
tion (2.16), since by (3.8) we have that limq→∞ R̊q = 0 in C0

t,x, and vq ⊗ vq → v ⊗ v
strongly in C0

t,x.
The main work is now to prove that for a velocity perturbation wq+1 of the form (3.5),

and with amplitude functions that satisfy (3.6), the bounds stated in (3.7)–(3.10) are indeed
attainable inductively for all q ≥ 1. We note that if the building blocks are normalized so
that ‖Wξ‖C0

t,x
≈ 1, then it follows from (3.5)–(3.6) and (3.8) that the principal part of the

velocity increment already satisfies the bound (3.7). Since the incompressibility corrector
is even smaller, (3.7) is expected to hold. The difficult part is to prove (3.8). On view
of (3.4), this amounts to bounding the oscillation error, the transport error, and the Nash
error. This is the hard analysis part of the construction.

As a demonstration of the typical scalings present in convex integration schemes for the
Euler equations, let us consider the Nash error. Heuristically, since wq+1 is of frequency
λq+1 � λq′ for every q′ ≤ q, and by appealing to (3.9), we have that wq+1 · ∇vq lives at
frequency λq+1, and thus

‖R (wq+1 · ∇vq)‖C0
t,x

. λ−1
q+1 ‖wq+1‖C0

t,x
‖∇vq‖C0

t,x

where we recall thatR is a −1 order Fourier multiplier which inverts the divergence oper-
ator. Applying (3.7) and (3.10), for β ∈ (0, 1) we obtain

‖R (wq+1 · ∇vq)‖C0
t,x

. λ−1−β
q+1 λ1−β

q ≈ λ−2β
q+2λ

1−β−b(1+β)+2βb2

q(3.11)

by using that λq+1 ≈ λbq . Thus, in order to ensure that R̊q+1 satisfies the bound (3.8) with
q replaced by q + 1, we require that for β ∈ (0, 1) and b > 1 we have

1− β − b(1 + β) + 2βb2 = (1− b)(1− β − 2βb) < 0 .

Thus, from this simple heuristic, we see that if b > 1 is taken to be arbitrarily close to 1,
then the Hölder regularity exponent β may be taken to be arbitrarily close to the Onsager-
critical Hölder regularity exponent, i.e. β < 1/3.

The construction described above provides a clear enemy towards reaching the desired
Onsager 1/3 threshold: the transport and oscillation errors in (3.4). Designing awq+1 which
minimizes these two errors simultaneously turns out to be a very difficult problem. This
realization stimulated a series of advancements, through the works [90, 17, 15, 18, 51], in
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which the authors incorporated more an more of the specifics of the 3D Euler equation into
the convex integration scheme (by designing better Wξ and aξ), in order to obtain higher
and higher Hölder regularity exponents. We mention a couple of these developments next.

3.4. Climbing the Onsager ladder. The first breakthrough after [58, 59] was to produce a
dissipative weak solution of the Euler system with a Hölder regularity exponent β with β <
1/5; this was achieved by Isett [90]; later simplified in [19] by the first author, De Lellis, and
Székelyhidi; the two papers resulting in the joint work [17]. The main improvement comes
from obtaining a better bound for the transport error in (3.4). In the proof of Theorem 3.3
one did not keep track of precise estimates for the material derivative of the Reynolds
stress (∂t + v` · ∇)R̊q . Here v` is a mollification of vq at a length scale ` which lies in
between λ−1

q+1 and λ−1
q .12 The realization of the 1/5 schemes is that material derivatives

are better behaved than either regular spatial or temporal derivatives: due to classical ODE
arguments, a material derivatives should cost a factor proportional to the Lipschitz norm of
vq , i.e. λ1−β

q in view of (3.10). Compare this with a spatial derivative, whose cost is λq �
λ1−β
q . Taking advantage of this observation, one can improve the estimate on the material

derivative of R̊q , and thus improve the bounds for the transport error. Optimizing this new
transport bound with the oscillation error yields the improved 1/5− Hölder exponent.

The 1/5-scheme is very versatile, and it was successfully used to construct weak so-
lutions of 3D Euler with compact support on the whole space [95], to establish the non-
uniqueness of weak solutions for: the 3D quasi-geostrophic equations [137], the 2D SQG
equations [21, 94], active scalar equations with non-odd constitutive laws [96], and the hy-
podissipative Navier-Stokes equations [40] (this result was later improved in [62] to take
into account the techniques used to prove Theorem 3.5 below).

In [15], the first author noted that one can construct infinitely many weak solutions of
(2.16) whose Hölder regularity exponent with respect to the space variable can be taken to
be any β with β < 1/3, but only almost everywhere in time. This new scheme concentrates
the transport and oscillation errors on a zero-measure set of times. By taking advantage
of this idea and by using a delicate bookkeeping scheme, B.-De Lellis-Székelyhidi [18]
constructed non-conservative solutions in the space L1

tC
1/3−
x .

3.5. Resolution of the flexible side of the Onsager conjecture. The flexible side of the
Onsager conjecture was finally resolved by Isett in [93], who proved the existence of non-
conservative weak solutions of 3D Euler in the regularity class Cβx,t, for any β < 1/3:

Theorem 3.4 (Theorem 1 in [93]). For any β ∈ (0, 1/3) there exists a nonzero weak
solution v ∈ Cβ(T3 × R), such that v vanishes identically outside of a finite interval.

The proof of Isett builds upon the ideas in the above mentioned works, and utilizes two
new key ingredients. The first, is the usage of Mikado flows which were introduced earlier
by Daneri and Székelyhidi [51]. These are a rich family of pressure-less stationary solu-
tions of the 3D Euler equation (straight pipe flows), which have a better (when compared
to Beltrami flows) self-interaction behavior in the oscillation error, when they are advected
by a mean flow. The second key ingredient is that prior to adding the convex integration

12An inherent issue associated with convex integration schemes is that in order to control nth order derivatives
of the perturbationwq+1, one needs control derivatives on vq of an order strictly greater than n. In order to avoid
this loss of derivative, one replaces vq by a mollified velocity field v` and the stress R̊q by a mollified stress R̊`,
where the mollification parameter ` ∈ (λ−1

q+1, λ
−1
q ) is to be chosen suitably. This argument was already required

in the C0+
x,t schemes described in the previous subsection.
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perturbation wq+1, it is very useful to replace the approximate solution (vq, R̊q) with an-

other pair (vq, R̊q), which has the property that vq is close to vq , but more importantly,

that R̊q(t) vanishes on every other interval of size ≈ ‖∇vq‖−1
C0 within [0, T ]. The velocity

field vq (and consequently also the stress R̊q) is obtained by smoothly gluing together exact
solutions of the Euler equations, whose initial data are chosen to precisely match vq at suit-
ably spaced instances of time. A proto-version of this gluing scheme may already be found
in the work [153] of Shnirelman, who however works with Dirac masses in time, which
produce unacceptable errors. In turn, working with the glued velocity and stress (vq, R̊q)
results in a major improvement of the size of the oscillation error in the convex integration
step since different Mikado flows have disjoint supports, and thus do not interact on the
time scale dictated by the Lipschitz norm of the mean flow v`.

