Shock formation and vorticity creation for 3d Euler
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Abstract

We analyze the shock formation process for the 3d non-isentropic Euler equations with the ideal gas
law, in which sounds waves interact with entropy waves to produce vorticity. Building on our theory
for isentropic flows in [3,4], we give a constructive proof of shock formation from smooth initial data.
Specifically, we prove that there exist smooth solutions to the non-isentropic Euler equations which form
a generic stable shock with explicitly computable blowup time, location, and direction. This is achieved
by establishing the asymptotic stability of a generic shock profile in modulated self-similar variables,
controlling the interaction of wave families via: (i) pointwise bounds along Lagrangian trajectories, (ii)

geometric vorticity structure, and (iii) high-order energy estimates in Sobolev spaces.
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1 Introduction

The three-dimensional Euler equations of gas dynamics, introduced by Euler in [12], are a hyperbolic system
of five coupled equations, and can be written as

p (0w + (u- Vx)u) + Vip(p,k) = 0, (1.1a)
o+ (u-Vy)p+ pdivyu =0, (1.1b)
ok + (u-V)k =0, (1.1c)

for spacial variable x = (x1,x2,x3) € R3, temporal variable t € R, velocity u : R* x R — R3, density
p:R3 xR — R,,and entropy k : R3 x R. The pressure' p = p(p,k) : R? x R — R is a function of both
density and entropy, with equation-of-state given by the ideal gas law

plp.k) = §pYek,

where the adiabatic constant vy > 1. If smooth initial conditions are prescribed at an initial time tg, then a
classical solution to (1.1) exists up to a finite time 7, the lifespan, when a singularity or blowup develops
[27]. The mechanism of blowup for smooth solutions to (1.1) as ¢ — T, including rate, direction, locus,
and profile is heretofore unknown.

Our primary aim is the detailed analysis of the formation of the first shock or blowup for smooth solu-
tions to (1.1). We prove that for an open set of initial conditions, smooth solutions to (1.1) evolve steepening
wavefronts and form an asymptotically self-similar cusp-type first shock with explicit rate, location, and
direction. The major difficulty in the analysis of the non-isentropic Euler dynamics stems from the interac-
tion of sound waves, entropy waves, and vorticity waves. Non-isentropic flows can have a misalignment of
density and entropy gradients, thus leading to dynamic vorticity creation, even from irrotational initial data.

To highlight the challenge created by the interaction of different wave families, we must examine the
evolution of the vorticity vector which we shall now derive. To do so, it is convenient to write the Euler
equations using the sound speed. We introduce the adiabatic exponent
so that the sound speed c(p) = +/%/op can be written as ¢ = e%pa, and p = % pc?. We define the scaled
sound speed o by

o= e3p (1.2)

Q=
Q=

C =
and write the Euler equations (1.1) as a system for (u, o, k) as follows:

o+ (u- Vy)u + aoVio = %O'QVXI(, (1.3a)
00 + (u-Vy)o +aocdivyu =0, (1.3b)
ok + (u-Vy)k=0. (1.3¢)

We let w = curly u denote the vorticity vector, and define the specific vorticity vector by ( = %. A
straightforward computation shows that ( is a solution to

O+ (u- V)¢ = (C- V) u =22V, x Vik. (1.4)

ag
Yp
The term term %%an x Vixk on the right side of (1.4) can also be written as p*3VX p x Vxp and is referred
to as baroclinic torque. Clearly, the potential vorticity, the component of ( in the direction of the density

!The evolution equation for p can be replaced with the equation for pressure given by dp + (u - Vx)p + ypdivs u = 0.
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gradient, can only be generated by vortex stretching, whereas baroclinic vorticity modes are produced from
the interaction of acoustic waves and entropy waves. This (baroclinic) vorticity production is the funda-
mental mechanism for the excitation and stabilization of both the Rayleigh-Taylor and Richtmyer-Meshkov
instabilities, and plays a fundamental role in atmospheric science as well as numerous flows of engineering
significance.

Of course, it is possible to simplify the Euler dynamics in a manner that still retains the steepening
of sound waves, but removes complications associated to the interaction of different wave families. This
can be achieved by considering the subclass of flows for which the entropy is a constant; such flows are
called isentropic, and the pressure is a function of density alone: p = % pY. Note, that for isentropic flow,
baroclinic torque vanishes, and thus the specific vorticity ¢ is Lie advected as a vector field. Acoustic
modes can no longer interact with entropy waves to create vorticity; rather, vorticity is merely advected.
As such, two further subclasses of flows exist: irrotational flow and flow with advected vorticity. For
irrotational flow, only sound waves propagate, while for initial data with vorticity, there is an interaction
between acoustic modes and vorticity modes that must be carefully analyzed, as controlling the growth
of vorticity is essential to the study of shock formation. For non-isentropic dynamics, the presence of
baroclinic torque creates a fundamentally new challenge in the estimation of the growth of vorticity. Why?
Because as the first shock forms, the magnitude of baroclinic torque becomes infinite! Even though the
baroclinic torque blows up, using geometric coordinates adapted to the steepening wave front we are able to
obtain a number of cancellations in the vorticity equation, which allow us to prove that the vorticity remains
bounded up to the time of shock formation. Furthermore, irrotational initial data can be chosen with non-
zero baroclinic torque such that vorticity is instantaneously produced and remains non-trivial throughout the
shock formation process. By a significant extension of the methodology we developed in [3, 4], we shall
prove the following:

Theorem 1.1 (Rough statement of the main theorem). For an open set of smooth initial data with a max-
imally negative gradient of size O(1fe), for € > 0 sufficiently small, there exist smooth solutions to the
non-isentropic 3d Euler equations (1.1) which form a shock singularity at time Ty, = O(e). The first singu-
larity occurs at a single point in space, whose location can be explicitly computed, along with the precise
time at which it occurs. The blowup profile is shown to be a cusp with C'® regularity, and the singularity is
given by an asymptotically self-similar shock profile which is stable with respect to the H™(R3) topology for
m = 18. If an irrotational initial velocity is prescribed, vorticity is instantaneously produced, and remains
bounded and non-trivial up to the blowup time T.

A precise statement of the main result will be given below as Theorem 3.2.

1.1 Prior results

In one space dimension, the theory of finite-time blowup of smooth solutions and shock formation to the
Euler equations is well established. The literature is too vast to provide a review here. See, for example,
[11,13-17,19,26]. In contrast, in multiple space dimensions and with no symmetry assumptions, only the
isentropic shock formation problem has been studied: shock formation was established for irrotational flows
by [7] and [9] (see also [8]), for 2d isentropic flows with vorticity by [18] and [3], and for 3d isentropic
flows with vorticity by [4]. Under a spherical symmetry assumption, which reduces the non-isentropic
Euler equations to a 1d system, the shock formation process was studied in [30]. For non-isentropic flow
in multiple space dimensions and without symmetry assumptions, prior to this paper it was only known that
C' solutions have a finite lifespan [27].

As we noted above, one of the major difficulties in the analysis of non-isentropic flows is due to the
interaction of multiple wave families: sound waves, vorticity waves, and entropy waves. Indeed, the analysis
of quasilinear hyperbolic systems with multiple wave speeds is just emerging. As stated in [29], prior to the
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results in [3,4,18,29], there have been no constructive proofs of shock formation for a quasilinear hyperbolic
system in more than one spatial dimension, featuring multiple wave speeds. We note that the irrotational
(isentropic) Euler equations can be written as a scalar quasilinear wave equation with only one wave speed;
formation of shocks for systems with a single wave speed have been studied by [1,2,7,9,24,25,28].

Finally, we mention that there are other possible blowup mechanisms for the Euler equations; for ex-
ample, a precise characterization of implosion for spherically symmetric isentropic flow has recently been
given in [21,22].

1.2 Main ideas in the proof

Because of the presence of multiple wave speeds, multiple wave families, and their nonlinear interactions,
the Euler dynamics offer a rich tapestry of dynamic behavior, and yet when zooming-in on the formation of
the first shock, the Euler solution shares fundamental features with the wave-steepening blowup of the 3d
Burgers solution. For this reason, our study of the mechanism of shock formation for smooth solutions of
(1.3) as t — T makes use of a blowup profile W (y), one example of a stable stationary solution to the 3d
self-similar Burgers equation

— W+ (3y1 + W) 0y, W + 3420y, W + Jy30,, W =0 (L.5)

which has an explicit representation. If we consider the 3d Burgers equation ¢,v + v - Vv = 0 in physical
spacetime variables (x,t), then a smooth solution v = (v, v2,v3) which forms a first shock at ¢t = T is
given by?

1
t) = (T —t)2W S X2 3 1.6
'1)1(X17X2,X3, ) ( * )2 ( %7 (T*t)%j(T*t)%> ( )

with vo = 0 and v3 = 0. Explicit properties of the blowup profile W (y) together with the solution for
v1(x,t) give precise information of the blowup mechanism as t — Ty, including the blowup time Ty,
the blowup location x = 0, and the blowup direction e;. We note that we have made a particular choice
of direction for our Burgers solution v; specifically, we have chosen to let the wave steepen along the e;
blowup direction, whereas we could have used the profile W to form a blowup in any direction.

Although the non-isentropic Euler system is significantly more complicated, we are nevertheless able
to use the Burgers stationary solution W to describe the blowup mechanism for smooth solutions of (1.3)
as t — T,. This requires a number coordinate and variable transformations that are constructed upon two
geometric principles: first, we build into our transformations a family of time-dependent modulation func-
tions whose purpose is to fight against the destabilizing action of the finite-dimensional symmetry groups of
the Euler equations, and second, we design a coordinate system which both follows and deforms with the
steepening Euler solution.

Let us now elaborate on these ideas. The blowup profile T (y) has an explicit formula which shows
that y = 0 is a global minimum for J,, W (y), and with the following properties verified: W (0) = 0,
Oy W(0) = —1, 0, W(0) = 0,,W(0) = 0, VEW(0) = 0, and

V20, W(0) > 0. (1.7)

Positive-definiteness of the Hessian of 01 W at y = 0 is a genericity condition for the blowup mechanism,
and has been used in the study of blowup for quasilinear wave equations [2] and discussed in [5, 7] as an
important selection criterion for stable shocks.

2In fact, as established in Appendix A.1, there are many closely related stable self-similar solutions to the Burgers equations
which allow for a slight modification of v;.
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Returning now to the identity (1.6), if the initial time is fixed to be t) = —e for € > 0, we can set
T, = 0; the initial condition for v; is then given by v;(x, —¢) = E%W(&?*%xl, 57%712, 57%)(3), hence with
(y1,y2,y3) = ((—t)fgxl, (—t)féxm (—t)féx;z,), we see that the properties of W (y) at y = 0 show that
v1(0, —e) = 0, dx,v1(0, —¢) = %0y1W(O) = —%, Ox,01(0, —¢) = 0, Ox3v1(0, —€) = 0, V201(0,—¢) = 0
and the genericity condition (1.7) is also satisfied so that V20x,v1(0, —¢) > 0. We see that for the 3d
Burgers equation, if we start with a maximally negative slope equal to —% attime ¢ = —e and x = 0, then
the first shock occurs at time 7 = 0 and x = 0, and by virtue of (1.6), the blowup mechanism is self-similar

Oqv1(0,1) = 50 W (0) = — 75 . (1.8)

Of course, no such formula as (1.6) exists for the Euler equations, but we can nevertheless use the properties
of W to develop a new type of stability theory for the Euler equations in self-similar variables.

Thus, the first step in our proof of shock formation for the non-isentropic Euler equations is the mapping
of the physical spacetime coordinates (X, t) to modulated self-similar spacetime coordinates (y, s), together
with a succession of transformations that map the original variables (u, o, k) into geometric Riemann-like
variables (W, Z, A, K ), in which the dynamically dominant variable W (y, s) mimics the properties of W (y)
near the blowup location y = 0. The use of modulation functions for the analysis of self-similar dispersive
equations was pioneered in [20, 23]. The initial data is prescribed at self-similar time s = —loge, and
we require YW (y, —loge) to verify the same conditions as 07W (y) at the point y = 0 for all multi-
indices |y| < 2. Just as we noted above, we are now making a choice of blowup direction; the initial data is
chosen so that its maximal negative slope is in the e; direction, but unlike the Burgers solution, the rotational
symmetry of the Euler dynamics does not preserve this direction. In fact, the various symmetries of the Euler
equations prevent these conditions on 07W (0, s) to be maintained under the natural evolution, and for this
reason, ten time-dependent modulation functions are used to ensure that YW (0, s) = ¢7YW (0) for || < 2
and for all s > —loge. Of these ten modulation functions, seven of them are associated to symmetries
of the Euler equations (see Section 1.3 in [4]), and three of the modulation functions are associated to a
spatially quadratic time-dependent parameterization f(t,Xa,X3) = ¢o2(t)X3 + 2623 (t)x2x3 + ¢33(t)X§ of
the steepening front, where the matrix ¢, (t) modulates the curvature, and denotes the induced second-
fundamental form. Associated to this parametric surface f(x2,xs,?) is a time-dependent orthonormal basis
(N, T2, T3) representing the normal and tangential directions. The steepening front moves in the N direction
and the dominant Riemann variable is defined as w = u - N + o. With respect to coordinates = which
themselves depend on f, the variable w(x, t) is associated to the dominant self-similar variable W (y, s) by
a formula which is analogous to (1.6):

1
w(zy, xo,x3,t) = (7(t) —t)2W %2 T s, —s =log(7(t) — 1),
1,223, 8) = (7(8) =) <<T<t 03 (-2 (-1 > g =)

[N

where 7(t) modulates the blowup time and converges to Ty as ¢ — 7. Differentiating w in the direction N
of the steepening front, it can be shown that

oNw(E(t),t) = e°0,, W(0,8) = —=A— — —© as t— Ty, (1.9)

where £(t) modulates the blowup location. The blowup (1.9) is the geometric analogue of (1.8), and requires
a well-defined limit as ¢ — T} which, in turn, requires that W (y, s) remains well defined for all —loge < s.

It therefore becomes clear that in order to establish stable self-similar shock formation, we must prove
global existence of solutions to the Euler equations in self-similar coordinates (y, s), and the majority of our
work is devoted to this end. The understanding of the damping/anti-damping structure of the Euler equations
in self-similar coordinates (y, s) along Lagrangian trajectories is key to our analysis; the undifferentiated
Euler equations have anti-damping terms, but upon spatial differentiation, damping emerges, and the more
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derivatives that are applied, the stronger the damping becomes. A consequence of this observation is that
pointwise bounds for lower-order derivatives cannot rely on either damping or traditional Eulerian-type
analysis, but rather on sharp (lower) bounds on the motion of the three families of trajectories associated to
the three waves speeds present. In self-similar coordinates, almost all of the trajectories in these three wave
families escape to infinity and having sharp rates-of-escape for each family can be combined with spatial
decay properties of the Riemann-type function W (y, s) to close a system of highly coupled bootstrap bounds
for derivatives up to order two.

On the other hand, it is not possible to close estimates for the Euler equations using only pointwise
bounds due to inherent derivative loss, and higher-order energy estimates must therefore be employed. Mod-

ified energy estimates are performed for a system of variables comprised of U, .S e_%, and e%, where U,
S, and K are the self-similar versions of u, o, and k, respectively. The use of these variables removes the
hyperbolic degeneracy associated to vanishing density. Combined with the weighted pointwise bounds for
lower-order derivatives, we prove global existence in a modified H™-norm, m > 18.

While for the subclass of irrotational flows the above two types of estimates suffice, for rotational flows
it is essential to obtain uniform bounds for the vorticity all the way to the blowup time. Even for isentropic
dynamics, in which the specific vorticity is Lie advected, analysis in self-similar coordinates appears top
create logarithmic losses in temporal decay (see [4]). Instead, the specific vorticity ( is estimated in physical
coordinates using geometric components (¢ - N, ¢ - T2,¢ - T3), which yield a cancellation at highest order.
For the non-isentropic dynamics, an additional difficulty arises because the vorticity equation (1.4) is forced
by the baroclinic torque %%VXO' x Vxk, which blows up as ¢t — T}. Indeed, from formula (2.26) below, and
the bounds established in Sections 6 and 7, we may show that the tangential components of the baroclinic
torque term satisfy

(5T - Vo x ViK)(E(1), 1)] 2 77— -
A main feature of our proof is to show that in spite of the fact that the Lie-advection for the specific vorticity
is forced by a diverging term, { remains uniformly bounded up to 7. This is achieved by noting that the
divergence of the velocity gains a space derivative when integrated along trajectories with speed u, and by
taking advantage of certain cancellations which arise due to our geometric framework.

Finally, we examine baroclinic vorticity production. We prove that even if the initial velocity is ir-
rotational, vorticity is instantaneously produced due to the baroclinic torque, and our analysis shows that
this created vorticity remains non-trivial in an open neighborhood of the steepening front all the way up to
the first shock. We thus provide a constructive proof of shock formation for Euler in the regime in which
vorticity is created, and not simply Lie advected.

1.3 Outline

In Section 2, we introduce a succession of variable changes and Riemann-type variables which allow then
allow us to write the Euler equations in modulated self-similar coordinates. A precise specification of
the data and the statement of the main results is then given in Section 3. In Section 4, we introduce the
bootstrap assumptions for the modulation functions as well as the primary variables solving the self-similar
Euler equations; these bootstrap assumptions consist of carefully chosen weighted (in both space and time)
bounds. A fundamental aspect of our proof requires a detailed estimates for the rates of escape of the
trajectories corresponding to the different wave speeds, and Section 5 is devoted to this analysis. In Section
6, we establish pointwise bounds for the vorticity, and in Section 7 we show that there exists irrotational
initial velocity fields from which vorticity is created and remains non-trivial at the first shock. Energy
estimates in self-similar variables are established in Section 8, using the modified variables (2.42). In Section
9, we establish weighted (pointwise) estimates for functions appearing in the forcing, damping, and transport
of the differentiated Euler system. In turn, these weighted bounds allow us to close the bootstrap assumptions



Buckmaster, Shkoller, Vicol Formation of points shocks for 3D Euler

for W, Z, A, K and their partial derivatives, and this is achieved in Sections 10—11, while in Section 12, we
close the bootstrap bounds for the dynamic modulation functions. Finally, in Section 13, we explain how
all of the obtained bounds are used to prove Theorem 3.2; in particular, we show that lims_,o, W (y, s) =
W 4(y) for any fixed y € R3, where W 4(y) is a stable stationary solution to the self-similar 3d Burgers
equations. A family of such stationary solutions is constructed in Appendix A, which also contains an
interpolation inequality that is used throughout the paper, as well as some detailed computations leading to
the evolution equations for the modulation functions.

2 Transforming the Euler equations into geometric self-similar variables

We now make a succession of variable transformations for both dependent and independent variables. We
begin by rescaling time as

t =1, (2.1)

We next introduce ten modulation variables which satisfy a coupled system of ODEs that will be given in
(12.12)—(12.13). For each time ¢, they are defined as follows:

R(t) € S rotation matrix from e; to the direction of steepening front n(¢) , (2.2a)
t) e translation vector used to fix the location of the developing shock |, .
R3 lati d to fix the location of the developing shock (2.2b)
o(t) € ]R3 2x2 symmetric matrix giving the curvature of the developing shock front , (2.2¢)
T(t) € scalar used to track exact the blowup time |, (2.2d)
k(t) € scalar used to fix the speed of the developing shock . (2.2e)

The matrix R( ) is defined in terms of two time-dependent rotation angles ny(t) and n3(t) as follows. We
define n( (2/1 = nZ(t) + n2(t), na(t), n3(t)) and a skew-symmetric matrix 12 whose first row is the

vector (0, —ny, —ng), first column is (0, n2,n3), and has 0 entries otherwise. In terms of R, we define the
rotation matrix

1—e1-n(t) x

R(t) =1d + R(t) + SRA(t). (2.3)
le1 x n(t)]

It is the two angles no(t) and n3(t) whose evolution is given in (12.12).
Using these modulation functions, we next proceed to make a succession of transformations of both the
independent and dependent variables, finally arriving at a novel modulated self-similar form of the dynamics.

2.1 Rotating the direction and translating the location of the steepening wavefront

We introduce the new independent variable

¥ =R (t)(x - £(t) (2.4)
and corresponding dependent variables as
(T, t) = RT (t)u(x, 1), og(Z,t) = o(x,1), E(a?, t) = k(x,t). (2.5)
It follows that (1.3) is transformed to
Ltag g — Qu + ((5 ) vi)a +aFVE = £57Vik (2.6a)

7
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Ltap s 4 ((5 ) vg)f} + adivaii = 0 (2.6b)
Lagk + ((5+ 1) - s )k =0 (2.6¢)
where
o Y
O=FR'R and ¥ t):= OF — RT¢. 2.7)

The density and pressure in this rotated and translated frame are given by

p(,t) = p(x,t),  p(T,t) = p(x,t) (2.8)

satisfy
Liag 5+ ((5 + 7)) vf) 5+ pdivaii = 0, (2.92)
Ltap sy ((17 ) v5> 5+ ypdivsa = 0, (2.9b)

and we also have the alternative form of the momentum equation

Ltag g — Qu + ((ma).vi)m (aF) s e2a Vap = 0. (2.10)
This follows from the form of the momentum equation given by diu + (u - Vy)u + (aa)fie% Vip = 0
where, from (1.2), we have used that p~! = (aa)fée%.

~

Similarly, defining the transformed specific vorticity vector ( by
{(&,t) = RT(1)¢C(x,1), 2.11)
we have that E solves
LtanZ_ OC+ ((17 + ) - V:;>E— (E- Vg?)ﬂ — 27V.5 X Vik. 2.12)

Deriving (2.12) from (1.4) fundamentally uses that Q is skew-symmetric, and the fact that the cross product
is invariant to rotation.

2.2 Coordinates adapted to the shape of the steepening wavefront

We next define a quadratic surface over the Z2-7'3 plane given by the graph

(f(%Qa%fivt)?%Qa%fi) ) (213)

which approximates the steepening shock, and where
F(@,1) = 560y (DT T, . (2.14)

Associated to the parameterized surface (2.13), we define the unit-length normal and tangent vectors®

_ -1 2 _ (1. (f2)*>  —fof, 3_ (fs —faf (f:3)°
N=J (17_f727_f73>7T _(f_jzal_ﬁ7%>7-r _(fJga_j(infl)gal_J(Jil)>7 (215)

? As we noted in [4], (N, T2, T?) defines an orthonormal basis and T? x T® = N,N x T?> = T®and N x T3 = -T2
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1
where J = (1 + [f2|* +[f3]*)2.*
In order to ‘flatten’ the developing shock front, we make one further transformation of the independent
space variables’

~

x1 =21 — f(T2,T3,1), To = 2o, xr3 = 23, (2.16)

and define the transformed dependent variables by

w(z,t) = u(z,t) = u(zr + f(xo,x3,t), 2, 23,1), (2.17a)
o(x,t) =0(Z,t) = 5(x1 + f(x2,x3,t), 22, 23,1), (2.17b)
p(x,t) = p(F,t) = p(x1 + f(w2,23,t), T2, 73,1), (2.17¢)
K(z,t) = K(Z,t) = K(z1 + f(x2, 23, 1), 29, T3, 1) , (2.17d)
p(x,t) = p(T,t) = p(w1 + f(22,73,1), T2, T3, 1) - (2.17e)

We shall also make use of the a-dependent parameters

Bi=pi(a) = 1ta,  fo=Fala) =122 By=F(a) =1,  Bi=Fue) =B (218

where 0 < ; = Bi(a) < 1.
Using the time rescaling from (2.1), the system (2.6) can be written as (2.17) as

Ot — 281 Q1 + Qﬁl(—% + Ju- N+ Ji - N)YOL + 281 (0, + )0yt + 2836 (INOYG + 670,6)
= B462(INOIK + 670,K) (2.19a)
015 + 261 (g + Ju - N+ Jit - N)O1G + 261 (v + )26 + 2056 (Bt - NI + i) = 0, (2.19b)
Ork + 261 (— o + Ju - N+ Ji- N)ark + 261 (v, + 1) 0,k = 0, (2.19¢)
where in analogy to (2.17), we have denoted
v(z,t) =0(,t) = 0(x1 + f(z2,x3,1), 22, 73,1) . (2.20)

Note in particular the identity v;(x,t) = Qﬂ(acl + f(&,1)) + Qil,xl, — Rjiéj. The density equation (2.9a)
becomes

Oup + 2B1(— g + Ju N+ Jit-N)OLp + 281 (v, + ity) 00 + 261/ (Pt - NI + 8,i,) =0, (221)

the pressure equation (2.9b) is transformed to
Oup + 281 (— b + Ju- N+ Jit- N)Oup + 261 (v, + )00 + 261YP (01 - NI + 8,,) = 0, (2.22)
and the alternative form of the momentum equation (2.10) is written as
Orit — 261Qi + 261 (— b= + Ju- N+ Jia - N)Ovi + 261 (v, + it,) 0y
128 (a6) " e (INGL + 67 0,p) = 0. (2.23)

Similarly, the transformed specific vorticity vector is

o ~ ~

C(.%',t) = C('%7 t) = C(:Bl + f(x27$37t)7x27x37t)7 (224)

*Here and throughout the paper we are using the notation ¢ , = 0, L p> and Opp = Oy, .
3 Note that only the #; coordinate is modified.
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so that the equation (2.12) becomes
¢ — 281QC + 21 (— g5 + Jv- N+ Jiv - N)O1C + 2681 (v + 10,)2,C — 281N - {0yt — 281G, 0,1
= 28V;:6 x Vik. (2.25)
Note that the gradient appearing on the right side is with respect to Z. We record for later use that

Vi6 x Vik = (aTQ&aTgié - 6T3&8T2f<> N+ (aTg&aNE - 6N<°78T31°<) T2 4 (aN&aTQE - aTQ&aNE) T3,
(2.26)

where
ON=N-Vz and 01» =T" - V;.
2.3 Riemann variables adapted to the shock geometry

Just as for the isentropic Euler equations that we analyzed in [4], the non-isentropic Euler system (2.19) has
a rad geometric structure arising from the use of Riemann-type variables, defined by

w=u-N+7, z=u-N—g, ay=u-T" 2.27)
so that

i N=21(w+2), &=1(w—2). (2.28)

The Euler sytem (2.19) can be written in terms of (w, z, az, a3, k) as®

dow + (25&% o N+ Jw + Bng) rw + (2810, + wN,, — BozN,, + 2810, T%) Gy
= —2B36 T, 0uan + 2810, TYN; + 281Qi5a, TYN; + 21 (v + 4 - NNy, + 0, T%) ay T/ N;
— 2836 (ay T4, + @ NNy ) + Ba6%(JOrk + N,ud,k) (2.29a)
Oz + (Zﬂl(—% +Ju-N) + GoJw + Jz) 01z + (2610# + BowN,, + 2N, + 261al,TZ) Ouz+
= 2836 T" 0uan + 2814, TYN; + 281Qi5a, TYN; + 281 (v + G- NNy, + a, T4) ay TIN;
+2B36(ay TV, + G- NNy ) + B162(JOrk + Npud,k) (2.29b)
Gy + (2B1(= 5k + Jo - N) + Bidw + B1Jz) G, + 281 (v + 3w + 2N, + 0, T)) duay
— —2856T40,6 + 281 (- NN; + a, T)) TV +28:Qy ((a NN, + aWT]) TV
+ B1 (v + @ NNy +2a,T7) (@ NN; + a, T]) TV, + 16T 0,k (2.29¢)
Ork + 281 (b + Ju - N+ Jit- N)ark + 281 (v, + 1,0,k = 0. (2.29d)

2.4 [Euler equations in modulated self-similar Riemann-type variables

Finally, to facilitate the analysis of shock formation, we introduce the (modulated) self-similar variables:

s =s(t) = —log(r(t) — t), (2.30a)

The time rescaling (2.1) sets the coefficient of wdiw in (2.29a) to 1, which provides a convenient framework to study the w
equation as a perturbation of Burgers-type evolution.

