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Abstract

We consider the 2D isentropic compressible Euler equations, with pressure law p(p) = (1/5)p?, with
v > 1. We provide an elementary constructive proof of shock formation from smooth initial datum
of finite energy, with no vacuum regions, and with nontrivial vorticity. We prove that for initial data
which has minimum slope —1/, for € > 0 taken sufficiently small relative to the O(1) amplitude, there
exist smooth solutions to the Euler equations which form a shock in time O(e). The blowup time and
location can be explicitly computed and solutions at the blowup time are of cusp-type, with Holder C'/3
regularity.

Our objective is the construction of solutions with inherent (1) vorticity at the shock. As such,
rather than perturbing from an irrotational regime, we instead construct solutions with dynamics domi-
nated by purely azimuthal wave motion. We consider homogenous solutions to the Euler equations and
use Riemann-type variables to obtain a system of forced transport equations. Using a transformation to
modulated self-similar variables and pointwise estimates for the ensuing system of transport equations,
we show the global stability, in self-similar time, of a smooth blowup profile.
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1 Introduction
We consider the Cauchy problem for the two-dimensional isentropic compressible Euler equations

(1.1a)
(1.1b)

di(pu) +div (pu®u) + Vp(p) =

0,
orp + div (pu) =0,
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where u : R? x R — R? denotes the velocity vector field, p : R? x R — R, denotes the strictly positive
density, and the pressure p : R? x R — R, is defined by the ideal gas law

p(p)=2p",  y>1.

The sound speed ¢(p) = +//op is then given by ¢ = p® where a = 77_1 The Euler equations (1.1) are a
system of conservation laws: (1.1a) is the conservation of momentum, which can be equivalently written as
Oy 4+ u - Vu + p?~2Vp = 0, and (1.1b) is the conservation of mass.

This paper is devoted to the construction of solutions to (1.1) which form a shock in finite time: specif-
ically, starting from smooth initial data with O(1) amplitude and a minimum slope of —!/z with ¢ > 0
sufficiently small, we construct solutions to the 2D Euler equations (1.1) on a time interval tg < t < T,
to = —e and Ty, = O(e”*), for which p(-,t) and u(-,t) remain bounded, while |Vp(-,t)| — oo and
|[Vu(-,t)| — oo as t — T; moreover, no other type of singularity can form prior to ¢t = T}, and detailed
information on the singularity formation at ¢ = T is provided, including blowup time, location, and profile
regularity.

We are particularly interested in devising solutions to (1.1) which have large' vorticity at the shock, by
which we mean solutions which are not small perturbations of irrotational flows. As such, our strategy will
be to construct solutions that are perturbations of purely azimuthal wave motion whose simplest (constant)
profiles are of the z*-type with O(1) vorticity at this most basic level. As we shall describe in great detail
below, this is in contrast to those solutions which are small perturbations of irrotational simple plane waves.

We are thus motivated to develop a framework of analysis for solutions which are perturbations of
purely azimuthal waves. Obviously, polar coordinates provide a natural setting for describing such per-
turbative solutions, but more fundamentally, we have discovered that the use of homogeneous solutions to
(1.1) leads to a remarkable reduction of the Euler dynamics precisely to this nearly-azimuthal wave regime,
in which bounded azimuthal waves steepen and then shock, while radial waves (and their slopes) remain
bounded. Owing to the inherent vorticity in the most basic wave motion, the solutions are fundamentally
two-dimensional in their evolution. We provide a precise description of the shock formation for such Euler
solutions, including the blowup time and location, by a transformation to self-similar variables that con-
tain dynamically evolving modulation functions that keep track of the location, time, and amplitude of the
blowup. At the blowup time ¢ = T, the wave profile is of Holder-class C'/%. In the special case that the
adiabatic exponent -y is equal to 3 and for purely azimuthal initial velocity fields, a series of surprising can-
cellations reduces the 2D Euler dynamics to an elementary study of the Burgers equation. The solution for
the special case that v = 3 can be viewed as the purely azimuthal wave motion, and its shock formation is
completely characterized for all time.