The weak solutions constructed by Isett [93] are not strictly dissipative. This issue was
resolved in the paper [20] by B.-De Lellis-Székelyhidi-V., who prove the precise statement
of part (b) of the Onsager conjecture:

Theorem 3.5 (Theorem 1.1 in [20]). Let e : [0, T ] → R be a strictly positive smooth
function. For any β ∈ (0, 1/3) there exists a weak solution v ∈ Cβ(T3 × [0, T ]) of the
Euler equations (2.16), whose kinetic energy at time t ∈ [0, T ] equals e(t).

We note that in [92], Isett showed that one can further optimize the schemes of [93, 20]
in order to construct non-conservative weak solutions to the Euler equations that lie in the
intersection of all Hölder spaces Cβ for β < 1/3.

3.6. Some open problems in the context of 3D Euler. Although the weak solutions con-
structed in Theorem 3.5 may be constructed to satisfy both the weak (i) and the strong (ii)
energy inequality mentioned earlier in Theorem 3.2, they do not satisfy the local in space
and time version of the energy inequality (iii). In this direction, the recent results [91]
and [54] achieve the regularity exponents β < 1/15, and respectively β < 1/7. Extending
these results to the full range β < 1/3 remains open (see also [22, Problem 3]).

It is also an open problem to determine whether there exist non-conservative weak so-
lutions to the Euler equations that have Hölder exponent exactly equal to 1/3. Such a result
would not be in contradiction with [29] (see also [22, Problem 4]).

At the moment of writing of this article, it is not known how to construct non-unique
weak solutions of the 3D Euler equations with Cβx,t regularity, for some β ∈ (1/3, 1). It
appears that such a result would require fundamental new ideas, beyond the ideas provided
by the convex integration schemed described earlier. Lastly, we note that Conjecture 2.6
and Conjecture 2.7 remain open.

4. INTERMITTENT CONVEX INTEGRATION FOR THE NAVIER-STOKES EQUATIONS

In the previous section we have described various flexibility results obtained for the
3D Euler equations via the L∞t,x convex integration technique, and the Cαt,x Nash-type
convex integration scheme. Both produce infinitely many weak solutions of (2.16) which
are bounded in space and time. For this reason, these methods cannot be used to produce
finite energy weak solutions of 3D the Navier-Stokes equations (cf. Definition 2.2). Indeed,
as discussed in Section 2.1.1, if v is a weak solution of (2.1) such that v ∈ L∞t,x, then it is
automatically smooth, and thus unique [75]. Thus, in order to extend the applicability of
convex integration techniques to the Navier-Stokes system requires a new approach.
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Building on the Nash-type convex integration method in [58], and drawing inspiration
from the experimental reality that fully developed turbulent flows are intermittent13 [82,
133], a new technique (which we call intermittent convex integration) was developed by
the authors in [23]. In physical space, intermittency causes concentrations that results in the
formation of intermittent peaks. In frequency space, intermittency smears frequencies. An-
alytically, intermittency has the effect of saturating Bernstein inequalities between different
Lp spaces [35]. In the context of convex integration, intermittency reduces the strength of
the linear dissipative term ν∆v in order to ensure that the nonlinear term div (v⊗v) domi-
nates. We refer the reader to [22, Sections 2 and 7], where more heuristics (and references)
about intermittency are presented, and the fine details of the proof in [23] are given.

The goal of this section is to show how intermittent convex integration may be used
to prove the non-uniqueness of weak/mild solutions (cf. Definition 2.2) to the 3D Navier-
Stokes, and to present a number of variants and improvements of the method from [23]
which were recently obtained in [16, 129, 130, 122, 123, 48, 14]. The application of
intermittent convex integration to the MHD system is given in Section 5 below.

4.1. Non-uniqueness of weak solutions with finite kinetic energy. In [23], we have
proven the existence of infinitely many weak/mild solutions v of the 3D Navier-Stokes
equations (2.1), in the sense of Definiton 2.2, with a prescribed kinetic energy profile:

Theorem 4.1 (Theorem 1.2 in [23]). There exists β > 0, such that for any nonnegative
smooth function e(t) : [0, T ] → [0,∞), and any ν ∈ (0, 1], there exists a weak solution of
the Navier-Stokes equations v ∈ C0([0, T ];Hβ(T3))∩C0([0, T ];W 1,1+β(T3)), such that
1
2

´
T3 |v(x, t)|2dx = e(t) holds for all t ∈ [0, T ].

We emphasize that the weak solutions constructed in Theorem 4.1 are not Leray-Hopf
weak solutions, whose uniqueness remains famously one of the most challenging questions
in fluid mechanics [98].

Theorem 4.1 shows in particular that v ≡ 0 is not the only weak/mild solution which
vanishes at a time slice, thereby implying the non-uniqueness of solutions in the sense
of Definiton 2.2 (note that within the class of Leray-Hopf weak solutions 0 is the only
solution with 0 datum). Theorem 4.1 also proves that weak solutions may come to rest in
finite time, a question posed in [150, pp. 88]. Lastly, note that the function e(t) may be
taken to be monotone decreasing so that rigidity fails for dissipative weak/mild solutions.

4.1.1. Outline of the proof of Theorem 4.1 and of intermittent convex integration schemes.
The summary given here is similar to the one we have given in [22, Section 4.2]. For clarity
of the presentation, we omit any discussion of the energy profile e(t), and refer the reader
to [23] and [22, Section 7] for details.