10
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y1=y(r1,t) = ———5 =mz€? (2.30b)
(T(t) —t)2

y; = yj(xj,t) = Ll = :vje% , for je{2,3}. (2.30c)
(r(t) —t)2

Using the self-similar variables y and s, we rewrite the functions w, z, a,, lo<, and v, defined in (2.27)
and (2.20), as

w(z,t) = e 2W(y, s) + x(t), (2.31a)
z(x,t) = Z(y, s), (2.31b)
a,(z,t) = Ay, s), (2.31c¢)
k(z,t) = K(y, s), (2.31d)
v(z,t) = V(y,s), (2.31e)
so that
Vily,s) = Qi (6_375?/1 + %e_sﬁbwyuyu) +e 2Quyy — Rjiéj . (2.32)

Introducing the parameter
Br = Br (t) = 1%5-@))

the Euler system (2.29) is written in self-similar coordinates as

(s — D)W + (gw + Sy1) W + (Bl + y,) 0,W = Fiy — e384 (2.33a)
0sZ + (97 + 3y) 61 Z + (W + 3y,) 0,2 = Fy (2.33b)

05 Ay + (gu + 3y1) 014, + (B + $yu) 0pAs = Fay (2.33¢)

0sK + (gu + 3y1)01 K + (hfy + 3y,)0, K =0, (2.33d)

where the y; transport functions are defined by

gw = B IW + Bre3 (—f (Kt BoZ + 26,V - N)) — BIW + Gw (2.342)
97 = BoBrIW + Bre3 (—f' + 3 (Boki + Z + 26,V - N)) — BB IW + Gy (2.34b)
gu = BBAW + Bred (=f + 3 (Bik + Z + 28V -N)) = B15,IW + Gy (2.340)
the y, transport functions are given as
hly = Bre N W + Bre 2 (281V, + Nk — BaNuZ + 261 A, T)) (2.35a)
hly = BrBae *N,W + Bre™2 (281V, + BaNuk + N Z + 281 A, T7) (2.35b)
hl[jv = BT,BleisNMW + 67—67% (2,81‘/u + Bl NuK/ + BlNuZ + Q/BIAWT/Z) (2350)

and the forcing functions are

Fyy = —2B3B;ST40, A, + 2B18re 2 A TYN; + 281 Bre 2 Q15 AL TYN;

+2B18-e72 (V,, + NJU - N+ A TY) A, TING , — 283B8re72S (A, T, + U -NN,,,)

+ BufBrS*(Je* 1 K + N0, K) (2.36a)
Fz = 2B3B;e 28T40, A, + 2B18re “ A, TYN; + 281 -6 Qi AL TYN;

+ 2818 (Vi + NU -N+ ATE) A TN+ 2838,¢°S (ATY, , + U - NN, )

11
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+ B4f,5%(Je3 01 K + Nye 20,K)

(2.36b)

Fay = —2B3fre”28T50,8 + 2B18re* (U - NN; + A, T)) TY + 281 8re Qi (U - NN; + A, T)TY

+2B18-e* (Vy + U NNy + A, T2) (U -NN; + A, T)) TV, + BaBre 2 S*T4 0, K .

(2.36¢)

In (2.36) we have also used the self-similar variants of u, &, and k which, together with the self-similar

variant of p, are given by

u(x,t) = Uly,s),
p(z,t) = R(y,s),
o(x,t) = S(y,s),
p(z,t) = P(y,s),

so that
U-Nz%(fﬁ—ke’%W—kZ) and Sz%(ﬁ#—e*%W—Z).
The system (2.33) may be written as

OsW — 3W + (Vw - V)W = Fyy,

0sZ+ (Vz-V)Z =Fy,

dsAy + (Vu - V)Ay = Fay,
0sK +(Vy-V)K =0,

where the transport velocities are abbreviated as

Vi = (9w + 3y1, hiy + Sy2, hiy + 3u3)
VZ: (gz+%y17h2Z+%y27h3Z+%y3) ’
Vu = (9u + 3y1, hiy + Sya by + Sus) .

2.5 Self-similar Euler equations in terms of velocity, pressure, and entropy
From (2.19), (2.22), (2.23), (2.30), (2.37a), (2.37c) we deduce that (U, P, K) are solutions of
0.U; — 21 Bre QiU + (Vu - V)U; + 2B,81(aeS) " e2a (JN;e2 &1 P + 6 30,P) = 0,

0sP + (Vy - V)P + 283, B1ve2 Po1U - NJ + 28, 81ve 2P, U, =0,
0K+ (Vy-V)K =0.

For the purpose of performing high-order energy estimates, it is convenient to introduce

U=U
_K a
P =Se 2v =é(yP)w7
K
H:€g7

and re-express the system of equations (2.41) as the following (U, P, H )-system:
osUi + (Vy - V)U; + 26, B3 H2P (JNie%(?lP + 5%*%@79) — 28, 81e=°Q,U;,

12
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0P + (Vi - V)P + 28, 55P (e%JN U + e*%ayUV) —0, (2.43b)
OH+ (V- V)H =0. (2.43¢)

Finally, we define the self-similar variant of the specific vorticity via

o

C(z,t) = Uy, s) . (2.44)

2.6 Evolution of higher order derivatives
2.6.1 Higher-order derivatives for the (1, Z, A, K)-system

We shall also need the differentiated form of the system (2.33), which we record here for convenience. For
a multi-index € Ng, we use the notation v = (1,%) = (71,72,73). We have that

(0, + 30581 4 B, (14 1 1y50) JOW ) QW + Vi - V) OW = F, (2.452)
(0 + B8 4 g5y W) D2 + (V- V) 37 = FYY, (2.45b)

(as + Suetig ﬂlﬁTfle(%W) A, + (Vy V) o7A, = F{) (2.45¢)

(as + Sutpadng 515771J61W> OK+(Vy - V)OK =FY (2.45d)

where |y| = 1 and the forcing terms are

F) = 9By — 3 (’V) (av—ﬂawalaﬁw + m—ﬂhgvauaﬁW)

0<B<y

~Brlpss D) <7> TTEUW)W — Bl Y. (V) T BUW) 0P W

1< |BI<v]-2 |Bl=|vI-1
B<y B<v,B1=m
(2.46)
for the 07 W evolution, and
F) =k~ Y <7> (0770G0:0°7 + 9P 1ly0,0°7 )
A Z zU1 Z%u
0<B<y
— B2B- 122 Z <7> VP (IW)010° Z — Baf3; Z <g> I (IW) e’z
0<|B|<|y|-2 1B1=[~I-1
B<y B<y,f1=m1
(2.47a)
FO = Fy— ) <7> (m—ﬁGUalaﬂA,, + 67‘%‘(}6“8514,,)
0<B<y
BBl Y <7> OPUW)0A, — BB Y (;) BIWY0 P A,
0<|B|<|y]|-2 |B]=|v|-1
B<y B<v,B1=m
(2.47Db)
FO=— % <g> (09Gu 210" K + & h0,0°K )

0<B<y

13
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BBl D (7) OPUW)0PK — BBy D) @) O BIW) 0P K
0<|B|<|v]-2 |Bl=|v]-1
By B<Y,81=m

(2.47¢)

for the 07 Z, 07 A,, and 07 K evolutions.

2.6.2 Higher-order derivatives for W

We let W (y) denote a particular self-similar, stable, stationary solution of the 3d Burgers equation, given by
W(y) = (§HWia (g{lg) (2.48)
@

where {(§J) = 1 + y3 + y3 is the Japanese bracket, and where W14(y1) is the stable globally self-similar
solution of the 1d Burgers equation, i.e., W14(y1) is a solution to W14 + ngd = —y1. We refer the reader to
[6], [10], and Section 2.7 of [4] for the explicit form of W14 (y1) and for properties of W (y). We note that
W is one example from the ten-dimensional family W 4 of stable stationary solutions to the self-similar 3d
Burgers equation which are given by Proposition A.1 in Appendix A.1. The symmetric 3-tensor .4 represents
YW 4(0) for |y| = 3. The function W is in fact equal to W 4 for the case that A;11 = 6, Ajo2 = A133 = 2,
and all other components vanish.
Of paramount importance to our analysis, is the evolution of the perturbation

W(y,s) = W(y,s) = W(y) (2.49)
which satisfies
oW + (B I W — YW + (W - V)W
= Fiv — e 26k + (B, = DW — Gw)aW — hli, 0, W =: Fyy . (2.50)
Applying 07 to (2.50), we obtain that W obeys
(0, + 20058t 4 8,3 (AW + W) ) W + (Vi - V) W = B 2.51)

)

for |y| = 1, where the forcing term FV(J is given by

B =oFw - ) <7) (7 0Cw oW + Ol 0,0°W + 8,000 30 W)W )

0<B<y
B ST ('Y) OPUW)PW B D) <7> OEUW0 P . (2.52)
1<I8|<hl-2 181711
By B<v,81=m

2.7 Constraints and the evolution of dynamic modulation variables

The use of modulated self-similar variables allows us to ensure that the evolution of W in (2.33a) maintains
the constraints

W(0,s) =0, 4W(0,s)=—1, VW(0,s)=0, V*W(0,s)=0, (2.53)

14
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for all s = —loge. This is achieved by choosing our 10 time-dependent dynamic modulation parameters
{nu 3o, (&Y, Ky T, {‘ﬁvu}zg/,u:z to satisfy a 10-by-10 coupled system of ODEs, which we describe next.
At time t = —¢ the modulation parameters are defined as

r(=e) = ko,  T(=e) =&(=e) =nu(=2) =0,  duu(—¢) = bowp, (2.54)

where kg is defined in (3.29) and ¢ is defined by (3.8). In order to determine the time derivatives of
our 10 modulation parameters, we use the explicit form of the evolution equations for W, VW and V2W
(cf. (2.33a) and (2.45a)), which are evaluated at y = 0 and take into account the constraints in (2.53). Note
that in this subsection we only collect the equations which implicitly define the evolution of the modulation
parameters; only in Section 12 do we untangle the coupled nature of these implicitly defined ODEs to
actually define the evolution of the constraints (cf. (12.12) and (12.13)), and prove that the resulting ODEs
are globally well-posed.

Throughout the paper, for a function ¢(y, s), we shall denote ¢ (0, s) by ¢©%(s). We make a preliminary
observation regarding the value at y = 0 for the forcing terms FIEJ) which appear in the evolution (2.45a)
for 0YW. Using (2.53) it is not hard to check that for any v € N with |y| = 1 or || = 2 we have that

FO = 0 FY + Gy, . (2.55)

Therefore, it is sufficient to know the derivatives up to order 2 of Fyy and Gy at y = 0; these derivatives
may be computed explicitly, and for convenience of the reader we have listed them in Appendix (A.3), see
equations (A.7) and (A.8). Next, we turn to the evolution equations for the modulation parameters.

First, we evaluate the equation for W in (2.33a) at y = 0 to obtain a definition for . Using (2.33a) and
(2.53) we obtain that

~GYy = Fy—e 2B = h=ge2 (Fy+Gy) . (2.56)
Second, we evaluate the equation for 01 at y = 0 and obtain a formula for 7. Indeed, using that
—1+ 8; = 1= = 73;, we obtain from (2.45a) with v = e; that
—(1—B;) = 1 Fy + 01GYy = 7= (O Fy + aGYy) . (2.57)
Third, we turn to the evolution equation for VW at y = 0, which allows us to compute Ql j- Evaluating
(2.45a) with v = ¢, at y = 0 and using (2.55) we obtain for v € {2, 3} that

FO,(O,l,O) — F‘(/)[}(Ovovl)

W =0 = O, FY +0,G% =0. (2.58)

It is not immediately apparent that (2.58) determines Qlj In order to see this one has to inspect the explicit
formula for ¢ G?/V in (A.7b), and to note that J, G0 =23 Ql,,+ terms which are all small (bounded by 2
to a positive power). This is explained in (12.3) below. Note that once Q1 ; 1s known, we can determine n
thorough an algebraic computation; this will be achieved in (12.5) below.

Fourth, we analyze the evolution of 01 VW at y = 0. This constraint allows us to compute G and hiy -0

which will in turn allow us to express EZ, we initially focus on computing G and h“ . Evaluating (2.45a)
withy = e1 + ¢; at y = 0 for i € {1, 2, 3}, and using (2.55), we obtain

G%V@“WO + h%}oalwwo = 611F‘9V + 811G%/ . (2.59)
On the left side of the above identity we recognize the matrix

HO(s) := (0, V*W)0(5) (2.60)

15
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acting on the vector with components G, h%,{,o, and h?lj{/o. We will show (see (12.14) below) that the matrix
HO remains very close to the matrix diag(6, 2, 2), for all s > —loge, and thus it is invertible . Therefore,
we can express

Gy = () (CuFyy, + 01Ghy) (2.612)
Wy = (HO) 1 (0 + 01GYy) - (2.61b)

Once (2.61) is obtained, we may derive the evolution for fz Indeed, from (2.35a), (2.14) evaluated at & = 0,
the definition of V" in (2.32), the constraints in (2.53) and the identities N2 =0, TZ’O = 0, We have that

Hl = 281078 (4D - Ry (2.62)
Similarly, from the definition of Gy in (2.34a), (2.14), and the constraints in (2.53), we deduce that
ﬂ%G%V = 6% (H + /BQZO — 251leéj) . (2.63)

Since the matrix R is orthogonal (hence invertible), it is clear that (2.61), (2.62), and (2.63) determine 5]
Lastly, we use the evolution of V2 at y = 0 in order to determine ¢u~. Evaluating (2.45a) with
v = e, + e, aty = 0 and using (2.55), we obtain

GO 01 WO 4+ 1420, WO = 0, FYy + 000Gy (2.64)
for v,y € {2,3}. Using (2.61a) and (2.61b) we rewrite the above identity as
0 Gy = (HO) 3 (01iFyy + 006Gy )01 WO + (HO) M (01 By + 016G )0,y WO — 0,0 FYy . (2.65)

As with (2.58) earlier, it is not immediately clear that (2.65) determines the evolution of q'b,,w. In order to
see this, we need to inspect the precise definition of 6V7G?,V (cf. (A.7e) below), which yields that qu =
—e3 B%(?WG?,WL terms which are smaller (by a positive power of €). Details are given in (12.10) below.

The computations in this subsection derive implicit definitions for the time derivatives of our ten mod-
ulation parameters. In Section 12 we will show that the resulting system of ODEs for the modulation
parameters is in fact solvable globally in time.

3 Main results

3.1 Data in physical variables (x, t)

It is convenient to set ty = —e. This corresponds to ty = —1%15. We define initial conditions for the
modulation variables defined in (2.2) as follows:

ko= k(—e), T:i=7(—¢€)=0, &:=£&(—¢)=0, ng:=n(—¢)=0, ¢o:=0¢(—¢), ((3.1)
where
ko>1, |oo| <e. (3.2)
Next, we define the initial value for the parameterization f of the front by
Jo(X) = 30, %Xy

16
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and according to (2.15), we define the orthonormal basis (Ng, T, T3) by

No = Jg (1, —fons —fou),  where  Jo = (1+|fo, |2+ [ fosl?)2, (3.3a)
U= (B - iy ely) o wma = (B el - Aely). 6w
From (3.2) and (3.3) we deduce
INg —e1] <e, ITo —ev| <e. (3.4)
At t = —¢, the variable x is given by
z1 = x1 — fo(X), Ty = X2, T3 = X3, (3.5)

which is a consequence of (3.1), (2.4), and (2.16).
The remaining initial conditions are for the velocity field, density, and entropy which then provides us
with the rescaled sound speed:

up(x) 1= u(x, —¢), po(x) := p(x,—¢), ko(x) :=k(x,—¢), oo(x) := %e%o .
Following (2.17) and (2.27), we introduce the Riemann-type variables at initial time ¢ = —¢ as
Wo(x) := up(x) - No(X) + oo(x), Zo(x) := uo(x) - No(X) — o0(x), Gy (x) 1= up(x) - T(X).
3.6)
Using (3.5) and the fact that @ (x) = w(x, —¢) and that V fo(0) = 0, it follows that
Oz, Oz, w0(0) = 0y, 0x, Wo(0) + Ox; wo(0)Powy - 3.7
As we will explain below, we will require that dy, Wp(0) = —%, Vx@p(0) = 0 V2wo(0) = 0, and that
‘WZ@O (0)| < 1, and thus from (3.7), we find that
Povp = €0y, Ox, Wo(0) , (3.8)

which shows that (3.2) holds.

In order to establish the formation of a stable self-similar shock, we shall stipulate conditions on the
initial data. It is convenient to first explain these conditions in self-similar variables, and we now proceed to
do so.

3.2 Data in self-similar variables (y, s)

At s = —log e we have that 7y = 0, and thus the self-similar variables y are given by

i = e 2%, (3.9)

N

Yy = 6_%$1 —cs (x1 — fo(X)) , and y=c
Second, we use (2.31), (3.1), and (3.6), to define

W(y,—loge) = e 2 (Fo(x) — ko), Z(y, —loge) = Z(x),
Ay (y, —loge) = apu(x), K (y, —loge) = ko(x) .

This initial data is supported in the set A}, given by

Xo = {Iyl\ <e gl <5*%}. (3.10)

17
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Aty = 0, we shall mimic the behavior of W (0) and assume that at initial time s = — log e,
W(0,—loge) =0, W (0,—loge) =—1, VW(0,—loge) =0, V2W(0,—loge)=0. (3.11)

We define a sufficiently large parameter M = M («, ko) = 1 (which is in particular independent of ¢),
a small length scale ¢, and a large length scale £ by

¢ = (log M)~ (3.12a)

1

[ (3.12b)

For |y| < ¢ we shall prove that W is well approximated by its series expansion at y = 0, while for
¢ < |y| < £ we show that W and VW track W and VW, respectively.
For the initial datum of W = W — W given by

W(y,—loge) = W(y,—loge) — W(y),

we suppose that for |y| < £

6 ( ‘W y, —loge) ‘ £10 (3.13a)
% ‘alw “loge) ‘ et (3.13b)
‘VW y, —loge) ] et (3.13¢)

where () = 1 + y? + [9|°. In the smaller region |y| < ¢, we assume that

=

‘6717/(31, —log 5)‘ <eb  for |y| = 4, (3.14)

and at y = 0, we have that

‘&VW(O,—logs)‘ <2 T for |y| =3. (3.15)

For y in the region {|y| = L} n X}, we suppose that

1 1
n s (y) Wy, —loge)| < 1 +emx (3.16a)
05 (y) | W (y, —loge)| < 1+ 72 (3.16b)
VW (y, —loge)| < 3 (3.16¢)

while for the second derivatives of W, globally for all y € Ay we shall assume that

n%(y) |0"W (y, —loge)| <1 fory; =land |5 =1 (3.17a)
05 ()71 (y, —loge) [TW (y, —loge) <1 fory = (2,0,0) (3.17b)
5 (y) VW (y,—loge)| <1, (3.17¢)

where ¢(y, —loge) = 1" (y) + £%(y).
For the initial conditions of Z, A, and K, we require that

ifyy >1and |y =1,2

: (3.18)
ify1 =0and |[§] =0,1,2

e,
|8’YZ(y7 - IOg 8)’ < {
g,

18
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3
2, ifyy=1and |¥ =0
A, ~loge) < {7 M land , (.19)
g, ify =0and |5 =0,1,2
g2, ifyy=1and |§]=0,1
K (y,—loge)| < { efn 15(y) ify =2and |5 =0 . (3.20)
g, ifyy =0and ¥ =0,1,2
Consequently, the initial specific vorticity in self-similar variables satisfies
|2(-, —loge) - No| .. <7 and |Q(,—loge) T4, <1, 3.21)
and the initial scaled sound speed satisfies
HS(y, —loge) — %HLOO <et. (3.22)
Lastly, for the Sobolev norm of the initial condition, we suppose that for all m > 18,
2 2 2 2
EHW(-,—loge)HHm + HZ(-, —logs)HHm + HA(-, —1og5)HHm + HK(-,—loge)HHm <e. (3.23)

Lemma 3.1 (Initial datum suitable for vorticity creation). There exists initial datum W (y, —loge) with
support in the set Xy defined in (3.10), which satisfies the bounds (3.13)—(3.17), and which additionally can
be chosen to satisfy

L

“3 I <aW(y,~loge) < —% |5 for  {eTH <yl < 2w, gl < B (324

Moreover, associated to this choice of W (y, — log ¢), letting Z(y, —loge) = 0 and ¢o = 0, there exists an
A(y, —loge), such that

u(z,—e) =U(y,—loge) = (%(E%W(y, —loge) + ko), A2(y, —loge), As(y, —loga)) (3.25)

is irrotational with respect to the physical space variable 7.

Proof of Lemma 3.1. The proof of (3.24) is based on the introduction of a cutoff functions in both the
direction and in the 7 directions, and the multiplication of the globally self-similar profile W by these cutoffs.
The only non-trivial part of this argument is to choose the dependence of the aforementioned cutoffs on .

We start by defining a cutoff function with two parameters. For b > 2a > 0 we let n[a,b](r) be a
smooth non-increasing function which is identically equal to 1 for 7 € [0, a], and vanishes identically for
r € [a+ b, ). For the purposes of this lemma we may take the piecewise linear cutoff function and mollify
it with a compactly supported mollifier with characteristic length which is e-dependent. For example, we
may mollify with a mollifier of compact support at scale e10 the function which equals 1 forr < a + E%,
equals O for = a+b— £10, and is givenby 1 — (r —a — 5%)(6 — 25%0)_1 fora < r < a+ b. In particular,
we may ensure that up to a constant factor of £10 the derivative of 1 [a, b](r) is given by —b~! on the region
r € (a,a + b), and vanishes outside of this region. Similarly, the second derivative of this cutoff function is
bounded by a constant multiple of b=l on the region where it does not vanish.

Finally, we define the initial datum W (y, — log ¢) to be a cut-off version of W, according to

L

Wy, ~loge) = W(y)n | 575,673 | (jyn))n | e~¥, 100e7% | (7)) (3.26)

A lengthy but routine computation which uses properties of the explicit function W (see e.g. [4, Equation
(2.48) and Remark 3.3]), shows that the function W (y, —log ¢) satisfies the conditions (3.13)—(3.17). We
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omit these details, but give the proof of condition 3.24 which is essential for the vorticity creation argument.
We note that for |y;| < 2k0e "2 we have that n[eféfﬁ, 57%](|y1 |) = 1, and for |g| < e3 we have
n[gfi, 1005*i](|g\) = 1. Thus, in the region relevant for (3.24), by using (2.48) we have

W (y,—loge) = 1 W (y) = ﬁW{D <(1+yyll2)%> . (3.27)

The function Wp is explicit, and the Taylor series of its derivative around infinity is given by Wi (r) =
2 4 8 : . . . . 1 _1

—3r73 — $r73 + O(r~3). Using that we are interested in a region where || < €3, and ™10 < [y] <

2k0e™ 2, upon choosing ¢ sufficiently small (so that the Taylor series expansion around infinity is the relevant

one), we immediately deduce that from (3.27) that

1 2 1 2
B & D R PO kR B 7 Y1 _1-¢10 -2
i < Wi (2 ) < -5

in the region of relevance to (3.24). This establishes the existence of W satisfying (3.24) as well as the
bounds (3.13)—(3.17).

Next, for W (y, —loge) given by (3.26) and with Z(y, —loge) = 0, we shall now prove the existence
of an irrotational initial velocity field @ (7, €) satisfying (3.25).

We first set ¢g = 0 so that Ng = e1, T{ = e,, and Jo = 1, and (Z1,7,) = (a_%yl,e_%yy). We have
that wy(Z, —¢) = E%W(y, —loge) + Ko, and from (3.25), we see that

~/~ 1~
(T, €)1 = W -
In order to ensure that @4; = 0z, ¥, we define
%1 o0
~ 1 ~ /i~ K ~/ 1 ~ i~ A ~/
v (7) = gf wo (T, T)dT) — QJ wo (T, T)dT)
0 0

for 1 > 0 and then extend ¥(Z) as an even function in Z;. We now define
a,(T,—¢) = 0;,9(), (3.28)

so that u(Z, —e) = V;¥(Z), which implies that curl; u(x, —¢) = 0. We write (3.28) in self-similar coordi-

nates as
o0

al/W(y/lJ g? - IOg E)dyll .
Y1

3
2

Au(yv - IOg 8) = _%6

Using the definition of W (y, — log ) given in (3.26), a lengthy computation shows that A(y, — log ) satis-
fies the bounds (3.19) and (3.23). ]

3.3 Statement of the main theorem in self-similar variables and asymptotic stability

Theorem 3.2 (Stability and shock formation via self-similar variables). For a = 7771 and v > 1, let
ko = ko(a) > 1 be chosen sufficiently large. Suppose that at initial time s = —loge, the initial data
(Wo, Zo, Ao, Ko) = (W, Z, A, K)|s=_10ge are supported in the set Xy from (3.10), and obey conditions
(3.11)—(3.23). Assume that the modulation functions have initial conditions compatible with (3.1)—(3.2).

There exist M = M («, ko) = 1 sufficiently large, ¢ = (o, ko, M) € (0, 1) sufficiently small, and
unique global-in-time solutions (W, Z, A, K) to (2.33) with the following properties. (W,Z, A, K) are
supported in the time-dependent cylinder X (s) defined in (4.4),

(W, Z,A,K) e C([~loge, +x0); H™) n CY ([~ loge, +o0); H™ 1) form > 18,
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and
HW(, s)HiIm + eSHZ(-, s)HZm + eSHA(-, s)HiIm + eSHK(-, s)“i{m < 16/€(2)/\_m€_8_10g8+(1—6_86_1)M4m

for a constant X = \(m) € (0,1). The Riemann function W (y, s) remains close to the generic and stable
self-similar blowup profile W; upon defining the weight function n(y) = 1 + y% + |7 6 we have that the
perturbation W = W — W satisfies

1 1

W) < eTrni (), |V (y,5)] < eTin 3 (),

S| <<,

Sorall |y| < e710 and s > — log e. Furthermore, mW(o, s) = 0 for all |7y| < 2, and the bounds (4.9) and
(4.10) hold. Additionally, W (y, s) satisfies the bounds giveﬂn 4.7) and (4.19).