Theorem 1.1 (Rough statement of the main theorem). For an open set of smooth initial data with O(1)
amplitude and with minimum initial slope given at initial time to to equal —'/s, for € > 0 taken sufficiently
small, there exist smooth solutions of the Euler equations with O(1) vorticity, which form an asymptotically
self-similar shock in finite time Ty, such that T, — to = O(g). The solutions have O(1) vorticity at the
shock, are dominated by azimuthal wave motion, and the location and time of the first singularity can be
explicitly computed. The blowup profile at the first singularity is shown to be a cusp with C' regularity.

The precise statement of the main theorem is given in Theorem 4.4, while the special case that v = 3 is
treated in Theorem 3.1.

'Due to the time rescaling symmetry of the Euler equations, by which u”(z,t) = B 'u(z,87't) and p®(z,t) =
g “p(x, B7't) are also solutions to (1.1), Vu can be made smaller or larger by changing the time interval of the evolution.
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1.1 A brief history of the analysis of shock formation for the Euler equations

The mathematical analysis of shock formation for the Euler equations has a long and rich history, particularly
in the case of one space dimension, which allows the full power of the method of characteristics to be
employed. In 1D, the velocity u is a scalar and (1.1) takes the form

O+ uug +p" 2py =0,  Gp+ (pu)y =0.

Riemann [41] devised the two invariant functions z = u — ¢/a and w = u + ¢/a which are constant along
the characteristics of the two wave speeds A\; = u —cand Ay = u + ¢:

0tz + Mzz =0, orw + dow, = 0.

He proved that from smooth data, shocks can form in finite time. The 1D isentropic Euler equations are an
example of a 2 x 2 system of conversation laws. Using Riemann invariants, Lax [26] proved that finite-time
shocks can form from smooth data for general 2 x 2 genuinely nonlinear hyperbolic systems and Majda [31]
gave a geometric proof which also allowed for 2 x 2 systems with linear degeneracy; John [22] then proved
finite-time shock formation for n x n genuinely nonlinear hyperbolic systems; Liu [27] then generalized
this result. Klainerman-Majda [25] proved the formation of singularities for second-order quasilinear wave
equations which includes the nonlinear vibrating string. See the book of Dafermos [14] for a more extensive
bibliography of 1D results.

In multiple space dimensions, Sideris [42] proved that C'! regular solutions to (1.1) have a finite lifes-
pan by establishing differential inequalities for certain integrals which lead to a proof by contradiction; in
particular, he showed that O(exp(1/¢)) is an upper bound for the lifespan (of 3D flows) for data of size .
The nature of the proof did not, however, reveal the type of singularity that develops, but rather, that some
finite-time breakdown must occur.

The first proof of shock formation for the compressible Euler equations in the multi-dimensional setting
was given by Christodoulou [7] for relativistic fluids and with the restriction of irrotational flow. Later
Christodoulou-Miao [10] used the same framework to study shock formation in the non-relativistic setting
and also for irrotational flow. Christodoulou’s method is based upon a novel eikonal function (see also
Christodoulou-Klainerman [9] and Klainerman-Rodnianski [23]), whose level sets correspond to character-
istics of the flow; by introducing the inverse foliation density, a function which is inversely proportional
to time-weighted derivatives of the eikonal function, Christodoulou proved that shocks form when the in-
verse foliation density vanishes (i.e., characteristics cross), and that no other breakdown mechanism can
occur prior to such shock formation. The proof relies on the use of a geometric coordinate system, along
which the solution has long time existence, and remains bounded, so that the shock is constructed by the
singular (or degenerate) transformation from geometric to Cartesian coordinates. For the restricted shock
development problem, in which the Euler solution is continued past the time of first singularity but vorticity
production is neglected, see the discussion in Section 1.6 of [8]. Starting with piecewise regular initial data
for which there is a closed curve of discontinuity, across which the density and normal component of ve-
locity experience a jump, Majda [29-31], proved (for more general flows than the 2D isentropic flows) that
such a shock can always be continued for a short interval of time, but with derivative loss. For such shock
initial data, Métivier [38] later reduced the derivative loss to only a 1/2-derivative. Gues-Métivier-Williams-
Zumbrun [20] studied the existence and stability of this multidimensional shock propagation problem in the
vanishing viscosity limit.