The structure of the proof resembles that of Nash-type convex integration schemes, as
described in Section 3.3.1. In order to construct weak solutions of (2.1) we proceed induc-
tively and for every q ∈ N0 construct a solution (vq, R̊q) to the Navier-Stokes-Reynolds
system:

∂tvq + div (vq ⊗ vq) +∇pq − ν∆vq = div R̊q(4.1a)
div vq = 0 .(4.1b)

13Broadly speaking, intermittency is characterized as a deviation from the Kolmogorov ’41 scaling laws,
which were derived under the assumptions of homogeneity and isotropy. Experimentally, it is seen that these
assumptions need not hold at large Reynolds numbers. A common signature of intermittency is that the pth order
structure function exponents ζp deviate from the Kolmogorov predicted value of p/3 for p 6= 3 [3, 126, 99, 136].
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where the stress R̊q is traceless symmetric, and pq = (−∆)−1div div (vq ⊗ vq − R̊q).
As in Section 3.3.1, we work with a super-exponentially growing sequence of frequen-

cies λq which obeys λq+1 ≈ λbq and λ0 � 1, except that this time b � 1, so we think of
the frequency λq+1 as being much much larger than λq . Moreover, as in (3.3), we denote
the velocity increment by vq+1−vq = wq+1, and we heuristically view wq+1 as a function
whose Fourier support lies inside a ball of radius proportional to λq+1 around the origin.

From experience with 3D Euler, we expect that P.λq (wq+1 ⊗ wq+1) + R̊q has to be
made as small as possible, so that if we wish the sequence of approximate velocities vq =
v0 +

∑
q′<q wq′ to converge strongly in C0

t L
2
x as q → ∞ to a weak of the Navier-Stokes

equations, then the sequence (vq, R̊q) has to be constructed such that R̊q vanishes in C0
t L

1
x

as q → ∞. This is a major difference when compared to the uniform in space convex
integration used for the Euler equations: here Reynolds stresses (errors) are measured
in L1

x, whereas velocity increments and approximate velocities are measured in L2
x; this

is essentially because R̊q is quadratic in wq+1. Thus, in analogy to (3.7) and (3.8), the
inductive scheme is designed to propagate the bounds

‖wq+1‖C0
tL

2
x
≤ λ−βq+1 ,(4.2a) ∥∥∥R̊q∥∥∥

C0
tL

1
x

≤ λ−2β
q+1 ,(4.2b)

for some β > 0, which will be taken to be very small (in terms of the parameter b in
λq+1 ≈ λbq).

In order to streamline the notation, for the remainder of this section we omit the C0
t

from all norms, and simply denote ‖·‖C0
tBx

as ‖·‖B for any Banach space B, because all
norms are taken to be uniform in time. From the bound (4.2a) and our heuristic about the
Fourier support of wq+1, we may expect that

‖wq+1‖Ḣs . λs−βq+1 ,

which is suggestive of the fact that vq → v = v0 +
∑
q>0 wq strongly in C0

tH
β′

x for
β′ < β. Moreover, viewing the momentum equation in (4.1) as a forced Stokes system,
from the maximal regularity of the Stokes equation we deduce that

‖∇vq‖Lp . ‖vq ⊗ vq‖Lp +
∥∥∥R̊q∥∥∥

Lp
. ‖vq‖2L2p +

∥∥∥R̊q∥∥∥
Lp

,

with bounds that degenerate as ν → 0. Thus, letting p > 1 be sufficiently close to 1,
we may deduce that ∇vq → ∇v strongly in C0

t L
1+β′′

x for some 0 < β′′ < β′. Thus,
using (4.2a) and (4.2b) the regularity of the limiting weak solution v which we claimed
in Theorem 4.1 follows, except that β is replaced with β′′ > 0 (the reader should not be
confused by the fact that the β in Theorem 4.1 is not the same parameter as the one in
(4.2a) and (4.2b)).

Subtracting the equations (4.1) at level q + 1 and level q, similarly to (3.4) we obtain:

div R̊q+1 −∇(pq+1 − pq) = div (wq+1 ⊗ wq+1 + R̊q) + ∂twq+1 − ν∆wq+1(4.3)

+ div (vq ⊗ wq+1 + wq+1 ⊗ vq) .

In order to cancel the previous stress R̊q in the first term on the right side of (4.3), as
in the proof of Theorem 3.3, the principal part of perturbation, w(p)

q+1 is taken to be of
the form (3.5), where the coefficient functions aξ(R̊q) are chosen to satisfy the low mode
cancellation identity (3.6).
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The main difficultly in implementing a convex integration scheme for the Navier-Stokes
equations, is ensuring that the dissipative term ν∆wq+1 on the right side of (4.3) can be
treated as an error in comparison to the quadratic term div (wq+1 ⊗ wq+1). Note that the
building blocks Wξ from the Euler construction (in conjunction with the ansatz (3.5)) do
not have this desirable property, as they satisfy the heuristic pointwise in space bounds
ν∆wq+1 ≈ νλ2−β

q+1 and div (wq+1 ⊗ wq+1) ≈ λ1−2β
q+1 (recall, 0 < β � 1, and λq+1 � 1).

The fundamental difference that the intermittent convex integration scheme presents
over the Euler L∞t,x and Cαt,x schemes is that the building blocks Wξ are chosen to be
intermittent, by which we mean that the size of their Lp norms differ vastly for different
values of p. In particular, in view of (4.2a) and (4.2b) it is natural to normalize

‖Wξ‖L2 ≈ 1 ,(4.4)

and in order to control the term stress arising from ν∆wq+1, it will immediately become
apparent that we need to ensure

‖Wξ‖L1 ≈ λ−1−ε
q+1(4.5)

for some ε > 0. To see this, we use the −1 order linear operator R which inverts the
divergence, and heuristically estimate the contribution of the dissipative term resulting
from the principal perturbation ν∆w

(p)
q+1 to the Reynolds stress error R̊q+1:∥∥∥R(ν∆w

(p)
q+1

)∥∥∥
L1

. ν
∑
ξ

∥∥∥∇aξ(R̊q)∥∥∥
L∞
‖Wξ‖L1 +

∥∥∥aξ(R̊q)∥∥∥
L∞
‖∇Wξ‖L1

. νλq+1 ‖Rq‖
1/2
L∞ ‖Wξ‖L1

. νλq+1(λ2
qλ
−β
q+1) ‖Wξ‖L1(4.6)

where we have used the heuristic that R̊q only contains frequencies . λq , wheres Wξ

has frequencies as large as λq+1, and in the last inequality used (4.2b) and the Sobolev
embedding W 4,1 ⊂ L∞. In order to ensure that the right side of (4.6) produces an error
which is compatible with the inductive stress assumption (4.2b) at level q + 1, and taking
into account that ν ≈ 1, since λq+1 ≈ λbq , we must ensure that

λq+1(λ2
qλ
−β
q+1) ‖Wξ‖L1 � λ−2β

q+2 ⇔ ‖Wξ‖L1 � λ
−1−2βb+β− 2

b
q+1 .(4.7)

The inequality (4.7) justifies the need to ensure (4.5). The former condition is roughly
speaking also sufficient: first take b� 1 and then β � 1/b, in terms of the ε in (4.5).