As s — oo, W(y, s) converges to an asymptotic profile W 4(y) which satisfies:
o W 4 is a C® smooth solution to the self-similar 3D Burgers equation (1.5).
o W 4(y) obeys the genericity condition (1.7).
o W 4 is uniquely determined by the 10 parameters A, = lims_,o, 0°W (0, s) for |a| = 3.

The amplitude of the functions Z, A, and K remains O(¢) for all s = — log e, while for each |y| < m,
NZ(-,s) > 0, VA(,s) > 0, and "K(-,8) > 0as s —> +o©, and Z and A satisfy the bounds (4.12),

(4.13), (4.14).
The scaled sound speed S(y, s) satisfies

HS(WS) — %OHLOO <5% forall s = —loge.

o

The specific vorticity Q(y, s) = ((x, t) satisfies for all s = —loge,
[0 @ (-, 5) — (-, ~loge)| ., < e

where @} is defined in (5.11). Furthermore, there exists irrotational initial data from which vorticity is
instantaneously created and remains nonzero in a neighborhood of the shock location (0, Ty): see Theorem
7.4 for details.

For concision, the initial data was assumed to have the support property (3.10) and satisfy the conditions
(3.11). By using the symmetries of the Euler equations, we can generalize these conditions to allow for data
in a non-trivial open set in the H" topology.

Theorem 3.3 (Open set of initial conditions). Let F denote the set of initial data satisfying the hypothesis
of Theorem 3.2. There exists an open neighborhood of F in the H™ topology, denoted by F, such that for
any initial data to the Euler equations taken from JF, the conclusions of Theorem 3.2 hold.

3.4 Shock formation in physical variables (x, t)

We shall now interpret the assumptions and results of Theorem 3.2 in the context of physical variables (X, t).
The function Wy (x) = w(z, —¢) = ez W (y, —loge) + Ko is chosen such that the minimum (negative) slope
of Wy occurs in the e; direction, and dx, Wy attains its global minimum at x = 0, and from (3.11), satisfies

Wo(0) = kg, O Wo(0) = —1, Viip(0) = 0, ViOx, Wo(0) = 0. (3.29)
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Of course, there are a number of additional conditions on wy(x) and its partial derivatives which exactly
correspond to conditions (3.13)—(3.17) by the change of variables (2.30), but the conditions (3.29) are fun-
damental to the stable self-similar point shock formation process.

We shall assume that the support of the initial data (17)0 — K0, 30, ap), is contained in the set xp = {|x;| <
262 x| < EG} which in turn shows that ug - No — %2, 09 — %, and ug - T” are compactly supported in
Xg. In view of the coordinate transformation (3.5) and the bound (3.2), the functions of x defined in (3.6),
namely (wo, 20, a0, ko), have spatial support contained in the set {|z1| < 25% + &, || < E%} c {|z1]| <
€3 NFIES ed }. This larger set corresponds to the support condition (3.10) under the transformation (2.30).

For the initial conditions of 2y, dg, and kg, from (3.18)—(3.20), we have that’

Box) <e. | Z®)| <1, Vido(x)| < e2,
Go(x)| <e,  [oyax)] <1, Vido(x)| < e,
Eo(x)‘ <e, 6X1ko(x)‘ <e? , Viko (x ‘ < 5%

together with conditions on higher-order derivatives® that follow (3.18)—(3.20) and (3.23).

The initial specific vorticity C(Z, —¢) = ((z, —¢) = Q(y, —loge) satisfies condition (3.21), and the
initial scale sound speed (7, —¢) = d(z, —¢) = S(y, — loge) satisfies (3.22).

We now summarize the statement of Theorem 3.2 in the physical variables. Suppose that the initial

data wy, 2o, dg, and kg satisfy the conditions stated above and that o = 77_1 > 0 is fixed. There exist a

sufficiently large k9 = ko(a) > 1, and a sufficiently small ¢ = (v, kg) € (0, 1) such that there exists a
time T, = O(£?) and a unique solution (u, p,k) € C([—¢,Ty); H™) n CY([—¢, Ty ); H™ 1) to (1.1) which
blows up in an asymptotically self-similar fashion at time T, at a single point &, € R>. In particular, the
following results hold:

(i) The blowup time T, = O(c?) and the blowup location &, = O(e) are explicitly computable, with 7T
defined by the condition ST’Z (1—7(t))dt = € and with the blowup location given by &, = lim;_,7, £(t).
The amplitude modulation function satisfies |k« — Ko| = (e%) where k., = lithT>l< K(t).
(ii) Foreacht e [—e,Ty), we have |N(§,t) No(X)| + |TV z,t) (X)| =
(i) We have sup;e_. 7,y (|@- N — 560[ oo + 1T T oo + |7 — 5“0HL%“ + HCHLoc) <1
(iv) There holds lim; .z, N - Vz@(£(t), 1) = —o0 and grzl—y < N Vad (- )| 0 < g2 st — T
(v) At the time of blowup, @(-, T} ) has a cusp-type singularity with C''/* Holder regularity.

(vi) Only the dy derivative of % - N and p blowup, while the other first order derivatives remain bounded:

Jim N V(@ N)(E(), 6) = Tim N-Vap((t),t) = —o0 (3.302)
—Ty —Ty

sup [T - NVap(,t)[pee + [ T7- Vau(, 8) e + N - Va(@ - T)( Oz s 1. (3.30b)
tE[*E,T*)

(vii) Both K and V%lz remain bounded:

sup HE(vt)HLOO + HV k HLOO S =

t€[7€,T*

oo|

(3.31)

"The bound for &y, ao can be replaced by a bound that depends on ko, thus permitting arbitrarily large initial vorticity.
8We deduce from (3.23) that at t = —¢, the Sobolev norm must satisfy Zm:m 52“8;’1110“12 + HG;’ZO HQLQ + H&ZaoHiQ +
Ha;kouiz < e3=GMHID | See (3.21)~(3.22) in [4] for details.
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(viii) Let 0, X (x,t) = u(X(x,t),t) with X (x, —¢) = x so that X (x,¢) is the Lagrangian flow. Then there
exists constants ¢y, ca such that ¢; < |Vx X (x,¢)| < cp forall ¢t € [—¢, Ty).

(ix) The scaled sound & remains uniformly bounded from below and satisfies

[6(: 1) = 3| 0 <™ forall te[-T].

(x) The vorticity satisfies Hw(-, t) HLoo < C()Hw(-, —E)HLOO for all t € [—e, Ty] for a universal constant Cp,

and if |w(-, —€)| = ¢y > 0 on the set B(0,2¢**) then at the blowup location &, there is nontrivial
vorticity, and moreover

w(-, Tw)| = & ontheset  B(0,7*).

4 Bootstrap assumptions

As discussed above, the proof of Theorem 3.2 consists of a bootstrap argument, which we make precise in
this section. For M sufficiently large, depending on x and on «, and for ¢ sufficiently small, depending
on M, kg, and «, we postulate that the modulation functions are bounded as in (4.1), that (W, Z, A, K) are
supported in the set given by (4.4), that W satisfies (4.7), W obeys (4.8)—(4.10), and that Z, A, and K are
bounded as in (4.12)—(4.14). All these bounds have explicit constants in them. In the subsequent sections of
the paper, we prove that the these estimates in fact hold with strictly better pre-factors, which in view of a
continuation argument yields the proof of Theorem 3.2.
4.1 Dynamic variables
For the dynamic modulation variables, we assume that

1 .
380 < K(t) < 2ro, |7(t)] < Me?, @) < Mie,  [a(t)
()] < e o, FO)l < Me™, €< M1, [A()

forall —e <t < T;.
From (2.7) and (A.4)—(A.5) in [4], and the bootstrap assumptions (4.1), we obtain that

Q)| < 2M2e2 . (4.2)

Also, from the 7 estimate in (4.1b), we obtain

Tl < onres < 20e 4.3)
-

‘1 - B‘r| = f <
upon taking ¢ sufficiently small.
4.2 Spatial support bootstrap
We shall assume that (W, Z, A) have support in the set
X(s):= {|y1\ < 2e7e2°, 7| < 25%65} for all s> —loge. 4.4)

We introduce the weights

ny)=1+yi+9° and  F(y) =n) + 91,
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as well as the s-dependent weight function
Uy, s) = 557 + ¢ ).

For y € X (s), we note that
n(y) < 40ee* < N3 (y) < dede’
for all y € R3. Since ny) = 1 + e73*n?, we have e~3n? < mip, and thus
e < w%nfé(%tﬁ
holds for 1 < ¢ < 2.

4.3 1 bootstrap

The bootstrap assumptions on W and its derivatives are

((1+€2710)n%7 if |’Y’:O,

~_1 1 . 5

ns (%) 1|y\<£ + 2 S(y)1|y|>£7 if v = 1 and |fy[ =0,
! if 71 = Oand |5 =1,

[TW (y, s)] < <

Mins, ify; = land |5] = 1,
Min~ 341, ifv; =2and |5 =0,
Mn~s, ify; =0and |5 = 2.

Next, for |y| < £, we assume that’

where L is defined as in (3.12b). Furthermore, for |y| < ¢ (as defined in (3.12a)) we assume that

W (y,s)| < (log M)*e s [y' 1 4 et y* 0 < 2(10g M)tets I, forall ] <3

‘WW Y, s ‘ £10 (log M) M forall |y| =4,

while at y = 0, we assume that

[

’é’”’W(O, s)‘ <et, for all v =3,
forall s > —loge.
Lemma 4.1 (Lower bound for Jo; W).
JouW (y,s) = —1 and J0,W (y,s) = —1 forallyeR3,s > —loge.

The proof of this lemma is given in the proof of Lemma 4.2 in [4].

4.5)

(4.6)

4.7)

(4.8a)
(4.8b)

(4.8¢c)

(4.9a)

(4.9b)

(4.10)

@.11)

“While the first three bounds stated in (4. 7) follow dlrectly from the properties of W stated in (2.48) of [4], and those of W in

(4.8), the estimate for &1 W makes use of the fact that ?)7§ (y) + ez n’% (y) <77 3(y/2).
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4.4 7 and A bootstrap

The bootstrap assumptions on Z, A, K, and their derivatives are:

45 34 .
> =
20y, 5)| < M 22—|m€ 2|~“;\ ifyp >1and |y =1,2 @.12)
Me2"e 2% ify; =0and |5 =0,1,2,

|
|
»

if vy = 1and |§] = 0

)
N
L w

(4.13)

=y
=y

M
|07 A(y, s)| < {

Me™= e 2° ify =0and |¥]=0,1,2,
cie 2", ifyp=1and |§]| =0
1 13
€se 8%, ifvy=1and |7 =1
07K (y,8)| < 1 o _ 1 o ‘7' (4.14)
ese *n~15(y), ify; =2and |§] =0
6%67%8, ifyy =0and |7 =1,2.

Remark 4.2. Since K satisfies a transport equation, the pointwise bound
[K(y,s)| <¢ (4.15)

follows directly from the initial datum assumption (3.20).

4.5 Further consequences of the bootstrap assumptions

The bootstrap bounds (4.1), (4.5), (4.7)—(4.10), (4.12), and (4.13) have a number of consequences, which
we collect here for future reference. The first is a global-in-time L?-based Sobolev estimate:

Proposition 4.3 (H™ estimate for W, Z, and A). For integers m > 18 and for a constant A\ = A(m),

12 8) |5 + [AC ) G + [ Ko 8) |5 < 1682A e ™2 4 e™5(1— e HM™,  (4.16a)
W ()5 < 1662A e le™ 4+ (1 — e 2 M, (4.16b)

forall s = —loge.

The proof of Proposition 4.3, which will be given at the end of Section 8, relies only upon the initial data
assumption (3.23), on the support bound (4.5), on L* estimates for 07W, 077, and 0" K when || <
on @7 A pointwise bounds for |y| < 1, and on V2 A bounds. That is, Proposition 4.3 follows directly from
(3.23) and the bootstrap assumptions (4.1), (4.5), (4.7), (4.12), and (4.13).

The reason we state Proposition 4.3 at this stage of the analysis is that the H™ estimates and linear
interpolation yield useful information for higher order derivatives of (W, Z, A, K), which are needed in
order to close the bootstrap assumptions for high order derivatives. These bounds are summarized as:

Lemma 4.4. For integers m > 18, we have that

7(3 2|y|— 1)3

2m—>5 1 and =23
‘a,YA(y7 S)| s e 1 i lf’)’l an |’Y| (417)
e Tt i |y| = 3,4,5,
e G ify > land |y| =3
0 Z(y, )| < Lo ime ! .18)
Y, ~ —(1- il 1)5
€ 2m=77" lf |/7| = 374757
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627’33777 %, ifyn=1and |3 =2
W (y,5)| < { emnn7s, ify1 =0and |5 =3 (4.19)
3s
eQm—?n_%wij lf"‘yl = 2 and |"}/| = 3’

,(§,¢)s .
e V& A@m-D70 fy) =1land |y =2

VK (y,5)] < { e @ w15, ifyi =2and |y| = 3 (4.20)
[v]=2
e Tml il =3,4.5,

Proof of Lemma 4.4. The bounds for (4.17) and (4.18), as well as the first two estimates in (4.19) are proven
in Lemma 4.4 in [4].

We then consider the third estimate in (4.19) and hence estimate 07W (y, s) for the case 73 > 2 and
|7| = 3. We write

n%ﬂf%vauw =V (n%@wianvﬂ — v(néwﬁ) (911V[£ )

.7 =11

Since ’vméwi) < 13, it follows from (4.7) that

III| < M3yt < M.

Now we apply Lemma A.2 to the function 7]% 1/}7% 011 W, appeal to the estimate (4.7), and to the Leibniz
rule to obtain that

-9
2'm7 2'm7 2m7

1] < )nsu; oW :

77”# 4511W

<M‘

7]3¢J 45’11W

m—2

where we have used that m 18 for the last inequality as is required by Proposition 4.3. We next estimate

the H™~2 norm of 7731/1 1011W. To do so, we shall use the fact that W (-, s) has support in the set X(s)
defined in (4.4). We find that

m—2
1 1 / 1 1 ’ "
hotont],_ < S (o= bty ot
HF— =0 L
m—2 L L
< Z pm-m=2 <77§1[)_1)‘ 2(m—1) HDm o W‘ 2(m—1)
m/ =0 L m—2— m/ L m/+1
m—2

$

(e
3
3

R G | IR vl e

m—2—m/
=0

Using (4.7) and Proposition 4.3, the W terms are bounded as

m/+ m +1

1- m
VW W < M2

for all m € {0, ..., m — 2}. Moreover, using that ‘Dm_m/_Q(n%Q/)_i) < 77% together with (4.5), we have
that

2(m—1) < ese’, (4.22)
Lm=m'=2 (X(s))

DR iy
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with the usual abuse of notation Lm-n"-2 = L% for m’ = m — 2. Combining the above estimates, we

obtain the inequality

1 11

2 S
1] 5 M2 (5eRe) T g exmnn (4.23)

for ¢ sufficiently small. From the above estimate, we obtain the third inequality in (4.19).
We next consider the bounds (4.20), and we begin with the case that 41 > 1 and |§| = 2. Applying
Lemma A.2 to the function 0; V K, and using (4.14) and Proposition 4.3, we have that

2m—9

2 -
107K < KT [OrTR T < (MPmend) 77 (e o) 7 g MR

We next consider the second inequality in (4.20) and proceed to estimate nTl5 Vo K ‘ We write

n%vanK =V (n%anK) *V’n% anK .
—_— 7 S —

g =T
Since [ V15| < 1, it follows from (4.14) that
[IT] < e 2.
By Lemma A.2 and (4.14),
1% ot k| < pememto o a T
Following the calculation (4.21), we have that
m—2 m m
T R i W el
m'=0
Applying (4.5), we obtain that
HDm_m’_QU% 2(m—1) <etes’,

[ m—m/—2 (X(S))

From (4.14) and Proposition 4.3,

VK[ K]t <eh.

From the above estimates, together with (4.14), we determine that

2
4 1 3 — 4
|| < M e~ ) <6T56_T0) T < oS

This estimate establishes the second bound in (4.20). For || € {3,4,5} we apply Lemma A.2 to V2K, and
together with (4.14) and Proposition 4.3, we find that

¥|— 2m—3—2|y| R 22"7|_;1 1 2m2_3_?|"f‘ 1 |v|—2
p— m— = p— m— pa— —
07K, < HKH;ZL 7 HV2KHL et < (MQme 2) (886 s) < e U-zm=7)s
where we have assumed that ¢ is taken sufficiently small. O
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4.6 Boundsfor U - N and S

Finally, we note that as a consequence of the definitions (2.38), we have the following estimates on U - N
and S.

Lemma 4.5. Fory € X(s) we have

M1, if [ =0
1 s 1
Mse z2n"3, fyi=1and |y =0
ez, ify1=0and |¥| =1
Mse™3p7s, ify1=1land |5] =1
07U -N| + 07| < { M3e 3 591, ify1=2and |5] =0 (4.24)
Me 3y, ifn=0and || =2
1 3
e(*§+2m77)sn_%, ifyn=1and |§] =2
(Frm, i = 0.and || =
) iy = Oand 5] = 3
1 3
e(_§+2m—7)577’§1/1i, ify1 = 2 and |’y| =3

Additionally, for ly| < ¢ and |y| = 4 we have the bound
07U -N| + |78 S e 2.

Proof of Lemma 4.5. We shall only establish the bounds for 07U - N as the estimates for ¢S are obtained
in the identical fashion. Since|r| < M7, it follows from (2.38) that |07U - N| < |K] 1}y=0 + e”2 || +
|07 Z|. The desired bounds are obtained by an application of (4.7), (4.9b), (4.12), Lemma 4.4 and (4.5). [

Proposition 4.6 ( L™ bound for the sound speed). We have that

HS("‘S) < e% forall s = —loge. (4.25)

Ko
— 3
Proof of Proposition 4.6. By (2.38), we have that
S(-,8) — 5 = ko 4 Lem2 W — 2).
By (4.1), (4.5), (4.7), and (4.12), and the triangle inequality,
1
<es

[SCo9) = 3

which concludes the proof. O

4.7 The blowup time and location

The blowup time T} is defined uniquely by the condition 7(7) = Ty which by (2.54) is equivalent to

T
f (1—7(t))dt =¢. (4.26)

—E&

The estimate for 7 in (4.1b) shows that for ¢ taken sufficiently small,

T | < 2M?e?. 4.27)
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We also note here that the bootstrap assumption (4.1b) and the definition of T} ensures that 7(¢) > ¢
for all t € [—e,Ty). Indeed, when ¢ = —&, we have that 7(—¢) = 0 > —¢, and the function ¢ —
St (1 —7)dt' — e =t — 7(t) is strictly increasing.

—&

The blowup location is determined by &, = £(7%), which by (2.54) is the same as

Ty |
f* = f(t)dt'

—E&

In view of (4.1b), for € small enough, find that
€+ < Me, (4.28)

so that the blowup location is O(¢) close to the origin.

4.8 Holder bound for w
As we proved in [4], the self-similar scaling (2.30) and decay rate (4.7) for W (y, s) show that
we LP([—e,T,); C'P)

and the C* Holder norms of w, with a > 1/3, blowup as ¢ — T} with a rate proportional to (7} — t)(1 8z,

5 Bounds on Lagrangian trajectories

5.1 The Lagrangian flows in self-similar variables

In self-similar variables (v, s), we define Lagrangian flows associated to the transport velocities in (2.40) by

aS(DW(Q? ‘9) = VW((I)W(yﬂ S)? ‘9) ) (I)W(yv 30) =Y, (5.1a)
aS(I)Z(:% S) = VZ((I)Z(yﬂ S)? S) ) CI)Z(ya 30) =Y, (5.1b)
aSq)U(y7 S) = VU((I)U(ya S)? S) ’ (I)U<y7 30) =Y, (510)

for so = —loge. With ® denoting either ®,, ., or &, we shall denote trajectories emanating from a
point yg at time sg by

Yo (S) = (I)(yo, 8) with <I>(y0, 80) =10 - (5.2)

5.1.1 Esimates for the support and a lower bound for ¢,

Since the bounds for |G|, |hw|, and |I¥| are the same as in [4], the proofs of the following two lemmas
are the same as Lemma 8.1 and 8.2 in [4].
The bootstrap assumption (4.4) on the size of the support is closed via the following

Lemma 5.1 (Estimates on the support). Let ® denote either %2, ®%° or ®Y°. For any 1o € Xy defined in
(3.10), we have that

35 (5.3a)
s, (5.3b)

forall s = —loge.
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We shall also make use of the lower bound given by
Lemma 5.2. Let yg € R? be such that |yo| = (. Let so = —loge. Then, the trajectory ®% moves away

from the origin at an exponential rate, and we have the lower bound

s—s(

|®% (5)] = [yol 5

54
forall s = sy.

Lemma 5.3. Given sqg > —loge and s > sq, let yg € R3 be such that |yo| > L and ’é%(sﬂ < Mes.
Then, we have that

3(3/—50)

(@)1 ()] = 3 lwonle = and  [BY(s)] < Me? 5-5)

N

/

forall sp < 8" <s.

Proof of Lemma 5.3. Fix (yo, s9) and let us denote (®42)1(s) = @1(s) and ¥ (s) = &(s).
According to (5.1) and (2.40), we have that 0;®, = %@V + hyy o @. Solving this ODE on the interval
[, s], with arbitrary s’ € [so, ), we obtain that

’ S sl
B(s) = @ (s)e 3 — [ g o a5

Using that by (9.5) we have |hy/ (-, s)| < Mze™%, and appealing to the assumption |®,(s)| < Me?, we

obtain that

S S*Sl

S N S s ’
@, (s)| < |®u(s)]e R Méf e T e Tds" < Mezem 2 + M%e_?(l —e 7)) < Me

S/

o

[N

! _('=sp)

where in the last inequality we have used that s’ > sy > —loge, so that e"T < e3¢~ 2. This proves
the second claim in (5.5).

In order to prove the first claim in (5.5), we again recall (5.1) and (2.40), which gives 0,®1 = %@1 +
B:Wod+ Gy o® . In view of the bound established for ® and of the information we have from Lemma 5.2,
we already know that |yo| > £ implies that |®;(s")| > %6(5/_50)/5 for all s’ € [so, s], so that ®1(s’) is much
larger than 1. Thus, from (4.3) and the first bound in (4.7), we have

o=

L

Be|W o @(s)| < (1 +2Me)(1 + &) (1 + @ ()" + (Me%f’)

ol

< 2‘@1(8’)’ .

Similarly, the first estimate in Lemma 9.2, in which we use an extra factor of M to absorb the implicit
constant in the < symbol, and the previously established bound (5.3a) imply that

G 0 B(s')| < M2e™% + MEe=| @, ()| + M8 < M2~ | @, ()| < 2M23 | (5/)|7 .

Combining the above two estimates with the ODE satisfied by ®; we derive that

ol

L1®1(s)]” = 3[@1(5)[* — 3|@1(5)]

N[

By explicitly integrating the above ODE, and using our earlier observation that |(y;)o| = %57%0 for all
s’ € [s0, s], we derive that

2 ) % 3(5,750) 3(5’750)

@10 = (o0 l5 —2) e = = dwonle

which completes the proof. O
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5.1.2 Lower bounds for &, and ¢,
We now establish important lower-bounds for ®%°(s) or ®7°(s) = ®¥(s).

Lemma 5.4. Let ®(s) denote either % (s) or ®F°(s). If

3
Ko = ) (56)
0 1— max(ﬂl, Bg)
then for any yg € Xy defined in (3.10), there exists an s, = — log e such that
| D1 ()] Zmin(eg —e3 ,e%) . (5.7)
In particular, we have the following inequalities:
0 /
f 1 (14 |0y (s))) 2 ds’ < C, (5.8)
—loge

for0 < o1 < lRand 201 < o9, where the constant C depends only on the choice of o1 and 0.

This is a slight generalization of Lemma 8.3 in [4], where we now allow the value oy = 1/2. The only
addition to the proof requires an estimate for the integral Z in the proof of Lemma 8.3 in [4]. In particular,
for o1 = 1/2, we see that

Y S —02
I=2J 1(1—1—’7’—67’) dr <1.
e 2

The implicit constant only depends on o and 0.

5.1.3 The time integral of |0, W] along ®%°
An immediate consequence of (5.8) is the following

Corollary 5.5. Forall s > —loge,

sup f |0O1W | 0 @9 (s')ds’ < 1. (5.9
—loge

YoEXD

Proof of Corollary 5.5. The bound (5.9) follows using the second estimate in (4.7) together with (5.8) with

01=0and02=%. OJ

5.2 The Lagrangian flow ¢(z,t)

With respect to the independent variables (z, t), the transport velocity for @ in (2.23) is given by
v = (vi,va,v3) = 261 (—ﬁ 4 Ju N+ Ji- N, vy + G, v3 + ag) . (5.10)
We let p(x,t) denote the flow of v so that

6t90($,t) = V((p(x7t)7t) , t>—¢, (5.11a)
p(z,—€) ==z, (5.11b)

and we denote by ¢, (t) the trajectory emanating from .
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5.2.1 Asymptotic non-positivity for 0, W
Lemma 5.6. Forall y € R3 and s > — loge, we have
max {01 W (y,s),0} < 4e” 15 (5.12)

Proof of Lemma 5.6. We start with the region |y| < £ = e 1o, Here, due to the bootstrap (4.8b) for 6117/
and the fact that 0; W < —?]_% (see (2.48) in [4]), we deduce that

aW (y,s) = W (y) + AW (y,s) < =7 5(y) + ey 3(y) <0 for |y <e ™, (513)

upon taking ¢ sufficiently small, and using that 7)(y) < 27(y). Thus, for |y| < £ the bound (5.12) holds.
Next, let us consider the region |y| > ei0. Here we have that 7(y) > %eg. Combining this bound with
the second line of (4.7), we arrive at

—
=

W (y, 8)| < 2073 (y) < de”

Thus, (5.12) also holds in the region |y| = e1o.

It remains to consider the region £ < |y| < e10. Notice that by the definition of £ = e 10, in this case
we have that s > — log . For such a fixed (y, s) we trace the particle trajectory of the flow Vi backwards
in time, and write ®¥(s) = y, where the initial datum ®¥’(sg) = yo is given by the property that |yo| = £
if sp > —loge, and |yo| > L if s9 = —loge. We claim that the second option is not possible, so that
we must have sy > —loge and |yg| = L. To see this, we appeal to Lemma 5.2, which is applicable since

lyo| = L > ¢, and which gives the bound |®}(s)| = |yo e 5. Thus, in the case that sy = — loge and
lyo| > L, this bound implies
et > ly| = [®R(s)| = ]yg|e% > Leﬁl% = 5*%;“50“ — i > o

since s > —loge. This yields the desired contradiction, guaranteeing that |yo| = £ and sg > —loge. At
this stage we appeal to the evolution of 0, W given in (2.45a) with v = (1,0, 0), and deduce that e20 W
satisfies the equation

ds(e30aW) + (L + B oy W) (2, W) + (Vi - V) (€20, W) = e2 Fip ™).