A special feature of irrotational flows is that the Euler equations can be expressed as a second-order
quasilinear wave equation with respect to the velocity potential. The first results on shock formation for 2D
quasilinear wave equations which do not satisfy Klainerman’s null condition [24] were established by Alin-
hac [1,2], wherein a detailed description of the blowup was provided. The geometric framework of [7] has
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influenced more recent analysis of shock formation for quasilinear wave equations. Holzegel-Klainerman-
Speck-Wong [21] have explained the mechanism for stable shock formation for certain types of quasilinear
wave equations with small data in three dimensions. Speck [43] generalized and unified earlier work on
singularity formation for both covariant and non-covariant scalar wave equations of a certain form. He
proved that whenever the nonlinear terms fail Klainerman’s null condition [24], shocks develop in solutions
arising from an open set of small data, and can thus be viewed as a converse to the well-known result of
Christodoulou-Klainerman [9], which showed that when the classic null condition is verified, small-data
global existence holds. For quasilinear wave equations that are derived from the least action principle and
which satisfy the null condition, Miao-Yu [39] proved shock formation using the so-called short pulse data.

The first proof of shock formation for fluid flows with vorticity was given by Luk-Speck [28], for the 2D
isentropic Euler equations with vorticity. The presence of nontrivial vorticity in their analysis does not only
allow for a much larger class of data, but also has two families of waves being propagated, sound waves
and vorticity waves, thus allowing for multiple characteristics (wave speeds) to interact. Their proof uses
Christodoulou’s geometric framework from [7, 10], but develops new methods to contend with the afore-
mentioned vorticity waves, establishes new estimates for the regularity of the transported vorticity-divided-
by-density, and relies crucially on a new framework for describing the 2D compressible Euler equations as
a coupled system of covariant wave and transport equations.

Luk-Speck consider in [28] solutions to Euler which are small perturbations of a subclass of outgoing
simple plane waves. In the 2D Cartesian plane, with coordinates (1, x2), an outgoing simple plane wave
is defined as a solution to the Euler equations (1.1) which moves to the right along the z; axis, does not
depend on x5, and has vanishing first Riemann invariant u' — c. The smallness of the perturbation of the
plane wave is measured in terms of the ratio of the maximum wave amplitude to the minimum (negative)
slope of the initial wave profile. Specifically, they construct solutions which are small perturbations of the
irrotational simple plane waves, in which the transverse derivative (to the acoustic characteristics) of u!
blows up, while the tangential derivatives (to the acoustic characteristics) of (p,u',u?) remain bounded,
and vorticity is non-vanishing and small at the shock.

1.2 Shock formation with vorticity and the perturbation of purely azimuthal waves

Let us now describe the type of shock wave solutions that we construct and compare them with those of [28].
As noted above, we do not consider perturbations of simple plane waves, but instead construct solutions
which are perturbations of azimuthal waves.

Using 2D polar coordinates (r, ), we denote the velocity components by u = (u,(r,0,t),ug(r,0,t)).
We consider initial conditions (p(-, to), u, (-, o), ug(+, to)) which have O(1) amplitude, but with dgug(-, to)
and Jgp(-,tp) having a minimum (negative) value of —1/z, with 0 < & « 1 taken sufficiently small. There
are two Riemann invariants for the azimuthal flow, which we write as R4 = ug+ %p“ ~ Y2 The solutions

we construct satisfy the following conditions:
(a) solutions (p, u,,ug) have O(1) bounds in L* for ¢t € [to,T) with linear variation in the radial r
direction for u, and uy and /0 =V variation for p;

(b) |0gR+|, |Ogugl, and |Opp| are O(1/e) at initial time, and these quantities blow up at time ¢ = T}, with
a rate proportional to 1/(7y —t), where Ty — tg = O(¢);

(c) the blowup profile is of cusp-type with ug(-, T%) and p(-, Ty) in the Holder space C'/%;
(d) 0pR— remains bounded on on [tg, T%);
(e) 0 of (p,u,,up) and dpu, are bounded on [tg, T%);

