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Abstract

For initial datum of finite kinetic energy, Leray has proven in 1934 that there exists at least
one global in time finite energy weak solution of the 3D Navier-Stokes equations. In this paper
we prove that weak solutions of the 3D Navier-Stokes equations are not unique in the class of
weak solutions with finite kinetic energy. Moreover, we prove that Hölder continuous dissipative
weak solutions of the 3D Euler equations may be obtained as a strong vanishing viscosity limit
of a sequence of finite energy weak solutions of the 3D Navier-Stokes equations.

1 Introduction

In this paper we consider the 3D incompressible Navier-Stokes equation

∂tv + div (v ⊗ v) +∇p− ν∆v = 0 (1.1a)

div v = 0 (1.1b)

posed on T3 × R, with periodic boundary conditions in x ∈ T3 = R3/2πZ3. We consider solutions
normalized to have zero spatial mean, i.e.,

´
T3 v(x, t)dx = 0. The constant ν ∈ (0, 1] is the kinematic

viscosity. We define weak solutions to the Navier-Stokes equations [49, Definition 1], [19, pp. 226]:

Definition 1.1. We say v ∈ C0(R;L2(T3)) is a weak solution of (1.1) if for any t ∈ R the vector
field v(·, t) is weakly divergence free, has zero mean, and (1.1a) is satisfied in D′(T3 × R), i.e.,

ˆ
R

ˆ
T3

v · (∂tϕ+ (v · ∇)ϕ+ ν∆ϕ)dxdt = 0

holds for any test function ϕ ∈ C∞0 (T3 × R) such that ϕ(·, t) is divergence-free for all t.

As a direct result of the work of Fabes-Jones-Riviere [19], since the weak solutions defined above
lie in C0(R;L2(T3)), they are in fact solutions of the integral form of the Navier-Stokes equations

v(·, t) = eνt∆v(·, 0) +

ˆ t

0
eν(t−s)∆Pdiv (v(·, s)⊗ v(·, s))ds , (1.2)

and are sometimes called mild or Oseen solutions (cf. [19] and [39, Definition 6.5]). Here P is the
Leray projector and et∆ denotes convolution with the heat kernel.
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1.1 Previous works

In [40], Leray considered the Cauchy-problem for (1.1) for initial datum of finite kinetic energy,
v0 ∈ L2. Leray proved that for any such datum, there exists a global in time weak solution
v ∈ L∞t L2

x, which additionally has the regularity L2
t Ḣ

1
x, and obeys the energy inequality ‖v(t)‖2L2 +

2ν
´ t

0 ‖∇u(s)‖2L2 ds ≤ ‖v0‖2L2 . Hopf [24] established a similar result for the equations posed in a
smooth bounded domain, with Dirichlet boundary conditions. To date, the question of uniqueness
of Leray-Hopf weak solutions for the 3D Navier-Stokes equations remains however open.

Based on the natural scaling of the equations v(x, t) 7→ vλ(x, t) = λv(λx, λ2t), a number of
partial regularity results have been established [45, 7, 41, 37, 53, 35]; the local existence for the
Cauchy problem has been proven in scaling-invariant spaces [30, 32, 28]; and conditional regular-
ity has been established under geometric structure assumptions [11] or assuming a signed pres-
sure [47]. The conditional regularity and weak-strong uniqueness results known under the umbrella
of Ladyzhenskaya-Prodi-Serrin conditions [31, 43, 48], state that if a Leray-Hopf weak solution also
lies in LptL

q
x, with 2/p+ 3/q ≤ 1, then the solution is unique and smooth in positive time. These con-

ditions and their generalizations have culminated with the work of Escauriaza-Seregin-Šverák [27]
who proved the L∞t L

3
x endpoint. The uniqueness of mild/Oseen solutions is also known under the

Ladyzhenskaya-Prodi-Serrin conditions, cf. [19] for p > 3, and [21, 42, 38, 33] for p = 3. Note that
the regularity of Leray-Hopf weak solutions, or of bounded energy weak solutions, is consistent with
the scaling 2/p + 3/q = 3/2. In contrast, the additional regularity required to ensure that the energy
equality holds in the Navier-Stokes equations is consistent with 2/4 + 3/4 = 5/4 for p = q = 4 [50, 34].
See [12, 52, 38, 44, 39] for surveys of results on the Navier-Stokes equations.

The gap between the scaling of the kinetic energy and the natural scaling of the equations
leaves open the possibility of nonuniqueness of weak solutions to (1.1). In [28, 29] Jia-Šverák
proved that non-uniqueness of Leray-Hopf weak solutions in the regularity class L∞t L

3,∞
x holds if a

certain spectral assumption holds for a linearized Navier-Stokes operator. While a rigorous proof
of this spectral condition remains open, very recently Guillod-Šverák [23] have provided compelling
numerical evidence of it, using a scenario related to the example of Ladyzhenskaya [36]. Thus, the
works [29, 23] strongly suggest that the Ladyzhenskaya-Prodi-Serrin regularity criteria are sharp.

1.2 Main results

In this paper we prove that weak solutions to (1.1) (in the sense of Definition 1.1) are not unique
within the class of weak solutions with bounded kinetic energy. We establish the stronger result1:

Theorem 1.2 (Nonuniqueness of weak solutions). There exists β > 0, such that for any

nonnegative smooth function e(t) : [0, T ]→ R≥0, there exists v ∈ C0
t ([0, T ];Hβ

x (T3)) a weak solution
of the Navier-Stokes equations, such that

´
T3 |v(x, t)|2 dx = e(t) for all t ∈ [0, T ]. Moreover, the

associated vorticity ∇× v lies in C0
t ([0, T ];L1

x(T3)).

In particular, the above theorem shows that v ≡ 0 is not the only weak solution which vanishes
at a time slice, thereby implying the nonuniqueness of weak solutions. Theorem 1.2 shows that
weak solutions may come to rest in finite time, a question posed by Serrin [49, pp. 88]. Moreover,
by considering e1(t), e2(t) > 0 which are nonincreasing, such that e1(t) = e2(t) for t ∈ [0, T/2],
and e1(T ) < e2(T ), the construction used to prove Theorem 1.2 also proves the nonuniqueness of
dissipative weak solutions.

From the proof of Theorem 1.2 it is clear that the constructed weak solutions v also have
regularity in time, i.e. there exists γ > 0 such that v ∈ Cγt ([0, T ];L2

x(T3)). Thus, v ⊗ v lies in

1We denote by Hβ the L2-based Sobolev space with regularity index β. Clearly C0
tH

β
x ⊂ C0

t L
2
x.
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Cγt L
1
x∩C0

t L
1+γ
x , and the fact that ∇v ∈ C0

t L
1
x follows from (1.2) and the maximal regularity of the

heat equation.
We note that while the weak solutions Theorem 1.2 may attain any smooth energy profile, at

the moment we do not prove that they are Leray-Hopf weak solutions, i.e., they do not obey the
energy inequality or have L2

t Ḣ
1
x integrability. Moreover, the regularity parameter β > 0 cannot be

expected to be too large, since at β = 1/2 one has weak-strong uniqueness [12]. We expect that
the ideas used to prove Theorem 1.2 will in the future lead to a proof of nonuniqueness of weak
solutions in C0

t L
p
x, for any 2 ≤ p < 3, and the nonuniqueness of Leray-Hopf weak solutions.

The proof of Theorem 1.2 builds on several of the fundamental ideas pioneered by De Lellis-
Székelyhidi Jr. [15, 16]. These ideas were used to tackle the Onsager conjecture for the Euler
equation [18, 10, 8] (set ν = 0 in (1.1)) via convex integration methods [46, 51, 2, 17, 1, 3],
leading to the resolution of the conjecture by Isett [25, 26], using a key ingredient by Daneri and
Székelyhidi Jr. [14]. The construction of dissipative Euler solutions below the Onsager regularity
threshold was proven by authors of this paper jointly with De Lellis and Székelyhidi Jr. in [4],
building on the ideas in [14, 25]. In order to treat the dissipative term −ν∆, not present in the
Euler system, we cannot proceed as in [6, 9], since in these works Hölder continuous weak solutions
are constructed, which is possible only by using building blocks which are sparse in the frequency
variable and for small fractional powers of the Laplacian. Instead, the main idea, which is also used
in [5], is to use building blocks for the convex integration scheme which are “intermittent”. That
is, the building blocks we use are spatially inhomogeneous, and have different scaling in different
Lp norms. At high frequency, these building blocks attempt to saturate the Bernstein inequalities
from Littlewood-Paley theory. Since they are built by adding eigenfunctions of curl in a certain
geometric manner, we call these building blocks intermittent Beltrami flows. In particular, the proof
of Theorem 1.2 breaks down in 2D, as is expected, since there are not enough spatial directions to
oscillate in. The proof of Theorem 1.2 is given in Section 2 below.

The idea of using intermittent building blocks can be traced back to classical observations in
hydrodynamic turbulence, see for instance [20]. Moreover, in view of the aforementioned works
on the Onsager conjecture for the Euler equations, we are naturally led to consider the set of
accumulation points in the vanishing viscosity limit ν → 0 of the family of weak solutions to the
Navier-Stokes equations which we constructed in Theorem 1.2. We prove in this paper that this set
of accumulation points, in the C0

t L
2
x topology, contains all the Hölder continuous weak solutions of

the 3D Euler equations:

Theorem 1.3 (Dissipative Euler solutions arise in the vanishing viscosity limit). For

β̄ > 0 let u ∈ C β̄t,x(T3× [−2T, 2T ]) be a zero-mean weak solution of the Euler equations. Then there

exists β > 0, a sequence νn → 0, and a uniformly bounded sequence v(νn) ∈ C0
t ([0, T ];Hβ

x (T3)) of
weak solutions to the Navier-Stokes equations, with v(νn) → u strongly in C0

t ([0, T ];L2
x(T3)).

In particular, Theorem 1.3 shows that the nonconservative weak solutions to the Euler equations
obtained in [25, 4] arise in the vanishing viscosity limit of weak solutions to the Navier-Stokes
equations. Thus, being a strong limit of weak solutions to the Navier-Stokes equations, in the sense
of Definition 1.1, cannot serve as a selection criterion for weak solutions of the Euler equation.
Whether similar vanishing viscosity results hold for sequences of Leray-Hopf weak solutions, or for
suitable weak solutions of (1.1), remains a challenging open problem. The proof of Theorem 1.3 is
closely related to that of Theorem 1.2, and is also given in Section 2 below.
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2 Outline of the convex integration scheme

In this section we sketch the proof of Theorem 1.2. For every integer q ≥ 0 we will construct a
solution (vq, pq, R̊q) to the Navier-Stokes-Reynolds system

∂tvq + div (vq ⊗ vq) +∇pq − ν∆vq = div R̊q (2.1a)

div vq = 0 . (2.1b)

where the Reynolds stress R̊q is assumed to be a trace-free symmetric matrix.

2.1 Parameters

Throughout the proof we fix a sufficiently large, universal constant b ∈ 16N, and depending on b
we fix a regularity parameter β > 0 such that βb2 ≤ 4 and βb ≤ 1/40. We remark that it is sufficient
to take b = 29 and β = 2−16.

The relative size of the approximate solution vq and the Reynolds stress error R̊q will be mea-
sured in terms of a frequency parameter λq and an amplitude parameter δq defined as

λq = a(bq)

δq = λ3β
1 λ−2β

q

for some integer a� 1 to be chosen suitably.

2.2 Inductive estimates

By induction, we will assume the following estimates2 on the solution of (2.1) at level q:

‖vq‖C1
x,t
≤ λ4

q (2.2)∥∥∥R̊q∥∥∥
L1
≤ λ−εRq δq+1 (2.3)∥∥∥R̊q∥∥∥

C1
x,t

≤ λ10
q . (2.4)

We additionally assume

0 ≤ e(t)−
ˆ
T3

|vq|2 dx ≤ δq+1 (2.5)

and

e(t)−
ˆ
T3

|vq(x, t)|2 dx ≤ δq+1

100
⇒ vq(·, t) ≡ 0 and R̊q(·, t) ≡ 0 . (2.6)

for all t ∈ [0, T ].

2.3 The main proposition and iterative procedure

In addition to the sufficiently large universal constant b, and the sufficiently small regularity pa-
rameter β = β(b) > 0 fixed earlier, we fix the constant Me = ‖e‖C1

t
. The following iteration lemma

states the existence of a solution of (2.1) at level q + 1, which obeys suitable bounds.

2Here and throughout the paper we use the notation: ‖f‖Lp = ‖f‖L∞
t L

p
x
, for 1 ≤ p ≤ ∞, ‖f‖CN = ‖f‖L∞

t CN
x

=∑
0≤|α|≤N ‖D

αf‖L∞ , ‖f‖CN
x,t

=
∑

0≤n+|α|≤N ‖∂
n
t D

αf‖L∞ , and ‖f‖Ws,p = ‖f‖L∞
t W

s,p
x

, for s > 0, and 1 ≤ p ≤ ∞.