Composing with ®¥ and appealing to Gronwall’s inequality on the interval [sg, s|, we obtain that

e201W(y,s) = 637001W(y0, 50) exp <—f T+ B-(JorW)o @%’(s')ds')

50

S ’
+ J e%F‘S‘}’O’O) o ¥ (') exp <—f
50

)

S

3+ B:(JaiW) o @%{,’(s”)ds”) ds’ . (5.14)

We now use the information that |yp| = £, and thus, as established earlier, 01 W (yo, so) < 0. Hence, the
first term on the right side of (5.14) is strictly negative (as the exponential is positive), so that it does not
contribute to the positive part of 01 W. We deduce, by also appealing to the FIEI}’O’O) estimate in (9.19) and
the 01 W bootstrap in (4.7), that

!/
5

e2 max {0, W (y, s),0} < J €2 Fé&,o,o) o Y (s)
S50

exp (—j 2+ B-(JorW)o @%(s")ds”) ds'

S S
< MJ 173 0 ®Y(s') exp <4f n73 o @%(s”)ds”) ds’.
S0 !

s

The proof is completed by appealing to the bound established in (11.32), namely Sjo n_% o®R(s')ds' < £16 ,
which holds for |yo| > £, and which implies e2 max {01 W (y, 5),0} < MeTs eXp(4€%) < L O
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From Lemma 5.6, we immediately deduce the following

Corollary 5.7. Foranyt € [—e,Ty) we have

t
max{d,, 4 N,0}dt’ < 16 (5.15)

—€
uniformly pointwise in space.
Proof of Corollary 5.7. Recall that cf. (2.28) and (2.31a)—(2.31b) that

Ot N = L(0pw + 00y 2) = LefO W + 1% 0, 7.

From (4.12) we know that e |01Z] < M %, and since the function max{-,0} is convex and in fact sub-
additive, we deduce from Lemma 5.6 that

max{0;, % - N,0} < $e* max{o; W, 0} + %6375 max{01Z,0} < 215 + %M% .
Writing dt’ = Sre~* ds’, the desired bound follows from

o0
J (26%S’ n %M%> Bre=®ds' < 60eT5 + M2e
—loge

concluding the proof. O

5.2.2 The time integral of |0,V | along ®7°
We next establish the following:

Lemma 5.8. Forall s > —loge,

S
sup f 01 W] 0 DY (s')ds’ < e15 . (5.16)
Yyo€Xo J—loge

Proof of Lemma 5.8. From the definition of the transport velocity v in (5.10), observe that
divy v = divz u = 261 (0,0 - NJ + 0y, 1) (5.17)
where we have used the fact that
div, v = 6$jvj = 05, IN - v + 0y, vy = divzv

and that from (2.20), div;v = Qy; = 0, and that divy (— f,0, 0) = 0. Hence, the conservation of mass
equation (2.21) can be written as

Otp+v-Vpp+ pdivyv =0, (5.18)
and composing (5.18) with the flow ¢ given by (5.11), we see that
d(pop) = (pop)(divyv)op. (5.19)
Since

Or(det V) = det Vyp(divy v) o o, (5.20)
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and det V,¢(x, —e) = 1, it follows that

pow = (det Vap) o

Note that using (1.2), (4.25) and (4.15) yields

= (55)3] = |(ae™50)7 — (350)%
< [(ae byt - oy ooy — oy
Ses(2)al gen
Therefore, by (5.21) and (5.21), we have that
|det(Vap(,1) — 1] < |22 —1
<|d (QT?% + (QT?% —1’$€€1>

From (5.19) and (5.20), we have that

d . ..

7 det V,p = det Vyp(div zv) o p = det Vyo(div 1) o ¢
leads to

¢
det Vypo(z,t) = expf (divy i o ) (z, t')dt’ .
—€

Hence,

1

t
—£9 < j (divz o @)(x,¢')dt' <ed forall zeR3.
—e

From (2.31c¢), (2.37a), (4.13), and (4.24)
H@,cyil,,(~,t)HLOO <1.

It follows from (4.1a) and (5.25) that
t 1
f |00, it (- 1) | ;o < 7(t) +6 < Me® +2<ez.
—&
Thus, with (9.1a), (5.17), (5.22), and (5.26), we have that

t
‘ Oz, - N o pdt!

t
= U (50r, i) © pdt’
—e

—&

. 1
+ ﬁ U(dw;u) o cpdt" <en.

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

5.27)

By Corollary 5.7, the integral of the positive part of 0,, % - N is small. Therefore, the above estimate gives a
bound on the negative part of 0, % - N as well. In summary, by (5.27) and Corollary 5.7, we then have that

¢
J 10,0 Nop|dt! < e .
—E&
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Then, from (2.28) and the bootstrap assumptions (4.1a) and (4.12), we see that Sis |0z, w 0 | dt’ < eﬁ,
and in particular, for any xg € xg, we have that

t
sup J |00, W © gy | ! < €15 . (5.29)
2o€EX o J—¢

Since the flow ®(y, s) is related to the flow p(z, t) via

3 s
P1(y, s) = e2’p1(x,1), Puly,s) =ezpu(x,1),

and since 0, w = €01 W, using (2.30a), the estimate (5.16) follows. O

5.2.3 The Lagrangian flow X (7,t)

We next introduce the Lagrangian flow X associated to the transport velocity in (2.12), namely 231 (0 + @),
as the solution to

X (F, 1) = 2615 + W)(X(@,0),8),  te|-eTi], (5.30a)
X(% —c) = 7. (5.30b)

Note that the flow X (7, t) is related to the flow (x,t) given in (5.11), via the transformation
o1(z,t) = X1(F,t) — F(X(@,1),1), @u(z,t) = X, (F, 1), (5.31)

and that X (7, t) is related to the flow ®(y, s) := &, (y, s) by

i(y,5) = e2*(X1(3,t) — F(X(T,0),1), u(y,s) = e3X,(3,1). (5.32)

In this subsection we obtain three results, which play an important role in the proof of vorticity creation:
the first is an estimate on |VzX (-, ¢) — Id |, cf. (5.39); the second is a precise bound on the label Z such that
X (Zp,t) — 0ast — Ty (recall that 0 is the location at which the first singularity occurs), cf. Lemma 7.1;
the third result is a precise lower bound on — ST”; 0z wo X, cf. Lemma 7.3.

First, we estimate the deformation rate of the flow X on the time interval [—¢, T%]. The evolution of
VzX is given by

%a@xi = 201 (03, (Vi + i) 0 X) 0z, X, . (5.33)
We note that using the bounds (9.2), the argument given in (5.22)—(5.27), together with the identical argu-
ment given in Section 13 of [4], we may show that there exists a universal constant C' > 1 (in particular,
e-independent) such that

<|V:X|<C. (534)

Q=

The bound (5.34) can however be made sharper, and we show (cf. (5.39) below) that |V;X — Id| < 5%
uniformly on [—¢, T%). In order to prove this, we appeal to (5.33), from which we subtract Id ;; and then we
contract with 6@ X; —1Id 5, to obtain that

% |[V; X —1d |2 = (%J.Xi —1d ij)Sik(ﬁink —1Id kj) + Sij(angi —1d Z-j) (5.35)
we have introduced the notation

Sik = 251 (8;% (61 + 77,@) o X)
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and for a matrix A;; we denote the Euclidean norm as |A|2 = A;jA;j. Because of (2.17), which implies that
for a vector field b we have b - Vzu; = b- 7x&j + Jb - N0y, U}, using the relation (5.31) between the = and
z Lagrangian trajectories X and respectively ¢, and appealing to (2.27)-(2.28), we note that the following
identities hold

ONT-NoX =104 -Nop—3INyG, (w+z)op+Nyi-Nyogp (5.36a)
ONU - TV 0 X = J0p, 0,00 — Ny ay 0o p+ Nyt - TV 0 p (5.36b)
Otuili-No X = 3Th0, (w+2) o —Thi-N o (5.36¢)

Ottt -TV o X = Tg@xvauogp—Tfjﬁ-Tf’wogp (5.36d)

The first term on the right side of the first line of the above list has the worst estimate when time integrated,
cf. (5.28). Indeed for all the other terms in the above list, by appealing to the bootstrap assumptions (4.4)—
(4.13) and the estimate (9.1), we may deduce that their time integrals are O(¢). Combining these estimates
we deduce that

T 1
f |(Vzl) o X|dt! < eTs (5.37)
—E&

Similarly, using the relations (2.20), (2.31e), (5.31), and the estimate (9.2) we obtain that the time integral
of |(V3V) o X|is O(g). Summarizing, we have that the matrix appearing on the right side of (5.35) satisfies

T* 1
J S| dt' < eTs. (5.38)

—€
Using that V; X |;—_. = Id, from (5.35), (5.38) and ODE type bounds we deduce that

, 1
sup |V X(t) —1d| < SISl g <etsef™ L ew. (5.39)
te[—e, Ty ]

The above bound is merely a quantitative version of (5.34); it will be used in the proof of Theorem 7.4.

6 L~ bounds for specific vorticity

We now establish bounds to solutions { of the specific vorticity equation (6.1)
From (2.25) and (2.26), we deduce that the normal and tangential components of the vorticity satisfy

(C-TH +v-Va(C-T2) = Fou(C-N) + Fou(C - TH) + Go (6.1a)
O(C- T2 4+ v V(€ T3) = Fr(C-N) + Fau(C-TH) + Gs (6.1b)

where the transport velocity v is defined by (5.10), and

For =N, T2 +281Q5TINj + vy (N - T2)) + 281N, 0, a2 — 28 Nya - T2, (6.2a)
Fag =281 T50s,a0 — 268, Tott- T2, (6.2b)
Foz = T30, T2 + 2B1Q; ToTov, (T T2) + 281 T, a2 — 261 Tois - T2, (6.2¢)
Far =N, 4 281Q TINj + v (N-T3)) + 281N, 0, a3 — 261Nt - T3, (6.2d)
Fyo =T 0T +281Qu TeT2 + v, (T2 T%) + 281 T20,, a3 — 261 T2i - T3, (6.2¢)
Faz3 =281 Tp0n,a3 — 261 Tot- T3, (6.2f)
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and

Go = 22 (Ors60nk — OnGOT3K) +

5 29TLf,, (Vab % Vik), (6.32)
Gs = 22 (OnGOT2k — Or260NK) + 2

Fov (V36 x V5K),, (6.3b)

[Q0 0|

=W =N

T

A

and from (2.15), T} = fj“.

Proposition 6.1 (Bounds on specific vorticity). For —e <t < 7(T),
o o 1
[Cop(t) = ¢, =€) <% . (6:4)

Proof of Proposition 6.1. By the transformations (2.27), (2.31c), and (2.37a) together with the bootstrap
bounds (4.13), (4.24), Lemma 9.1, we have that

o 1 o 1 1
lal oo = M55 [0, (@-N) [ S 1, [0z, all e < Me2, V] e 5 M3 (©6.5)

Hence, these bounds, together with (4.2) and Lemma 9.1 yields the following bounds on the forcing func-
tions defined in (6.2)

| Fijll Lo <1 for i,je{1,2,3}. (6.6)

where we have used powers of € to absorb powers of M.
Now, from the definitions (2.17), (2.24), we have that

P, )6 (x,8)) 7 (x,t) = pEC(F, ) = B(F, 1) = curly U(F, 1) = curly a(x, t)
and
curly i - N = T505 4 - T° — T30z,4 - T2
= T20,,0-T3 - T30, 4 T?
= T20u,a3 — Toi- T3, — Toop,a0 + Toi- T2, (6.7)
from which it follows that

2 25 T3 3 35 . T2
B T,0z,a3 —Tou T, — T 0z,a2 + Tpu - T7,

¢-N 6.8)
P
It follows from (3.4), Lemma 9.1, (5.21), (6.5), and (6.8), we have that
IC-N| S Mic+ Me? Sev, (6.9)

assuming ¢ is taken sufficiently small.
We define

Fij =Fijougs Gu=0,00n, Q= (Co"N)OSO:cO, Qo = (é‘Tz)OsﬁxO, Q3 = (f.T?’)mpr?
Then, (6.1) is written as the following system of ODEs:
01Qa = F2;Q; +Ga, 0,Q3 = F3;,Q; +Gs.
Hence,

3 (B +Q3) = FuuQuQu + FruQuQi + QuGy. (6.10)
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Now, we set ) = (Q% + Q%)% Using (6.6) and (6.9), we see from (6.10) that
4y <Y +e5 +[Go| + [Ty

and hence by Gronwall’s inequality,
¢
t ’ t ’ — —
V(0 - V-2 = (Y () O [ (&[G + [Galar
—&

t 1 o .
< V(o) + f (5 + |G| + [Ga)dr 6.11)

where we used the bound ¢ — ¢ < 7(7) < 2¢ from (4.1a).
We now prove that St_g G, (r)dr is bounded for all ¢ > —e such that ¢ < 7(¢). First note that by (2.31d)
and (4.14), we see that

IVak (-, 8)] oo S €7, (6.12)
so it remains for us to bound exp Si _|0tuG o | dl’ and exp Sig |OnG o | dt’. Using the identities
(N-V3)6 = 0p,0J + N0y, and (T” - V)6 = T,,0:,5,
and (2.27), we see that

NG = Opyit - NJ = 0,2 + Ny, (- N) — N0y, 2,
o106 = T4y, (- N) — T40,, 2.

From (2.31b), (2.37a), (4.12), and (4.24), we find that
Jored) . <1, 6.13)
and additionally with (5.28), we see that

L

t
f |ONG 0 | dt’ < eTs . (6.14)
—€
The estimates (6.12), (6.13), and (6.14) together with (4.25) and (5.21) show that

¢
f ‘?u(s)’ ds < 15 (6.15)
From (6.11) and (6.15), we have that
1Qa(t) — Qa(—2)| +1Qs(t) — Qs(—2)| < e(|Qa(—2)| +[Qs(—¢)|) + T

uniformly for all labels x. Since N, T2, T3 form an orthonormal basis, the above estimate and (6.9), implies
that (6.4) holds. ]

7 Vorticity creation

We analyze vorticity creation (see Theorem 7.4) through the evolution of the specific vorticity vector 5 inZ
variables, given in equation (2.12). For this purpose, we recall that the Lagrangian flow X associated to the
transport velocity in (2.12), was defined in (5.30) above. Before turning to Theorem 7.4, we establish two
preliminary results associated to the flow X, which play an important role in the proof of vorticity creation:
the first is a precise bound on the label T with the property that X (Zo,¢) — 0 as ¢t — Ty, cf. Lemma 7.1;
the second is a precise lower bound on the amplification factor — Sj_ﬂ*; 0z, W(X (Zo,t),t)dt, cf. Lemma 7.3.
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7.1 The blowup trajectory and a bound on the amplification factor

We obtain an estimate for the position of the particle 2y, which is carried by the flow X (-, ) to the blowup
location ¥ = 0 as t — 7.

Lemma 7.1 (Initial location of particle trajectory leading to blowup). With the flow X defined by (5.30), let
X3, (t) denote the trajectory which emanates from the point To. If limy_1, Xz,(t) = 0, then

[SIEN]

|(F0)1 — Bskoe| < Bes |%o| < 5e (7.1)

Proof of Lemma 7.1. We consider the trajectory X5 (t) for which X5 (7%) = 0 and for notational simplic-
ity, we drop the subscript Zy and use X (¢) to denote this trajectory. The main idea is that the initial position
of the particle X (¢), i.e. Ty, may be computed by passing ¢ — T in the identity X (t)—Zg = Sis o X (t)dt',
leading to
T
To=— o X (t)dt' . (7.2)

—E

By revisiting the right side of (5.30), we obtain a sharp estimate for the right side of the above identity.
For convenience, in analogy to (2.27) we define

w=u-N+7, Z=u-N-7, Gy, =u-T". (7.3)
We note that 0z, W(Z,t) = 0y, w(z,t). Furthermore, using (2.7) we have that
00X =2601(0+a-NN+w-T"T")o X
= 261QX — 2B RT¢ + By (N + 2N + 23, T") o X . (7.4)

First we note that using that Q is skew symmetric, that X (T%) = 0, appealing to the bounds (4.1b), (4.13),
(4.24), together with (4.27), from the Gronwall inequality on [¢, T} | we obtain that

IX(t)| < Mic. (7.5)

This estimate his however not sharp enough; to do better, we need to carefully bound the term 261RTS on
the right side of (7.4). Note cf. (2.32) we have that (RT¢); = —V;(0,s). Then, evaluating (2.34a) and
(2.35a) at y = 0, using definition of the function f and our constraints (2.53), we deduce

261(RT€)1 = ks + o 2° — ie_%G?/v and  26(R"€), = =284 — *62715[/0

in analogy to (2.62) and (2.63). Using the % estimate in (4.1b), the Z and A estimates in (4.12) and (4.13),
and the bound (12.17) for G?,V and h{j[’,o, which is a consequence of the bootstrap assumptions, we deduce
that

‘2[31(3%‘)1 — kol < Me  and ‘261(RT5)M‘ < Me3 (7.6)

T > — > & for m > 18. Returning to (7.4), from (4.2), (4.12), (4.13) and (7.5), we have that

since 1 —
’261QX + BN + 28, TY) o X’ < Mic3 + Me < Me. 1.7)

Lastly, by (5.31) we have w o X = wo ¢, and by (2.31a) we have w = k + e~ 2W. Thus, by also appealing
to (4.1b), (4.5), (4.7), (9.1a), and the fact that by |¢,,,(—¢)| < € we have that [N(—¢) — e1| < €, we obtain

|@N o X — rge| < [kN — kger| + 72 W oo sy < 3¢5 . (7.8)
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By inserting the estimates (7.6)—(7.8) into the right side of (7.4) we obtain that
0,X1 + Bsro| <4es and  |0,X,| < 4es (7.9)

upon taking ¢ to be sufficiently small in terms of M, and recalling that 31 — 1 = —f3. To conclude the
proof of the lemma we simply combine (7.2) with (7.9) and the estimate |T}| < 5%, as given by (4.27). [

Remark 7.2. For the particle trajectory from Lemma 7.1, integrating (7.9) from on [¢, T], as opposed to
[—e, Ty] as was done in (7.2), we obtain that

|X1(t) — Baroe | <Bese™  and | X,(t)] < Beve . (7.10)

Here we have again used that using (4.1b), (4.3), and (4.26) we have that |e®*(Ty, — t) — 1| < 2Me.
The second preliminary estimate in this subsection is a lower bound on — Si 0z, W o X, as this quantity
plays a key role in our proof of vorticity creation (cf. the estimate for the term /; in Theorem 7.4).

Lemma 7.3. With the flow X defined by (5.30), let X3,(t) denote the trajectory which emanates from the
point Tg. If X3,(Tx) = 0 and the initial condition W (y, — log ¢) satisfies (3.24), then

T* 2
—f Oz, W( Xz, (1), t)dt > %mo’%%. (7.11)
—&
Proof of Lemma 7.3. The proof of the lemma is based on two ideas: first, the time integral in (7.11) is
dominated by values of ¢ which are very close to —e, where we can relate 0z, W to its initial datum; second,
the flow X (¢) is related to the self-similar flow ®(; via the relation (5.32), which allows us to appeal to sharp
bounds for ¢; W in estimating the contribution to (7.11) for ¢ » —ec. We implement these ideas as follows.
We consider the trajectory X3, (¢) for which X5 (T%) = 0 and for notational simplicity, we drop the
subscript Z and use X (¢) to denote this trajectory. The associated self-similar initial datum variable y is
given via (2.16) and (2.30) as

yo = (672 ((Fo)1 — f(Fo)), e 270) - (7.12)

Due to Lemma 7.1 we know that Zj satisfies (7.1), and since |¢,,, (—¢)| < e, we deduce that

(V1N

(yo)1 — ﬁgﬁoc‘?_% < 65 and |(y0)v| < be (7.13)

Note that these bounds are set up precisely to account for the region specified in (3.24). In view of the
precise estimates on the trajectory X3, (t), we directly obtain sharp bounds on the self-similar Lagrangian
flow ®}°(s) emanating from yo. Indeed, by the ¢ bound in (4.1a), the relation between ®, and X in (5.32),
and the bounds (7.10), we have that

(Bsko — £7)e? < (BY),(s) < (Bsko + £7)e? and (DY), (s)] <eTe s (7.14)
Next, due to (5.32) and (7.3) we have that
Oz, W o Xy, (t) = €°1 W 0 B (s) (7.15)

with the usual relation between ¢ and s from (2.30). Since dt = Bre~®ds, we thus have that the integral we
need to estimate in (7.11) may be rewritten as

T* Q0
- (951171(X50 (t), t)dt = — f 57—(91W o @%0 (s)ds . (7.16)

—e —loge
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Recall cf. (4.3) that 1 —2Me™® < B, < 14 2Me ™%, so that we just need to bound from below the integral
of —01W o ®{°. The remainder of the argument mimics the proof of Lemma 5.6.

Fix yo as in (7.13), s € [~ log &, 0), and thus fix a value of ®¥° (). We trace the particle trajectory of the
flow Vy (not Vy!) backwards in time, and write @Zéé(s) = ®7°(s), where the initial datum @Zéé(so) =y
is given by the property that |y,| = L if s > —loge, and |y;| > L if sp = —loge. We then appeal to
Lemma 5.3 with y, replacing yo. The lemma is applicable on the interval [sg, s| since |yj| = £ and by
(7.14) we have |<i>€é(s)| = [®¥(s)] < e7e”3 < £2. By (5.5), we thus obtain that for any s’ € [—loge, ]
we have the estimates

(@)a(s)

Let us first consider the case that |y| > £ and sy = —loge. Based on (7.17) we now claim that

3(5/—50)

>dl@onle 7 and |Bfh(s)| < Meb. (7.17)

l(y)1] < 2%0e™ 3. If not, then by appealing to the first estimate in (7.14), we thus deduce that

I / 3(s—sq) 1 s 1
3 Bskoes = |(DX)1(s)] = [(@X)1(s)] = 3 |(yo)ile” 2 > Sroe 265 0eter > et

N|®

which is a contradiction, since 33 = 1%( < 1. Therefore, from the above argument and the second bound

in (7.14) evaluated at s’ = sg, we have that £ = £~ 16 < l(yo)1] < 2k0e ™2, and (y6)v] < Mez < 3.
Therefore, the point y, exactly lies in the region stipulated in (3.24), and so by Lemma 3.1 in this case we
have that

oW (94 (s0),50) = AW (3, —loge) € [~ 1 ](won] >, —4 |(wh| 7] (7.18)

Next, let us first consider the case that |y;| = £ and so > —loge. In this case, instead of appealing to
(3.24) we use the bootstrap (4.8b) and as shown earlier in (5.13) we deduce

/ o1 2
aw (@%’8(50),50) = W (Yo, 50) < =371 3(y) < —1 (o] ® (7.19)

where we used (7.17) with s’ = sq in the last inequality.
Having established (7.18) and (7.19), we use the ¢; W evolution given in (2.45a) with v = (1,0, 0), and
deduce that . ) ) )
0s(01W 0 BY) + (1 + BrJo1W o c1>€3) (W o d¥0) = Fi0% o o

Integrating this expression on [sp, s], recalling that by definition we have @igé(s) = ®7’(s), using that by
(7.18) and (7.19) we have that —0; W (y(, so) > 0, by appealing to the F‘E&’O’O) estimate in (9.19) and to the
01 W bootstrap in (4.7), we deduce

— W (DY (s),s) = —01W (yy, So) exp (— fs 1+ p-(Jo1W)o @%) (s')ds')

S0

| R o st e (‘f 1+67<J61W>o<1>€é<s”>d8”> "
S0 s’

2 s A
> i ‘(y6)1’_§ 67(3*50) exp (—3J‘ 777% o @gvo (S/)dsl)

S0

et oo (e D exp (3| nFod¥(sMds" ) ds'  (7.20)
n w p n w

S0 s

Since |y,| = L, by (7.17) we have

o1 Yo [ N gt /7287(’7)/ L
3J 8 0 @(s)ds' < 4|(yh)1] f e P T0ds < et

S0 S0
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and

s ! U / 2 s /
f e*%n*% 0 B (s")ds'e= ") < 2e7° |(yo)1| @ f e's e (¥ =50)ds' < 10e5 e (57%0) | (y0)1]
50

S0

Wl

Inserting these estimates into (7.20), we deduce

_2
—O W (DY (5),8) = £ |(yoh| 7 e 7). (7.21)

The bound (7.21) holds both in the case that s) > —log e and |y| = L, and also in the case that s) = —loge
and |y,| > £ and |(yp)1] < 2k0e 2. The last observation is that in either case, the bound (7.21) implies

_2
—OLW (D (s),5) = %(2/{05_%)_%6_(‘9_50) > ghKq 3ege(stloge) (7.22)

Lastly, using (7.22) we bound from below the right side of (7.16) and obtain

NeJ
win
o=

o0 _2 o0 _
—f BronW o @ (s)ds > 12Me g 3 es f em(sHloge) g > 1 e
—loge —loge

which completes the proof. O

7.2 Vorticity creation from irrotational data

We now return to the specific vorticity equation (2.12) which we shall now write as
4 —281QC +2B8,(T + 1) - Vsl = 281 Def - C+ b for te[—e,Ty) (7.23)
where we use b to denote the baroclinic term in (Z,t) variables:
b= 28122V;5 x Vik, (7.24)
and the (rate of) deformation tensor is defined by
Def; U = 2 (Vyt + V")

which is the symmetric part of the velocity gradient. In components, (Def; @ - ¢ )i = %((9;5]. Uu; + (%ciﬁj)zj.
By definition of the X3, (¢) flow in (5.30), so that X;,(—¢) = o upon composing (7.23) with X3 (%)
and denoting

~

U(Fo.t) =Co Xz (t),  D(Fo.t) =281 Defzlio Xz, (t),  b(Fo,t) =bo Xz (t),  (7.25)
we have
40=(261Q+D)-L+b. (7.26)

At this stage two observations are in order. First, due to (5.31) we have that ¢ = Z oX = C o ¢, so that the
bound (6.4) translates into

©(@o,t) = $(F0, —)| < 7. (727)
Second, we note that by (5.36), (5.37), (9.1), and (3.2), for any (7, j) # (1,1) we have

T
J |Di;(t")] dt' < Me, (7.28)
—E&
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while for (¢,7) = (1,1) we have
Ty )
f Dy ()] dt’ < €75 (7.29)

We omit the detailed proofs of (7.28) and (7.29) but note that as already discussed in the paragraph below
(5.36), only the time integral of |Onu - N o X is not O(e); and since [N — e1| < e, this corresponds to only
the (1,1) component of the D matrix as having a time integral which may be larger than O(e). Taking into
account also the Q estimate in (4.2) we rewrite

261Q + D =: diag(D11,0,0) + Dgmall =: Dimain + Dsmal (7.30)

with

T
f | Dsman(t')| dt’ < Me. (7.31)
—€

With this information, since D,y is a diagonal matrix, we may write the solution of ODE (7.26)
pointwise in T as

~

t
(1) = o2 < Dumain (') dt (-, —e) +J o1 Dmain (-,t")dt” (b(-,t’) + Dmant (- ') - C(-,t')) dt',  (1.32)
—&
where in view of (7.29)
eliPesn A0 1| = |ding (PO 1,1) —Td | S e (7.33)

The solution formula (7.32), along with the bounds (7.27), (7.31), and (7.33) show that vorticity creation is
essentially implied by (lower) bounds on S; b(-,¢')dt’. This is indeed the main idea in the proof of vorticity
creation, which we establish next.