(f) the vorticity 0,ug — %ﬁgur + %ue is non-vanishing and bounded at the shock.
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There is some correspondence between the properties (a)—(f) of our solutions and the solutions con-
structed by Luk-Speck [28], in that we are perturbing purely azimuthal wave motion (in the §-direction),
and in [28] they are perturbing simple plane wave motion (in the x1-direction). A primary difference is that
the purely azimuthal wave already has nontrivial vorticity, while the simple plane wave is irrotational, and
so we are constructing solutions that are perturbations of flows with nontrivial vorticity. Furthermore, our
method allow us to provide a fairly detailed description of the blowup profile for ug (-, Tx) and p(-, Ty ): the
slope becomes infinite along a line segment, and each function is C'/* in space.

As we shall next describe, the method we develop to construct shock wave solutions is very different
from the methods of [7, 10, 28]; we rely upon a transformation to modulated self-similar variables together
with the fact that 2D purely azimuthal wave motion is governed by the dynamics of the Burgers equation;
we shall explain how our analysis relies on properties of nonlinear transport equations together with explicit
properties of the asymptotically stable self-similar profile.

2 OQOutline of the proof

2.1 A new class of solutions that shock

In order to study perturbations of purely azimuthal waves, we write the Euler equations (1.1) in polar coor-
dinates for the variables (p, u,., ug) as the following system of conservation laws:

((3’t + upOp + %ug(?g) Uy — %ug +p72%0,.p=0, (2.1a)
((9,5 + U0 + %'LLQ@@) ug + %urug + %pV*ZG‘gp =0, (2.1b)
(0 + ur0r + Lugdp) p + p (Lur + Our + L0pug) = 0. (2.1¢c)

These equations are solved with § € T = [—m, 7], > 0 and ¢t € [tg,T]. Defining the fluid vorticity
w = 10,(rug) — Ldyu,, we shall make use of the fact that w/p is transported as

w w
For initial density pp > 0 that has no vacuum regions, and for nontrivial initial vorticity
LU(T, 0, tO) = ar“G(Ta 0, tO) - %aQUT(Tv 9» tU) + %Ua(’l", 07 tO) #0,

we construct smooth solutions to (1.1) that form a shock in finite-time. So that our solutions will be pertur-
bations of azimuthal waves, we shall consider homogeneous solutions.

To this end, motivated by the homogeneous solutions introduced for studying singularity formation in
incompressible flows by Elgindi and Jeong [18], we consider the new variables @ and p such that

u(r,0,t) = ri(r, 0,¢) and p(r, 0,£) = 131 p(r, 0, 1),

v—1

and recalling that o = 5=, with respect to these new variables, the system (2.1) takes the form:
(Or + Uprdp + Tplp) Uy + U2 — U + L7 + PP 1105 = 0, (2.32)
(O¢ + Upr0p + TUglg) g + 20Upllg + PP 109 =0, (2.3b)
(Ot + Upr0r + UgOp) p + 2Urp + P (10rUr + Oplig) = 0. (2.3¢)

Notice that all powers of r have cancelled (expect for the rd, operator which is dimensionless), and hence,
if at time ¢ = ¢, the initial data is given as

u,(r,0,t0) = ao(#), ug(r,0,t0) =bo(0), p(r,0,t0) = Po(P), (2.4)
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where ag, by, and P, are independent of r, then @ and p remain independent of r for as long as the solution
stays smooth (and hence unique), and thus the system (2.3) reduces to

(0 +bdg)a+a® —b* +a 'P? =0 (2.5a)
(04 + bdp) b + 2ab + P?**1oyP =0 (2.5b)
(0 + bdg) P + 2aP + Pdgb = 0, (2.5¢)

and then the solution to the Euler equations (2.1) is given by
ug(r,0,t) = rb(0,t), u,(r,0,t) = ra(6,t) and p(r,0,t) = r/*P(8,t) . (2.6)
The fluid vorticity and fluid divergence corresponding to the ansatz (2.4) are given by

w(r,0,t) = 2b(0,t) — dpa(b,t), (2.7a)
divu(r,6,t) = 2a + ogb, (2.7b)

so that the vorticity is therefore nontrivial as long as 2b # dya. Setting

o 2b — Oga
==

from equation (2.2), we have that
Orw + by = Sw . (2.8)