The bounds (4.4) and (4.5) justify the need to have building blocks Wξ which are in-
termittent. In Fourier space, this means that their Fourier support is spread out (think, a
Dirichlet kernel vs a plane wave), whereas in physical space this means that the supports
have very small measure, but that the Wξ have very high amplitude on this support. We
also note that in n dimensions, with the normalization (4.4), based on a simple scaling
argument one may deduce that the smallest the L1 norm of Wξ can be made is λ−

n/2
q+1 . In

view of the requirement (4.5), this shows that in the two dimensional case n = 2 the proof
breaks down, as it should. Moreover, this heuristic shows that the higher the dimension n
is, the easier it is to achieve (4.5).

With the above requirements in mind, intermittent Beltrami waves were introduced [23]
to serve as new Wξ’s. These waves modify the usual Beltrami plane waves used in the
Euler constructions, by adding oscillations that mimic the structure of a three dimensional
Dirichlet kernel, and are compactly supported in Fourier space. Based on an analogy with
Mikado flows [51], in the joint work with Colombo [16] intermittent jets were introduced
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to serve as Wξ’s. These flows achieve the same level of concentration in terms of (4.5) as
intermittent Beltrami waves, but have a number of advantageous properties since instead
of being compactly supported in Fourier space, they are compactly supported in physical
space, and as such may be chosen to satisfy suppWξ ⊗ Wξ′ = ∅ for ξ 6= ξ′. This
reduces the number of error terms which have to be estimated on the right side of (4.3).
Besides having a different scale of periodization and concentration (cf. the estimate (4.9)
below), one of the major differences between intermittent jets and Mikado flows is that
intermittent jets are not anymore stationary solutions of the 3D Euler equations (neither
were the intermittent Beltrami waves). More precisely, in order to obtain (4.5) with ε > 0,
we need to (slowly) cut the pipe flows in the direction parallel to the pipe (in addition to
the usual cutoff in the direction orthogonal to the pipe). This turns out to cause a number
of additional difficulties, as explained in (4.13) below.

For the case of intermittent jets, in order to parameterize the concentration of the Wξ,
we introduce two parameters r‖ (a length in the direction parallel to the pipe) and r⊥ (a
length in the direction perpendicular to the pipe) such that

λq
λq+1

� r⊥ � r‖ � 1 .(4.8)

Each intermittent jet Wξ is defined to be supported on ≈ (r⊥λq+1)3 many cylinders of
diameter ≈ 1

λq+1
and length ≈ r‖

r⊥λq+1
. In particular, the measure of the support of Wξ

is ≈ r‖r
2
⊥. We note that such scalings are consistent with the jet Wξ being of frequency

≈ λq+1. Finally, we normalize Wξ such that its L2 norm is ≈ 1. Hence by scaling
arguments, one expects an estimate of the form

‖Wξ‖WN,p . r
2/p−1
⊥ r

1/p−1/2
‖ λNq+1 .(4.9)

for 1 ≤ p ≤ ∞ and N ≥ 0. In particular, the smallness condition (4.5) holds once we
require that

r⊥r
1/2
‖ ≈ λ

−1−ε
q+1(4.10)

for some ε ∈ (0, 1/2). Note that (4.10), together with the condition (4.8), rules out geomet-
ric growth of the frequency λq , i.e. b� 1.

Next, consider the estimate (4.2a). Using Hölder’s inequality to naı̈vely estimate the L2

norm of the principal perturbation w(p)
q+1, we obtain∥∥∥w(p)

q+1

∥∥∥
L2

.
∑
ξ

∥∥∥aξ(R̊q)∥∥∥
L∞
‖Wξ‖L2 .

∥∥∥R̊q∥∥∥1/2

L∞
.

In view of (4.9) with p =∞, we cannot however inductively propagate good estimates on
the L∞ norm of R̊q and as such, the above naı̈ve estimate is not suitable in order to obtain
(4.2a). To obtain a better estimate, we will utilize the following heuristic observation:
given a function f with frequency contained in a ball of radius λ and a (T/κ)3-periodic
function g, if κ� λ then

‖fg‖Lp . ‖f‖Lp ‖g‖Lp .(4.11)

A precise statement for the above heuristic is given in [23, Lemma 3.7]. Hence using that
R̊q is of frequency roughly λq , and that Wξ is (T/κ)3-periodic with κ = λq+1r⊥, and since
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by (4.8) we have λq+1r⊥ � λq , we obtain from (4.11) that∥∥∥w(p)
q+1

∥∥∥
L2

.
∑
ξ

∥∥∥aξ(R̊q)∥∥∥
L2
‖Wξ‖L2 .

∥∥∥R̊q∥∥∥1/2

L1
. λ−βq+1 ,(4.12)

where we have used (4.2b). This proves the feasibility of (4.2a), which is crucial if we
wish to obtain a finite energy weak solution in the limit.