In the following theorem, we show that when the initial vorticity is zero, the Euler dynamics instanta-
neously creates vorticity, and that for appropriately chosen initial data, the vorticity remains non-trivial at
the formation of the shock.

Theorem 7.4 (Vorticity creation). Consider T such that the flow X5, (t) converges to the blowup point 0 as
t — Ty. More generally, consider any Zg satisfying (7.1). Suppose that the initial datum verifies (3.24), and
that the initial baroclinic torque at this point, b(Zy, —¢), is non-trivial. For example, this may be ensured by
choosing

~

03, k(Fo, —€) =0 Oz,k(To, —€) =0, Oz,k(TFo, —) < 0. (7.34)
If the initial datum is irrotational, i.e. z (%, —¢) = 0 for all T € R3, then vorticity is instantaneously created,

and remains non-vanishing in the neighborhood of the shock location (Z,t) = (0, Ty ). Quantitatively, with
the choice (7.34) we have that

~ 1_1 ~
IC(@,1)] = card =305, k0(F0))| (7.35)

for all (Z,t) in a small neighborhood of the shock location (0,T), where co, > 0 is a constant that only
depends on «.
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Proof of Theorem 7.4. As alluded to in the discussion preceding the Theorem, the proof is based on fol-
lowing the Lagrangian flow X3, (¢) which arrives at the shock location as t — T, and study the vorticity
production caused by the baroclinic torque term b. We note that (7.35) is proven by establishing this bound
at T = Xj,(t) with ¢ — T, for one component of the vorticity vector, and arguing by continuity, the fact
that the vorticity remains continuous all the way up to the blowup time ensures that the lower bound holds
for (Z,t) in a neighborhood of (0, T%).

For simplicity of the presentation we provide a lower bound on the third component of the vorticity;
this is why in assumption (7.34) we have chosen very specific gradient components for K and &. Recall the
notation (7.25). Using that the initial datum is irrotational, from the solution formula (7.32), the bounds
(7.27), (7.31), (7.33) and the fact that the matrix Dy,,i, only has a nontrivial (1, 1) entry, we obtain that

t
Cs(Zo,t) — f bg(%o,t’)dt" <(1+es)enMe<e. (7.36)
—&
The remainder of the proof consists of analyzing the time integral of bg(Zg,t) = E(cho (t),1).
Let us denote the cofactor matrix associated to Vz X and its Jacobian determinant, respectively, by
B(z,t) = Cof(V;zX), J(Z,t) = det(VzX),

so that
(VX)) =J718.

Two components of the cofactor matrix that we shall make use of are given by

B3 = 03, X2(03, X103, X3 — 0, X303, X1)
B} = 03, Xo(03, X103, X3 — 03, X103, X3) .

From (5.39), we see that
J—1|<ew, |Bi—1<em, and |B}<em. (7.37)
Then, transport equation (2.6c) shows that
Ko Xz(t) = K(F, —¢) =: ko(¥) (7.38)
so that
05,k 0 Xz (t) = JH(F, 1) 05,ko (%) BL(R, ) . (7.39)

The point of the first two assumptions in (7.34) is to single out one of the three elements in the sum over ¢
in (7.39), which now reduces to

O3,k 0 Xz (t) = J7H(@, 1) 05, ko (3) B2 (3, 1) . (7.40)

For the remainder of the proof, we fix X to denote the trajectory which collides with the blowup at time
t = T so that X (T) = 0. Using (7.40) and recalling (7.3) we return to (7.24) and obtain that

by =bo X = 28,22 0 X (05,5 0 X0z,k0 X — 03,5 0 X3 ko X)
= 281220 XJ ' 0;,K0(B303,5 0 X — B303,5 0 X)
= $122 0 XJ 1 03,ko(B303, W 0 X — B30z, % 0 X — 28705, 0 X)
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—: b = b — b (7.41)

We first note that by the relation of ¢ and p, in view of (2.6¢) we have

51“% 0 X = ﬁe 2 (po X))~ (7.42)

so that by (5.21) and the initial L* assumption on k(-, —¢) we have

Bros 8 a1
1220 X — 2(9) | 5

(7.43)

Combined with (7.37), our bootstrap assumptions derivatives of Z in (4.12) and on U - N and S in (4.24),
similarly to (7.31) we obtain that the last two terms in (7.41) have time integrals bounded as

JT*
—E&

In order to conclude the proof, we need to estimate the time integral of the first term in (7.41), namely

b{? (3o, t)‘ + ‘b@” (o, t)‘ dt < Me . (7.44)

bz())l). This is precisely the reason that Lemma 7.3 was created. First, we note that by (7.15) and (7.21) we
have that 0z, W o X (t) < 0 for all ¢t € [—¢,T%), that is, this term is signed. Taking into account (7.37),
(7.43), and the third assumption in (7.34) we obtain the pointwise in time bound

bgl)(fg, t) = %(%) a 5521(0(.%0) @51@ o X:;O (t) . (7.45)

To conclude the proof we combine (7.45) with (7.11) and the assumption 6521%(%0) < 0 to deduce

2
-1 ~ _2
@ 3

~ 1 -1 1. v
f b (F0,1) > 52(252)"" |03, ko (F0) S *e3 = 2cang €3 |0z,K0(0) . (7.46)
—€

where ¢, > 0 is a constant that depends only on «. The point here is that the lower bound is (9(5% ), while
the error terms in both (7.36) and (7.44) are O(e). Combining these estimates we deduce that

t 11 N
Cg(.%o,t) = J bgl)(.%o,t/)dt/ — M2<€ = %Ca/ﬁ}g O‘E%’@;Qko(%o)‘ (7.47)
upon taking ¢ to be sufficiently small. O
8 H™ bounds
Definition 8.1 (Modified H ™_norm). For m > 18 we introduce the semi-norm
B2(s) = BA[U,PH(s) = 3 A (107U, )l + [HOPC, )3 + 3 10H(,5)32) 8.1
[v[=m

where A = A(m) € (0, 1) is to be made precise below (cf. Lemma 8.3).

Clearly, Efn is equivalent to the homogenous Sobolev norm H™ for U , P, and H, and since kg = 2, we
have the quantitative inequalities

5 (10 e+ 1Pl P05) < 50 o (10 e+ 1P

o M) 62
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The bound (8.2) follows from
My, s) -1 < 5 (8.3)

and the triangle inequality, upon taking ¢ sufficiently small. In turn, (8.3) is a consequence of the definition
(2.42¢), and of the bootstrap (4.14).

Additionally, in order to apply the interpolation inequalities from Appendix A.2, we need to establish
a quantitative equivalence between the F,, semi-norm defined in (8.1) and the classical homogenous H™
norm of the quantities U, S, and K (recall that these are related to U, P, and ‘H via the nonlinear transfor-
mation given in (2.42)). In this direction we have

Lemma 8.2 (Asymptotic equivalence of norms). For kg = 1 sufficiently large in terms of y, and for €
sufficiently small in terms of ko, M, and m, we have the estimate

N (10 + 1 g+ VK = 7)< B2 < (10 + ST + K Gy + 7)) 84)
forall s = —loge. As a consequence, we also have the estimate
Ko B2 — e < e Wk + 12 3m + A1 + | K5 < ANTTE2 +4e7 . (85)
Proof of Lemma 8.2. We directly have

XU < Y AU < U (8.6)
[v]=m

which gives a direct comparison between the H™ norm of U and the U -part of Ep,.

Next, we turn to the H-part of E,,. The chain rule yields H~'VH = %VK . Applying m — 1 more
derivatives, by the Faa di Bruno formula, we have that there exists a constant C),, which only depends on m,
such that pointwise we have the bound

m—
HIOH = LK) <Cn Y H DI K| 87)

(i15eesim—1)ELm J=1
where the index set I,,, is given by I,, = {(i1, .. im 1): 45 =0, Z] 1 Jjij = m}. In particular, note that
whenever (i1, ...,%m—1) € Iy, we must have Z ) 2] 2. This fact is crucial for the argument below, and

has to do with the fact that we have already accounted on the left side for the term with the highest order of
derivatives. In (8.7) as usual we have written D7 K to denote D? K for some multi-index 3 with 1Bl = 7.
Using the interpolation inequality (A.3), for all 1 < j7 < m — 1 we next estimate

iy
|17 K" ||L 2m HD]KH”M < K7 HKH o (8.8)
m—1 ji;
j=1 2m —
exponents corresponding to an L? norm. Thus, applying the L? norm to (8.7), using the Holder inequality,
and the interpolation bound (8.8), we obtain

ij (1——
<0 Y TT I1e8—
(i1:~ lm— 1)elm j=1

(i17'--7i777,71)€]7n

Moreover, note that for (i1, ..., 4y,—1) € I, we have that ), %, so that these are Holder conjugate

H’H—law L

AR ) P 8.9)
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for some m-dependent constant C),, (which may increase from line to line), whenever |y| = m. At this
point we use that (i1,...,%n—1) € I, Wwe must have Z =1 z] > 2, which is combined with the bootstrap
(4.14) to conclude

HH—lam - %WKHLQ < Oz | K g - (8.10)
We next appeal to the pointwise estimate on H in (8.3), and since k¢ = 1, we deduce that
H2 -« 2
SN K [ < Y ARG 107372 < 53 1K % (8.11)
ly|=m

where we have used that A € (0, 1), and that ¢ is sufficiently small to absorb the C),, constant in (8.10).
Lastly, we turn to the P-part of F,,. From (2.42b) and (2.42¢) we obtain S = PH, and thus, by the
binomial formula and the Moser estimate (A.4), we have

1078 = HIP = PO H| 2 < Con (IVH] 1o [Pl fron-s + VPl oo 1H] s ) -

Furthermore, using the interpolation bound (A.5) applied to VP and VH, and the e-Young inequality, we
obtain that for any ¢ € (0, 1) we have

|07S — HOTP — POVH| 1

2
(vmm IVPIZE™ [P + VPl IVHIZE ™ |91 2 )

< 1Pl + 6 M (rvmmo VPl + |VPIE vmm) 8.12)

where the m-dependent constant C,,, may change from line to line. From the definitions (2.42b)—(2.42c),
the K estimates in (4.14), the W and Z bounds in (4.7) and (4.12), the relations HVP = V.S — SHIVH,
and 2VS = e 3 VW — VZ, we deduce

S

IVH|,» <e8e™®  and  |VP|Le < (% + ei) e 3. (8.13)

Taking € to be sufficiently small to absorb the m and M dependent constants, we obtain from (8.12) and
(8.13) that

2m—3

1078 — HOVP — POVH|| 12 < S|P g + 6 [H gym ° (8.14)

for any constant 6 € (0, 1). Using that |S — ko/2| < 5e6 (which follows from the bootstrap assumptions on
k, W, and Z), and appealing to (8.3), we obtain

Py,s) — 2| < 6es (8.15)

upon taking ¢ to be sufficiently small in terms of M and xq. At last, we combine (8.14)—(8.15), use the P and
‘H part of the comparison (8.2), choose § sufficiently small depending on x( and A, and then ¢ sufficiently
small in terms of kg, A,  and m, to deduce that

N [SThm < D5 AT (MO PG + 13 107 HI32) + 72, (8.16)
Ivl=m
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and taking kg > 2, we also have

151 = 5 2 AT (IHOPI + k3 107HI32) - 7. (8.17)

[v]=m

Combining (8.6), (8.11), (8.16), and (8.17), we arrive at the proof of (8.4).

The proof of (8.5) follows once we recall the identities W = e2(U -N+ S — k), Z = U -N — S,
which follow from (2.38), and the definition A, = U - T¥. Therefore, by (9.1a), (A.3), using the Poincaré
inequality in the y direction, and the fact that the diameter of X'(s) in the é directions is 45%65, for any
with |y| = m, we obtain

e EOW —N-OU =S| 4072 =N U + OS2 + [V, =T U] 2
<2[@N] - Ul + 17, T1- U]l 2

< (DN + 1D7T),) 1070 o
7j=1

m s 1
s Qe F ety Ul
Jj=
U gm -
Summing over all v with |y| = m, and appealing to (8.4), the estimate (8.5) follows. O

8.1 Higher-order derivatives for the (U, P, H)-system

In order to estimate F,, (s) we need the differentiated form of the (U, P, H)-system (2.43). For this purpose,
fixye Ng with || = m, and apply 07 to (2.43), to obtain

05(0VU;) + (Vo - V)(@'U;) + Dy (VU;) — 2B1Bre*Qij (O7U;) + 28, BsH*(0VP)INse2 & P
+ 291 8- BsH2e 3 01 PIN; (VP) + 2B, B3 HEP (JNie%(?l((?VP) +e 3670, (WD)) F, (8.18a)
0s(O"P) + (Vu - V) (VP) + D (7P) + 26, B3¢ J01(U - N) (37 P)

+ 2y18, B33 01 PIN; (VU;) + 2B, B3P (e%JNjal(mUj> + e*%ay(amﬂ)) - 7, (8.18b)
0s(VH) + (Vi - V)(O"H) + Dy (7H) = FY, (8.18¢)

where the damping function D, is defined as

D, =31+ dgw) + Sl (8.19)

the transport velocity Vy is given in (2.40c), and since |y| > 3 the forcing functions in (8.18) are given by

‘FI(JZ) = D, (0"U;) — [0",Vu - V]U; — QﬁTﬁge_%(si"[[éW,HQP]]ayp

+ 2B, B3e2 ((OVP)YH2IN;O1P + nH 2 PIN;(7P) — [07, H2PIN;] 61 P) (8.202)
F = D(@P) = [0", Vi - VIP — 28, 85¢3[07, Plo, U,

+ 268, B3e2 ((7P)IN;01U; + a1 PIN(@U;) — [07, PINi]0uU7y) (8.20b)
]_—7(]) — D (O"H) — [, Vy - V]H. (8.20c)
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In (8.20) we have used the notation [a, b] to denote the commutator ab— ba. Note that two additional forcing
terms are singled out on the left side of (8.18b); this is because these terms will turn out to contribute the
main contribution that has to be absorbed in the damping term D..

The E,, energy estimate is obtained by testing (8.18a) with 07U;, (8.18b) with #2097 P, and (8.18¢c) with
/@%677{. Adding the resulting differential equations produces the cancelation of all terms involving m + 1
derivatives, which upon integrating by parts allows us to close the energy estimate. This computation is
detailed in Subsection 8.3 below. Prior to this, in the next subsection we give estimates for the forcing terms
defined in (8.20).

8.2 Forcing estimates

In order to analyze (8.18) we first estimate the forcing terms defined in (8.20). This is achieved next:

Lemma 8.3. Consider the forcing functions deﬁned in (8.20). Letm > 18, fix 0 < § < 32, and define the
parameter X = \(0,m) from (8.1) to equal \ = 16 —9—. Then, we have that
2 ) )\W' f“ VU] < (5+ 90)E2, + e S M1 (8.21a)
[y|=m
2 31 A f D 1207P| < (2 + 85)E2, + e M (8.21b)
Iyl=m
9 Z il 2J ’ ?({“f) M| < (2 +40)E2 + e M (8.21¢)
ly|=m

for € taken sufficiently small in terms of m, 6, \, M, and k.

Proof of Lemma 8.3. Throughout this proof, when there is no need to keep track of the binomial coefficients
from the product rule we denote a partial derivative 07 with |y| = m simply as D™.
Upon expanding the commutator terms in (8.20), the forcing functions defined here may be written as

]_-[(]Z) _ ]_-( m) ]:(<m) (8.22a)
FO) = f<m> ;(<m) (8.22b)
FO = Fim 4 Flem (8.22¢)

where the upper index (m) indicates that terms with exactly m derivatives are present, while the upper index
(< m) indicates that all terms have at most m — 1 derivatives on them. These terms are defined by

FI = = (Vufugu 1@~ U; + 7000,V U; + 8 guorUs + 00 0,U;)
— 23,83 (’Y,uegau(HQ,PJNi)a’y_e“&lp + 271PJN¢H€%51H5’WP + 6_%5iy’yj§j (7—[273)57_87' ﬁy']))
~ 28,05 (3070, PO (H2P) + e3P0 P (HAIN,) )

(m) (m) (m)
= . T Fune T e

m—2
REEDWEDY 7) (5”‘59U6681Ui + 87‘%56%”@)

J=118l=4,8<y

(8.23a)

m—2
—28:85 ). > (’Y) (e%m—ﬁ(H?PJNi)aﬁam +e—%5"”m—ﬂ(%2p)aﬁaﬂ?)

J=1|Bl|=j,8<
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m—1
~ 28, Bze30P Y. Y <7> TP (HPIN) P
J=1 |Bl=5,8<y
= F R R w23)

for the 07U evolution, by

FR = = (yulugurd P + 7;05ht;0,8" P + &gy P + 37hiy0,P)
— 2885 (et Qu(PINI™01Us + e750,U, 0P + e=5,0,P0 90,1, )

(m) (m)
]:P (1) +Fp (o) (8.24)

FE™ = - 2 D (g) <87_69U8’85177 + m—ﬁhgaﬁaﬂ?)

J=11B|=5,8<y

m—2
— 208,03 Z Z (’Y> (6%(97*5’(77JN¢)8551UZ. n e*%mfﬁpaﬂayU»
- QﬁTﬂSalUi’YM(JNi)MaV_e“P

- (<m) (<m) (<m)

for the 07'P equation, and by

FM = — (140900107 H + 730,050,075 H + " guorH + 07 hi 0, H) (8.262)
m—2
<m) _ _ oo <7> <87_6gU6561H + a“/—ﬁh[”]aﬁam) (8.26b)

J=116|=4,8<y

for the 07"H equation.

Proof of (8.21a). We shall first prove (8.21a), and to do so, we estimate separately the terms in the
sum (8.22a). Let us treat the term which contains the highest-order derivatives, namely ]-'(U:"). This term is
decomposed in three pieces cf. (8.23a), and we estimate each piece separately.

Recall that gy and Ay are defined in (2.34c) and (2.35c¢) and that

Up=U-NN;j+ ATV = L(e2W + s+ Z)N; + A, TY. (8.27)

1
2

Also, note that f and V' are quadratic functions of ¢, whereas JN is an affine function of ¢; therefore 07
annihilates these terms and we have'”

gy =2e307(IN-U) = 2¢3IN - 07U + 27,(IN,) .07 ~%U, (8.28)
mh“ = 273070, (8.29)

515

In view of these definitions, using that A\ < 1, that 8,8; < 1, and that 0,07~ °U; produces a favorable
imbalance of )\%, for the first term in (8.23a) we have that

2 Y ”'J

[v]=m

'"Note that (8.28) holds whenever |y| > 4. This is because gu = 281 8,3 (U -NJ+V - NJ — f), with V - NJ being a cubic
polynomial in y, and f a quadratic polynomial in g.
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<2E2 (mA% IVg0] oo +m Vo] oo + 263 || 01U e + 2673 )
+4AmEm [(IN)u| o [O1U ] oo (U grm—1 - (8.30)

Estimate (8.30) is the perfect example of the usage of the parameter A appearing in the definition of the
energy F,,: it yields a factor of )\% next to the term m |WgUH Lo XM in the first term of (8.30). Without
this factor, the resulting coefficient of E2, appearing on the right side of (8.21a) would be larger than 2m,

which would not allow us to close the energy estimate. But by choosing A = 2‘5 >, we have that 2mA2 < 4.
Using the definitions of g7, h;, and U, the bounds (4.3), (4.5), (4.7), (4.11), (4.12), (4.13), (9.1a), (5.12),
the norm equivalence (8.2), and the interpolation inequality (A.5) applied to VU, we estimate

< [VOW) e + VG| < 1464
|Vhe | e < €7
301U o < S 3 [JO1W | e + 101 Z) o + 2|01 Al e < 3(1 4 £3)e5
[VU] . < 5
[ON) | < e

2m—3 2m—7

2m—3 m
101U oo U gpm—s < Con [OUN 2277 (UL " < NUN g + C U120 <2072 B +e7°

for an arbitrary ¢ € (0, 1), upon choosing ¢ to be sufficiently small to absorb the stray powers of A and all
implicit, )-dependent and m-dependent constants. Combining the above estimates with (8.30), we obtain

2 Y ”J

[v|=m

2 (6 1 1 1 3 1 _m —s
<2E2 (1(1 +el)+mel 414t + 254) + AmE, et (2)\ 5 By + e )
<(2+0)E% + e, (8.31)

Quite similarly, using that A < 1, that 5,83 < 1, and that 0,07~ “*P produces a favorable imbalance of )\2
for the second term in (8.23a), we have

2 3 Awf

[v]=m
< 4B (mA%e% |1V (H2PIN)| . + 2me? | PINGIH| e + me 5 HH‘1V(7{2P)HL@> . (832)

7,

Using the estimates (9.1a), (8.3), (8.13), and (8.15) we obtain that
|H IV (H2PIN) |, < (% +5é) e
|PINGYH o < cle2
MR < (h+e) ek

Using the above estimates, and recalling our choice of A = the bound (8.32) becomes

2 % WJ

[v[=m

629

m <4E2, (7(% +e %) + 2mei +me(3 + %)> < OE?, (8.33)
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upon taking ¢ to be sufficiently small. Lastly, for the third term in (8.23a), we similarly have

2 3 Awf

[v|=m

4Eme

Pllgm + 4€2 [Pl o 101P] o D] MJ |07(H2IN) - U] . (8.34)
[v|=m

For the second term in (8.34) we recall that JN is an affine function, and thus D?(JN) = 0. From the Leibniz
rule, the Moser inequality (A.4), the estimates (4.1a), (9.1a), (8.3), (8.13), the interpolation bound (A.5), and
the norm comparison (8.2), we moreover have that

m—1
o Y@ HA) 2 + Con [IN[ o D | DIH D™ H]
7=1

1l _ s
Cm€2€ 2 HHHLOC HHHHW 1 + Cm HVHHLCO HHHHW 1

|07(HAIN) — 2HINOH| ,, < e72 |(IN)

N

2m—"7 -3 -7

l 2 m—>5 m—>5 m— m—>5
S Cmee™ [H| HV’HH2 1] i +CmHVH||2 5HHH2

1 s 2m—3 m—T7
< Ch(ese 2)2m—>5 (A‘?Em)m%
<cie By, +eie (8.35)

by taking ¢ to be sufficiently small in terms of m and \. From (9.1a), (8.3), (8.35), the definition of the F,,,
norm in (8.1), and the Cauchy—Bunyakovsky inequality we deduce that

m

> MJ |07 (H2IN) - U| < 2e5e™ 5 B2, + e~ + 3r5  E2, . (8.36)
[v[=m

The above estimate is combined with the bound

s

1
[Pl e 101P] e < <% + 55) ez,

which follows from (8.13) and (8.15), and with the estimate

Plym < Cme™ 2 (IP] gy + 50 [H] grm) < Comkioe™ 2A™ 2 Epy

which follows from the fact that kg > 1, the Moser inequality, (8.2), (8.3), (8.13) and (8.15), to imply that
the right side of (8.34) is further estimated as

2 Y )\Ivlf

[v]=m

U“(S)

< Chukoh™ 3 B2~ + 4 (% + o8 ) (256 E B, + ce™ + 3r5 B2

m

< (3+0)E% +c2e, (8.37)

after taking ¢ to be sufficiently small, in terms of d, kg, and m.

The bounds (8.31), (8.33), and (8.37) provide the needed estimate for the contribution of the ‘FI(JT) term

in (8.22a) to (8.21a). It remains to bound the contribution from the lower order term ]-"((;m), which we recall

is decomposed in three pieces, according to (8.23b). Next, we estimate these three contributions.
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The difficulty in addressing the J-"I(J (1% term defined in (8.23b) arises due to the fact that the bootstrap

assumption for A in (4.13) does not include bounds on the full Hessian V2A. Therefore, we need to split
off the A, (i.e. U - T¥) contributions from the W and Z contributions (i.e. U - N) to this term. Using (8.27)
we write the first term in (8.23b) as

F[(]“( g T+ Ty + T, (8.38)
where

m—2
T = @) 7 BgudBa (U -NN;),

J=11B|=y5,8<y

m—2
Ty = — @) PP (01A,TY),

i=1 |Bl=4,8<y

—2

Ty = Z @) >0, U;

We estimate the contributions of the three terms in (8.38) individually.

First, for the Z; term in (8.38), by Lemma A.3 with ¢ = 6(227?__13) s

|=7,8<y

we have that

9 Z A J 1T, 05| < HDmgUHLQHDmUHL2 ”D29UH HDQ(U : NN)”lL;bHDmUHL2 ) (8.39)
Iy|=m
where a and b obey a + b =

the bootstrap bounds (4.1)—(4.12), or alternatively by appealing directly to (4.7), (9.1a) and the last bound
in (9.4), and the definition of X (s) in (4.4) we deduce that

-

Q

2 < -3 2
HD gU”Lq(X(S)) ~ M||77 6HLq(;\g(S)) + M?e™3 [X(s)|« < M (8.40)

since q € [11 6) for m > 18. Similarly, from the first four bounds in (4.24) (bounds which do not rely on
any A estimates) and from (9.1a) (which only uses (4.1a) and (4.5)), we deduce that

1

|D2((U - N)N) < Me 3|y + Me™* |X(s)|s < Me™ 2. (8.41)

HLq(X(s)) HLQ(X(S))

Moreover, from (8.28), the bounds listed above (8.31), the Poincaré inequality in the ¢ direction, and the
fact that the diameter of X’(s) in the e,, directions is deGe3 we have that

|D™g0] 2 < €5 U]l g + 5 |U | s < €3 U] gy - (8.42)
By combining (8.40)—(8.42) we obtain that the right side of (8.39) is bounded from above as
|D™ g0 31U [ D90, |D* (W - NN) |, [T ]

PO G M1 (M e 2) 20
(a+b (a+b—1)s H1+a+b

< (e

s M2—a—b

Recalling from Lemma A.3 that 1 —a — b = 2m 7 € (0,1), the and using the norm equivalence (8.2), by
Young’s inequality with a small parameter § > 0, we have that the left side of (8.39) is bounded as

2 3, A J [Ty U] < Crp M227Pe 522\ 52 il at
m
Iy|=m
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< OF% + e sMA™3, (8.43)

In the last inequality we have used that by definition A = A(m, d), d € (0, 312] is a fixed universal constant,
and C), is a constant that only depends on m; thus, we may use a power of M (which is taken to be
sufficiently large) to absorb all the m and § dependent constants.

