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Abstract

We analyze the shock formation process for the 3d non-isentropic Euler equations with the ideal gas
law, in which sounds waves interact with entropy waves to produce vorticity. Building on our theory
for isentropic flows in [3, 4], we give a constructive proof of shock formation from smooth initial data.
Specifically, we prove that there exist smooth solutions to the non-isentropic Euler equations which form
a generic stable shock with explicitly computable blowup time, location, and direction. This is achieved
by establishing the asymptotic stability of a generic shock profile in modulated self-similar variables,
controlling the interaction of wave families via: (i) pointwise bounds along Lagrangian trajectories, (ii)
geometric vorticity structure, and (iii) high-order energy estimates in Sobolev spaces.
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1 Introduction

The three-dimensional Euler equations of gas dynamics, introduced by Euler in [12], are a hyperbolic system
of five coupled equations, and can be written as

ρ pBtu` pu ¨∇xquq `∇xppρ, kq “ 0 , (1.1a)

Btρ` pu ¨∇xqρ` ρdivx u “ 0 , (1.1b)

Btk` pu ¨∇xqk “ 0 , (1.1c)

for spacial variable x “ px1, x2, x3q P R3, temporal variable t P R, velocity u : R3 ˆ R Ñ R3, density
ρ : R3ˆRÑ R`, and entropy k : R3ˆR. The pressure1 p “ ppρ, kq : R3ˆRÑ R` is a function of both
density and entropy, with equation-of-state given by the ideal gas law

ppρ, kq “ 1
γρ

γek ,

where the adiabatic constant γ ą 1. If smooth initial conditions are prescribed at an initial time t0, then a
classical solution to (1.1) exists up to a finite time T˚, the lifespan, when a singularity or blowup develops
[27]. The mechanism of blowup for smooth solutions to (1.1) as t Ñ T˚, including rate, direction, locus,
and profile is heretofore unknown.

Our primary aim is the detailed analysis of the formation of the first shock or blowup for smooth solu-
tions to (1.1). We prove that for an open set of initial conditions, smooth solutions to (1.1) evolve steepening
wavefronts and form an asymptotically self-similar cusp-type first shock with explicit rate, location, and
direction. The major difficulty in the analysis of the non-isentropic Euler dynamics stems from the interac-
tion of sound waves, entropy waves, and vorticity waves. Non-isentropic flows can have a misalignment of
density and entropy gradients, thus leading to dynamic vorticity creation, even from irrotational initial data.

To highlight the challenge created by the interaction of different wave families, we must examine the
evolution of the vorticity vector which we shall now derive. To do so, it is convenient to write the Euler
equations using the sound speed. We introduce the adiabatic exponent

α “ γ´1
2

so that the sound speed cpρq “
a

Bp{Bρ can be written as c “ e
k
2 ρα, and p “ 1

γρc
2. We define the scaled

sound speed σ by
σ “ 1

αc “
1
αe

k
2 ρα , (1.2)

and write the Euler equations (1.1) as a system for pu, σ, kq as follows:

Btu` pu ¨∇xqu` ασ∇xσ “
α
2γσ

2∇xk , (1.3a)

Btσ ` pu ¨∇xqσ ` ασ divx u “ 0 , (1.3b)

Btk` pu ¨∇xqk “ 0 . (1.3c)

We let ω “ curlx u denote the vorticity vector, and define the specific vorticity vector by ζ “ ω
ρ . A

straightforward computation shows that ζ is a solution to

Btζ ` pu ¨∇xqζ ´ pζ ¨∇xqu “
α
γ
σ
ρ∇xσ ˆ∇xk . (1.4)

The term term α
γ
σ
ρ∇xσ ˆ∇xk on the right side of (1.4) can also be written as ρ´3∇xρˆ∇xp and is referred

to as baroclinic torque. Clearly, the potential vorticity, the component of ζ in the direction of the density
1The evolution equation for ρ can be replaced with the equation for pressure given by Btp` pu ¨∇xqp` γp divx u “ 0.
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gradient, can only be generated by vortex stretching, whereas baroclinic vorticity modes are produced from
the interaction of acoustic waves and entropy waves. This (baroclinic) vorticity production is the funda-
mental mechanism for the excitation and stabilization of both the Rayleigh-Taylor and Richtmyer-Meshkov
instabilities, and plays a fundamental role in atmospheric science as well as numerous flows of engineering
significance.

Of course, it is possible to simplify the Euler dynamics in a manner that still retains the steepening
of sound waves, but removes complications associated to the interaction of different wave families. This
can be achieved by considering the subclass of flows for which the entropy is a constant; such flows are
called isentropic, and the pressure is a function of density alone: p “ 1

γρ
γ. Note, that for isentropic flow,

baroclinic torque vanishes, and thus the specific vorticity ζ is Lie advected as a vector field. Acoustic
modes can no longer interact with entropy waves to create vorticity; rather, vorticity is merely advected.
As such, two further subclasses of flows exist: irrotational flow and flow with advected vorticity. For
irrotational flow, only sound waves propagate, while for initial data with vorticity, there is an interaction
between acoustic modes and vorticity modes that must be carefully analyzed, as controlling the growth
of vorticity is essential to the study of shock formation. For non-isentropic dynamics, the presence of
baroclinic torque creates a fundamentally new challenge in the estimation of the growth of vorticity. Why?
Because as the first shock forms, the magnitude of baroclinic torque becomes infinite! Even though the
baroclinic torque blows up, using geometric coordinates adapted to the steepening wave front we are able to
obtain a number of cancellations in the vorticity equation, which allow us to prove that the vorticity remains
bounded up to the time of shock formation. Furthermore, irrotational initial data can be chosen with non-
zero baroclinic torque such that vorticity is instantaneously produced and remains non-trivial throughout the
shock formation process. By a significant extension of the methodology we developed in [3, 4], we shall
prove the following:

Theorem 1.1 (Rough statement of the main theorem). For an open set of smooth initial data with a max-
imally negative gradient of size Op1{εq, for ε ą 0 sufficiently small, there exist smooth solutions to the
non-isentropic 3d Euler equations (1.1) which form a shock singularity at time T˚ “ Opεq. The first singu-
larity occurs at a single point in space, whose location can be explicitly computed, along with the precise
time at which it occurs. The blowup profile is shown to be a cusp with C1{3 regularity, and the singularity is
given by an asymptotically self-similar shock profile which is stable with respect to theHmpR3q topology for
m ě 18. If an irrotational initial velocity is prescribed, vorticity is instantaneously produced, and remains
bounded and non-trivial up to the blowup time T˚.

A precise statement of the main result will be given below as Theorem 3.2.

1.1 Prior results

In one space dimension, the theory of finite-time blowup of smooth solutions and shock formation to the
Euler equations is well established. The literature is too vast to provide a review here. See, for example,
[11, 13–17, 19, 26]. In contrast, in multiple space dimensions and with no symmetry assumptions, only the
isentropic shock formation problem has been studied: shock formation was established for irrotational flows
by [7] and [9] (see also [8]), for 2d isentropic flows with vorticity by [18] and [3], and for 3d isentropic
flows with vorticity by [4]. Under a spherical symmetry assumption, which reduces the non-isentropic
Euler equations to a 1d system, the shock formation process was studied in [30]. For non-isentropic flow
in multiple space dimensions and without symmetry assumptions, prior to this paper it was only known that
C1 solutions have a finite lifespan [27].

As we noted above, one of the major difficulties in the analysis of non-isentropic flows is due to the
interaction of multiple wave families: sound waves, vorticity waves, and entropy waves. Indeed, the analysis
of quasilinear hyperbolic systems with multiple wave speeds is just emerging. As stated in [29], prior to the
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results in [3,4,18,29], there have been no constructive proofs of shock formation for a quasilinear hyperbolic
system in more than one spatial dimension, featuring multiple wave speeds. We note that the irrotational
(isentropic) Euler equations can be written as a scalar quasilinear wave equation with only one wave speed;
formation of shocks for systems with a single wave speed have been studied by [1, 2, 7, 9, 24, 25, 28].

Finally, we mention that there are other possible blowup mechanisms for the Euler equations; for ex-
ample, a precise characterization of implosion for spherically symmetric isentropic flow has recently been
given in [21, 22].

1.2 Main ideas in the proof

Because of the presence of multiple wave speeds, multiple wave families, and their nonlinear interactions,
the Euler dynamics offer a rich tapestry of dynamic behavior, and yet when zooming-in on the formation of
the first shock, the Euler solution shares fundamental features with the wave-steepening blowup of the 3d
Burgers solution. For this reason, our study of the mechanism of shock formation for smooth solutions of
(1.3) as t Ñ T˚ makes use of a blowup profile W pyq, one example of a stable stationary solution to the 3d
self-similar Burgers equation

´1
2W `

`

3
2y1 `W

˘

By1W ` 1
2y2By2W ` 1

2y3By3W “ 0 (1.5)

which has an explicit representation. If we consider the 3d Burgers equation Btv ` v ¨∇v “ 0 in physical
spacetime variables px, tq, then a smooth solution v “ pv1, v2, v3q which forms a first shock at t “ T˚ is
given by2

v1px1, x2, x3, tq “ pT˚ ´ tq
1
2W

ˆ

x1

pT˚´tq
3
2
, x2

pT˚´tq
1
2
, x3

pT˚´tq
1
2

˙

(1.6)

with v2 “ 0 and v3 “ 0. Explicit properties of the blowup profile W pyq together with the solution for
v1px, tq give precise information of the blowup mechanism as t Ñ T˚, including the blowup time T˚,
the blowup location x “ 0, and the blowup direction e1. We note that we have made a particular choice
of direction for our Burgers solution v; specifically, we have chosen to let the wave steepen along the e1

blowup direction, whereas we could have used the profile W to form a blowup in any direction.
Although the non-isentropic Euler system is significantly more complicated, we are nevertheless able

to use the Burgers stationary solution W to describe the blowup mechanism for smooth solutions of (1.3)
as t Ñ T˚. This requires a number coordinate and variable transformations that are constructed upon two
geometric principles: first, we build into our transformations a family of time-dependent modulation func-
tions whose purpose is to fight against the destabilizing action of the finite-dimensional symmetry groups of
the Euler equations, and second, we design a coordinate system which both follows and deforms with the
steepening Euler solution.

Let us now elaborate on these ideas. The blowup profile W pyq has an explicit formula which shows
that y “ 0 is a global minimum for By1W pyq, and with the following properties verified: W p0q “ 0,
By1W p0q “ ´1, By2W p0q “ By3W p0q “ 0, ∇2

yW p0q “ 0, and

∇2By1W p0q ą 0 . (1.7)

Positive-definiteness of the Hessian of B1W at y “ 0 is a genericity condition for the blowup mechanism,
and has been used in the study of blowup for quasilinear wave equations [2] and discussed in [5, 7] as an
important selection criterion for stable shocks.

2In fact, as established in Appendix A.1, there are many closely related stable self-similar solutions to the Burgers equations
which allow for a slight modification of v1.
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Returning now to the identity (1.6), if the initial time is fixed to be t0 “ ´ε for ε ą 0, we can set
T˚ “ 0; the initial condition for v1 is then given by v1px,´εq “ ε

1
2W pε´

3
2 x1, ε

´ 1
2 x2, ε

´ 1
2 x3q, hence with

py1, y2, y3q “ pp´tq´
3
2 x1, p´tq

´ 1
2 x2, p´tq

´ 1
2 x3q, we see that the properties of W pyq at y “ 0 show that

v1p0,´εq “ 0, Bx1v1p0,´εq “
1
εBy1W p0q “ ´

1
ε , Bx2v1p0,´εq “ 0, Bx3v1p0,´εq “ 0, ∇2

x v1p0,´εq “ 0
and the genericity condition (1.7) is also satisfied so that ∇2

x Bx1v1p0,´εq ą 0. We see that for the 3d
Burgers equation, if we start with a maximally negative slope equal to ´1

ε at time t “ ´ε and x “ 0, then
the first shock occurs at time T˚ “ 0 and x “ 0, and by virtue of (1.6), the blowup mechanism is self-similar

Bx1v1p0, tq “
1

T˚´t
B1W p0q “ ´

1
T˚´t

. (1.8)

Of course, no such formula as (1.6) exists for the Euler equations, but we can nevertheless use the properties
of W to develop a new type of stability theory for the Euler equations in self-similar variables.

Thus, the first step in our proof of shock formation for the non-isentropic Euler equations is the mapping
of the physical spacetime coordinates px, tq to modulated self-similar spacetime coordinates py, sq, together
with a succession of transformations that map the original variables pu, σ, kq into geometric Riemann-like
variables pW,Z,A,Kq, in which the dynamically dominant variableW py, sqmimics the properties ofW pyq
near the blowup location y “ 0. The use of modulation functions for the analysis of self-similar dispersive
equations was pioneered in [20, 23]. The initial data is prescribed at self-similar time s0 “ ´ log ε, and
we require BγW py,´ log εq to verify the same conditions as BγW pyq at the point y “ 0 for all multi-
indices |γ| ď 2. Just as we noted above, we are now making a choice of blowup direction; the initial data is
chosen so that its maximal negative slope is in the e1 direction, but unlike the Burgers solution, the rotational
symmetry of the Euler dynamics does not preserve this direction. In fact, the various symmetries of the Euler
equations prevent these conditions on BγW p0, sq to be maintained under the natural evolution, and for this
reason, ten time-dependent modulation functions are used to ensure that BγW p0, sq “ BγW p0q for |γ| ď 2
and for all s ě ´ log ε. Of these ten modulation functions, seven of them are associated to symmetries
of the Euler equations (see Section 1.3 in [4]), and three of the modulation functions are associated to a
spatially quadratic time-dependent parameterization fpt, x2, x3q “ φ22ptqx2

2 ` 2φ23ptqx2x3 ` φ33ptqx2
3 of

the steepening front, where the matrix φµνptq modulates the curvature, and denotes the induced second-
fundamental form. Associated to this parametric surface fpx2, x3, tq is a time-dependent orthonormal basis
pN,T2,T3q representing the normal and tangential directions. The steepening front moves in the N direction
and the dominant Riemann variable is defined as w “ u ¨ N ` σ. With respect to coordinates x which
themselves depend on f , the variable wpx, tq is associated to the dominant self-similar variable W py, sq by
a formula which is analogous to (1.6):

wpx1, x2, x3, tq “ pτptq ´ tq
1
2W

ˆ

x1

pτptq´tq
3
2
, x2

pτptq´tq
1
2
, x3

pτptq´tq
1
2
, s

˙

, ´s “ logpτptq ´ tq ,

where τptq modulates the blowup time and converges to T˚ as tÑ T˚. Differentiating w in the direction N
of the steepening front, it can be shown that

BNwpξptq, tq “ esBy1W p0, sq “ ´
1

τptq´t Ñ ´8 as tÑ T˚ , (1.9)

where ξptqmodulates the blowup location. The blowup (1.9) is the geometric analogue of (1.8), and requires
a well-defined limit as tÑ T˚ which, in turn, requires thatW py, sq remains well defined for all´ log ε ď s.

It therefore becomes clear that in order to establish stable self-similar shock formation, we must prove
global existence of solutions to the Euler equations in self-similar coordinates py, sq, and the majority of our
work is devoted to this end. The understanding of the damping/anti-damping structure of the Euler equations
in self-similar coordinates py, sq along Lagrangian trajectories is key to our analysis; the undifferentiated
Euler equations have anti-damping terms, but upon spatial differentiation, damping emerges, and the more
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derivatives that are applied, the stronger the damping becomes. A consequence of this observation is that
pointwise bounds for lower-order derivatives cannot rely on either damping or traditional Eulerian-type
analysis, but rather on sharp (lower) bounds on the motion of the three families of trajectories associated to
the three waves speeds present. In self-similar coordinates, almost all of the trajectories in these three wave
families escape to infinity and having sharp rates-of-escape for each family can be combined with spatial
decay properties of the Riemann-type functionW py, sq to close a system of highly coupled bootstrap bounds
for derivatives up to order two.

On the other hand, it is not possible to close estimates for the Euler equations using only pointwise
bounds due to inherent derivative loss, and higher-order energy estimates must therefore be employed. Mod-
ified energy estimates are performed for a system of variables comprised of U , Se´

K
2γ , and e

K
2γ , where U ,

S, and K are the self-similar versions of u, σ, and k, respectively. The use of these variables removes the
hyperbolic degeneracy associated to vanishing density. Combined with the weighted pointwise bounds for
lower-order derivatives, we prove global existence in a modified 9Hm-norm, m ě 18.

While for the subclass of irrotational flows the above two types of estimates suffice, for rotational flows
it is essential to obtain uniform bounds for the vorticity all the way to the blowup time. Even for isentropic
dynamics, in which the specific vorticity is Lie advected, analysis in self-similar coordinates appears top
create logarithmic losses in temporal decay (see [4]). Instead, the specific vorticity ζ is estimated in physical
coordinates using geometric components pζ ¨ N, ζ ¨ T2, ζ ¨ T3q, which yield a cancellation at highest order.
For the non-isentropic dynamics, an additional difficulty arises because the vorticity equation (1.4) is forced
by the baroclinic torque α

γ
σ
ρ∇xσˆ∇xk, which blows up as tÑ T˚. Indeed, from formula (2.26) below, and

the bounds established in Sections 6 and 7, we may show that the tangential components of the baroclinic
torque term satisfy

ˇ

ˇpσρT
¨ ¨∇xσ ˆ∇xkqpξptq, tq

ˇ

ˇ Á 1
T˚´t

.

A main feature of our proof is to show that in spite of the fact that the Lie-advection for the specific vorticity
is forced by a diverging term, ζ remains uniformly bounded up to T˚. This is achieved by noting that the
divergence of the velocity gains a space derivative when integrated along trajectories with speed u, and by
taking advantage of certain cancellations which arise due to our geometric framework.

Finally, we examine baroclinic vorticity production. We prove that even if the initial velocity is ir-
rotational, vorticity is instantaneously produced due to the baroclinic torque, and our analysis shows that
this created vorticity remains non-trivial in an open neighborhood of the steepening front all the way up to
the first shock. We thus provide a constructive proof of shock formation for Euler in the regime in which
vorticity is created, and not simply Lie advected.

1.3 Outline

In Section 2, we introduce a succession of variable changes and Riemann-type variables which allow then
allow us to write the Euler equations in modulated self-similar coordinates. A precise specification of
the data and the statement of the main results is then given in Section 3. In Section 4, we introduce the
bootstrap assumptions for the modulation functions as well as the primary variables solving the self-similar
Euler equations; these bootstrap assumptions consist of carefully chosen weighted (in both space and time)
bounds. A fundamental aspect of our proof requires a detailed estimates for the rates of escape of the
trajectories corresponding to the different wave speeds, and Section 5 is devoted to this analysis. In Section
6, we establish pointwise bounds for the vorticity, and in Section 7 we show that there exists irrotational
initial velocity fields from which vorticity is created and remains non-trivial at the first shock. Energy
estimates in self-similar variables are established in Section 8, using the modified variables (2.42). In Section
9, we establish weighted (pointwise) estimates for functions appearing in the forcing, damping, and transport
of the differentiated Euler system. In turn, these weighted bounds allow us to close the bootstrap assumptions
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for W , Z, A, K and their partial derivatives, and this is achieved in Sections 10–11, while in Section 12, we
close the bootstrap bounds for the dynamic modulation functions. Finally, in Section 13, we explain how
all of the obtained bounds are used to prove Theorem 3.2; in particular, we show that limsÑ8W py, sq “
WApyq for any fixed y P R3, where WApyq is a stable stationary solution to the self-similar 3d Burgers
equations. A family of such stationary solutions is constructed in Appendix A, which also contains an
interpolation inequality that is used throughout the paper, as well as some detailed computations leading to
the evolution equations for the modulation functions.

2 Transforming the Euler equations into geometric self-similar variables

We now make a succession of variable transformations for both dependent and independent variables. We
begin by rescaling time as

t ÞÑ 1`α
2 t “ t . (2.1)

We next introduce ten modulation variables which satisfy a coupled system of ODEs that will be given in
(12.12)–(12.13). For each time t, they are defined as follows:

Rptq P S2 rotation matrix from e1 to the direction of steepening front nptq , (2.2a)

ξptq P R3 translation vector used to fix the location of the developing shock , (2.2b)

φptq P R3 2x2 symmetric matrix giving the curvature of the developing shock front , (2.2c)

τptq P R scalar used to track exact the blowup time , (2.2d)

κptq P R scalar used to fix the speed of the developing shock . (2.2e)

The matrix Rptq is defined in terms of two time-dependent rotation angles n2ptq and n3ptq as follows. We
define nptq “ p

a

1´ n2
2ptq ` n

2
3ptq, n2ptq, n3ptqq and a skew-symmetric matrix rR whose first row is the

vector p0,´n2,´n3q, first column is p0, n2, n3q, and has 0 entries otherwise. In terms of rR, we define the
rotation matrix

Rptq “ Id ` rRptq `
1´ e1 ¨ nptq

|e1 ˆ nptq|
2
rR2ptq . (2.3)

It is the two angles n2ptq and n3ptq whose evolution is given in (12.12).
Using these modulation functions, we next proceed to make a succession of transformations of both the

independent and dependent variables, finally arriving at a novel modulated self-similar form of the dynamics.

2.1 Rotating the direction and translating the location of the steepening wavefront

We introduce the new independent variable

rx “ RT ptqpx´ ξptqq (2.4)

and corresponding dependent variables as

ruprx, tq “ RT ptqupx, tq , rσprx, tq “ σpx, tq , rkprx, tq “ kpx, tq . (2.5)

It follows that (1.3) is transformed to

1`α
2 Btru´ 9Qru`

´

prv ` ruq ¨∇
rx

¯

ru` αrσ∇
rxrσ “

α
2γ rσ

2∇
rx
rk (2.6a)
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1`α
2 Btrσ `

´

prv ` ruq ¨∇
rx

¯

rσ ` αrσdiv
rxru “ 0 (2.6b)

1`α
2 Btrk`

´

prv ` ruq ¨∇
rx

¯

rk “ 0 (2.6c)

where

9Q “ 9RTR and rvprx, tq :“ 9Qrx´RT 9ξ . (2.7)

The density and pressure in this rotated and translated frame are given by

rρprx, tq “ ρpx, tq , rpprx, tq “ ppx, tq (2.8)

satisfy

1`α
2 Btrρ`

´

prv ` ruq ¨∇
rx

¯

rρ` rρdiv
rxru “ 0 , (2.9a)

1`α
2 Btrp`

´

prv ` ruq ¨∇
rx

¯

rp` γrpdiv
rxru “ 0 , (2.9b)

and we also have the alternative form of the momentum equation

1`α
2 Btru´ 9Qru`

´

prv ` ruq ¨∇
rx

¯

ru` pαrσq´
1
α e

rk
2α∇

rxrp “ 0 . (2.10)

This follows from the form of the momentum equation given by Btu ` pu ¨ ∇xqu ` pασq
´ 1
α e

k
2α∇xp “ 0

where, from (1.2), we have used that ρ´1 “ pασq´
1
α e

k
2α .

Similarly, defining the transformed specific vorticity vector rζ by

rζprx, tq “ RT ptqζpx, tq , (2.11)

we have that rζ solves

1`α
2 Btrζ ´ 9Qrζ `

´

prv ` ruq ¨∇
rx

¯

rζ ´
´

rζ ¨∇
rx

¯

ru “ α
γ
rσ
rρ∇rxrσ ˆ∇

rx
rk . (2.12)

Deriving (2.12) from (1.4) fundamentally uses that 9Q is skew-symmetric, and the fact that the cross product
is invariant to rotation.

2.2 Coordinates adapted to the shape of the steepening wavefront

We next define a quadratic surface over the rx2-rx3 plane given by the graph

pfprx2, rx3, tq, rx2, rx3q , (2.13)

which approximates the steepening shock, and where

fpřx, tq “ 1
2φνγptqrxνrxγ . (2.14)

Associated to the parameterized surface (2.13), we define the unit-length normal and tangent vectors3

N “ J´1p1,´f,2 ,´f,3 q , T
2 “

´

f,2
J , 1´

pf,2q2

JpJ`1q ,
´f,2f,3
JpJ`1q

¯

, T3 “

´

f,3
J ,

´f,2f,3
JpJ`1q , 1´

pf,3q2

JpJ`1q

¯

, (2.15)

3 As we noted in [4], pN,T2,T3
q defines an orthonormal basis and T2

ˆ T3
“ N, Nˆ T2

“ T3 and Nˆ T3
“ ´T2.
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where J “ p1` |f,2 |
2 ` |f,3 |

2q
1
2 .4

In order to ‘flatten’ the developing shock front, we make one further transformation of the independent
space variables5

x1 “ rx1 ´ fprx2, rx3, tq , x2 “ rx2 , x3 “ rx3 , (2.16)

and define the transformed dependent variables by

ůpx, tq “ ruprx, tq “ rupx1 ` fpx2, x3, tq, x2, x3, tq , (2.17a)

σ̊px, tq “ rσprx, tq “ rσpx1 ` fpx2, x3, tq, x2, x3, tq , (2.17b)

ρ̊px, tq “ rρprx, tq “ rρpx1 ` fpx2, x3, tq, x2, x3, tq , (2.17c)

k̊px, tq “ rkprx, tq “ rkpx1 ` fpx2, x3, tq, x2, x3, tq , (2.17d)

p̊px, tq “ rpprx, tq “ rppx1 ` fpx2, x3, tq, x2, x3, tq . (2.17e)

We shall also make use of the α-dependent parameters

β1 “ β1pαq “
1

1`α , β2 “ β2pαq “
1´α
1`α , β3 “ β3pαq “

α
1`α , β4 “ β4pαq “

β3pαq
1`2α , (2.18)

where 0 ď βi “ βipαq ă 1.
Using the time rescaling from (2.1), the system (2.6) can be written as (2.17) as

Btů´ 2β1
9Qů` 2β1p´

9f
2β1
` Jv ¨ N` Jů ¨ NqB1ů` 2β1pvν ` ůνqBν ů` 2β3σ̊pJNB1σ̊ ` δ

¨νBν σ̊q

“ β4σ̊
2pJNB1̊k` δ¨νBν k̊q , (2.19a)

Btσ̊ ` 2β1p´
9f

2β1
` Jv ¨ N` Jů ¨ NqB1σ̊ ` 2β1pvν ` ůνqBν σ̊ ` 2β3σ̊ pB1ů ¨ NJ` Bν ůνq “ 0 , (2.19b)

Bt̊k` 2β1p´
9f

2β1
` Jv ¨ N` Jů ¨ NqB1̊k` 2β1pvν ` ůνqBν k̊ “ 0 , (2.19c)

where in analogy to (2.17), we have denoted

vpx, tq “ rvprx, tq “ rvpx1 ` fpx2, x3, tq, x2, x3, tq . (2.20)

Note in particular the identity vipx, tq “ 9Qi1px1 ` fpx̌, tqq ` 9Qiνxν ´ Rji 9ξj . The density equation (2.9a)
becomes

Btρ̊` 2β1p´
9f

2β1
` Jv ¨ N` Jů ¨ NqB1ρ̊` 2β1pvν ` ůνqBν ρ̊` 2β1ρ̊ pB1ů ¨ NJ` Bν ůνq “ 0 , (2.21)

the pressure equation (2.9b) is transformed to

Btp̊` 2β1p´
9f

2β1
` Jv ¨ N` Jů ¨ NqB1p̊` 2β1pvν ` ůνqBν p̊` 2β1γp̊ pB1ů ¨ NJ` Bν ůνq “ 0 , (2.22)

and the alternative form of the momentum equation (2.10) is written as

Btů´ 2β1
9Qů` 2β1p´

9f
2β1
` Jv ¨ N` Jů ¨ NqB1ů` 2β1pvν ` ůνqBν ů

` 2β1pασ̊q
´ 1
α e

k̊
2α pJNB1p̊` δ

¨νBν p̊q “ 0 . (2.23)

Similarly, the transformed specific vorticity vector is

ζ̊px, tq “ rζprx, tq “ rζpx1 ` fpx2, x3, tq, x2, x3, tq , (2.24)

4Here and throughout the paper we are using the notation ϕ,µ “ Bxµϕ, and Bµϕ “ Byµϕ.
5 Note that only the rx1 coordinate is modified.
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so that the equation (2.12) becomes

Btζ̊ ´ 2β1
9Qζ̊ ` 2β1p´

9f
2β1
` Jv ¨ N` Jů ¨ NqB1ζ̊ ` 2β1pvν ` ůνqBν ζ̊ ´ 2β1JN ¨ ζ̊B1ů´ 2β1ζ̊νBν ů

“ α
γ
σ̊
ρ̊∇rxσ̊ ˆ∇

rx̊k . (2.25)

Note that the gradient appearing on the right side is with respect to rx. We record for later use that

∇
rxσ̊ˆ∇

rx̊k “
´

BT2 σ̊BT3 k̊´ BT3 σ̊BT2 k̊
¯

N`
´

BT3 σ̊BNk̊´ BNσ̊BT3 k̊
¯

T2 `

´

BNσ̊BT2 k̊´ BT2 σ̊BNk̊
¯

T3 ,

(2.26)

where
BN “ N ¨∇

rx and BTν “ Tν ¨∇
rx .

2.3 Riemann variables adapted to the shock geometry

Just as for the isentropic Euler equations that we analyzed in [4], the non-isentropic Euler system (2.19) has
a rad geometric structure arising from the use of Riemann-type variables, defined by

w “ ů ¨ N` σ̊ , z “ ů ¨ N´ σ̊ , aν “ ů ¨ Tν (2.27)

so that

ů ¨ N “ 1
2pw ` zq , σ̊ “ 1

2pw ´ zq . (2.28)

The Euler sytem (2.19) can be written in terms of pw, z, a2, a3, kq as6

Btw `
´

2β1p´
9f

2β1
` Jv ¨ Nq ` Jw ` β2Jz

¯

B1w `
`

2β1vµ ` wNµ ´ β2zNµ ` 2β1aνT
ν
µ

˘

Bµw

“ ´2β3σ̊T
ν
µBµaν ` 2β1aνT

ν
i

9Ni ` 2β1
9QijaνT

ν
jNi ` 2β1

`

vµ ` ů ¨ NNµ ` aνT
ν
µ

˘

aγT
γ
i Ni,µ

´ 2β3σ̊paνT
ν
µ,µ ` ů ¨ NNµ,µq ` β4σ̊

2pJB1̊k` NµBµ̊kq , (2.29a)

Btz `
´

2β1p´
9f

2β1
` Jv ¨ Nq ` β2Jw ` Jz

¯

B1z `
`

2β1vµ ` β2wNµ ` zNµ ` 2β1aνT
ν
µ

˘

Bµz`

“ 2β3σ̊T
ν
µBµaν ` 2β1aνT

ν
i

9Ni ` 2β1
9QijaνT

ν
jNi ` 2β1

`

vµ ` ů ¨ NNµ ` aνT
ν
µ

˘

aγT
γ
i Ni,µ

` 2β3σ̊paνT
ν
µ,µ ` ů ¨ NNµ,µq ` β4σ̊

2pJB1̊k` NµBµ̊kq , (2.29b)

Btaν `
´

2β1p´
9f

2β1
` Jv ¨ Nq ` β1Jw ` β1Jz

¯

B1aν ` 2β1

`

vµ `
1
2pw ` zqNµ ` aγT

γ
µ

˘

Bµaν

“ ´2β3σ̊T
ν
µBµσ̊ ` 2β1 p̊u ¨ NNi ` aγT

γ
i q

9Tνi ` 2β1
9Qij

´

p̊u ¨ NNj ` aγT
γ
j

¯

Tνi

` β1

`

vµ ` ů ¨ NNµ ` 2aγT
γ
µ

˘

p̊u ¨ NNi ` aγT
γ
i qT

ν
i,µ ` β4σ̊

2TνµBµ̊k , (2.29c)

Bt̊k` 2β1p´
9f

2β1
` Jv ¨ N` Jů ¨ NqB1̊k` 2β1pvν ` ůνqBν k̊ “ 0 . (2.29d)

2.4 Euler equations in modulated self-similar Riemann-type variables

Finally, to facilitate the analysis of shock formation, we introduce the (modulated) self-similar variables:

s “ sptq “ ´ logpτptq ´ tq , (2.30a)

6The time rescaling (2.1) sets the coefficient of wB1w in (2.29a) to 1, which provides a convenient framework to study the w
equation as a perturbation of Burgers-type evolution.
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y1 “ y1px1, tq “
x1

pτptq ´ tq
3
2

“ x1e
3s
2 , (2.30b)

yj “ yjpxj , tq “
xj

pτptq ´ tq
1
2

“ xje
s
2 , for j P t2, 3u . (2.30c)

Using the self-similar variables y and s, we rewrite the functions w, z, aν , k̊, and v, defined in (2.27)
and (2.20), as

wpx, tq “ e´
s
2W py, sq ` κptq , (2.31a)

zpx, tq “ Zpy, sq , (2.31b)

aνpx, tq “ Aνpy, sq , (2.31c)

k̊px, tq “ Kpy, sq , (2.31d)

vpx, tq “ V py, sq , (2.31e)

so that
Vipy, sq “ 9Qi1

´

e´
3s
2 y1 `

1
2e
´sφνµyνyµ

¯

` e´
s
2 9Qiνyν ´Rji 9ξj . (2.32)

Introducing the parameter
βτ “ βτ ptq “

1
1´ 9τptq ,

the Euler system (2.29) is written in self-similar coordinates as

pBs ´
1
2qW `

`

gW ` 3
2y1

˘

B1W `
`

hµW ` 1
2yµ

˘

BµW “ FW ´ e´
s
2βτ 9κ (2.33a)

BsZ `
`

gZ `
3
2y1

˘

B1Z `
`

hµZ `
1
2yµ

˘

BµZ “ FZ (2.33b)

BsAν `
`

gU `
3
2y1

˘

B1Aν `
`

hµU `
1
2yµ

˘

BµAν “ FAν (2.33c)

BsK ` pgU `
3
2y1qB1K ` phνU `

1
2yνqBνK “ 0 , (2.33d)

where the y1 transport functions are defined by

gW “ βτJW ` βτe
s
2

´

´ 9f ` J pκ` β2Z ` 2β1V ¨ Nq
¯

“ βτJW `GW (2.34a)

gZ “ β2βτJW ` βτe
s
2

´

´ 9f ` J pβ2κ` Z ` 2β1V ¨ Nq
¯

“ β2βτJW `GZ (2.34b)

gU “ β1βτJW ` βτe
s
2

´

´ 9f ` J pβ1κ` β1Z ` 2β1V ¨ Nq
¯

“ β1βτJW `GU (2.34c)

the yν transport functions are given as

hµW “ βτe
´sNµW ` βτe

´ s
2

`

2β1Vµ ` Nµκ´ β2NµZ ` 2β1AγT
γ
µ

˘

(2.35a)

hµZ “ βτβ2e
´sNµW ` βτe

´ s
2

`

2β1Vµ ` β2Nµκ` NµZ ` 2β1AγT
γ
µ

˘

(2.35b)

hµU “ βτβ1e
´sNµW ` βτe

´ s
2

`

2β1Vµ ` β1Nµκ` β1NµZ ` 2β1AγT
γ
µ

˘

(2.35c)

and the forcing functions are

FW “ ´2β3βτST
ν
µBµAν ` 2β1βτe

´ s
2AνT

ν
i

9Ni ` 2β1βτe
´ s

2 9QijAνT
ν
jNi

` 2β1βτe
´ s

2

`

Vµ ` NµU ¨ N`AνT
ν
µ

˘

AγT
γ
i Ni,µ ´ 2β3βτe

´ s
2S

`

AνT
ν
µ,µ ` U ¨ NNµ,µ

˘

` β4βτS
2pJesB1K ` NµBµKq (2.36a)

FZ “ 2β3βτe
´ s

2STνµBµAν ` 2β1βτe
´sAνT

ν
i

9Ni ` 2β1βτe
´s 9QijAνT

ν
jNi

` 2β1βτe
´s

`

Vµ ` NµU ¨ N`AνT
ν
µ

˘

AγT
γ
i Ni,µ ` 2β3βτe

´sS
`

AνT
ν
µ,µ ` U ¨ NNµ,µ

˘

11
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` β4βτS
2pJe

s
2 B1K ` Nµe

´ s
2 BµKq (2.36b)

FAν “ ´2β3βτe
´ s

2ST νµ BµS ` 2β1βτe
´s pU ¨ NNi `AγT

γ
i q

9Tνi ` 2β1βτe
´s 9QijpU ¨ NNj `AγT

γ
j qT

ν
i

` 2β1βτe
´s

`

Vµ ` U ¨ NNµ `AγT
γ
µ

˘

pU ¨ NNi `AγT
γ
i qT

ν
i,µ ` β4βτe

´ s
2S2TνµBµK . (2.36c)

In (2.36) we have also used the self-similar variants of ů, σ̊, and k̊ which, together with the self-similar
variant of p̊, are given by

ůpx, tq “ Upy, sq , (2.37a)

ρ̊px, tq “ Rpy, sq , (2.37b)

σ̊px, tq “ Spy, sq , (2.37c)

p̊px, tq “ P py, sq , (2.37d)

so that

U ¨ N “ 1
2

´

κ` e´
s
2W ` Z

¯

and S “ 1
2

´

κ` e´
s
2W ´ Z

¯

. (2.38)

The system (2.33) may be written as

BsW ´ 1
2W ` pVW ¨∇qW “ FW ,

BsZ ` pVZ ¨∇qZ “ FZ ,

BsAν ` pVU ¨∇qAν “ FAν ,

BsK ` pVU ¨∇qK “ 0 ,

where the transport velocities are abbreviated as

VW “
`

gW ` 3
2y1 , h

2
W ` 1

2y2 , h
3
W ` 1

2y3

˘

, (2.40a)

VZ “
`

gZ `
3
2y1 , h

2
Z `

1
2y2 , h

3
Z `

1
2y3

˘

, (2.40b)

VU “
`

gU `
3
2y1 , h

2
U `

1
2y2 , h

3
U `

1
2y3

˘

. (2.40c)

2.5 Self-similar Euler equations in terms of velocity, pressure, and entropy

From (2.19), (2.22), (2.23), (2.30), (2.37a), (2.37c) we deduce that pU,P,Kq are solutions of

BsUi ´ 2β1βτe
´s 9QijUj ` pVU ¨∇qUi ` 2βτβ1pαSq

´ 1
α e

K
2α pJNie

s
2 B1P ` δ

iνe´
s
2 BνP q “ 0 , (2.41a)

BsP ` pVU ¨∇qP ` 2βτβ1γe
s
2PB1U ¨ NJ` 2βτβ1γe

´ s
2PBνUν “ 0 , (2.41b)

BsK ` pVU ¨∇qK “ 0 . (2.41c)

For the purpose of performing high-order energy estimates, it is convenient to introduce

U “ U (2.42a)

P “ Se´
K
2γ “ 1

αpγP q
α
γ , (2.42b)

H “ e
K
2γ , (2.42c)

and re-express the system of equations (2.41) as the following pU,P,Hq-system:

BsUi ` pVU ¨∇qUi ` 2βτβ3H2P
´

JNie
s
2 B1P ` δiνe´

s
2 BνP

¯

“ 2βτβ1e
´s 9QijUj , (2.43a)

12
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BsP ` pVU ¨∇qP ` 2βτβ3P
´

e
s
2 JN ¨ B1U ` e

´ s
2 BνUν

¯

“ 0 , (2.43b)

BsH` pVU ¨∇qH “ 0 . (2.43c)

Finally, we define the self-similar variant of the specific vorticity via

ζ̊px, tq “ Ωpy, sq . (2.44)

2.6 Evolution of higher order derivatives

2.6.1 Higher-order derivatives for the pW,Z,A,Kq-system

We shall also need the differentiated form of the system (2.33), which we record here for convenience. For
a multi-index γ P N3

0, we use the notation γ “ pγ1, γ̌q “ pγ1, γ2, γ3q. We have that
´

Bs `
3γ1`γ2`γ3´1

2 ` βτ p1` γ11γ1ě2q JB1W
¯

BγW ` pVW ¨∇q BγW “ F
pγq
W , (2.45a)

´

Bs `
3γ1`γ2`γ3

2 ` β2βτγ1JB1W
¯

BγZ ` pVZ ¨∇q BγZ “ F
pγq
Z , (2.45b)

´

Bs `
3γ1`γ2`γ3

2 ` β1βτγ1JB1W
¯

BγAν ` pVU ¨∇q BγAν “ F
pγq
Aν , (2.45c)

´

Bs `
3γ1`γ2`γ3

2 ` β1βτγ1JB1W
¯

BγK ` pVU ¨∇q BγK “ F
pγq
K , (2.45d)

where |γ| ě 1 and the forcing terms are

F
pγq
W “ BγFW ´

ÿ

0ďβăγ

ˆ

γ

β

˙

´

Bγ´βGW B1B
βW ` Bγ´βhµW BµB

βW
¯

´ βτ1|γ|ě3

ÿ

1ď|β|ď|γ|´2
βďγ

ˆ

γ

β

˙

Bγ´βpJW qB1B
βW ´ βτ1|γ|ě2

ÿ

|β|“|γ|´1
βďγ,β1“γ1

ˆ

γ

β

˙

Bγ´βpJW qB1B
βW

(2.46)

for the BγW evolution, and

F
pγq
Z “ BγFZ ´

ÿ

0ďβăγ

ˆ

γ

β

˙

´

Bγ´βGZB1B
βZ ` Bγ´βhµZBµB

βZ
¯

´ β2βτ1|γ|ě2

ÿ

0ď|β|ď|γ|´2
βďγ

ˆ

γ

β

˙

Bγ´βpJW qB1B
βZ ´ β2βτ

ÿ

|β|“|γ|´1
βďγ,β1“γ1

ˆ

γ

β

˙

Bγ´βpJW qB1B
βZ

(2.47a)

F
pγq
Aν “ B

γFAν ´
ÿ

0ďβăγ

ˆ

γ

β

˙

´

Bγ´βGUB1B
βAν ` B

γ´βhµUBµB
βAν

¯

´ β1βτ1|γ|ě2

ÿ

0ď|β|ď|γ|´2
βďγ

ˆ

γ

β

˙

Bγ´βpJW qB1B
βAν ´ β1βτ

ÿ

|β|“|γ|´1
βďγ,β1“γ1

ˆ

γ

β

˙

Bγ´βpJW qB1B
βAν

(2.47b)

F
pγq
K “ ´

ÿ

0ďβăγ

ˆ

γ

β

˙

´

Bγ´βGUB1B
βK ` Bγ´βhµUBµB

βK
¯

13
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´ β1βτ1|γ|ě2

ÿ

0ď|β|ď|γ|´2
βďγ

ˆ

γ

β

˙

Bγ´βpJW qB1B
βK ´ β1βτ

ÿ

|β|“|γ|´1
βďγ,β1“γ1

ˆ

γ

β

˙

Bγ´βpJW qB1B
βK

(2.47c)

for the BγZ, BγAν , and BγK evolutions.