4



Proposition 2.1. There exists a universal constant M > 0, a sufficiently small parameter εR =
εR(b, β) > 0 and a sufficiently large parameter a0 = a0(b, β, εR,M,Me) > 0 such that for any integer
a ≥ a0, which is a multiple of the NΛ of Remark 3.3, the following holds: Let (vq, pq, R̊q) be a triple
solving the Navier-Stokes-Reynolds system (2.1) in T3 × [0, T ] satisfying the inductive estimates
(2.2)–(2.6). Then there exists a second triple (vq+1, pq+1, R̊q+1) solving (2.1) and satisfying the
(2.2)–(2.6) with q replaced by q + 1. In addition we have that

‖vq+1 − vq‖L2 ≤Mδ
1/2
q+1 . (2.7)

The principal new idea in the proof of Proposition 2.1 is to construct the perturbation vq+1−vq
as a sum of terms of the form

a(ξ)W(ξ) (2.8)

where W(ξ) is an intermittent Beltrami wave (cf. (3.12) below) with frequency support centered
at frequency ξλq+1 for ξ ∈ S2. While these intermittent Beltrami waves have similar properties
(cf. Proposition 3.4) to the usual Beltrami flows used in the previous convex integration construc-
tions [16, 2, 17, 1, 3] for the Euler equations, they are fundamentally different since their L1 norm
is much smaller than their L2 norm (cf. Proposition 3.5). The gain comes from the fact that the
Reynolds stress has to be estimated in L1 rather than L2, and that the term ν∆v is linear in v. At
the technical level, one difference with respect to [25, 4] is the usage of very large gaps between con-
secutive frequency parameters (i.e., b � 1), which is consistent with a small regularity parameter
β. Next, we show that Proposition 2.1 implies the main theorems of the paper.

2.4 Proof of Theorem 1.2

Choose all the parameters from the statement of Proposition 2.1, except for a, which we may need
to be larger (so that it is still larger than a0).

For q = 0 we note that the identically zero solution trivially satisfies (2.1) with R̊0 = 0, and
the inductive assumptions (2.2), (2.3), and (2.4) hold. Moreover, by taking a sufficiently large such
that it is in the range of Proposition 2.1 (i.e. a ≥ a0) we may ensure that

|e(t)| ≤ ‖e‖C1
t

= Me ≤
λβ1
100

=
δ1

100
.

Then the zero solution also satisfies (2.5) and (2.6).
For q ≥ 1 we inductively apply Proposition 2.1. The bound (2.7) and interpolation implies3

∞∑
q=0

‖vq+1 − vq‖Hβ′ .
∞∑
q=0

‖vq+1 − vq‖1−β
′

L2 (‖vq+1‖C1 + ‖vq‖C1)β
′

.
∞∑
q=0

M1−β′λ
3β 1−β′

2
1 λ

−β 1−β′
2

q+1 λ4β′

q+1

.M1−β′λ
3β 1−β′

2
1 , (2.9)

for β′ < β/(8 + β), and hence the sequence {vq}q≥0 is uniformly bounded C0
tH

β′
x , for such β′. Fur-

thermore, by taking a sufficiently large (depending on b, β and β′) the implicit constant in (2.9)

3Throughout this paper, we we will write A . B to denote that there exists a sufficiently large constant C, which
is independent of q, such that A ≤ CB.
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can be made to be universal. From (2.1), (2.3), the previously established uniform boundedness in
C0
t L

2
x, and the embedding W 2,1

x ⊂ L2
x we obtain that

‖∂tvq‖H−3 .
∥∥∥Pdiv (vq ⊗ vq)− ν∆vq − Pdiv R̊q

∥∥∥
H−3

. ‖vq ⊗ vq‖L1 + ‖vq‖L2 +
∥∥∥R̊q∥∥∥

L1

.M2λ3β
1

where P is the Leray projector. Thus, the sequence {vq}q≥0 is uniformly bounded in C1
tH
−3
x . It

follows that for any 0 < β′′ < β′ the sum∑
q≥0

(vq+1 − vq) =: v

converges in C0
tH

β′′
x , and since

∥∥∥R̊q∥∥∥
L1
→ 0 as q →∞, v is a C0

tH
β′′
x weak solution of the Navier-

Stokes equation. Lastly, in view of (2.5) we have that the kinetic energy of v(·, t) is given by e(t)
for all t ∈ [0, T ], concluding the proof of the theorem.

2.5 Proof of Theorem 1.3

Fix β̄ > 0 and a weak solution u ∈ C β̄t,x to the Euler equation on [−2T, 2T ]. The existence of such
solutions is guaranteed in view of the results of [25, 4] for β̄ < 1/3, and for β̄ > 1 from the classical
local existence results. Let Mu = ‖u‖Cβ̄ . Pick an integer n ≥ 1.

Choose all the parameters as in Proposition 2.1, except for a ≥ a0, which we may take even
larger, depending also on Mu and β′ which obeys 0 < β′ < min(β̄/2, β/(8 + β)). We make a even
larger, depending also on β′, so that in view of (2.9) we may ensure that

∞∑
q=n

M1−β′λ
3β 1−β′

2
1 λ

−β 1−β′
2

q+1 λ4β′

q+1 ≤
1

2Cn
(2.10)

where C is the implicit constant in (2.9).
Let {φε}ε>0 be a family of standard compact support (of width 2) Friedrichs mollifiers on R3

(space), and {ϕε}ε>0 be a family of standard compact support (of width 2) Friedrichs mollifiers on
R (time). We define

vn = (u ∗x φλ−1
n

) ∗t ϕλ−1
n

to be a mollification of u in space and time, at length scale and time scale λ−1
n , restricted to the

temporal range [0, T ]. Also, on [0, T ] define the energy function

e(t) =

ˆ
T3

|vn(x, t)|2 dx+
δn
2

which ensures that (2.5) and (2.6) hold for q = n.
Since u is a solution of the Euler equations, there exists a mean-free pn such that

∂tvn + div (vn ⊗ vn) +∇pn − λ−2
n ∆vn = div (R̊n)

where R̊n is the traceless symmetric part of the tensor

(vn ⊗ vn)− ((u⊗ u) ∗x φλ−1
n

) ∗t ϕλ−1
n
− λ−2

n ∇vn.
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Using a version of the commutator estimate introduced in [10], which may for instance be found
in [13, Lemma 1], we obtain that∥∥∥R̊n∥∥∥

L1
.
∥∥∥R̊n∥∥∥

C0
. λ−1

n Mu + λ−2β̄
n M2

u . (2.11)

In addition, from a similar argument it follows that∥∥∥R̊n∥∥∥
C1
t,x

.Mu + λ1−2β̄
n M2

u (2.12)

‖vn‖C1
t,x

. λ1−β̄
n Mu. (2.13)

Setting
ν := νn := λ−1

n ,

then with a sufficiently large, depending on Mu and β̄, we may ensure the pair (vn, R̊n) obey the
inductive assumptions (2.2)–(2.4) for q = n. Additionally, we may also choose a sufficiently large,
depending on Mu and β̄, so that

λβ̄−β
′

n Mu ≤
1

2n|T3|1/2
. (2.14)

At this stage we may start the inductive Proposition 2.1, and as in the proof of Theorem 1.2, we
obtain a weak solution u(νn) of the Navier-Stokes equations, with the desired regularity, such that∥∥∥v(νn) − u

∥∥∥
Hβ′
≤
∥∥∥v(νn) − vn

∥∥∥
Hβ′

+ |T3|1/2 ‖u− vn‖Cβ′ ≤
1

n
.

in view of (2.10) and (2.14). Since n was arbitrary, this concludes the proof of the theorem.

3 Intermittent Beltrami Waves

In this section we will describe in detail the construction of the intermittent Beltrami waves which
will form the building blocks of our convex integration scheme. Very roughly, intermittent Betrami
waves are approximate Beltrami waves (approximate eigenfunctions to the curl operator) whose L1

norm is significantly smaller than their L2 norm.

3.1 Beltrami waves

We first recall from Proposition 3.1 and Lemma 3.2 in [15] the construction of Beltrami waves
(see also the summary given in [2]). In order to better suit our later goal of defining intermittent
Beltrami waves, the statements of these propositions are slightly modified from the form they
appear in [2], by making the substitution k

|k| 7→ ξ.

Proposition 3.1. Given ξ ∈ S2 ∩Q3, let Aξ ∈ S2 ∩Q3 be such that

Aξ · ξ = 0, |Aξ| = 1, A−ξ = Aξ .

Furthermore, let
Bξ = 1√

2
(Aξ + iξ ×Aξ) .
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Let Λ be a given finite subset of S2 ∩ Q3 such that −Λ = Λ, and let λ ∈ Z be such that λΛ ⊂ Z3.
Then for any choice of coefficients aξ ∈ C with aξ = a−ξ the vector field

W (x) =
∑
ξ∈Λ

aξBξe
iλξ·x (3.1)

is real-valued, divergence-free and satisfies

div (W ⊗W ) = ∇|W |
2

2
. (3.2)

Furthermore, since Bξ ⊗B−ξ +B−ξ ⊗Bξ = Id− ξ ⊗ ξ, we have

 
T3

W ⊗W dx =
1

2

∑
ξ∈Λ

|aξ|2 (Id− ξ ⊗ ξ) . (3.3)

Proposition 3.2. For every N ∈ N we can choose εγ > 0 and λ > 1 with the following property.
Let Bεγ (Id) denote the ball of symmetric 3× 3 matrices, centered at Id, of radius εγ. Then, there
exist pairwise disjoint subsets

Λα ⊂ S2 ∩Q3 α ∈ {1, . . . , N} ,

with λΛα ∈ Z3, and smooth positive functions

γ
(α)
ξ ∈ C∞ (Bε(Id)) α ∈ {1, . . . , N}, ξ ∈ Λα ,

with derivatives that are bounded independently of λ, such that:

(a) ξ ∈ Λα implies −ξ ∈ Λα and γ
(α)
ξ = γ

(α)
−ξ ;

(b) For each R ∈ Bεγ (Id) we have the identity

R =
1

2

∑
ξ∈Λα

(
γ

(α)
ξ (R)

)2
(Id− ξ ⊗ ξ) . (3.4)

Remark 3.3. Throughout the construction, the parameter N is bounded by a universal constant;
for instance one can take N = 2. Moreover, for each α the cardinality of the set Λα is also bounded
by a universal constant; for instance one may take |Λα| = 12. Consequently, the set of direction
vectors ∪Nα=1∪ξ∈Λα {ξ, Aξ, ξ×Aξ} ⊂ S2∩Q3 also has a universally bounded cardinality. Therefore,
there exists a universal sufficiently large natural number NΛ ≥ 1 such that we have

{NΛξ,NΛAξ, NΛξ ×Aξ} ⊂ NΛS2 ∩ Z3

for all vectors ξ in the construction.
It is also convenient to introduce a sufficiently small geometric constant cΛ ∈ (0, 1) such that

ξ + ξ′ 6= 0 ⇒
∣∣ξ + ξ′

∣∣ ≥ 2cΛ

for all ξ, ξ′ ∈ Λα and all α ∈ {1, . . . , N}. In view of the aforementioned cardinality considerations,
the geometric constant cΛ is universal to the construction.

The implicit constants in the . of the below estimates are allowed to depend on NΛ and cΛ,
but we will not emphasize this dependence, since these are universal constants.
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3.2 Intermittent Beltrami waves

Recall cf. [22, Section 3] that the Dirichlet kernel Dn is defined as

Dn(x) =

n∑
ξ=−n

eixξ =
sin((n+ 1/2)x)

sin(x/2)
(3.5)

and has the property that for any p > 1 it obeys the estimate

‖Dn‖Lp ∼ n
1−1/p

where the implicit constant only depends only on p. Replacing the sum in (3.5) by a sum of
frequencies in a 3D integer cube

Ωr :=
{
ξ = (j, k, `) : j, k, ` ∈ {−r, . . . , r}

}
and normalizing to unit size in L2, we obtain a kernel

Dr(x) :=
1

(2r + 1)3/2

∑
ξ∈Ωr

eiξ·x =
1

(2r + 1)3/2

∑
j,k,`∈{−r,...,r}

ei(jx1+kx2+`x3)

such that for 1 < p ≤ ∞ we have

‖Dr‖2L2 = (2π)3, and ‖Dr‖Lp . r
3/2−3/p , (3.6)

where the implicit constant depends only on p. Note that −Ωr = Ωr.
The principal idea in the construction of intermittent Beltrami waves is to modify the Beltrami

waves of the previous section by adding oscillations that mimic the structure of the kernels Dr

in order to construct approximate Beltrami waves with small Lp norm for p close to 1. The large
parameter r will parameterize the number of frequencies along edges of the cube Ωr. We introduce a
small parameter σ, such that λσ ∈ N parameterizes the spacing between frequencies, or equivalently
such that the resulting rescaled kernel is (T/λσ)3-periodic. We assume throughout the paper that

σr ≤ cΛ/(10NΛ) , (3.7)

where cΛ ∈ (0, 1) and NΛ ≥ 1 are the parameters from Remark 3.3. Lastly, we introduce a large
parameter µ ∈ (λ, λ2), which measures the amount of temporal oscillation in our building blocks.
The parameters λ, r, σ and µ are chosen in Section 4 below.