We return to discuss the remaining terms in (4.3). First, we note that the last term on the
right side of (4.3) may be bounded quite easily, by using vq = v0 +

∑
q′≤q wq , the Sobolev

embedding H2 ⊂ L∞, and an argument similar to (4.12) but in L1:∥∥∥w(p)
q+1 ⊗ vq

∥∥∥
L1

. ‖vq‖L∞
∑
ξ

∥∥∥aξ(R̊q)∥∥∥
L1
‖Wξ‖L1

. (λ2
q ‖vq‖L2)

∑
ξ

∥∥∥aξ(R̊q)∥∥∥
L2
‖Wξ‖L1

. λ
2/b
q+1λ

−β
q+1λ

−1−β
q+1 ,

where we have used (4.2a), (4.2b), and (4.5). Since b� 1 and β � 1/b, the above estimate
is easily seen to be� λ−2β

q+2 , as is required by (4.2b) at level q + 1.
The only terms from (4.3) are the high frequency part of the oscillation error, and the

temporal derivative term. We note crucially that in comparison to the Beltrami or the
Mikado waves used for the 3D Euler constructions, the intermittent building blocks used
in [23, 16] introduce addition difficulties in handling the oscillation error, because the
intermittent building blocks do not anymore solve stationary 3D Euler (to leading order).
For the intermittent jets of [16] we have

div
(
w

(p)
q+1 ⊗ w

(p)
q+1 + R̊q

)
≈
∑
ξ

2a2
ξWξ · ∇Wξ + (high frequency error)(4.13)

Similar to how the Nash error for the Euler equations was dealt with (see (3.11)), the high
frequency error in (4.13) experiences a gain when one inverts the divergence equation.
Note however that this high frequency is not λq+1 since the lowest active frequency in
Wξ ⊗Wξ −

ffl
T3 Wξ ⊗Wξ is ≈ λq+1r⊥; nonetheless, λq+1r⊥ � λq as in (4.8).

In order to take care of the main term in (4.13), the intermittent jets are carefully de-
signed to oscillate in time such that this term can be written as a temporal derivative:∑

ξ

2Wξ · ∇Wξ =
1

µ
∂t

(∑
ξ

|Wξ|2ξ
)

for some large parameter µ. This error can absorbed by introducing in addition to the
principal corrector also a temporal corrector w(t)

q+1 defined as

w
(t)
q+1 := − 1

µ
PHP6=0

(∑
ξ

a2
ξ(R̊q)|Wξ|2ξ

)
,

where PH is the Helmholtz projection, and P6=0 is the projection onto functions with mean
zero. Thus pairing the oscillation error with the time derivative of the temporal corrector,
we obtain

div
(
w

(p)
q+1 ⊗ w

(p)
q+1 + R̊q

)
+ ∂tw

(t)
q+1 ≈ (pressure gradient) + (high frequency error) .

This identity is crucial for the intermittent convex integration scheme for 3D Navier-Stokes
to close. In essence, the intermittent building blocks we have chosen in the construction do
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not solve to leading order the stationary 3D Euler equations, but instead to leading order
they solve the time-dependent 3D Euler equations.

Finally, analogous to the Euler case, we define a divergence corrector w(c)
q+1 to fix the

fact that w(p)
q+1 is not, as defined, divergence free. The total perturbation wq+1 is then

defined to be
wq+1 := w

(p)
q+1 + w

(t)
q+1 + w

(c)
q+1 .

Due to w(t)
q+1 and w(c)

q+1, a number of new error terms arise on the right side of (4.3), most
of them being benign. The main new error term arises from the temporal oscillation in the
definition of the intermittent jets, which introduce an error from the term ∂tw

(p)
q+1 which

has a factor of µ in front. On the other hand, the oscillation error is inversely proportional
to µ, and thus one has to carefully choose µ to optimize between these two errors. We omit
these technical details and refer the reader to the summary given in [22, Section 7].

4.1.2. Vanishing viscosity limits of finite energy mild solutions. A natural question to con-
sider is whether the nonconservative weak solutions to the 3D Euler equations which were
obtained in [93, 20] arise as vanishing viscosity limits of weak solutions to the Navier-
Stokes equations. In this direction, as a direct consequence of the proof of Theorem 4.1,
one obtains that the answer is yes, at least when one considers a sufficiently wide class of
weak solutions to (2.1):

Theorem 4.2 (Theorem 1.3 in [23]). For β̄ > 0 let v ∈ C β̄t,x(T3 × [−2T, 2T ]) be a
zero-mean weak solution of the 3D Euler equations. Then there exists β > 0, a sequence
νn → 0, and a uniformly bounded sequence v(νn) ∈ C0

t ([0, T ];Hβ
x (T3)) of weak solutions

to the Navier-Stokes equations in the sense of Definition 2.2, with v(νn) → v strongly in
C0
t ([0, T ];L2

x(T3)).

The above result shows that being a strong C0
t L

2
x limit of weak solutions to the Navier-

Stokes equations, in the sense of Definition 2.2, cannot serve as a selection criterion for
weak solutions of the Euler equation. Theorem 4.2 however does not rule out a selection
criterion based on vanishing viscosity limits of Leray-Hopf weak solutions; we refer the
reader to [8, 5, 175, 7] where this question is discussed in the context of convex integration,
symmetry breaking, and in the presence of solid boundaries.

4.2. Non-uniqueness of weak solutions with partial regularity in time. As mentioned
above, intermittent jets were introduced in the joint work of the authors and Colombo [16].
The main goal of that paper was to give an example of a mild/weak solution to the Navier-
Stokes equation whose singular set of times ΣT ⊂ (0, T ] is both nonempty, and has Haus-
dorff dimension strictly less than 1, i.e., it has partial regularity in time (a property that all
Leray-Hopf weak solutions posses [115]). The main result in [16] is:

Theorem 4.3 (Theorem 1.1 in [16]). There exists β > 0 such that the following holds. For
T > 0, let u(1), u(2) ∈ C0([0, T ]; Ḣ3(T3)) be two strong solutions of the Navier-Stokes
equations with initial data u(1)(·, 0) and u(2)(·, 0) of zero mean. There exists a weak
solution v ∈ C0([0, T ];Hβ(T3) ∩W 1,1+β(T3)) of (2.1), in the sense of Definition 2.2,
such that

v ≡ u(1) on [0, T/3] , and v ≡ u(2) on [2T/3, T ] .

Moreover, for every such v there exists a zero Lebesgue measure set of times ΣT ⊂ (0, T ]
with Hausdorff dimension less than 1− β, such that

v ∈ C∞(((0, T ] \ ΣT )× T3) .
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In particular, the weak solution v is almost everywhere smooth.