2.6.2 Higher-order derivatives for ĂW

We let W pyq denote a particular self-similar, stable, stationary solution of the 3d Burgers equation, given by

W pyq “ xy̌yW1d

ˆ

y1

xy̌y3

˙

(2.48)

where xy̌y “ 1 ` y2
2 ` y2

3 is the Japanese bracket, and where W1dpy1q is the stable globally self-similar
solution of the 1d Burgers equation, i.e., W1dpy1q is a solution to W1d`W

3
1d “ ´y1. We refer the reader to

[6], [10], and Section 2.7 of [4] for the explicit form of W1dpy1q and for properties of W pyq. We note that
W is one example from the ten-dimensional family WA of stable stationary solutions to the self-similar 3d
Burgers equation which are given by Proposition A.1 in Appendix A.1. The symmetric 3-tensor A represents
BγWAp0q for |γ| “ 3. The functionW is in fact equal toWA for the case that A111 “ 6, A122 “ A133 “ 2,
and all other components vanish.

Of paramount importance to our analysis, is the evolution of the perturbation

ĂW py, sq “W py, sq ´W pyq (2.49)

which satisfies

BsĂW ` pβτJB1W ´ 1
2q
ĂW ` pVW ¨∇qĂW

“ FW ´ e´
s
2βτ 9κ` ppβτJ´ 1qW ´GW qB1W ´ hµW BµW “: rFW . (2.50)

Applying Bγ to (2.50), we obtain that BγĂW obeys
´

Bs `
3γ1`γ2`γ3´1

2 ` βτJ
`

B1W ` γ1B1W
˘

¯

BγĂW ` pVW ¨∇q BγĂW “ rF
pγq
W (2.51)

for |γ| ě 1, where the forcing term rF
pγq
W is given by

rF
pγq
W “ Bγ rFW ´

ÿ

0ďβăγ

ˆ

γ

β

˙

´

Bγ´βGW B1B
β
ĂW ` Bγ´βhµW BµB

β
ĂW ` βτB

γ´βpJB1W qB
β
ĂW
¯

´ βτ1|γ|ě2

ÿ

1ď|β|ď|γ|´2
βďγ

ˆ

γ

β

˙

Bγ´βpJW qB1B
β
ĂW ´ βτ

ÿ

|β|“|γ|´1
βďγ,β1“γ1

ˆ

γ

β

˙

Bγ´βpJW qB1B
β
ĂW . (2.52)

2.7 Constraints and the evolution of dynamic modulation variables

The use of modulated self-similar variables allows us to ensure that the evolution of W in (2.33a) maintains
the constraints

W p0, sq “ 0 , B1W p0, sq “ ´1 , ∇̌W p0, sq “ 0 , ∇2W p0, sq “ 0 , (2.53)
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for all s ě ´ log ε. This is achieved by choosing our 10 time-dependent dynamic modulation parameters
tnνu

3
ν“2, tξiu

3
i“1, κ, τ, tφνµu

3
ν,µ“2 to satisfy a 10-by-10 coupled system of ODEs, which we describe next.

At time t “ ´ε the modulation parameters are defined as

κp´εq “ κ0, τp´εq “ ξp´εq “ nµp´εq “ 0, φνµp´εq “ φ0,νµ , (2.54)

where κ0 is defined in (3.29) and φ0 is defined by (3.8). In order to determine the time derivatives of
our 10 modulation parameters, we use the explicit form of the evolution equations for W , ∇W and ∇2W
(cf. (2.33a) and (2.45a)), which are evaluated at y “ 0 and take into account the constraints in (2.53). Note
that in this subsection we only collect the equations which implicitly define the evolution of the modulation
parameters; only in Section 12 do we untangle the coupled nature of these implicitly defined ODEs to
actually define the evolution of the constraints (cf. (12.12) and (12.13)), and prove that the resulting ODEs
are globally well-posed.

Throughout the paper, for a function ϕpy, sq, we shall denote ϕp0, sq by ϕ0psq. We make a preliminary
observation regarding the value at y “ 0 for the forcing terms F pγqW which appear in the evolution (2.45a)
for BγW . Using (2.53) it is not hard to check that for any γ P N3

0 with |γ| “ 1 or |γ| “ 2 we have that

F
pγq,0
W “ BγF 0

W ` BγG0
W . (2.55)

Therefore, it is sufficient to know the derivatives up to order 2 of FW and GW at y “ 0; these derivatives
may be computed explicitly, and for convenience of the reader we have listed them in Appendix (A.3), see
equations (A.7) and (A.8). Next, we turn to the evolution equations for the modulation parameters.

First, we evaluate the equation for W in (2.33a) at y “ 0 to obtain a definition for 9κ. Using (2.33a) and
(2.53) we obtain that

´G0
W “ F 0

W ´ e´
s
2βτ 9κ ñ 9κ “ 1

βτ
e
s
2

`

F 0
W `G0

W

˘

. (2.56)

Second, we evaluate the equation for B1W at y “ 0 and obtain a formula for 9τ . Indeed, using that
´1` βτ “

9τ
1´ 9τ “ 9τβτ , we obtain from (2.45a) with γ “ e1 that

´p1´ βτ q “ B1F
0
W ` B1G

0
W ñ 9τ “ 1

βτ

`

B1F
0
W ` B1G

0
W

˘

. (2.57)

Third, we turn to the evolution equation for ∇̌W at y “ 0, which allows us to compute 9Q1j . Evaluating
(2.45a) with γ “ eν at y “ 0 and using (2.55) we obtain for ν P t2, 3u that

F
0,p0,1,0q
W “ F

0,p0,0,1q
W “ 0 ñ BνF

0
W ` BνG

0
W “ 0 . (2.58)

It is not immediately apparent that (2.58) determines 9Q1j . In order to see this one has to inspect the explicit
formula for BνG0

W in (A.7b), and to note that BνG0
W “ 2β1

9Q1ν` terms which are all small (bounded by ε
to a positive power). This is explained in (12.3) below. Note that once 9Q1j is known, we can determine 9̌n
thorough an algebraic computation; this will be achieved in (12.5) below.

Fourth, we analyze the evolution of B1∇W at y “ 0. This constraint allows us to computeG0
W and hµ,0W ,

which will in turn allow us to express 9ξi; we initially focus on computing G0
W and hµ,0W . Evaluating (2.45a)

with γ “ e1 ` ei at y “ 0 for i P t1, 2, 3u, and using (2.55), we obtain

G0
W B1i1W

0 ` hµ,0W B1iµW
0 “ B1iF

0
W ` B1iG

0
W . (2.59)

On the left side of the above identity we recognize the matrix

H0psq :“ pB1∇2W q0psq (2.60)
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acting on the vector with components G0
W , h2,0

W , and h3,0
W . We will show (see (12.14) below) that the matrix

H0 remains very close to the matrix diagp6, 2, 2q, for all s ě ´ log ε, and thus it is invertible . Therefore,
we can express

G0
W “ pH0q

´1
1i pB1iF

0
W ` B1iG

0
W q (2.61a)

hµ,0W “ pH0q
´1
µi pB1iF

0
W ` B1iG

0
W q . (2.61b)

Once (2.61) is obtained, we may derive the evolution for 9ξi. Indeed, from (2.35a), (2.14) evaluated at rx “ 0,
the definition of V in (2.32), the constraints in (2.53) and the identities N0

µ “ 0, Tγ,0µ “ δγµ we have that

1
βτ
hµ,0W “ 2β1e

´ s
2

´

A0
µ ´Rjµ

9ξj

¯

, (2.62)

Similarly, from the definition of GW in (2.34a), (2.14), and the constraints in (2.53), we deduce that

1
βτ
G0
W “ e

s
2

´

κ` β2Z
0 ´ 2β1Rj1 9ξj

¯

. (2.63)

Since the matrix R is orthogonal (hence invertible), it is clear that (2.61), (2.62), and (2.63) determine 9ξj .
Lastly, we use the evolution of ∇̌2W at y “ 0 in order to determine 9φνγ . Evaluating (2.45a) with

γ “ eν ` eγ at y “ 0 and using (2.55), we obtain

G0
W B1νγW

0 ` hµ,0W BµνγW
0 “ BνγF

0
W ` BνγG

0
W (2.64)

for ν, γ P t2, 3u. Using (2.61a) and (2.61b) we rewrite the above identity as

BνγG
0
W “ pH0q

´1
1i pB1iF

0
W ` B1iG

0
W qB1νγW

0 ` pH0q
´1
µi pB1iF

0
W ` B1iG

0
W qBµνγW

0 ´ BνγF
0
W . (2.65)

As with (2.58) earlier, it is not immediately clear that (2.65) determines the evolution of 9φνγ . In order to
see this, we need to inspect the precise definition of BνγG0

W (cf. (A.7e) below), which yields that 9φνγ “
´e

s
2

1
βτ
BνγG

0
W` terms which are smaller (by a positive power of ε). Details are given in (12.10) below.

The computations in this subsection derive implicit definitions for the time derivatives of our ten mod-
ulation parameters. In Section 12 we will show that the resulting system of ODEs for the modulation
parameters is in fact solvable globally in time.

3 Main results

3.1 Data in physical variables px, tq

It is convenient to set t0 “ ´ε. This corresponds to t0 “ ´ 2
1`αε. We define initial conditions for the

modulation variables defined in (2.2) as follows:

κ0 :“ κp´εq , τ0 :“ τp´εq “ 0 , ξ0 :“ ξp´εq “ 0 , ň0 :“ ňp´εq “ 0 , φ0 :“ φp´εq , (3.1)

where

κ0 ą 1 , |φ0| ď ε . (3.2)

Next, we define the initial value for the parameterization f of the front by

f0px̌q “ 1
2φ0νµxνxµ ,

16
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and according to (2.15), we define the orthonormal basis pN0,T
2
0,T

3
0q by

N0 “ J´1
0 p1,´f0,2 ,´f0,3q, where J0 “ p1` |f0,2 |

2 ` |f0,3 |
2q

1
2 , (3.3a)

T2
0 “

´

f0,2
J0
, 1´

pf0,2 q
2

J0pJ0`1q ,
´f0,2f0,3
J0pJ0`1q

¯

, and T3
0 “

´

f0,3
J0
,
´f0,2f0,3
J0pJ0`1q , 1´

pf0,3 q
2

J0pJ0`1q

¯

. (3.3b)

From (3.2) and (3.3) we deduce

|N0 ´ e1| ď ε , |Tν0 ´ eν | ď ε . (3.4)

At t “ ´ε, the variable x is given by

x1 “ x1 ´ f0px̌q , x2 “ x2 , x3 “ x3 , (3.5)

which is a consequence of (3.1), (2.4), and (2.16).
The remaining initial conditions are for the velocity field, density, and entropy which then provides us

with the rescaled sound speed:

u0pxq :“ upx,´εq, ρ0pxq :“ ρpx,´εq , k0pxq :“ kpx,´εq , σ0pxq :“
ρα0
α e

k0
2 .

Following (2.17) and (2.27), we introduce the Riemann-type variables at initial time t “ ´ε as

rw0pxq :“ u0pxq ¨ N0px̌q ` σ0pxq , rz0pxq :“ u0pxq ¨ N0px̌q ´ σ0pxq , ra0νpxq :“ u0pxq ¨ Tνpx̌q .
(3.6)

Using (3.5) and the fact that rw0pxq “ wpx,´εq and that ∇̌f0p0q “ 0, it follows that

BxνBxµw0p0q “ BxνBxµ rw0p0q ` Bx1w0p0qφ0νµ . (3.7)

As we will explain below, we will require that Bx1 rw0p0q “ ´1
ε , ∇̌x rw0p0q “ 0 ∇̌2

xw0p0q “ 0, and that
ˇ

ˇ∇̌2
x rw0p0q

ˇ

ˇ ď 1, and thus from (3.7), we find that

φ0νµ “ εBxνBxµ rw0p0q , (3.8)

which shows that (3.2) holds.
In order to establish the formation of a stable self-similar shock, we shall stipulate conditions on the

initial data. It is convenient to first explain these conditions in self-similar variables, and we now proceed to
do so.

3.2 Data in self-similar variables py, sq

At s “ ´ log ε we have that τ0 “ 0, and thus the self-similar variables y are given by

y1 “ ε´
3
2x1 “ ε´

3
2 px1 ´ f0px̌qq , and y̌ “ ε´

1
2 x̌ “ ε´

1
2 x̌ . (3.9)

Second, we use (2.31), (3.1), and (3.6), to define

W py,´ log εq “ ε´
1
2 p rw0pxq ´ κ0q , Zpy,´ log εq “ rz0pxq ,

Aνpy,´ log εq “ ra0νpxq , Kpy,´ log εq “ rk0pxq .

This initial data is supported in the set X0, given by

X0 “

!

|y1| ď ε´1, |y̌| ď ε´
1
3

)

. (3.10)

17
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At y “ 0, we shall mimic the behavior of W p0q and assume that at initial time s “ ´ log ε,

W p0,´ log εq “ 0 , B1W p0,´ log εq “ ´1 , ∇̌W p0,´ log εq “ 0 , ∇2W p0,´ log εq “ 0 . (3.11)

We define a sufficiently large parameter M “ Mpα, κ0q ě 1 (which is in particular independent of ε),
a small length scale `, and a large length scale L by

` “ plogMq´5 , (3.12a)

L “ ε´
1
10 . (3.12b)

For |y| ď ` we shall prove that W is well approximated by its series expansion at y “ 0, while for
` ď |y| ď L we show that W and ∇W track W and ∇W , respectively.

For the initial datum of ĂW “W ´W given by

ĂW py,´ log εq “W py,´ log εq ´W pyq ,

we suppose that for |y| ď L,

η´
1
6 pyq

ˇ

ˇ

ˇ

ĂW py,´ log εq
ˇ

ˇ

ˇ
ď ε

1
10 (3.13a)

η
1
3 pyq

ˇ

ˇ

ˇ
B1
ĂW py,´ log εq

ˇ

ˇ

ˇ
ď ε

1
11 (3.13b)

ˇ

ˇ

ˇ
∇̌ĂW py,´ log εq

ˇ

ˇ

ˇ
ď ε

1
12 , (3.13c)

where ηpyq “ 1` y2
1 ` |y̌|

6. In the smaller region |y| ď `, we assume that
ˇ

ˇ

ˇ
BγĂW py,´ log εq

ˇ

ˇ

ˇ
ď ε

1
8 for |γ| “ 4 , (3.14)

and at y “ 0, we have that
ˇ

ˇ

ˇ
BγĂW p0,´ log εq

ˇ

ˇ

ˇ
ď ε

1
2
´ 4

2m´7 for |γ| “ 3 . (3.15)

For y in the region t|y| ě Lu X X0, we suppose that

η´
1
6 pyq |W py,´ log εq| ď 1` ε

1
11 (3.16a)

η
1
3 pyq |B1W py,´ log εq| ď 1` ε

1
12 (3.16b)

ˇ

ˇ∇̌W py,´ log εq
ˇ

ˇ ď 3
4 (3.16c)

while for the second derivatives of W , globally for all y P X0 we shall assume that

η
1
3 pyq |BγW py,´ log εq| ď 1 for γ1 “ 1 and |γ̌| “ 1 (3.17a)

η
1
3 pyqψ´

1
4 py,´ log εq |BγW py,´ log εq| ď 1 for γ “ p2, 0, 0q (3.17b)

η
1
6 pyq

ˇ

ˇ∇̌2W py,´ log εq
ˇ

ˇ ď 1 , (3.17c)

where ψpy,´ log εq “ η´1pyq ` ε3ηpyq.
For the initial conditions of Z, A, and K, we require that

|BγZpy,´ log εq| ď

#

ε
3
2 , if γ1 ě 1 and |γ| “ 1, 2

ε, if γ1 “ 0 and |γ̌| “ 0, 1, 2
, (3.18)
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|BγApy,´ log εq| ď

#

ε
3
2 , if γ1 “ 1 and |γ̌| “ 0

ε, if γ1 “ 0 and |γ̌| “ 0, 1, 2
, (3.19)

|BγKpy,´ log εq| ď

$

’

&

’

%

ε2, if γ1 “ 1 and |γ̌| “ 0, 1

ε
9
4 η´

1
15 pyq if γ1 “ 2 and |γ̌| “ 0

ε, if γ1 “ 0 and |γ̌| “ 0, 1, 2

. (3.20)

Consequently, the initial specific vorticity in self-similar variables satisfies
›

›Ωp¨,´ log εq ¨ N0

›

›

L8
ď ε

1
4 and

›

›Ωp¨,´ log εq ¨ Tν0
›

›

L8
ď 1 , (3.21)

and the initial scaled sound speed satisfies
›

›Spy,´ log εq ´ κ0
2

›

›

L8
ď ε

1
7 . (3.22)

Lastly, for the Sobolev norm of the initial condition, we suppose that for all m ě 18,

ε
›

›W p¨,´ log εq
›

›

2
9Hm `

›

›Zp¨,´ log εq
›

›

2
9Hm `

›

›Ap¨,´ log εq
›

›

2
9Hm `

›

›Kp¨,´ log εq
›

›

2
9Hm ď ε . (3.23)

Lemma 3.1 (Initial datum suitable for vorticity creation). There exists initial datum W py,´ log εq with
support in the set X0 defined in (3.10), which satisfies the bounds (3.13)–(3.17), and which additionally can
be chosen to satisfy

´1
2 |y1|

´ 2
3 ď B1W py,´ log εq ď ´1

4 |y1|
´ 2

3 for
!

ε´
1
10 ď |y1| ď 2κ0ε

´ 1
2 , |y̌| ď ε

1
3

)

. (3.24)

Moreover, associated to this choice of W py,´ log εq, letting Zpy,´ log εq “ 0 and φ0 “ 0, there exists an
Apy,´ log εq, such that

ruprx,´εq “ Upy,´ log εq “
´

1
2pε

1
2W py,´ log εq ` κ0q, A2py,´ log εq, A3py,´ log εq

¯

(3.25)

is irrotational with respect to the physical space variable rx.

Proof of Lemma 3.1. The proof of (3.24) is based on the introduction of a cutoff functions in both the y1

direction and in the y̌ directions, and the multiplication of the globally self-similar profileW by these cutoffs.
The only non-trivial part of this argument is to choose the dependence of the aforementioned cutoffs on ε´1.

We start by defining a cutoff function with two parameters. For b ě 2a ą 0 we let ηra, bsprq be a
smooth non-increasing function which is identically equal to 1 for r P r0, as, and vanishes identically for
r P ra` b,8q. For the purposes of this lemma we may take the piecewise linear cutoff function and mollify
it with a compactly supported mollifier with characteristic length which is ε-dependent. For example, we
may mollify with a mollifier of compact support at scale ε

1
10 the function which equals 1 for r ď a ` ε

1
10 ,

equals 0 for ě a` b´ ε
1
10 , and is given by 1´ pr´ a´ ε

1
10 qpb´ 2ε

1
10 q´1 for a ă r ă a` b. In particular,

we may ensure that up to a constant factor of ε
1
10 the derivative of ηra, bsprq is given by ´b´1 on the region

r P pa, a` bq, and vanishes outside of this region. Similarly, the second derivative of this cutoff function is
bounded by a constant multiple of b´1ε´

1
10 on the region where it does not vanish.

Finally, we define the initial datum W py,´ log εq to be a cut-off version of W , according to

W py,´ log εq “W pyqη
”

ε´
1
2
´ 1

16 , ε´
3
4

ı

p|y1|qη
”

ε´
1
4 , 100ε´

1
4

ı

p|y̌|q . (3.26)

A lengthy but routine computation which uses properties of the explicit functionW (see e.g. [4, Equation
(2.48) and Remark 3.3]), shows that the function W py,´ log εq satisfies the conditions (3.13)–(3.17). We
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omit these details, but give the proof of condition 3.24 which is essential for the vorticity creation argument.
We note that for |y1| ď 2κ0ε

´ 1
2 we have that ηrε´

1
2
´ 1

16 , ε´
3
4 sp|y1|q “ 1, and for |y̌| ď ε

1
3 we have

ηrε´
1
4 , 100ε´

1
4 sp|y̌|q “ 1. Thus, in the region relevant for (3.24), by using (2.48) we have

B1W py,´ log εq “ B1W pyq “
1

1`|y̌|2
W 1

1D

ˆ

y1

p1`|y̌|2q
3
2

˙

. (3.27)

The function W1D is explicit, and the Taylor series of its derivative around infinity is given by W 1
1Dprq “

´1
3r
´ 2

3 ´ 1
9r
´ 4

3 ` Opr´
8
3 q. Using that we are interested in a region where |y̌| ď ε

1
3 , and ε´

1
10 ď |y1| ď

2κ0ε
´ 1

2 , upon choosing ε sufficiently small (so that the Taylor series expansion around infinity is the relevant
one), we immediately deduce that from (3.27) that

´1`ε
1
10

3 |y1|
´ 2

3 ď 1
1`|y̌|2

W 1
1D

ˆ

y1

p1`|y̌|2q
3
2

˙

ď ´1´ε
1
10

3 |y1|
´ 2

3

in the region of relevance to (3.24). This establishes the existence of W satisfying (3.24) as well as the
bounds (3.13)–(3.17).

Next, for W py,´ log εq given by (3.26) and with Zpy,´ log εq “ 0, we shall now prove the existence
of an irrotational initial velocity field ruprx, εq satisfying (3.25).

We first set φ0 “ 0 so that N0 “ e1, Tν0 “ eν , and J0 “ 1, and prx1, rxνq “ pε
´ 3

2 y1, ε
´ 1

2 yνq. We have
that rw0prx,´εq “ ε

1
2W py,´ log εq ` κ0, and from (3.25), we see that

ruprx, εq1 “
1
2 rw0 .

In order to ensure that ru1 “ B
rx1

Ψ, we define

Ψprxq “ 1
2

ż

rx1

0
rw0prx

1
1, řxqdrx

1
1 ´

1
2

ż 8

0
rw0prx

1
1, řxqdrx

1
1

for rx1 ą 0 and then extend Ψprxq as an even function in rx1. We now define

raνprx,´εq “ B
rxνΨprxq , (3.28)

so that ruprx,´εq “ ∇
rxΨprxq, which implies that curl

rx rupx,´εq “ 0. We write (3.28) in self-similar coordi-
nates as

Aνpy,´ log εq “ ´1
2ε

3
2

ż 8

y1

BνW py
1
1, y̌,´ log εqdy11 .

Using the definition of W py,´ log εq given in (3.26), a lengthy computation shows that Apy,´ log εq satis-
fies the bounds (3.19) and (3.23).

3.3 Statement of the main theorem in self-similar variables and asymptotic stability

Theorem 3.2 (Stability and shock formation via self-similar variables). For α “
γ´1

2 and γ ą 1, let
κ0 “ κ0pαq ą 1 be chosen sufficiently large. Suppose that at initial time s “ ´ log ε, the initial data
pW0, Z0, A0,K0q “ pW,Z,A,Kq|s“´ log ε are supported in the set X0 from (3.10), and obey conditions
(3.11)–(3.23). Assume that the modulation functions have initial conditions compatible with (3.1)–(3.2).

There exist M “ Mpα, κ0q ě 1 sufficiently large, ε “ εpα, κ0,Mq P p0, 1q sufficiently small, and
unique global-in-time solutions pW,Z,A,Kq to (2.33) with the following properties. pW,Z,A,Kq are
supported in the time-dependent cylinder X psq defined in (4.4),

pW,Z,A,Kq P Cpr´ log ε,`8q;Hmq X C1pr´ log ε,`8q;Hm´1q for m ě 18 ,
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and
›

›W p¨, sq
›

›

2
9Hm` e

s
›

›Zp¨, sq
›

›

2
9Hm` e

s
›

›Ap¨, sq
›

›

2
9Hm` e

s
›

›Kp¨, sq
›

›

2
9Hmď16κ2

0λ
´me´s´log ε`p1´e´sε´1qM4m

for a constant λ “ λpmq P p0, 1q. The Riemann function W py, sq remains close to the generic and stable
self-similar blowup profile W ; upon defining the weight function ηpyq “ 1 ` y2

1 ` |y̌|
6, we have that the

perturbation ĂW “W ´W satisfies
ˇ

ˇ

ˇ

ĂW py, sq
ˇ

ˇ

ˇ
ď ε

1
11 η

1
6 pyq ,

ˇ

ˇ

ˇ
B1
ĂW py, sq

ˇ

ˇ

ˇ
ď ε

1
12 η´

1
3 pyq ,

ˇ

ˇ

ˇ
∇̌ĂW py, sq

ˇ

ˇ

ˇ
ď ε

1
13 ,

for all |y| ď ε´
1
10 and s ě ´ log ε. Furthermore, BγĂW p0, sq “ 0 for all |γ| ď 2, and the bounds (4.9) and

(4.10) hold. Additionally, W py, sq satisfies the bounds given in (4.7) and (4.19).
As sÑ8, W py, sq converges to an asymptotic profile WApyq which satisfies:

• WA is a C8 smooth solution to the self-similar 3D Burgers equation (1.5).

• WApyq obeys the genericity condition (1.7).

• WA is uniquely determined by the 10 parameters Aα “ limsÑ8 B
αW p0, sq for |α| “ 3.

The amplitude of the functions Z, A, and K remains Opεq for all s ě ´ log ε, while for each |γ| ď m,
BγZp¨, sq Ñ 0, BγAp¨, sq Ñ 0, and BγKp¨, sq Ñ 0 as s Ñ `8, and Z and A satisfy the bounds (4.12),
(4.13), (4.14).

The scaled sound speed Spy, sq satisfies

›

›Sp¨, sq ´ κ0
2

›

›

L8
ď ε

1
8 for all s ě ´ log ε .

The specific vorticity Ωpy, sq “ ζ̊px, tq satisfies for all s ě ´ log ε,

›

›Ω ˝ Φ
y0
U p¨, sq ´ Ωp¨,´ log εq

›

›

L8
ď ε

1
20

where Φ
y0
U is defined in (5.11). Furthermore, there exists irrotational initial data from which vorticity is

instantaneously created and remains nonzero in a neighborhood of the shock location p0, T˚q: see Theorem
7.4 for details.

For concision, the initial data was assumed to have the support property (3.10) and satisfy the conditions
(3.11). By using the symmetries of the Euler equations, we can generalize these conditions to allow for data
in a non-trivial open set in the Hm topology.

Theorem 3.3 (Open set of initial conditions). Let rF denote the set of initial data satisfying the hypothesis
of Theorem 3.2. There exists an open neighborhood of rF in the Hm topology, denoted by F , such that for
any initial data to the Euler equations taken from F , the conclusions of Theorem 3.2 hold.

3.4 Shock formation in physical variables px, tq

We shall now interpret the assumptions and results of Theorem 3.2 in the context of physical variables px, tq.
The function rw0pxq “ wpx,´εq “ ε

1
2W py,´ log εq`κ0 is chosen such that the minimum (negative) slope

of rw0 occurs in the e1 direction, and Bx1 rw0 attains its global minimum at x “ 0, and from (3.11), satisfies

rw0p0q “ κ0 , Bx1 rw0p0q “ ´
1
ε , ∇̌x rw0p0q “ 0 , ∇xBx1 rw0p0q “ 0 . (3.29)
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Of course, there are a number of additional conditions on rw0pxq and its partial derivatives which exactly
correspond to conditions (3.13)–(3.17) by the change of variables (2.30), but the conditions (3.29) are fun-
damental to the stable self-similar point shock formation process.

We shall assume that the support of the initial data p rw0´κ0, rz0,ra0q, is contained in the set X0 “ t|x1| ď
1
2ε

1
2 , |x̌| ď ε

1
6 u, which in turn shows that u0 ¨ N0 ´

κ0
2 , σ0 ´

κ0
2 , and u0 ¨ T

ν are compactly supported in
X0. In view of the coordinate transformation (3.5) and the bound (3.2), the functions of x defined in (3.6),
namely pw0, z0, a0, k0q, have spatial support contained in the set t|x1| ď

1
2ε

1
2 ` ε, |x̌| ď ε

1
6 u Ă t|x1| ď

ε
1
2 , |x̌| ď ε

1
6 u. This larger set corresponds to the support condition (3.10) under the transformation (2.30).

For the initial conditions of rz0, ra0, and k0, from (3.18)–(3.20), we have that7

|rz0pxq| ď ε , |Bx1rz0pxq| ď 1 ,
ˇ

ˇ∇̌xrz0pxq
ˇ

ˇ ď ε
1
2 ,

|ra0pxq| ď ε , |Bx1ra0pxq| ď 1 ,
ˇ

ˇ∇̌xra0pxq
ˇ

ˇ ď ε
1
2 ,

ˇ

ˇ

ˇ

rk0pxq
ˇ

ˇ

ˇ
ď ε ,

ˇ

ˇ

ˇ
Bx1

rk0pxq
ˇ

ˇ

ˇ
ď ε

1
2 ,

ˇ

ˇ

ˇ
∇̌xrk0pxq

ˇ

ˇ

ˇ
ď ε

1
2 ,

together with conditions on higher-order derivatives8 that follow (3.18)–(3.20) and (3.23).
The initial specific vorticity rζprx,´εq “ ζ̊px,´εq “ Ωpy,´ log εq satisfies condition (3.21), and the

initial scale sound speed rσprx,´εq “ σ̊px,´εq “ Spy,´ log εq satisfies (3.22).
We now summarize the statement of Theorem 3.2 in the physical variables. Suppose that the initial

data rw0, rz0, ra0, and k0 satisfy the conditions stated above and that α “ γ´1
2 ą 0 is fixed. There exist a

sufficiently large κ0 “ κ0pαq ą 1, and a sufficiently small ε “ εpα, κ0q P p0, 1q such that there exists a
time T˚ “ Opε2q and a unique solution pu, ρ, kq P Cpr´ε, T˚q;HmqXC1pr´ε, T˚q;H

m´1q to (1.1) which
blows up in an asymptotically self-similar fashion at time T˚, at a single point ξ˚ P R3. In particular, the
following results hold:

(i) The blowup time T˚ “ Opε2q and the blowup location ξ˚ “ Opεq are explicitly computable, with T˚
defined by the condition

şT˚
´εp1´ 9τptqqdt “ ε and with the blowup location given by ξ˚ “ limtÑT˚ ξptq.

The amplitude modulation function satisfies |κ˚ ´ κ0| “ Opε
3
2 q where κ˚ “ limtÑT˚ κptq.

(ii) For each t P r´ε, T˚q, we have
ˇ

ˇNpřx, tq ´ N0px̌q
ˇ

ˇ`
ˇ

ˇTνpřx, tq ´ Tν0px̌q
ˇ

ˇ “ Opεq .
(iii) We have suptPr´ε,T˚q

`
›

›

ru ¨ N´ 1
2κ0

›

›

L8
` }ru ¨ Tν}L8 `

›

›

rσ ´ 1
2κ0

›

›

L8
` }ζ}L8

˘

À 1.

(iv) There holds limtÑT˚ N ¨∇rx rwpξptq, tq “ ´8 and 1
2pT˚´tq

ď }N ¨∇
rx rwp¨, tq}L8 ď

2
T˚´t

as tÑ T˚.

(v) At the time of blowup, rwp¨, T˚q has a cusp-type singularity with C1{3 Hölder regularity.

(vi) Only the BN derivative of ru ¨ N and rρ blowup, while the other first order derivatives remain bounded:

lim
tÑT˚

N ¨∇
rxpru ¨ Nqpξptq, tq “ lim

tÑT˚
N ¨∇

rxrρpξptq, tq “ ´8 , (3.30a)

sup
tPr´ε,T˚q

}Tν ¨∇
rxrρp¨, tq}L8 ` }T

ν ¨∇
rxrup¨, tq}L8 ` }N ¨∇rxpru ¨ T

νqp¨, tq}L8 À 1 . (3.30b)

(vii) Both rk and ∇
rx
rk remain bounded:

sup
tPr´ε,T˚q

›

›rkp¨, tq
›

›

L8
`
›

›∇
rx
rkp¨, tq

›

›

L8
À ε

1
8 . (3.31)

7The bound for Bx1a0 can be replaced by a bound that depends on κ0, thus permitting arbitrarily large initial vorticity.
8We deduce from (3.23) that at t “ ´ε, the Sobolev norm must satisfy

ř

|γ|“m ε
2
›

›B
γ
xw0

›

›

2

L2 `
›

›B
γ
xz0

›

›

2

L2 `
›

›B
γ
xa0

›

›

2

L2 `
›

›B
γ
xk0

›

›

2

L2 ď ε
7
2
´p3γ1`|γ̌|q. See (3.21)–(3.22) in [4] for details.
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(viii) Let BtXpx, tq “ upXpx, tq, tq with Xpx,´εq “ x so that Xpx, tq is the Lagrangian flow. Then there
exists constants c1, c2 such that c1 ď |∇xXpx, tq| ď c2 for all t P r´ε, T˚q.

(ix) The scaled sound rσ remains uniformly bounded from below and satisfies
›

›

rσp¨, tq ´ κ0
2

›

›

L8
ď ε

1{8 for all t P r´ε, T˚s .

(x) The vorticity satisfies
›

›ωp¨, tq
›

›

L8
ď C0

›

›ωp¨,´εq
›

›

L8
for all t P r´ε, T˚s for a universal constant C0,

and if |ωp¨,´εq| ě c0 ą 0 on the set Bp0, 2ε3{4q then at the blowup location ξ˚ there is nontrivial
vorticity, and moreover

|ωp¨, T˚q| ě
c0
C0

on the set Bp0, ε
3{4q .