Next, we define the Riemann invariants w and z associated to the tangential velocity b and density P,
and their associated wave speeds A1, A2, as

1 1
w=>b+ —P“, z=b— —P%, (2.9a)
a e

1- | 1 1-
A —b— P — 2O‘w+ ;az, No = b+ P — ;aw+ 2O‘z. (2.9b)

Then, the (a, b, P)-system (2.3) can be written as the following system for the variables (a, z, w):

(0 + A2dp)w + 2((1 — 20)z + (3 + 20)w) =0, (2.10a)
(0 + Mdp)z + 2((1 - 20)w + (34 200)2) =0, (2.10b)
(é’t+“’;Zé’g)aJraQ—i(erz)QJr%(w—z)Q=O. (2.10c)

Notice that while z and w are not actual invariants, the advantage of the (a, z, w)-system is that no derivatives
appear in the forcing of the transport.

In order to transform the w and z equations into the form of a perturbed Burgers-type equation, we
define t = HTatN so that 0y = 1%"6;. For notational simplicity, we shall write ¢ for ¢, in which case (2.10)
becomes:

dew + <w + };—gz> dow = —a (11;252 + ﬁfgw) , (2.11a)
Otz + (z + %w) Oz = —a (11120?‘111 + 31120?2) , (2.11b)
ata—i—ﬁ(w—i—z)(?ga:—ﬁa2+m(w+z)2—ﬁ(w—z)2. (2.11¢c)

While the local-in-time well-posedness in Sobolev spaces of the system (2.11) follows from the well-
posedness of the Euler equations, we shall take the opposite view that solutions to the Euler equations
are constructed from solutions of (2.11) together with (2.6) and (2.9).
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Lemma 2.1. For initial data (w, z,a)|i=4, = (wo, 20, ag) in C*(T), k > 1, there exists a time T depending
on the C*(T)-norm of this data, such that there exists a unique solution (w, z,a) € C([to, T]; C*(T) to
(2.11). Furthermore, the solution continues to exist on [to, Ty] if

T
j (lGow(-, )| Loy + 1002(, )] ooy + (-, 8) | oo ry) dt < 0. (2.12)
to
Proof of Lemma 2.1. We set By = 152, B1 = 1222, By = 3122 83 — - and define the characteristics

of the three wave-speeds in (2.11) by

Oty = W 0 Yoy + B2 0 Yy
O, = 201, + Bow o P,
5t¢a=53(w0%+20%),

which are the identity at time to. Letting W = w o ¢y, Z = 2 01),, and A = a o 1), the system (2.11) is
then equivalent to

AW = —Aoyrt oty (BLZ o oy + B2 V)
0Z=—Aocy, o, (BW o, o, + B Z)
A = By [-2A% 1} (Wouy oty + ZouT  0va) — §Wouy oty — 2oyl  0v)?]
Orhw =W+ BoZ o) o by,
ath = Z+IBOWO¢;10'¢Z’
Ot = BsW 0 by 0 tha + Z oS! 04hy)
with initial data W, Z, A)i—¢, = (wo, 20, ap) € CF(T) and (Y, V-, Va)|t=t, = (Id,1d, Id). Since this sys-
tem does not present derivative losses, a standard Picard iteration argument proves the existence, uniqueness,
and well-posedness of this coupled system on some time interval [to, T], in the class C([to, T], C*(T)).
This local in time solution may be continued as long as the transport velocities remain bounded in L; Lip,, —
indeed, this condition ensures the unique solvability and invertibility of the Lagrangian maps (¢, 1., 1q)

introduced above. Lastly, we have excluded |w| ;. and |z| ;. from (2.12) because these remain finite if
a € L L?, while |0pa| ; - remains bounded due to the boundedness of |||+ from (2.8). O