Note that Theorem 4.3 establishes the non-uniqueness of weak/mild solutions (cf. Defin-
tion 2.2) to the Cauchy problem for the 3D Navier-Stokes equation, for any initial datum
which permits the local in time solvability of (4.3) (e.g. v0 ∈ Ḣ1/2 or v0 ∈ L3). Indeed, for
such v0 one may uniquely define the solution u(1) in Theorem 4.3 for a suitable time T , and
then all one needs to do is to choose u(2) as a shear flow whose kinetic at time T is larger
than that of v0. Due to the energy inequality, the weak solution provided by Theorem 4.3
is not the same as the global in time Leray-Hopf weak solution with datum v0, yielding
non-uniqueness. In fact, this argument may be modifies to hold for any incompressible
v0 ∈ L2, cf. [16, Remark 1.4].

The proof of Theorem 4.3 builds on the one of Theorem 4.1, but it additionally induc-
tively keeps track of good time intervals on which the approximate solutions vq are in fact
smooth solutions of (2.1), and are untouched in later inductive steps. This is achieved by
employing the method of gluing introduced in [93, 20]. Taking the countable union of the
good regions over each inductive step q a fractal set is formed; on this set the solution is
C∞ smooth, and the complement of this set has Hausdorff dimension strictly less than 1.

4.3. Further developments of intermittent convex integration schemes. The new fla-
vor of convex integration introduced in [23] and [16], has recently been extended and
improved, in order to obtain non-uniqueness and other flexibility-type results for various
models arising in hydrodynamics and PDEs in general. We mention here a few of these re-
sults, as they present interesting applications of the idea the flexibility may also be attained
via low integrability, not just low regularity.

• The transport equation. Using a version of the classical Mikado flows but which
also take into account spatial concentrations (called intermittent Mikado flows), the
authors of [129, 130, 128] have established the existence of non-renormalized so-
lutions, as well as Eulerian non-uniqueness, for the transport and continuity equa-
tions with Sobolev vector fields. These striking counterexamples point towards
the sharpness of the classical results for renormalized solutions [65]. We also re-
fer the reader to [14] where a number of new results (both in terms of uniqueness
and non-uniqueness) were obtained for positive solutions to the transport equa-
tion, and to [34] where temporal intermittency and oscillation is introduced in the
intermittent convex integration scheme in order to extend the integrability range.

• Hyper-viscous 3D Navier-Stokes. The authors of [122] and [16] have indepen-
dently proven that intermittent convex integration is also applicable to establish the
non-uniqueness of finite energy weak/mild solutions to the fractionally-dissipative
3D Navier-Stokes equations with dissipation (−∆)α, and α < 5/4 (the so-called
Lions criticality threshold [117]). We note that similar results may also be estab-
lished [121] for the hypo-viscous 2D Navier-Stokes equation α < 1.

• The stochastic 3D Navier-Stokes equations. Non-uniqueness in law for the sto-
chastic 3D Navier-Stokes system, with either an additive or a linear multiplica-
tive noise driven by a Wiener process, was recently obtained in a remarkable
paper [88]. See also the result [179] which considers the stochastic fractionally
dissipative Navier-Stokes equation in the full supercritical regime α < 5/4.

• Other hydrodynamic models. In [48], it is shown that intermittent convex inte-
gration methods can be adapted to prove the non-uniqueness of Leray-Hopf weak
solutions for the 3D Hall-MHD system. We note that the non-uniqueness result
in [48] fundamentally relies on the presence of the Hall term curl (curlB × B)
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which is dominant when compared to ∆B (see also the recent result [49] for the
electron-MHD system). Lastly, we mention that the technique of convex integra-
tion was applied to obtain non-uniqueness of distributional solutions for a model
of non-Newtonian fluids called power law fluids [24].

4.4. Some open problems in the context of 3D Navier-Stokes. To date it remains open
to show that the regularity parameter β in Theorems 4.1 or 4.3 may be taken to be “signif-
icant”, for instance ≤ 1/9. Due to [83], the results cannot hold for β ≥ 1/2. Note however
that one may formally write the Navier-Stokes system in arbitrary dimensions n ≥ 2, and
that in higher dimensions we have stronger forms of intermittency/spatial concentration
(see the new paragraph after (4.7)). Exploring this observation, in [123] it was shown that
for n = 4, the statement corresponding to Theorem 4.1 for time independent solutions
holds for β < 1/200. Moreover, in [164, Theorem 29], it is shown that as we send the
dimension n→∞, one may prove Theorem 4.1 with β → 1/2

−.
Equally challenging to increasing the regularity of the solutions in Theorems 4.1 or 4.3

seems to be to improve their integrability from C0
t L

2
x to C0

t L
p
x for some p ∈ [2, 3) which

“significantly” departs from p = 2. Note that due to [84] we know that uniqueness holds
for mild solutions in C0

t L
p
x with p ≥ 3; establishing the sharpness of this criterion via

convex integration appears to be out of reach with current methods. See [22, Problem 8].
The energy inequality (2.5) presents a formidable obstacle towards extending the results

of Theorems 4.1 or 4.3 to the class of Leray-Hopf weak solutions. However, what happens
if the give up on the energy equality, and only retain the regularity/integrability provided
by the energy class? Recall the discussion in Section 2.1.2. The weak/mild solutions of
Definition 2.2 need not satisfy the energy inequality (2.5) even if they lie in the Leray-
Hopf class C0

weak,tL
2
x ∩L2

xḢ
1
x , as long as they do not belong to L4

t,x or another space with
similar scaling [151]. This leaves open an intriguing possibility:

Problem 4.4 (Non-uniqueness of mild solutions in the energy class). Is it possible to prove
a stronger version of Theorem 4.1, by additionally requiring that v ∈ L2((0, T ); Ḣ1(T3))?

We again emphasize that Problem 4.4 does not require that the weak solution v satisfies
the energy inequality. Curiously, in terms of the parabolic scaling that is natural for the
3D Navier-Stokes system, v(x, t) 7→ vλ(x, t) = λv(λx, λ2t), the space L2

t Ḣ
1
x scales in

the same way as the space L∞t L
2
x, which is already present in Theorem 4.1. To date it is

however not known how to parabolically trade temporal integrability for spatial regularity,
within the framework of an intermittent convex integration scheme for 3D Navier-Stokes.

5. CONVEX INTEGRATION CONSTRUCTIONS FOR THE MHD EQUATIONS

As discussed in Section 2.3.3, the rigidity parts (a) in Conjecture 2.10 and (a) in Con-
jecture 2.11 have been established rigorously. In this section, we discuss partial progress
towards the flexible parts of these Onsager-type dichotomies for ideal MHD (2.19).