Next, we estimate the Z, term in (8.38). First, we note that by (A.3) we have

m—2
Ll < Z |07~ Dgyl]  stmcn “Dj<91A”T”>||Lw

3

-2 m—=1—3 1
lgul

mlf

HDguHﬁ“oc1 oL AT 7T o AT

Hml

<.
I
—_

Then, by appealing to (2.34c¢), (4.7), (4.13), (9.1a), (9.4), (8.2), (8.42), and (A.4), we deduce

m—2 m—1—j j m—1—j

Tl 5 2 (6 105n) ™ (1l + e ") (a1 %) 7

m—2 m—1—j j

m T 1—j
(A*%Em) e (A*%EWLME@* 328) T (Mems)

|_|

A

j:
< (Me)nT A\~ % Ep + Me™®

since | Dgyr |, < 1. By taking € sufficiently small, in terms of M, A = A(m, d), 6, and m, we obtain from
the above estimate that

2 Y Al f 1T, 07U;| < OE2 + e * (8.44)
[v|=m

forall s > —loge.
At last, we estimate the Z3 term in (8.38), which is estimated similarly to the 75 term as

m— m—1—7

1Z3] 2 = Z HhUH \DhUH}fool 0TI, 18,V e

Hml

From (8.29), the bounds (4.7), (4.12), (4.13), (9.1a), and the Moser inequality (A.4), we have
ol g S €5 INU N g + 2673 A, T o < Me™3 U] g+ Mee™ "5

On the other hand by (9.5) we have | Dhy | ;o < e™*, while from (4.7), (4.12), (4.13), and (8.27) we obtain
HVU H Lo S € 3, Combining the above three estimates, we deduce that

m—2 . L j J . mei1-y
Zolge < Y, (Me T8 |Ulgm +¢7) ™ 7@ U] 7T € Hm € Me™ Ul g + €7

from which we deduce

2 ) MJ T3 07Ui| < e2E2 +e* (8.45)
[v[=m
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upon taking M to be sufficiently large in terms of m, and ¢ sufficiently large in terms of M. Combining
(8.43), (8.44), and (8.45), we have thus shown that

2 Y w

[v]=m

F(<m)

o < (26 +22)E2 + MY 265 | (8.46)

We next turn to the second term in (8.23b), which involves only derivatives of P, H, and JN. For the
first term (the one with an e2 prefactor) we apply the same bound as in (8.39), while for the second term we
use (A.3), to obtain

2 3 ”J

yl=m
< e%}|Dm(’H27>JN)}|L2)a}|Dm7>|\§2 e3| D2 (H2PIN)| ) | D*PL, 0| D™ 0
e ’“Z 2P| [DeeP)ET P [PE T (DUl
=T+ 7Tz, : (8.47)
with g = 9278 unda 4 = (U-N—Z)H!, the definition of

‘H, our bootstrap assumptions on Z and K exactly as in (8. 41) we have the estimate

1
ID*Paaeisy S P20 -N) ooy + (ID*Z] oo + IDHI o DU -N = Z)]| 10) | X ()] 4
1
U N = Z] g (|D*H] o+ IDHIE S ) [X(5)]
< Me 53 .

Thus, the Hessian of P obeys the same estimate as the Hesssian of (U - N)N in (8.41). Similarly, by using
(9.1a), (8.3), (8.13), and (8.15), as in (8.40) and (8.41) we have

5 [D*(HPPIN)| oy < €3 [ D H2P) |y + IDOEP) o [X ()7 < M

The above estimate is exactly the same as the Hessian of g;; bound in (8.40). Clearly we have that |P| ;... <
Af%Em, and additionally, from the Moser inequality (9.1a), (8.3), (8.13), and (8.15) we have that

ez |H*PIN| . < €2 (ko [ M jgm + [Pl gm) < €2A7% Epy,

which is the same as the bound on on the H™ norm of gy obtained in (8.42). In view of these analogies,
proceeding in exactly the same way as in (8.43), we obtain that the first term in (8.47) is estimated as

Ti < OE2, + e SMA™3. (8.48)

For the second term in (8.43) we recall that by the Moser inequality, (8.3), and (8.15) we have H”H2PH fm S
1Pl gym + o [ H] g < A~ 7% E,,, and by also appealing to (8.13) we obtain

m— 1—j

Z EVPlE T < Ame B2 < 0F2, (8.49)

I\J\fr

T2 <
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after taking ¢ to be sufficiently small to absorb the m, A, and J-dependent constants. By combining (8.47),
(8.48), and (8.49), we obtain that

2 Am

[v]=m

< 26E% + e S MA™3 (8.50)

u( )

At last, we consider the third term in (8.23b). Recall that cf. (8.13) that e |, P ;- < 1, and that since
JN is linear in g, by Poincaré inequality in the  direction, and the fact that the diameter of X’(s) in the &

directions is 46%65, we obtain that H?—[2JN} fm S HHHHm Thus, by appealing to (9.1a), (8.2), (8.13), (A.3)
and the Poincaré inequality in the ¢ direction we arrive at

2 ¥ ”J Fem
[y|=m

m—1
< B ), [DAHPIN) BT RN P wmuHm

j=1

e -

< B, 2 (e )™ Pl T (b [P ) ™
\5E; (8.51)

upon taking ¢ to be sufficiently small, in terms of A\, m, and k.

The bounds (8.46), (8.50), and (8.51) provide the needed estimate for the contribution of the F[(]jm)
term in (8.22a) to (8.21a), thereby completing the proof of (8.21a).

Proof of (8.21b). The proof is extremely similar to that of (8.21a). Comparing the forcing terms in
(8.24) with those in (8.23a), and those in (8.25), with those in (8.23b), we see that they only differ by
exchanging U with P in several places; in fact, here we have fewer terms to bound. The contribution from

.7-"7(,”?1) is estimated in precisely the same way as the one from .7-" (m 1n (8 31). Similarly, the contribution
from ]-"7(3 ()) is estimated in precisely the same way as the one from f (m 1n (8.33). Note that there is no

third term in the definition of J-"7() ), and thus we do not need to add a (3 + J) to our error estimate, as we

had to do for the U forcing in view of (8.37). Next, ]—"7(,<( )) ]-'7(9 (2)) nd 7, (< P.(3 )) are bounded in precisely the

same way as ]-'[(;8, }'[(Jfg;, and ]-'[(;g in (8.46), (8.50) and respectively (8.51). To avoid redundancy, we
omit these details.

Proof of (8.21c). Again, the proof is similar to that of (8.21a), except that in (8.26a) and (8.26b) we
have much fewer terms. We need to be slightly careful here, as the 07H evolution is tested with k307 H,
rather than just 07H, and we need to ensure that our damping bounds are independent of «! The reason
this is achieved is as follows. For the terms which contain a D"*H, such as the first two terms in (8.26a),
there is no issue as each of the two powers of g are paired with an || ;... An issue may arise in terms
which contain D™U, such as the last two terms in (8.26a). The important thing to notice here is that each
such term is paired With HV?—[HLOO As opposed to VP, which satisfies [VP|| ;. ~ Le™2, by (8.13) we

have that |[VH| < e3e 2. This additional factor of 3 is able to absorb all the stray powers of kg. A

similar argument apphes to the terms in (8.26b), showing that the resulting bounds are independent of .

(m)

The contribution from F,, ™ is estimated in precisely the same way as the one from 7, (m) in (8.31), while

Ui (1)
the contribution of .7:7(_[<m), is bounded in precisely the same way as ]-"(UQ(?) in (8.46). To avoid redundancy,
we omit further details. [
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8.3 The F,, energy estimate
We now turn to the main energy estimate for the differentiated system (8.18).

Proposition 8.4 (H ™ estimate for U, P, and H). For any integer m satisfying
m =18, (8.52)
with 6 and A = \(m, §) as specified in Lemma 8.3, we have the estimate
B2 (s) < e 26750 B2 (50} + 3e* pyim—1 (1 - e*(Hcﬂ) (8.53)
forall s = sy = —loge.

Proof of Proposition 8.4. We fix a multi-index v € N3 with |y| = m, and consider the sum of the L?
inner-product of (8.18a) with 2271070 and the L2 inner-product of (8.18b) with 2A71H207 P and the L2
inner-product of (8.18¢) with 2k3A11107H. With the damping function D, defined in (8.19) and the transport

velocity Vy defined in (2.40c), using the fact that () is skew-symmetric and that (05 + Vi - V)H = 0, we
find that

%Wl JRB (1002 + #2(e7PPR + w3 |07HP)
+ Al (2D, —div V) (WU\? +HE P + K2 WH\?)
+ 8718, B3 A fw HE(VP)I(N - U )e20, P
+ 48, B\ JRS(WP)H?J(N U3 P + (P)2H2IE3 (U - N)
48, B\ fRS HP (5IN- W) (EP) + €530 (N- 0 (@P) )
+ 48,81 ng HP (eH@0)A(P) + ¢ H(@P),(0,)
=2\ | (7o) v+ W2 P+ k3F ) (8.54)
We note that in the last two integrals on the left-hand side of the identity (8.54) we may integrate by parts:
45, g\ JRS WP (5IN- V) (EP) + eh 10 (N- 0 (@P) )
+ 48, B3\ fR H2P (e_%(mUy)&y(mP) + e—%<m7>>ay(mw))
= —483, 83\ ng 301 (H*P) J(N- U)(0"P)
— 4B Bz A\ § e”20, (H*P) (37U,)(0"P)

where we have used that d1J = 0. Therefore, upon rearranging, the energy equality (8.54) becomes

d \x
7] YT |2 2197 p|? 215722
ds)\ J}Ri% (\5 Ul” + H*|0"P|” + ki |0"H]| )

57



Buckmaster, Shkoller, Vicol Formation of points shocks for 3D Euler

LA ng (2D, —divVy) (|00 + H2 (VPP + i3 VM)

+ 8918, BN L@ H2EPYIN - U )e3 01 P

+ 4B, s\ JRS(WP)Q%QJeSal(U “N) = 2(YPYHI(N - U)e2 POy H — (7U,)("P)e” 20, (H>P)
= 2\ JRB (P v+ W2 P 4 k3F M) (8.55)

We shall next obtain a lower bound for the second thru fourth integrals on the right side of (8.55).
For the second integral, we recall (8.19), use (2.40c), and the bounds (4.11), (9.4), (9.5), (5.12) to obtain
the lower bound

2D, —divVy = [y = 3 + 271 + 271 — D(B-BuIarW + 01Gy) — d,hy;
>y = 54 291 — B2 — 1)4 —eTs . (8.56)
For the third integral, we note that by the definitions (2.38), (2.42b) and (2.42c)
QHVP = e 2VIW —VZ - LSVK (8.57)
and thus, from (4.11), (4.7), (4.12), (4.24), (5.12), the third integral on the left-hand side of (8.55) has an

integrand which is bounded as
8718 BsH2|(O7P)I(N - 07U )e2 01 P|
U + H? |ov PP

< 4v1 8, B3IHes |01 P)

< 271 B- B3| W — 20,7 — v_lSegalK‘
<2788 (1+2Mbe™)

< 291585 + €2 . (8.58)

Lastly, we compute 01 (U - N) from (2.38), 0, P from (8.57), and by using (4.11), (4.7), (4.12), (4.14), (4.24),
(5.12), (8.3), and (8.15), the integrand in the fourth integral on the left-hand side of (8.55) may be estimated
as

43753‘(87P)2H2Je§61(U N) — 2(@PYHI(N - V)3 POH — (97U, (7P)e 38, (H2P)|
U * + H2 |0vP)?

< 4885 (JeF|oa(U - N)| + JeB [PayH| + S~ e T3]0, (H2P)) )

< 46.83 (5 + Me™®)

<2885+ (8.59)

Combining the bounds (8.56), (8.58), and (8.59), with the energy equality (8.55), we arrive at

d : y
— f N(10U P+ H2|0PP + 63 [P + Dtotalj (|00 + 2 10PP + g | HP)

S JRr3 R3

<2l [ FD o+ HFED 0P+ s3F) A (8.60)

R3

where we have denoted

1 1
Dtotal = |fy, - % + 2’71 - 6751(2'71 - 1)+ —el6 — 2")/1ﬂT63 - QﬂTﬂ?) —2e2.
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The crucial observation here is that because 51 + 53 = 1 (cf. (2.18)), and appealing to (4.3), the damping
term D;oi41 has the lower bound

1 1
Diotal = |7 — 3 +271(1 — Br) —2B:83 — €16 — 262 >m — § (8.61)

for ¢ taken sufficiently small, in terms of « and m. Upon summing over |y| = m, the energy inequality and
(8.60) and the damping lower bound (8.61) thus yield

iE?n +(m—9)Er< > 2anl

o FQ oU+ HFD P+ k3F OH| . (8.62)

3
[v[=m R

We are left with estimating the right side of (8.62), which is the content of Lemma 8.3 above. By Lemma
8.3, for0 <6 < 5

32>
LE2(s)+ (m—6)E2(s) < (9+216)EZ + 3e *M*™ !,
and hence, by since m was taken sufficiently large in (8.52), we have that
4E2 +2E), <3¢ M
and so we obtain that

E2,(s) < e 26750 B2 (50) + 3¢~ M1 (1 _ e—(s—so)) ,

for all s = s¢p = — loge. This concludes the proof of Proposition 8.4. O

In conclusion of this section, we mention that Proposition 8.4 applied with so = — log e, in conjunction
with Lemma 8.2, yields the proof of Proposition 4.3.

Proof of Proposition 4.3. The initial datum assumption (3.23) together with the first bound in (8.5) implies
that
EZ%(—loge) < 2kie.

Thus, from (8.53) the second bound in (8.5) we obtain

- 2 2 2 2
e IWlikm + 1215m + [Alm + 1K 5w
< ANTTE2 (5) + 4e7 %
< 8REA e e L 12T Me T MAM T (1 — e e ) 4o
<

16K3A e e ™2 4 e MA™(1 — e te ™)

by taking M sufficiently slow. The inequalities (4.16a)—(4.16b) immediately follow. 0

9 Auxiliary lemmas and bounds on forcing functions

We begin by recording some useful bounds that will be used repetitively throughout the section.
Lemma 9.1. Fory € X(s) and for m = 0 we have
IV f] 4+ [V™(N = No)| + [V™(T" — Tg)|
+ VI =)+ [V = 1) s eMPe T g S ee B0 (9.1a)
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o o] < g
Moreover, we have the following estimates on 'V
M7 if [y =0
M%;%e_%s if ’fy| =landvy =1
’§7V| <X M25%67% if h/| =landvy; =0 9.2)
Micse™s if |y|=2and v =0
0 else

forally e X(s).

Proof of Lemma 9.1. The estimates (9.1a) follow directly from the definitions of f, N, T and J, together
with the bounds on ¢ given in (4.1a) and the inequality (4.5). Similarly, (9.1b) follows by using the qb
estimate in (4.1b). To obtain the bound (9.2), we recall that V' is defined in (2.32), employ the bounds on §
and Q given by (4.1b) and (4.2), and the fact that | R — Id | < 1 which follows from (4.1a) and the definition
of Rin (2.2) of [4]. ]

9.1 Transport estimates

Lemma 9.2 (Estimates for Gy, Gz, Gy, hw, hz and hy). For e > 0 sufficiently small, and y € X (s), we
have

Me™% + M2 |y e +¢5 [§], if |4| =0

M2 ify1 = 0and |5 =1
Gwl < ) 7 =Dand [l , 9.3)
Me™z, if v =1(1,0,0) or |[y| =2
M%G_s, ify= (2707())
eze,  if|y] =0
s s M25% lf’}/lz()and ":ﬂ:l
(G + (1= B)edro)| + |0(Gu + (1= Br)edno)| < ,
(Gt =Pt TG+ LB et iy~ (1,0,0)or [y = 2
Mze™s, ify = (2,0,0)
9.4)
e s, if 7] =0
e’ i =0and |7 =1
[0"hw | + |07 hz| +|7hy[ S 4 1 ,f% g ) . 95)
e s, if v =(1,0,0), or (|7 = 2 and |¥] = 1,2)
eI ify = (2,0,0)
Furthermore, for |7y| € {3,4} we have the lossy global estimates
0G| 5 e G, 9.6)
[0Thw| S e, 9.7)

forally e X(s).

Proof of Lemma 9.2. The bounds for the first three cases in (9.3) and (9.4) are the same as in Lemma 7.2 in
[4]. It remains to consider the case v = (2,0, 0). By (2.34), we have that

01Gw| + |6iGz| + |6iGuy| < e2 |67 Z

)
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so that an application of (4.12) provides the bounds for both (9.3) and (9.4).

For the estimates (9.5), the proof of the first three cases is given in Lemma 7.2 in [4]. For the case

v =(2,0,0), by (2.35), we have that

|03hw | + [0hz| + |03hy| < e 72 (

where we have applied (4.12) and (4.17) to attain the desired estimate.

9.2 Forcing estimates

Lemma 9.3 (Estimates on 07 Fyy, 07 Fz and 07 F4). Fory € X(s) we have the force bounds

e 3, if [v] =0
1
™15, ifyi=1and |y =0
|07 Fiy| + e |07Fy| < { e 5%, ifnn=0and |5 =1,

e Imm "1 ify > Land || = 2
5

e (5 4(2m77))3 if 1 = 0and |’7| =2

M2e™ %, lf|7| =0

07 Fa,| < { (M2 + M2 6)e ™, ify1 =Oand |§] =1 .
1
6

3

e mm=) 8 iy = 0and || =2

Moreover, we have the following higher order estimate at y = 0
~ 4
@ F)f| 5 G F" for ) =3,

and the bound on F’W given by

_1 .
n e, if |y[=0
_2 .
‘ﬁfyﬁW’ <M6% n fa lf 7:(17070)
N n3, if y=0and |3] =1
1

if =4 and |y <t

holds for all |y| < L.
Proof of Lemma 9.3. By the definition (2.36a) we have

|07 Fyw | < |07(ST40,A)| + €72 |07(A, TYN;)

+e72 [07(A,TYN;)
+e7 20" (Vi + NoU - N+ A TY) AL TING )| +e72 |07 (S (A TY,
+[e*07(JS?01K)| + |07 (N,S?0,K)|

Tw,y

22| +|2A)) < Mie ™ 4 e @ mms)

9.8)

9.9)

(9.10)

9.11)

+U -NN,,.))|

The bounds for the first five terms on the right side follow as in the proof of Lemma 7.3 in [4], and we have

that
e s, if [y] =0
1, _2[y[+1
eS8 3@m5) (y), ify =1and |y| = 1,2
O Fw| < [Ty + 4 €1 W o
M#e—3, ifyy =0and ¥ =1

e~ (1= zm=r)s if v = 0 and |5] = 2
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Invoking (3.4), (4.14), (4.20), (9.1a) and Lemma 4.5, we obtain that

18]
Twals Y, e (e

O (S20uK) | + 2|7 (52K

B<~, f1=0
(e 3, if |v|=0
e~ (7T + e 8%, if v = (1,0,0)
e 8 ify; = Oand |5 = 1
<) e_(l_ﬁt?)sn_% +e” %_ﬁ)s, ifyy=1and || =1
e~ (mmm=r)s 15 if v = (2,0,0)
e Gtann)s) ify = 0and |5] = 2

Using the same set of estimates we also obtain the lossy bound
|IW,7| < e 2

for || = 3, which we shall need later in order to prove (9.10), and
‘IW,7| <€ g

for |y| = 4 and |y| < ¢, which we shall need later in order to prove the last case of (9.11).

9.12)

(9.13)

(9.14)

(9.15)

Then, additionally using (4.5), we obtain the stated bounds claimed in (9.8) for ¢7 Fyy. Comparing
(2.36b) and (2.36a), we note that the estimates on 07 Fz claimed in (9.8) are completely analogous to the

estimates ones 07 Fyy up to a factor of e 2.
Now we consider the estimates on F4. By definition (2.36¢), we have that

|07 Fa,| < €72 ]07(STY0,S)| + e b

o (U NN+ 4, T) TY)

o (U NN+ 4,T7) T)

707 (Ve U NNy o+ ATR) (U NN+ AT T2+ e300 (82 T10,K)|

~

e

Applying the bounds for the first four terms on the right side from Lemma 7.3 of [4], we see that

Mze™, if |y =0
07 Fas] < [Taq] + { (M2 + M*p75)e™, ify1 = Oand |5 = 1 .
e_(l_%—ﬁsnfé, ifyy =0and |§] =2

Applying (3.4), (4.14), (4.20), and Lemma 4.5, we find that

e, if |[y[ =0
Zasls Y e | A(SPVE) < { MPe i, ify=0and [3] =1,
_ lyl=1
A<y, fr=0 e~ (2 2m=7)s ify1 =0and |y] =2

Thus, combining the above estimates, we obtain (9.9).
Again, using the same argument as in Lemma 7.3 in [4] for |y| = 3, and using (9.14) yields

[0 Fw)?] < (@) | + €73 g e ammne,
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and also for all |y| < L,

_1
ns(y), if [y[=0
1 3
~ 3t ms. if —1and |5 =0
|07 Fyw| < |Twal + Mes {7,  if 7 =land |3 (9.18)
ns, if v3=0and |y =1
1, if |y]=4 and |y| </

The estimate (9.17) verifies (9.10), while combining (9.18) with (4.5), (9.13) and (9.15) verifies (9.11). [
Corollary 9.4 (Estimates on the forcing terms). Assume that m > 18. Then, we have

2, if [y =0

e
e 5173, ify1 = land |5 =0
5 5
g24y 24, i =0and |7 =1
‘FIE{/Y)) < ] 7(2797 . ) f’Yl |7| (919)
ST )k, if oy = 2and |5] = 0
M3, if11=1and |5| =1
5 1
\M%n_(ﬂ_ZmJ), ifyn=0and |3 =2
(e*s, if v =0
MEeboy i, 0 = Land [5] = 0
’ FOl < e, ify1=0and |7 = 1 (9.20)
™% (M? + emmy %), ifify > Lland |y| =2
9 9
e (5_4(2m—7))57 lf’yl = 0 and H" =2
M3es, if v =0
FOI< (M2 + M2y 5)e™, ify =0and |5 = 1 9.21)
mEmFl s i =0and 3] =2
M?2e™3°, ify1=0and [5] = 1,2
Fl(g) < g%e_%sn_%, ifyy=1and |y =0,1 . 9.22)
5%6_%8')7_% %7 ify1 =2 and |’}/’ =0
Moreover, we have the following higher order estimate
‘ﬁV('VM <e @ T for |y =3 (9.23)
and the following estimates on NIE{,Y)
ﬁv(;)‘ < etin~3 fory = (1,0,0) and |y| < L (9.24)
’ﬁé‘j)‘ < b + g%(logM)W‘_1 for |y|=4and |y| < ?. (9.26)

Proof of Corollary 9.4. First we establish (9.19). Note that in this estimate || < 2, and thus by definition
(2.46) we have

B <10 Fwl+ Y (|07 Gwaid® W] + (0700, 0,07W]) + 1 Y, [ TPUW)2107 W]

0<B<y 181=P|-1
~~ g B<y,B1=m1

=T - _

=T
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We will first consider the case v # (2,0, 0), since the estimates are analogous to the estimates in the previous
paper. We have from Corollary 7.4 of [4], that
171

_1 _s 1 o1
|Il| < M’I7 3 (6 2 + 53(1|V|:2 + 1|7|:|’7|:1)> and |IQ| < 1|’Y|:2M 31 3.

Thus combining these estimates with (9.8), we obtain that

e 3 if |y| =0
e~y 5, if v = (1,0,0)
’FV(J)‘ <My 5e™5 4+ { e85 + Mesns, ifyy =0and |§|=1. (9.27)
e 0= za=r)%y=15 4 (Mes + M3)y~5, ify = land |5] =1
e (7% 4 (Mes + M3y, ify1 =0and |¥| =2

Then applying (4.5) we obtain (9.19) for all cases except v = (2,0,0).
For the special case v = (2,0, 0), we have from (4.5), (4.6) (with ¢ = 2), (4.7), (9.3) and (9.5)

3

Ty < M2e 3 + Mie an 5epi + e G 5 s)® 4 Mie oy 2(y) < Mie 2y a4,

From (9.8) and (4.6) (with ¢ = 2 1=2™) we have that

4 —(2___8 __
|0 Fy| < 6_(1_m)5n—% < d;in (%o 3(2m77)).

Thus since Zp = 0 for v = (2,0, 0), we obtain (9.8) for this case.
Similarly, for |y| < 2, from (2.47) we have that

‘Féw‘ <lOFs+ Y, (|07PG200° 2| + |0 00,072 )

0<B<y
+ 1| ZOTUW)[+ Y|P UW) 0’2
181=I71-1
B<Y,81=m
= |0"Fz| + T1 4 15)=2|01 Z0" (JW)| + I . (9.28)

Utilizing the bounds obtained in Corollary 7.4 of [4], we have that

6,267 (JW)| < Mze5° (Mn’élwzo + M1, o + ee*%) for |y = 2,

Ty Se2® (MQe_% + M35%1|7|>1 + Msén_%) for |y| <2,
Ty < (L1 + 1o ) 73 for [yl =2, 4> 1.
Using (4.5), we have
|01207(IW)| < M2e_%sn_% for |y| = 2,

< ag—3s 1 1 i
Iy < Me 2°n7s +e21j559e 2% for [y < 2.
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Thus combining the above estimates with (4.5) and (9.8), we obtain that

67%, if [y[=0
6_87]71715, lf’Y = (17070)
[F| < MPemion 8 o8 Jemi g Me ify1 = O0and 7] =1
e (1= mm=r)s) =% 4 M3e=s, ify; >1land |y| = 2
1-28
e*@*m)s + ]\4(5%(3737 lf")/l = 0and ‘;Y| =2

\

The bounds for |F£17)| are obtained in the identical fashion as the bounds for (7.20) in [4].
To prove the |FI(<7 )‘ estimate for |y| < 2, from (2.47), we have that

| 3 (|07 Cuad K|+ 0 o, K) + 1l KOOW) + Y |00 (w)ad K|
0<B<~ |Bl=]v|-1
B<v,B1=m

= T1 + 1|0 L KT (JW)| + Ty . (9.29)
Let us further split Z; as

I = Y| PGuad’Kl+ ) |07 Phl0,0°K] .
0<B<y 0<B<y

J

' '
Iia I1,2

Estimating Z; 1, using (4.14) and (9.4), we have that

2 |01 K], ifyy=0and |[¥] =1

e 3 |0 K| + 3 [Va K| ify = 0and || =2
1T < M%S e73 |0\ K]|, if v = (1,0,0)

e (|01 K|+ |[VOK|) +e7 |BK]|, ifyi=1and |y| =1

e~ |0 K| + e 3 |03K] if 1 = 2and || =0

e™3%, ify; =0and |5 = 1,2

< 2s
)

~

ifyp =1and |5/ =0,1.