We recall from Propositions 3.1 and 3.2 that for ξ ∈ Λα, the vectors {ξ, Aξ, ξ × Aξ} form an
orthonormal basis of R3, and by Remark 3.3 we have

NΛξ, NΛAξ, NΛξ ×Aξ ∈ Z3 for all ξ ∈ Λα, α ∈ {1, . . . , N} .

Therefore, for ξ ∈ Λ+
α we may define a directed and rescaled (T/λσ)3 = (R/2πλσZ)3-periodic Dirichlet

kernel by

η(ξ)(x, t) = ηξ,λ,σ,r,µ(x, t) = Dr (λσNΛ(ξ · x+ µt), λσNΛAξ · x, λσNΛ(ξ ×Aξ) · x) . (3.8)

For ξ ∈ Λ−α we define η(ξ)(x, t) := η(−ξ)(x, t). The periodicity of η(ξ) follows from the fact that Dr

is T3-periodic, and the definition of NΛ. We emphasize that we have the important identity

1

µ
∂tη(ξ)(x, t) = ±(ξ · ∇)η(ξ)(x, t), for all ξ ∈ Λ±α (3.9)
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as a consequence of the fact that the vectors Aξ and ξ ×Aξ are orthogonal to ξ.
Note that the map (x1, x2, x3) 7→ (λσNΛ(ξ · x+ µt), λσNΛAξ · x, λσNΛ(ξ ×Aξ) · x) is the com-

position of a rotation by a rational orthogonal matrix which maps (e1, e2, e3) to (ξ, Aξ, ξ × Aξ), a
rescaling by λσNΛ, and a translation by λσNΛµte1. These are all volume preserving transforma-
tions on T3, and thus by our choice of normalization for (3.6) we have that

 
T3

η2
(ξ)(x, t)dx = 1, and

∥∥η(ξ)

∥∥
Lp(T3)

. r3/2−3/p (3.10)

for all 1 < p ≤ ∞, pointwise in time.
Letting W(ξ) be the Beltrami plane wave at frequency λ, namely

W(ξ)(x) = Wξ,λ(x) = Bξe
iλξ·x , (3.11)

we have

curlW(ξ) = λW(ξ) and divW(ξ) = 0 .

We take λ to be a multiple of NΛ, so that W(ξ) is T3-periodic. Finally, we define the intermittent
Beltrami wave W(ξ) as

W(ξ)(x, t) = Wξ,λ,σ,r,µ(x, t) = ηξ,λ,σ,r,µ(x, t)Wξ,λ(x) = η(ξ)(x, t)W(ξ)(x). (3.12)

We first make a few comments concerning the frequency support of W(ξ). In view of (3.7) and
the definition of η(ξ), which yields P≤2λσrNΛ

η(ξ) = η(ξ), we have that

P≤2λP≥λ/2W(ξ) = W(ξ) , (3.13)

while for ξ′ 6= −ξ, by the definition of cΛ in Remark 3.3 we have

P≤4λP≥cΛλ
(
W(ξ) ⊗W(ξ′)

)
= W(ξ) ⊗W(ξ′). (3.14)

Note that the vector W(ξ) is not anymore divergence free, nor is it an eigenfunction of curl .
These properties only hold to leading order:∥∥∥∥ 1

λ
divW(ξ)

∥∥∥∥
L2

=
1

λ

∥∥Bξ · ∇η(ξ)

∥∥
L2 .

λσr

λ
= σr∥∥∥∥ 1

λ
curlW(ξ) −W(ξ)

∥∥∥∥
L2

=
1

λ

∥∥∇η(ξ) ×Bξ
∥∥
L2 .

λσr

λ
= σr

and the parameter σr will be chosen to be small. Moreover, from Propositions 3.1 and 3.2 we have:

Proposition 3.4. Let W(ξ) be as defined above, and let Λα, εγ , γ(ξ) = γ
(α)
ξ be as in Proposition 3.2.

If aξ ∈ C are constants chosen such that aξ = a−ξ, the vector field∑
α

∑
ξ∈Λα

aξW(ξ)(x)

is real valued. Moreover, for each R ∈ Bεγ (Id) we have the identity∑
ξ∈Λα

(
γ(ξ)(R)

)2  
T3

W(ξ) ⊗W(−ξ)dx =
∑
ξ∈Λα

(
γ(ξ)(R)

)2
Bξ ⊗B−ξ = R. (3.15)
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Proof of Proposition 3.4. The first statement follows from the fact that η(−ξ)(x, t) = η(ξ)(x, t).
Identity (3.15) follows from (3.4) upon noting that 2Re (Bξ⊗B−ξ) = Id−ξ⊗ξ, and the normalization
(3.10).

For the purpose of estimating the oscillation error in Section 5, it is useful to derive a replacement
of identity (3.2), in the case of intermittent Beltrami waves. For this purpose, we first recall the
vector identity

(A · ∇)B + (B · ∇)A = ∇(A ·B)−A× curlB −B × curlA.

Hence, for ξ, ξ′ ∈ Λα we may rewrite

div
(
W(ξ) ⊗W(ξ′) + W(ξ′) ⊗W(ξ)

)
=
(
W(ξ) ⊗W(ξ′) +W(ξ′) ⊗W(ξ)

)
∇
(
η(ξ)η(ξ′)

)
+ η(ξ)η(ξ′)

(
(W(ξ) · ∇)W(ξ′) + (W(ξ′) · ∇)W(ξ)

)
=
(
(W(ξ′) · ∇)

(
η(ξ)η(ξ′)

))
W(ξ) +

(
(W(ξ) · ∇)

(
η(ξ)η(ξ′)

))
W(ξ′)

+ η(ξ)η(ξ′)∇
(
W(ξ) ·W(ξ′)

)
− λη(ξ)η(ξ′)

(
W(ξ) ×W(ξ′) +W(ξ′) ×W(ξ)

)
=
(
(W(ξ′) · ∇)

(
η(ξ)η(ξ′)

))
W(ξ) +

(
(W(ξ) · ∇)

(
η(ξ)η(ξ′)

))
W(ξ′) + η(ξ)η(ξ′)∇

(
W(ξ) ·W(ξ′)

)
. (3.16)

In the last equality we have used that the cross-product is antisymmetric.
Let us now restrict to the case ξ+ ξ′ = 0. Recall that W(ξ) = 1√

2
(Aξ + iξ×Aξ)eiλξ·x , ξ ·Aξ = 0,

and |Aξ| = 1. Therefore, when ξ′ = −ξ the last term on the right side of (3.16) is zero, as
W(ξ) ·W(−ξ) = 1. Thus we obtain

div
(
W(ξ) ⊗W(−ξ) + W(−ξ) ⊗W(ξ)

)
=
(

(W(−ξ) · ∇)η2
(ξ)

)
W(ξ) +

(
(W(ξ) · ∇)η2

(ξ)

)
W(−ξ)

=
(

(Aξ · ∇)η2
(ξ)

)
Aξ +

(
((ξ ×Aξ) · ∇)η2

ξ

)
(ξ ×Aξ)

= ∇η2
(ξ) −

(
(ξ · ∇)η2

(ξ)

)
ξ .

In the last equality above we have used that {ξ, Aξ, ξ ×Aξ} is an orthonormal basis of R3. The
above identity and property (3.9) of η(ξ) shows that

div
(
W(ξ) ⊗W(−ξ) + W(−ξ) ⊗W(ξ)

)
= ∇η2

(ξ) −
ξ

µ
∂tη

2
(ξ). (3.17)

which is the key identity that motivates the introduction of temporal oscillations in the problem.
Recall, the intermittent Beltrami waves were designed to include additional oscillations that

cancel in order to minimize their L1 norm, in a way that is analogous to the cancellations of
the Dirichlet kernel. In this direction, an immediate consequence of property (3.10) of η(ξ), of
the frequency localization in the spatial variable (3.13), and of the frequency of the temporal
oscillations, are the following bounds for η(ξ) and the the intermittent Beltrami waves W(ξ):

Proposition 3.5. Let W(ξ) be defined as above. The bound∥∥∇N∂Kt W(ξ)

∥∥
Lp

. λN (λσrµ)Kr
3/2−3/p (3.18)∥∥∇N∂Kt η(ξ)

∥∥
Lp

. (λσr)N (λσrµ)Kr
3/2−3/p (3.19)

for any 1 < p ≤ ∞, N ≥ 0 and K ≥ 0. The implicit constant depends only on N,K and p.

Remark 3.6. We note that while in the above proposition we state estimates for all orders of
derivatives (N and K), only derivatives up to a fixed order, which is independent of q, appear in
the entire proof of Proposition 2.1. Hence the implicit constants that depend on the number of
derivatives taken are independent of q. This remark also applies to estimates in later parts of the
paper (e.g. mollification estimates).
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3.3 Lp decorrelation

We now introduce a crucial lemma from [5] that will be used throughout the paper. Suppose we
wish to estimate ∥∥f W(ξ)

∥∥
L1

for some arbitrary function f : T3 → R. The trivial estimate is∥∥f W(ξ)

∥∥
L1 . ‖f‖L2

∥∥W(ξ)

∥∥
L2 .

Such an estimate does not however take advantage of the special structure of the (2πλσ)−1 periodic
function W(ξ)e

−iλξ·x. It turns out that if say f has frequency contained in a ball of radius µ and
λσ � µ then one obtains the improved estimate∥∥f W(ξ)

∥∥
L1 . ‖f‖L1

∥∥W(ξ)

∥∥
L1

which gives us the needed gain because
∥∥W(ξ)

∥∥
L1 �

∥∥W(ξ)

∥∥
L2 . This idea is one of the key insights

of [5] and is summarized in Lemma 3.7 below. For convenience we include the proof in Appendix A.

Lemma 3.7. Fix integers M,κ, λ ≥ 1 such that

2π
√

3λ

κ
≤ 1

3
and λ4 (2π

√
3λ)M

κM
≤ 1 .

Let p ∈ {1, 2}, and let f be a T3-periodic function such that there exists a constant Cf such that

‖Djf‖Lp ≤ Cfλj

for all 1 ≤ j ≤M + 4. In addition, let g be a (T/κ)3-periodic function. Then we have that

‖fg‖Lp . Cf‖g‖Lp

holds, where the implicit constant is universal.

4 The perturbation

In this section we will construct the perturbation wq+1.

4.1 Mollification of vq

In order to avoid a loss of derivative, we replace vq by a mollified velocity field v`. Let {φε}ε>0

be a family of standard Friedrichs mollifiers (of compact support of radius 2) on R3 (space), and
{ϕε}ε>0 be a family of standard Friedrichs mollifiers (of compact support of width 2) on R (time).
We define a mollification of vq and R̊q in space and time, at length scale and time scale ` (which is
defined in (4.16) below) by

v` = (vq ∗x φ`) ∗t ϕ` ,
R̊` = (R̊q ∗x φ`) ∗t ϕ` . (4.1)

Then using (2.1) we obtain that (v`, R̊`) obey

∂tv` + div (v` ⊗ v`) +∇p` −∆v` = div
(
R̊` + R̃commutator

)
, (4.2a)

div v` = 0 , (4.2b)

12



where the new pressure p` and the traceless symmetric commutator stress R̃commutator are given by

p̃` = (pq ∗x φ`) ∗t ϕ` −
(
|v`|2 − (|vq|2 ∗x φ`) ∗t ϕ`

)
,

R̃commutator = (v`⊗̊v`)− ((vq⊗̊vq) ∗x φ`) ∗t ϕ` . (4.3)

Here we have used a⊗̊b to denote the traceless part of the tensor a⊗ b.
Note that in view of (2.2) the commutator stress R̃commutator obeys the lossy estimate∥∥∥R̃commutator

∥∥∥
L∞

. ` ‖vq ⊗ vq‖C1 . ` ‖vq‖C1 ‖vq‖L∞ . `λ8
q . (4.4)

The parameter ` will be chosen (cf. (4.16) below) to satisfy

(σλq+1)−
1/2 � `� λ−19

q δq+1 . (4.5)

In particular, R̊` inherits the L1 bound of R̊q from (2.3), and in view (2.4) and the upper bound
on ` in (4.5), we have that ∥∥∥R̊`∥∥∥

CNt,x
. λ10

q `
−N+1 . `−N . (4.6)