From a solution (w, z, a) of (2.11), we obtain a solution to the Euler equations (1.1) using that b = w;rz’

l/a
P= (Q(WT_Z)) and defining (u, p) using (2.6). Given the Euler velocity field u, we define the Lagrangian
flow 7, as the solution to 0y, = won, for t > to with n,(r,0,ty) = (r,6). We shall consider annular
regions

Az ={(r,0):r <r<7,0eT}

forradii 0 < r <7 < 0. Given 0 < Ry < 79 < 71 < Ry, we consider a small annulus A, ., properly
contained in a large annulus Ag, r,. We define the time-dependent domain

Q(t) = nu(Aro,rlpt) C ARO,RI for te [to,T*] s (2.13)

where the inclusion holds for 7T} sufficiently small whenever u € L°L2’.

We shall construct solutions to (2.11) which form a shock in finite time and satisfy properties (a)-(f)
listed above. Before describing our method of construction which is based on a transformation into self-
similar variables, there is a singularly interesting choice for the adiabatic parameter v which allows for a
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particularly simple construction of shock formation. When v = 3, and hence o = 1, it will be shown
that the system (2.11) can be reduced exactly to 0,w + wdpw = 0 with ¢ = 0 and z = 0, in which case
we have a purely azimuthal wave solution (p, u,, ug) = %(rw, 0, rw) with a precise time and location for
the shock formation, coming from the well-known solution to the Burgers equation. As noted above, we
view this purely azimuthal wave as the polar analogue of the simple plane wave, because the radial velocity

component vanishes as does the first Riemann invariant.

2.2 A transformation to self-similar variables with modulation functions

Turning to the case of general adiabatic exponent v > 1 for the Euler system (1.1), we shall next introduce
a self-similar transformation [19] with dynamic modulation variables [33]. Let
0 —&(t
w0,0) = 20 og(r(r) — 1),
(r(t) —1)2

and define the new variables (A, Z, W) by
w(0,t) = e 2W(x,s) +k(t), =2(0,t)=Z(x,s), a,t)=Axs).

This is a self-similar transformation® with three dynamic modulation variables, £(t), 7(t), and x(t), each
satisfying relatively simple ordinary differential equations. This technique was developed in the context
of the Schrodinger equation [33—35] the nonlinear heat equation [36], the generalized KdV equation [32],
the nonlinear wave equation [37] and other dispersive problems, and it has recently been applied to solve
problems in fluid dynamics [6, 11-13, 15, 17]. In all these cases, the role of the modulation variables is to
enforce certain orthogonality conditions required to study perturbations of the self-similar blowup. In our
context, the modulation variables £(t), 7(¢), and x(t), respectively, control precisely the shock location,
blowup time, and wave amplitude. In the absence of these dynamic variables, the above rescaling coincides
with the well-known self-similar transformation for the Burgers equation (see [3, 12, 16,40]), but the use of
the modulation variables allows us to impose constraints on W and its first and second derivatives at = = 0.

Upon switching to self-similar variables, the (a, z, w)-system (2.11) is transformed to self-similar evo-
lution equations for (A, Z, W) detailed below in (4.15). As we have noted above, for the special case that
~ = 3, this system of self-similar equations reduces to the self-similar Burgers evolution, and a key feature
of our proof is that the construction of shocks which are perturbations of purely azimuthal waves exactly co-
incides with the self-similar perturbation of the Burgers equation. Of paramount importance to our analysis,
then, is the explicit representation of the stable, steady-state, self-similar Burgers profile [3]

1/3 1 13
— x 1 22\ T 1 x? 2
=|—= — 4+ — - = — 4+ — 2.14
W(z) <2+<w+4> 2+<w+4) ’ 19
solving the steady self-similar Burgers equation

1 N\
i @Mw) 0,7 = 0. (2.15)

2We note that our use of self-similar variables to construct the blowup is in some ways analogous to the use of geometric
coordinates in the construction scheme of [7, 10,28] wherein the long time existence in geometric coordinates leads to a finite-time
blowup by the singular transformation back to Cartesian coordinates. We also note that self-similar variables have been used in a
very different way to study the problem of self-similar 2D shock reflection off a wedge [4,5].
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Our proof of finite-time blowup for dgug and Jdyp relies upon showing that dypw has finite-time blowup,
which in turn relies upon the global existence of solutions to the (A(z, s), Z(z,s), W(x, s))-system (4.15)
for z € R and s € [—log(—tp), o0). Since