4 Bootstrap assumptions

As discussed above, the proof of Theorem 3.2 consists of a bootstrap argument, which we make precise in
this section. For M sufficiently large, depending on κ0 and on α, and for ε sufficiently small, depending
on M , κ0, and α, we postulate that the modulation functions are bounded as in (4.1), that pW,Z,A,Kq are
supported in the set given by (4.4), that W satisfies (4.7), ĂW obeys (4.8)–(4.10), and that Z, A, and K are
bounded as in (4.12)–(4.14). All these bounds have explicit constants in them. In the subsequent sections of
the paper, we prove that the these estimates in fact hold with strictly better pre-factors, which in view of a
continuation argument yields the proof of Theorem 3.2.

4.1 Dynamic variables

For the dynamic modulation variables, we assume that

1
2κ0 ď κptq ď 2κ0, |τptq| ďMε2, |ξptq| ďM

1
4 ε, |ňptq| ďM2ε

3
2 , |φptq| ďM2ε, (4.1a)

| 9κptq| ď e´
3s
10 , | 9τptq| ďMe´s, | 9ξptq| ďM

1
4 , | 9̌nptq| ďM2ε

1
2 , | 9φptq| ďM2, (4.1b)

for all ´ε ď t ă T˚.
From (2.7) and (A.4)–(A.5) in [4], and the bootstrap assumptions (4.1), we obtain that

| 9Qptq| ď 2M2ε
1
2 . (4.2)

Also, from the 9τ estimate in (4.1b), we obtain

|1´ βτ | “
| 9τ |

1´ 9τ
ď 2Me´s ď 2Mε (4.3)

upon taking ε sufficiently small.

4.2 Spatial support bootstrap

We shall assume that pW,Z,Aq have support in the set

X psq :“
!

|y1| ď 2ε
1
2 e

3
2
s, |y̌| ď 2ε

1
6 e

s
2

)

for all s ě ´ log ε . (4.4)

We introduce the weights

ηpyq “ 1` y2
1 ` |y̌|

6 and rηpyq “ ηpyq ` |y̌|2 ,
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as well as the s-dependent weight function

ψpy, sq “ 1
ηpyq ` e

´3sηpyq .

For y P X psq, we note that

ηpyq ď 40εe3s ô η
1
3 pyq ď 4ε

1
3 es (4.5)

for all y P R3. Since ηψ “ 1` e´3sη2, we have e´3sη2 ď ηψ, and thus

e´s À ψ
q
3 η´

1
3
p2´qq (4.6)

holds for 1 ă q ď 2.

4.3 W bootstrap

The bootstrap assumptions on W and its derivatives are

|BγW py, sq| ď

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

p1` ε
1
20 qη

1
6 , if |γ| “ 0 ,

rη´
1
3

`

y
2

˘

1|y|ďL ` 2η´
1
3 pyq1|y|ěL, if γ1 “ 1 and |γ̌| “ 0 ,

1, if γ1 “ 0 and |γ̌| “ 1 ,

M
2
3 η´

1
3 , if γ1 “ 1 and |γ̌| “ 1 ,

M
1
3 η´

1
3ψ

1
4 , if γ1 “ 2 and |γ̌| “ 0 ,

Mη´
1
6 , if γ1 “ 0 and |γ̌| “ 2 .

(4.7)

Next, for |y| ď L, we assume that9

ˇ

ˇ

ˇ

ĂW py, sq
ˇ

ˇ

ˇ
ď ε

1
11 η

1
6 pyq , (4.8a)

ˇ

ˇ

ˇ
B1
ĂW py, sq

ˇ

ˇ

ˇ
ď ε

1
12 η´

1
3 pyq , (4.8b)

ˇ

ˇ

ˇ
∇̌ĂW py, sq

ˇ

ˇ

ˇ
ď ε

1
13 , (4.8c)

where L is defined as in (3.12b). Furthermore, for |y| ď ` (as defined in (3.12a)) we assume that
ˇ

ˇ

ˇ
BγĂW py, sq

ˇ

ˇ

ˇ
ď plogMq4ε

1
10 |y|4´|γ| `Mε

1
4 |y|3´|γ| ď 2plogMq4ε

1
10 `4´|γ| , for all |γ| ď 3 , (4.9a)

ˇ

ˇ

ˇ
BγĂW py, sq

ˇ

ˇ

ˇ
ď ε

1
10 plogMq|γ̌| , for all |γ| “ 4 , (4.9b)

while at y “ 0, we assume that
ˇ

ˇ

ˇ
BγĂW p0, sq

ˇ

ˇ

ˇ
ď ε

1
4 , for all |γ| “ 3 , (4.10)

for all s ě ´ log ε.

Lemma 4.1 (Lower bound for JB1W ).

JB1W py, sq ě ´1 and JB1W py, sq ě ´1 for all y P R3 , s ě ´ log ε . (4.11)

The proof of this lemma is given in the proof of Lemma 4.2 in [4].

9While the first three bounds stated in (4.7) follow directly from the properties of W stated in (2.48) of [4], and those of ĂW in
(4.8), the estimate for B1W makes use of the fact that rη´

1
3 pyq ` ε

1
12 η´

1
3 pyq ď rη´1{3

py{2q.
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4.4 Z and A bootstrap

The bootstrap assumptions on Z, A, K, and their derivatives are:

|BγZpy, sq| ď

#

M
1`|γ̌|

2 e´
3
2
s, if γ1 ě 1 and |γ| “ 1, 2

Mε
2´|γ̌|

2 e´
|γ̌|
2
s, if γ1 “ 0 and |γ̌| “ 0, 1, 2 ,

(4.12)

|BγApy, sq| ď

#

Me´
3
2
s, if γ1 “ 1 and |γ̌| “ 0

Mε
2´|γ̌|

2 e´
|γ̌|
2
s, if γ1 “ 0 and |γ̌| “ 0, 1, 2 ,

(4.13)

|BγKpy, sq| ď

$

’

’

’

’

&

’

’

’

’

%

ε
1
4 e´

3
2
s, if γ1 “ 1 and |γ̌| “ 0

ε
1
8 e´

13
8
s, if γ1 “ 1 and |γ̌| “ 1

ε
1
8 e´2sη´

1
15 pyq, if γ1 “ 2 and |γ̌| “ 0

ε
1
8 e´

|γ̌|
2
s, if γ1 “ 0 and |γ̌| “ 1, 2 .

(4.14)

Remark 4.2. Since K satisfies a transport equation, the pointwise bound

|Kpy, sq| ď ε (4.15)

follows directly from the initial datum assumption (3.20).

4.5 Further consequences of the bootstrap assumptions

The bootstrap bounds (4.1), (4.5), (4.7)–(4.10), (4.12), and (4.13) have a number of consequences, which
we collect here for future reference. The first is a global-in-time L2-based Sobolev estimate:

Proposition 4.3 ( 9Hm estimate for W , Z, and A). For integers m ě 18 and for a constant λ “ λpmq,
›

›Zp¨, sq
›

›

2
9Hm `

›

›Ap¨, sq
›

›

2
9Hm `

›

›Kp¨, sq
›

›

2
9Hm ď 16κ2

0λ
´mε´1e´2s ` e´sp1´ e´sε´1qM4m , (4.16a)

›

›W p¨, sq
›

›

2
9Hm ď 16κ2

0λ
´mε´1e´s ` p1´ e´sε´1qM4m , (4.16b)

for all s ě ´ log ε.

The proof of Proposition 4.3, which will be given at the end of Section 8, relies only upon the initial data
assumption (3.23), on the support bound (4.5), on L8 estimates for BγW , BγZ, and BγK when |γ| ď 2,
on BγA pointwise bounds for |γ| ď 1, and on ∇̌2A bounds. That is, Proposition 4.3 follows directly from
(3.23) and the bootstrap assumptions (4.1), (4.5), (4.7), (4.12), and (4.13).

The reason we state Proposition 4.3 at this stage of the analysis is that the 9Hm estimates and linear
interpolation yield useful information for higher order derivatives of pW,Z,A,Kq, which are needed in
order to close the bootstrap assumptions for high order derivatives. These bounds are summarized as:

Lemma 4.4. For integers m ě 18, we have that

|BγApy, sq| À

$

&

%

e´p
3
2
´

2|γ|´1
2m´5

qs, if γ1 ě 1 and |γ| “ 2, 3

e´p1´
|γ|´1
2m´7

qs, if |γ| “ 3, 4, 5 ,
(4.17)

|BγZpy, sq| À

#

e´p
3
2
´ 3

2m´7
qs, if γ1 ě 1 and |γ| “ 3

e´p1´
|γ|´1
2m´7

qs, if |γ| “ 3, 4, 5 ,
(4.18)
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|BγW py, sq| À

$

’

&

’

%

e
2s

2m´7 η´
1
3 , if γ1 “ 1 and |γ̌| “ 2

e
s

2m´7 η´
1
6 , if γ1 “ 0 and |γ̌| “ 3

e
3s

2m´7 η´
1
3ψ

1
4 , if γ1 ě 2 and |γ| “ 3 ,

(4.19)

|BγKpy, sq| À

$

’

’

&

’

’

%

e
´p 13

8
´ 9

4p2m´7q
qs
, if γ1 “ 1 and |γ̌| “ 2

e´p2´
4

2m´7
qsη´

1
15 , if γ1 ě 2 and |γ| “ 3

e´p1´
|γ|´2
2m´7

qs, if |γ| “ 3, 4, 5 ,

(4.20)

Proof of Lemma 4.4. The bounds for (4.17) and (4.18), as well as the first two estimates in (4.19) are proven
in Lemma 4.4 in [4].

We then consider the third estimate in (4.19) and hence estimate BγW py, sq for the case γ1 ě 2 and
|γ| “ 3. We write

η
1
3ψ´

1
4∇B11W “ ∇

´

η
1
3ψ´

1
4 B11W

¯

loooooooooomoooooooooon

“:I

´∇pη
1
3ψ´

1
4 q B11W

looooooooomooooooooon

“:II

.

Since
ˇ

ˇ

ˇ
∇pη

1
3ψ´

1
4 q

ˇ

ˇ

ˇ
À η

1
3 , it follows from (4.7) that

|II| ÀM
1
3ψ

1
4 ÀM .

Now we apply Lemma A.2 to the function η
1
3ψ´

1
4 B11W , appeal to the estimate (4.7), and to the Leibniz

rule to obtain that

|I| À
›

›

›
η

1
3ψ´

1
4 B11W

›

›

›

2
2m´7

9Hm´2

›

›

›
η

1
3ψ´

1
4 B11W

›

›

›

2m´9
2m´7

L8
ÀM

›

›

›
η

1
3ψ´

1
4 B11W

›

›

›

2
2m´7

9Hm´2
,

where we have used that m ě 18 for the last inequality as is required by Proposition 4.3. We next estimate
the 9Hm´2 norm of η

1
3ψ´

1
4 B11W . To do so, we shall use the fact that W p¨, sq has support in the set X psq

defined in (4.4). We find that

›

›

›
η

1
3ψ´

1
4 B11W

›

›

›

9Hk´2
À

m´2
ÿ

m1“0

›

›

›
Dm´m1´2

´

η
1
3ψ´

1
4

¯

Dm1Bγ
2

W
›

›

›

L2

À

m´2
ÿ

m1“0

›

›

›
Dm´m1´2

´

η
1
3ψ´

1
4

¯
›

›

›

L
2pm´1q
m´2´m1 pX psqq

›

›

›
Dm1Bγ

2

W
›

›

›

L
2pm´1q
m1`1

À

m´2
ÿ

m1“0

›

›

›
Dm´m1´2

´

η
1
3ψ´

1
4

¯›

›

›

L
2pm´1q
m´2´m1 pX psqq

}∇W }
1´m1`1

m´1

L8 }W }
m1`1
m´1

9Hm
, (4.21)

Using (4.7) and Proposition 4.3, the W terms are bounded as

}∇W }
1´m1`1

m´1

L8 }W }
m1`1
m´1

9Hm
ÀM2m

for all m P t0, . . . ,m ´ 2u. Moreover, using that
ˇ

ˇ

ˇ
Dm´m1´2pη

1
3ψ´

1
4 q

ˇ

ˇ

ˇ
À η

1
3 together with (4.5), we have

that
›

›

›
Dm´m1´2pη

1
3ψ´

1
4 q

›

›

›

L
2pm´1q
m´m1´2 pX psqq

À ε
1
3 es , (4.22)
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with the usual abuse of notation L
2pm´1q

m´m1´2 “ L8 for m1 “ m ´ 2. Combining the above estimates, we
obtain the inequality

|I| ÀM2m
´

ε
1
3 e

11
8
s
¯

2
2m´7

À e
2s

2p2m´7q (4.23)

for ε sufficiently small. From the above estimate, we obtain the third inequality in (4.19).
We next consider the bounds (4.20), and we begin with the case that γ1 ě 1 and |γ̌| “ 2. Applying

Lemma A.2 to the function B1∇̌K, and using (4.14) and Proposition 4.3, we have that

}BγK}L8 À }K}
2

2m´7

9Hm

›

›B1∇̌K
›

›

2m´9
2m´7

L8 À

´

M2me´
s
2

¯
2

2m´7
´

ε
1
8 e´

13
8
s
¯

2m´9
2m´7

À e
´ 109´26m

8p2m´7q
s
.

We next consider the second inequality in (4.20) and proceed to estimate
ˇ

ˇ

ˇ
η

1
15∇B11K

ˇ

ˇ

ˇ
. We write

η
1
15∇B11K “ ∇

´

η
1
15 B11K

¯

looooooomooooooon

“:I

´∇η
1
15 B11K

looooomooooon

“:II

.

Since
ˇ

ˇ∇η
1
15

ˇ

ˇ ď 1, it follows from (4.14) that

|II| À e´2s .

By Lemma A.2 and (4.14),

|I| À
›

›

›
η

1
15 B11K

›

›

›

2
2m´7

9Hm´2

›

›

›
η

1
15 B11K

›

›

›

2m´9
2m´7

L8
ÀMe´p2´

4
2m´7

qs
›

›

›
η

1
15 B11K

›

›

›

2
2m´7

9Hm´2
,

Following the calculation (4.21), we have that

›

›

›
η

1
15 B11K

›

›

›

9Hm´2
À

m´2
ÿ

m1“0

›

›

›
Dm´m1´2η

1
15

›

›

›

L
2pm´1q
m´2´m1 pX psqq

}∇K}
1´m1`1

m´1

L8 }K}
m1`1
m´1

9Hm
.

Applying (4.5), we obtain that
›

›

›
Dm´m1´2η

1
15

›

›

›

L
2pm´1q
m´m1´2 pX psqq

À ε
1
15 e

1
5
s .

From (4.14) and Proposition 4.3,

}∇K}
1´m1`1

m´1

L8 }K}
m1`1
m´1

9Hm
ď e´

s
2 .

From the above estimates, together with (4.14), we determine that

|I| ÀMe´p2´
4

2m´7
qs
´

ε
1
15 e´

3
10

¯
2

2m´7
À e´p2´

4
2m´7

qs .

This estimate establishes the second bound in (4.20). For |γ| P t3, 4, 5u we apply Lemma A.2 to ∇2K, and
together with (4.14) and Proposition 4.3, we find that

}BγK}L8 À }K}
2|γ|´4
2m´7

9Hm

›

›∇2K
›

›

2m´3´2|γ|
2m´7

L8 À

´

M2me´
s
2

¯

2|γ|´4
2m´7

´

ε
1
8 e´s

¯

2m´3´2|γ|
2m´7

À e´p1´
|γ|´2
2m´7

qs .

where we have assumed that ε is taken sufficiently small.
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4.6 Bounds for U ¨ N and S

Finally, we note that as a consequence of the definitions (2.38), we have the following estimates on U ¨ N
and S.

Lemma 4.5. For y P X psq we have

|BγU ¨ N| ` |BγS| À

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

M
1
4 , if |γ| “ 0

M
1
3 e´

s
2 η´

1
3 , if γ1 “ 1 and |γ̌| “ 0

e´
s
2 , if γ1 “ 0 and |γ̌| “ 1

M
2
3 e´

s
2 η´

1
3 , if γ1 “ 1 and |γ̌| “ 1

M
2
3 e´

s
2 η´

1
3ψ

1
4 , if γ1 “ 2 and |γ̌| “ 0

Me´
s
2 η´

1
6 , if γ1 “ 0 and |γ̌| “ 2

ep´
1
2
` 3

2m´7qsη´
1
3 , if γ1 “ 1 and |γ̌| “ 2

ep´
1
2
` 1

2m´7qsη´
1
6 , if γ1 “ 0 and |γ̌| “ 3

ep´
1
2
` 3

2m´7qsη´
1
3ψ

1
4 , if γ1 ě 2 and |γ| “ 3

. (4.24)

Additionally, for |y| ď ` and |γ| “ 4 we have the bound

|BγU ¨ N| ` |BγS| À e´
s
2 .

Proof of Lemma 4.5. We shall only establish the bounds for BγU ¨ N as the estimates for BγS are obtained
in the identical fashion. Since|κ| ďM

1
4 , it follows from (2.38) that |BγU ¨ N| À |κ|1|γ|“0 ` e

´ s
2 |BγW | `

|BγZ|. The desired bounds are obtained by an application of (4.7), (4.9b), (4.12), Lemma 4.4 and (4.5).

Proposition 4.6 ( L8 bound for the sound speed). We have that

›

›Sp¨, sq ´ κ0
2

›

›

L8
ď ε

1
8 for all s ě ´ log ε . (4.25)

Proof of Proposition 4.6. By (2.38), we have that

Sp¨, sq ´ κ0
2 “

κ´κ0
2 ` 1

2pe
´ s

2W ´ Zq .

By (4.1), (4.5), (4.7), and (4.12), and the triangle inequality,

›

›Sp¨, sq ´ κ0
2

›

›

L8
À ε

1
6

which concludes the proof.

4.7 The blowup time and location

The blowup time T˚ is defined uniquely by the condition τpT˚q “ T˚ which by (2.54) is equivalent to

ż T˚

´ε
p1´ 9τptqqdt “ ε . (4.26)

The estimate for 9τ in (4.1b) shows that for ε taken sufficiently small,

|T˚| ď 2M2ε2 . (4.27)
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We also note here that the bootstrap assumption (4.1b) and the definition of T˚ ensures that τptq ą t
for all t P r´ε, T˚q. Indeed, when t “ ´ε, we have that τp´εq “ 0 ą ´ε, and the function t ÞÑ
şt
´εp1´ 9τqdt1 ´ ε “ t´ τptq is strictly increasing.

The blowup location is determined by ξ˚ “ ξpT˚q, which by (2.54) is the same as

ξ˚ “

ż T˚

´ε

9ξptqdt .

In view of (4.1b), for ε small enough, find that

|ξ˚| ďMε , (4.28)

so that the blowup location is Opεq close to the origin.

4.8 Hölder bound for w

As we proved in [4], the self-similar scaling (2.30) and decay rate (4.7) for W py, sq show that

w P L8pr´ε, T˚q;C
1{3q ,

and the Cα Hölder norms of w, with α ą 1{3, blowup as tÑ T˚ with a rate proportional to pT˚´ tq
p1 ´ 3αq{2.

5 Bounds on Lagrangian trajectories

5.1 The Lagrangian flows in self-similar variables

In self-similar variables py, sq, we define Lagrangian flows associated to the transport velocities in (2.40) by

BsΦW py, sq “ VW pΦW py, sq, sq , ΦW py, s0q “ y , (5.1a)

BsΦZpy, sq “ VZpΦZpy, sq, sq , ΦZpy, s0q “ y , (5.1b)

BsΦUpy, sq “ VU pΦUpy, sq, sq , ΦUpy, s0q “ y , (5.1c)

for s0 ě ´ log ε. With Φ denoting either ΦW , ΦZ , or ΦU , we shall denote trajectories emanating from a
point y0 at time s0 by

Φy0psq “ Φpy0, sq with Φpy0, s0q “ y0 . (5.2)

5.1.1 Esimates for the support and a lower bound for ΦW

Since the bounds for |GW |, |hW |, and |W | are the same as in [4], the proofs of the following two lemmas
are the same as Lemma 8.1 and 8.2 in [4].

The bootstrap assumption (4.4) on the size of the support is closed via the following

Lemma 5.1 (Estimates on the support). Let Φ denote either Φy0
W , Φy0

Z or Φy0
U . For any y0 P X0 defined in

(3.10), we have that

|Φ1psq| ď
3
2ε

1
2 e

3
2
s , (5.3a)

ˇ

ˇΦ̌psq
ˇ

ˇ ď 3
2ε

1
6 e

s
2 , (5.3b)

for all s ě ´ log ε.
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We shall also make use of the lower bound given by

Lemma 5.2. Let y0 P R3 be such that |y0| ě `. Let s0 ě ´ log ε. Then, the trajectory Φy0
W moves away

from the origin at an exponential rate, and we have the lower bound

|Φy0
W psq| ě |y0| e

s´s0
5 (5.4)

for all s ě s0.

Lemma 5.3. Given s0 ě ´ log ε and s ą s0, let y0 P R3 be such that |y0| ě L and
ˇ

ˇΦ̌y0

W psq
ˇ

ˇ ď Mε
1
2 .

Then, we have that
ˇ

ˇpΦy0
W q1ps

1q
ˇ

ˇ ě 3
4 |py0q1| e

3ps1´s0q
2 and

ˇ

ˇΦ̌y0

W ps
1q
ˇ

ˇ ďMε
1
2 (5.5)

for all s0 ď s1 ď s.

Proof of Lemma 5.3. Fix py0, s0q and let us denote pΦy0
W q1psq “ Φ1psq and Φ̌y0

W psq “ Φ̌psq.
According to (5.1) and (2.40), we have that BsΦν “

1
2Φν ` hνW ˝ Φ. Solving this ODE on the interval

rs1, ss, with arbitrary s1 P rs0, sq, we obtain that

Φνps
1q “ Φνpsqe

´ s´s1

2 ´

ż s

s1
e´

s2´s1

2 hνW ˝ Φps2qds2 .

Using that by (9.5) we have |hW p¨, sq| ď M
1
2 e´

s
2 , and appealing to the assumption |Φνpsq| ď Mε

1
2 , we

obtain that
ˇ

ˇΦνps
1q
ˇ

ˇ ď |Φνpsq| e
´ s´s1

2 `M
1
2

ż s

s1
e´

s2´s1

2 e´
s2

2 ds2 ďMε
1
2 e´

s´s1

2 `M
1
2 e´

s1

2 p1´ e´ps´s
1qq ďMε

1
2 .

where in the last inequality we have used that s1 ě s0 ě ´ log ε, so that e´
s1

2 ď ε
1
2 e´

ps1´s0q
2 . This proves

the second claim in (5.5).
In order to prove the first claim in (5.5), we again recall (5.1) and (2.40), which gives BsΦ1 “

3
2Φ1 `

βτW ˝Φ`GW ˝Φ . In view of the bound established for Φ̌ and of the information we have from Lemma 5.2,
we already know that |y0| ě L implies that |Φ1ps

1q| ě L
2 e
ps1´s0q{5 for all s1 P rs0, ss, so that Φ1ps

1q is much
larger than 1. Thus, from (4.3) and the first bound in (4.7), we have

βτ
ˇ

ˇW ˝ Φps1q
ˇ

ˇ ď p1` 2Mεqp1` ε
1
20 q

´

1`
ˇ

ˇΦ1ps
1q
ˇ

ˇ

2
` pMε

1
2 q6

¯
1
6
ď 2

ˇ

ˇΦ1ps
1q
ˇ

ˇ

1
3 .

Similarly, the first estimate in Lemma 9.2, in which we use an extra factor of M to absorb the implicit
constant in the À symbol, and the previously established bound (5.3a) imply that

ˇ

ˇGW ˝ Φps1q
ˇ

ˇ ďM2e´
s1

2 `M
3
2 e´s

1 ˇ
ˇΦ1ps

1q
ˇ

ˇ`M2ε
5
6 ďM2e´s

1 ˇ
ˇΦ1ps

1q
ˇ

ˇ ď 2M2ε
1
3

ˇ

ˇΦ1ps
1q
ˇ

ˇ

1
3 .

Combining the above two estimates with the ODE satisfied by Φ1 we derive that

1
2
d
ds

ˇ

ˇΦ1ps
1q
ˇ

ˇ

2
ě 3

2

ˇ

ˇΦ1ps
1q
ˇ

ˇ

2
´ 3

ˇ

ˇΦ1ps
1q
ˇ

ˇ

4
3 .

By explicitly integrating the above ODE, and using our earlier observation that |py1q0| ě
1
2ε
´ 1

10 for all
s1 P rs0, ss, we derive that

ˇ

ˇΦ1ps
1q
ˇ

ˇ ě

´

|py0q1|
2
3 ´ 2

¯
3
2
e

3ps1´s0q
2 ě 3

4 |py0q1| e
3ps1´s0q

2

which completes the proof.
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5.1.2 Lower bounds for ΦZ and ΦU

We now establish important lower-bounds for Φy0
Z psq or Φy0

U psq “ Φy0
U psq.

Lemma 5.4. Let Φpsq denote either Φy0
Z psq or Φy0

U psq. If

κ0 ě
3

1´maxpβ1, β2q
, (5.6)

then for any y0 P X0 defined in (3.10), there exists an s˚ ě ´ log ε such that

|Φ1psq| ě min
´ˇ

ˇ

ˇ
e
s
2 ´ e

s˚
2

ˇ

ˇ

ˇ
, e

s
2

¯

. (5.7)

In particular, we have the following inequalities:
ż 8

´ log ε
eσ1s1p1`

ˇ

ˇΦ1ps
1q
ˇ

ˇq´σ2 ds1 ď C , (5.8)

for 0 ď σ1 ď 1{2 and 2σ1 ă σ2, where the constant C depends only on the choice of σ1 and σ2.

This is a slight generalization of Lemma 8.3 in [4], where we now allow the value σ1 “ 1{2. The only
addition to the proof requires an estimate for the integral I in the proof of Lemma 8.3 in [4]. In particular,
for σ1 “ 1{2, we see that

I “ 2

ż 8

ε´
1
2

´

1`
ˇ

ˇr ´ e
s˚
2

ˇ

ˇ

¯´σ2

dr À 1 .

The implicit constant only depends on σ1 and σ2.

5.1.3 The time integral of |B1W | along Φy0
Z

An immediate consequence of (5.8) is the following

Corollary 5.5. For all s ě ´ log ε,

sup
y0PX0

ż s

´ log ε
|B1W | ˝ Φy0

Z ps
1qds1 À 1 . (5.9)

Proof of Corollary 5.5. The bound (5.9) follows using the second estimate in (4.7) together with (5.8) with
σ1 “ 0 and σ2 “

2
3 .

5.2 The Lagrangian flow ϕpx, tq

With respect to the independent variables px, tq, the transport velocity for ů in (2.23) is given by

v “ pv1, v2, v3q “ 2β1

´

´
9f

2β1
` Jv ¨ N` Jů ¨ N, v2 ` ů2, v3 ` ů3

¯

. (5.10)

We let ϕpx, tq denote the flow of v so that

Btϕpx, tq “ vpϕpx, tq, tq , t ą ´ε , (5.11a)

ϕpx,´εq “ x , (5.11b)

and we denote by ϕx0ptq the trajectory emanating from x0.
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5.2.1 Asymptotic non-positivity for B1W

Lemma 5.6. For all y P R3 and s ě ´ log ε, we have

max tB1W py, sq, 0u ď 4e´
s
15 . (5.12)

Proof of Lemma 5.6. We start with the region |y| ď L “ ε´
1
10 . Here, due to the bootstrap (4.8b) for B1

ĂW

and the fact that B1W ď ´rη´
1
3 (see (2.48) in [4]), we deduce that

B1W py, sq “ B1W pyq ` B1
ĂW py, sq ď ´rη´

1
3 pyq ` ε

1
12 η´

1
3 pyq ă 0 for |y| ď ε´

1
10 , (5.13)

upon taking ε sufficiently small, and using that rηpyq ď 2ηpyq. Thus, for |y| ď L the bound (5.12) holds.
Next, let us consider the region |y| ě e

s
10 . Here we have that ηpyq ě 1

2e
s
5 . Combining this bound with

the second line of (4.7), we arrive at

|B1W py, sq| ď 2η´
1
3 pyq ď 4e´

s
15 .

Thus, (5.12) also holds in the region |y| ě e
s
10 .

It remains to consider the region L ă |y| ă e
s
10 . Notice that by the definition of L “ e

´ log ε
10 , in this case

we have that s ą ´ log ε. For such a fixed py, sq we trace the particle trajectory of the flow VW backwards
in time, and write Φy0

W psq “ y, where the initial datum Φy0
W ps0q “ y0 is given by the property that |y0| “ L

if s0 ą ´ log ε, and |y0| ą L if s0 “ ´ log ε. We claim that the second option is not possible, so that
we must have s0 ą ´ log ε and |y0| “ L. To see this, we appeal to Lemma 5.2, which is applicable since
|y0| ě L ě `, and which gives the bound |Φy0

W psq| ě |y0| e
s´s0

5 . Thus, in the case that s0 “ ´ log ε and
|y0| ą L, this bound implies

e
s
10 ą |y| “ |Φy0

W psq| ě |y0| e
s´s0

5 ą Le
s`log ε

5 “ ε´
1
10 e

s`log ε
5 “ e

s
10 e

s`log ε
10 ą e

s
10

since s ą ´ log ε. This yields the desired contradiction, guaranteeing that |y0| “ L and s0 ą ´ log ε. At
this stage we appeal to the evolution of B1W given in (2.45a) with γ “ p1, 0, 0q, and deduce that e

s
2 B1W

satisfies the equation

Bspe
s
2 B1W q `

`

1
2 ` βτJB1W

˘

pe
s
2 B1W q ` pVW ¨∇q pe

s
2 B1W q “ e

s
2F

p1,0,0q
W .

Composing with Φy0
W and appealing to Grönwall’s inequality on the interval rs0, ss, we obtain that

e
s
2 B1W py, sq “ e

s0
2 B1W py0, s0q exp

ˆ

´

ż s

s0

1
2 ` βτ pJB1W q ˝ Φy0

W ps
1qds1

˙

`

ż s

s0

e
s1

2 F
p1,0,0q
W ˝ Φy0

W ps
1q exp

ˆ

´

ż s

s1

1
2 ` βτ pJB1W q ˝ Φy0

W ps
2qds2

˙

ds1 . (5.14)

We now use the information that |y0| “ L, and thus, as established earlier, B1W py0, s0q ă 0. Hence, the
first term on the right side of (5.14) is strictly negative (as the exponential is positive), so that it does not
contribute to the positive part of B1W . We deduce, by also appealing to the F p1,0,0qW estimate in (9.19) and
the B1W bootstrap in (4.7), that

e
s
2 max tB1W py, sq, 0u ď

ż s

s0

e
s1

2

ˇ

ˇ

ˇ
F
p1,0,0q
W ˝ Φy0

W ps
1q

ˇ

ˇ

ˇ
exp

ˆ

´

ż s

s1

1
2 ` βτ pJB1W q ˝ Φy0

W ps
2qds2

˙

ds1

ÀM

ż s

s0

η´
1
3 ˝ Φy0

W ps
1q exp

ˆ

4

ż s

s1
η´

1
3 ˝ Φy0

W ps
2qds2

˙

ds1 .

The proof is completed by appealing to the bound established in (11.32), namely
şs
s0
η´

1
3 ˝Φy0

W ps
1qds1 ď ε

1
16 ,

which holds for |y0| ě L, and which implies e
s
2 max tB1W py, sq, 0u ÀMε

1
16 expp4ε

1
16 q ď 1.
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From Lemma 5.6, we immediately deduce the following

Corollary 5.7. For any t P r´ε, T˚q we have
ż t

´ε
maxtBx1 ů ¨ N, 0udt

1 ď ε
1
16 (5.15)

uniformly pointwise in space.

Proof of Corollary 5.7. Recall that cf. (2.28) and (2.31a)–(2.31b) that

Bx1 ů ¨ N “
1
2pBx1w ` Bx1zq “

1
2e
sB1W ` 1

2e
3s
2 B1Z .

From (4.12) we know that e
3s
2 |B1Z| ď M

1
2 , and since the function maxt¨, 0u is convex and in fact sub-

additive, we deduce from Lemma 5.6 that

maxtBx1 ů ¨ N, 0u ď
1
2e
s maxtB1W, 0u `

1
2e

3s
2 maxtB1Z, 0u ď 2e

14s
15 ` 1

2M
1
2 .

Writing dt1 “ βτe
´s1ds1, the desired bound follows from

ż 8

´ log ε

´

2e
14
15
s1 ` 1

2M
1
2

¯

βτe
´s1ds1 ď 60ε

1
15 `M

1
2 ε

concluding the proof.

5.2.2 The time integral of |B1W | along Φy0
U

We next establish the following:

Lemma 5.8. For all s ě ´ log ε,

sup
y0PX0

ż s

´ log ε
|B1W | ˝ Φy0

U ps
1qds1 À ε

1
18 . (5.16)

Proof of Lemma 5.8. From the definition of the transport velocity v in (5.10), observe that

divx v “ div
rx ů “ 2β1pBx1 ů ¨ NJ` Bxν ůνq (5.17)

where we have used the fact that

divx v “ Bxjvj “ Bx1JN ¨ v ` Bxµvµ “ div
rx v

and that from (2.20), div
rx v “ 9Qii “ 0, and that divxp´ 9f, 0, 0q “ 0. Hence, the conservation of mass

equation (2.21) can be written as

Btρ̊` v ¨∇xρ̊` ρ̊divx v “ 0 , (5.18)

and composing (5.18) with the flow ϕ given by (5.11), we see that

Btpρ̊ ˝ ϕq “ pρ̊ ˝ ϕqpdivx vq ˝ ϕ . (5.19)

Since

Btpdet∇xϕq “ det∇xϕpdivx vq ˝ ϕ , (5.20)
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and det∇xϕpx,´εq “ 1, it follows that

ρ̊ ˝ ϕ “ pdet∇xϕq´1ρ̊0 .

Note that using (1.2), (4.25) and (4.15) yields
ˇ

ˇ

ˇ
ρ´ pακ0

2 q
1
α

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
pαe´

k
2σq

1
α ´ pακ0

2 q
1
α

ˇ

ˇ

ˇ

À

ˇ

ˇ

ˇ

ˇ

pαe´
k
2σq

1
α ´ pαe

´ k
2 κ0

2 q
1
α

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

pαe
´ k

2 κ0
2 q

1
α ´ pακ0

2 q
1
α

ˇ

ˇ

ˇ

ˇ

À ε
1
8 pακ0

2 q
1
α
´1 À ε

1
9 . (5.21)

Therefore, by (5.21) and (5.21), we have that

|detp∇xϕpx, tqq ´ 1| ď
ˇ

ˇ

ˇ

ρ̊0

ρ̊ ´ 1
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ρ̊0

ρ̊ ´
p
ακ0

2 q
1
α

ρ̊

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

p
ακ0

2 q
1
α

ρ̊ ´ 1

ˇ

ˇ

ˇ

ˇ

À ε
1
9 . (5.22)

From (5.19) and (5.20), we have that

d

dt
det∇xϕ “ det∇xϕpdiv xvq ˝ ϕ “ det∇xϕpdiv

rxůq ˝ ϕ

leads to

det∇xϕpx, tq “ exp

ż t

´ε
pdiv

rx ů ˝ ϕqpx, t
1qdt1 . (5.23)

Hence,

´ε
1
9 À

ż t

´ε
pdiv

rx ů ˝ ϕqpx, t
1qdt1 À ε

1
9 for all x P R3 . (5.24)

From (2.31c), (2.37a), (4.13), and (4.24)
›

›Bxν ůνp¨, tq
›

›

L8
À 1 . (5.25)

It follows from (4.1a) and (5.25) that
ż t

´ε

›

›Bxν ůνp¨, tq
›

›

L8
dt1 À τptq ` ε ÀMε2 ` ε ď ε

1
2 . (5.26)

Thus, with (9.1a), (5.17), (5.22), and (5.26), we have that
ˇ

ˇ

ˇ

ˇ

ż t

´ε
Bx1 ů ¨ N ˝ ϕdt

1

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż t

´ε

`

1
JBxν ůν

˘

˝ ϕdt1
ˇ

ˇ

ˇ

ˇ

` 1
2β1

ˇ

ˇ

ˇ

ˇ

ż

pdiv
rx ůq ˝ ϕdt

1

ˇ

ˇ

ˇ

ˇ

À ε
1
9 . (5.27)

By Corollary 5.7, the integral of the positive part of Bx1 ů ¨ N is small. Therefore, the above estimate gives a
bound on the negative part of Bx1 ů ¨ N as well. In summary, by (5.27) and Corollary 5.7, we then have that

ż t

´ε
|Bx1 ů ¨ N ˝ ϕ| dt

1 ď ε
1
18 . (5.28)
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Then, from (2.28) and the bootstrap assumptions (4.1a) and (4.12), we see that
şt
´ε |Bx1w ˝ ϕ| dt

1 ď ε
1
19 ,

and in particular, for any x0 P X0, we have that

sup
x0PX 0

ż t

´ε
|Bx1w ˝ ϕx0 | dt

1 ď ε
1
19 . (5.29)

Since the flow Φpy, sq is related to the flow ϕpx, tq via

Φ1py, sq “ e
3
2
sϕ1px, tq , Φνpy, sq “ e

s
2ϕνpx, tq ,

and since Bx1w “ esB1W , using (2.30a), the estimate (5.16) follows.