Moreover, from (2.2) and the upper bound on ` from (4.5) we obtain the bounds

‖vq − v`‖L∞ . ` ‖vq‖C1 . `λ4
q , (4.7)

‖v`‖CNx,t . `1−N ‖vq‖C1 . `1−Nλ4
q . `−N . (4.8)

4.2 Stress cutoffs

Because the Reynolds stress R̊` is not spatially homogenous, we introduce stress cutoff functions.
We let 0 ≤ χ̃0, χ̃ ≤ 1 be bump functions adapted to the intervals [0, 4] and [1/4, 4] respectively,
such that together they form a partition of unity:

χ̃2
0(y) +

∑
i≥1

χ̃2
i (y) ≡ 1, where χ̃i(y) = χ̃(4−iy), (4.9)

for any y > 0. We then define

χ(i)(x, t) = χi,q+1(x, t) = χ̃i

(〈
R̊`(x, t)

100λ−εRq δq+1

〉)
(4.10)

for all i ≥ 0. Here and throughout the paper we use the notation 〈A〉 = (1 + |A|2)1/2 where |A|
denotes the Euclidean norm of the matrix A. By definition the cutoffs χ(i) form a partition of unity∑

i≥0

χ2
(i) ≡ 1 (4.11)

and we will show in Lemma 4.1 below that there exists an index imax = imax(q), such that χ(i) ≡ 0
for all i > imax, and moreover that 4imax . `−1.
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4.3 The definition of the velocity increment

Define the coefficient function aξ,i,q+1 by

a(ξ) := aξ,i,q+1 := ρ
1/2
i χi,q+1γ(ξ)

(
Id− R̊`

ρi(t)

)
. (4.12)

where for i ≥ 1, the parameters ρi are defined by

ρi := λ−εRq δq+14i+c0 (4.13)

where c0 ∈ N is a sufficiently large constant, which depends on the εγ in Proposition 3.4. The
addition of the factor 4c0 ensures that the argument of γ(ξ) is in the range of definition. The
definition ρ0 is slightly more complicated and as such its definition will be delayed to Section 4.4
below, see (4.25) and (4.26). Modulo the definition of ρ0, we note that as a consequence of (3.14),
(3.15), (4.11), and (4.12) we have∑

i≥0

∑
ξ,ξ′∈Λ(i)

a2
(ξ)

 
T3

(
W(ξ) ⊗W(ξ′)

)
dx =

∑
i≥0

ρiχ
2
(i)Id− R̊` , (4.14)

which justifies the definition of the amplitude functions a(ξ).
By a slight abuse of notation, let us now fix λ, σ, r, and µ for the short hand notation W(ξ),

W(ξ) and η(ξ) introduced in Section 3.2 (cf. (3.8), (3.11), (3.12)):

W(ξ) := Wξ,λq+1,σ,r,µ, W(ξ) := Wξ,λq+1 and η(ξ) := ηξ,λq+1,σ,r,µ ,

where the integer r, the parameter σ, and the parameter µ are defined by

r = λ
3/4
q+1, σ = λ

−15/16

q+1 and µ = λ
5/4
q+1 . (4.15)

The fact that λq+1σ ∈ N is ensured by our choices a ∈ N and b ∈ 16N. In order to ensure λq+1 is a
multiple of NΛ, we need to choose a which is a multiple of NΛ. Moreover, at this stage we fix

` = λ−20
q , (4.16)

which in view of the choice of σ in (4.15), ensures that (4.5) holds, upon taking λ0 sufficiently large.
In view of (4.16), throughout the rest of the paper we may use either `ε ≤ λ−20ε

0 or λ−εq ≤ λ−ε0 ,
with ε > 0 arbitrarily small, to absorb any of the constants (which are q-independent) appearing
due to . signs in the below inequalities. This is possible by choosing λ0 = a, sufficiently large.

The principal part of wq+1 is defined as

w
(p)
q+1 :=

∑
i

∑
ξ∈Λ(i)

a(ξ) W(ξ) , (4.17)

where the sum is over 0 ≤ i ≤ imax(q). The sets Λ(i) are defined as follows. In Lemma 3.2 it suffices
to take N = 2, so that α ∈ {α0, α1}, and we define Λ(i) = Λαimod 2

. This choice is allowable since

χiχj ≡ 0 for |i− j| ≥ 2. In order to fix the fact that w
(p)
q+1 is not divergence free, we define an

incompressibility corrector by

w
(c)
q+1 :=

1

λq+1

∑
i

∑
ξ∈Λ(i)

∇
(
a(ξ)η(ξ)

)
×W(ξ) . (4.18)
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Using that divW(ξ) = 0, we then have

w
(p)
q+1 + w

(c)
q+1 =

1

λq+1

∑
i

∑
ξ∈Λ(i)

curl
(
a(ξ)η(ξ)W(ξ)

)
=

1

λq+1
curl (w

(p)
q+1) , (4.19)

and thus
div

(
w

(p)
q+1 + w

(c)
q+1

)
= 0 .

In addition to the incompressibility corrector w
(c)
q+1, we introduce a temporal corrector w

(t)
q+1,

which is defined by

w
(t)
q+1 :=

1

µ

∑
i

∑
ξ∈Λ+

(i)

PHP6=0

(
a2

(ξ)η
2
(ξ)ξ
)
. (4.20)

Here we have denoted by P 6=0 the operator which projects a function onto its nonzero frequencies
P 6=0f = f −

ffl
T3 f , and have used PH for the usual Helmholtz (or Leray) projector onto divergence-

free vector fields, PHf = f −∇(∆−1div f). The purpose of the corrector w
(t)
q+1 becomes apparent

upon recalling (3.17). Indeed, if we multiply identity (3.17) by a2
(ξ), remove the mean and a

suitable pressure gradient, the leading order term left is −(1/µ)PHP6=0(ξa2
(ξ)∂tη

2
(ξ)), see (5.13) below.

This term is not of high frequency (proportional to λq+1). Moreover, upon writing this term
as the divergence of a symmetric stress, the size of this stress term in L1 is δq+1, instead of
δq+2; thus this term does not obey a favorable estimate and has to be cancelled altogether. The

corrector w
(t)
q+1 is designed such that its time derivative achieves precisely this goal, of cancelling

the −(1/µ)PHP6=0(ξa2
(ξ)∂tη

2
(ξ)) term.

Finally, we define the velocity increment wq+1 by

wq+1 := w
(p)
q+1 + w

(c)
q+1 + w

(t)
q+1, (4.21)

which is by construction mean zero and divergence-free. The new velocity field vq+1 is then defined
as

vq+1 = v` + wq+1 . (4.22)

4.4 The definition of ρ0

It follows from (4.14) that with the ρi defined above we have

∑
i≥1

ˆ
T3

∣∣∣∣∣∣
∑
ξ∈Λ(i)

a(ξ)W(ξ)

∣∣∣∣∣∣
2

dx =
∑
i≥1

∑
ξ,ξ′∈Λ(i)

ˆ
T3

a(ξ)a(ξ′)tr (W(ξ) ⊗W(−ξ′)) dx

=
∑
i≥1

∑
ξ∈Λ(i)

ˆ
T3

a2
(ξ)tr

 
T3

(W(ξ) ⊗W(−ξ)) dx+ error

= 3
∑
i≥1

ρi

ˆ
T3

χ2
(i) dx+ error , (4.23)

where the error term can be made arbitrarily small since the spatial frequency of the a(ξ)’s is `−1,
while the minimal separation of frequencies of W(ξ) ⊗W−(ξ′) is λq+1σ � `−1. The term labeled as
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error on the right side of (4.23) above will be estimated precisely in Section 6 below. We will show
in the next section, Lemma 4.3 that∑

i≥1

ρi

ˆ
T3

χ2
(i) dx . δq+1λ

−εR
q . (4.24)

In order to ensure (2.5) is satisfied for q + 1, we design ρ0 such that

ˆ
T3

∣∣∣∣∣∣
∑
ξ∈Λ(0)

a(ξ)W(ξ)

∣∣∣∣∣∣
2

dx ≈ ẽ(t) := e(t)−
ˆ
T3

|vq|2 dx− 3
∑
i≥1

ρi

ˆ
T3

χ2
i dx .

We thus define the auxiliary function

ρ(t) :=
1

3 |T3|

(ˆ
T3

χ2
0 dx

)−1

max

(
ẽ(t)− δq+2

2
, 0

)
. (4.25)

The term −δq+2/2 is added to ensure that we leave room for future corrections and the max is in
place to ensure that we do not correct the energy when the energy of vq is already sufficiently
close to the prescribed energy profile. This later property will allow us to take energy profiles with

compact support. Finally, in order to ensure ρ
1/2
0 is sufficiently smooth, we define ρ0 as the square

of the mollification of ρ1/2 at time scale `

ρ0 =
(

(ρ
1/2) ∗t ϕ`

)2
. (4.26)

We note that (2.5) and (4.34) below imply that

‖ρ0‖C0
t
≤ 2δq+1 and

∥∥∥ρ1/2
0

∥∥∥
CNt

. δ
1/2
q+1`

−N (4.27)

for N ≥ 1. By a slight abuse of notation we will denote

R̊`
ρ0(t)

=

{
R̊`
ρ0(t) if χ0 6= 0 and R̊` 6= 0 ,

0 otherwise .

Observe that if χ0 6= 0 and R̊` 6= 0, then (2.6) and (4.24) ensure that ρ0 > 0. In order to ensure

that Id − R̊`
ρ0(t) is in the domain of the functions γ(ξ) from Proposition 3.4, we will need to ensure

that ∥∥∥∥∥ R̊`
ρ0(t)

∥∥∥∥∥
L∞(suppχ(0))

≤ εγ . (4.28)

We give the proof of (4.28) next. Owing to the estimate∣∣∣∣e(t)− ˆ
T3

|vq(x, t)|2 dx− e(t′)−
ˆ
T3

∣∣vq(x, t′)∣∣2∣∣∣∣ dx . `
1/2

for t′ ∈ (t− `, t+ `) which follows from Lemma 6.1 in Section 6, and the inequality `1/2 � δq+1, we
may apply (2.6) to conclude that it is sufficient to check the above condition when

e(t)−
ˆ
T3

|vq(x, t)|2 dx ≥
δq+1

200
.
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Then by (4.24), the above lower bound implies

ẽ(t) ≥ δq+1

400
.

and thus

ρ(t) ≥ 1

|T3|

(
δq+1

400
− δq+2

2

)
≥ δq+1

500

where we used (4.34) from Lemma 4.3 below to bound the integral. Finally, using the estimate
(6.4) from Section 6 we obtain

ρ0(t) ≥ δq+1

600
.

Since on the support of χ0 we have
∣∣∣R̊`∣∣∣ ≤ 1000λ−εRq δq+1 we obtain (4.28).

4.5 Estimates of the perturbation

We first collect a number of estimates concerning the cutoffs χ(i) defined in (4.10).

Lemma 4.1. For q ≥ 0, there exists imax(q) ≥ 0, determined by (4.31) below, such that

χ(i) ≡ 0 for all i > imax.

Moreover, we have that for all 0 ≤ i ≤ imax

ρi . 4imax . `−1 (4.29)

where the implicit constants can be made independent of other parameters. Moreover, we have

imax∑
i=0

ρ
1/2
i 2−i ≤ 3δ

1/2
q+1 . (4.30)

Proof of Lemma 4.1. Let i ≥ 1. By the definition of χ̃i we have that χ(i) = 0 for all (x, t) such that

〈100−1λεRq δ−1
q+1R̊`(x, t)〉 < 4i−1 .

Using the inductive assumption (2.4), we have that∥∥∥R̊`∥∥∥
L∞

.
∥∥∥R̊`∥∥∥

C1
.
∥∥∥R̊q∥∥∥

C1
≤ Cmaxλ

10
q ≤ λ10+εR

q

since the implicit constant Cmax is independent of q and of εR (it only depends on norms of the
mollifier φ used to define R̊`), and thus we have Cmax ≤ λεRq . Therefore, if i ≥ 1 is large enough
such that

〈100−1δ−1
q+1λ

10+2εR
q 〉 ≤ 4i−2 ,

then χ(i) ≡ 0. Therefore, as εR ≤ 1/4 and since we have

〈100−1δ−1
q+1λ

10+2εR
q 〉 ≤ 〈δ−1

q+1λ
10+1/2
q 〉 ≤ δ−1

q+1λ
11
q

for all q ≥ 0 (since βb is small), we may define imax by

imax(q) = min
{
i ≥ 0: 4i−2 ≥ λ11

q δ
−1
q+1

}
. (4.31)
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Observe that, the first inequality of (4.29) follows trivially from the definition of ρi for i ≥ 1
and (4.27) for i = 0. The second inequality follows from the fact that λ11

q δ
−1
q+1 ≤ `−1, which is a

consequence of bβ being small. Finally, from the definition (4.13) and the bound (4.27) we have

imax∑
i=0

ρ
1/2
i 2−i ≤ 2δ

1/2
q+1 + 2c0

imax∑
i=1

λ−
εR/2

q δ
1/2
q+1 ≤ δ

1/2
q+1

(
2 + 2c0λ−

εR/2
q (3 + log4(λ11

q δ
−1
q+1))

)
.