5
§S

o
e 2% ifyp=2and |y =0
Similarly, estimating Z; 2, using (4.14) and (9.5), we have that

-

e *|VK], ifyy =0and |¥] =1
e (78 |VK| + |[V2K|), ify; = Oand |3| = 2
Tia| < 4 e ™0 5 |VE], if v = (1,0,0)

e (n 2 (VK] + [V2K]) + [VaIK])), ify = 1and y] =1
e=3(e” ") |VK| 4776 VA K]), ify =2and || =0

38 ify; = 0and |y = 1,2
3973, ify; = 1and |§| = 0,1 .
“G=3m=5)% if~y; = 2and |4 = 0

e , ify1 =2and ||
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For 1),_5|01 K07 (JW)|, using (4.7) and (4.14) yields

e 3", ify1 =0and |y =2
01O (IW)| < § Micte s ™5, ify = 1land 5] =1
Misie 3% 31, ify =2and |5 =0
Next, for 7y, we have that
e"2%, ify =Oand |y =1
|To] << e 2, ifyy=1and |5 =1
0, otherwise
Thus combining the above estimates, we attain
M2e 2%, ify; = 0and 5] = 1,2
’Fj(g) < €§6_%S77_%, ifypy =1and |§ =0,1,
556735777%@&%, ifypy =2and |y =0
where we used (4.6) (with ¢ = %g:g%).

The proof of the bounds (9.23)—(9.26) is exactly the same as the proof of (7.21)—(7.24) in [4], with the
caveat that we have changed the exponent of 7 in (9.24) which reflects the change in exponent of 7 in the
estimate (9.11) for v = (1,0, 0) relative to the corresponding estimate in our previous paper. O

10 Closure of L* based bootstrap for 7, A, and K

Having established bounds on trajectories as well as on the vorticity, we now improve the bootstrap assump-
tions for 07Z and 07 A stated in (4.12) and (4.13). We shall obtain estimates for 072 o ®%° and 07 A o ®}?
which are weighted by an appropriate exponential factor e/*.

From (2.45b) we obtain that e#%07 Z is a solution of

0s(e" 0 Z) + DS (P07 Z) + (Vy - V) (!0 Z) = et F
where the damping function is given by
D(ZW‘) =+ 737”%2”3 + BafBrn LW .

Upon composing with the flow of V7, from Gronwall’s inequality it follows that

S
e’ |V Z 0 DY (s)| < e 10" Z(yo, — loge)| exp <—j Dgy’“) o % (s) ds’)
—loge

$ !
+ j et®
—loge

Similarly, from (2.45c) we have that e#*0” A and e**0” K are solutions of

FY ool (s))

exp <—f Dg’“) o &P (s") ds”> ds'. (10.1)

05(e"K) + DM (e K) + (Vy - V) (e"0VK) = et FY)

where
ng“) = —p+ w + B1Brda W,
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and hence, again by Gronwall’s inequality, we have that

e |0VK o B (s)] < = |67 K (yo, — log )| exp (‘ f DI o o (s) d5'>
—loge

s /
+ f et?
—loge

For each choice of v € N3 present in (4.12) and (4.13), we shall require that the exponential factor y satisfies

F o o (s))

exp <—f DI o ¥ (s") ds”> ds'.  (10.2)

po Sntet (10.3)

)

which, in turn, shows that
DY < 28y [ W] (10.4)

For the last inequality, we have used the bound |3;J| < 2, which follows from (4.3) and (9.1a). Combining
(10.3), (10.4), and (5.9), for s > s’ > —log ¢, we find that

exp (—f D(Z'y’“) o % (s) ds’) < exp ((M - 737”;%73) (s — s')) <1. (10.5)

/

Replacing (2 with 51 in (10.4), we similarly obtain that for s > s’ > —loge,

exp <—f Dg’“) 0 ®Y(s) ds’) <1. (10.6)

Then as a consequence of (10.1), (10.3), (10.5) and (10.6),

' |07Z 0 @ (s)| < €707 Z(yo, —loge)

§ /
+ J ets
—loge

e VK 0 P (s)| < e |07 K (yo, —loge)|

s /
+ f et®
—loge

S
et |07 Z 0 P (s)] < e " |07 Z(yo, — loge)| + J ks’
—loge

Fy) o @ (s))

exp ((,u - %) (s — s’)) ds'  (10.7)

F o @ (s))

exp ((,u — W) (s — 5')) ds'"  (10.8)
and

FY) o d%(s)| ds' | (10.9)

FO o @ ()| ds' . (10.10)

S
I 0 B (5)] < 0K (o, loge) + |
—loge

10.1 Estimates on /

For convenience of notation, in this section we set ® = ®%°. We start with the case v = 0, for which we set
1 = 0. Then, the first line of (9.20) combined with (10.9) and our initial datum assumption (3.18) show that

S
]Zo@(s)\SZ(yo,—loge)\—i—f e ds <e.
—loge

This improves the bootstrap assumption (4.12) for v = 0, upon taking M to be sufficiently large to absorb
the implicit universal constant in the above inequality.
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For the case v = (1,0,0), we set y = % so that (10.3) is verified, and hence from (3.18), the second
case in (9.20), and (10.9), we find that

Féy) o P (s")| ds’

P P S 3
e2°(01Z 0 ®(s)| < &2 |01 Z(yo, — loge)] +J e
—loge

s _ L
<1+ MQJ (1 + \cbl(s’)yz) ?ds'
—loge

1

S —
<1+ E?»IOMQJ e (1+[@y(s)[7) © as'.
—loge

2

Now, applying (5.8) with o7 = % and 02 = 73, we deduce that by taking ¢ sufficiently small,

Me3* |01 Z o d(s)| < 1, (10.11)

which improves the bootstrap assumption (4.12) for M taken sufficiently large.
For the case that v; = 1 and |J| = 1, we set = 3, so that

e B
We deduce from (10.7), the fourth case in (9.20), the initial datum assumption (3.18), and Lemma 5.4 with
o1 = 2725_7, m > 18, and 09 = %, that

35 3 ’ 1 S P T Nt W

e2® |V Z o ®(s)| < e 2|07 Z(yo, —loge)| + M2+ Me2m=7e2m-7 (1 +[@1(s)| > e 2 ds
—loge

<14 M7+ Memn7 < M3, (10.12)

This improves the bootstrap stated in (4.12) by using the factor M 2 to absorb the implicit constant in the
above inequality.

We are left to consider ~ for which vy = 0 and 1 < |y| < 2. For |y| = || = 1, setting 11 = 3 (which
satisfies (10.3)) we obtain from (10.9), the forcing bound (9.20), and the initial datum assumption (3.18)
that

S | 1, ~ 1 $ / 1
€2 |[VZo®(s)| e 2 |VZ(yo, —loge)| + M2 J e ®ds Se?. (10.13)
—loge

Finally, for |y| = |¥| = 2 we set u = 1. As a consequence of (9.20), (3.18), and (10.9), we obtain

1 3

S
e*|V2Z 0 ®(s)| < e 1| V?Z(yo, — loge)| + J e Gmm7)%gs <1, (10.14)
—loge
Together, the estimates (10.11)-(10.14) improve the bootstrap bound (4.12) by taking M sufficiently large.

10.2 Estimates on K
We shall now set ® = ®¥°. For the case v = (1,0,0), we set u = % so that (10.3) is verified, and hence
from (3.20), the second case in (9.22), and (10.10), we find that

FI(;/)(S/) ds'

e |01K o ®(s)| < g3 101K (yo, —loge)] —i—f ez
—loge
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s 1
sgé—kgéj‘ (1‘1'"1)1(8/)}2) 6 d$l7
—loge

so that applying (5.8) with o0y = O and o2 = %, and taking e sufficiently small, we deduce that

N

3 |0 K o ®(s)| <et, (10.15)

which improves the second bootstrap assumption in (4.14).
Next, we study the case that y; = 0 and 1 < |§| < 2. For |y| = || = 1, setting p = % (which satisfies
(10.3)) we obtain from (10.10), the forcing bound (9.22), and the initial datum assumption (3.20) that

e3 |VK o ®(s)| < e72 [VK (yo, — loge)| + M? J e ds' S et (10.16)
—loge

For |y| = |¥| = 2 we set u = 1. As a consequence of (9.22), (3.20), and (10.10), we obtain

5/

S 3
e* V2K o ®(s)| < e |V2K (yo, — loge)| + M2f e~ 7 ds <et, (10.17)
—loge

For |v1| = |§] = 1 we set u = % so that (10.3) is verified. From (9.22), (3.20), and (10.8), we apply (5.8)
with o1 = i and o9 = % to obtain that

S,

- - - hd s _l
JRER 01V E 0 0(s)| < - |01V K (3o, — log )] +géf e% (1 + \<I>1(s’)]2> 5 ds
—loge

<e % |01 VK (yo, —loge)| + ei f et (1+ |<I>1(s')’)_§ ds'

—loge

N
oo|w
NI
ol

€8 461 <e¢ (10.18)
We next consider the case that v = (2,0, 0). From (2.45d), we have that
050K + (3 + BiBIAW)oNK + (Vy - V)oK = F&0,
and hence
05(e® 5011 K) + DL (0T onK) + Vy - V(ePnisonK) = 2yt FEO)
where

DR — 44 i8I W + St =t (3 (Bi8IW + Gu) + 3hgw 1)

Composing with ®, we find that

e2s77rls(911K(s)’ < ’57277%811K(—10g5)’exp <—J Dg0,0) o B(s) d5/>
50

+ j exp (—f Dg,o,o) o ®(s") ds”) ds’ .
S0 s/

Thanks to (5.16) and (11.8), we have that

exp <—J Dg,o,o) o ®(s) ds’) <1,
50

62877%5 Fé270’0) o (b(s/)
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and thus using the third case in (9.22), and the initial datum assumption (3.20), it follows that

ool

7]115628|811KO<I>(5)|$5411+5J esn(D(s)) Y1 (D(s)),s) ds’. (10.19)
loge

Now by definition of the weight 1), we have that

od

N
N

s 4 s 31 1
e?n_ﬁqp ( 27760 + e 477 GO)O(I)
1

M\v D

3 34
(Toi)—}—gﬁOQ 10°

2/\

S
€2

7]
(1-+10]) 75 + et

where we used (4.5) for the second inequality. It follows that

f esn(®(s)) BYI(D(s)),s) ds’ < f (€7 (1+[®))" 5 +ewe 1) ds' <1,
loge

—loge

1 3 19 .
where we have used the fact that SS_ log e coe 105 ds < eo0 as well as (5.8) with 07 = 12 and 09 = %.

Hence,

o=

n%e* oK o ®(s)| < e

which improves the fourth bootstrap assumption stated in (4.14).

10.3 Estimates on A

We can now close the bootstrap bounds (4.13) for 07 A. The bounds for the case thaty; = O and |§| = 0,1, 2
follow the same argument as given in (10.14) in [4], whereas the estimate for 0; A makes used of estimates
for the vorticity.

Lemma 10.1 (Relating A and 2). With the self-similar specific vorticity () given by (2.44),
3s _K 1 3 142 E E
e$1014y = (ae™ES)FQ TP 4 472 (W + €30, 2) — e3N, 0,4,
—1 (/{ e W+ Z) (curly N) - T3 — Ay(curly T2) - T3 (10.20a)
eF 10145 = —(ae™F8)7Q -T2+ 4T3 (0, + €30,7) — €3N, 0,45
+1 (l-@ Le W4 Z) (curly N - T2 — Ag(curly T3) - T2, (10.20b)

Propositions 4.6 and 6.1, together with the estimates (4.7), (4.12), (4.13), (4.5) and (9.1a), and Lemma 10.1
show that

1 1 1 1 1

1
e? 1014, S kGem + (1+e2M2) + (kg +¢e6 + Me)+ Me < M1, (10.21)

1
for M taken sufficiently large with respect to ' Cig . a-

Proof of Lemma 10.1. We note that for the velocity 7 and with respect to the orthonormal basis (N, T2, T3)
we have that

curly u = (é’Tsu N — onu - T3) (&’Tzu N — ont - T2) T3 + (aqufL T3 — Opsdt - T2) N .
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Now, from the definitions (2.5), (2.11), (2.17), (2.24), (2.31d), (2.37¢), and (2.44), we have that
(e 5 S) P (y, )0y, ) = (ae 56 (x, 1)) ¢, 8) = P, C(F, 1) = B(F, 1) = curly A3, £) = curly i, 1),
In particular,
(ae*§5)1/°‘(y, $)Qy, s) = curlz u(z,t) = curly (u(%l — f(é,t),%g,%g,t)) : (10.22)
We only establish the formula for ¢; As, as the one for d; As is obtained identically. To this end, we write
curly i - T2 = T30 d(x, t) - N — Njog, i(w, ) - T2
By the chain-rule and the fact that N is orthogonal to T2, we have that
Oz, 0(x, 1) T3 = 00y 0TS — fr 0ny 0Ty + O, 0Ty = IN- T?0p, 0 + 0y, 0T}, = Oy, t(x, 1) T .
The important fact to notice here is that no x; derivatives of @ remain. Similarly,
Oz; (2, t)Nj = 0y N1 — f,) 02y Ny, + Oz, Ny = IN - N0y, @i + 0, Ny, = JOz % + Oz, u(z, )N, .
Hence, it follows that
curl; @ - T?
= T30, u(z,t) - N — 30, (i - T%) — N0, t(z, t) - T
= T30,, (W(x,t) - N) — J0y, a3 — Nyoy, (i(w,t) - T) — iz, 1) - Op, N To + iz, 8) - 05, TN,

= 3T30,, (w+ 2) — J0s,a3 — Nyog a3 + (5(w + 2)N +a, T”) - (ONT> — 073N) (10.23)
where we have used (2.28), (2.27), and (7.3). The identities (10.22) and (10.23) and the definition of the
self-similar transformation in (2.30) and (2.31) yield the desired formula for 01 As. O

11 Closure of L* based bootstrap for 11/

The goal of this section is to close the bootstrap assumptions which involve W, W and their derivatives,
stated in (4.7) and (4.8a)—(4.10).

11.1 Estimates for "W (y, s) for |y| < ¢

The estimates in this section closely mirror those given in Section 11.1 of [4], as such will we simply
summarize the argument.

11.1.1 The fourth derivative
Composing with the flow ®¥(s), we have that for || = 4 that

4 (mv”v o @%3) + (D%) o c1>€3) (mW o q>€3> P ooy,
where

D%) = el g (W + W) =1, (11.1)
which is a consequence of (4.3) and (4.11). Then as a consequence of (9.26), (11.1), and (3.14) and the
Gronwall inequality we have that for all |yo| < ¢ and all s > — log ¢ such that |®%(s)| < ¢ the following

estimate

‘87W0®€8 < &b 4 e10 (log M)ML (11.2)

Hence the bootstrap assumption (4.9b) closes assuming the ¢ is chosen sufficiently small relative to M.
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11.1.2  Estimates for 071V with |v| < 3and |y| </

We first consider the estimate on (871’/17)0 for |y| = 3. Evaluating (2.51) at y = 0 and applying (4.9b),
(4.10), (12.17), (9.23), and (4.3) yields the estimate

1 1 1

GS(WW)O‘ <e @mm)s 4 M(log M)*etoe*" 07 4 MeTe™® < e (27 mm7)5 (11.3)

Using the initial datum assumption (3.15) and integrating in time, we may show
\mv“v(o, s)] < Led (11.4)

for all |y| < 3, and all s > — log¢, closing the bootstrap bound (4.10).
The bootstraps (4.9a) corresponding to 0 < |y| < ¢, then follow as a consequence of constraints (2.53)
which imply
W(0,s) = VIW(0,s) = V2IW(0,s) = 0,

together with the estimates (4.9b), (11.4), and the fundamental theorem of calculus, integrating from y = 0.
Note that the bootstraps (4.8a), (4.8b) and (4.8c), for the case |y| < ¢, follows as a consequence of
(4.9a), assuming ¢ is sufficiently small.

11.2 A framework for weighted estimates

Let us briefly recall the framework for weighted estimates introduced in Section 11.2 of [4]. For brevity will
drop some intermediary calculations. Suppose some quantity R, satisfies an evolution equation of the form

OsR+Dr R+ Vw VR =Fg. (11.5)

Weighting R by n*,
q:=n"R,

then ¢ satisfies the evolution equation

dsq+ (Dr —n "Vw - V") ¢+ Vw - Vg = n'Fr . (11.6)
. ~ \/—J
=:Dy =Fy

where D, may be expanded as

qul%g—3u+ﬁﬂm_1—2un_1QMQ%JW’+CﬁV)+3h%yV@ﬁ>.. (11.7)

=Dy

As a consequence of (4.7), (4.5), (9.1b), (4.3), (9.3), and (9.5) we have for all s > —loge

D, <575 + €73, (11.8)

assuming ¢ to be sufficiently small in order to absorb powers of M.

Using the evolution equation (11.6), composing with the trajectories ®} (s) such that %> (sg) = yo for
some sg > — log e with |yg| = ¢ and applying Gronwall’s inequality yields

g0 B (5)] < la(yo)| exp (—j Dy o B(s) ds’)
S0
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S S
+ J |Fy o @9 (s")| exp (— J Dy o ®%(s") ds”) ds’. (11.9)
S0 s’

For the special case ¢ < |yo| < £, we may may apply (11.8), (5.4), and the inequality 2(y) = 1 + |y|*
to conclude

S
QMJ Dy 0 @ (s")| ds’ < 70log 7, (11.10)
S0
for all |;1| < %. Consequently, the estimates (11.9) and (11.10) yield

g0 ®%(s)] < 7™ q(yo)| exp <f (3u—Dr —3un") o <I>€3(8’)6£8’>

S0

s s’

S S
+ f_mf |Fy o @ (s")| exp (J (3w — Dr — 3,u77_1) o @%(s")ds”) ds'. (11.11)
0
We will need to consider two scenarios for the initial trajectory: either sy > —loge and |yg| = 0 or
sp = —loge and |yg| = ¢. We note that as long as |yo| = ¢, then |®¥(s)| = ¢ forall s > sy as a
consequence of Lemma 5.2 .
Now consider the case |yo| = L. In place of (11.10) for the case ¢ < |yo| < L, we have the stronger
estimate

L

S
2,4 Dy 0 W (s)| ds’ < g5, (11.12)
S0

for s > —loge, and |u| < 3. Hence (11.9) and (11.12) yield

1 S
g0 2 (s)] < ™ [q(yo)| exp ( [ @ Dr =307 o @%(s’)ds/)

S0

1 s
+e’t f |Fy o @9 (s")| exp (J
50

S
8/

(3u—Dr —3un~") o @%@)(s”)ds”> ds'. (11.13)

11.3 Estimates of W(y, s), oW (y, s) and Vf/lv/(y, s)forl < |yl < L

The estimates of W(y, S), 611717(3/, s) and ?W(y, s) for £ < |y| < £ mimic those given in Section 11.3 -
11.4in [4]. As such, we prove only an abridged summary of the arguments.
In order to close the bootstrap bound (4.8a) on W (y,s) for |y| = ¢, we will use the framework in

Section 11.2 with R = W, W= —%. With these choices, the weighted quantity ¢ = n_éf/lvf, the quantity
3u — Dr — 3un~! present in (11.11) is —3,JO1 W + %77*1 and Fj, = n_%ﬁw.
Applying (4.3), (9.1a), (5.4) and (4.7), we have

S
f Br[Jo1W| 0 @9 (s") + 307! 0 @ (s') ds’ < 40log £ (11.14)
50
forall s > sg = —loge. The estimate (5.4) and (9.11) yield the forcing estimate

1

S
J n_%FW o ®Y(s") ds’ < &5 log + (11.15)
S0

forall s > sy = —loge, and ¢ € (0,1/10].
Combining the bounds (11.14) and (11.15) into (11.11), and using the initial data assumption (3.13a) if
so = — loge, or alternatively (4.9a) if sy > — log e, we obtain

H"_‘

() [Ty, s)] < e (11.16)
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forall / < |y| < £ and all s > — loge. Where we have employed small powers of € to absorb all the ¢ and
M factors. The above estimate (11.16) closes the bootstrap (ALSa).

We now aim to close the bootstrap bound (4.8b) on 01 W (y, s) for £ <
set R = o1W, o= % and hence ¢ = 77%6117/. By (2.51) with v = (1,
—B. (W + &, W), and F, = 3 E 300,

Similar to the estimate (11.14)), we may bound the the contributions to (11.11) due to the damping term
3u — Dr by

ly] < L. For this case, we
0,0), we have 3y — Dr =

S
J By [J(@1W + 0, W)| 0 ®%(s') ds’ < 80log L. (11.17)

S0

The contribution due to the forcing F, = n% N‘E&’O’O) is bounded using (5.4) and (9.24) in order to attain

S
f |yl 0 @Y (s') ds’ < e11 log L. (11.18)
S0

Inserting (11.17) and (11.18) into (11.11), and using our initial datum assumption (3.13b) when sg =
—log e, respectively (4.9b) for sy > — log e, yields

L

s (y) ‘alVNV(y, S)’ < etz (11.19)

forall ¢ < |y| < £ and all s > — loge, where we again have used small powers of ¢ to absorb all the £ and
M factors. The above estimate closes the bootstrap (4.8b).
Finally, we aim to close the bootstrap (4.8c) on vf/[v/(y, s) for |y| = . We set R = VIW and pu = 0, so
that ¢ = VIV. From (2.51) with v € {(0, 1,0), (0,0, 1)}, we have 3y — D = —3,J6,W and F, = F\\1).
The integral of the damping term arising in (11.11) is bounded using (11.14) by 40 log ¢~!. The contri-
bution due to the forcing Fy, is bounded using (5.4) and (9.25) in order to attain

S
F,| o ®¥(s')ds' < e log . (11.20)
q A
S0

Inserting (11.14) and (11.20) into (11.11), and using our initial datum assumption (3.13c) and (4.9b), we
arrive at

1

vmy,s>) < e (11.21)

forall ¢ < |y| < £ and all s > — log e, thereby closing the bootstrap bound (4.8c). We also note that the
bootstrap bound (4.7) for the cases that |y| = 0,1 and ¢ < |y| < L follow as a consequence of (4.8) together
with the W bound (2.48) in [4].

11.4 Estimate for "W (y, s) with |y| = 2 for |y| > ¢

We now consider the case || = 2, and establish the third and fifth bounds of (4.7). Unlike the bounds given
in Section 11.6 of [4], the bound for 0;; W makes use of two weight functions, and requires a new type of
analysis. As such, we now consider the case that v; = 2 and |§| = 0. We have that

ds(nion W) + Dy (3 o W) + Vi - V(nion W) = ni FZ00

—=(2,0,0 _ _ v -
Rl R P (yl(BTJW + Gw) + 3hiyy \yl4> :

=Dy,
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from which it follows that

(7731/} 4811W) + D(QOO)(Uéib_%anW) +Vw - (773¢ 4011W) = 7731/1_ZF (200)
where
DY = § 4t = 3Dy = §em 0Tt 30T e = Vi + 30l (e -0V
:%Jrn—l_%D %73% 1_ wqyl%y\
3T (e = n) (W (BIW + Gw) + 31/ gl )
—Dy, ’

and therefore

Uéwﬁﬁuw o ‘1’%19(8)‘ <

77%1#7&&11[/1/(3/0)’ exp (—f DI(/IZ/[)’O) o (Dg((/) (S,) ds/)
80

S S
+ J n%w_iFé‘g’o’o) o ®¥ (") exp <— J Dl(f/’o’o) o d¥(s") ds”) ds .
S0 s’

(11.22)
Since 1)~! < 7, we then have that
Mlyf;—f?'ﬁ <.
Moreover, using (4.5), we see that
eyl < e < 40¢
and thus, we have that
8 By IR eyt o, (1123)

Again, since 1y ~! < ), then (4.5) yields
[ (e =) < g
Therefore, we see from the definition (11.7) of |D,)|, that | Dy | < % |D,|. It follows from (11.10) that
S S
f (3D, + §Dy) 0 P ()| ds’ < ;ff |Dyy 0 @ (s')| ds’ < 1401og 7 , (11.24)
S0 S0
for all |yp| = ¢. By (11.23) and (11.24), we see that (11.22) is bounded as

n%cb‘ianWo@%(s)‘ <o nay i FE00 0 % (s)|ds’. (11.25)

n%zb‘i@nW(yo)‘ + fMOJ

S0

(2,0,0)

With the estimate (9.19) for F;,"", we obtain that

34 8 1
ns iF 200)‘ <5 20T5ET <0

Hence, following (11.12), we see that for |yg| = ¢,

JS |
50

w _——
ds’ gj (1+£26§(5/,30)> 10 ds’gfé.

S0

U EEOY o alp ()
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By appealing to our initial datum assumption (3.17b) if sg = — loge, and to (4.9a) when s > —loge, the
bound (11.25) shows that

N3~ 101 W 0 B (s)| < 07141 < Mt (11.26)

By choosing first M sufficiently large, the bootstrap assumption (4.7) is then improved by (11.26).

It remains to consider the case |y| = 2 and || = 1, 2. The arguments will mimic those given in Section
11.6 of [4], and as such, we provide an abridged version of those arguments. For the case |§| = 1 and
v =1, weset u= %, whereas, for the case |§| = 2 and y; = 0, we set u = %. Consequently, the damping

term 3p — Dg present in (11.11) is given by

O e e M U
Let us first restrict to the case y; = 0 and |§| = 2. Analogous to (11.14), we have
js Br [JO1W | o @ (s') ds’ < 40 log% (11.28)
S0
and analogously to (11.15), applying (9.19), we have
f s FSP | o @%(s') ds' < M5 log 3. (11.29)
80

Substituting the bounds (11.28) and (11.29) into (11.11), and utilizing our initial datum assumption (3.17c)
when sgp = —loge, and to (4.9a) when s > — log e, we deduce

1 S 110 1 - 5
07 (y) [V2W (y, 5)| < €715 (y0) [V2W (g0, s0)| + M e 70 log
< % M
where we have assumed that M is sufficiently large, used our choice £ = (log M)~ and assumed ¢ is
sufficiently small relative to M. Thus we close the bootstrap (4.7) for the case y; = 0 and || = 2.

We now turn our attention to the case || = 1, with 43 = 1. Applying (11.27) and (11.28), yields the
damping bound

S g
exp ( J (3u — D o (")) ds”> <1067z (11.30)
S/
forany s > s’ > sg > —loge. Substituting (11.30), together with the forcing estimate (9.19) into (11.11),
and appealing to our initial datum assumption (3.17a) if sg = —loge, and to (4.9a) when s > —loge, we
deduce
75 () |0 (y, )| < M (11.31)

where we have assumed that M is sufficiently large, used our choice ¢ = (log M)~ and assumed ¢ is
sufficiently small relative to M. Thus we close the bootstrap (4.7) for the case |§| = 1, with y; = 1.
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11.5 Estimate of W (y, s), ,W (y, s) and VIV (y, s) for |y| = L

The estimates of W (y,s), d1W (y, s) and VW (y, s) for |y| > L are nearly identical to those given in
Section 11.7, 11.8 and 11.9 of [4]. As such, we prove only an abridged summary of the arguments.