Opw(0,t) = e*0,W(x, s), e’ = 7'(75)1—t’ (2.16)
by letting the blowup time modulation variable 7(¢) satisfy 7(0) = 0 and 7(7%) = Ty and the blowup
location modulation variable £(t) satisfy £(0) = 0 and £(T) = 0, we see that as s — 00, |Jgw(fy, t)| — 0
at a rate proportional to 1/(Ty —t). Note, that all points # which are not equal to 6,, when converted to the
self-similar variable x, are sent to +00 as s — +00. In the proof, we show that [0, W| < (1 4 22)~ "3 and
hence from this bound, it follows that ’ng(e?’s/Q(G —&),s)| e (60— 0,) =2, and from (2.16), dgw (8, t)
does not blowup as t — 7.

The (A, Z, W )-system (4.15) consists of transport type equations, which allow us to use L*-type es-
timates to construct global-in-time solutions in C*. We view the W equation (4.15a) as producing the
dominant dynamics, and the key to our analysis is a careful comparison of W (x, s) with W (z). In par-
ticular, differentiation of the system (4.15) shows that the equations satisfied by 07 W, 07 Z, and 0} A for
n = 0,1,2,3,4, have either damping or anti-damping terms that depend on the solutions and their deriva-
tives. It is only when n = 4 that a clear damping term emerges, while for n = 1 and n = 2, a very
subtle analysis must be made for the evolution equations of both 0,W — 0, W and 02W — 02W; a very
delicate analysis allows us to find lower-bounds for the damping terms in these equations by specially con-
structed rational functions that are found with the help of Taylor expansions of 0, near z = 0 and z = o0
(see, in particular, (4.54) and (4.65)). A bootstrap procedure is employed wherein we assume bounds for
(A, Z,W,1,&, k) as well as their derivatives, and then proceed to close the bootstrap argument with even
better bounds.

2.3 Paper outline

In Section 3, we consider the case that v = 3, and we have the simple example of purely azimuthal shock
formation. In this special case, the dynamics are reduced entirely to those of the Burgers equation. The
formation of shocks for the 2D Euler equations with general adiabatic exponent v > 1 is then treated
in Section 4; a detailed description of the data is given, the main theorem is stated, and the proof of is
given. Concluding remarks are stated in Section 5. We include Appendix A which contains some important
maximum-principle-type lemmas for solutions of non-locally forced and damped transport equations.

3 Purely azimuthal waves and shocks: a simple example

In the case that v = 3, some remarkable cancellations occur in the homogeneous solutions of the Euler
equations which allow for an exceedingly simple mechanism of shock formation, in which a smooth purely
azimuthal wave travels around the circle, steepens and forms a shock wave which can be continued for all
time. Our general construction of shock waves for all v > 1 will be a perturbation of this purely azimuthal
shock wave solution, but we shall first describe this simple solution.

For the most concise presentation, we shall consider the Euler equations posed on a two-dimensional
annular domain A, ., where 0 < rg < r1 < 00 with the standard no-flux boundary conditions Up|rery =
ur|r:r1 = 0.

In view of (2.4), the no-flux boundary condition requires that a = 0 for all time. Therefore, from
equation (2.5a), we must have the relation

-~ _prl (3.1)
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for all time. If we impose condition (3.1) at ¢ = 0, an explicit computation verifies that the evolution
equations (2.5) preserve the constraint (3.1) if and only if v = 3, in which case, we have that b = P, and
hence from (2.9), the Riemann invariants are given by

w=2b and z=0.

Thus, with @ = 0 and z = 0, the system (2.11) reduces to a single equation for the unknown w, which we
identify as the 1D Burgers equation,

Orw + wopw = 0 w(#,0) = wy(0), 0eT=[-mn], (3.2)

solved on T with periodic boundary conditions. It is well known that any initial datum wy which has a
negative slope at a point forms a shock (or infinite slope) in finite time. Note that for v = 3, the formula
(2.7a) shows that the vorticity w = 2b = w and hence, w is nontrivial even for the purely azimuthal wave.
We shall sometimes use w'’ to denote dgw.