Since λ11
q δ
−1
q+1 ≤ λ20

q , which is a consequence of βb being small, we can bound the second term above
as

2c0λ−
εR/2

q (3 + log4(λ11
q δ
−1
q+1)) ≤ 2c0λ−

εR/2
q (3 + 20 log4(λq)) ≤ 1

by taking a (and hence λq) to be sufficiently large, depending on εR and c0. This finishes the proof
of (4.30).

The size and derivative estimate for the χ(i) are summarized in the following lemma

Lemma 4.2. Let 0 ≤ i ≤ imax. Then we have∥∥χ(i)

∥∥
L2 . 2−i (4.32)∥∥χ(i)

∥∥
CNx,t

. λ10
q `

1−N . `−N (4.33)

for all N ≥ 1.

Proof of Lemma 4.2. We prove that ∥∥χ(i)

∥∥
L1 . 4−i ,

so that the bound (4.32) follows since χ(i) ≤ 1, upon interpolating the L2 norm between the L1

and the L∞ norms.
When i = 0, 1, we have that

∥∥χ(i)

∥∥
L1 ≤ |T3|

∥∥χ(0)

∥∥
L∞

. 1 . 4−i. For i ≥ 2, we use the
Chebyshev’s inequality and the inductive assumption (2.3) to conclude∥∥χ(i)

∥∥
L1 ≤ sup

t

∣∣∣{x : 4i−1 ≤ 〈λεRq δ−1
q+1R̊`(x, t)/100〉 ≤ 4i+1

}∣∣∣
≤ sup

t

∣∣∣{x : 4i−1 ≤ λεRq δ−1
q+1|R̊`(x, t)|/100 + 1

}∣∣∣
≤ sup

t

∣∣∣{x : 100λ−εRq δq+14i−2 ≤ |R̊`(x, t)|
}∣∣∣

. λεRq δ−1
q+14−i

∥∥∥R̊`∥∥∥
L∞t L

1
x

. λεRq δ−1
q+14−i

∥∥∥R̊q∥∥∥
L∞t L

1
x

. 4−i

proving the desired L1 bound. In order to prove the estimate (4.33) we appeal to [2, Proposition
C.1] which yields ∥∥χ(i)

∥∥
CNt,x

.
∥∥∥〈λεRq δ−1

q+1R̊`/100〉
∥∥∥
CNt,x

+
∥∥∥〈λεRq δ−1

q+1R̊`/100〉
∥∥∥N
C1
t,x

. `−N+1
∥∥∥R̊`∥∥∥

C1
t,x

+
∥∥∥R̊`∥∥∥N

C1
t,x

. `−N+1
∥∥∥R̊q∥∥∥

C1
t,x

+
∥∥∥R̊q∥∥∥N

C1
t,x

. λ10
q `
−N+1 + λ10N

q . λ10
q `

1−N

where we have used that δq+1 . 1 and (2.4).
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Lemma 4.3. We have that the following lower and upper bounds hold:

ˆ
T3

χ2
(0) dx ≥

|T3|
2

(4.34)∑
i≥1

ρi

ˆ
T3

χ2
(i)(x, t) dx . λ−εRq δq+1 (4.35)

Proof of Lemma 4.3. By Chebyshev’s inequality we have

∣∣∣{x| ∣∣∣R̊`∣∣∣ ≥ 2λ−εRq δq+1

∣∣T3
∣∣−1
}∣∣∣ ≤

∣∣T3
∣∣ ∥∥∥R̊`∥∥∥

L1

2λ−εRq δq+1

≤

∣∣T3
∣∣ ∥∥∥R̊q∥∥∥

L1

2λ−εRq δq+1

≤
∣∣T3
∣∣

2

where we have used (2.3). Then from the definition of χ(0) we obtain (4.34).
Observe that by definition,

∑
i≥1

ρi

ˆ
T3

χ2
(i)dx .

∑
i≥1

(4iλ−εRq δq+1)χ̃2

(
1

4i

〈
R̊`

100λ−εRq δq+1

〉)
dx

.
∥∥∥R̊`∥∥∥

L1
.
∥∥∥R̊q∥∥∥

L1
. λ−εRq δq+1

from which we conclude (4.35).

Lemma 4.4. The bounds ∥∥a(ξ)

∥∥
L2 . ρ

1/2
i 2−i . δ

1/2
q+1 , (4.36)∥∥a(ξ)

∥∥
L∞

. ρ
1/2
i . δ

1/2
q+12i , (4.37)∥∥a(ξ)

∥∥
CNx,t

. `−N (4.38)

hold for all 0 ≤ i ≤ imax and N ≥ 1.

Proof of Lemma 4.4. The bound (4.37) follows directly from the definitions (4.12), (4.13) together
with the boundedness of the functions γ(ξ) and ρ0 given in (4.27). Using additionally (4.32), the
estimate (4.36) follows similarly. For (4.38), we apply derivatives to (4.12), use [2, Proposition
C.1], estimate (4.33), Lemma 4.1, the bound (4.6) for R̊`, the definition (4.16) of `, and the bound
(4.29), to obtain for the case i ≥ 1 the estimate

∥∥a(ξ)

∥∥
CNx,t

. ρ
1/2
i

(∥∥χ(i)

∥∥
L∞

∥∥∥γ(ξ)

(
Id− ρ−1

i R̊`

)∥∥∥
CNx,t

+
∥∥χ(i)

∥∥
CNx,t

∥∥∥γ(ξ)

(
Id− ρ−1

i R̊`

)∥∥∥
L∞

)
. ρ

1/2
i

(
ρ−1
i

∥∥∥R̊`∥∥∥
CNx,t

+ ρ−1
i

∥∥∥R̊`∥∥∥N
C1
t,x

+ λ10
q `

1−N
)

. ρ
1/2
i

(
ρ−1
i `−N+1

∥∥∥R̊`∥∥∥
C1
x,t

+ ρ−1
i

∥∥∥R̊`∥∥∥N
C1
t,x

+ ρ
−1/2
i `−N

)
. ρ

1/2
i

(
ρ−1
i `−N+1λ10

q + ρ−1
i λ10N

q + ρ
−1/2
i `−N

)
. `−N ,

For i = 0, the time derivative may land on ρ
1/2
0 . We use (4.27) to estimate this contribution

similarly, by paying an `−1 per time derivative.
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Proposition 4.5. The principal part and of the velocity perturbation, the incompressibility, and
the temporal correctors obey the bounds ∥∥∥w(p)

q+1

∥∥∥
L2
≤ M

2
δ

1/2
q+1 (4.39)∥∥∥w(c)

q+1

∥∥∥
L2

+
∥∥∥w(t)

q+1

∥∥∥
L2

. r
3/2`−1µ−1δ

1/2
q+1 (4.40)∥∥∥w(p)

q+1

∥∥∥
W 1,p

+
∥∥∥w(c)

q+1

∥∥∥
W 1,p

+
∥∥∥w(t)

q+1

∥∥∥
W 1,p

. `−2λq+1r
3/2−3/p (4.41)∥∥∥∂tw(p)

q+1

∥∥∥
Lp

+
∥∥∥∂tw(c)

q+1

∥∥∥
Lp

. `−2λq+1σµr
5/2−3/p (4.42)∥∥∥w(p)

q+1

∥∥∥
CNx,t

+
∥∥∥w(c)

q+1

∥∥∥
CNx,t

+
∥∥∥w(t)

q+1

∥∥∥
CNx,t
≤ 1

2
λ

(3 + 5N)/2
q+1 (4.43)

for N ∈ {0, 1, 2, 3} and p > 1, where M is a universal constant.

Proof of Proposition 4.5. For i ≥ 0, from (4.36) and (4.38) we may estimate∥∥DNa(ξ)

∥∥
L2 . δ

1/2
q+1`

−2N ,

where we have used that `δ
−1/2
q+1 = λ−20+βb

q . 1, which follows from the restriction imposed on the

smallness of βb. Since W(ξ) is (T/λq+1σ)3 periodic, and the condition (4.5) gives that `−2 � λq+1σ,
we may apply (3.18) with N = K = 0, and Lemma 3.7 to conclude∥∥a(ξ)W(ξ)

∥∥
L2 . ρ

1/2
i 2−i

∥∥W(ξ)

∥∥
L2 . ρ

1/2
i 2−i .

Upon summing over i ∈ {0, . . . , imax}, and appealing to (4.30), we obtain (4.39) for some fixed
constant M independent of any parameter.

In order to bound the L2 norm of w
(c)
q+1 we use (3.19) and Lemma 4.4 to estimate∥∥∥∥ 1

λq+1
∇
(
a(ξ)η(ξ)

)
×W(ξ)

∥∥∥∥
L2

.
1

λq+1

(∥∥∇a(ξ)

∥∥
L∞

∥∥η(ξ)

∥∥
L2 +

∥∥a(ξ)

∥∥
L∞

∥∥∇η(ξ)

∥∥
L2

)
.

1

λq+1

(
`−1 + δ

1/2
q+12iλq+1σr

)
. δ

1/2
q+12iσr ,

where we have used that `−1 ≤ λq+1δ
1/2
q+1σr, which follows from (4.15)–(4.16) since b is sufficiently

large. Analogously, bounding the summands in the definition of w
(t)
q+1 we have∥∥∥∥ 1

2µ
PHP 6=0

(
a2

(ξ)η
2
(ξ)ξ
)∥∥∥∥

L2

.
1

µ
‖a‖2L∞

∥∥η(ξ)

∥∥2

L4 .
δq+14ir3/2

µ
.

Summing in i ∈ {0, . . . , imax} and ξ, and employing (4.29), we obtain

∥∥∥w(c)
q+1

∥∥∥
L2

+
∥∥∥w(t)

q+1

∥∥∥
L2

.
δ

1/2
q+1σr

`1/2
+
δq+1r

3/2

`µ
.
r3/2

`µ
δ

1/2
q+1 .

In the above bound we have used the inequality `1/2µ ≤ σ−1r1/2, which follows from (4.15)–(4.16).
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Now consider (4.41). Observe that by definition (4.17), estimate (3.18), and Lemma 4.4, we
have ∥∥∥w(p)

q+1

∥∥∥
W 1,p

.
∑
i

∑
ξ∈Λ(i)

‖aξ‖C1
x,t

∥∥W(ξ)

∥∥
W 1,p

.
∑
i

∑
ξ∈Λ(i)

`−1λq+1r
3/2−3/p

. `−2λq+1r
3/2−3/p . (4.44)

Here we have also used (4.29) in order to sum over i. For the analogous bound on w
(c)
q+1, using

(3.19) and Lemma 4.4 we arrive at∥∥∥∥ 1

λq+1
∇
(
a(ξ)η(ξ)

)
×W(ξ)

∥∥∥∥
W 1,p

.
1

λq+1

(∥∥∇2
(
a(ξ)η(ξ)

)∥∥
Lp

+ λq+1

∥∥∇ (a(ξ)η(ξ)

)∥∥
Lp

)
.

∥∥a(ξ)

∥∥
C2

λq+1

(∥∥η(ξ)

∥∥
W 2,p + λq+1

∥∥η(ξ)

∥∥
W 1,p

)
.

`−2

λq+1
(λq+1σr)

2r
3/2−3/p +

`−2

λq+1
λ2
q+1σr

5/2−3/p

. `−2λq+1r
3/2−3/p (σr) ,

where we used λq+1σr ≤ λq+1. The above bound is consistent with (4.41) for w
(c)
q+1 since summing

over i and ξ loses an extra factor of `−1 which may be absorbed since `−1σr < 1. Similarly, in order

to estimate w
(t)
q+1 we use bound (3.19) and Lemma 4.4 to obtain∥∥∥∥ 1

µ
PHP 6=0

(
a2

(ξ)η
2
(ξ)ξ
)∥∥∥∥

W 1,p

.
1

µ

∥∥a(ξ)

∥∥
C1

∥∥a(ξ)

∥∥
L∞

(∥∥∇η(ξ)

∥∥
L2p

∥∥η(ξ)

∥∥
L2p +

∥∥η(ξ)

∥∥2

L2p

)
.

1

µ
`−1δ

1/2
q+12i(λq+1σr)r

3−3/p .

Summing in i and ξ and using (4.29) we obtain∥∥∥w(t)
q+1

∥∥∥
W 1,p

.
1

µ
`−

3/2δ
1/2
q+1(λq+1σr)r

3−3/p . `−2λq+1r
3/2−3/pσr

5/2

µ
.