5.2.3 The Lagrangian flow Xprx, tq

We next introduce the Lagrangian flow X associated to the transport velocity in (2.12), namely 2β1prv` ruq,
as the solution to

BtXprx, tq “ 2β1prv ` ruqpXprx, tq, tq , t P r´ε, T˚s , (5.30a)

Xprx,´εq “ rx . (5.30b)

Note that the flow Xprx, tq is related to the flow ϕpx, tq given in (5.11), via the transformation

ϕ1px, tq “ X1prx, tq ´ fpX̌přx, tq, tq , ϕνpx, tq “ Xνprx, tq , (5.31)

and that Xprx, tq is related to the flow Φpy, sq :“ ΦUpy, sq by

Φ1py, sq “ e
3
2
spX1prx, tq ´ fpX̌přx, tq, tqq , Φνpy, sq “ e

s
2Xνprx, tq . (5.32)

In this subsection we obtain three results, which play an important role in the proof of vorticity creation:
the first is an estimate on |∇

rxXp¨, tq ´ Id |, cf. (5.39); the second is a precise bound on the label rx0 such that
Xprx0, tq Ñ 0 as t Ñ T˚ (recall that 0 is the location at which the first singularity occurs), cf. Lemma 7.1;
the third result is a precise lower bound on ´

şT˚
´ε Brx1

rw ˝X , cf. Lemma 7.3.
First, we estimate the deformation rate of the flow X on the time interval r´ε, T˚s. The evolution of

∇
rxX is given by

d

dt
B
rxjXi “ 2β1

`

B
rxkprvi ` ruiq ˝X

˘

B
rxjXk . (5.33)

We note that using the bounds (9.2), the argument given in (5.22)–(5.27), together with the identical argu-
ment given in Section 13 of [4], we may show that there exists a universal constant C ě 1 (in particular,
ε-independent) such that

1
C ď |∇rxX| ď C . (5.34)

The bound (5.34) can however be made sharper, and we show (cf. (5.39) below) that |∇
rxX ´ Id | ď ε

1
20

uniformly on r´ε, T˚q. In order to prove this, we appeal to (5.33), from which we subtract Id ij and then we
contract with B

rxjXi ´ Id ij , to obtain that

d
2dt |∇rxX ´ Id |2 “ pB

rxjXi ´ Id ijqSikpBrxjXk ´ Id kjq ` SijpB
rxjXi ´ Id ijq (5.35)

we have introduced the notation

Sik “ 2β1

`

B
rxkprvi ` ruiq ˝X

˘
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and for a matrix Aij we denote the Euclidean norm as |A|2 “ AijAij . Because of (2.17), which implies that
for a vector field b we have b ¨∇

rxruj “ b̌ ¨ ∇̌xůj ` Jb ¨ NBx1 ůj , using the relation (5.31) between the rx and
x Lagrangian trajectories X and respectively ϕ, and appealing to (2.27)-(2.28), we note that the following
identities hold

BNru ¨ N ˝X “ JBx1 ů ¨ N ˝ ϕ´
1
2NγBxγ pw ` zq ˝ ϕ` Nγ ů ¨ N,γ ˝ ϕ (5.36a)

BNru ¨ T
ν ˝X “ JBx1aν ˝ ϕ´ NγBxγaν ˝ ϕ` Nγ ů ¨ T

ν
,γ ˝ ϕ (5.36b)

BTµru ¨ N ˝X “ 1
2T

µ
γBxγ pw ` zq ˝ ϕ´ Tµγ ů ¨ N,γ ˝ ϕ (5.36c)

BTµru ¨ T
ν ˝X “ TµγBxγaν ˝ ϕ´ Tµγ ů ¨ T

ν
,γ ˝ ϕ (5.36d)

The first term on the right side of the first line of the above list has the worst estimate when time integrated,
cf. (5.28). Indeed for all the other terms in the above list, by appealing to the bootstrap assumptions (4.4)–
(4.13) and the estimate (9.1), we may deduce that their time integrals are Opεq. Combining these estimates
we deduce that

ż T˚

´ε
|p∇

rxruq ˝X| dt
1 À ε

1
18 (5.37)

Similarly, using the relations (2.20), (2.31e), (5.31), and the estimate (9.2) we obtain that the time integral
of |p∇

rxrvq ˝X| is Opεq. Summarizing, we have that the matrix appearing on the right side of (5.35) satisfies

ż T˚

´ε
|S| dt1 À ε

1
18 . (5.38)

Using that ∇
rxX|t“´ε “ Id , from (5.35), (5.38) and ODE type bounds we deduce that

sup
tPr´ε,T˚s

|∇
rxXptq ´ Id | À e

şt
´ε|S|dt

1

´ 1 À ε
1
18 eε

1
18
ď ε

1
20 . (5.39)

The above bound is merely a quantitative version of (5.34); it will be used in the proof of Theorem 7.4.

6 L8 bounds for specific vorticity

We now establish bounds to solutions ζ̊ of the specific vorticity equation (6.1)
From (2.25) and (2.26), we deduce that the normal and tangential components of the vorticity satisfy

Btpζ̊ ¨ T
2q ` v ¨∇xpζ̊ ¨ T2q “ F21pζ̊ ¨ Nq ` F2µpζ̊ ¨ T

µq ` G2 (6.1a)

Btpζ̊ ¨ T
3q ` v ¨∇xpζ̊ ¨ T3q “ F31pζ̊ ¨ Nq ` F3µpζ̊ ¨ T

µq ` G3 (6.1b)

where the transport velocity v is defined by (5.10), and

F21 “ N ¨ BtT
2 ` 2β1

9QijT
2
iNj ` vνpN ¨ T

2
,νq ` 2β1NνBxνa2 ´ 2β1Nν ů ¨ T

2
,ν (6.2a)

F22 “ 2β1T
2
νBxνa2 ´ 2β1T

2
ν ů ¨ T

2
,ν (6.2b)

F23 “ T3 ¨ BtT
2 ` 2β1

9QijT
2
iT

3
jvνpT

3 ¨ T2
,νq ` 2β1T

3
νBxνa2 ´ 2β1T

3
ν ů ¨ T

2
,ν (6.2c)

F31 “ N ¨ BtT
3 ` 2β1

9QijT
3
iNj ` vνpN ¨ T

3
,νq ` 2β1NνBxνa3 ´ 2β1Nν ů ¨ T

3
,ν (6.2d)

F32 “ T2 ¨ BtT
3 ` 2β1

9QijT
3
iT

2
j ` vνpT

2 ¨ T3
,νq ` 2β1T

2
νBxνa3 ´ 2β1T

2
ν ů ¨ T

3
,ν (6.2e)

F33 “ 2β1T
3
νBxνa3 ´ 2β1T

3
ν ů ¨ T

3
,ν , (6.2f)
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and

G2 “
α
γ
σ̊
ρ̊ pBT3 σ̊BNk̊´ BNσ̊BT3 k̊q ` α

γ
σ̊
ρ̊T

2
1f,ν p∇xσ̊ˆ∇x̊kqν (6.3a)

G3 “
α
γ
σ̊
ρ̊ pBNσ̊BT2 k̊´ BT2 σ̊BNk̊q ` α

γ
σ̊
ρ̊T

3
1f,ν p∇rxσ̊ˆ∇

rx̊kqν , (6.3b)

and from (2.15), Tµ1 “
f,µ
J .

Proposition 6.1 (Bounds on specific vorticity). For ´ε ď t ă τpT˚q,
›

›ζ̊ ˝ ϕp¨, tq ´ ζ̊p¨,´εq
›

›

L8
ď ε

1
20 . (6.4)

Proof of Proposition 6.1. By the transformations (2.27), (2.31c), and (2.37a) together with the bootstrap
bounds (4.13), (4.24), Lemma 9.1, we have that

}ů}L8 ÀM
1
4 , }Bxν p̊u ¨ Nq}L8 À 1 , }Bxνa}L8 ďMε

1
2 , }v}L8 ÀM

1
4 . (6.5)

Hence, these bounds, together with (4.2) and Lemma 9.1 yields the following bounds on the forcing func-
tions defined in (6.2)

›

›Fij
›

›

L8
À 1 for i, j P t1, 2, 3u . (6.6)

where we have used powers of ε to absorb powers of M .
Now, from the definitions (2.17), (2.24), we have that

ρ̊px, tq̊σpx, tqq
1{αζ̊px, tq “ rρprx, tqrζprx, tq “ rωprx, tq “ curl

rx ruprx, tq “ curl
rx ůpx, tq ,

and

curl
rx ů ¨ N “ T2

jBrxj ů ¨ T
3 ´ T3

jBrxj ů ¨ T
2

“ T2
νBxν ů ¨ T

3 ´ T3
νBxν ů ¨ T

2

“ T2
νBxνa3 ´ T2

ν ů ¨ T
3
,ν ´ T3

νBxνa2 ` T3
ν ů ¨ T

2
,ν . (6.7)

from which it follows that

ζ̊ ¨ N “
T2
νBxνa3 ´ T2

ν ů ¨ T
3
,ν ´ T3

νBxνa2 ` T3
ν ů ¨ T

2
,ν

ρ̊
. (6.8)

It follows from (3.4), Lemma 9.1, (5.21), (6.5), and (6.8), we have that
ˇ

ˇζ̊ ¨ N
ˇ

ˇ ÀM
1
4 ε`Mε

1
2 À ε

1
3 , (6.9)

assuming ε is taken sufficiently small.
We define

F ij “ Fij ˝ ϕx0 , Gµ “ Gµ ˝ ϕx0 , Q1 “ pζ̊ ¨ Nq ˝ ϕx0 , Q2 “ pζ̊ ¨ T
2q ˝ ϕx0 , Q3 “ pζ̊ ¨ T

3q ˝ ϕx0 ,

Then, (6.1) is written as the following system of ODEs:

BtQ2 “ F2jQj ` G2 , BtQ3 “ F3jQj ` G3 .

Hence,

1
2
d
dt

`

Q2
2 `Q2

3

˘

“ FνµQνQµ ` Fµ1QµQ1 `QµGµ . (6.10)
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Now, we set Y “ pQ2
2 `Q2

3q
1
2 . Using (6.6) and (6.9), we see from (6.10) that

d
dtY À Y ` ε

1
3 `

ˇ

ˇG2

ˇ

ˇ`
ˇ

ˇG3

ˇ

ˇ ,

and hence by Gronwall’s inequality,

|Yptq ´ Yp´εq| À pe
şt
´ε C dt

1

´ 1qYp´εq ` e
şt
´ε C dt

1

ż t

´ε
pε

1
3 `

ˇ

ˇG2

ˇ

ˇ`
ˇ

ˇG3

ˇ

ˇqdr

À εYp´εq `
ż t

´ε
pε

1
3 `

ˇ

ˇG2

ˇ

ˇ`
ˇ

ˇG3

ˇ

ˇqdr . (6.11)

where we used the bound t´ ε ď τpT˚q ď 2ε from (4.1a).
We now prove that

şt
´ε Gµprqdr is bounded for all t ě ´ε such that t ă τptq. First note that by (2.31d)

and (4.14), we see that
›

›∇x̊kp¨, tq
›

›

L8
À ε

1
8 , (6.12)

so it remains for us to bound exp
şt
´ε |BTµ σ̊ ˝ ϕ| dt

1 and exp
şt
´ε |BNσ̊ ˝ ϕ| dt

1. Using the identities

pN ¨∇
rxq̊σ “ Bx1 σ̊J` NµBxµ σ̊ and pTν ¨∇

rxq̊σ “ TνµBxµ σ̊ ,

and (2.27), we see that

BNσ̊ “ Bx1 ů ¨ NJ´ Bx1zJ` NµBxµ p̊u ¨ Nq ´ NµBxµz ,

BTν σ̊ “ TνµBxµ p̊u ¨ Nq ´ TνµBxµz .

From (2.31b), (2.37a), (4.12), and (4.24), we find that
›

›BTν σ̊
›

›

L8
À 1 , (6.13)

and additionally with (5.28), we see that
ż t

´ε
|BNσ̊ ˝ ϕ| dt

1 À ε
1
18 . (6.14)

The estimates (6.12), (6.13), and (6.14) together with (4.25) and (5.21) show that
ż t

´ε

ˇ

ˇGµpsq
ˇ

ˇ ds À ε
1
18 . (6.15)

From (6.11) and (6.15), we have that

|Q2ptq ´Q2p´εq| ` |Q3ptq ´Q3p´εq| À εp|Q2p´εq| ` |Q3p´εq|q ` ε
1
18

uniformly for all labels x0. Since N,T2,T3 form an orthonormal basis, the above estimate and (6.9), implies
that (6.4) holds.

7 Vorticity creation

We analyze vorticity creation (see Theorem 7.4) through the evolution of the specific vorticity vector rζ in rx
variables, given in equation (2.12). For this purpose, we recall that the Lagrangian flow X associated to the
transport velocity in (2.12), was defined in (5.30) above. Before turning to Theorem 7.4, we establish two
preliminary results associated to the flow X , which play an important role in the proof of vorticity creation:
the first is a precise bound on the label rx0 with the property that Xprx0, tq Ñ 0 as t Ñ T˚, cf. Lemma 7.1;
the second is a precise lower bound on the amplification factor ´

şT˚
´ε Brx1

rwpXprx0, tq, tqdt, cf. Lemma 7.3.
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7.1 The blowup trajectory and a bound on the amplification factor

We obtain an estimate for the position of the particle rx0, which is carried by the flow Xp¨, tq to the blowup
location rx “ 0 as tÑ T˚.

Lemma 7.1 (Initial location of particle trajectory leading to blowup). With the flow X defined by (5.30), let
X

rx0
ptq denote the trajectory which emanates from the point rx0. If limtÑT˚ Xrx0

ptq “ 0, then

|prx0q1 ´ β3κ0ε| ď 5ε
7
6 ,

ˇ

ˇ

řx0

ˇ

ˇ ď 5ε
7
6 . (7.1)

Proof of Lemma 7.1. We consider the trajectory X
rx0
ptq for which X

rx0
pT˚q “ 0 and for notational simplic-

ity, we drop the subscript rx0 and use Xptq to denote this trajectory. The main idea is that the initial position
of the particleXptq, i.e. rx0, may be computed by passing tÑ T˚ in the identityXptq´rx0 “

şt
´ε BtXpt

1qdt1,
leading to

rx0 “ ´

ż T˚

´ε
BtXpt

1qdt1 . (7.2)

By revisiting the right side of (5.30), we obtain a sharp estimate for the right side of the above identity.
For convenience, in analogy to (2.27) we define

rw “ ru ¨ N` rσ , rz “ ru ¨ N´ rσ , raν “ ru ¨ Tν . (7.3)

We note that B
rx1
rwprx, tq “ Bx1wpx, tq. Furthermore, using (2.7) we have that

BtX “ 2β1prv ` ru ¨ NN` ru ¨ TνTνq ˝X

“ 2β1
9QX ´ 2β1R

T 9ξ ` β1p rwN` rzN` 2raνT
νq ˝X . (7.4)

First we note that using that 9Q is skew symmetric, that XpT˚q “ 0, appealing to the bounds (4.1b), (4.13),
(4.24), together with (4.27), from the Grönwall inequality on rt, T˚s we obtain that

|Xptq| ÀM
1
4 ε . (7.5)

This estimate his however not sharp enough; to do better, we need to carefully bound the term 2β1R
T 9ξ on

the right side of (7.4). Note cf. (2.32) we have that pRT 9ξqi “ ´Vip0, sq. Then, evaluating (2.34a) and
(2.35a) at y “ 0, using definition of the function f and our constraints (2.53), we deduce

2β1pR
T 9ξq1 “ κ` β2Z

0 ´ 1
βτ
e´

s
2G0

W and 2β1pR
T 9ξqµ “ 2β1A

0
µ ´

1
βτ
e
s
2hµ,0W

in analogy to (2.62) and (2.63). Using the 9κ estimate in (4.1b), the Z and A estimates in (4.12) and (4.13),
and the bound (12.17) for G0

W and hµ,0W , which is a consequence of the bootstrap assumptions, we deduce
that

ˇ

ˇ

ˇ
2β1pR

T 9ξq1 ´ κ0

ˇ

ˇ

ˇ
ÀMε and

ˇ

ˇ

ˇ
2β1pR

T 9ξqµ

ˇ

ˇ

ˇ
ÀMε

4
5 (7.6)

since 1´ 5
2m´7 ą

4
5 for m ě 18. Returning to (7.4), from (4.2), (4.12), (4.13) and (7.5), we have that

ˇ

ˇ

ˇ
2β1

9QX ` β1przN` 2raνT
νq ˝X

ˇ

ˇ

ˇ
ÀM

9
4 ε

3
2 `Mε ÀMε . (7.7)

Lastly, by (5.31) we have rw ˝X “ w ˝ϕ, and by (2.31a) we have w “ κ` e´
s
2W . Thus, by also appealing

to (4.1b), (4.5), (4.7), (9.1a), and the fact that by |φνµp´εq| ď ε we have that |Np´εq ´ e1| À ε, we obtain

| rwN ˝X ´ κ0e1| ď |κN´ κ0e1| ` e
´ s

2 }W }L8pX psqq ď 3ε
1
6 . (7.8)
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By inserting the estimates (7.6)–(7.8) into the right side of (7.4) we obtain that

|BtX1 ` β3κ0| ď 4ε
1
6 and |BtXν | ď 4ε

1
6 (7.9)

upon taking ε to be sufficiently small in terms of M , and recalling that β1 ´ 1 “ ´β3. To conclude the
proof of the lemma we simply combine (7.2) with (7.9) and the estimate |T˚| ď ε

3
2 , as given by (4.27).

Remark 7.2. For the particle trajectory from Lemma 7.1, integrating (7.9) from on rt, T˚s, as opposed to
r´ε, T˚s as was done in (7.2), we obtain that

ˇ

ˇX1ptq ´ β3κ0e
´s
ˇ

ˇ ď 5ε
1
6 e´s and |Xνptq| ď 5ε

1
6 e´s . (7.10)

Here we have again used that using (4.1b), (4.3), and (4.26) we have that |espT˚ ´ tq ´ 1| ď 2Mε.

The second preliminary estimate in this subsection is a lower bound on ´
şT˚
´ε Brx1

rw ˝X , as this quantity
plays a key role in our proof of vorticity creation (cf. the estimate for the term I1 in Theorem 7.4).

Lemma 7.3. With the flow X defined by (5.30), let X
rx0
ptq denote the trajectory which emanates from the

point rx0. If X
rx0
pT˚q “ 0 and the initial condition W py,´ log εq satisfies (3.24), then

´

ż T˚

´ε
B
rx1
rwpX

rx0
ptq, tqdt ě 1

9κ
´ 2

3
0 ε

1
3 . (7.11)

Proof of Lemma 7.3. The proof of the lemma is based on two ideas: first, the time integral in (7.11) is
dominated by values of t which are very close to ´ε, where we can relate B

rx1
rw to its initial datum; second,

the flowXptq is related to the self-similar flow ΦU via the relation (5.32), which allows us to appeal to sharp
bounds for B1W in estimating the contribution to (7.11) for t " ´ε. We implement these ideas as follows.

We consider the trajectory X
rx0
ptq for which X

rx0
pT˚q “ 0 and for notational simplicity, we drop the

subscript rx0 and use Xptq to denote this trajectory. The associated self-similar initial datum variable y0 is
given via (2.16) and (2.30) as

y0 “ pε
´ 3

2 pprx0q1 ´ fpřx0qq, ε
´ 1

2
řx0q . (7.12)

Due to Lemma 7.1 we know that rx0 satisfies (7.1), and since |φµνp´εq| ď ε, we deduce that
ˇ

ˇ

ˇ
py0q1 ´ β3κ0ε

´ 1
2

ˇ

ˇ

ˇ
ď 6ε´

1
3 and |py0qν | ď 5ε

2
3 . (7.13)

Note that these bounds are set up precisely to account for the region specified in (3.24). In view of the
precise estimates on the trajectory X

rx0
ptq, we directly obtain sharp bounds on the self-similar Lagrangian

flow Φy0
U psq emanating from y0. Indeed, by the φ bound in (4.1a), the relation between ΦU and X in (5.32),

and the bounds (7.10), we have that

pβ3κ0 ´ ε
1
7 qe

s
2 ď pΦy0

U q1psq ď pβ3κ0 ` ε
1
7 qe

s
2 , and |pΦy0

U qνpsq| ď ε
1
7 e´

s
2 . (7.14)

Next, due to (5.32) and (7.3) we have that

B
rx1
rw ˝X

rx0
ptq “ esB1W ˝ Φy0

U psq (7.15)

with the usual relation between t and s from (2.30). Since dt “ βτe
´sds, we thus have that the integral we

need to estimate in (7.11) may be rewritten as

´

ż T˚

´ε
B
rx1
rwpX

rx0
ptq, tqdt “ ´

ż 8

´ log ε
βτB1W ˝ Φy0

U psqds . (7.16)
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Recall cf. (4.3) that 1´ 2Me´s ď βτ ď 1` 2Me´s, so that we just need to bound from below the integral
of ´B1W ˝ Φy0

U . The remainder of the argument mimics the proof of Lemma 5.6.
Fix y0 as in (7.13), s P r´ log ε,8q, and thus fix a value of Φy0

U psq. We trace the particle trajectory of the
flow VW (not VU !) backwards in time, and write Φ

y10
W psq “ Φy0

U psq, where the initial datum Φ
y10
W ps0q “ y10

is given by the property that |y10| “ L if s0 ě ´ log ε, and |y10| ą L if s0 “ ´ log ε. We then appeal to
Lemma 5.3 with y10 replacing y0. The lemma is applicable on the interval rs0, ss since |y10| ě L and by
(7.14) we have

ˇ

ˇΦ̌
y10
W psq

ˇ

ˇ “
ˇ

ˇΦ̌y0

U psq
ˇ

ˇ ď ε
1
7 e´

s
2 ď ε

1
2 . By (5.5), we thus obtain that for any s1 P r´ log ε, ss

we have the estimates
ˇ

ˇ

ˇ
pΦ

y10
W q1ps

1q

ˇ

ˇ

ˇ
ě 3

4 |py0q1| e
3ps1´s0q

2 and
ˇ

ˇ

ˇ
Φ̌
y10
W ps

1q

ˇ

ˇ

ˇ
ďMε

1
2 . (7.17)

Let us first consider the case that |y10| ą L and s0 “ ´ log ε. Based on (7.17) we now claim that
|py10q1| ď 2κ0ε

´ 1
2 . If not, then by appealing to the first estimate in (7.14), we thus deduce that

3
2β3κ0e

s
2 ě |pΦy0

U q1psq| “
ˇ

ˇpΦ
y10
W q1psq

ˇ

ˇ ě 3
4 |py0q1| e

3ps´s0q
2 ą 3

2κ0ε
´ 1

2 es´s0e
s
2 ε

1
2 ě 3

2κ0e
s
2 ,

which is a contradiction, since β3 “
α

1`α ă 1. Therefore, from the above argument and the second bound

in (7.14) evaluated at s1 “ s0, we have that L “ ε´
1
10 ă |py10q1| ď 2κ0ε

´ 1
2 , and |py10qν | ď Mε

1
2 ď ε

1
3 .

Therefore, the point y10 exactly lies in the region stipulated in (3.24), and so by Lemma 3.1 in this case we
have that

B1W
´

Φ
y10
W ps0q, s0

¯

“ B1W py
1
0,´ log εq P

”

´1
2

ˇ

ˇpy10q1
ˇ

ˇ

´ 2
3 ,´1

4

ˇ

ˇpy10q1
ˇ

ˇ

´ 2
3

ı

(7.18)

Next, let us first consider the case that |y10| “ L and s0 ą ´ log ε. In this case, instead of appealing to
(3.24) we use the bootstrap (4.8b) and as shown earlier in (5.13) we deduce

B1W
´

Φ
y10
W ps0q, s0

¯

“ B1W py
1
0, s0q ď ´

1
2rη
´ 1

3 pyq ď ´1
4

ˇ

ˇpy10q1
ˇ

ˇ

´ 2
3 , (7.19)

where we used (7.17) with s1 “ s0 in the last inequality.
Having established (7.18) and (7.19), we use the B1W evolution given in (2.45a) with γ “ p1, 0, 0q, and

deduce that
BspB1W ˝ Φ

y10
W q `

´

1` βτJB1W ˝ Φ
y10
W

¯

pB1W ˝ Φ
y10
W q “ F

p1,0,0q
W ˝ Φ

y10
W .

Integrating this expression on rs0, ss, recalling that by definition we have Φ
y10
W psq “ Φy0

U psq, using that by
(7.18) and (7.19) we have that ´B1W py

1
0, s0q ą 0, by appealing to the F p1,0,0qW estimate in (9.19) and to the

B1W bootstrap in (4.7), we deduce

´B1W pΦ
y0
U psq, sq “ ´B1W py

1
0, s0q exp

ˆ

´

ż s

s0

1` βτ pJB1W q ˝ Φ
y10
W ps

1qds1
˙

´

ż s

s0

F
p1,0,0q
W ˝ Φ

y10
W ps

1q exp

ˆ

´

ż s

s1
1` βτ pJB1W q ˝ Φ

y10
W ps

2qds2
˙

ds1

ě 1
4

ˇ

ˇpy10q1
ˇ

ˇ

´ 2
3 e´ps´s0q exp

ˆ

´3

ż s

s0

η´
1
3 ˝ Φ

y10
W ps

1qds1
˙

´

ż s

s0

e´
s1

5 η´
1
3 ˝ Φ

y10
W ps

1qe´ps´s
1q exp

ˆ

3

ż s

s1
η´

1
3 ˝ Φy0

W ps
2qds2

˙

ds1 (7.20)

Since |y10| ě L , by (7.17) we have

3

ż s

s0

η´
1
3 ˝ Φ

y10
W ps

1qds1 ď 4
ˇ

ˇpy10q1
ˇ

ˇ

´ 2
3

ż s

s0

e´ps
1´s0qds1 ď ε

1
16 ,
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and
ż s

s0

e´
s1

5 η´
1
3 ˝ Φ

y10
W ps

1qds1e´ps´s
1q ď 2e´s

ˇ

ˇpy10q1
ˇ

ˇ

´ 2
3

ż s

s0

e
4s1

5 e´ps
1´s0qds1 ď 10ε

1
5 e´ps´s0q

ˇ

ˇpy10q1
ˇ

ˇ

´ 2
3 .

Inserting these estimates into (7.20), we deduce

´B1W pΦ
y0
U psq, sq ě

1
5

ˇ

ˇpy10q1
ˇ

ˇ

´ 2
3 e´ps´s0q . (7.21)

The bound (7.21) holds both in the case that s0 ą ´ log ε and |y10| “ L, and also in the case that s0 “ ´ log ε

and |y10| ą L and |py10q1| ď 2κ0ε
´ 1

2 . The last observation is that in either case, the bound (7.21) implies

´B1W pΦ
y0
U psq, sq ě

1
5p2κ0ε

´ 1
2 q´

2
3 e´ps´s0q ě 1

8κ
´ 2

3
0 ε

1
3 e´ps`log εq . (7.22)

Lastly, using (7.22) we bound from below the right side of (7.16) and obtain

´

ż 8

´ log ε
βτB1W ˝ Φy0

U psqds ě
1´2Mε

8 κ
´ 2

3
0 ε

1
3

ż 8

´ log ε
e´ps`log εqds ě 1

9κ
´ 2

3
0 ε

1
3

which completes the proof.

7.2 Vorticity creation from irrotational data

We now return to the specific vorticity equation (2.12) which we shall now write as

Btrζ ´ 2β1
9Qrζ ` 2β1prv ` ruq ¨∇

rx
rζ “ 2β1 Def

rx ru ¨ rζ `rb for t P r´ε, T˚q (7.23)

where we use rb to denote the baroclinic term in prx, tq variables:

rb “ 2β1
α
γ
rσ
rρ∇rxrσ ˆ∇

rx
rk , (7.24)

and the (rate of) deformation tensor is defined by

Def
rx ru “

1
2p∇rxru`∇

rxru
T q

which is the symmetric part of the velocity gradient. In components, pDef
rx ru ¨ rζqi “

1
2pBrxjrui ` Brxirujq

rζj .
By definition of the X

rx0
ptq flow in (5.30), so that X

rx0
p´εq “ rx0 upon composing (7.23) with X

rx0
ptq

and denoting

ζprx0, tq “ rζ ˝X
rx0
ptq , Dprx0, tq “ 2β1 Def

rx ru ˝Xrx0
ptq , bprx0, tq “ rb ˝X

rx0
ptq , (7.25)

we have

d
dtζ “ p2β1

9Q` Dq ¨ ζ` b . (7.26)

At this stage two observations are in order. First, due to (5.31) we have that ζ “ rζ ˝X “ ζ̊ ˝ ϕ, so that the
bound (6.4) translates into

ˇ

ˇ

ˇ
ζprx0, tq ´ rζprx0,´εq

ˇ

ˇ

ˇ
ď ε

1
21 . (7.27)

Second, we note that by (5.36), (5.37), (9.1), and (3.2), for any pi, jq ‰ p1, 1q we have
ż T˚

´ε

ˇ

ˇDijpt
1q
ˇ

ˇ dt1 ÀMε , (7.28)
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while for pi, jq “ p1, 1q we have

ż T˚

´ε

ˇ

ˇD11pt
1q
ˇ

ˇ dt1 À ε
1
18 . (7.29)

We omit the detailed proofs of (7.28) and (7.29) but note that as already discussed in the paragraph below
(5.36), only the time integral of |BNru ¨ N ˝X| is not Opεq; and since |N´ e1| À ε, this corresponds to only
the p1, 1q component of the D matrix as having a time integral which may be larger than Opεq. Taking into
account also the 9Q estimate in (4.2) we rewrite

2β1
9Q` D “: diagpD11, 0, 0q ` Dsmall “: Dmain ` Dsmall (7.30)

with
ż T˚

´ε

ˇ

ˇDsmallpt
1q
ˇ

ˇ dt1 ÀMε . (7.31)

With this information, since Dmain is a diagonal matrix, we may write the solution of ODE (7.26)
pointwise in rx0 as

ζp¨, tq “ e
şt
´εDmainp¨,t

1qdt1
rζp¨,´εq `

ż t

´ε
e
şt
t1Dmainp¨,t

2qdt2
`

bp¨, t1q ` Dsmallp¨, t
1q ¨ ζp¨, t1q

˘

dt1 , (7.32)

where in view of (7.29)
ˇ

ˇ

ˇ
e
şt
t1Dmainp¨,t

2qdt2 ´ Id
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
diag

´

e
şt
t1D11p¨,t2qdt2 , 1, 1

¯

´ Id
ˇ

ˇ

ˇ
À ε

1
18 . (7.33)

The solution formula (7.32), along with the bounds (7.27), (7.31), and (7.33) show that vorticity creation is
essentially implied by (lower) bounds on

şt
´ε bp¨, t

1qdt1. This is indeed the main idea in the proof of vorticity
creation, which we establish next.

In the following theorem, we show that when the initial vorticity is zero, the Euler dynamics instanta-
neously creates vorticity, and that for appropriately chosen initial data, the vorticity remains non-trivial at
the formation of the shock.

Theorem 7.4 (Vorticity creation). Consider rx0 such that the flow X
rx0
ptq converges to the blowup point 0 as

tÑ T˚. More generally, consider any rx0 satisfying (7.1). Suppose that the initial datum verifies (3.24), and
that the initial baroclinic torque at this point, rbprx0,´εq, is non-trivial. For example, this may be ensured by
choosing

B
rx1
rkprx0,´εq “ 0 B

rx3
rkprx0,´εq “ 0 , B

rx2
rkprx0,´εq ă 0 . (7.34)

If the initial datum is irrotational, i.e. rζprx,´εq “ 0 for all rx P R3, then vorticity is instantaneously created,
and remains non-vanishing in the neighborhood of the shock location prx, tq “ p0, T˚q. Quantitatively, with
the choice (7.34) we have that

ˇ

ˇrζprx, tq
ˇ

ˇ ě cακ
1
3
´ 1
α

0 ε
1
3

ˇ

ˇB
rx2
rk0prx0q

ˇ

ˇ (7.35)

for all prx, tq in a small neighborhood of the shock location p0, T˚q, where cα ą 0 is a constant that only
depends on α.
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Proof of Theorem 7.4. As alluded to in the discussion preceding the Theorem, the proof is based on fol-
lowing the Lagrangian flow X

rx0
ptq which arrives at the shock location as t Ñ T˚, and study the vorticity

production caused by the baroclinic torque term b. We note that (7.35) is proven by establishing this bound
at rx “ X

rx0
ptq with t Ñ T˚, for one component of the vorticity vector, and arguing by continuity, the fact

that the vorticity remains continuous all the way up to the blowup time ensures that the lower bound holds
for prx, tq in a neighborhood of p0, T˚q.

For simplicity of the presentation we provide a lower bound on the third component of the vorticity;
this is why in assumption (7.34) we have chosen very specific gradient components for rk and rσ. Recall the
notation (7.25). Using that the initial datum is irrotational, from the solution formula (7.32), the bounds
(7.27), (7.31), (7.33) and the fact that the matrix Dmain only has a nontrivial p1, 1q entry, we obtain that

ˇ

ˇ

ˇ

ˇ

ζ3prx0, tq ´

ż t

´ε
b3prx0, t

1qdt1
ˇ

ˇ

ˇ

ˇ

À p1` ε
1
18 qε

1
21Mε À ε . (7.36)

The remainder of the proof consists of analyzing the time integral of b3prx0, tq “ rbpX
rx0
ptq, tq.

Let us denote the cofactor matrix associated to ∇
rxX and its Jacobian determinant, respectively, by

Bprx, tq “ Cofp∇
rxXq , Jprx, tq “ detp∇

rxXq ,

so that
p∇

rxXq
´1 “ J´1B .

Two components of the cofactor matrix that we shall make use of are given by

B2
2 “ Brx2

X2pB
rx1
X1B

rx3
X3 ´ B

rx1
X3B

rx3
X1q ,

B2
1 “ Brx1

X2pB
rx3
X1B

rx2
X3 ´ B

rx2
X1B

rx3
X3q .

From (5.39), we see that

|J ´ 1| À ε
1
20 ,

ˇ

ˇB2
2 ´ 1

ˇ

ˇ À ε
1
20 , and

ˇ

ˇB2
1

ˇ

ˇ À ε
1
10 . (7.37)

Then, transport equation (2.6c) shows that

rk ˝X
rxptq “ rkprx,´εq “: rk0prxq (7.38)

so that

B
rxj
rk ˝X

rxptq “ J´1prx, tqB
rx`
rk0prxqB`jprx, tq . (7.39)

The point of the first two assumptions in (7.34) is to single out one of the three elements in the sum over `
in (7.39), which now reduces to

B
rxj
rk ˝X

rxptq “ J´1prx, tqB
rx2
rk0prxqB2

j prx, tq . (7.40)

For the remainder of the proof, we fix X to denote the trajectory which collides with the blowup at time
t “ T˚ so that XpT˚q “ 0. Using (7.40) and recalling (7.3) we return to (7.24) and obtain that

b3 “ rb ˝X “ 2β1
α
γ
rσ
rρ ˝XpBrx1

rσ ˝XB
rx2
rk ˝X ´ B

rx2
rσ ˝XB

rx1
rk ˝Xq

“ 2β1
α
γ
rσ
rρ ˝XJ

´1B
rx2
rk0pB2

2Brx1
rσ ˝X ´ B2

1Brx2
rσ ˝Xq

“ β1
α
γ
rσ
rρ ˝XJ

´1B
rx2
rk0pB2

2Brx1
rw ˝X ´ B2

2Brx1
rz ˝X ´ 2B2

1Brx2
rσ ˝Xq
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“: b
p1q
3 ´ b

p2q
3 ´ b

p3q
3 . (7.41)

We first note that by the relation of σ and ρ, in view of (2.6c) we have

β1α
γ

rσ
rρ ˝X “

β1

γ e
rk0
2 prρ ˝Xqα´1 (7.42)

so that by (5.21) and the initial L8 assumption on kp¨,´εq we have
ˇ

ˇ

ˇ

β1α
γ

rσ
rρ ˝X ´

β1

γ p
ακ0

2 q
α´1
α

ˇ

ˇ

ˇ
À ε

1
10 . (7.43)

Combined with (7.37), our bootstrap assumptions derivatives of Z in (4.12) and on U ¨ N and S in (4.24),
similarly to (7.31) we obtain that the last two terms in (7.41) have time integrals bounded as

ż T˚

´ε

ˇ

ˇ

ˇ
b
p2q
3 prx0, tq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
b
p2q
3 prx0, tq

ˇ

ˇ

ˇ
dt ÀMε . (7.44)

In order to conclude the proof, we need to estimate the time integral of the first term in (7.41), namely
b
p1q
3 . This is precisely the reason that Lemma 7.3 was created. First, we note that by (7.15) and (7.21) we

have that B
rx1
rw ˝ Xptq ă 0 for all t P r´ε, T˚q, that is, this term is signed. Taking into account (7.37),

(7.43), and the third assumption in (7.34) we obtain the pointwise in time bound

b
p1q
3 prx0, tq ě

β1

2γ p
ακ0

2 q
α´1
α B

rx2
rk0prx0q B

rx1
rw ˝X

rx0
ptq . (7.45)

To conclude the proof we combine (7.45) with (7.11) and the assumption B
rx2
rk0prx0q ă 0 to deduce

ż T˚

´ε
b
p1q
3 prx0, tq ě

β1

2γ p
ακ0

2 q
α´1
α

ˇ

ˇB
rx2
rk0prx0q

ˇ

ˇ

1
9κ
´ 2

3
0 ε

1
3 “ 2cακ

1
3
´ 1
α

0 ε
1
3

ˇ

ˇB
rx2
rk0prx0q

ˇ

ˇ , (7.46)

where cα ą 0 is a constant that depends only on α. The point here is that the lower bound is Opε
1
3 q, while

the error terms in both (7.36) and (7.44) are Opεq. Combining these estimates we deduce that

ζ3prx0, tq ě

ż t

´ε
b
p1q
3 prx0, t

1qdt1 ´M2ε ě 3
2cακ

1
3
´ 1
α

0 ε
1
3

ˇ

ˇB
rx2
rk0prx0q

ˇ

ˇ (7.47)

upon taking ε to be sufficiently small.