5.1. Bounded wild weak solutions of the MHD system. Concerning the flexible part (b)
of Conjecture 2.10, we start with the example of Bronzi-Lopes Filho-Nussenzveig Lopes
[13]. The authors in [13] impose a symmetry assumption which embeds the ideal MHD
system into a two-and-a-half dimensional Euler flow. If v = (v1, v2, v3)(x1, x2) is a weak
solution of 3D Euler independent of x3, then setting the velocity field in (2.19) to (v1, v2, 0)
and the magnetic field to (0, 0, v3), we obtain a weak solution of the ideal MHD system,
which is independent of x3. If v3 6≡ 0, then such a weak solution has a nontrivial mag-
netic field. For v as in part (b) of Theorem 2.4, the total energy E (defined in (2.21)) of
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these weak solutions is dissipated, but both Hω,B = HB,B = 0, and are hence constant
functions of time (recall the definitions (2.26) and (2.27)). Thus, the additional flexibil-
ity requirement of Conjecture 2.10 — that Hω,B is not conserved — seems to cause new
difficulties when compared to the Euler case.

A more fundamental source of difficulties present in the analysis of the ideal MHD
system is that as soon as (v,B) ∈ L3

t,x, the magnetic helicity HB,B must be a constant
function of time [100, 1, 76]. But typically, convex integration schemes are able to “break”
all quadratic conservation laws which are well-defined at the regularity level of the weak
solutions constructed. Thus, it is very nontrivial to construct solutions which conserve the
magnetic helicity, but do not conserve the Elsässer energies.14

The first such result in the context of bounded weak solutions was recently obtained by
Faraco-Lindberg-Székelyhidi [78] who use the L∞t,x convex integration scheme of [55] to
construct bounded weak solutions of (2.19) which have compact support in space and time.
The authors of [78] also establish a number or rigidity results for 2D ideal MHD, but in
terms of flexibility, their main conclusion is the 3D result:

Theorem 5.1 (Theorem 1.1 in [78]). There exist bounded, compactly supported weak so-
lutions of ideal MHD in R3, with both v,B nontrivial, such that neither total energy nor
cross helicity is conserved in time.

Since the solutions constructed in Theorem 5.1 have compact support in time, and since
they conserve magnetic the magnetic helicity, we have that HB,B(t) must vanish at all
times t ∈ R, even though B is not identically equal to zero.

Theorem 5.1 represents the first result towards the flexible part (b) of Conjecture 2.10.
The analogous result in the Onsager program for 3D Euler would be Theorem 3.1 from [55].

The proof of Theorem 5.1 uses the classical framework provided by the L∞t,x flavor of
convex integration of De Lellis-Székelyhidi [55] and the Tartar framework [167], as axiom-
atized in [163]. Broadly speaking, the additional rigidity provided by the conservation of
magnetic helicity is a manifestation of the weakly closed nature of the Maxwell equations
for the magnetic field [166]. As such, when performing the plane-wave analysis, the inter-
action with the momentum equation for the velocity field v, which has a large relaxation,
has to be considered very carefully. For instance, in an earlier work [76] Faraco-Lindberg
show that there exist non-trival smooth strict subsolutions of 3D ideal MHD, with com-
pact support in space-time, but that the interior of the 3D Λ-convex hull is empty, which
makes it difficult to implement a convex integration scheme starting from this subsolution.
The authors of [78] instead develop a variant of the convex integration scheme directly on
differential two-forms, retaining consistency with the phase space geometry of the three
dimensional ideal MHD system; see [78, Sections 3, 4] for details.

5.2. Weak solutions which do not conserve magnetic helicity. In order to make progress
on the flexible part (b) of Conjecture 2.11, one has to be able to construct weak solutions of
ideal MHD (2.19) which have finite total energy (as required by Defintion 2.8), but do not
lie in L3

t,x, since otherwise they would conserveHB,B . Moreover, in view of Taylor’s con-
jecture (cf. Theorem 2.13), such weak cannot be constructed as weak ideal limits of MHD
Leray-Hopf weak solutions (the usual weak-compactness methods via smooth approxima-
tions fail anyway, for the same reasons they fail in 3D Euler). Clearly, the uniform in space
convex integration developed in the proof of Theorem 5.1 is not well suited to achieve this
goal. However, the intermittent convex integration scheme developed in the context of 3D

14One is faced with a similar difficulty in attacking Conjecture 2.7, or in trying to establish flexibility of the
Casimirs for 2D SQG or 2D Euler, see Remark 2.9.
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Navier-Stokes (see Section 4) stands a chance, because it is exactly designed to explore
the low integrability of weak solutions, via a careful choice of intermittent building blocks.
This idea was explored by the authors and Beekie in [10]:

Theorem 5.2 (Theorem 1.4 in [10]). There exists β > 0 such that the following holds.
There exist weak solutions (v,B) ∈ C([0, 1], Hβ) of (2.19), in the sense of Definition 2.8,
which do not conserve magnetic helicity. In particular, there exist solutions as above with
2 |HB,B(0)| ≤ HB,B(1) and HB,B(1) > 0. For these solutions the total energy E and
cross helicityHω,B are non-trivial, non-constant, functions of time.

Theorem 5.2 provides the first result on the flexible part (b) of Conjecture 2.11 by pro-
viding an example of a non-conservative weak solution to the ideal MHD equations which
lies in C0

t L
p
x for some p > 2, for which E ,Hω,B and HB,B are all non-trivial. Besides

establishing the non-uniqueness of weak solutions to (2.19) in the sense of Definition 2.8,
Theorem 5.2 also gives an existence result for weak solutions to (2.19) at this low integra-
bility level. Lastly, we emphasize that in view of Theorem 2.13, the weak solutions of 3D
ideal MHD which we construct in Theorem 5.2 cannot be obtained as weak ideal limits
from Leray-Hopf weak solutions to (2.20).

The proof of Theorem 5.2 builds on the intermittent convex integration schemes devel-
oped in [23, 16]. The main new difficulties arise from the specific geometric structure of
the nonlinear terms in 3D MHD so that the intermittent building blocks used for 3D Navier-
Stokes (intermittent Beltrami flows, intermittent jets, viscous eddies), are not useful for the
ideal MHD system.