Consider first the estimate on W (y, s). We set u = —é and R = W, so that ¢ = n‘éw. We have

3u—Dgr —3un~t =30, and F, = n~ s (Fy — e~ 2 B,f). The contribution of the damping in (11.13)

gives us

Wi

S
f %77_1 o ®W(s)ds' < LT3 = ETlﬁ,

S0

and we have from (9.8) and (4.1b) the forcing bound
s 1
J |Fyo®%|(s')ds' < ez.
50
Substituting the above two estimates into (11.13), we obtain
’n_éW o dW(s)| <1+ £15 7

where for the case s > — loge, we used (4.8a) and W bound (2.48) in [4], and for the case s = —loge,
we use the initial data assumption (3.16a). Thus we close the bootstrap bound in the first line of (4.7).

For the case 01 W (y, s) we set ¢ = n%alw, so that 3 — D — 3un~' < —B,J01 W and Fqn%Fé‘}’o’O).
Applying (4.7), and Lemma 5.2, yields

S
J (3u— Dgr — 3,u77_1) o d¥ (s")ds' < £ . (11.32)
50

As a consequence of (9.19) and the fact that |yo| = £, we obtain
S
f |Fy o @0 (s')|ds” < gl
50

Substituting the above two estimates into (11.13), we obtain

n%all/[/oq)a?(s)‘ < %

where for the case sy > — log &, we used (4.8b) and the W bound (2.48) in [4], and for the case so = — log e,
we use the initial data assumption (3.16b). Thus we close the bootstrap bound in the second line of (4.7).

Finally, we consider the estimate of VIV (y, s) for |y| = £. We set 4 = 0 and ¢ = VIW. The damping

term is 3u — Dg — 3un~! = —3,;J0,W and so we may reuse the estimate (11.32). The forcing term F,

may be bounded directly using the third case in (9.19), which yields
S
J |[Fyo @ (s')|ds’ < €s .
50
We deduce from (11.13) that
‘vW o @%8(8)‘ < % .

where for the case sy > — log ¢, we used (4.8¢c) and the W bound (2.48) in [4], and for the case so = — loge,
we use the initial data assumption (3.16c). Thus we close the bootstrap bound in the second line of (4.7).
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12 Constraints and evolution of modulation variables

12.1 Solving for the dynamic modulation parameters

In Section (2.7) we have used the evolution equations for W, VW and V2W at y = 0 to derive implicit
equations for the time derivatives our modulation parameters. The goal of this subsection is to show that
these implicit equations are indeed solvable with the initial conditions (2.54). For this purpose it convenient
to introduce the notation

Po(bl,...,bn’cl,...,cn) and Ro(bl,...,bn’cl,...,cn)

to denote a linear function in the parameters cy, . . ., ¢, with coefficients which depend on b, . . . , b,, through
smooth polynomial (for Py), respectively, rational functions (for R.,), and on the derivatives of Z, A, and
K evaluated at y = 0. The subscript <> denotes a label, used to distinguish the various functions P, and R..
We note that all of the denominators in R, are bounded from below by a universal constant. It is important
to note that the notation P¢, and R is never used when explicit bounds are required. Throughout this
section, we will use the bootstrap assumptions in Section 4 to establish uniform bounds on the coefficients,
which in turn, yields local well-posedness of the coupled system of ODE for the modulation variables.
The definition of £ in (2.56) may be written schematically using the notation introduced above as

=P ( k0| Q, ehiy, el G0> (12.1)

where we have used the explicit formula (A.8a) to determine the dependence of P,. Once we compute h"/?/
and G?/V (cf. (2.612)—(2.61b) below) we will return to the formula (12.1). We point out at this stage that in
(12.17) below we will show that both h’V?/ and G?,V decay at a rate which is strictly faster than e~ 2, which
shows that their contribution to x will be under control.

Similarly, the definition of 7 in (2.57) may be written schematically as

F =Py (k0]e2Q L0y ) (12.2)

where we have used the explicit for_mulae (A.7a) and (A.8b) to determine the dependence of P;.
The schematic deppndence of 1, is determined from (2.58). Using (A.7b) and (A.8c) and placing the
leading order term in () on one side, we obtain
Qv = — 2 Quud Al + € Que Al by + € QuuAlpcy — $2€20,2° + e A%y
+ 42 (k= 2°)0,, A0 — 0,2°0,A0) + Bem22%, ZO(¢22 + dag) + e (k- 2°) AQTSS

& T80%
te 3 ((&,AO se~ 3(k 4 ZO)¢W)AO) Pyu + 25,37 B Iy & AU¢7M (2B Br thWO Ag) ez
~ 1Bul = 2°) ({5~ 200K — e 30,K 0y) — 20, 2° 0K ) | (123

which may be written schematically as
01, = Po. (m, | Leiny, e, e_sQ) . (12.4)

Note that once Qh, is known, we can determine ns and ng by recalling from [4, Equations (A.4)—(A.5)] that

n3 ) . .
L+ o n1(12+iz21) {7?2} _ (Id + aen )> . [Q.m} (12.5)
non i 1 ’ '
nams e Q13
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where n1 = /1 — n% — n% Since the vector 72 is small (see (4.1a) below), and the matrix on the left side is
an O(|n|?) perturbation of the identity matrix, we obtain from (12.5) a definition of 7, as desired.

Next, we determine the dependence of h“f[’,o and G?,V. Inspecting (A.7c)—(A.7d) and (A.8d)—(A.8e) and
inserting them into (2.61b), we obtain the dependence

B = iRy (0 e7Q, e ) = G (HO) 1 o, 01,42

Note that although h’vﬁ)/ appears on both sides of the above, in view of (4.17) the dependence on the right
side is paired with a factor less than e~ < ¢, and the functions ¢, are themselves expected to be < ¢ for
all s = —loge (cf. (4.1a) below). This allows us to solve for h{f[’/o and schematically write

B%h‘{{,o = e_%Rh,M </<;, 9| e 50, 6_25q3> ) (12.6)

Returning to (2.61a), inspecting (A.7¢c)—(A.7d) and (A.8d)-(A.8e), and using (12.6) we also obtain the
dependence

LGY = e iRy, (n,qb | e*SQ,e*sq's) . (12.7)

Next, we determine the dependence of f ;. From (2.61a)—(2.61b), (2.62), (2.63), and the fact that RRT =
Id we deduce that

¢ = Rj(RTE), = R, (ﬁ(m 4 $2°) — ﬁe_%G%/) + Ry, (Ag - QBiﬁTe%hgf) (12.8)

for j € {1,2,3}. Using (12.6) and (12.7), we may then schematically write

£ =Re; (,i,gz)\e*SQ,e*?Sq's) . (12.9)

Lastly, note that ¢, is determined in terms of e20,,GY, (which we rewrite in terms of GY;;, h’é[’,o and
é’mFSV via (2.64)) through the first term on the right side of (A.7e)

by = —p-e2 (G%VaMWO + 100, WO — &,WFI%/) + 20, 2° — 281 (Qer e + Qcvdey)

- (Bt —nm ) ML, + 20, e TG 1210

and (2.61a) is used to determine G%),V. In light of (A.8f), (12.7) and of (12.10), we may schematically write

Py = R (’fa ¢ ‘ e*Q, e‘%}) - QC’WCV - QCVqﬁC’Y ’

which may be then combined with (12.4) and (12.6) to yield

by = Row (ﬂ, ¢ e‘sQ,e‘qu) : (12.11)

thus spelling out the dependences of ¢ on the other dynamic variables.

The equations (12.1), (12.2), (12.4), (12.9), and (12.11) only implicitly define &, 7, Q1,,&;, and ¢.,,. We
may however spell out this implicit dependence and arrive at an autonomous system of ODEs for all 10 of
our modulation parameters, cf. (12.12)—(12.13) below.

By combining (12.4) and (12.6) with (12.5), and recalling (12.11) we obtain that

d)w =Rpw (ﬁ, o, N | e %, efst) and n, =Ry, (n, o, N | e %n, efsq.ﬁ) .
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Therefore, since e™* < ¢, and the functions Py ., and Py, ,, are linear in e %n and e‘sé, then as long as k, ¢,
and n remain bounded, and ¢ is taken to be sufficiently small (in particular, for short time after { = — log ¢),
we may analytically solve for <;5 and 7 as rational functions (with bounded denominators) of &, ¢, and 7,
with coefficients which only depend on the derivatives of Z, A, K at y = 0. We write this schematically as

Oy = Epyp (K, p,n)  and 1y, = &, (K, ¢, 1) . (12.12)

Here the &4, (K, ¢,7) and &, ,(k, ¢, ) are suitable smooth functions of their arguments, as described
above. With (12.12) in hand, we return to (12.1) and (12.2), which are to be combined with (12.6), and with
(12.9) to obtain that

f=E(kypyn),  T=E&(k¢n) and & =& (k7). (12.13)
for suitable smooth functions &y, &-, and & ; of (k, ¢, ), with coefficients which depend on the derivatives
of Z,A,and K aty = 0.

Remark 12.1 (Local solvability). The system of ten nonlinear ODEs described in (12.12) and (12.13) are
used to determine the time evolutions of our 10 dynamic modulation variables. The local in time solvability
of this system is ensured by the fact that £y ., &n 1, Ex, E7, E j are rational functions of s, ¢, ng, and ng,
with coefficients that only depend on 07 Z°, 67 A® and 07 K° with |y| < 3, and moreover that these functions
are smooth in the neighborhood of the initial values given by (2.54); hence, unique C'* solutions exist for a
sufficiently small time. We emphasize that these functions are explicit.

12.2 Closure of bootstrap estimates for the dynamic variables

Once one traces back the identities in Sections 12.1 and Appendix A.3 we may close the bootstrap assump-
tions for the modulation parameters, (4.1).

The starting point is to obtain bounds for G(v]v and h’{f{,o, by appealing to (2.61a)—(2.61b). The matrix H°
defined in (2.60) can be rewritten as

HO(s) = (A1V2W)°(s) = (A1 V)" + (01 VW) (s) = diag(6,2,2) + (1 VW) (s).
From the bootstrap assumption (4.10) we have that ’(&1 V2W)O(s)‘ < et forall s > —loge, and thus

(HO) " (s)] <1 (12.14)

for all s > —loge. Next, we estimate 0y VF‘(,)V. Using (A.8d), (A.8e), the bootstrap assumptions (4.1a)—
(4.3), the bounds (4.12)—(4.20), and the fact that ‘Tgﬁyl < |¢]2, after a computation we arrive at

4

0, VEY| < Meze™ + M2~ 20755 4 [h0|MPee 2 (1mm3)% 4 Mo~ (- am)s
< 2|0 + Me~tmmme)s, (12.15)

Moreover, from (A.7c), (A.7d), (4.1a), (4.1b), the first line in (4.12), and the previously established bound
(12.15) we establish that
3s

1V G| + |1 VEY| < €3 |1V 20| + Micse™5 + 2| hyp] + Me—(1—527)s
< 52\h§8| 4 MeUzm=s)s (12.16)

The bounds (12.14) and (12.16), are then inserted into (2.61a)—(2.61b). After absorbing the 52|h'v’8| term
into the left side, we obtain to estimate

1G9y ()] + ’h;’,o(s)’ < Me(mam=r)s (12.17)

The bound (12.17) plays a crucial role in the following subsections. We note that for m > 18 we have
4s

1 — 52— > 2, and hence so the bound (12.17) implies that |GY;, (s)| + ’h{f{’,o(s)’ < Me 5.

2m
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12.2.1 The 7 estimate

From (2.57), the definition of d1GY;; in (A.7a), the definition of 01 Fy}; in (A.8b) , the bootstrap estimates
(4.1a)—(4.3), (4.12)—(4.14), and the previously established bound (12.17), we obtain that

17| < |G| + |01 Fy |
<ed |0z +e 2 VA + M Vo A°| + M2e3¢e73 |01 A% + M?ee 25 |A°| + MPee™®
+ Me®|01 KO + Me?|0,8°
M3e™5 + Mee™ + Me 27 3m5)5 4 N3ce® 4 Mese™®
%675’ (12.18)

A

A

where we have used a power of M to absorb the implicit constant in the first inequality above. This improves
the bootstrap bound for 7 in (4.1b) by a factor of 4. Integrating in time from —e to T}, where |T| < &, we
also improve the 7 bound in (4.1a) by a factor of 2, thereby closing the 7 bootstrap.

12.2.2 The & estimate

From (2.56)—(4.3), the bound (12.17), the definition of F‘(}V in (A.8a), the estimates (4.12)—(4.14), and the

fact that 5 5_7 < %, we deduce that
m

| S e2 |G(I)/V| +e2

0
Fy|
_ 84 _5s 1 s 3 s s s
< Me 2 2m=7 4 (ko + Me)Me2e 2 + M3e2e7 2 + M1e%e™2 + e7 3 (k2 + M%e*) M?e
1 s
+ (ko + Me)eie 2

_3s

S
< 5e 10,

N |—

Here we have used a small (m-dependent) power of € to absorb the implicit constant in the second esti-
mate above, thereby improving the % bootstrap bound in (4.1b) by a factor of 2. Integrating in time, we
furthermore deduce that i,

|k(t) — ko| < eTo (12.19)

since |T| < e. Upon taking ¢ to be sufficiently small in terms of xo, we improve the x bound in (4.1a).

12.2.3 The § estimate

In order to bound the 5 vector, we appeal to (12.8), to (12.17), to the |y| = 0 cases in (4.12) and (4.13), to
the bound |R — Id | < &, and to the |72| estimate in (4.1a), to deduce that

€3] < o+ |2%) + €73 |G| + |49 + e3|B0| < ko + Me + Me 3% 7 < ko, (12.20)

upon taking ¢ sufficiently small in terms of M and xg. The bootstrap estimate for § in (4.1b) is then improved
by taking M sufficiently large, in terms of «, while the bound on £ in (4.1a) follows by integration in time.

12.2.4 The ¢> estimate

Using (12.10), the fact that |N(1)’W| + ’J?W| < |9/, the bootstrap assumptions (4.1a), (4.1b), (4.10), the

bounds (4.2), and the previously established estimate (12.17), we obtain

|Q.5’w| < (3% <M€_S(1_ﬁ) + |au'yFI(/]V|> + e’ |a’YVZO|
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5s 3s 5s

+ M + (Me_?’?i+72m—7 + Ko + |ZO|> M'e® + M°e%e™ 2 a7 . (12.21)

Using the definition of WQFIE)V in (A.8f), appealing to the bootstrap assumptions (and their consequences)
from Section 4, the previously established estimate (12.17), and the fact that ‘Ti’gl,’ + ’N(l)y W’ + ’J?W‘ +
INZ | < [8]% after a lengthy computation one may show that

O iy S €72,
which shows that the term e ‘5V7F8V| in (12.21) is subdominant when compared to e* ‘%VZ 0’ < M present

in (12.21). In establishing the above estimate it was crucial that e® |81WK 0| < 675, which from (4.20) since
m > 18. Combining the above two estimates with the Z bounds in (4.12), we derive

4s

|| S €2 (Me— 5+ e—%> + M+ Mie2 + (Me™ + ko + eM) M*e? + M%< M. (1222)

Taking M sufficiently large to absorb the implicit constant, we deduce ]<Z>| < iM 2, which improves the d)
bootstrap in (4.1b) by a factor of 4. Integrating in time on [—¢, T ), an interval of length < 2¢, and using
that |¢(— loge)| < e we improve the ¢ bootstrap in (4.1a) by a factor of 2.
12.2.5 The n estimate
First we obtain estimates on |Q1V], by appealing to the identity (12.3). Using the bootstrap assumptions
(4.1a), (4.1b), (4.12)—~(4.14), the estimates (4.2) and (12.17), and the fact that ]Tfj,%l,| < |#]?, we obtain
|Q1u| < M2c2e73 GZ,A2| + MAe3e—s |A0| +e2 ?ZO} + M?e™* |A0|
+ (M [V2A%| + |V 2| [VA%|) + M?ee2 |2°| |V 20| + MPe?e |A”)
+e2 ((WA()’ + M3ee™2) ‘AOD M?c + M3ce™* ’VAO‘ + M3 (Me_% + |A0|>

+ (0 + Me) ( (ko + Me)(e* [ VEO| + Mee™% [VKO|) - 2[V2%] " 01 K|

< Me3, (12.23)

upon taking e sufficiently small, in terms of M. Moreover, using the bootstrap assumption |n| < M 5%, we
deduce that the matrix on the left side of (12.5) is within ¢ of the identity matrix, and thus so is its inverse.
We deduce from (12.5) and (12.23) that

M25%
< . (12.24)

n 2

upon taking M to be sufficiently large to absorb the implicit constant. The closure of the n bootstrap is then
achieved by integrating in time on [—¢, T}).

13 Conclusion of the proof: Theorems 3.2 and 3.3

We first note that the system (2.33) for (W, Z, A, K), with initial data (Wy, Zy, Zy, Ko) chosen to satisfy
the conditions of the theorem, is locally well-posed. To see this, we note that the transformations from (1.3)
to (2.33) are smooth for sufficiently short time, and that (1.3) is locally well-posed in the Sobolev space H*,
for k > 3. Here we have implicitly used that the system of ten nonlinear ODEs (12.12) and (12.13) which
specify the modulation functions have local-in-time existence and uniqueness as discussed in Remark 12.1.
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Moreover, solutions to (1.3) satisfy the following continuation principle (see, for example, [19]): Suppose
(u,0,k) € C([—¢,T), H¥) is a solution to (1.3) satisfying the uniform bound |u(-,#)| 1 + [0 (-, )] o +
k()| ;» < K < o, then if in addition o is uniformly bounded from below on the interval [—&, T"), there
there exists 77 > T such that (u, 0,k) extends to a unique solution of (1.3) on [0,7}). Consequently, the
solution (W, Z, A, K) in self-similar variables may be continued so long as (W, Z, A, K) remain uniformly
bounded in H*, the modulation functions remain bounded, and the density remains bounded from below.

In Sections 5-12, we close the bootstrap assumptions on W, Z, A, K and on the modulation functions.
By Proposition 4.6, the density remains uniformly strictly positive and bounded. Thus, as a consequence
of the continuation principle stated above, we obtain a global in self-similar time solution (W, Z, A, K) €
C([~loge, +0); H*)nCY([~loge, +00); H™ 1) to (2.33) for m > 18. This solution satisfies the bounds
stated in Sections 4.2—4.6. The asymptotic stability of W (y, s) follows from:

Theorem 13.1 (Convergence to stationary solution). There exists a 10-dimensional symmetric 3-tensor A
such that, with W 4 defined in Appendix A.1, we have that the solution W (-, 5) of (2.33a) satisfies

lim W(y,s) = Wal(y)

§—00
for any fixed y € R,

We note that the proof of Theorem 13.1 is the same as the proof of Theorem 13.4 in [4] once we include
the contributions of the entropy function K, which can be estimated using (4.14). The limiting profile W 4
satisfies the conditions stated in Theorem 3.2 due to Proposition A.1.

The remaining conclusions of Theorem 3.2 follow from the statements given in Sections 4.7 and 4.8 (for
the time and location of the singularity, and the regularity of the solution at this time), Proposition 4.3 (for
the vanishing of derivatives of A, Z, and K as s — o0), Proposition 6.1 (for the vorticity upper bounds),
and Theorem 7.4 (for the vorticity creation estimates).

The proof of Theorem 3.3 is the same as the proof of Theorem 3.2 in [4]. The addition of entropy
does not necessitate modifications to that proof as the assumptions on the initial entropy in Theorem 3.2
(see (3.20) and (3.23)) are stable with respect to small perturbations.

A Appendix

A.1 A family of self-similar solutions to the 3D Burgers equation

Proposition A.1 (Stationary solutions for self-similar 3D Burgers). Let A be a symmetric 3-tensor such that
Aiji = M, with M a positive definite symmetric matrix. Then, there exists a C® solution W 4 to

AWt (B W) 2 Wa+ 5 VWA =0, (A1)
which has the following properties:
o WA(0) =0, ;W 4(0) = —1, W 4(0) = 0,
o 0“W 4(0) = 0 for || even,
¢ 0°W 4(0) = A, for |a] = 3.

See Appendix A.1 in [4] for the proof of Proposition A.1.
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A.2 Interpolation

The following is taken from [4, Appendix A.3]. We include the inequalities here for convenience to the
reader.

Lemma A.2 (Gagliardo-Nirenberg-Sobolev). Ler u : RY - R. Fix1 < q,r < wand jym € N, and
L < a <1 Then, if

1 j 1 1—
5:%4_&(?_%)4_7&7
then
| D7l ze < CID™u|Fr |ul 17 (A.2)
We shall make use of (A.2) for the case that p = <2, r = 2, ¢ = o0, which yields
. g 1—-L
[DI¢] 2m < el Il ™ (A3)

whenever ¢ € H™(IR?) has compact support. The above estimate and the Leibniz rule classically imply the
Moser inequality

[¢&lgrm < 16l 2] grm + 16l gom [0l Lo - (A4)

for all ¢, o € H™(R?) with compact support. At various stages in the proof we also appeal to the following
special case of (A.2)

2m—>5

|l grm—2 < Hso||Hm 1Hso||2’" °, (A.5)

for o € H™~1(R3) with compact support. Lastly, in Section 8 we make use of:

6(2m—3)
2m—1

Lemma A.3. Letm > 4 and 0 < 1 < m — 3. Then for a + € (0,1), and q =

2m 4
|D**'¢ D" |, < [D™ 6|5 | D7l | D% [ D7 (A.6)
See [4] for the proof.
A.3 The functions Gy, Fyy and their derivatives at y = 0

Using (2.14), the definition of G'yy in (2.34a), and the constraints in (2.53), we deduce that!!

301Gy = Bae20,2° (A.7a)
5-0,Gly = 2e30,2° + 261(Quy + Ay — €2 5-hi by (A.Tb)
ianva = Brez 1 2° (A.7¢)
E01,GY = Bae301,2° — 28167 F Qi (A7d)
oGy =¢ 7 (‘(bw + 52603, 2° = 2B1(Qcybev + Qeudey + Rn&NY ) + 72 Z”%) :
(A.7e)
""Here we have used the identities: T)'% = 0, N, ,, = 0,and T{')_ = 0,N?, = 0,and N, , = —@,.,, N ,,, = 0.
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Appealing to (2.14) and (2.36a) which is equivalent to
L Fy = ~2855T40, 4, + 281 3 4, TYN; + 2816”5 Qi; A, TYN;
+ <B%hlvtv - 536_%'\'# (“ +eTEW - %Z» AyTIN = 203¢7 25 (AVTZ,M +U- NNH#)
+ B1S?(Je* 1 K + N0, K)

we may derive the following explicit expressions'?

iy = —Bs (v — 2°) 0,4, + 281672 Quu AY, — -1y Al
+ 18375 (k — Z°)(k + Z°) (o + B33) + LB4(k — 2°)%e* 01 K° (A.8a)
LoFy = (e—% n alzo> 0, A9 — By (1 — 2°) 01, A° + 28173 Q1,01 AY
- (/B%h*;falAg + 281673 (0149 + e—%QM)Ag) S
— 4 ((L+ 3020 (n + 2°) + (= 2°)(1 = €20, 2)) (b2 + 633)
+184(k — 2° ((m — 7o K0 — 2(e7F + 6120)63(91[(0) (A.8b)
F O, Fy = —Ba((k — 2°)0,,A0 — 0,2°0,A0) — 28167 ALy, + 281 2Q1,,0, A,
— 2816 Quc Ay, — Bae™ 2 2°0, Z° (23 + d33) — Bae (v — Z2°) ALTSS,
_ 283 ((e—%QW +0,A0 —Le 5 (k4 ZO)%)AQ) o — 00,400,
+184(k — 2° ((R — Z2%)(e%01, K" — e 50, Kpy) — 2@2%8&11() (A.8¢)
LouFy = ps (e—% + alzo) 04 A — By (5 — 7°) 01, A% + 281675 Q1,001 AL
— (261078 + FRE0) 00426, — 4817301 AL + ¢ F Q)01 Ao,
— B33 (2°0112° — 75 (1 — e%(012°)%)) (a2 + ¢33) + SBa(e™2 + 0,2°)%0, KO¢e®
+ Bulk — 20 (%(n — Z0e* 01 K° — (e73 + 012%) e 01, KO — %811206581[() (A.8d)
Lo, FY = —ps ((m — Z%)01,, A — 01,700, A% — 0,7°01, A0 — (e75 + alzo)awAg)
— 21601 A%y + 2B1e” 2 Q1,010 AY — 2816 Quc 01 Al
— B3e"2(012°0,2° + Z2°01,2°) (22 + ¢33)
— e~ (k= 20 AL = (75 + 21.2°)A) TS,
— 26175 (75 Qu + 0, AN AT + (75 Qu + 0140)0, 45 + 4001, 45) by
— L l001, A%, + Bre”® ((K + 290,40 — (e75 — ale)Ag) By Dy
— 1Bu(r— 2°) (61,,Z06561K0 +0,2%° 001 K + (e75 + 0,2%)(e*01, KO — qﬁwe_%ﬁ#KO))
+ 1Bu(e™F + 012900, 200, K € + 1By — 2°)° (esamKO - ¢uue—%alﬂK0)
(A.8e)

Here we have used the identities: Ng’u = —¢o2 — P33, T"’Lﬁ = 0,N? =0, N(f,,, = 0, Nﬂ,,, = _ép,us TY,’B = Pyus
NN OO 0 N 0
TZV Ni,,u =0, T;/ N'L,p.u =0, NHVHV =0, NQU.Y =0, and .]71,.Y = 452,,(;52«, + ¢3V(f)3,y.
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5%6’71/}7{9[/ = _2B3(6V’Y(K6/¢AH))O - 536_8(” - Zo)aﬂAgTQO

PRZe]
— 26160, Apdyy — 28160, AN b — Be”20,2°0,2° (o + 33)
+ 21672 Q104 A — 2816 Qcuy AS by — 2816 Qcudy Ay
+ 2516_378‘42 (Q1<(¢vu¢<v + QuyPcv + GvyPuc + T’S,’Sy) + Ql,uN(l),u'y>
— By (5 — 290,42 — 0, 2°AN) TS0, — $83e % (k — 2°) (s + ZON,,
——2516‘%(e‘géhW87A24—e_%QM78MA8%—6w“42A2—%6MAﬂayA3—%0VA28MA2)¢QL
+ 261 (0y((U ) N)AC)O¢W¢CM +0,((U - N)AC)O¢MV¢@) - 2516_37514?1421_&27@#
- B%h%oﬁwAgd’Cu + eisﬁ%h%OA? ((Z)WN?:M’Y + ¢LVN?,MV + Ng,uw)
#4Bul = 202 (€01 K + (62062, + 050637 1K = €3 (G0, KO + 610 0 K) )
—-%540;—-20)(6720&f8hj(0——¢Mye_§6ukﬁ)—F&VZOQfahJ(O——¢Hve_§6ukﬁ)>

+184(0,2°0,2° — (k — 2°)0,,2°) €50, 5" (A.8f)
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