8 9Hm bounds

Definition 8.1 (Modified 9Hm-norm). For m ě 18 we introduce the semi-norm

E2
mpsq “ E2

mrU,P,Hspsq :“
ÿ

|γ|“m

λ|γ̌|
´

}BγUp¨, sq}2L2 ` }HBγPp¨, sq}2L2 ` κ
2
0 }B

γHp¨, sq}2L2

¯

(8.1)

where λ “ λpmq P p0, 1q is to be made precise below (cf. Lemma 8.3).

Clearly, E2
m is equivalent to the homogenous Sobolev norm 9Hm for U , P , and H, and since κ0 ě 2, we

have the quantitative inequalities

λm

2

´

›

›U
›

›

2
9Hm `

›

›P
›

›

2
9Hm `

›

›H
›

›

2
9Hm

¯

ď E2
m ď κ2

0

´

›

›U
›

›

2
9Hm `

›

›P
›

›

2
9Hm `

›

›H
›

›

2
9Hm

¯

. (8.2)
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The bound (8.2) follows from

|Hpy, sq ´ 1| ď 2ε
γ (8.3)

and the triangle inequality, upon taking ε sufficiently small. In turn, (8.3) is a consequence of the definition
(2.42c), and of the bootstrap (4.14).

Additionally, in order to apply the interpolation inequalities from Appendix A.2, we need to establish
a quantitative equivalence between the Em semi-norm defined in (8.1) and the classical homogenous 9Hm

norm of the quantities U , S, and K (recall that these are related to U , P , and H via the nonlinear transfor-
mation given in (2.42)). In this direction we have

Lemma 8.2 (Asymptotic equivalence of norms). For κ0 ě 1 sufficiently large in terms of γ, and for ε
sufficiently small in terms of κ0, M , and m, we have the estimate

λm
´

}U}29Hm ` }S}
2
9Hm ` }K}

2
9Hm ´ e

´2s
¯

ď E2
m ď κ2

0

´

}U}29Hm ` }S}
2
9Hm ` }K}

2
9Hm ` e

´2s
¯

(8.4)

for all s ě ´ log ε. As a consequence, we also have the estimate

κ´2
0 E2

m ´ e
´2s ď e´s }W }29Hm ` }Z}

2
9Hm ` }A}

2
9Hm ` }K}

2
9Hm ď 4λ´mE2

m ` 4e´2s . (8.5)

Proof of Lemma 8.2. We directly have

λm }U}29Hm ď
ÿ

|γ|“m

λ|γ̌| }BγU}2L2 ď }U}
2
9Hm (8.6)

which gives a direct comparison between the 9Hm norm of U and the U -part of Em.
Next, we turn to the H-part of Em. The chain rule yields H´1∇H “ 1

2γ∇K. Applying m ´ 1 more
derivatives, by the Faà di Bruno formula, we have that there exists a constant Cm which only depends on m,
such that pointwise we have the bound

ˇ

ˇ

ˇ
H´1BγH´ 1

2γB
γK

ˇ

ˇ

ˇ
ď Cm

ÿ

pi1,...,im´1qPIm

m´1
ź

j“1

ˇ

ˇDjK
ˇ

ˇ

ij (8.7)

where the index set Im is given by Im “ tpi1, . . . , im´1q : ij ě 0,
řm´1
j“1 jij “ mu. In particular, note that

whenever pi1, . . . , im´1q P Im, we must have
řm´1
j“1 ij ě 2. This fact is crucial for the argument below, and

has to do with the fact that we have already accounted on the left side for the term with the highest order of
derivatives. In (8.7) as usual we have written DjK to denote DβK for some multi-index β with |β| “ j.
Using the interpolation inequality (A.3), for all 1 ď j ď m´ 1 we next estimate

›

›|DjK|ij
›

›

L
2m
jij
“

›

›DjK
›

›

ij

L
2m
j
À }K}

ijp1´
j
m
q

L8 }K}
jij
m
9Hm
. (8.8)

Moreover, note that for pi1, . . . , im´1q P Im we have that
řm´1
j“1

jij
2m “

1
2 , so that these are Hölder conjugate

exponents corresponding to an L2 norm. Thus, applying the L2 norm to (8.7), using the Hölder inequality,
and the interpolation bound (8.8), we obtain

›

›

›
H´1BγH´ 1

2γB
γK

›

›

›

L2
ď Cm

ÿ

pi1,...,im´1qPIm

m´1
ź

j“1

}K}
ijp1´

j
m
q

L8 }K}
jij
m
9Hm

ď Cm
ÿ

pi1,...,im´1qPIm

}K}
´1`

řm´1
j“1 ij

L8 }K} 9Hm , (8.9)
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for some m-dependent constant Cm (which may increase from line to line), whenever |γ| “ m. At this
point we use that pi1, . . . , im´1q P Im, we must have

řm´1
j“1 ij ě 2, which is combined with the bootstrap

(4.14) to conclude
›

›

›
H´1BγH´ 1

2γB
γK

›

›

›

L2
ď Cmε }K} 9Hm . (8.10)

We next appeal to the pointwise estimate on H in (8.3), and since κ0 ě 1, we deduce that

κ2
0

2γ2λ
m }K}29Hm ď

ÿ

|γ|“m

λ|γ̌|κ2
0 }B

γH}2L2 ď
κ2

0
γ2 }K}

2
9Hm (8.11)

where we have used that λ P p0, 1q, and that ε is sufficiently small to absorb the Cm constant in (8.10).
Lastly, we turn to the P-part of Em. From (2.42b) and (2.42c) we obtain S “ PH, and thus, by the

binomial formula and the Moser estimate (A.4), we have

}BγS ´HBγP ´ PBγH}L2 ď Cm
`

}∇H}L8 }P} 9Hm´1 ` }∇P}L8 }H} 9Hm´1

˘

.

Furthermore, using the interpolation bound (A.5) applied to ∇P and ∇H, and the ε-Young inequality, we
obtain that for any δ P p0, 1q we have

}BγS ´HBγP ´ PBγH}L2

ď Cm

ˆ

}∇H}L8 }∇P}
2

2m´5

L8 }P}
1´ 2

2m´5

9Hm
` }∇P}L8 }∇H}

2
2m´5

L8 }H}
1´ 2

2m´5

9Hm

˙

ď δ }P} 9Hm ` δ }H} 9Hm ` Cmδ
´ 2m´7

2

ˆ

}∇H}
2m´5

2
L8 }∇P}L8 ` }∇P}

2m´5
2

L8 }∇H}L8
˙

(8.12)

where the m-dependent constant Cm may change from line to line. From the definitions (2.42b)–(2.42c),
the K estimates in (4.14), the W and Z bounds in (4.7) and (4.12), the relations H∇P “ ∇S´SH´1∇H,
and 2∇S “ e´

s
2∇W ´∇Z, we deduce

}∇H}L8 ď ε
1
3 e´

s
2 and }∇P}L8 ď

´

1
2 ` ε

1
4

¯

e´
s
2 . (8.13)

Taking ε to be sufficiently small to absorb the m and M dependent constants, we obtain from (8.12) and
(8.13) that

}BγS ´HBγP ´ PBγH}L2 ď δ }P} 9Hm ` δ }H} 9Hm ` δ
´ 2m´7

2 e´
2m´3

4
s (8.14)

for any constant δ P p0, 1q. Using that |S ´ κ0{2| ď 5ε
1
6 (which follows from the bootstrap assumptions on

9κ, W , and Z), and appealing to (8.3), we obtain

ˇ

ˇPpy, sq ´ κ0
2

ˇ

ˇ ď 6ε
1
6 (8.15)

upon taking ε to be sufficiently small in terms ofM and κ0. At last, we combine (8.14)–(8.15), use the P and
H part of the comparison (8.2), choose δ sufficiently small depending on κ0 and λ, and then ε sufficiently
small in terms of κ0, λ, δ and m, to deduce that

λm }S}29Hm ď
ÿ

|γ|“m

λ|γ̌|
´

}HBγP}2L2 ` κ
2
0 }B

γH}2L2

¯

` e´2s , (8.16)
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and taking κ0 ě 2, we also have

}S}29Hm ě
1
8

ÿ

|γ|“m

λ|γ̌|
´

}HBγP}2L2 ` κ
2
0 }B

γH}2L2

¯

´ e´2s . (8.17)

Combining (8.6), (8.11), (8.16), and (8.17), we arrive at the proof of (8.4).
The proof of (8.5) follows once we recall the identities W “ e

s
2 pU ¨ N ` S ´ κq, Z “ U ¨ N ´ S,

which follow from (2.38), and the definition Aν “ U ¨ Tν . Therefore, by (9.1a), (A.3), using the Poincaré
inequality in the y̌ direction, and the fact that the diameter of X psq in the ě directions is 4ε

1
6 e

s
2 , for any γ

with |γ| “ m, we obtain
›

›

›
e´

s
2 BγW ´ N ¨ BγU ´ BγS

›

›

›

L2
` }BγZ ´ N ¨ BγU ` BγS}L2 ` }B

γAν ´ Tν ¨ BγU}L2

ď 2 }JBγ ,NK ¨ U}L2 ` }JBγ ,TνK ¨ U}L2

À

m
ÿ

j“1

`›

›DjN
›

›

L8
`
›

›DjTν
›

›

L8

˘ ›

›Dm´jU
›

›

L2pX psqq

À ε
m
ÿ

j“1

e´
js
2 p4ε

1
6 e

s
2 qj }U} 9Hm

À ε }U} 9Hm .

Summing over all γ with |γ| “ m, and appealing to (8.4), the estimate (8.5) follows.

8.1 Higher-order derivatives for the pU,P ,Hq-system

In order to estimateEmpsqwe need the differentiated form of the pU,P,Hq-system (2.43). For this purpose,
fix γ P N3

0 with |γ| “ m, and apply Bγ to (2.43), to obtain

BspB
γUiq ` pVU ¨∇qpBγUiq `DγpB

γUiq ´ 2β1βτe
´s 9QijpB

γUjq ` 2βτβ3H2pBγPqJNie
s
2 B1P

` 2γ1βτβ3H2e
s
2 B1PJNipB

γPq ` 2βτβ3H2P
´

JNie
s
2 B1pB

γPq ` e´
s
2 δiνBνpB

γPq
¯

“ F pγqUi
, (8.18a)

BspB
γPq ` pVU ¨∇q pBγPq `DγpB

γPq ` 2βτβ3e
s
2 JB1pU ¨ NqpB

γPq

` 2γ1βτβ3e
s
2 B1PJNjpB

γUjq ` 2βτβ3P
´

e
s
2 JNjB1pB

γUjq ` e
´ s

2 BνpB
γUνq

¯

“ F pγqP , (8.18b)

BspB
γHq ` pVU ¨∇qpBγHq `DγpB

γHq “ F pγqH , (8.18c)

where the damping function Dγ is defined as

Dγ “ γ1p1` B1gU q `
1
2 |γ| , (8.19)

the transport velocity VU is given in (2.40c), and since |γ| ě 3 the forcing functions in (8.18) are given by

F pγqUi
“ DγpB

γUiq ´ JBγ ,VU ¨∇KUi ´ 2βτβ3e
´ s

2 δiνJBγ ,H2PKBνP

` 2βτβ3e
s
2

`

pBγPqH2JNiB1P ` γ1H2B1PJNipB
γPq ´ JBγ ,H2PJNiKB1P

˘

, (8.20a)

F pγqP “ DγpB
γPq ´ JBγ ,VU ¨∇KP ´ 2βτβ3e

´ s
2 JBγ ,PKBνUν

` 2βτβ3e
s
2 ppBγPqJNjB1Uj ` γ1B1PJNipB

γUiq ´ JBγ ,PJNiKB1Uiq , (8.20b)

F pγqH “ DγpB
γHq ´ JBγ ,VU ¨∇KH . (8.20c)
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In (8.20) we have used the notation Ja, bK to denote the commutator ab´ba. Note that two additional forcing
terms are singled out on the left side of (8.18b); this is because these terms will turn out to contribute the
main contribution that has to be absorbed in the damping term Dγ .

TheEm energy estimate is obtained by testing (8.18a) with BγUi, (8.18b) with H2BγP , and (8.18c) with
κ2

0B
γH. Adding the resulting differential equations produces the cancelation of all terms involving m ` 1

derivatives, which upon integrating by parts allows us to close the energy estimate. This computation is
detailed in Subsection 8.3 below. Prior to this, in the next subsection we give estimates for the forcing terms
defined in (8.20).

8.2 Forcing estimates

In order to analyze (8.18) we first estimate the forcing terms defined in (8.20). This is achieved next:

Lemma 8.3. Consider the forcing functions defined in (8.20). Let m ě 18, fix 0 ă δ ď 1
32 , and define the

parameter λ “ λpδ,mq from (8.1) to equal λ “ δ2

16m2 . Then, we have that

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F pγq
U i
BγUi

ˇ

ˇ

ˇ
ď p5` 9δqE2

m ` e
´sM4m´1 , (8.21a)

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F pγqP H2BγP

ˇ

ˇ

ˇ
ď p2` 8δqE2

m ` e
´sM4m´1 , (8.21b)

2
ÿ

|γ|“m

λ|γ̌|κ2
0

ż

R3

ˇ

ˇ

ˇ
F pγqH BγH

ˇ

ˇ

ˇ
ď p2` 4δqE2

m ` e
´sM4m´1 , (8.21c)

for ε taken sufficiently small in terms of m, δ, λ, M , and κ0.

Proof of Lemma 8.3. Throughout this proof, when there is no need to keep track of the binomial coefficients
from the product rule we denote a partial derivative Bγ with |γ| “ m simply as Dm.

Upon expanding the commutator terms in (8.20), the forcing functions defined here may be written as

F pγqUi
“ F pmqUi

` F pămqUi
(8.22a)

F pγqP “ F pmqP ` F pămqP (8.22b)

F pγqH “ F pmqH ` F pămqH (8.22c)

where the upper index pmq indicates that terms with exactlym derivatives are present, while the upper index
pă mq indicates that all terms have at most m´ 1 derivatives on them. These terms are defined by

F pmqUi
“ ´

`

γµBµgUB1B
γ´eµUi ` γjBjh

ν
UBνB

γ´ejUi ` B
γgUB1Ui ` B

γhνUBνUi
˘

´ 2βτβ3

´

γµe
s
2 BµpH2PJNiqB

γ´eµB1P ` 2γ1PJNiHe
s
2 B1HBγP ` e´

s
2 δiνγjBjpH2PqBγ´ejBνP

¯

´ 2βτβ3

´

e´
s
2 δiνBνPBγpH2Pq ` e

s
2PB1PBγpH2JNiq

¯

“: F pmqUi,p1q
` F pmqUi,p2q

` F pmqUi,p3q
(8.23a)

F pămqUi
“ ´

m´2
ÿ

j“1

ÿ

|β|“j,βďγ

ˆ

γ

β

˙

´

Bγ´βgUB
βB1Ui ` B

γ´βhνUB
βBνUi

¯

´ 2βτβ3

m´2
ÿ

j“1

ÿ

|β|“j,βďγ

ˆ

γ

β

˙

´

e
s
2 Bγ´βpH2PJNiqB

βB1P ` e´
s
2 δiνBγ´βpH2PqBβBνP

¯
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´ 2βτβ3e
s
2 B1P

m´1
ÿ

j“1

ÿ

|β|“j,βďγ

ˆ

γ

β

˙

Bγ´βpH2JNiqB
βP

“: F pămqUi,p1q
` F pămqUi,p2q

` F pămqUi,p3q
(8.23b)

for the BγU evolution, by

F pmqP “ ´
`

γµBµgUB1B
γ´eµP ` γjBjhνUBνBγ´ejP ` BγgUB1P ` BγhνUBνP

˘

´ 2βτβ3

´

γµe
s
2 BµpPJNiqB

γ´eµB1Ui ` e
´ s

2 BνUνB
γP ` e´

s
2γjBjPBγ´ejBνUν

¯

“: F pmqP,p1q ` F pmqP,p2q (8.24)

F pămqP “ ´

m´2
ÿ

j“1

ÿ

|β|“j,βďγ

ˆ

γ

β

˙

´

Bγ´βgUB
βB1P ` Bγ´βhνUBβBνP

¯

´ 2βτβ3

m´2
ÿ

j“1

ÿ

|β|“j,βďγ

ˆ

γ

β

˙

´

e
s
2 Bγ´βpPJNiqB

βB1Ui ` e
´ s

2 Bγ´βPBβBνUν
¯

´ 2βτβ3B1UiγµpJNiq,µB
γ´eµP

“: F pămqP,p1q ` F pămqP,p2q ` F pămqP,p3q (8.25)

for the BγP equation, and by

F pmqH “ ´
`

γµBµgUB1B
γ´eµH` γjBjhνUBνBγ´ejH` BγgUB1H` BγhνUBνH

˘

(8.26a)

F pămqH “ ´

m´2
ÿ

j“1

ÿ

|β|“j,βďγ

ˆ

γ

β

˙

´

Bγ´βgUB
βB1H` Bγ´βhνUBβBνH

¯

(8.26b)

for the BγH equation.
Proof of (8.21a). We shall first prove (8.21a), and to do so, we estimate separately the terms in the

sum (8.22a). Let us treat the term which contains the highest-order derivatives, namely F pmqUi
. This term is

decomposed in three pieces cf. (8.23a), and we estimate each piece separately.
Recall that gU and hνU are defined in (2.34c) and (2.35c) and that

Ui “ U ¨ NNi `AνT
ν
i “

1
2pe

´ s
2W ` κ` ZqNi `AνT

ν
i . (8.27)

Also, note that f and V are quadratic functions of y̌, whereas JN is an affine function of y̌; therefore Bγ

annihilates these terms and we have10

1
β1βτ

BγgU “ 2e
s
2 BγpJN ¨ Uq “ 2e

s
2 JN ¨ BγU ` 2γµpJNρq,ιB

γ´eιUρ (8.28)
1

β1βτ
BγhµU “ 2e´

s
2 BγUµ (8.29)

In view of these definitions, using that λ ď 1, that βτβ1 ď 1, and that B1B
γ´eµUi produces a favorable

imbalance of λ
1
2 , for the first term in (8.23a) we have that

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F
pmq
Ui,p1q

BγUi

ˇ

ˇ

ˇ

10Note that (8.28) holds whenever |γ| ě 4. This is because gU “ 2β1βτe
s
2 pU ¨ NJ ` V ¨ NJ ´ 9fq, with V ¨ NJ being a cubic

polynomial in y, and 9f a quadratic polynomial in y̌.
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ď 2E2
m

´

mλ
1
2

›

›∇̌gU
›

›

L8
`m }∇hU}L8 ` 2e

s
2 |J| }B1U}L8 ` 2e´

s
2

›

›∇̌U
›

›

L8

¯

` 4mEm }pJNq,ι}L8 }B1U}L8 }U} 9Hm´1 . (8.30)

Estimate (8.30) is the perfect example of the usage of the parameter λ appearing in the definition of the
energy Em: it yields a factor of λ

1
2 next to the term m

›

›∇̌gU
›

›

L8
« m in the first term of (8.30). Without

this factor, the resulting coefficient of E2
m appearing on the right side of (8.21a) would be larger than 2m,

which would not allow us to close the energy estimate. But by choosing λ “ δ2

12m2 , we have that 2mλ
1
2 ă δ.

Using the definitions of gU , hνU , and U , the bounds (4.3), (4.5), (4.7), (4.11), (4.12), (4.13), (9.1a), (5.12),
the norm equivalence (8.2), and the interpolation inequality (A.5) applied to ∇U , we estimate

›

›∇̌gU
›

›

L8
ď

›

›∇̌pJW q
›

›

L8
`
›

›∇̌GU
›

›

L8
ď 1` ε

1
4

}∇hU}L8 ď ε
1
4

}JB1U}L8 ď
1
2e
´ s

2 }JB1W }L8 ` }B1Z}L8 ` 2 }B1A}L8 ď
1
2p1` ε

1
4 qe´

s
2

›

›∇̌U
›

›

L8
ď ε

1
4

}pJNq,ι}L8 ď ε
1
4

}B1U}L8 }U} 9Hm´1 ď Cm }B1U}
2m´3
2m´5

L8 }U}
2m´7
2m´5

9Hm
ď }U} 9Hm ` C

1
m }B1U}

2m´3
2

L8 ď 2λ´
m
2 Em ` e

´s

for an arbitrary δ P p0, 1q, upon choosing ε to be sufficiently small to absorb the stray powers of M and all
implicit, δ-dependent and m-dependent constants. Combining the above estimates with (8.30), we obtain

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F
pmq
Ui,p1q

BγUi

ˇ

ˇ

ˇ

ď 2E2
m

´

δ
4p1` ε

1
4 q `mε

1
4 ` 1` ε

1
4 ` 2ε

3
4

¯

` 4mEmε
1
4

´

2λ´
m
2 Em ` e

´s
¯

ď p2` δqE2
m ` e

´2s . (8.31)

Quite similarly, using that λ ď 1, that βτβ3 ď 1, and that B1B
γ´eµP produces a favorable imbalance of λ

1
2 ,

for the second term in (8.23a), we have

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F
pmq
Ui,p2q

BγUi

ˇ

ˇ

ˇ

ď 4E2
m

´

mλ
1
2 e

s
2

›

›H´1∇̌pH2PJNq
›

›

L8
` 2me

s
2 }PJNB1H}L8 `me

´ s
2

›

›H´1∇pH2Pq
›

›

L8

¯

. (8.32)

Using the estimates (9.1a), (8.3), (8.13), and (8.15) we obtain that

›

›H´1∇̌pH2PJNq
›

›

L8
ď

´

1
2 ` ε

1
6

¯

e´
s
2

}PJNB1H}L8 ď ε
1
4 e´

s
2

›

›H´1∇pH2Pq
›

›

L8
ď

´

1
2 ` ε

1
6

¯

e´
s
2 .

Using the above estimates, and recalling our choice of λ “ δ2

16m2 , the bound (8.32) becomes

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F
pmq
Ui,p2q

BγUi

ˇ

ˇ

ˇ
ď 4E2

m

´

δ
4p

1
2 ` ε

1
6 q ` 2mε

1
4 `mεp1

2 ` ε
1
6 q

¯

ď δE2
m , (8.33)
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upon taking ε to be sufficiently small. Lastly, for the third term in (8.23a), we similarly have

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F
pmq
Ui,p3q

BγUi

ˇ

ˇ

ˇ

ď 4Eme
´ s

2

›

›∇̌P
›

›

L8

›

›H2P
›

›

9Hm ` 4e
s
2 }P}L8 }B1P}L8

ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇBγpH2JNq ¨ BγU
ˇ

ˇ . (8.34)

For the second term in (8.34) we recall that JN is an affine function, and thusD2pJNq “ 0. From the Leibniz
rule, the Moser inequality (A.4), the estimates (4.1a), (9.1a), (8.3), (8.13), the interpolation bound (A.5), and
the norm comparison (8.2), we moreover have that

›

›BγpH2JNq ´ 2HJNBγH
›

›

L2 ď e´
s
2 }pJNq,µ}L8 γµ

›

›Bγ´eµpH2q
›

›

L2 ` Cm }JN}L8

m´1
ÿ

j“1

›

›DjHDm´jH
›

›

L2

ď Cmε
1
2 e´

s
2 }H}L8 }H} 9Hm´1 ` Cm }∇H}L8 }H} 9Hm´1

ď Cmε
1
2 e´

s
2 }H}L8 }∇H}

2
2m´5

L8 }H}
2m´7
2m´5

9Hm
` Cm }∇H}

2m´3
2m´5

L8 }H}
2m´7
2m´5

9Hm

ď Cmpε
1
3 e´

s
2 q

2m´3
2m´5 pλ´

m
2 Emq

2m´7
2m´5

ď ε
1
3 e´

s
2Em ` ε

1
2 e´s (8.35)

by taking ε to be sufficiently small in terms of m and λ. From (9.1a), (8.3), (8.35), the definition of the Em
norm in (8.1), and the Cauchy–Bunyakovsky inequality we deduce that

ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇBγpH2JNq ¨ BγU
ˇ

ˇ ď 2ε
1
3 e´

s
2E2

m ` εe
´s ` 3κ´1

0 E2
m . (8.36)

The above estimate is combined with the bound

}P}L8 }B1P}L8 ď
´

κ0
4 ` ε

1
8

¯

e´
s
2 ,

which follows from (8.13) and (8.15), and with the estimate
›

›∇̌P
›

›

L8

›

›H2P
›

›

9Hm ď Cme
´ s

2

`

}P} 9Hm ` κ0 }H} 9Hm

˘

ď Cmκ0e
´ s

2λ´
m
2 Em ,

which follows from the fact that κ0 ě 1, the Moser inequality, (8.2), (8.3), (8.13) and (8.15), to imply that
the right side of (8.34) is further estimated as

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F
pmq
Ui,p3q

BγUi

ˇ

ˇ

ˇ

ď Cmκ0λ
´m

2 E2
me
´s ` 4

´

κ0
4 ` ε

1
8

¯´

2ε
1
3 e´

s
2E2

m ` εe
´s ` 3κ´1

0 E2
m

¯

ď p3` δqE2
m ` ε

1
2 e´s , (8.37)

after taking ε to be sufficiently small, in terms of δ, κ0, and m.
The bounds (8.31), (8.33), and (8.37) provide the needed estimate for the contribution of the F pmqUi

term

in (8.22a) to (8.21a). It remains to bound the contribution from the lower order term F pămqUi
, which we recall

is decomposed in three pieces, according to (8.23b). Next, we estimate these three contributions.
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The difficulty in addressing the F pămqUi,p1q
term defined in (8.23b) arises due to the fact that the bootstrap

assumption for A in (4.13) does not include bounds on the full Hessian ∇2A. Therefore, we need to split
off the Aν (i.e. U ¨ Tν) contributions from the W and Z contributions (i.e. U ¨N) to this term. Using (8.27)
we write the first term in (8.23b) as

F pămqUi,p1q
“ I1 ` I2 ` I3 , (8.38)

where

I1 “ ´

m´2
ÿ

j“1

ÿ

|β|“j,βďγ

ˆ

γ

β

˙

Bγ´βgUB
βB1pU ¨ NNiq ,

I2 “ ´

m´2
ÿ

j“1

ÿ

|β|“j,βďγ

ˆ

γ

β

˙

Bγ´βgUB
βpB1AνT

ν
i q ,

I3 “ ´

m´2
ÿ

j“1

ÿ

|β|“j,βďγ

ˆ

γ

β

˙

Bα´βhνUB
βBνUi .

We estimate the contributions of the three terms in (8.38) individually.
First, for the I1 term in (8.38), by Lemma A.3 with q “ 6p2m´3q

2m´1 , we have that

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

|I1 B
γUi| À

›

›DmgU
›

›

a

L2

›

›DmU
›

›

b

L2

›

›D2gU
›

›

1´a

Lq

›

›D2pU ¨ NNq
›

›

1´b

Lq

›

›DmU
›

›

L2 , (8.39)

where a and b obey a ` b “ 1 ´ 1
2m´4 . Note by (2.34c) that gU does not include any A term. Thus, using

the bootstrap bounds (4.1)–(4.12), or alternatively by appealing directly to (4.7), (9.1a) and the last bound
in (9.4), and the definition of X psq in (4.4) we deduce that

›

›D2gU
›

›

LqpX psqq ÀM
›

›η´
1
6

›

›

LqpX psqq `M
2e´

s
2 |X psq|

1
q ÀM (8.40)

since q P r11
2 , 6q for m ě 18. Similarly, from the first four bounds in (4.24) (bounds which do not rely on

any A estimates) and from (9.1a) (which only uses (4.1a) and (4.5)), we deduce that
›

›D2ppU ¨ NqNq
›

›

LqpX psqq ÀMe´
s
2

›

›η´
1
6

›

›

LqpX psqq `Me´s |X psq|
1
q ÀMe´

s
2 . (8.41)

Moreover, from (8.28), the bounds listed above (8.31), the Poincaré inequality in the y̌ direction, and the
fact that the diameter of X psq in the eµ directions is 4ε

1
6 e

s
2 we have that

›

›DmgU
›

›

L2 À e
s
2 }U} 9Hm ` ε

1
4 }U} 9Hm´1 À e

s
2 }U} 9Hm . (8.42)

By combining (8.40)–(8.42) we obtain that the right side of (8.39) is bounded from above as
›

›DmgU
›

›

a

L2

›

›DmU
›

›

b

L2

›

›D2gU
›

›

1´a

Lq

›

›D2pU ¨ NNq
›

›

1´b

Lq

›

›DmU
›

›

L2

À pe
s
2

›

›U
›

›

9Hmq
a
›

›U
›

›

b
9HmM

1´apMe´
s
2 q1´b

›

›U
›

›

9Hm

ÀM2´a´be
pa`b´1qs

2

›

›U
›

›

1`a`b
9Hm .

Recalling from Lemma A.3 that 1 ´ a ´ b “ 1
2m´4 P p0, 1q, the and using the norm equivalence (8.2), by

Young’s inequality with a small parameter δ ą 0, we have that the left side of (8.39) is bounded as

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

|I1 B
γUi| ď CmM

2´a´be
pa`b´1qs

2 λ
´mp1`a`bq

2 E1`a`b
m
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ď δE2
m ` e

´sM4m´3 . (8.43)

In the last inequality we have used that by definition λ “ λpm, δq, δ P p0, 1
32 s is a fixed universal constant,

and Cm is a constant that only depends on m; thus, we may use a power of M (which is taken to be
sufficiently large) to absorb all the m and δ dependent constants.

Next, we estimate the I2 term in (8.38). First, we note that by (A.3) we have

}I2}L2 À

m´2
ÿ

j“1

›

›Dm´1´jDgU
›

›

L
2pm´1q
m´1´j

›

›DjpB1AνT
νq
›

›

L
2pm´1q

j

À

m´2
ÿ

j“1

}gU}
m´1´j
m´1

9Hm
}DgU}

j
m´1

L8 }B1AνT
ν}

j
m´1

9Hm´1
}B1AνT

ν}

m´1´j
m´1

L8 .

Then, by appealing to (2.34c), (4.7), (4.13), (9.1a), (9.4), (8.2), (8.42), and (A.4), we deduce

}I2}L2 À

m´2
ÿ

j“1

´

e
s
2 }U} 9Hm

¯

m´1´j
m´1

´

}A} 9Hm `Mεe´
m`2

2
s
¯

j
m´1

´

Me´
3s
2

¯

m´1´j
m´1

À

m´2
ÿ

j“1

´

λ´
k
2Em

¯

m´1´j
m´1

´

λ´
k
2Em `Mεe´

m`2
2
s
¯

j
m´1 `

Me´s
˘

m´1´j
m´1

À pMεq
1

m´1λ´
m
2 Em `Me´s

since }DgU}L8 À 1. By taking ε sufficiently small, in terms of M , λ “ λpm, δq, δ, and m, we obtain from
the above estimate that

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

|I2 B
γUi| ď δE2

m ` e
´s (8.44)

for all s ě ´ log ε.
At last, we estimate the I3 term in (8.38), which is estimated similarly to the I2 term as

}I3}L2 À

m´2
ÿ

j“1

}hU}
m´1´j
m´1

9Hm
}DhU}

j
m´1

L8 }BνUi}
j

m´1

9Hm´1
}BνUi}

m´1´j
m´1

L8 .

From (8.29), the bounds (4.7), (4.12), (4.13), (9.1a), and the Moser inequality (A.4), we have

}hU} 9Hm À e´
s
2 }NU ¨ N} 9Hm ` κe

´ s
2 }AγT

γ} 9Hm ÀMe´
s
2 }U} 9Hm `Mεe´

m`1
2
s .

On the other hand, by (9.5) we have }DhU}L8 À e´s, while from (4.7), (4.12), (4.13), and (8.27) we obtain
›

›∇̌U
›

›

L8
À e´

s
2 . Combining the above three estimates, we deduce that

}I3}L2 À

m´2
ÿ

j“1

´

Me´
s
2 }U} 9Hm ` e

´2s
¯

m´1´j
m´1

e´
j

m´1
s
}U}

j
m´1

9Hm
e
´
m´1´j
2pm´1q

s
ÀMe´s }U} 9Hm ` e

´s

from which we deduce

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

|I3 B
γUi| ď ε

1
2E2

m ` e
´s (8.45)
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upon taking M to be sufficiently large in terms of m, and ε sufficiently large in terms of M . Combining
(8.43), (8.44), and (8.45), we have thus shown that

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F
pămq
Ui,p1q

BγUi

ˇ

ˇ

ˇ
ď p2δ ` ε

1
2 qE2

m `M
4m´2e´s . (8.46)

We next turn to the second term in (8.23b), which involves only derivatives of P , H, and JN. For the
first term (the one with an e

s
2 prefactor) we apply the same bound as in (8.39), while for the second term we

use (A.3), to obtain

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F pămqUi,p2q

BγUi

ˇ

ˇ

ˇ

À pe
s
2

›

›DmpH2PJNq
›

›

L2q
a
›

›DmP
›

›

b

L2pe
s
2

›

›D2pH2PJNq
›

›

Lq
q1´a

›

›D2P
›

›

1´b

Lq

›

›DmU
›

›

L2

` e´
s
2

m´2
ÿ

j“1

›

›H2P
›

›

m´1´j
m´1

9Hm

›

›DpH2Pq
›

›

j
m´1

L8 }P}
j

m´1

9Hm

›

›∇̌P
›

›

m´1´j
m´1

L8

›

›DmU
›

›

L2

“: T1 ` T2 , (8.47)

with q “ 6p2m´3q
2m´1 , and a` b “ 1´ 1

2m´4 . Recalling that P “ SH´1 “ pU ¨N´ ZqH´1, the definition of
H, our bootstrap assumptions on Z and K, exactly as in (8.41) we have the estimate

›

›D2P
›

›

LqpX psqq À
›

›D2pU ¨ Nq
›

›

LqpX psqq `
`›

›D2Z
›

›

L8
` }DH}L8 }DpU ¨ N´ Zq}L8

˘

|X psq|
1
q

` }U ¨ N´ Z}L8
´

›

›D2H
›

›

L8
` }DH}2L8

¯

|X psq|
1
q

ÀMe´
s
2 .

Thus, the Hessian of P obeys the same estimate as the Hesssian of pU ¨ NqN in (8.41). Similarly, by using
(9.1a), (8.3), (8.13), and (8.15), as in (8.40) and (8.41) we have

e
s
2

›

›D2pH2PJNq
›

›

LqpX psqq À e
s
2

›

›D2pH2Pq
›

›

LqpX psqq `
›

›DpH2Pq
›

›

L8
|X psq|

1
q ÀM .

The above estimate is exactly the same as the Hessian of gU bound in (8.40). Clearly we have that }P} 9Hm À

λ´
m
2 Em, and additionally, from the Moser inequality (9.1a), (8.3), (8.13), and (8.15) we have that

e
s
2

›

›H2PJN
›

›

9Hm À e
s
2

`

κ0 }H} 9Hm ` }P} 9Hm

˘

À e
s
2λ´

m
2 Em

which is the same as the bound on on the 9Hm norm of gU obtained in (8.42). In view of these analogies,
proceeding in exactly the same way as in (8.43), we obtain that the first term in (8.47) is estimated as

T1 ď δE2
m ` e

´sM4m´3 . (8.48)

For the second term in (8.43) we recall that by the Moser inequality, (8.3), and (8.15) we have
›

›H2P
›

›

9Hm À

}P} 9Hm ` κ0 }H} 9Hm À λ´
m
2 Em, and by also appealing to (8.13) we obtain

T2 À λ´me´
s
2E2

m

m´2
ÿ

j“1

›

›DpH2Pq
›

›

j
m´1

L8

›

›∇̌P
›

›

m´1´j
m´1

L8 À λ´me´sE2
m ď δE2

m (8.49)
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after taking ε to be sufficiently small to absorb the m, λ, and δ-dependent constants. By combining (8.47),
(8.48), and (8.49), we obtain that

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F pămqUi,p2q

BγUi

ˇ

ˇ

ˇ
ď 2δE2

m ` e
´sM4m´3 . (8.50)

At last, we consider the third term in (8.23b). Recall that cf. (8.13) that e
s
2 }B1P}L8 ď 1, and that since

JN is linear in y̌, by Poincaré inequality in the y̌ direction, and the fact that the diameter of X psq in the ě
directions is 4ε

1
6 e

s
2 , we obtain that

›

›H2JN
›

›

9Hm À }H} 9Hm . Thus, by appealing to (9.1a), (8.2), (8.13), (A.3)
and the Poincaré inequality in the y̌ direction we arrive at

2
ÿ

|γ|“m

λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F pămqUi,p3q

BγUi

ˇ

ˇ

ˇ

À Em

m´1
ÿ

j“1

›

›DpH2JNq
›

›

j
m´1

L8

›

›H2JN
›

›

m´j´1
m´1

9Hm
}P}

1´ j
m´1

L8 }P}
j

m´1

9Hm´1

À Em

m´1
ÿ

j“1

´

εe´
s
2

¯

j
m´1

}H}
m´j´1
m´1

9Hm
κ

1´ j
m´1

0

´

ε
1
6 e

s
2 }P} 9Hm

¯

j
m´1

ď δE2
m (8.51)

upon taking ε to be sufficiently small, in terms of λ, m, and κ0.
The bounds (8.46), (8.50), and (8.51) provide the needed estimate for the contribution of the F pămqUi

term in (8.22a) to (8.21a), thereby completing the proof of (8.21a).
Proof of (8.21b). The proof is extremely similar to that of (8.21a). Comparing the forcing terms in

(8.24) with those in (8.23a), and those in (8.25), with those in (8.23b), we see that they only differ by
exchanging U with P in several places; in fact, here we have fewer terms to bound. The contribution from
F pmqP,p1q is estimated in precisely the same way as the one from F pmqUi,p1q

in (8.31). Similarly, the contribution

from F pmqP,p2q is estimated in precisely the same way as the one from F pmqUi,p2q
in (8.33). Note that there is no

third term in the definition of F pmqP , and thus we do not need to add a p3 ` δq to our error estimate, as we
had to do for the U forcing in view of (8.37). Next, F pămqP,p1q , F pămqP,p2q , and F pămqP,p3q are bounded in precisely the

same way as F pămqUi,p1q
, F pămqUi,p2q

, and F pămqUi,p3q
in (8.46), (8.50) and respectively (8.51). To avoid redundancy, we

omit these details.
Proof of (8.21c). Again, the proof is similar to that of (8.21a), except that in (8.26a) and (8.26b) we

have much fewer terms. We need to be slightly careful here, as the BγH evolution is tested with κ2
0B
γH,

rather than just BγH, and we need to ensure that our damping bounds are independent of κ0! The reason
this is achieved is as follows. For the terms which contain a DmH, such as the first two terms in (8.26a),
there is no issue as each of the two powers of κ0 are paired with an }H} 9Hm . An issue may arise in terms
which contain DmU , such as the last two terms in (8.26a). The important thing to notice here is that each
such term is paired with }∇H}L8 . As opposed to ∇P , which satisfies }∇P}L8 «

1
2e
´ s

2 , by (8.13) we
have that }∇H}L8 ď ε

1
3 e´

s
2 . This additional factor of ε

1
3 is able to absorb all the stray powers of κ0. A

similar argument applies to the terms in (8.26b), showing that the resulting bounds are independent of κ0.
The contribution from F pmqH is estimated in precisely the same way as the one from F pmqUi,p1q

in (8.31), while

the contribution of F pămqH , is bounded in precisely the same way as F pămqUi,p1q
in (8.46). To avoid redundancy,

we omit further details.
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8.3 The Em energy estimate

We now turn to the main energy estimate for the differentiated system (8.18).