Informally, the building blocks used in the 3D Navier-Stokes proof are designed to
handle the dissipative term ∆v, and as such require more than two-dimensional intermit-
tency (ε > 0 in (4.5)); moreover, the high-frequency component of the oscillation error
div (v ⊗ v) is handled by introducing a temporal corrector. For ideal MHD, we do not
have to worry about a dissipative term, and so the role of intermittency is different. Here
intermittency is needed in order to treat the high frequency nonlinear oscillation errors
arising from div (v ⊗ v − B ⊗ B) and div (v ⊗ B − B ⊗ v), which cannot be fixed any-
more by adding temporal correctors, essentially because the velocity intermittent building
blocks Wξ and the magnetic intermittent building blocks Dξ′ have nontrivial overlap even
if ξ 6= ξ′. To see this, we first note that the structure of the MHD nonlinearities requires
the building blocks’ direction of oscillation, ξ, to be orthogonal to two direction vectors
ξ1 and ξ2. These two orthogonal direction vectors are needed in order to simultaneously
cancel both the previous velocity Reynolds stress which is symmetric, and the previous
magnetic stress which is anti-symmetric. This only permits the usage of one-dimensional
intermittency in our building blocks, meaning, the maximal smallness that can be gained
in ‖Wξ‖L1 ‖Wξ‖−1

L2 and ‖Dξ‖L1 ‖Dξ‖−1
L2 is proportional to λ−

1/2
q+1 (compare to (4.4) and

(4.5) for Navier-Stokes). This amount of gain is by itself not sufficient to close the scheme.
The main idea in the proof of Theorem 5.2 is to construct a set of intermittent building

blocks adapted to the MHD geometry, which we call intermittent shear velocity flows Wξ

and intermittent shear magnetic flows Dξ. Their spatial support is given by thickened
planes spanned by the two orthogonal vectors ξ1 and ξ2, their support has volume ≈ r⊥
(which plays a role akin to the r⊥ in (4.8)); they are periodized to scale λq+1r⊥, and their
only direction of oscillation is given only by the vector ξ which is orthogonal to both ξ1
and ξ2. Using these orthogonality properties, the contributions to the oscillation errors
from ξ = ξ′ can be handled suitably. In order to treat ξ 6= ξ′, we note that the product of
two rationally-skew-oriented 1D intermittent building blocks is more intermittent than each
one of them; it has two dimensional intermittency because the intersection of two thickened



CONVEX INTEGRATION CONSTRUCTIONS IN HYDRODYNAMICS 33

(non-parallel) planes is given by a thickened line, which has 2D smallness. That is, we may
show that the Lebesgue measure of suppWξ ⊗W ′ξ, suppDξ ⊗W ′ξ, and suppDξ ⊗ D′ξ
is ≈ r2

⊥ when ξ 6= ξ′. Suitably choosing r⊥ allows one to treat the remaining oscillation
errors. In summary, intermittency is used in Theorem 5.2 to treat nonlinear errors, instead
of linear ones for Navier-Stokes; we refer to [10] for details.

5.3. Some open problems in the context of the MHD system. The applicability of con-
vex integration methods to the ideal MHD system is at an early development stage. For
instance, although the authors of [78] have recently implemented a L∞t,x convex integration
scheme for (2.19), to date it remains open to implement a Cαt,x Nash-type convex integra-
tion, for any α ≥ 0. As such, the flexible part (b) of Conjecture 2.10 remains open.

As is the case with the intermittent convex integration schemes for 3D Navier-Stokes,
it seems that fundamentally new ideas are needed to substantially increase the value of β
in Theorem 5.2, or to increase the integrability index of the solutions from [10] from L2

x to
Lpx with p closer to 3. Because of this, part (b) of Conjecture 2.11 remains widely open.
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27. A. Castro, C. Córdoba, and D. Faraco, Mixing solutions for the Muskat problem, arXiv:1605.04822 (2016).
28. J.-Y. Chemin, Perfect incompressible fluids, vol. 14, Oxford University Press, 1998.
29. A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, Energy conservation and Onsager’s conjec-

ture for the Euler equations, Nonlinearity 21 (2008), no. 6, 1233–1252. MR 2422377 (2009g:76008)
30. A. Cheskidov, M. C. Lopes Filho, H. J. Nussenzveig Lopes, and R. Shvydkoy, Energy conservation in two-

dimensional incompressible ideal fluids, Comm. Math. Phys. 348 (2016), no. 1, 129–143. MR 3551263
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55. C. De Lellis and L. Székelyhidi, Jr., The Euler equations as a differential inclusion, Ann. of Math. (2) 170
(2009), no. 3, 1417–1436. MR 2600877 (2011e:35287)

56. , On admissibility criteria for weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 195
(2010), no. 1, 225–260. MR 2564474

57. , The h-principle and the equations of fluid dynamics, Bull. Amer. Math. Soc. (N.S.) 49 (2012),
no. 3, 347–375. MR 2917063

58. , Dissipative continuous Euler flows, Invent. Math. 193 (2013), no. 2, 377–407. MR 3090182
59. , Dissipative Euler flows and Onsager’s conjecture, Journal of the European Mathematical Society

16 (2014), no. 7, 1467–1505.
60. , High dimensionality and h-principle in PDE, Bull. Amer. Math. Soc. 54 (2017), no. 2, 247–282.
61. , On turbulence and geometry: from Nash to Onsager, Notices of the AMS 66 (2019), no. 5, 677–

685.
62. L. De Rosa, Infinitely many Leray-Hopf solutions for the fractional Navier-Stokes equations, Comm. Partial

Differential Equations 44 (2019), no. 4, 335–365.
63. , On the helicity conservation for the incompressible Euler equations, Proceedings of the AMS 148

(2020), no. 7, 2969–2979.
64. R.J. DiPerna, Compensated compactness and general systems of conservation laws, Transactions of the

American Mathematical Society 292 (1985), no. 2, 383–420.
65. R.J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Inven-

tiones mathematicae 98 (1989), no. 3, 511–547.
66. R.J. DiPerna and A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid

equations, Comm. Math. Phys. 108 (1987), no. 4, 667–689.
67. C.R. Doering and J.D. Gibbon, Applied analysis of the Navier-Stokes equations, vol. 12, Cambridge Uni-

versity Press, 1995.
68. J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible euler and navier-

stokes equations, Nonlinearity 13 (2000), no. 1, 249.
69. G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration.
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