Thus (4.41) also holds for w
(t)
q+1, as a consequence of the inequality σr5/2 ≤ µ, which holds by (4.15).

Now consider the Lp estimates of the time derivatives of w
(p)
q+1 and w

(c)
q+1. Estimates (3.18) and

(4.38) yield ∥∥∥∂tw(p)
q+1

∥∥∥
Lp

.
∑
i

∑
ξ∈Λ(i)

∥∥a(ξ)

∥∥
C1
x,t

∥∥∂tW(ξ)

∥∥
Lp

.
∑
i

∑
ξ∈Λ(i)

`−1(λq+1σrµ)r
3/2−3/p

. `−2λq+1σµr
5/2−3/p .
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Similarly, using (3.19) and (4.38), we obtain∥∥∥∂tw(c)
q+1

∥∥∥
Lp

.
∑
i

∑
ξ∈Λ(i)

∥∥∥∥ 1

λq+1
∂t
(
∇
(
a(ξ)η(ξ)

)
×W(ξ)

)∥∥∥∥
Lp

.
1

λq+1

∑
i

∑
ξ∈Λ(i)

∥∥∂t∇ (a(ξ)η(ξ)

)∥∥
Lp

.
1

λq+1

∑
i

∑
ξ∈Λ(i)

∥∥a(ξ)

∥∥
C2
x,t

(∥∥∂tη(ξ)

∥∥
W 1,p +

∥∥η(ξ)

∥∥
W 1,p

)
. `−3λq+1σ

2µr
7/2−3/p

a bound which is consistent with (4.42), upon noting that `−1σr ≤ 1 holds.

For N = 0, the bound (4.43) holds for w
(p)
q+1 in view of (3.18), (4.38), (4.29), and the fact that

`−1r3/2 � λ
3/2
q+1. For the derivative bounds of w

(p)
q+1, we use (3.18) and (4.38) to conclude∥∥a(ξ)W(ξ)

∥∥
CNx,t

.
∥∥a(ξ)

∥∥
CNx,t

∥∥W(ξ)

∥∥
CNx,t

. `−N (λq+1σrµ)Nr
3/2

from which the first part of (4.43) immediately follows in view of our parameter choices (4.15)–

(4.16). Indeed, (4.15) gives λq+1σrµ = λ
33/16

q+1 = λ2
q+1λ

1/16

q+1 and r3/2 = λ
9/8
q+1. The bound for the CNx,t

norm of w
(c)
q+1 and w

(t)
q+1 follows mutatis mutandis.

In view of the definitions of wq+1 and vq+1 in (4.21) and (4.22); the estimates (4.7) and (4.8);

the identity vq+1 − vq = wq+1 + (v` − vq); the bound `λ4
qδ
−1/2
q+1 + `−1r3/2µ−1 � 1, which holds since

b was taken to be sufficiently large; the estimates in Proposition 4.5 directly imply:

Corollary 4.6.

‖wq+1‖L2 ≤
3M

4
δ

1/2
q+1 (4.45)

‖vq+1 − vq‖L2 ≤Mδ
1/2
q+1 (4.46)

‖wq+1‖W 1,p . `−2λq+1r
3/2−3/p (4.47)

‖wq+1‖CNx,t ≤
1

2
λ

(3 + 5N)/2
q+1 (4.48)

‖vq+1‖CNx,t ≤ λ
(3 + 5N)/2
q+1 (4.49)

for N ∈ {0, 1, 2, 3} and p > 1.

Therefore, setting N = 1 in the above estimate for vq+1 we have proven that (2.2) holds with q
replaced by q + 1. Also, (4.46) proves the velocity increment bound we have claimed in (2.7).

5 Reynolds Stress

The main result of this section may be summarized as:

Proposition 5.1. There exists a p > 1 sufficiently close to 1 and an εR > 0 sufficiently small,
depending only on b and β (in particular, independent of q), such that there exists a traceless
symmetric 2 tensor R̃ and a scalar pressure field p̃, defined implicitly in (5.7) below, satisfying

∂tvq+1 + div (vq+1 ⊗ vq+1) +∇p̃− ν∆vq+1 = div R̃ (5.1)
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and the bound ∥∥∥R̃∥∥∥
Lp

. λ−2εR
q+1 δq+2 , (5.2)

where the constant depends on the choice of p and εR.

An immediate consequence of Proposition 5.1 is that the desired inductive estimates (2.3)–(2.4)
hold for a suitably defined Reynolds stress R̊q+1 (see (5.5) below). We emphasize that compared

to R̃, the stress R̊q+1 constructed below also obeys a satisfactory C1 estimate.

Corollary 5.2. There exists a traceless symmetric 2 tensor R̊q+1 and a scalar pressure field pq+1

such that

∂tvq+1 + div (vq+1 ⊗ vq+1) +∇pq+1 − ν∆vq+1 = div R̊q+1 .

Moreover, the following bounds hold ∥∥∥R̊q+1

∥∥∥
L1
≤ λ−εRq+1 δq+2 , (5.3)∥∥∥R̊q+1

∥∥∥
C1
x,t

≤ λ10
q+1 . (5.4)

Before giving the proof of the corollary, we recall from [2, Definition 1.4] the 2-tensor valued
elliptic operator R which has the property that Rv(x) is a symmetric trace-free matrix for each
x ∈ T3, and R is an right inverse of the div operator, i.e.

divRv = v −
 
T3

v(x) dx

for any smooth v. Moreover, we have the classical Calderón-Zygmund bound ‖|∇|R‖Lp→Lp . 1,
and the Schauder estimates ‖R‖Lp→Lp +‖R‖C0→C0 . 1, for p ∈ (1,∞). Since throughout the proof
the value of p > 1 is independent of q, the implicit constants in these inequalities are uniformly
bounded.

Proof of Corollary 5.2. With R̃ and p̃ defined in Proposition 5.1, we let

R̊q+1 = R(PHdiv R̃) and pq+1 = p̃−∆−1div div R̃ . (5.5)

With the parameter p > 1 from Proposition 5.1, using that ‖Rdiv ‖Lp→Lp . 1 we directly bound∥∥∥R̊q+1

∥∥∥
L1

.
∥∥∥R̊q+1

∥∥∥
Lp

.
∥∥∥R̃∥∥∥

Lp
. λ−2εR

q+1 δq+2 .

The estimate (5.3) then follows since the factor λ−εRq+1 can absorb any constant if we assume a is
sufficiently large.

Now consider (5.4). Using equation (5.1) and the bounds of Corollary 4.6 we obtain∥∥∥R̊q+1

∥∥∥
C1

=
∥∥∥RPH(div R̃)

∥∥∥
C1

. ‖∂tvq+1 + div (vq+1 ⊗ vq+1)− ν∆vq+1‖C1

. ‖∂tvq+1‖C1 + ‖vq+1 ⊗ vq+1‖C2 + ‖vq+1‖C3

. λ9
q+1
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by using the Schauder estimates ‖RPH‖C0→C0 . 1. Similarly, we have that∥∥∥∂tR̊q+1

∥∥∥
L∞

. ‖∂t(∂tvq+1 + div (vq+1 ⊗ vq+1)− ν∆vq+1)‖C0

.
∥∥∂2

t vq+1

∥∥
C0 + ‖∂tvq+1 ⊗ vq+1‖C1 + ‖∂tvq+1‖C2

. λ9
q+1

which concludes the proof of (5.4) upon using the leftover power of λq+1 to absorb all q independent
constants.

5.1 Proof of Proposition 5.1

Recall that vq+1 = wq+1 + v`, where v` is defined in Section 4.1. Using (4.2) and (4.21) we obtain

div R̃−∇p̃ = −ν∆wq+1 + ∂t(w
(p)
q+1 + w

(c)
q+1) + div (v` ⊗ wq+1 + wq+1 ⊗ v`)

+ div
(

(w
(c)
q+1 + w

(t)
q+1)⊗ wq+1 + w

(p)
q+1 ⊗ (w

(c)
q+1 + w

(t)
q+1)

)
+ div (w

(p)
q+1 ⊗ w

(p)
q+1 + R̊`) + ∂tw

(t)
q+1

+ div (R̃commutator)−∇p` (5.6)

=: div
(
R̃linear + R̃corrector + R̃oscillation + R̃commutator

)
+∇ (P − p`) . (5.7)

Here, the symmetric trace-free stresses R̃linear and R̃corrector are defined by applying the inverse
divergence operator R to the first and respectively second lines of (5.6). The stress R̃commutator was
defined previously in (4.3), while the stress R̃oscillation is defined in Section 5.3 below. The pressure
P is given by (5.11) below.

Besides the already used inequalities between the parameters, `, r, σ, and λq+1, we shall use
the following bound in order to achieve (5.2):

`−2σµr
5/2−3/p + (r

3/2`−1µ−1)
1/pλ

3(1−1/p)
q+1 +

r3−3/p

`3λq+1σ
+
σr4−3/p

`3
+ λ−10

q . λ−2εR
q+1 δq+2 (5.8)

In view of (4.15)–(4.16), the above inequality holds for b sufficiently large, β sufficiently small
depending on b, parameters εR, p − 1 > 0 sufficiently small depending on b and β, and for λ0 = a
sufficiently large depending on all these parameters and on M .

In view of the bound `λ6
q . λ−10

q , the estimate (4.4) for R̃commutator is consistent with (5.2).
Hence it remains to consider the linear, corrector and oscillation errors in (5.7).

5.2 The linear and corrector errors

In view of (5.2), we estimate contributions to the R̃ coming from the first line in (5.6) as∥∥∥R̃linear

∥∥∥
Lp

. ‖R(ν∆wq+1)‖Lp +
∥∥∥R(∂t(w

(p)
q+1 + w

(c)
q+1))

∥∥∥
Lp

+ ‖Rdiv (v` ⊗ wq+1 + wq+1 ⊗ v`)‖Lp

. ‖wq+1‖W 1,p +
1

λq+1

∥∥∥∂tRcurl
(
w

(p)
q+1

)∥∥∥
Lp

+ ‖v`‖L∞ ‖wq+1‖Lp

. λ4
q ‖wq+1‖W 1,p +

1

λq+1

∥∥∥∂tw(p)
q+1

∥∥∥
Lp

. λ4
q`
−2λq+1r

3/2−3/p +
1

λq+1
`−2λq+1σµr

5/2−3/p

. `−2σµr
5/2−3/p (5.9)
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where we have used ν ≤ 1, λ4
qλq+1 ≤ σµr, the identity (4.19), the inductive estimate (2.2) to bound

‖v`‖L∞ . ‖v`‖C1 . ‖vq‖C1 , estimates (4.42) and (4.47). Next we turn to the errors involving
correctors, for which we appeal to Lp interpolation, the Poincaré inequality, and Proposition 4.5:∥∥∥R̃corrector

∥∥∥
Lp
≤
∥∥∥Rdiv

(
(w

(c)
q+1 + w

(t)
q+1)⊗ wq+1 + w

(p)
q+1 ⊗ (w

(c)
q+1 + w

(t)
q+1)

)∥∥∥
Lp

.
∥∥∥(w

(c)
q+1 + w

(t)
q+1)⊗ wq+1

∥∥∥1/p

L1

∥∥∥(w
(c)
q+1 + w

(t)
q+1)⊗ wq+1

∥∥∥1−1/p

L∞

+
∥∥∥w(p)

q+1 ⊗ (w
(c)
q+1 + w

(t)
q+1)

∥∥∥1/p

L1

∥∥∥w(p)
q+1 ⊗ (w

(c)
q+1 + w

(t)
q+1)

∥∥∥1−1/p

L∞

. (r
3/2`−1µ−1)

1/pδ
1/p
q+1λ

3(1−1/p)
q+1

. (r
3/2`−1µ−1)

1/pλ
3(1−1/p)
q+1 .

Due to (5.8) this estimate is sufficient.

5.3 Oscillation error

In this section we estimate the remaining error, R̃oscillation which obeys

div
(
R̃oscillation

)
+∇P = div

(
w

(p)
q+1 ⊗ w

(p)
q+1 + R̊`

)
+ ∂tw

(t)
q+1 , (5.10)

where the pressure term P is given by

P =
∑
i≥0

ρiχ
2
(i) +

1

2

∑
i,j

∑
ξ∈Λ(i),ξ

′∈Λ(j)

a(ξ)a(ξ′)P 6=0

(
W(ξ) ·W(ξ′)

)
−
∑
i

∑
ξ∈Λ+

(i)

1

µ
∆−1div ∂t

(
a2

(ξ)η
2
(ξ)ξ
)
.