Proposition 8.4 ( 9Hm estimate for U , P , and H). For any integer m satisfying

m ě 18 , (8.52)

with δ and λ “ λpm, δq as specified in Lemma 8.3, we have the estimate

E2
mpsq ď e´2ps´s0qE2

mps0q ` 3e´sM4m´1
´

1´ e´ps´s0q
¯

(8.53)

for all s ě s0 ě ´ log ε.

Proof of Proposition 8.4. We fix a multi-index γ P N3
0 with |γ| “ m, and consider the sum of the L2

inner-product of (8.18a) with 2λ|γ̌|BγU i and the L2 inner-product of (8.18b) with 2λ|γ̌|H2BγP and the L2

inner-product of (8.18c) with 2κ2
0λ
|γ̌|BγH. With the damping function Dγ defined in (8.19) and the transport

velocity VU defined in (2.40c), using the fact that 9Q is skew-symmetric and that pBs ` VU ¨∇qH “ 0, we
find that

d

ds
λ|γ̌|

ż

R3

´

|BγU |2 `H2 |BγP|2 ` κ2
0 |B

γH|2
¯

` λ|γ̌|
ż

R3

p2Dγ ´ divVU q
´

|BγU |2 `H2 |BγP|2 ` κ2
0 |B

γH|2
¯

` 8γ1βτβ3λ
|γ̌|

ż

R3

H2pBγPqJpN ¨ BγUqe
s
2 B1P

` 4βτβ3λ
|γ̌|

ż

R3

pBγPqH2JpN ¨ BγUqe
s
2 B1P ` pBγPq2H2Je

s
2 B1pU ¨ Nq

` 4βτβ3λ
|γ̌|

ż

R3

H2P
´

e
s
2 JpN ¨ BγUqB1pB

γPq ` e
s
2 JB1pN ¨ B

γUqpBγPq
¯

` 4βτβ3λ
|γ̌|

ż

R3

H2P
´

e´
s
2 pBγUνqBνpB

γPq ` e´
s
2 pBγPqBνpBγUνq

¯

“ 2λ|γ̌|
ż

R3

´

F pγq
U i
BγUi `H2F pγqP BγP ` κ2

0F
pγq
H BγH

¯

. (8.54)

We note that in the last two integrals on the left-hand side of the identity (8.54) we may integrate by parts:

4βτβ3λ
|γ̌|

ż

R3

H2P
´

e
s
2 JpN ¨ BγUqB1pB

γPq ` e
s
2 JB1pN ¨ B

γUqpBγPq
¯

` 4βτβ3λ
|γ̌|

ż

R3

H2P
´

e´
s
2 pBγUνqBνpB

γPq ` e´
s
2 pBγPqBνpBγUνq

¯

“ ´4βτβ3λ
|γ̌|

ż

R3

e
s
2 B1

`

H2P
˘

JpN ¨ BγUqpBγPq

´ 4βτβ3λ
|γ̌|

ż

R3

e´
s
2 Bν

`

H2P
˘

pBγUνqpB
γPq

where we have used that B1J “ 0. Therefore, upon rearranging, the energy equality (8.54) becomes

d

ds
λ|γ̌|

ż

R3

´

|BγU |2 `H2 |BγP|2 ` κ2
0 |B

γH|2
¯
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` λ|γ̌|
ż

R3

p2Dγ ´ divVU q
´

|BγU |2 `H2 |BγP|2 ` κ2
0 |B

γH|2
¯

` 8γ1βτβ3λ
|γ̌|

ż

R3

H2pBγPqJpN ¨ BγUqe
s
2 B1P

` 4βτβ3λ
|γ̌|

ż

R3

pBγPq2H2Je
s
2 B1pU ¨ Nq ´ 2pBγPqHJpN ¨ BγUqe

s
2PB1H´ pBγUνqpBγPqe´

s
2 Bν

`

H2P
˘

“ 2λ|γ̌|
ż

R3

´

F pγq
U i
BγUi `H2F pγqP BγP ` κ2

0F
pγq
H BγH

¯

. (8.55)

We shall next obtain a lower bound for the second thru fourth integrals on the right side of (8.55).
For the second integral, we recall (8.19), use (2.40c), and the bounds (4.11), (9.4), (9.5), (5.12) to obtain

the lower bound

2Dγ ´ divVU “ |γ| ´ 5
2 ` 2γ1 ` p2γ1 ´ 1qpβτβ1JB1W ` B1GU q ´ Bνh

ν
U

ě |γ| ´ 5
2 ` 2γ1 ´ βτβ1p2γ1 ´ 1q` ´ ε

1
16 . (8.56)

For the third integral, we note that by the definitions (2.38), (2.42b) and (2.42c)

2H∇P “ e´
s
2∇W ´∇Z ´ 1

γS∇K (8.57)

and thus, from (4.11), (4.7), (4.12), (4.24), (5.12), the third integral on the left-hand side of (8.55) has an
integrand which is bounded as

8γ1βτβ3H2
ˇ

ˇpBγPqJpN ¨ BγUqe
s
2 B1P

ˇ

ˇ

|BγU |2 `H2 |BγP|2
ď 4γ1βτβ3JHe

s
2 |B1P|

ď 2γ1βτβ3J
ˇ

ˇB1W ´ e
s
2 B1Z ´ γ´1Se

s
2 B1K

ˇ

ˇ

ď 2γ1βτβ3

´

1` 2M
1
2 e´s

¯

ď 2γ1βτβ3 ` ε
1
2 . (8.58)

Lastly, we compute B1pU ¨Nq from (2.38), BνP from (8.57), and by using (4.11), (4.7), (4.12), (4.14), (4.24),
(5.12), (8.3), and (8.15), the integrand in the fourth integral on the left-hand side of (8.55) may be estimated
as

4βτβ3

ˇ

ˇpBγPq2H2Je
s
2 B1pU ¨ Nq ´ 2pBγPqHJpN ¨ BγUqe

s
2PB1H´ pBγUνqpBγPqe´

s
2 Bν

`

H2P
˘ˇ

ˇ

|BγU |2 `H2 |BγP|2

ď 4βτβ3

´

Je
s
2

ˇ

ˇB1pU ¨ Nq
ˇ

ˇ` Je
s
2

ˇ

ˇPB1H
ˇ

ˇ` 1
2H

´1e´
s
2

ˇ

ˇBν
`

H2P
˘ˇ

ˇ

¯

ď 4βτβ3

`

1
2 `Me´s

˘

ď 2βτβ3 ` ε
1
2 . (8.59)

Combining the bounds (8.56), (8.58), and (8.59), with the energy equality (8.55), we arrive at

d

ds

ż

R3

λ|γ̌|
´

|BγU |2 `H2 |BγP|2 ` κ2
0 |B

γH|2
¯

`Dtotal

ż

R3

λ|γ̌|
´

|BγU |2 `H2 |BγP|2 ` κ2
0 |B

γH|2
¯

ď 2λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F pγq
U i
BγUi `H2F pγqP BγP ` κ2

0F
pγq
H BγH

ˇ

ˇ

ˇ
, (8.60)

where we have denoted

Dtotal “ |γ| ´
5
2 ` 2γ1 ´ βτβ1p2γ1 ´ 1q` ´ ε

1
16 ´ 2γ1βτβ3 ´ 2βτβ3 ´ 2ε

1
2 .
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The crucial observation here is that because β1 ` β3 “ 1 (cf. (2.18)), and appealing to (4.3), the damping
term Dtotal has the lower bound

Dtotal ě |γ| ´
5
2 ` 2γ1p1´ βτ q ´ 2βτβ3 ´ ε

1
16 ´ 2ε

1
2 ě m´ 9

2 (8.61)

for ε taken sufficiently small, in terms of α and m. Upon summing over |γ| “ m, the energy inequality and
(8.60) and the damping lower bound (8.61) thus yield

d

ds
E2
m `

`

m´ 9
2

˘

E2
m ď

ÿ

|γ|“m

2λ|γ̌|
ż

R3

ˇ

ˇ

ˇ
F pγq
U i
BγUi `H2F pγqP BγP ` κ2

0F
pγq
H BγH

ˇ

ˇ

ˇ
. (8.62)

We are left with estimating the right side of (8.62), which is the content of Lemma 8.3 above. By Lemma
8.3, for 0 ă δ ď 1

32 ,

d
dsE

2
mpsq ` pm´ 6qE2

mpsq ď p9` 21δqE2
m ` 3e´sM4m´1 ,

and hence, by since m was taken sufficiently large in (8.52), we have that

d
dsE

2
m ` 2E2

m ď 3e´sM4m´1 ,

and so we obtain that

E2
mpsq ď e´2ps´s0qE2

mps0q ` 3e´sM4m´1
´

1´ e´ps´s0q
¯

,

for all s ě s0 ě ´ log ε. This concludes the proof of Proposition 8.4.

In conclusion of this section, we mention that Proposition 8.4 applied with s0 “ ´ log ε, in conjunction
with Lemma 8.2, yields the proof of Proposition 4.3.

Proof of Proposition 4.3. The initial datum assumption (3.23) together with the first bound in (8.5) implies
that

E2
mp´ log εq ď 2κ2

0ε .

Thus, from (8.53) the second bound in (8.5) we obtain

e´s }W }29Hm ` }Z}
2
9Hm ` }A}

2
9Hm ` }K}

2
9Hm

ď 4λ´mE2
mpsq ` 4e´2s

ď 8κ2
0λ
´mε´1e´2s ` 12λ´me´sM4m´1p1´ ε´1e´sq ` 4e´2s

ď 16κ2
0λ
´mε´1e´2s ` e´sM4mp1´ ε´1e´sq

by taking M sufficiently slow. The inequalities (4.16a)–(4.16b) immediately follow.

9 Auxiliary lemmas and bounds on forcing functions

We begin by recording some useful bounds that will be used repetitively throughout the section.

Lemma 9.1. For y P X psq and for m ě 0 we have
ˇ

ˇ∇̌mf
ˇ

ˇ`
ˇ

ˇ∇̌mpN´ N0q
ˇ

ˇ`
ˇ

ˇ∇̌mpTν ´ Tν0q
ˇ

ˇ

`
ˇ

ˇ∇̌mpJ´ 1q
ˇ

ˇ`
ˇ

ˇ∇̌mpJ´1 ´ 1q
ˇ

ˇ À εM2e´
m`2

2
s |y̌|2 À εe´

m
2
s , (9.1a)
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ˇ

ˇ

ˇ
∇̌m 9f

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
∇̌m 9N

ˇ

ˇ

ˇ
ÀM2e´

m`2
2
s |y̌|2 À ε

1
4 e´

m
2
s . (9.1b)

Moreover, we have the following estimates on V

|BγV | À

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

M
1
4 if |γ| “ 0

M2ε
1
2 e´

3
2
s if |γ| “ 1 and γ1 “ 1

M2ε
1
2 e´

s
2 if |γ| “ 1 and γ1 “ 0

M4ε
3
2 e´s if |γ| “ 2 and γ1 “ 0

0 else

(9.2)

for all y P X psq.

Proof of Lemma 9.1. The estimates (9.1a) follow directly from the definitions of f , N, T and J, together
with the bounds on φ given in (4.1a) and the inequality (4.5). Similarly, (9.1b) follows by using the 9φ
estimate in (4.1b). To obtain the bound (9.2), we recall that V is defined in (2.32), employ the bounds on 9ξ
and 9Q given by (4.1b) and (4.2), and the fact that |R´ Id | ď 1 which follows from (4.1a) and the definition
of R in (2.2) of [4].

9.1 Transport estimates

Lemma 9.2 (Estimates for GW , GZ , GU , hW , hZ and hU ). For ε ą 0 sufficiently small, and y P X psq, we
have

|BγGW | À

$

’

’

’

’

&

’

’

’

’

%

Me´
s
2 `M

1
2 |y1| e

´s ` ε
1
3 |y̌| , if |γ| “ 0

M2ε
1
2 , if γ1 “ 0 and |γ̌| “ 1

Me´
s
2 , if γ “ p1, 0, 0q or |γ| “ 2

M
1
2 e´s, if γ “ p2, 0, 0q

, (9.3)

ˇ

ˇ

ˇ
BγpGZ ` p1´ β2qe

s
2κ0q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
BγpGU ` p1´ β1qe

s
2κ0q

ˇ

ˇ

ˇ
À

$

’

’

’

’

&

’

’

’

’

%

ε
1
2 e

s
2 , if |γ| “ 0

M2ε
1
2 , if γ1 “ 0 and |γ̌| “ 1

Me´
s
2 , if γ “ p1, 0, 0q or |γ| “ 2

M
1
2 e´s, if γ “ p2, 0, 0q

,

(9.4)

|BγhW | ` |B
γhZ | ` |B

γhU | À

$

’

’

’

’

&

’

’

’

’

%

e´
s
2 , if |γ| “ 0

e´s, if γ1 “ 0 and |γ̌| “ 1

e´sη´
1
6 , if γ “ p1, 0, 0q, or p|γ| “ 2 and |γ̌| “ 1, 2q

e´p2´
3

2m´5
qs, if γ “ p2, 0, 0q

. (9.5)

Furthermore, for |γ| P t3, 4u we have the lossy global estimates

|BγGW | À e´p
1
2
´
|γ|´1
2m´7

qs , (9.6)

|BγhW | À e´s , (9.7)

for all y P X psq.

Proof of Lemma 9.2. The bounds for the first three cases in (9.3) and (9.4) are the same as in Lemma 7.2 in
[4]. It remains to consider the case γ “ p2, 0, 0q. By (2.34), we have that

ˇ

ˇB2
1GW

ˇ

ˇ`
ˇ

ˇB2
1GZ

ˇ

ˇ`
ˇ

ˇB2
1GU

ˇ

ˇ À e
s
2

ˇ

ˇB2
1Z

ˇ

ˇ ,
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so that an application of (4.12) provides the bounds for both (9.3) and (9.4).
For the estimates (9.5), the proof of the first three cases is given in Lemma 7.2 in [4]. For the case

γ “ p2, 0, 0q, by (2.35), we have that
ˇ

ˇB2
1hW

ˇ

ˇ`
ˇ

ˇB2
1hZ

ˇ

ˇ`
ˇ

ˇB2
1hU

ˇ

ˇ À e´
s
2 p
ˇ

ˇB2
1Z

ˇ

ˇ`
ˇ

ˇB2
1A

ˇ

ˇq ÀM
1
4 e´2s ` e´p2´

3
2m´5

qs ,

where we have applied (4.12) and (4.17) to attain the desired estimate.

9.2 Forcing estimates

Lemma 9.3 (Estimates on BγFW , BγFZ and BγFA). For y P X psq we have the force bounds

|BγFW | ` e
s
2 |BγFZ | À

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

e´
s
2 , if |γ| “ 0

e´sη´
1
15 , if γ1 “ 1 and |γ̌| “ 0

e´
5
8
s, if γ1 “ 0 and |γ̌| “ 1

e´p1´
4

2m´7
qsη´

1
15 , if γ1 ě 1 and |γ| “ 2

e
´p 5

8
´ 9

4p2m´7q
qs
, if γ1 “ 0 and |γ̌| “ 2

, (9.8)

|BγFAν | À

$

’

&

’

%

M
1
2 e´s, if |γ| “ 0

pM
1
2 `M2η´

1
6 qe´s, if γ1 “ 0 and |γ̌| “ 1

e´p1´
3

2m´7qsη´
1
6 , if γ1 “ 0 and |γ̌| “ 2

. (9.9)

Moreover, we have the following higher order estimate at y “ 0
ˇ

ˇ

ˇ
pBγ rFW q

0
ˇ

ˇ

ˇ
À e´p

1
2
´ 4

2m´7
qs for |γ| “ 3 , (9.10)

and the bound on rFW given by

ˇ

ˇ

ˇ
Bγ rFW

ˇ

ˇ

ˇ
ÀMε

1
6

$

’

’

’

’

&

’

’

’

’

%

η´
1
6 , if |γ| “ 0

η´
2
5 , if γ “ p1, 0, 0q

η´
1
3 , if γ1 “ 0 and |γ̌| “ 1

1, if |γ| “ 4 and |y| ď `

(9.11)

holds for all |y| ď L.

Proof of Lemma 9.3. By the definition (2.36a) we have

|BγFW | À
ˇ

ˇBγpSTνµBµAνq
ˇ

ˇ` e´
s
2

ˇ

ˇ

ˇ
BγpAνT

ν
i

9Niq
ˇ

ˇ

ˇ
` e´

s
2

ˇ

ˇBγpAνT
ν
jNiq

ˇ

ˇ

` e´
s
2

ˇ

ˇBγ
``

Vµ ` NµU ¨ N`AνT
ν
µ

˘

AγT
γ
i Ni,µ

˘ˇ

ˇ` e´
s
2

ˇ

ˇBγ
`

S
`

AνT
ν
µ,µ ` U ¨ NNµ,µ

˘˘ˇ

ˇ

`
ˇ

ˇesBγpJS2B1Kq
ˇ

ˇ`
ˇ

ˇBγpNµS
2BµKq

ˇ

ˇ

looooooooooooooooooooomooooooooooooooooooooon

IW,γ

The bounds for the first five terms on the right side follow as in the proof of Lemma 7.3 in [4], and we have
that

|BγFW | À |IW,γ | `

$

’

’

’

’

&

’

’

’

’

%

e´
s
2 , if |γ| “ 0

e´sη
´ 1

6
`

2|γ|`1
3p2m´5q pyq, if γ1 ě 1 and |γ| “ 1, 2

M2e´s, if γ1 “ 0 and |γ̌| “ 1

e´p1´
3

2m´7
qs, if γ1 “ 0 and |γ̌| “ 2
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Invoking (3.4), (4.14), (4.20), (9.1a) and Lemma 4.5, we obtain that

|IW,γ | À
ÿ

βďγ, β1“0

e´
|β|
2
s
´

es
ˇ

ˇ

ˇ
Bγ´β

`

S2B1K
˘

ˇ

ˇ

ˇ
` ε

ˇ

ˇ

ˇ
Bγ´β

`

S2∇̌K
˘

ˇ

ˇ

ˇ

¯

(9.12)

À

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

e´
s
2 , if |γ| “ 0

e´spη´
1
15 ` e´

5
8
sq, if γ “ p1, 0, 0q

e´
5
8
s, if γ1 “ 0 and |γ̌| “ 1

e´p1´
4

2m´7
qsη´

1
15 ` e´p

13
8
´ 3

2m´7
qs, if γ1 “ 1 and |γ̌| “ 1

e´p1´
4

2m´7
qsη´

1
15 , if γ “ p2, 0, 0q

e´p
5
8
`

1´2β
2m´7

qs, if γ1 “ 0 and |γ̌| “ 2

(9.13)

Using the same set of estimates we also obtain the lossy bound

|IW,γ | À e´
s
2 (9.14)

for |γ| “ 3, which we shall need later in order to prove (9.10), and

|IW,γ | À ε
1
6 (9.15)

for |γ| “ 4 and |y| ď `, which we shall need later in order to prove the last case of (9.11).
Then, additionally using (4.5), we obtain the stated bounds claimed in (9.8) for BγFW . Comparing

(2.36b) and (2.36a), we note that the estimates on BγFZ claimed in (9.8) are completely analogous to the
estimates ones BγFW up to a factor of e´

s
2 .

Now we consider the estimates on FA. By definition (2.36c), we have that

|BγFAν | À e´
s
2

ˇ

ˇBγpST νµ BµSq
ˇ

ˇ` e´s
ˇ

ˇ

ˇ
Bγ

´

pU ¨ NNi `AγT
γ
i q

9Tνi

¯
ˇ

ˇ

ˇ
` e´s

ˇ

ˇ

ˇ
Bγ

´´

U ¨ NNj `AγT
γ
j

¯

Tνi

¯ˇ

ˇ

ˇ

` e´s
ˇ

ˇBγ
``

Vµ ` U ¨ NNµ `AγT
γ
µ

˘

pU ¨ NNi `AγT
γ
i qT

ν
i,µ

˘ˇ

ˇ`

ˇ

ˇ

ˇ
e´

s
2 BγpS2TνµBµKq

ˇ

ˇ

ˇ

looooooooooomooooooooooon

IA,γ

.

Applying the bounds for the first four terms on the right side from Lemma 7.3 of [4], we see that

|BγFAν | À |IA,γ | `

$

’

&

’

%

M
1
2 e´s, if |γ| “ 0

pM
1
2 `M2η´

1
6 qe´s, if γ1 “ 0 and |γ̌| “ 1

e´p1´
3

2m´7qsη´
1
6 , if γ1 “ 0 and |γ̌| “ 2

. (9.16)

Applying (3.4), (4.14), (4.20), and Lemma 4.5, we find that

|IA,γ | À
ÿ

βďγ, β1“0

e´
|β|`1

2
s
ˇ

ˇ

ˇ
Bγ´βpS2∇̌Kq

ˇ

ˇ

ˇ
À

$

’

’

&

’

’

%

e´s, if |γ| “ 0

M2e´
3
2
s, if γ1 “ 0 and |γ̌| “ 1

e´p
3
2
´
|γ|´1
2m´7

qs, if γ1 “ 0 and |γ̌| “ 2

.

Thus, combining the above estimates, we obtain (9.9).
Again, using the same argument as in Lemma 7.3 in [4] for |γ| “ 3, and using (9.14) yields

ˇ

ˇpBγ rFW q
0
ˇ

ˇ À
ˇ

ˇpIW,γq0
ˇ

ˇ` e´p
1
2
´ 4

2m´7
qs
À e´p

1
2
´ 4

2m´7
qs , (9.17)
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and also for all |y| ď L,

ˇ

ˇBγ rFW
ˇ

ˇ À |IW,γ | `Mε
1
6

$

’

’

’

’

&

’

’

’

’

%

η´
1
6 pyq, if |γ| “ 0

η´
1
2
` 3

2m´5 , if γ1 “ 1 and |γ̌| “ 0

η´
1
3 , if γ1 “ 0 and |γ̌| “ 1

1, if |γ| “ 4 and |y| ď `

. (9.18)

The estimate (9.17) verifies (9.10), while combining (9.18) with (4.5), (9.13) and (9.15) verifies (9.11).

Corollary 9.4 (Estimates on the forcing terms). Assume that m ě 18. Then, we have

ˇ

ˇ

ˇ
F
pγq
W

ˇ

ˇ

ˇ
À

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

e´
s
2 , if |γ| “ 0

e´
s
15 η´

1
3 , if γ1 “ 1 and |γ̌| “ 0

ε
5
24 η´

5
24 , if γ1 “ 0 and |γ̌| “ 1

η
´p 29

60
´ 8

3p2m´7q qψ
1
4 , if γ1 “ 2 and |γ̌| “ 0

M
1
3 η´

1
3 , if γ1 “ 1 and |γ̌| “ 1

M
2
3 η´p

5
24
´ 1

2m´7
q, if γ1 “ 0 and |γ̌| “ 2

(9.19)

ˇ

ˇ

ˇ
F
pγq
Z

ˇ

ˇ

ˇ
À

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

e´s, if |γ| “ 0

M2e´
3
2
sη´

1
15 , if γ1 “ 1 and |γ̌| “ 0

e´s, if γ1 “ 0 and |γ̌| “ 1

e´
3s
2 pM

1
2 ` e

4s
2m´7 η´

1
15 q, if if γ1 ě 1 and |γ| “ 2

e
´p 9

8
´ 9

4p2m´7q
qs
, if γ1 “ 0 and |γ̌| “ 2

(9.20)

ˇ

ˇ

ˇ
F
pγq
Aν

ˇ

ˇ

ˇ
À

$

’

&

’

%

M
1
2 e´s, if |γ| “ 0

pM
1
2 `M2η´

1
6 qe´s, if γ1 “ 0 and |γ̌| “ 1

e´p1´
3

2m´7qsη´
1
6 , if γ1 “ 0 and |γ̌| “ 2

(9.21)

ˇ

ˇ

ˇ
F
pγq
K

ˇ

ˇ

ˇ
À

$

’

&

’

%

M2e´
3
2
s, if γ1 “ 0 and |γ̌| “ 1, 2

ε
1
8 e´

3
2
sη´

1
6 , if γ1 “ 1 and |γ̌| “ 0, 1

ε
1
8 e´

3
2
sη´

1
3ψ

1
4 , if γ1 “ 2 and |γ| “ 0

. (9.22)

Moreover, we have the following higher order estimate
ˇ

ˇ

ˇ

rF
pγq,0
W

ˇ

ˇ

ˇ
À e´p

1
2
´ 4

2m´7
qs for |γ| “ 3 (9.23)

and the following estimates on rF
pγq
W

ˇ

ˇ

ˇ

rF
pγq
W

ˇ

ˇ

ˇ
À ε

1
11 η´

2
5 for γ “ p1, 0, 0q and |y| ď L (9.24)

ˇ

ˇ

ˇ

rF
pγq
W

ˇ

ˇ

ˇ
À ε

1
12 η´

1
3 for γ1 “ 0, |γ̌| “ 1 and |y| ď L (9.25)

ˇ

ˇ

ˇ

rF
pγq
W

ˇ

ˇ

ˇ
À ε

1
8 ` ε

1
10 plogMq|γ̌|´1 for |γ| “ 4 and |y| ď ` . (9.26)

Proof of Corollary 9.4. First we establish (9.19). Note that in this estimate |γ| ď 2, and thus by definition
(2.46) we have
ˇ

ˇ

ˇ
F
pγq
W

ˇ

ˇ

ˇ
À |BγFW | `

ÿ

0ďβăγ

´

ˇ

ˇBγ´βGW B1B
βW

ˇ

ˇ`
ˇ

ˇBγ´βhµW BµB
βW

ˇ

ˇ

¯

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

“:I1

`1|γ|“2

ÿ

|β|“|γ|´1
βďγ,β1“γ1

ˇ

ˇBγ´βpJW qB1B
βW

ˇ

ˇ

looooooooooooooooooooomooooooooooooooooooooon

“:I2

.
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We will first consider the case γ ‰ p2, 0, 0q, since the estimates are analogous to the estimates in the previous
paper. We have from Corollary 7.4 of [4], that

|I1| ÀMη´
1
3

´

e´
s
2 ` ε

1
3 p1|γ|“2 ` 1|γ|“|γ̌|“1q

¯

and |I2| À 1|γ|“2M
|γ̌|
3 η´

1
3 .

Thus combining these estimates with (9.8), we obtain that

ˇ

ˇ

ˇ
F
pγq
W

ˇ

ˇ

ˇ
ÀMη´

1
3 e´

s
2 `

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

e´
s
2 , if |γ| “ 0

e´sη´
1
15 , if γ “ p1, 0, 0q

e´
5
8
s `Mε

1
3 η´

1
3 , if γ1 “ 0 and |γ̌| “ 1

e´p1´
4

2m´7
qsη´

1
15 ` pMε

1
3 `M

1
3 qη´

1
3 , if γ1 “ 1 and |γ̌| “ 1

e´p
5
8
´ 3

2m´7
qs
` pMε

1
3 `M

2
3 qη´

1
3 , if γ1 “ 0 and |γ̌| “ 2

. (9.27)

Then applying (4.5) we obtain (9.19) for all cases except γ “ p2, 0, 0q.
For the special case γ “ p2, 0, 0q, we have from (4.5), (4.6) (with q “ 2), (4.7), (9.3) and (9.5)

|I1| ÀM
1
2 e´sη´

1
3 `M

4
3 e´

s
2 η´

1
3ψ

1
4 ` e´p2´

3
2m´5

qs
`M

2
3 e´sη´

1
2 pyq ÀM

4
3 e´

s
2 η´

1
3ψ

1
4 .

From (9.8) and (4.6) (with q “ 3
4

7´2m
11´2m ), we have that

|BγFW | À e´p1´
4

2m´7
qsη´

1
15 À ψ

1
4 η
´p 29

60
´ 8

3p2m´7q
q
.

Thus since I2 “ 0 for γ “ p2, 0, 0q, we obtain (9.8) for this case.
Similarly, for |γ| ď 2, from (2.47) we have that

ˇ

ˇ

ˇ
F
pγq
Z

ˇ

ˇ

ˇ
À |BγFZ | `

ÿ

0ďβăγ

´

ˇ

ˇBγ´βGZB1B
βZ

ˇ

ˇ`
ˇ

ˇBγ´βhµZBµB
βZ

ˇ

ˇ

¯

` 1|γ|“2

ˇ

ˇB1ZB
γpJW q

ˇ

ˇ`
ÿ

|β|“|γ|´1
βďγ,β1“γ1

ˇ

ˇBγ´βpJW qB1B
βZ

ˇ

ˇ

“: |BγFZ | ` I1 ` 1|γ|“2

ˇ

ˇB1ZB
γpJW q

ˇ

ˇ` I2 . (9.28)

Utilizing the bounds obtained in Corollary 7.4 of [4], we have that

ˇ

ˇB1ZB
γpJW q

ˇ

ˇ ÀM
1
2 e´

3
2
s
´

Mη´
1
61γ1“0 `M

2
3 η´

1
31γ1ě1 ` εe

´ s
2

¯

for |γ| “ 2 ,

I1 À e´
3
2
s
´

M2e´
s
2 `M3ε

1
21|γ̌|ě1 `Mε

1
2 η´

1
6

¯

for |γ| ď 2 ,

I2 À

´

1|γ̌|“1M
1
2 ` 1|γ̌|“2M

¯

e´
3
2
s for |γ| “ 2, |γ̌| ě 1 .

Using (4.5), we have

ˇ

ˇB1ZB
γpJW q

ˇ

ˇ ÀM2e´
3
2
sη´

1
6 for |γ| “ 2 ,

I1 ÀMe´
3
2
sη´

1
6 ` ε

1
21|γ̌|ě1e

´ 3
2
s for |γ| ď 2 .
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Thus combining the above estimates with (4.5) and (9.8), we obtain that

ˇ

ˇ

ˇ
F
pγq
Z

ˇ

ˇ

ˇ
ÀM2e´

3
2
sη´

1
6 ` e´

s
2

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

e´
s
2 , if |γ| “ 0

e´sη´
1
15 , if γ “ p1, 0, 0q

e´
5
8
s `M

1
2 e´s if γ1 “ 0 and |γ̌| “ 1

e´p1´
4

2m´7
qsη´

1
15 `M

1
2 e´s, if γ1 ě 1 and |γ| “ 2

e´p
5
8
`

1´2β
2m´7

qs
`Mε

1
2 e´s, if γ1 “ 0 and |γ̌| “ 2

.

The bounds for
ˇ

ˇF
pγq
A

ˇ

ˇ are obtained in the identical fashion as the bounds for (7.20) in [4].

To prove the
ˇ

ˇF
pγq
K

ˇ

ˇ estimate for |γ| ď 2, from (2.47), we have that
ˇ

ˇ

ˇ
F
pγq
K

ˇ

ˇ

ˇ
À

ÿ

0ďβăγ

´

ˇ

ˇBγ´βGUB1B
βK

ˇ

ˇ`
ˇ

ˇBγ´βhµUBµB
βK

ˇ

ˇ

¯

` 1|γ|“2

ˇ

ˇB1KB
γpJW q

ˇ

ˇ`
ÿ

|β|“|γ|´1
βďγ,β1“γ1

ˇ

ˇBγ´βpJW qB1B
βK

ˇ

ˇ

“: I1 ` 1|γ|“2

ˇ

ˇB1KB
γpJW q

ˇ

ˇ` I2 . (9.29)

Let us further split I1 as

I1 “
ÿ

0ďβăγ

ˇ

ˇBγ´βGUB1B
βK

ˇ

ˇ

loooooooooooomoooooooooooon

I1,1

`
ÿ

0ďβăγ

ˇ

ˇBγ´βhµUBµB
βK

ˇ

ˇ

loooooooooooomoooooooooooon

I1,2

.

Estimating I1,1, using (4.14) and (9.4), we have that

|I1,1| ÀM2

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ε
1
2 |B1K| , if γ1 “ 0 and |γ̌| “ 1

e´
s
2 |B1K| ` ε

1
2

ˇ

ˇ∇̌B1K
ˇ

ˇ , if γ1 “ 0 and |γ̌| “ 2

e´
s
2 |B1K| , if γ “ p1, 0, 0q

e´
s
2 p|B1K| `

ˇ

ˇ∇̌B1K
ˇ

ˇq ` ε
1
2

ˇ

ˇB2
1K

ˇ

ˇ , if γ1 “ 1 and |γ| “ 1

e´s |B1K| ` e
´ s

2

ˇ

ˇB2
1K

ˇ

ˇ , if γ1 “ 2 and |γ| “ 0

À

$

’

&

’

%

e´
3
2
s, if γ1 “ 0 and |γ̌| “ 1, 2

e´2s, if γ1 “ 1 and |γ̌| “ 0, 1

e´
5
2
s, if γ1 “ 2 and |γ| “ 0

.

Similarly, estimating I1,2, using (4.14) and (9.5), we have that

|I1,2| À

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

e´s
ˇ

ˇ∇̌K
ˇ

ˇ , if γ1 “ 0 and |γ̌| “ 1

e´spη´
1
6

ˇ

ˇ∇̌K
ˇ

ˇ`
ˇ

ˇ∇̌2K
ˇ

ˇq, if γ1 “ 0 and |γ̌| “ 2

e´sη´
1
6

ˇ

ˇ∇̌K
ˇ

ˇ , if γ “ p1, 0, 0q

e´s
´

η´
1
6 p
ˇ

ˇ∇̌K
ˇ

ˇ`
ˇ

ˇ∇̌2K
ˇ

ˇq `
ˇ

ˇ∇̌B1K
ˇ

ˇ

¯

q, if γ1 “ 1 and |γ| “ 1

e´spe´p1´
3

2m´5
qs
ˇ

ˇ∇̌K
ˇ

ˇ` η´
1
6

ˇ

ˇ∇̌B1K
ˇ

ˇq, if γ1 “ 2 and |γ| “ 0

À ε
1
8

$

’

&

’

%

e´
3
2
s, if γ1 “ 0 and |γ̌| “ 1, 2

e´
3
2
sη´

1
6 , if γ1 “ 1 and |γ̌| “ 0, 1

e´p
5
2
´ 3

2m´5
qs, if γ1 “ 2 and |γ| “ 0

.
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For 1|γ|“2

ˇ

ˇB1KB
γpJW q

ˇ

ˇ, using (4.7) and (4.14) yields

ˇ

ˇB1KB
γpJW q

ˇ

ˇ À

$

’

&

’

%

e´
3
2
s, if γ1 “ 0 and |γ̌| “ 2

M
2
3 ε

1
4 e´

3
2
sη´

1
3 , if γ1 “ 1 and |γ̌| “ 1

M
1
3 ε

1
4 e´

3
2
sη´

1
3ψ

1
4 , if γ1 “ 2 and |γ̌| “ 0

.

Next, for I2, we have that

|I2| À

$

’

&

’

%

e´
3
2
s, if γ1 “ 0 and |γ̌| “ 1

e´2s, if γ1 “ 1 and |γ̌| “ 1

0, otherwise

Thus combining the above estimates, we attain

ˇ

ˇF
pγq
K

ˇ

ˇ À

$

’

&

’

%

M2e´
3
2
s, if γ1 “ 0 and |γ̌| “ 1, 2

ε
1
8 e´

3
2
sη´

1
6 , if γ1 “ 1 and |γ̌| “ 0, 1

ε
1
8 e´

3
2
sη´

1
3ψ

1
4 , if γ1 “ 2 and |γ| “ 0

,

where we used (4.6) (with q “ 3
4

5´2m
8´2m ).

The proof of the bounds (9.23)–(9.26) is exactly the same as the proof of (7.21)–(7.24) in [4], with the
caveat that we have changed the exponent of η in (9.24) which reflects the change in exponent of η in the
estimate (9.11) for γ “ p1, 0, 0q relative to the corresponding estimate in our previous paper.

10 Closure of L8 based bootstrap for Z, A, and K

Having established bounds on trajectories as well as on the vorticity, we now improve the bootstrap assump-
tions for BγZ and BγA stated in (4.12) and (4.13). We shall obtain estimates for BγZ ˝ Φ

y0
Z and BγA ˝ Φ

y0
U

which are weighted by an appropriate exponential factor eµs.
From (2.45b) we obtain that eµsBγZ is a solution of

Bspe
µsBγZq `D

pγ,µq
Z peµsBγZq ` pVZ ¨∇q peµsBγZq “ eµsF

pγq
Z ,

where the damping function is given by

D
pγ,µq
Z :“ ´µ` 3γ1`γ2`γ3

2 ` β2βτγ1JB1W .

Upon composing with the flow of VZ , from Grönwall’s inequality it follows that

eµs |BγZ ˝ Φy0
Z psq| ď ε´µ |BγZpy0,´ log εq| exp

ˆ

´

ż s

´ log ε
D
pγ,µq
Z ˝ Φy0

Z ps
1q ds1

˙

`

ż s

´ log ε
eµs

1
ˇ

ˇ

ˇ
F
pγq
Z ˝ Φy0

Z ps
1q

ˇ

ˇ

ˇ
exp

ˆ

´

ż s

s1
D
pγ,µq
Z ˝ Φy0

Z ps
2q ds2

˙

ds1 . (10.1)

Similarly, from (2.45c) we have that eµsBγA and eµsBγK are solutions of

Bspe
µsBγKq `D

pγ,µq
K peµsBγKq ` pVU ¨∇q peµsBγKq “ eµsF

pγq
K ,

where
D
pγ,µq
K :“ ´µ` 3γ1`γ2`γ3

2 ` β1βτγ1JB1W ,
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and hence, again by Gronwall’s inequality, we have that

eµs |BγK ˝ Φy0
U psq| ď ε´µ |BγKpy0,´ log εq| exp

ˆ

´

ż s

´ log ε
D
pγ,µq
K ˝ Φy0

U ps
1q ds1

˙

`

ż s

´ log ε
eµs

1
ˇ

ˇ

ˇ
F
pγq
K ˝ Φy0

U ps
1q

ˇ

ˇ

ˇ
exp

ˆ

´

ż s

s1
D
pγ,µq
K ˝ Φy0

U ps
2q ds2

˙

ds1 . (10.2)

For each choice of γ P N3
0 present in (4.12) and (4.13), we shall require that the exponential factor µ satisfies

µ ď 3γ1`γ2`γ3

2 , (10.3)

which, in turn, shows that
D
pγ,µq
Z ď 2β2γ1 |B1W | . (10.4)

For the last inequality, we have used the bound |βτJ| ď 2, which follows from (4.3) and (9.1a). Combining
(10.3), (10.4), and (5.9), for s ě s1 ě ´ log ε, we find that

exp

ˆ

´

ż s

s1
D
pγ,µq
Z ˝ Φy0

Z ps
1q ds1

˙

À exp
´´

µ´ 3γ1`γ2`γ3

2

¯

ps´ s1q
¯

À 1 . (10.5)

Replacing β2 with β1 in (10.4), we similarly obtain that for s ě s1 ě ´ log ε,

exp

ˆ

´

ż s

s1
D
pγ,µq
K ˝ Φy0

U ps
1q ds1

˙

À 1 . (10.6)

Then as a consequence of (10.1), (10.3), (10.5) and (10.6),

eµs |BγZ ˝ Φy0
Z psq| À ε´µ |BγZpy0,´ log εq|

`

ż s

´ log ε
eµs

1
ˇ

ˇ

ˇ
F
pγq
Z ˝ Φy0

Z ps
1q

ˇ

ˇ

ˇ
exp

´´

µ´ 3γ1`γ2`γ3

2

¯

ps´ s1q
¯

ds1 (10.7)

eµs |BγK ˝ Φy0
Z psq| À ε´µ |BγKpy0,´ log εq|

`

ż s

´ log ε
eµs

1
ˇ

ˇ

ˇ
F
pγq
S ˝ Φy0

Z ps
1q

ˇ

ˇ

ˇ
exp

´´

µ´ 3γ1`γ2`γ3

2

¯

ps´ s1q
¯

ds1 (10.8)

and

eµs |BγZ ˝ Φy0
Z psq| À ε´µ |BγZpy0,´ log εq| `

ż s

´ log ε
eµs

1
ˇ

ˇ

ˇ
F
pγq
Z ˝ Φy0

Z ps
1q

ˇ

ˇ

ˇ
ds1 , (10.9)

eµs |BγK ˝ Φy0
U psq| À ε´µ |BγKpy0,´ log εq| `

ż s

´ log ε
eµs

1
ˇ

ˇ

ˇ
F
pγq
S ˝ Φy0

U ps
1q

ˇ

ˇ

ˇ
ds1 . (10.10)

10.1 Estimates on Z

For convenience of notation, in this section we set Φ “ Φy0
Z . We start with the case γ “ 0, for which we set

µ “ 0. Then, the first line of (9.20) combined with (10.9) and our initial datum assumption (3.18) show that

|Z ˝ Φpsq| À |Zpy0,´ log εq| `

ż s

´ log ε
e´s

1

ds1 À ε .

This improves the bootstrap assumption (4.12) for γ “ 0, upon taking M to be sufficiently large to absorb
the implicit universal constant in the above inequality.
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For the case γ “ p1, 0, 0q, we set µ “ 3
2 so that (10.3) is verified, and hence from (3.18), the second

case in (9.20), and (10.9), we find that

e
3
2
s |B1Z ˝ Φpsq| À ε´

3
2 |B1Zpy0,´ log εq| `

ż s

´ log ε
e

3
2
s1
ˇ

ˇ

ˇ
F
pγq
Z ˝ Φy0

Z ps
1q

ˇ

ˇ

ˇ
ds1

À 1`M2

ż s

´ log ε

´

1`
ˇ

ˇΦ1ps
1q
ˇ

ˇ

2
¯´ 1

15
ds1

À 1` ε
1
30M2

ż s

´ log ε
e
s
30

´

1`
ˇ

ˇΦ1ps
1q
ˇ

ˇ

2
¯´ 1

15
ds1 .

Now, applying (5.8) with σ1 “
1
30 and σ2 “

2
15 , we deduce that by taking ε sufficiently small,

Me
3
2
s |B1Z ˝ Φpsq| À 1 , (10.11)

which improves the bootstrap assumption (4.12) for M taken sufficiently large.
For the case that γ1 “ 1 and |γ̌| “ 1, we set µ “ 3

2 , so that

µ´ 3γ1`γ2`γ3

2 “ 1
2 ´ γ1 ď ´

1
2 .

We deduce from (10.7), the fourth case in (9.20), the initial datum assumption (3.18), and Lemma 5.4 with
σ1 “

5s
2m´7 , m ě 18, and σ2 “

2
15 , that

e
3
2
s |BγZ ˝ Φpsq| À ε´

3
2 |BγZpy0,´ log εq| `

ż s

´ log ε

ˆ

M
1
2`Mε

1
2m´7 e

5s
2m´7

´

1`
ˇ

ˇΦ1ps
1q
ˇ

ˇ

2
¯´ 1

15

˙

e´
s´s1

2 ds1

À 1`M
1
2 `Mε

1
2m´7 ÀM

1
2 . (10.12)

This improves the bootstrap stated in (4.12) by using the factor M
1
2 to absorb the implicit constant in the

above inequality.
We are left to consider γ for which γ1 “ 0 and 1 ď |γ̌| ď 2. For |γ| “ |γ̌| “ 1, setting µ “ 1

2 (which
satisfies (10.3)) we obtain from (10.9), the forcing bound (9.20), and the initial datum assumption (3.18)
that

e
s
2

ˇ

ˇ∇̌Z ˝ Φpsq
ˇ

ˇ À ε´
1
2

ˇ

ˇ∇̌Zpy0,´ log εq
ˇ

ˇ`M
1
2

ż s

´ log ε
e´s

1

ds1 À ε
1
2 . (10.13)

Finally, for |γ| “ |γ̌| “ 2 we set µ “ 1. As a consequence of (9.20), (3.18), and (10.9), we obtain

es
ˇ

ˇ∇̌2Z ˝ Φpsq
ˇ

ˇ À ε´1
ˇ

ˇ∇̌2Zpy0,´ log εq
ˇ

ˇ`

ż s

´ log ε
e´p

1
8
´ 3

2m´7
qs ds1 À 1 , (10.14)

Together, the estimates (10.11)–(10.14) improve the bootstrap bound (4.12) by taking M sufficiently large.

10.2 Estimates on K

We shall now set Φ “ Φy0
U . For the case γ “ p1, 0, 0q, we set µ “ 3

2 so that (10.3) is verified, and hence
from (3.20), the second case in (9.22), and (10.10), we find that

e
3
2
s |B1K ˝ Φpsq| À ε´

3
2 |B1Kpy0,´ log εq| `

ż s

´ log ε
e

3
2
s1
ˇ

ˇ

ˇ
F
pγq
K ps1q

ˇ

ˇ

ˇ
ds1
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À ε
1
2 ` ε

1
8

ż s

´ log ε

´

1`
ˇ

ˇΦ1ps
1q
ˇ

ˇ

2
¯´ 1

6
ds1 ,

so that applying (5.8) with σ1 “ 0 and σ2 “
1
3 , and taking ε sufficiently small, we deduce that

e
3
2
s |B1K ˝ Φpsq| ď ε

1
4 , (10.15)

which improves the second bootstrap assumption in (4.14).
Next, we study the case that γ1 “ 0 and 1 ď |γ̌| ď 2. For |γ| “ |γ̌| “ 1, setting µ “ 1

2 (which satisfies
(10.3)) we obtain from (10.10), the forcing bound (9.22), and the initial datum assumption (3.20) that

e
s
2

ˇ

ˇ∇̌K ˝ Φpsq
ˇ

ˇ À ε´
1
2

ˇ

ˇ∇̌Kpy0,´ log εq
ˇ

ˇ`M2

ż s

´ log ε
e´s

1

ds1 À ε
1
2 . (10.16)

For |γ| “ |γ̌| “ 2 we set µ “ 1. As a consequence of (9.22), (3.20), and (10.10), we obtain

es
ˇ

ˇ∇̌2K ˝ Φpsq
ˇ

ˇ À ε´1
ˇ

ˇ∇̌2Kpy0,´ log εq
ˇ

ˇ`M2

ż s

´ log ε
e´

s1

2 ds1 À ε
1
4 , (10.17)

For |γ1| “ |γ̌| “ 1 we set µ “ 13
8 so that (10.3) is verified. From (9.22), (3.20), and (10.8), we apply (5.8)

with σ1 “
1
4 and σ2 “

2
3 to obtain that

e
13
8
s
ˇ

ˇB1∇̌K ˝ Φpsq
ˇ

ˇ À ε´
13
8

ˇ

ˇB1∇̌Kpy0,´ log εq
ˇ

ˇ` ε
1
8

ż s

´ log ε
e
s1

8

´

1`
ˇ

ˇΦ1ps
1q
ˇ

ˇ

2
¯´ 1

3
ds1

À ε´
13
8

ˇ

ˇB1∇̌Kpy0,´ log εq
ˇ

ˇ` ε
1
4

ż s

´ log ε
e
s1

4

`

1`
ˇ

ˇΦ1ps
1q
ˇ

ˇ

˘´ 2
3 ds1

À ε
3
8 ` ε

1
4 ď ε

1
8 . (10.18)

We next consider the case that γ “ p2, 0, 0q. From (2.45d), we have that

BsB11K ` p3` β1βτJB1W qB11K ` pVU ¨∇qB11K “ F
p2,0,0q
S ,

and hence

Bspe
2sη

1
15 B11Kq `D

p2,0,0q
K pe2sη

1
15 B11Kq ` VU ¨∇pe2sη

1
15 B11Kq “ e2sη

1
15F

p2,0,0q
S

where

D
p2,0,0q
K “ 4

5 ` β1βτJB1W ` 1
15η

´1 ´ 2
15η

´1
´

y1pβ1βτJW `GU q ` 3hνUyν |y̌|
4
¯

.

Composing with Φ, we find that

ˇ

ˇ

ˇ
e2sη

1
15 B11Kpsq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
ε´2η

1
15 B11Kp´ log εq

ˇ

ˇ

ˇ
exp

ˆ

´

ż s

s0

D
p2,0,0q
K ˝ Φps1q ds1

˙

`

ż s

s0

ˇ

ˇ

ˇ
e2sη

1
15F

p2,0,0q
S ˝ Φps1q

ˇ

ˇ

ˇ
exp

ˆ

´

ż s

s1
D
p2,0,0q
K ˝ Φps2q ds2

˙

ds1 .

Thanks to (5.16) and (11.8), we have that

exp

ˆ

´

ż s

s0

D
p2,0,0q
K ˝ Φps1q ds1

˙

À 1 ,
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and thus using the third case in (9.22), and the initial datum assumption (3.20), it follows that

η
1
15 e2s |B11K ˝ Φpsq| À ε

1
4 ` ε

1
8

ż s

´ log ε
e
s
2 ηpΦps1qq´

4
15ψ

1
4 pΦps1q, s1q ds1 . (10.19)

Now by definition of the weight ψ, we have that

e
s
2 η´

4
15ψ

1
4 ˝ Φ À pe

s
2 η´

31
60 ` e´

s
4 η´

1
60 q ˝ Φ

À e
s
2 η´

31
60 ˝ Φ` ε

1
60 e´

3
10
s

À e
s
2 p1` |Φ|q´

31
30 ` ε

1
60 e´

3
10
s

where we used (4.5) for the second inequality. It follows that
ż s

´ log ε
e
s
2 ηpΦps1qq´

4
15ψ

1
4 pΦps1q, s1q ds1 À

ż s

´ log ε
pe

s1

2 p1` |Φ|q´
31
30 ` ε

1
60 e´

3
10
s1q ds1 À 1 ,

where we have used the fact that
şs
´ log ε ε

1
60 e´

3
10
s1 ds1 À ε

19
60 as well as (5.8) with σ1 “ 1{2 and σ2 “

31
30 .

Hence,

ηαe2s |B11K ˝ Φpsq| ď ε
1
6

which improves the fourth bootstrap assumption stated in (4.14).

10.3 Estimates on A

We can now close the bootstrap bounds (4.13) for BγA. The bounds for the case that γ1 “ 0 and |γ̌| “ 0, 1, 2
follow the same argument as given in (10.14) in [4], whereas the estimate for B1A makes used of estimates
for the vorticity.

Lemma 10.1 (Relating A and Ω). With the self-similar specific vorticity Ω given by (2.44),

e
3s
2 JB1A2 “ pαe

´K
2 Sq

1
αΩ ¨ T3 ` 1

2T
2
µ

´

BµW ` e
s
2 BµZ

¯

´ e
s
2NµBµA2

´ 1
2

´

κ` e´
s
2W ` Z

¯

pcurl
rxNq ¨ T

3 ´A2pcurl
rx T

2q ¨ T3 (10.20a)

e
3s
2 JB1A3 “ ´pαe

´K
2 Sq

1
αΩ ¨ T2 ` 1

2T
3
µ

´

BµW ` e
s
2 BµZ

¯

´ e
s
2NµBµA3

` 1
2

´

κ` e´
s
2W ` Z

¯

pcurl
rxNq ¨ T

2 ´A3pcurl
rx T

3q ¨ T2 . (10.20b)

Propositions 4.6 and 6.1, together with the estimates (4.7), (4.12), (4.13), (4.5) and (9.1a), and Lemma 10.1
show that

e
3
2
s |B1Aν | À κ

1
α
0 ε

1
21 ` p1` ε

1
2M

1
2 q ` pκ0 ` ε

1
6 `Mεq `Mε ďM

1
4 , (10.21)

for M taken sufficiently large with respect to κ
1
α
0 Cκ0,α.

Proof of Lemma 10.1. We note that for the velocity ů and with respect to the orthonormal basis pN,T2,T3q

we have that

curl
rx ů “

`

BT3 ů ¨ N´ BNů ¨ T
3
˘

T2 ´
`

BT2 ů ¨ N´ BNů ¨ T
2
˘

T3 `
`

BT2 ů ¨ T3 ´ BT3 ů ¨ T2
˘

N .
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Now, from the definitions (2.5), (2.11), (2.17), (2.24), (2.31d), (2.37c), and (2.44), we have that

pαe´
K
2 Sq

1{αpy, sqΩpy, sq “ pαe´
k̊
2 σ̊px, tqq

1{αζ̊px, tq “ rρprx, tqrζprx, tq “ rωprx, tq “ curl
rx ruprx, tq “ curl

rx ůpx, tq ,

In particular,

pαe´
K
2 Sq

1{αpy, sqΩpy, sq “ curl
rx ůpx, tq “ curl

rx

´

ůprx1 ´ fpřx, tq, rx2, rx3, tq
¯

. (10.22)

We only establish the formula for B1A3, as the one for B1A2 is obtained identically. To this end, we write

curl
rx ů ¨ T

2 “ T3
jBrxj ůpx, tq ¨ N´ NjB

rxj ůpx, tq ¨ T
3 .

By the chain-rule and the fact that N is orthogonal to T3, we have that

B
rxj ůpx, tqT

3
j “ Bx1 ůT

3
1 ´ f,ν Bx1 ůT

3
ν ` Bxν ůT

3
ν “ JN ¨ T3Bx1 ů` Bxν ůT

3
ν “ Bxν ůpx, tqT

3
ν .

The important fact to notice here is that no x1 derivatives of ů remain. Similarly,

B
rxj ůpx, tqNj “ Bx1 ůN1 ´ f,ν Bx1 ůNν ` Bxν ůNν “ JN ¨ NBx1 ů` Bxν ůNν “ JBx1 ů` Bxν ůpx, tqNν .

Hence, it follows that

curl
rx ů ¨ T

2

“ T3
νBxν ůpx, tq ¨ N´ JBx1 p̊u ¨ T

3q ´ NνBxν ůpx, tq ¨ T
3

“ T3
νBxν p̊upx, tq ¨ Nq ´ JBx1a3 ´ NνBxν p̊upx, tq ¨ T

3q ´ ůpx, tq ¨ BxνNT3
ν ` ůpx, tq ¨ BxνT

3 Nν

“ 1
2T

3
νBxν pw ` zq ´ JBx1a3 ´ NνBxνa3 `

`

1
2pw ` zqN` aνT

ν
˘

¨ pBNT
3 ´ BT3Nq (10.23)

where we have used (2.28), (2.27), and (7.3). The identities (10.22) and (10.23) and the definition of the
self-similar transformation in (2.30) and (2.31) yield the desired formula for B1A3.

11 Closure of L8 based bootstrap for W

The goal of this section is to close the bootstrap assumptions which involve W , ĂW and their derivatives,
stated in (4.7) and (4.8a)–(4.10).

11.1 Estimates for BγĂW py, sq for |y| ď `

The estimates in this section closely mirror those given in Section 11.1 of [4], as such will we simply
summarize the argument.

11.1.1 The fourth derivative

Composing with the flow Φy0
W psq, we have that for |γ| “ 4 that

d
ds

´

BγĂW ˝ Φy0
W

¯

`

´

D
pγq
ĂW
˝ Φy0

W

¯´

BγĂW ˝ Φy0
W

¯

“ rF
pγq
W ˝ Φy0

W ,

where

D
pγq
ĂW

:“ 3γ1`γ2`γ3´1
2 ` βτJ

`

B1W ` γ1B1W
˘

ě 1
3 , (11.1)

which is a consequence of (4.3) and (4.11). Then as a consequence of (9.26), (11.1), and (3.14) and the
Grönwall inequality we have that for all |y0| ď ` and all s ě ´ log ε such that |Φy0

W psq| ď ` the following
estimate

ˇ

ˇ

ˇ
BγĂW ˝ Φy0

W

ˇ

ˇ

ˇ
À ε

1
8 ` ε

1
10 plogMq|γ̌|´1 . (11.2)

Hence the bootstrap assumption (4.9b) closes assuming the ε is chosen sufficiently small relative to M .
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11.1.2 Estimates for BγĂW with |γ| ď 3 and |y| ď `

We first consider the estimate on pBγĂW q0 for |γ| “ 3. Evaluating (2.51) at y “ 0 and applying (4.9b),
(4.10), (12.17), (9.23), and (4.3) yields the estimate

ˇ

ˇ

ˇ
BspB

γ
ĂW q0

ˇ

ˇ

ˇ
À e´p

1
2
´ 4

2m´7
qs
`MplogMq4ε

1
10 e´s`

4s
2m´7 `Mε

1
4 e´s À e´p

1
2
´ 4

2m´7
qs . (11.3)

Using the initial datum assumption (3.15) and integrating in time, we may show
ˇ

ˇ

ˇ
BγĂW p0, sq

ˇ

ˇ

ˇ
ď 1

10ε
1
4 (11.4)

for all |γ| ď 3, and all s ě ´ log ε, closing the bootstrap bound (4.10).
The bootstraps (4.9a) corresponding to 0 ď |y| ď `, then follow as a consequence of constraints (2.53)

which imply
ĂW p0, sq “ ∇ĂW p0, sq “ ∇2

ĂW p0, sq “ 0 ,

together with the estimates (4.9b), (11.4), and the fundamental theorem of calculus, integrating from y “ 0.
Note that the bootstraps (4.8a), (4.8b) and (4.8c), for the case |y| ď `, follows as a consequence of

(4.9a), assuming ε is sufficiently small.

11.2 A framework for weighted estimates

Let us briefly recall the framework for weighted estimates introduced in Section 11.2 of [4]. For brevity will
drop some intermediary calculations. Suppose some quantity R, satisfies an evolution equation of the form

BsR`DR R` VW ¨∇R “ FR . (11.5)

Weighting R by ηµ,
q :“ ηµR,

then q satisfies the evolution equation

Bsq `
`

DR ´ η
´µVW ¨∇ηµ

˘

looooooooooooomooooooooooooon

“:Dq

q ` VW ¨∇q “ ηµFR
loomoon

:“Fq

. (11.6)

where Dq may be expanded as

Dq “ DR ´ 3µ` 3µη´1 ´ 2µ η´1
´

y1pβτJW `GW q ` 3hνW yν |y̌|
4
¯

.
looooooooooooooooooooooooomooooooooooooooooooooooooon

“:Dη

. (11.7)

As a consequence of (4.7), (4.5), (9.1b), (4.3), (9.3), and (9.5) we have for all s ě ´ log ε

|Dη| ď 5η´
1
3 ` e´

s
3 , (11.8)

assuming ε to be sufficiently small in order to absorb powers of M .
Using the evolution equation (11.6), composing with the trajectories Φy0

W psq such that Φy0
W ps0q “ y0 for

some s0 ě ´ log ε with |y0| ě ` and applying Grönwall’s inequality yields

|q ˝ Φy0
W psq| ď |qpy0q| exp

ˆ

´

ż s

s0

Dq ˝ Φy0
W ps

1q ds1
˙
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`

ż s

s0

ˇ

ˇFq ˝ Φy0
W ps

1q
ˇ

ˇ exp

ˆ

´

ż s

s1
Dq ˝ Φy0

W ps
2q ds2

˙

ds1 . (11.9)

For the special case ` ď |y0| ď L, we may may apply (11.8), (5.4), and the inequality 2ηpyq ě 1` |y|2

to conclude
2µ

ż s

s0

ˇ

ˇDη ˝ Φy0
W ps

1q
ˇ

ˇ ds1 ď 70 log 1
` , (11.10)

for all |µ| ď 1
2 . Consequently, the estimates (11.9) and (11.10) yield

|q ˝ Φy0
W psq| ď `´70 |qpy0q| exp

ˆ
ż s

s0

`

3µ´DR ´ 3µη´1
˘

˝ Φy0
W ps

1qds1
˙

` `´70

ż s

s0

ˇ

ˇFq ˝ Φy0
W ps

1q
ˇ

ˇ exp

ˆ
ż s

s1

`

3µ´DR ´ 3µη´1
˘

˝ Φy0
W ps

2qds2
˙

ds1 . (11.11)

We will need to consider two scenarios for the initial trajectory: either s0 ą ´ log ε and |y0| “ 0 or
s0 “ ´ log ε and |y0| ě `. We note that as long as |y0| ě `, then |Φy0

W psq| ě ` for all s ą s0 as a
consequence of Lemma 5.2 .

Now consider the case |y0| ě L. In place of (11.10) for the case ` ď |y0| ď L, we have the stronger
estimate

2µ

ż s

s0

ˇ

ˇDη ˝ Φy0
W ps

1q
ˇ

ˇ ds1 ď ε
1
16 , (11.12)

for s0 ě ´ log ε, and |µ| ď 1
2 . Hence (11.9) and (11.12) yield

|q ˝ Φy0
W psq| ď eε

1
16
|qpy0q| exp

ˆ
ż s

s0

`

3µ´DR ´ 3µη´1
˘

˝ Φy0
W ps

1qds1
˙

` eε
1
16

ż s

s0

ˇ

ˇFq ˝ Φy0
W ps

1q
ˇ

ˇ exp

ˆ
ż s

s1

`

3µ´DR ´ 3µη´1
˘

˝ Φy0
W ps

2qds2
˙

ds1 . (11.13)

11.3 Estimates of ĂW py, sq, B1
ĂW py, sq and ∇̌ĂW py, sq for ` ď |y| ď L

The estimates of ĂW py, sq, B1
ĂW py, sq and ∇̌ĂW py, sq for ` ď |y| ď L mimic those given in Section 11.3 -

11.4 in [4]. As such, we prove only an abridged summary of the arguments.
In order to close the bootstrap bound (4.8a) on ĂW py, sq for |y| ě `, we will use the framework in

Section 11.2 with R “ ĂW , µ “ ´1
6 . With these choices, the weighted quantity q “ η´

1
6 ĂW , the quantity

3µ´DR ´ 3µη´1 present in (11.11) is ´βτJB1W ` 1
2η
´1 and Fq “ η´

1
6 rFW .

Applying (4.3), (9.1a), (5.4) and (4.7), we have
ż s

s0

βτ |JB1W | ˝ Φy0
W ps

1q ` 1
2η
´1 ˝ Φy0

W ps
1q ds1 ď 40 log 1

` (11.14)

for all s ě s0 ě ´ log ε. The estimate (5.4) and (9.11) yield the forcing estimate
ż s

s0

ˇ

ˇ

ˇ
η´

1
6 rFW

ˇ

ˇ

ˇ
˝ Φy0

W ps
1q ds1 À ε

1
8 log 1

` (11.15)

for all s ě s0 ě ´ log ε, and ` P p0, 1{10s.
Combining the bounds (11.14) and (11.15) into (11.11), and using the initial data assumption (3.13a) if

s0 “ ´ log ε, or alternatively (4.9a) if s0 ą ´ log ε, we obtain

η´
1
6 pyq

ˇ

ˇ

ˇ

ĂW py, sq
ˇ

ˇ

ˇ
ď 1

10ε
1
11 (11.16)
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for all ` ď |y| ď L and all s ě ´ log ε. Where we have employed small powers of ε to absorb all the ` and
M factors. The above estimate (11.16) closes the bootstrap (4.8a).

We now aim to close the bootstrap bound (4.8b) on B1
ĂW py, sq for ` ď |y| ď L. For this case, we

set R “ B1
ĂW , µ “ 1

3 and hence q “ η
1
3 B1

ĂW . By (2.51) with γ “ p1, 0, 0q, we have 3µ ´ DR “

´βτJpB1W ` B1W q, and Fq “ η
1
3 rF

p1,0,0q
W .

Similar to the estimate (11.14)), we may bound the the contributions to (11.11) due to the damping term
3µ´DR by

ż s

s0

βτ
ˇ

ˇJpB1W ` B1W q
ˇ

ˇ ˝ Φy0
W ps

1q ds1 ď 80 log 1
` . (11.17)

The contribution due to the forcing Fq “ η
1
3 rF

p1,0,0q
W is bounded using (5.4) and (9.24) in order to attain

ż s

s0

|Fq| ˝ Φy0
W ps

1q ds1 À ε
1
11 log 1

` . (11.18)

Inserting (11.17) and (11.18) into (11.11), and using our initial datum assumption (3.13b) when s0 “

´ log ε, respectively (4.9b) for s0 ą ´ log ε, yields

η
1
6 pyq

ˇ

ˇ

ˇ
B1
ĂW py, sq

ˇ

ˇ

ˇ
ď 1

10ε
1
12 (11.19)

for all ` ď |y| ď L and all s ě ´ log ε, where we again have used small powers of ε to absorb all the ` and
M factors. The above estimate closes the bootstrap (4.8b).

Finally, we aim to close the bootstrap (4.8c) on ∇̌ĂW py, sq for |y| ě `. We set R “ ∇̌W and µ “ 0, so
that q “ ∇̌ĂW . From (2.51) with γ P tp0, 1, 0q, p0, 0, 1qu, we have 3µ´DR “ ´βτJB1W and Fq “ rF

pγq
W .

The integral of the damping term arising in (11.11) is bounded using (11.14) by 40 log `´1. The contri-
bution due to the forcing Fq is bounded using (5.4) and (9.25) in order to attain

ż s

s0

|Fq| ˝ Φy0
W ps

1q ds1 À ε
1
12 log 1

` . (11.20)

Inserting (11.14) and (11.20) into (11.11), and using our initial datum assumption (3.13c) and (4.9b), we
arrive at

ˇ

ˇ

ˇ
∇̌ĂW py, sq

ˇ

ˇ

ˇ
ď 1

10ε
1
13 (11.21)

for all ` ď |y| ď L and all s ě ´ log ε, thereby closing the bootstrap bound (4.8c). We also note that the
bootstrap bound (4.7) for the cases that |γ| “ 0, 1 and ` ď |y| ď L follow as a consequence of (4.8) together
with the W bound (2.48) in [4].

11.4 Estimate for BγW py, sq with |γ| “ 2 for |y| ě `

We now consider the case |γ| “ 2, and establish the third and fifth bounds of (4.7). Unlike the bounds given
in Section 11.6 of [4], the bound for B11W makes use of two weight functions, and requires a new type of
analysis. As such, we now consider the case that γ1 “ 2 and |γ̌| “ 0. We have that

Bspη
1
3 B11W q `Dp2,0,0qW pη

1
3 B11W q ` VW ¨∇pη

1
3 B11W q “ η

1
3F

p2,0,0q
W

Dp2,0,0qW “ 3
2 ` η

´1 ´ 2
3 η
´1

´

y1pβτJW `GW q ` 3hνW yν |y̌|
4
¯

loooooooooooooooooooooooomoooooooooooooooooooooooon

“:Dη

,
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from which it follows that

Bspη
1
3ψ´

1
4 B11W q `Dp2,0,0qW pη

1
3ψ´

1
4 B11W q ` VW ¨∇pη

1
3ψ´

1
4 B11W q “ η

1
3ψ´

1
4F

p2,0,0q
W ,

where

Dp2,0,0qW “ 3
2 ` η

´1 ´ 2
3Dη ´

3
4e
´3sψ´1η ` 1

2ψ
´1y1pe

´3s ´ η´2qV1
W ` 3

2ψ
´1 |y̌|4 yµpe

´3s ´ η´2qVµW
“ 3

2 ` η
´1 ´ 2

3Dη ´
3
4e
´3sψ´1 ´ 3

4ψ
´1 y

2
1`|y̌|

6

η2

` 1
2 ψ

´1
`

e´3s ´ η´2
˘

´

y1pβτJW `GW q ` 3 |y̌|4 yµh
µ
W

¯

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

“:Dψ

,

and therefore
ˇ

ˇ

ˇ
η

1
3ψ´

1
4 B11W ˝ Φy0

W psq
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
η

1
3ψ´

1
4 B11W py0q

ˇ

ˇ

ˇ
exp

ˆ

´

ż s

s0

Dp2,0,0qW ˝ Φy0
W ps

1q ds1
˙

`

ż s

s0

ˇ

ˇ

ˇ
η

1
3ψ´

1
4F

p2,0,0q
W ˝ Φy0

W ps
1q

ˇ

ˇ

ˇ
exp

ˆ

´

ż s

s1
Dp2,0,0qW ˝ Φy0

W ps
2q ds2

˙

ds1 .

(11.22)

Since ψ´1 ď η, we then have that
ψ´1 y

2
1`|y̌|

6

η2 ď 1 .

Moreover, using (4.5), we see that

e´3sψ´1 ď e´3sη ď 40ε ,

and thus, we have that

3
2 ´

3
4ψ
´1 y

2
1`|y̌|

6

η2 ´ e´3sψ´1 ě 0 . (11.23)

Again, since ψ´1 ď η, then (4.5) yields
ˇ

ˇψ´1
`

e´3s ´ η´2
˘ˇ

ˇ ď 4
3η
´1 ,

Therefore, we see from the definition (11.7) of |Dη|, that |Dψ| ď
4
3 |Dη|. It follows from (11.10) that

ż s

s0

ˇ

ˇp2
3Dη `

1
2Dψq ˝ Φy0

W ps
1q
ˇ

ˇ ds1 ď 4
3

ż s

s0

ˇ

ˇDη ˝ Φy0
W ps

1q
ˇ

ˇ ds1 ď 140 log 1
` , (11.24)

for all |y0| ě `. By (11.23) and (11.24), we see that (11.22) is bounded as
ˇ

ˇ

ˇ
η

1
3ψ´

1
4 B11W ˝ Φy0

W psq
ˇ

ˇ

ˇ
ď `´140

ˇ

ˇ

ˇ
η

1
3ψ´

1
4 B11W py0q

ˇ

ˇ

ˇ
` `´140

ż s

s0

ˇ

ˇ

ˇ
η

1
3ψ´

1
4F

p2,0,0q
W ˝ Φy0

W ps
1q

ˇ

ˇ

ˇ
ds1 . (11.25)

With the estimate (9.19) for F p2,0,0qW , we obtain that
ˇ

ˇ

ˇ
η

1
3ψ´

1
4F

p2,0,0q
W

ˇ

ˇ

ˇ
À η

´ 3
20
` 8

3p2m´7q À η´
1
10 .

Hence, following (11.12), we see that for |y0| ě `,
ż s

s0

ˇ

ˇ

ˇ
η

1
3ψ´

1
4F

p2,0,0q
W ˝ Φy0

W ps
1q

ˇ

ˇ

ˇ
ds1 ď

ż 8

s0

´

1` `2e
2
5
ps1´s0q

¯´ 1
10
ds1 À `´

1
5 .
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By appealing to our initial datum assumption (3.17b) if s0 “ ´ log ε, and to (4.9a) when s ą ´ log ε, the
bound (11.25) shows that

ˇ

ˇ

ˇ
η

1
3ψ´

1
4 B11W ˝ Φy0

W psq
ˇ

ˇ

ˇ
À `´141 ÀM

1
4 . (11.26)

By choosing first M sufficiently large, the bootstrap assumption (4.7) is then improved by (11.26).
It remains to consider the case |γ| “ 2 and |γ̌| “ 1, 2. The arguments will mimic those given in Section

11.6 of [4], and as such, we provide an abridged version of those arguments. For the case |γ̌| “ 1 and
γ1 “ 1, we set µ “ 1

3 , whereas, for the case |γ̌| “ 2 and γ1 “ 0, we set µ “ 1
6 . Consequently, the damping

term 3µ´DR present in (11.11) is given by

3µ´DR “

#

´1
2 ´ βτJB1W , for |γ̌| “ 1 and γ1 “ 1 ,

´βτJB1W , for |γ| “ 2 and γ1 “ 0 .
(11.27)

Let us first restrict to the case γ1 “ 0 and |γ̌| “ 2. Analogous to (11.14), we have
ż s

s0

βτ |JB1W | ˝ Φy0
W ps

1q ds1 ď 40 log 1
` (11.28)

and analogously to (11.15), applying (9.19), we have
ż s

s0

ˇ

ˇ

ˇ
η

1
6F

pγq
W

ˇ

ˇ

ˇ
˝ Φy0

W ps
1q ds1 ďM

5
6 log 1

` . (11.29)

Substituting the bounds (11.28) and (11.29) into (11.11), and utilizing our initial datum assumption (3.17c)
when s0 “ ´ log ε, and to (4.9a) when s ą ´ log ε, we deduce

η
1
7 pyq

ˇ

ˇ∇̌2W py, sq
ˇ

ˇ ď `´110η
1
6 py0q

ˇ

ˇ∇̌2W py0, s0q
ˇ

ˇ`M
5
6 `´110 log 1

`

ď 1
10M

1
6

where we have assumed that M is sufficiently large, used our choice ` “ plogMq´5 and assumed ε is
sufficiently small relative to M . Thus we close the bootstrap (4.7) for the case γ1 “ 0 and |γ̌| “ 2.

We now turn our attention to the case |γ̌| “ 1, with γ1 “ 1. Applying (11.27) and (11.28), yields the
damping bound

exp

ˆ
ż s

s1

`

3µ´DR ˝ Φy0
W ps

2q
˘

ds2
˙

ď `´120e
s1´s

2 (11.30)

for any s ą s1 ą s0 ě ´ log ε. Substituting (11.30), together with the forcing estimate (9.19) into (11.11),
and appealing to our initial datum assumption (3.17a) if s0 “ ´ log ε, and to (4.9a) when s ą ´ log ε, we
deduce

η
1
3 pyq |BγW py, sq| ď 1

10M
1
6 (11.31)

where we have assumed that M is sufficiently large, used our choice ` “ plogMq´5 and assumed ε is
sufficiently small relative to M . Thus we close the bootstrap (4.7) for the case |γ̌| “ 1, with γ1 “ 1.
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11.5 Estimate of W py, sq, B1W py, sq and ∇̌W py, sq for |y| ě L

The estimates of W py, sq, B1W py, sq and ∇̌W py, sq for |y| ě L are nearly identical to those given in
Section 11.7, 11.8 and 11.9 of [4]. As such, we prove only an abridged summary of the arguments.

Consider first the estimate on W py, sq. We set µ “ ´1
6 and R “ W , so that q “ η´

1
6 ĂW . We have

3µ ´DR ´ 3µη´1 “ 1
2η
´1, and Fq “ η´

1
6 pFW ´ e´

s
2βτ 9κq. The contribution of the damping in (11.13)

gives us
ż s

s0

1
2η
´1 ˝ Φy0

W ps
1q ds1 ď L´

2
3 “ ε

1
16 ,

and we have from (9.8) and (4.1b) the forcing bound
ż s

s0

|Fq ˝ Φy0
W | ps

1qds1 À ε
1
2 .

Substituting the above two estimates into (11.13), we obtain
ˇ

ˇ

ˇ
η´

1
6W ˝ Φy0

W psq
ˇ

ˇ

ˇ
ď 1` ε

1
19 ,

where for the case s0 ą ´ log ε, we used (4.8a) and W bound (2.48) in [4], and for the case s0 “ ´ log ε,
we use the initial data assumption (3.16a). Thus we close the bootstrap bound in the first line of (4.7).

For the case B1W py, sq we set q “ η
1
3 B1W , so that 3µ´DR ´ 3µη´1 ď ´βτJB1W and Fqη

1
3F

p1,0,0q
W .