(5.11)

Recall from the definition of w
(p)
q+1 and of the coefficients a(ξ), via (4.14) we have

div
(
w

(p)
q+1 ⊗ w

(p)
q+1

)
+ div R̊`

=
∑
i,j

∑
ξ∈Λ(i),ξ

′∈Λ(j)

div
(
a(ξ)a(ξ′)W(ξ) ⊗W(ξ′)

)
+ div R̊`

=
∑
i,j

∑
ξ∈Λ(i),ξ

′∈Λ(j)

div

(
a(ξ)a(ξ′)

(
W(ξ) ⊗W(ξ′) −

 
T3

W(ξ) ⊗W(ξ′) dx

))
+∇

∑
i≥0

ρiχ
2
(i)


=
∑
i,j

∑
ξ∈Λ(i),ξ

′∈Λ(j)

div
(
a(ξ)a(ξ′)P≥λq+1σ/2

(
W(ξ) ⊗W(ξ′)

))︸ ︷︷ ︸
E(ξ,ξ′)

+ ∇

∑
i≥0

ρiχ
2
(i)

 . (5.12)

Here we use that the minimal separation between active frequencies of W(ξ) ⊗W(ξ′) and the 0
frequency is given by λq+1σ for ξ′ = −ξ, and by cΛλq+1 ≥ λq+1σ for ξ′ 6= −ξ. We proceed to
estimate each symmetrized summand E(ξ,ξ′) + E(ξ′,ξ) individually. We split

E(ξ,ξ′) + E(ξ′,ξ) = P6=0

(
P≥λq+1σ/2

(
W(ξ) ⊗W(ξ′) + W(ξ′) ⊗W(ξ)

)
∇
(
a(ξ)a(ξ′)

))
+ P6=0

(
a(ξ)a(ξ′)div

(
W(ξ) ⊗W(ξ′) + W(ξ′) ⊗W(ξ)

))
=: E(ξ,ξ′,1) + E(ξ,ξ′,2) .
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Here we used the fact that E(ξ,ξ′) +E(ξ,ξ′) has zero mean to subtract the mean from each of the the
two terms on the right hand side of the above. We have also removed the unnecessary frequency
projection P≥λq+1σ/2 from the second term.

The term E(ξ,ξ′,1) can easily be estimated using Lemma 4.4 and Lemma B.1, estimate (B.2),
with λ = `−1, Ca = `−2, κ = λq+1σ/2, and L sufficiently large, as∥∥RE(ξ,ξ′,1)

∥∥
Lp

.
∥∥∥|∇|−1E(ξ,ξ′,1)

∥∥∥
Lp

.
∥∥∥|∇|−1 P 6=0

(
P≥λq+1σ/2

(
W(ξ) ⊗W(ξ′)

)
∇
(
a(ξ)a(ξ′)

))∥∥∥
Lp

.
1

`2λq+1σ

(
1 +

1

`L (λq+1σ)L−2

)∥∥W(ξ) ⊗W(ξ′)

∥∥
Lp

.
1

`2λq+1σ

∥∥W(ξ)

∥∥
L2p

∥∥W(ξ′)

∥∥
L2p

.
r3−3/p

`2λq+1σ
.

In the last inequality above we have used estimate (3.18), and in the second to last inequality we
have used that for b sufficiently large and L sufficiently large we have `−L(λq+1σ)2−L . 1. Indeed,
this inequality holds under the conditions L ≥ 3 and b(L− 2)/16 ≥ 20L. After summing in i and ξ
we incur an additional loss of `−1. By (5.8) this bound is consistent with (5.2).

For the term E(ξ,ξ′,2), we split into two cases: ξ + ξ′ 6= 0 and ξ + ξ′ = 0. Let us first consider
the case ξ + ξ′ 6= 0. Applying the identity (3.16), and using (3.14) we have

a(ξ)a(ξ′)div
(
W(ξ) ⊗W(ξ′) + W(ξ′) ⊗W(ξ)

)
= a(ξ)a(ξ′)

((
W(ξ′) · ∇

(
η(ξ)η(ξ′)

))
W(ξ) +

(
W(ξ) · ∇

(
η(ξ)η(ξ′)

))
W(ξ′)

)
+ a(ξ)a(ξ′)η(ξ)η(ξ′)∇

(
W(ξ) ·W(ξ′)

)
= a(ξ)a(ξ′)P≥cΛλq+1

(
∇
(
η(ξ)η(ξ′)

) (
W(ξ′) ⊗W(ξ) +W(ξ) ⊗W(ξ′)

))
+∇

(
a(ξ)a(ξ′)W(ξ) ·W(ξ′)

)
−∇

(
a(ξ)a(ξ′)

)
P≥cΛλq+1

(
W(ξ) ·W(ξ′)

)
− a(ξ)a(ξ′)P≥cΛλq+1

(
(W(ξ) ·W(ξ′))∇(η(ξ)η(ξ′))

)
.

The second term is a pressure and to the remaining terms we apply the inverse divergence operator
R. We estimate R applied to the third term analogously to E(ξ,ξ′,1), and R applied to the fourth
term can be estimated similarly to the first term. Thus it suffices to estimate R applied to the
first term. Applying (3.19), Lemma 4.4, estimate (B.2) of Lemma B.1, with λ = `−1, Ca = `−2,
κ = cΛλq+1, and for b and L sufficiently large (L ≥ 3 and b(L− 2) ≥ 20L suffices), we obtain∥∥R (a(ξ)a(ξ′)P≥cΛλq+1

(
∇
(
η(ξ)η(ξ′)

)
(W(ξ′) ⊗W(ξ) +W(ξ) ⊗W(ξ′))

))∥∥
Lp

. `−2

(
1 +

1

`LλL−2
q+1

) ∥∥∇ (η(ξ)η(ξ′)

)∥∥
Lp

λq+1

.
σr4−3/p

`2
.

Summing in ξ and i we lose an additional `−1 factor. By (5.8) this bound is consistent with (5.2).

26



Now let us consider E(ξ,ξ′,2) for the case ξ + ξ′ = 0. Applying the identity (3.17) we have

E(ξ,−ξ,2) = P 6=0

(
a2

(ξ)∇η
2
(ξ) − a

2
(ξ)

ξ

µ
∂t

(
η2

(ξ)

))
= ∇

(
a2

(ξ)P≥λq+1σ/2

(
η2

(ξ)

))
− P6=0

(
P≥λq+1σ/2

(
η2

(ξ)

)
∇a2

(ξ)

)
− 1

µ
∂tP 6=0

(
a2

(ξ)η
2
(ξ)ξ
)

+
1

µ
P 6=0

(
η2

(ξ)∂t

(
a2

(ξ)

)
ξ
)
. (5.13)

Here we have used that P6=0η
2
(ξ) = P≥λq+1σ/2η

2
(ξ), which holds since η(ξ) is (T/λq+1σ)3-periodic. Hence,

summing in ξ and i, using that η(ξ) = η(−ξ), pairing with the ∂tw
(t)
q+1 present in (5.10), recalling the

definition of w
(t)
q+1 in (4.20), and noting that Id− PH = ∇∆−1div , we obtain∑

i

∑
ξ∈Λ+

(i)

E(ξ,−ξ,2) + ∂tw
(t)
q+1

= ∇

∑
i

∑
ξ∈Λ+

(i)

a2
(ξ)P≥λq+1σ/2

(
η2

(ξ)

)−∑
i

∑
ξ∈Λ+

(i)

P6=0

(
P≥λq+1σ/2

(
η2

(ξ)

)
∇a2

(ξ)

)

−∇

∑
i

∑
ξ∈Λ+

(i)

1

µ
∆−1div ∂t

(
a2

(ξ)η
2
(ξ)ξ
)+

1

µ

∑
i

∑
ξ∈Λ+

(i)

P6=0

(
η2

(ξ)∂t

(
a2

(ξ)

)
ξ
)
. (5.14)

The first and third terms are pressure terms and to the remaining terms we apply the inverse
divergence operator R. Thus it suffices to estimate R applied to the second and the last term
above. We split the second term of (5.14) into its summands, apply R, and estimate each term
individually, similarly to the estimate of RE(ξ,ξ′,1). Using (3.19), Lemma 4.4 and Lemma B.1,
estimate (B.2), with λ = `−1, Ca = `−2, κ = λq+1σ/2, and for b and L sufficiently large (L ≥ 3 and
b(L− 2)/16 ≥ 20L), we obtain∥∥∥R(P≥λq+1σ/2(η

2
(ξ))∇a

2
(ξ)

)∥∥∥
Lp

.
1

`2λq+1σ

(
1 +

1

`L (λq+1σ)L−2

)∥∥∥η2
(ξ)

∥∥∥
Lp

.
r3−3/p

`2λq+1σ
. (5.15)

Summing over ξ and i we lose a factor of `−1. Lastly, applying R to the last term on the right side
of (5.14), and the bound on each summand is a simple consequence of (3.19) and Lemma 4.4:∥∥∥∥∥∥∥R

 1

µ

∑
i

∑
ξ∈Λ+

(i)

P 6=0

(
∂t(a

2
(ξ))η

2
(ξ)ξ
)
∥∥∥∥∥∥∥
Lp

.
1

µ

∑
i

∑
ξ∈Λ+

(i)

∥∥∥∂t(a2
(ξ))η

2
(ξ)ξ
∥∥∥
Lp

.
1

µ

∑
i

∑
ξ∈Λ+

(i)

∥∥a(ξ)

∥∥
C1
t,x

∥∥a(ξ)

∥∥
L∞

∥∥η(ξ)

∥∥2

L2p

.
1

µ

∑
i

`−1δ
1/2
q+12ir3−3/p

.
`−2r3−3/p

µ
.

r3−3/p

`2λq+1σ
(5.16)

where we have used that λq+1σ ≤ µ. Using (5.8), the bounds (5.15) and (5.16) and consistent with
(5.2), which concludes the proof of Proposition 5.1.

27



6 The energy iterate

Lemma 6.1. For all t and t′ satisfying |t− t′| ≤ 2`, and all i ≥ 0, we have∣∣e(t′)− e(t′′)∣∣ . `
1/2 (6.1)∣∣∣∣ˆ

T3

|vq(x, t)|2 dx−
ˆ
T3

∣∣vq(x, t′)∣∣2 dx∣∣∣∣ . `
1/2 (6.2)∣∣∣∣ˆ

T3

(
χ2
i (x, t)− χ2

i (x, t
′)
)
dx

∣∣∣∣ . `
1/2 (6.3)∣∣ρ(t)− ρ(t′)

∣∣ . `
1/2 (6.4)

Proof of Lemma 6.1. In the proof of the lemma, we crudely use a factor of λq to absorb constants.
First note that (6.1) follows immediately from the assumed estimate ‖e‖C1

t
≤ Me. Using (2.2) we

have ∣∣∣∣ˆ
T3

|vq(x, t)|2 dx−
ˆ
T3

∣∣vq(x, t′)∣∣2 dx∣∣∣∣ . ` ‖vq‖2C1
t,x

. λ8
q` ,

which implies (6.2). The estimate (6.3) follows in a similar fashion, from Lemma 4.2. Finally, (6.4)
follows directly the definition of ρ(t), (4.34) and the bounds (6.1)–(6.3) above.

Lemma 6.2. If ρ0(t) 6= 0 then the energy of vq+1 satisfies the following estimate:∣∣∣∣e(t)− ˆ
T3

|vq+1(x, t)|2 dx− δq+2

2

∣∣∣∣ ≤ δq+2

4
. (6.5)

Note, the above lemma implies that if ρ0(t) 6= 0, then e(t)−
´
T3 |vq(x, t)|2 dx >

δq+1

100 , and thus
(2.6) is an empty statement for such times.

Proof of Lemma 6.2. By definition we have

ˆ
T3

|vq+1(x, t)|2 dx =

ˆ
T3

|v`(x, t)|2 dx+ 2

ˆ
T3

wq+1(x, t) · v`(x, t) dx+

ˆ
T3

|wq+1(x, t)|2 dx . (6.6)

Using (4.14), similarly to (4.23), we have that

ˆ
T3

∣∣∣w(p)
q+1(x, t)

∣∣∣2 dx− 3
∑
i≥0

ρi

ˆ
T3

χ2
(i)(x, t) dx

=
∑
i,j≥0

∑
ξ∈Λ(i),ξ

′∈Λ(j)

ˆ
T3

a(ξ)a(ξ′)P≥λq+1σ/2(W(ξ) ·W(−ξ′))dx =: Eρ(t).

Using the standard integration by parts argument |
´
T3 fP≥µgdx| = |

´
T3 |∇|L f |∇|−L P≥µgdx| .

‖g‖L2 µ−L ‖f‖CL , with L sufficiently large, we obtain from (4.38), since `−1 � λq+1σ, that∣∣∣∣∣∣
ˆ
T3

∣∣∣w(p)
q+1(x, t)

∣∣∣2 dx− 3
∑
i≥0

ρi

ˆ
T3

χ2
(i)(x, t) dx

∣∣∣∣∣∣ = |Eρ(t)| ≤ `
1/2. (6.7)
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We consider two sub-cases: ρ(t) 6= 0 and ρ(t) = 0. First consider the case ρ(t) 6= 0, then using
the definition of ρ we obtain

3
∑
i≥0

ρi

ˆ
T3

χ2
(i)(x, t) dx

= 3ρ(t)

ˆ
T3

χ2
(0)(x, t) dx+ 3 (ρ0(t)− ρ(t))

ˆ
T3

χ2
(0)(x, t) dx+ 3

∑
i≥1

ρi

ˆ
T3

χ2
(i)(x, t) dx

= e(t)−
ˆ
T3

|vq(x, t)|2 dx+ 3 (ρ0(t)− ρ(t))

ˆ
T3

χ2
0(x, t) dx− δq+2

2
.

For the case that ρ(t) = 0 we have that by continuity for some t′ ∈ (t− `, t+ `)

e(t′)−
ˆ
T3

∣∣vq(x, t′)∣∣2 dx− 3
∑
i≥1

ρi

ˆ
T3

χ2
i (x, t

′) dx− δq+2

2
= 0 .

Thus applying Lemma 6.1 we conclude that for either case ρ(t) 6= 0 or ρ(t) = 0∣∣∣∣∣∣3
∑
i≥0

ρi

ˆ
T3

χ2
(i)(x, t) dx− e(t) +

ˆ
T3

|vq(x, t)|2 dx+
δq+2

2

∣∣∣∣∣∣ . `
1/2 . (6.8)

When ρ(t) 6= 0 in the above estimate we have used the bound |ρ0(t) − ρ(t)| . `1/2, which follows
from the definition of ρ0 in (4.26), and the estimate (6.4) established earlier.

Observe that using (2.2), the definition of v`, and (4.7) we have∣∣∣∣ˆ
T3

|vq(x, t)|2dx−
ˆ
T3

|v`(x, t)|2dx
∣∣∣∣ . ‖vq‖L∞ ‖v` − vq‖L∞ . λ8

q` . `
1/2. (6.9)

Further, using also (3.13), (4.8), (4.38), and integration by parts, we obtain∣∣∣∣ˆ
T3

wq+1(x, t) · v`(x, t)
∣∣∣∣ dx ≤ ∥∥∥w(c)

q+1 + w
(t)
q+1

∥∥∥
L2
‖v`‖C1 +

∑
i≥0

∑
ξ∈Λ(i)

∣∣∣∣ˆ
T3

a(ξ)W(ξ)(x, t) · v`(x, t) dx
∣∣∣∣

. `−2r3/2µ−1 +
∑
i≥0

∑
ξ∈Λ(i)

λ−Nq+1

∥∥a(ξ)v`
∥∥
CN

. `−2λ
−1/8
q+1 + λ−Nq+1`

−N−2 .

In the last line we have used (4.15) and the fact that summing over ξ and i costs at most an extra
`−1. Taking N sufficiently large we obtain∣∣∣∣ˆ

T3

wq+1(x, t) · v`(x, t)
∣∣∣∣ dx . `−2λ

−1/8
q+1 . `

1/2 , (6.10)

upon taking b ≥ 400. Using (4.39) and (4.40) yields∣∣∣∣ˆ
T3

|wq+1(x, t)|2dx−
ˆ
T3

∣∣∣w(p)
q+1(x, t)

∣∣∣2 dx∣∣∣∣ . (‖wq+1‖L2 +
∥∥∥w(p)

q+1

∥∥∥
L2

)(∥∥∥w(c)
q+1

∥∥∥
L2

+
∥∥∥w(t)

q+1

∥∥∥
L2

)
. δq+1`

−1µ−1

. `
1/2 . (6.11)
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Thus we conclude from (6.6), (6.7), (6.8), (6.10) and (6.11)∣∣∣∣e(t)− ˆ
T3

|vq+1(x, t)|2 dx− δq+2

2

∣∣∣∣ . `
1/2

from which (6.5) immediately follows.

Lemma 6.3. If ρ0(t) = 0 then vq+1(·, t) ≡ 0, R̊q+1(·, t) ≡ 0 and

e(t)−
ˆ
T
|vq+1(x, t)|2 ≤ 3δq+2

4
. (6.12)

Proof of Lemma 6.3. Since ρ0(t) = 0, it follows from the definition of ρ0 and ρ that for all t′ ∈
(t− `, t+ `) we have

e(t′)−
ˆ
T3

∣∣vq(x, t′)∣∣2 dx− 3
∑
i≥1

ρi

ˆ
T3

χ2
i (x, t

′) dx ≤ δq+2

2
.

Using (4.35), this implies that

e(t′)−
ˆ
T3

∣∣vq(x, t′)∣∣2 dx− δq+2

2
. λ−εRq δq+1 . (6.13)

Using that λ−εRq and the ratio δq+2δ
−1
q+1 can absorb any constant, from (2.6) we conclude that

vq(·, t′) ≡ 0 and R̊q(·, t′) ≡ 0 for all t′ ∈ (t − `, t + `). Hence v`(·, t) ≡ 0 and R̊`(·, t) ≡ 0.
This in turn implies that χi(·, t) ≡ 0 for all i ≥ 1. Since in addition ρ0(t) = 0, it follows by (4.12)
a(ξ)(·, t) = 0 for all i ≥ 0, and thus that wq+1(·, t) ≡ 0. Hence we have that vq+1(·, t) ≡ 0. Moreover,

since the {χi(x, t)}i≥1 and ρ
1/2
0 (t) are non-negative smooth functions, it follows that ∂tχi(·, t) ≡ 0

for all i ≥ 1 and that ∂tρ
1/2
0 (t) = 0. Hence we also obtain ∂ta(ξ)(·, t) ≡ 0, and from the definition

of wq+1 we have ∂twq+1(·, t) ≡ 0. Since vq vanishes on (t − `, t + `) and v`, wq+1, ∂twq+1, R̊`, all

vanish at time t, it follows from (4.3) and (5.7) that R̃(·, t) ≡ 0, and therefore R̊q+1(·, t) ≡ 0.
Using (6.13) and (6.9) (note that `−1/4 may be used to absorb constants) we obtain

e(t)−
ˆ
T3

|vq+1(x, t)|2 = e(t)−
ˆ
T3

|vq(x, t)|2 +

ˆ
T3

|vq(x, t)|2 −
ˆ
T3

|v`(x, t)|2

≤ 5δq+2

8
+ `

1/4 ≤ 3δq+2

4
.

In the last inequality we used that βb2 is sufficiently small. Hence we obtain (6.12).

We conclude this section by using Lemmas 6.2 and 6.3 to conclude (2.5) and (2.6) for q + 1.
Observe that the estimates (6.5) and (6.12), together imply (2.5) for q + 1. From (6.5), if

e(t)−
ˆ
T3

|vq+1(x, t)|2 dx ≤ δq+2

100

then ρ0(t) = 0. Hence from Lemma 6.3 we obtain that vq+1 ≡ 0 and R̊q+1 ≡ 0, from which we
conclude (2.6).
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A Lp product estimate

Proof of Lemma 3.7. For convenience we give here the proof from [5]. We first consider the case
p = 1. With these assumptions we have

‖fg‖L1 ≤
∑
j

ˆ
Tj

|fg|

where Tj are cubes of side-length 2π
κ . For any function h, let hj denote its mean on the cube Tj .

Observe that for x ∈ Tj we have

|f(x)| =
∣∣f j + f(x)− f j

∣∣ ≤ ∣∣f j∣∣+ sup
Tj

∣∣f(x)− f j
∣∣

≤
∣∣f j∣∣+

2π
√

3

κ
sup
Tj

|Df |

≤
∣∣f j∣∣+

2π
√

3

κ

∣∣Dfj∣∣+
2π
√

3

κ
sup
Tj

∣∣Df −Df j∣∣
≤
∣∣f j∣∣+

2π
√

3

κ

∣∣Dfj∣∣+
6π

κ2
sup
Tj

∣∣D2f
∣∣

≤
∣∣f j∣∣+

2π
√

3

κ

∣∣Dfj∣∣+
6π

κ2
sup
Tj

∣∣∣D2f j

∣∣∣+
6π

κ2
sup
Tj

∣∣∣D2f −D2f j

∣∣∣ .
Iterating this procedure M times we see that on Tj we have the pointwise estimate

|f | ≤
M∑
m=0

(2π
√

3κ−1)m
∣∣Dmf j

∣∣+ (2π
√

3κ−1)M‖DMf‖L∞ .

Upon multiplying the above by |g| and integrating over Tj , and then summing over j, we obtain

‖fg‖L1(T3) ≤
∑
j

ˆ
Tj

(
|g|

M∑
m=0

(2π
√

3κ−1)m
∣∣Dmf j

∣∣) dx+ (2π
√

3κ−1)M‖DMf‖L∞‖g‖L1

≤
M∑
m=0

(2π
√

3κ−1)m

∑
j

1

|Tj |
‖Dmf‖L1(Tj)

‖g‖L1(Tj)

+ (2π
√

3κ−1)M‖DMf‖L∞‖g‖L1 .

Since g is a Tj-periodic function, we have

‖g‖L1(T3) =
|T3|
|Tj |
‖g‖L1(Tj)

for any value of j, and since the interiors of the {Tj} are mutually disjoint, based on the assumption
on the L1 cost of a derivative acting on f and the Sobolev embedding, we conclude from the above
that (here we used the Sobolev embedding of W d+1,1 ⊂ L∞)

‖fg‖L1(T3) ≤
1

|T3|
‖g‖L1(T3)

M∑
m=0

(2π
√

3κ−1)m ‖Dmf‖L1(T3) + (2π
√

3κ−1)M‖DM+4f‖L1‖g‖L1

≤ 1

|T3|
‖g‖L1(T3)

M∑
m=0

(2π
√

3κ−1)mλmCf + (2π
√

3κ−1)MλM+4Cf‖g‖L1

≤ (1 + 2|T3|)Cf‖g‖L1(T3).

31



The case p = 2, follows from the case p = 1 applied to the functions f2 and g2, and from the bound

‖Dm(f2)‖L1 ≤
m∑
k=0

(
m

k

)
‖Dkf‖L2‖Dm−kf‖L2 ≤

m∑
k=0

(
m

k

)
λmC2

f = (2λ)mC2
f .

Here we are thus using that 4π
√

3λκ−1 ≤ 2/3 < 1 so that we have a geometric sum.

B Commutator estimate

Lemma B.1. Fix κ ≥ 1, p ∈ (1, 2], and a sufficiently large L ∈ N. Let a ∈ CL(T3) be such that
there exists 1 ≤ λ ≤ κ, and Ca > 0 with ∥∥Dja

∥∥
L∞
≤ Caλj (B.1)

for all 0 ≤ j ≤ L. Assume furthermore that
´
T3 a(x)P≥κf(x)dx = 0. Then we have

∥∥|∇|−1(a P≥κf)
∥∥
Lp

. Ca

(
1 +

λL

κL−2

)
‖f‖Lp
κ

(B.2)

for any f ∈ Lp(T3), where the implicit constant depend on p and L.

Proof of Lemma B.1. We have that

|∇|−1(a P≥κf) = |∇|−1(P≤κ/2a P≥κf) + |∇|−1(P≥κ/2a P≥κf)

= (P≥κ/2|∇|−1)(P≤κ/2a P≥κf) + |∇|−1(P≥κ/2a P≥κf) . (B.3)

Note that
´
T3 P≥κ/2g(x)dx = 0 for any function g, and thus the assumption that aP≥κf has zero

mean on T3, implies that P≥κ/2aP≥κf also has zero mean on T3. We then use

∥∥|∇|−1P≥κ/2
∥∥
Lp→Lp .

1

κ

which is a direct consequence of the Littlewood-Paley decomposition, and the bound∥∥|∇|−1P6=0

∥∥
Lp→Lp . 1

which is a direct consequence of Schauder estimates (see [22]). Combining these facts and appealing
to the embedding W 1,4(T3) ⊂ L∞(T3), we obtain∥∥|∇|−1(a P≥κf)

∥∥
Lp

.
1

κ

∥∥P≤κ/2a P≥κf
∥∥
Lp

+
∥∥P≥κ/2a P≥κf

∥∥
Lp

.
(
‖a‖L∞ + κ

∥∥DP≥κ/2a
∥∥
L4

) ‖f‖Lp
κ

.
(
‖a‖L∞ + κ2−L ∥∥DLP≥κ/2a

∥∥
L4

) ‖f‖Lp
κ

.

(
‖a‖L∞ + κ2

∥∥DLa
∥∥
L∞

κL

)
‖f‖Lp
κ

and the proof of (B.2) is concluded in view of assumption (B.1).
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[24] E. Hopf. Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math.
Nachr., 4:213–231, 1951.

[25] P. Isett. A proof of Onsager’s conjecture. Annals of Mathematics, accepted 2018.

[26] P. Isett. On the endpoint regularity in Onsager’s conjecture. arXiv preprint arXiv:1706.01549,
2017.
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