Applying (4.7), and Lemma 5.2, yields
ż s

s0

`

3µ´DR ´ 3µη´1
˘

˝ Φy0
W ps

1qds1 ď ε
1
16 . (11.32)

As a consequence of (9.19) and the fact that |y0| ě L, we obtain
ż s

s0

ˇ

ˇFq ˝ Φy0
W ps

1q
ˇ

ˇ ds1 À ε3α .

Substituting the above two estimates into (11.13), we obtain
ˇ

ˇ

ˇ
η

1
3 B1W ˝ Φy0

W psq
ˇ

ˇ

ˇ
ď 3

2 .

where for the case s0 ą ´ log ε, we used (4.8b) and theW bound (2.48) in [4], and for the case s0 “ ´ log ε,
we use the initial data assumption (3.16b). Thus we close the bootstrap bound in the second line of (4.7).

Finally, we consider the estimate of ∇̌W py, sq for |y| ě L. We set µ “ 0 and q “ ∇̌W . The damping
term is 3µ ´ DR ´ 3µη´1 “ ´βτJB1W and so we may reuse the estimate (11.32). The forcing term Fq
may be bounded directly using the third case in (9.19), which yields

ż s

s0

ˇ

ˇFq ˝ Φy0
W ps

1q
ˇ

ˇ ds1 ď ε
1
8 .

We deduce from (11.13) that
ˇ

ˇ∇̌W ˝ Φy0
W psq

ˇ

ˇ ď 5
6 .

where for the case s0 ą ´ log ε, we used (4.8c) and theW bound (2.48) in [4], and for the case s0 “ ´ log ε,
we use the initial data assumption (3.16c). Thus we close the bootstrap bound in the second line of (4.7).
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12 Constraints and evolution of modulation variables

12.1 Solving for the dynamic modulation parameters

In Section (2.7) we have used the evolution equations for W , ∇W and ∇2W at y “ 0 to derive implicit
equations for the time derivatives our modulation parameters. The goal of this subsection is to show that
these implicit equations are indeed solvable with the initial conditions (2.54). For this purpose it convenient
to introduce the notation

P♦pb1, . . . , bn
ˇ

ˇc1, . . . , cnq and R♦pb1, . . . , bn
ˇ

ˇc1, . . . , cnq

to denote a linear function in the parameters c1, . . . , cn with coefficients which depend on b1, . . . , bn through
smooth polynomial (for P♦), respectively, rational functions (for R♦), and on the derivatives of Z, A, and
K evaluated at y “ 0. The subscript ♦ denotes a label, used to distinguish the various functions P♦ and R♦.
We note that all of the denominators in R♦ are bounded from below by a universal constant. It is important
to note that the notation P♦ and R♦ is never used when explicit bounds are required. Throughout this
section, we will use the bootstrap assumptions in Section 4 to establish uniform bounds on the coefficients,
which in turn, yields local well-posedness of the coupled system of ODE for the modulation variables.

The definition of 9κ in (2.56) may be written schematically using the notation introduced above as

9κ “ Pκ
´

κ, φ
ˇ

ˇ 9Q, 1
βτ
e
s
2h,0W ,

1
βτ
e
s
2G0

W

¯

, (12.1)

where we have used the explicit formula (A.8a) to determine the dependence of Pκ. Once we compute h,0W
and G0

W (cf. (2.61a)–(2.61b) below) we will return to the formula (12.1). We point out at this stage that in
(12.17) below we will show that both h,0W and G0

W decay at a rate which is strictly faster than e´
s
2 , which

shows that their contribution to 9κ will be under control.
Similarly, the definition of 9τ in (2.57) may be written schematically as

9τ “ Pτ
´

κ, φ
ˇ

ˇ e´2s 9Q, 1
βτ
h,0W

¯

, (12.2)

where we have used the explicit formulae (A.7a) and (A.8b) to determine the dependence of Pτ .
The schematic dependence of 9Q1,ν is determined from (2.58). Using (A.7b) and (A.8c) and placing the

leading order term in 9Q on one side, we obtain

9Q1ν “ ´e
´ s

2 9Q1µBνA
0
µ ` e

´s 9QµζA
0
ζφµν ` e

´s 9QµνA
0
ζφζµ ´

β2

2β1
e
s
2 BνZ

0 ` e´sA0
µ

9φµν

`
β3

2β1

`

pκ´ Z0qBνµA
0
µ ´ BνZ

0BµA
0
µ

˘

`
β3

β1
e´

s
2Z0BνZ

0pφ22 ` φ33q `
β3

2β1
e´s

`

κ´ Z0
˘

A0
ζT

ζ,0
µ,µν

` e´
s
2

´

pBνA
0
µ ´

1
2e
´ s

2 pκ` Z0qφµνqA
0
γ

¯

φγµ `
1

2β1βτ
hµ,0W BνA

0
γφγµ `

´

1
2β1βτ

e
s
2hγ,0W ´A0

γ

¯

φγν

´ 1
4β4pκ´ Z

0q

´

pκ´ Z0qpesB1νK
0 ´ e´

s
2 BµKφµνq ´ 2BνZ

0esB1K
¯

, (12.3)

which may be written schematically as

9Q1ν “ PQ,ν
´

κ, φ
ˇ

ˇ

1
βτ
e
s
2h,0W , e

´s 9φ, e´s 9Q
¯

. (12.4)

Note that once 9Q1ν is known, we can determine 9n2 and 9n3 by recalling from [4, Equations (A.4)–(A.5)] that
»

–

1`
n2

2
n1p1`n1q

n2n3
n1p1`n1q

n2n3
n1p1`n1q

1`
n2

3
n1p1`n1q

fi

fl

„

9n2

9n3



“

´

Id ` ňbň
n1p1`n1q

¯

9̌n “

„

9Q12

9Q13



, (12.5)
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where n1 “
a

1´ n2
2 ´ n

2
3. Since the vector ň is small (see (4.1a) below), and the matrix on the left side is

an Op|ň|2q perturbation of the identity matrix, we obtain from (12.5) a definition of 9n, as desired.
Next, we determine the dependence of hµ,0W and G0

W . Inspecting (A.7c)–(A.7d) and (A.8d)–(A.8e) and
inserting them into (2.61b), we obtain the dependence

1
βτ
hµ,0W “ e´

s
2Rh,µ

´

κ, φ
ˇ

ˇ e´s 9Q, e´2s 9φ
¯

´ 1
βτ
hγ,0W pH

0q
´1
µi φζγB1iA

0
ζ .

Note that although h,0W appears on both sides of the above, in view of (4.17) the dependence on the right
side is paired with a factor less than e´s ď ε, and the functions φζγ are themselves expected to be ď ε for
all s ě ´ log ε (cf. (4.1a) below). This allows us to solve for hµ,0W and schematically write

1
βτ
hµ,0W “ e´

s
2Rh,µ

´

κ, φ
ˇ

ˇ e´s 9Q, e´2s 9φ
¯

. (12.6)

Returning to (2.61a), inspecting (A.7c)–(A.7d) and (A.8d)–(A.8e), and using (12.6) we also obtain the
dependence

1
βτ
G0
W “ e´

s
2Rh,µ

´

κ, φ
ˇ

ˇ e´s 9Q, e´2s 9φ
¯

. (12.7)

Next, we determine the dependence of 9ξj . From (2.61a)–(2.61b), (2.62), (2.63), and the fact thatRRT “
Id we deduce that

9ξj “ RjipR
T 9ξqi “ Rj1

´

1
2β1
pκ` β2Z

0q ´ 1
2β1βτ

e´
s
2G0

W

¯

`Rjµ

´

A0
µ ´

1
2β1βτ

e
s
2hµ,0W

¯

(12.8)

for j P t1, 2, 3u. Using (12.6) and (12.7), we may then schematically write

9ξj “ Rξ,j

´

κ, φ
ˇ

ˇ e´s 9Q, e´2s 9φ
¯

. (12.9)

Lastly, note that 9φνγ is determined in terms of e
s
2 BνγG

0
W (which we rewrite in terms of G0

W , hµ,0W and
BνγF

0
W via (2.64)) through the first term on the right side of (A.7e)

9φγν “ ´
1
βτ
e
s
2

´

G0
W B1νγW

0 ` hµ,0W BµνγW
0 ´ BνγF

0
W

¯

` β2e
sBγνZ

0 ´ 2β1p 9Qζγφζν ` 9Qζνφζγq

`

´

1
βτ
e´

s
2G0

W ´ κ´ β2Z
0
¯

N0
1,γν ` J0

,γν
1
βτ
e´

s
2G0

W , (12.10)

and (2.61a) is used to determine G0
W . In light of (A.8f), (12.7) and of (12.10), we may schematically write

9φγν “ Rφ,γν

´

κ, φ
ˇ

ˇ e´s 9Q, e´s 9φ
¯

´ 9Qζγφζν ´ 9Qζνφζγ ,

which may be then combined with (12.4) and (12.6) to yield

9φγν “ Rφ,γν

´

κ, φ
ˇ

ˇ e´s 9Q, e´s 9φ
¯

, (12.11)

thus spelling out the dependences of 9φ on the other dynamic variables.
The equations (12.1), (12.2), (12.4), (12.9), and (12.11) only implicitly define 9κ, 9τ , 9Q1ν , 9ξj , and 9φγν . We

may however spell out this implicit dependence and arrive at an autonomous system of ODEs for all 10 of
our modulation parameters, cf. (12.12)–(12.13) below.

By combining (12.4) and (12.6) with (12.5), and recalling (12.11) we obtain that

9φγν “ Rφ,γν

´

κ, φ, ň
ˇ

ˇ e´s 9̌n, e´s 9φ
¯

and 9nν “ Rn,ν

´

κ, φ, ň
ˇ

ˇ e´s 9̌n, e´s 9φ
¯

.
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Therefore, since e´s ď ε, and the functions Pφ,γν and Pn,ν are linear in e´s 9̌n and e´s 9φ, then as long as κ, φ,
and ň remain bounded, and ε is taken to be sufficiently small (in particular, for short time after t “ ´ log ε),
we may analytically solve for 9φ and 9n as rational functions (with bounded denominators) of κ, φ, and ň,
with coefficients which only depend on the derivatives of Z,A,K at y “ 0. We write this schematically as

9φγν “ Eφ,γν pκ, φ, ňq and 9nν “ En,ν pκ, φ, ňq . (12.12)

Here the Eφ,γνpκ, φ, ňq and En,νpκ, φ, ňq are suitable smooth functions of their arguments, as described
above. With (12.12) in hand, we return to (12.1) and (12.2), which are to be combined with (12.6), and with
(12.9) to obtain that

9κ “ Eκ pκ, φ, ňq , 9τ “ Eτ pκ, φ, ňq and 9ξj “ Eξ,j pκ, φ, ňq . (12.13)

for suitable smooth functions Eκ, Eτ , and Eξ,j of pκ, φ, ňq, with coefficients which depend on the derivatives
of Z,A, and K at y “ 0.

Remark 12.1 (Local solvability). The system of ten nonlinear ODEs described in (12.12) and (12.13) are
used to determine the time evolutions of our 10 dynamic modulation variables. The local in time solvability
of this system is ensured by the fact that Eφ,γν , En,ν , Eκ, Eτ , Eξ,j are rational functions of κ, φ, n2, and n3,
with coefficients that only depend on BγZ0, BγA0 and BγK0 with |γ| ď 3, and moreover that these functions
are smooth in the neighborhood of the initial values given by (2.54); hence, unique C1 solutions exist for a
sufficiently small time. We emphasize that these functions are explicit.

12.2 Closure of bootstrap estimates for the dynamic variables

Once one traces back the identities in Sections 12.1 and Appendix A.3 we may close the bootstrap assump-
tions for the modulation parameters, (4.1).

The starting point is to obtain bounds for G0
W and hµ,0W , by appealing to (2.61a)–(2.61b). The matrix H0

defined in (2.60) can be rewritten as

H0psq “ pB1∇2W q0psq “ pB1∇2W q0 ` pB1∇2
ĂW q0psq “ diagp6, 2, 2q ` pB1∇2

ĂW q0psq.

From the bootstrap assumption (4.10) we have that
ˇ

ˇ

ˇ
pB1∇2

ĂW q0psq
ˇ

ˇ

ˇ
ď ε

1
4 for all s ě ´ log ε, and thus

ˇ

ˇpH0q´1psq
ˇ

ˇ ď 1 (12.14)

for all s ě ´ log ε. Next, we estimate B1∇F 0
W . Using (A.8d), (A.8e), the bootstrap assumptions (4.1a)–

(4.3), the bounds (4.12)–(4.20), and the fact that
ˇ

ˇTζ,0µ,µν
ˇ

ˇ ď |φ|2, after a computation we arrive at
ˇ

ˇB1∇F 0
W

ˇ

ˇ ÀMε
1
2 e´s `M2e´

3
2
p1´ 4

2m´5
qs
`
ˇ

ˇh¨,0W
ˇ

ˇM3εe´
3
2
p1´ 4

2m´5
qs
`Me´p1´

5
2m´7

qs

À ε2
ˇ

ˇh¨,0W
ˇ

ˇ`Me´p1´
5

2m´7
qs . (12.15)

Moreover, from (A.7c), (A.7d), (4.1a), (4.1b), the first line in (4.12), and the previously established bound
(12.15) we establish that

ˇ

ˇB1∇G0
W

ˇ

ˇ`
ˇ

ˇB1∇F 0
W

ˇ

ˇ À e
s
2

ˇ

ˇB1∇Z0
ˇ

ˇ`M4ε
3
2 e´

3s
2 ` ε2

ˇ

ˇh¨,0W
ˇ

ˇ`Me´p1´
5

2m´7
qs

À ε2
ˇ

ˇh¨,0W
ˇ

ˇ`Me´p1´
5

2m´7
qs . (12.16)

The bounds (12.14) and (12.16), are then inserted into (2.61a)–(2.61b). After absorbing the ε2
ˇ

ˇh¨,0W
ˇ

ˇ term
into the left side, we obtain to estimate

ˇ

ˇG0
W psq

ˇ

ˇ`

ˇ

ˇ

ˇ
hµ,0W psq

ˇ

ˇ

ˇ
ÀMe´p1´

5
2m´7

qs . (12.17)

The bound (12.17) plays a crucial role in the following subsections. We note that for m ě 18 we have
1´ 5

2m´7 ą
4
5 , and hence so the bound (12.17) implies that

ˇ

ˇG0
W psq

ˇ

ˇ`
ˇ

ˇhµ,0W psq
ˇ

ˇ ÀMe´
4s
5 .

80



Buckmaster, Shkoller, Vicol Formation of points shocks for 3D Euler

12.2.1 The 9τ estimate

From (2.57), the definition of B1G
0
W in (A.7a), the definition of B1F

0
W in (A.8b) , the bootstrap estimates

(4.1a)–(4.3), (4.12)–(4.14), and the previously established bound (12.17), we obtain that

| 9τ | À
ˇ

ˇB1G
0
W

ˇ

ˇ`
ˇ

ˇB1F
0
W

ˇ

ˇ

À e
s
2

ˇ

ˇB1Z
0
ˇ

ˇ` e´
s
2

ˇ

ˇ∇̌A0
ˇ

ˇ`M
ˇ

ˇ∇̌B1A
0
ˇ

ˇ`M2ε
1
2 e´

s
2

ˇ

ˇB1A
0
ˇ

ˇ`M2εe´2s
ˇ

ˇA0
ˇ

ˇ`M3εe´s

`Mes|B11K
0| `Me

s
2 |B1S

0|

ÀM
1
2 e´s `Mε

1
2 e´s `Me´

3
2
p1´ 2

2m´5
qs
`M3εes `Mε

1
8 e´s

ď M
4 e
´s , (12.18)

where we have used a power ofM to absorb the implicit constant in the first inequality above. This improves
the bootstrap bound for 9τ in (4.1b) by a factor of 4. Integrating in time from ´ε to T˚, where |T˚| ď ε, we
also improve the τ bound in (4.1a) by a factor of 2, thereby closing the τ bootstrap.

12.2.2 The 9κ estimate

From (2.56)–(4.3), the bound (12.17), the definition of F 0
W in (A.8a), the estimates (4.12)–(4.14), and the

fact that 5
2m´7 ă

1
5 , we deduce that

| 9κ| À e
s
2

ˇ

ˇG0
W

ˇ

ˇ` e
s
2

ˇ

ˇF 0
W

ˇ

ˇ

ÀMe´
s
2
` 5s

2m´7 ` pκ0 `MεqMε
1
2 e´

s
2 `M3ε

3
2 e´

s
2 `M4ε2e´

s
2 ` e´

s
2 pκ2

0 `M
2ε2qM2ε

` pκ0 `Mεqε
1
4 e´

s
2

ď 1
2e
´ 3s

10 .

Here we have used a small (m-dependent) power of ε to absorb the implicit constant in the second esti-
mate above, thereby improving the 9κ bootstrap bound in (4.1b) by a factor of 2. Integrating in time, we
furthermore deduce that

|κptq ´ κ0| ď ε
13
10 (12.19)

since |T˚| ď ε. Upon taking ε to be sufficiently small in terms of κ0, we improve the κ bound in (4.1a).

12.2.3 The 9ξ estimate

In order to bound the 9ξ vector, we appeal to (12.8), to (12.17), to the |γ| “ 0 cases in (4.12) and (4.13), to
the bound |R´ Id | ď ε, and to the |ň| estimate in (4.1a), to deduce that

ˇ

ˇ 9ξj
ˇ

ˇ À κ0 `
ˇ

ˇZ0
ˇ

ˇ` e´
s
2

ˇ

ˇG0
W

ˇ

ˇ`
ˇ

ˇA0
µ

ˇ

ˇ` e
s
2

ˇ

ˇhµ,0W
ˇ

ˇ À κ0 `Mε`Me´
s
2
` 5s

2m´7 À κ0 , (12.20)

upon taking ε sufficiently small in terms ofM and κ0. The bootstrap estimate for 9ξ in (4.1b) is then improved
by taking M sufficiently large, in terms of κ, while the bound on ξ in (4.1a) follows by integration in time.

12.2.4 The 9φ estimate

Using (12.10), the fact that
ˇ

ˇN0
1,µν

ˇ

ˇ `
ˇ

ˇJ0
,µν

ˇ

ˇ À |φ|2, the bootstrap assumptions (4.1a), (4.1b), (4.10), the
bounds (4.2), and the previously established estimate (12.17), we obtain

ˇ

ˇ 9φγν
ˇ

ˇ À e
s
2

´

Me´sp1´
5

2m´7
q
`
ˇ

ˇBνγF
0
W

ˇ

ˇ

¯

` es
ˇ

ˇBγνZ
0
ˇ

ˇ
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`M4ε
3
2 `

´

Me´
3s
2
` 5s

2m´7 ` κ0 `
ˇ

ˇZ0
ˇ

ˇ

¯

M4ε2 `M5ε2e´
3s
2
` 5s

2m´7 . (12.21)

Using the definition of ∇̌2F 0
W in (A.8f), appealing to the bootstrap assumptions (and their consequences)

from Section 4, the previously established estimate (12.17), and the fact that
ˇ

ˇTζ,0µ,γν
ˇ

ˇ `
ˇ

ˇN0
1,µν

ˇ

ˇ `
ˇ

ˇJ0
,µν

ˇ

ˇ `
ˇ

ˇN0
ζ,µνγ

ˇ

ˇ À |φ|2, after a lengthy computation one may show that

ˇ

ˇBνγF
0
W

ˇ

ˇ À e´
s
2 ,

which shows that the term e
s
2

ˇ

ˇBνγF
0
W

ˇ

ˇ in (12.21) is subdominant when compared to es
ˇ

ˇBγνZ
0
ˇ

ˇ ÀM present
in (12.21). In establishing the above estimate it was crucial that es

ˇ

ˇB1γνK
0
ˇ

ˇ À e´
s
2 , which from (4.20) since

m ě 18. Combining the above two estimates with the Z bounds in (4.12), we derive

ˇ

ˇ 9φγν
ˇ

ˇ À e
s
2

´

Me´
4s
5 ` e´

s
2

¯

`M `M4ε
3
2 `

`

Me´s ` κ0 ` εM
˘

M4ε2 `M5ε2e´s ÀM . (12.22)

Taking M sufficiently large to absorb the implicit constant, we deduce | 9φ| ď 1
4M

2, which improves the 9φ
bootstrap in (4.1b) by a factor of 4. Integrating in time on r´ε, T˚q, an interval of length ď 2ε, and using
that |φp´ log εq| ď ε we improve the φ bootstrap in (4.1a) by a factor of 2.

12.2.5 The 9n estimate

First we obtain estimates on | 9Q1ν |, by appealing to the identity (12.3). Using the bootstrap assumptions
(4.1a), (4.1b), (4.12)–(4.14), the estimates (4.2) and (12.17), and the fact that

ˇ

ˇTζ,0µ,µν
ˇ

ˇ À |φ|2, we obtain

ˇ

ˇ 9Q1ν

ˇ

ˇ ÀM2ε
1
2 e´

s
2

ˇ

ˇBνA
0
µ

ˇ

ˇ`M4ε
3
2 e´s

ˇ

ˇA0
ˇ

ˇ` e
s
2

ˇ

ˇ∇̌Z0
ˇ

ˇ`M2e´s
ˇ

ˇA0
ˇ

ˇ

`
`

M
ˇ

ˇ∇̌2A0
ˇ

ˇ`
ˇ

ˇ∇̌Z0
ˇ

ˇ

ˇ

ˇ∇̌A0
ˇ

ˇ

˘

`M2εe´
s
2

ˇ

ˇZ0
ˇ

ˇ

ˇ

ˇ∇̌Z0
ˇ

ˇ`M5ε2e´s
ˇ

ˇA0
ˇ

ˇ

` e´
s
2

´

p
ˇ

ˇ∇̌A0
ˇ

ˇ`M3εe´
s
2 q
ˇ

ˇA0
ˇ

ˇ

¯

M2ε`M3εe´s
ˇ

ˇ∇̌A0
ˇ

ˇ`M2ε
´

Me´
s
2 `

ˇ

ˇA0
ˇ

ˇ

¯

` pκ0 `Mεq
´

pκ0 `Mεqpes
ˇ

ˇB1∇̌K0
ˇ

ˇ`M2εe´
s
2

ˇ

ˇ∇̌K0
ˇ

ˇq ´ 2
ˇ

ˇ∇̌Z0
ˇ

ˇ es
ˇ

ˇB1K
0
ˇ

ˇ

¯

ÀMε
1
2 , (12.23)

upon taking ε sufficiently small, in terms of M . Moreover, using the bootstrap assumption |ň| ď Mε
3
2 , we

deduce that the matrix on the left side of (12.5) is within ε of the identity matrix, and thus so is its inverse.
We deduce from (12.5) and (12.23) that

ˇ

ˇ 9̌n
ˇ

ˇ ď M2ε
1
2

4 . (12.24)

upon taking M to be sufficiently large to absorb the implicit constant. The closure of the ň bootstrap is then
achieved by integrating in time on r´ε, T˚q.

13 Conclusion of the proof: Theorems 3.2 and 3.3

We first note that the system (2.33) for pW,Z,A,Kq, with initial data pW0, Z0, Z0,K0q chosen to satisfy
the conditions of the theorem, is locally well-posed. To see this, we note that the transformations from (1.3)
to (2.33) are smooth for sufficiently short time, and that (1.3) is locally well-posed in the Sobolev space Hk,
for k ě 3. Here we have implicitly used that the system of ten nonlinear ODEs (12.12) and (12.13) which
specify the modulation functions have local-in-time existence and uniqueness as discussed in Remark 12.1.
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Moreover, solutions to (1.3) satisfy the following continuation principle (see, for example, [19]): Suppose
pu, σ, kq P Cpr´ε, T q, Hkq is a solution to (1.3) satisfying the uniform bound }up¨, tq}C1 ` }σp¨, tq}C1 `

}kp¨, tq}C1 ď K ă 8, then if in addition σ is uniformly bounded from below on the interval r´ε, T q, there
there exists T1 ą T such that pu, σ, kq extends to a unique solution of (1.3) on r0, T1q. Consequently, the
solution pW,Z,A,Kq in self-similar variables may be continued so long as pW,Z,A,Kq remain uniformly
bounded in Hk, the modulation functions remain bounded, and the density remains bounded from below.

In Sections 5–12, we close the bootstrap assumptions on W , Z, A, K and on the modulation functions.
By Proposition 4.6, the density remains uniformly strictly positive and bounded. Thus, as a consequence
of the continuation principle stated above, we obtain a global in self-similar time solution pW,Z,A,Kq P
Cpr´ log ε,`8q;HmqXC1pr´ log ε,`8q;Hm´1q to (2.33) form ě 18. This solution satisfies the bounds
stated in Sections 4.2–4.6. The asymptotic stability of W py, sq follows from:

Theorem 13.1 (Convergence to stationary solution). There exists a 10-dimensional symmetric 3-tensor A
such that, with WA defined in Appendix A.1, we have that the solution W p¨, sq of (2.33a) satisfies

lim
sÑ8

W py, sq “WApyq

for any fixed y P R3.

We note that the proof of Theorem 13.1 is the same as the proof of Theorem 13.4 in [4] once we include
the contributions of the entropy function K, which can be estimated using (4.14). The limiting profile WA
satisfies the conditions stated in Theorem 3.2 due to Proposition A.1.

The remaining conclusions of Theorem 3.2 follow from the statements given in Sections 4.7 and 4.8 (for
the time and location of the singularity, and the regularity of the solution at this time), Proposition 4.3 (for
the vanishing of derivatives of A, Z, and K as s Ñ 8), Proposition 6.1 (for the vorticity upper bounds),
and Theorem 7.4 (for the vorticity creation estimates).

The proof of Theorem 3.3 is the same as the proof of Theorem 3.2 in [4]. The addition of entropy
does not necessitate modifications to that proof as the assumptions on the initial entropy in Theorem 3.2
(see (3.20) and (3.23)) are stable with respect to small perturbations.

A Appendix

A.1 A family of self-similar solutions to the 3D Burgers equation

Proposition A.1 (Stationary solutions for self-similar 3D Burgers). Let A be a symmetric 3-tensor such that
A1jk “Mjk with M a positive definite symmetric matrix. Then, there exists a C8 solution WA to

´1
2WA `

´

3y1

2 `WA

¯

B1WA `
y̌
2 ¨ ∇̌WA “ 0 , (A.1)

which has the following properties:

• WAp0q “ 0, B1WAp0q “ ´1, B2WAp0q “ 0,

• BαWAp0q “ 0 for |α| even,

• BαWAp0q “ Aα for |α| “ 3.

See Appendix A.1 in [4] for the proof of Proposition A.1.
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A.2 Interpolation

The following is taken from [4, Appendix A.3]. We include the inequalities here for convenience to the
reader.

Lemma A.2 (Gagliardo-Nirenberg-Sobolev). Let u : Rd Ñ R. Fix 1 ď q, r ď 8 and j,m P N, and
j
m ď α ď 1. Then, if

1
p “

j
d ` α

`

1
r ´

m
d

˘

` 1´α
q ,

then

}Dju}Lp ď C}Dmu}αLr}u}
1´α
Lq . (A.2)

We shall make use of (A.2) for the case that p “ 2m
j , r “ 2, q “ 8, which yields

›

›Djϕ
›

›

L
2m
j
À }ϕ}

j
m
9Hm
}ϕ}

1´ j
m

L8 , (A.3)

whenever ϕ P HmpR3q has compact support. The above estimate and the Leibniz rule classically imply the
Moser inequality

}φϕ} 9Hm À }φ}L8 }ϕ} 9Hm ` }φ} 9Hm }ϕ}L8 . (A.4)

for all φ, ϕ P HmpR3q with compact support. At various stages in the proof we also appeal to the following
special case of (A.2)

›

›ϕ
›

›

9Hm´2 À
›

›ϕ
›

›

2m´7
2m´5

9Hm´1

›

›ϕ
›

›

2
2m´5

L8 , (A.5)

for ϕ P Hm´1pR3q with compact support. Lastly, in Section 8 we make use of:

Lemma A.3. Let m ě 4 and 0 ď l ď m´ 3. Then for a` b “ 1´ 1
2m´4 P p0, 1q, and q “ 6p2m´3q

2m´1 ,

›

›D2`lφDm´1´lϕ
›

›

L2 À
›

›Dmφ
›

›

a

L2

›

›Dmϕ
›

›

b

L2

›

›D2φ
›

›

1´a

Lq

›

›D2ϕ
›

›

1´b

Lq
. (A.6)

See [4] for the proof.

A.3 The functions GW , FW and their derivatives at y “ 0

Using (2.14), the definition of GW in (2.34a), and the constraints in (2.53), we deduce that11

1
βτ
B1G

0
W “ β2e

s
2 B1Z

0 (A.7a)
1
βτ
BνG

0
W “ β2e

s
2 BνZ

0 ` 2β1p 9Q1ν `A
0
γφγνq ´ e

s
2 1
βτ
hγ,0W φγν (A.7b)

1
βτ
B11G

0
W “ β2e

s
2 B11Z

0 (A.7c)

1
βτ
B1νG

0
W “ β2e

s
2 B1νZ

0 ´ 2β1e
´ 3s

2 9Qγ1φγν (A.7d)

1
βτ
BγνG

0
W “ e´

s
2

´

´ 9φγν ` β2e
sBγνZ

0 ´ 2β1p 9Qζγφζν ` 9Qζνφζγ `Rj1 9ξjN
0
1,γνq ` e

´ s
2
G0
W
βτ

J0
,γν

¯

.

(A.7e)

11Here we have used the identities: Tγ,0µ,ν “ 0, N0
µ,νγ “ 0, and Tζ,01,νγ “ 0, N0

1,ν “ 0, and N0
µ,ν “ ´φµν , N0

ζ,µν “ 0.
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Appealing to (2.14) and (2.36a) which is equivalent to

1
βτ
FW “ ´2β3ST

ν
µBµAν ` 2β1e

´ s
2AνT

ν
i

9Ni ` 2β1e
´ s

2 9QijAνT
ν
jNi

`

´

1
βτ
hµW ´ β3e

´ s
2Nµ

´

κ` e´
s
2W ´

β1`β2

β3
Z
¯¯

AγT
γ
i Ni,µ ´ 2β3e

´ s
2S

`

AνT
ν
µ,µ ` U ¨ NNµ,µ

˘

` β4S
2pJesB1K ` NµBµKq ,

we may derive the following explicit expressions12

1
βτ
F 0
W “ ´β3

`

κ´ Z0
˘

BµA
0
µ ` 2β1e

´ s
2 9Q1µA

0
µ ´

1
βτ
hµ,0W A0

ζφζµ

` 1
2β3e

´ s
2 pκ´ Z0qpκ` Z0qpφ22 ` φ33q `

1
4β4pκ´ Z

0q2esB1K
0 (A.8a)

1
βτ
B1F

0
W “ β3

´

e´
s
2 ` B1Z

0
¯

BµA
0
µ ´ β3

`

κ´ Z0
˘

B1µA
0
µ ` 2β1e

´ s
2 9Q1µB1A

0
µ

´

´

1
βτ
hµ,0W B1A

0
ζ ` 2β1e

´ s
2 pB1A

0
µ ` e

´ 3s
2 9Qµ1qA

0
ζ

¯

φζµ

´ 1
2β3e

´s
´

p1` e
s
2 B1Z

0qpκ` Z0q ` pκ´ Z0qp1´ e
s
2 B1Z

0q

¯

pφ22 ` φ33q

` 1
4β4pκ´ Z

0q

´

pκ´ Z0qesB11K
0 ´ 2pe´

s
2 ` B1Z

0qesB1K
0
¯

(A.8b)

1
βτ
BνF

0
W “ ´β3ppκ´ Z

0qBνµA
0
µ ´ BνZ

0BµA
0
µq ´ 2β1e

´sA0
µ

9φµν ` 2β1e
´ s

2 9Q1µBνA
0
µ

´ 2β1e
´s 9QµζA

0
ζφµν ´ β3e

´ s
2Z0BνZ

0pφ22 ` φ33q ´ β3e
´s

`

κ´ Z0
˘

A0
ζT

ζ,0
µ,µν

´ 2β1e
´ s

2

´

pe´
s
2 9Qµν ` BνA

0
µ ´

1
2e
´ s

2 pκ` Z0qφµνqA
0
γ

¯

φγµ ´
1
βτ
hµ,0W BνA

0
γφγµ

` 1
4β4pκ´ Z

0q

´

pκ´ Z0qpesB1νK
0 ´ e´

s
2 BµKφµνq ´ 2BνZ

0esB1K
¯

(A.8c)

1
βτ
B11F

0
W “ β3

´

e´
s
2 ` B1Z

0
¯

BµA
0
µ ´ β3

`

κ´ Z0
˘

B1µA
0
µ ` 2β1e

´ s
2 9Q1µB11A

0
µ

´

´

2β1e
´ s

2 ` 1
βτ
hµ,0W

¯

B11A
0
ζφζµ ´ 4β1e

´ s
2 pB1A

0
µ ` e

´ 3s
2 9Qµ1qB1A

0
ζφζµ

´ β3e
´ s

2

`

Z0B11Z
0 ´ e´sp1´ espB1Z

0q2q
˘

pφ22 ` φ33q `
1
2β4pe

´ s
2 ` B1Z

0q2B1K
0es

` β4pκ´ Z
0q

´

1
4pκ´ Z

0qesB111K
0 ´ pe´

s
2 ` B1Z

0qesB11K
0 ´ 1

2B11Z
0esB1K

¯

(A.8d)

1
βτ
B1νF

0
W “ ´β3

´

pκ´ Z0qB1νµA
0
µ ´ B1νZ

0BµA
0
µ ´ BνZ

0B1µA
0
µ ´ pe

´ s
2 ` B1Z

0qBνµA
0
µ

¯

´ 2β1e
´sB1A

0
µ

9φµν ` 2β1e
´ s

2 9Q1µB1νA
0
µ ´ 2β1e

´s 9QµζB1A
0
ζφµν

´ β3e
´ s

2 pB1Z
0BνZ

0 ` Z0B1νZ
0qpφ22 ` φ33q

´ β3e
´s

´

pκ´ Z0qB1A
0
ζ ´ pe

´ s
2 ` B1Z

0qA0
ζ

¯

Tζ,0µ,µν

´ 2β1e
´ s

2

´

pe´
s
2 9Qµν ` BνA

0
µqB1A

0
γ ` pe

´ 3s
2 9Qµ1 ` B1A

0
µqBνA

0
γ `A

0
µB1νA

0
γ

¯

φγµ

´ 1
βτ
hµ,0W B1νA

0
γφγµ ` β1e

´s
´

pκ` Z0qB1A
0
γ ´ pe

´ s
2 ´ B1Z

0qA0
γ

¯

φµνφγµ

´ 1
2β4pκ´ Z

0q

´

B1νZ
0esB1K

0 ` BνZ
0esB11K

0 ` pe´
s
2 ` B1Z

0qpesB1νK
0 ´ φµνe

´ s
2 BµK

0q

¯

` 1
2β4pe

´ s
2 ` B1Z

0qBνZ
0B1K

0es ` 1
4β3β4pκ´ Z

0q2
´

esB11νK
0 ´ φµνe

´ s
2 B1µK

0
¯

(A.8e)

12Here we have used the identities: N0
µ,µ “ ´φ22 ´ φ33, Tν,0µ,µ “ 0, 9N0

i “ 0, 9N0
1,ν “ 0, 9N0

µ,ν “ ´ 9φµν , Tγ,01,ν “ φγν ,
Tγ,0i,ν N

0
i,µ “ 0, Tγ,0i N0

i,µν “ 0, N0
µ,µν “ 0, 9Nζ,νγ “ 0, and J0

,νγ “ φ2νφ2γ ` φ3νφ3γ .
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1
βτ
BγνF

0
W “ ´2β3pBνγpKBµAµqq

0 ´ β3e
´spκ´ Z0qBµA

0
ζT

ζ,0
µ,νγ

´ 2β1e
´sBνA

0
µ

9φµγ ´ 2β1e
´sBγA

0
µ

9φµν ´ β3e
´ s

2 BγZ
0BνZ

0pφ22 ` φ33q

` 2β1e
´ s

2 9Q1µBγνA
0
µ ´ 2β1e

´s 9QζµBνA
0
µφζγ ´ 2β1e

´s 9QζµBγA
0
µφζν

` 2β1e
´ 3s

2 A0
µ

´

9Q1ζpφνµφζγ ` φµγφζν ` φνγφµζ ` Tµ,0ζ,νγq `
9Q1µN

0
1,νγ

¯

´ β3e
´s

`

pκ´ Z0qBνA
0
ζ ´ BνZ

0A0
ζ

˘

Tζ,0µ,µγ ´
1
2β3e

´ 3s
2 pκ´ Z0qpκ` Z0qN0

µ,µνγ

´ 2β1e
´ s

2

´

e´
s
2 9QµνBγA

0
ζ ` e

´ s
2 9QµγBνA

0
ζ ` BνµA

0
µA

0
ζ ` BµA

0
µBνA

0
ν ` BνA

0
µBµA

0
ν

¯

φζµ

` 2β1e
´s

`

BνppU ¨ NqAζq
0φµγφζµ ` BγppU ¨ NqAζq

0φµνφζµ
˘

´ 2β1e
´ 3s

2 A0
ιA

0
ζT

ζ,0
µ,νγφιµ

´ 1
βτ
hµ,0W BνγA

0
ζφζµ ` e

´s 1
βτ
hµ,0W A0

ι

`

φινN
0
1,µγ ` φιγN

0
1,µν ` N0

α,µνγ

˘

` 1
4β4pκ´ Z

0q2
´

esB1γνK
0 ` pφ2νφ2γ ` φ3νφ3γqB1K

0 ´ e´
s
2 pφµνBµγK

0 ` φµγBµνK
0q

¯

´ 1
2β4pκ´ Z

0q

´

BγZ
0pesB1νK

0 ´ φµνe
´ s

2 BµK
0q ` BνZ

0pesB1γK
0 ´ φµγe

´ s
2 BµK

0q

¯

` 1
2β4

`

BγZ
0BνZ

0 ´ pκ´ Z0qBγνZ
0
˘

esB1S
0 (A.8f)
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