Theorem 3.1 (Construction of the purely azimuthal shock). Fory = 3, let 0 < r¢ < r1 be arbitrary, and
consider initial datum u, = 0, ug = pg = %rwo, in Ayy r,, where wy € C*(T) is such that wy > v > 0.
Suppose that

lwo e <1, (3.3)

and that there is a single point 0y € T such that w(,(0y) = minger wo(0), and that

1
dowo(6o) = —C (3.4)

for some ¢ > 0. Then the solution w of (3.2), develops a singularity at time Ty = ¢ and angle 0, =
0o + ew(0y). Moreover, the functions u, = 0, ug = %rw(@, t), and p = %rw(@, t) form the unique smooth
solution to the initial value problem for the Euler system (2.1) in the domain A, .,, on the time interval
[0,¢). This solution satisfies the bounds

e (oG Dl (g ) + T o ) ) < 201 (3.5)
. (10r0C, Oz (A ) + 1001, im0 ) < 25 (3.6)
tl_l)I;l* 0pp(0s,t) = tl_l)r%* Ogug (B4, 1) = —00. (3.7

The vorticity and density satisfy
v < w(f,t) <1, p(r,0,t) = 1o, (3.8)
forall® e Tandt e [0,¢).

Proof of Theorem 3.1. For smooth initial datum wg, we solve (3.2). Differentiating (3.2) gives the equation
01(Opw) + wd3w + (Gpw)? = 0. Define the flow ¢(0,t) by dp(0,t) = w(v(6,t),t) and 1(6,0) = 6. Then
01 (Opw o)) + (Ggwo1h)? = 0 so that (Gpw) o) = tf%:”g}o and ¥ (0,t) = 0 + twy(0). Hence from (3.4), dpw
forms a shock at time T = ¢ at the point 8, = 6y + two(6p), implying (3.7). By the maximum principle
and (3.3) we have

sup Jlw(-,t)| 0 <1 and minw(6,t) = vy .
te[0,T) 0T

The bounds (3.5)—(3.6) and (3.8) follow directly from the definitions of ug, p, w and the above estimate. [

10
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Remark 3.2 (The Burgers solution continued after the singularity). In Theorem 3.1 we have considered
datum with a global (negative) minimum attained at a single point 6y, and thus w{(6y) = 0 and w( (6y) > 0.
It is shown in [12, Proposition 9] that in the Burgers equation the finite time blowup arising from such initial
datum is asymptotically self-similar and that the blowup profile is precisely the stable global-self similar
profile W defined in (2.14). Moreover, at the blowup time T = ¢ the solution is Holder C'/* smooth near
the singular point. To simplify the discussion, upon taking into account a Galilean transformation and a
rescaling of the initial datum, we have that the blowup occurs at § = 0 with speed w(0,7%) = 0, and
that w(f, T,) ~ "7 to leading order in || « 1. The solution of the Burgers equation may be continued
in a unique way as an entropy solution also after the blowup time T, starting from this Holder 1/3 initial
datum, and we still denote this solution as w(+, t). We claim that instantaneously, for any ¢ > T}, the entropy
solution w(-, t) has a jump discontinuity, with the discontinuity propagating at the correct shock speed, given
by the Rankine-Hugoniot condition. This phenomenon is explained in [16, Chapter 11]: for ¢ > T, one may
compute an explicit forward globally self-similar solution, and one notices that this self-similar solution
is not single-valued; we thus must have a jump in the solution w at a location and a speed determined by
the Rankine-Hugoniot condition. The argument in [16] can be easily made precise by taking advantage of
the Lax-Oleinik formula. For simplicity, let us consider initial datum w(6, T}) = 01/3, which allows us to
perform explicit calculations. For ¢t > T}, the Lax-Oleinik formula tells us that the entropy solution equals

0 (t—T)Py® (Lo
w(0,t) = ((t T*)/> (3.9)

where the function Y = Y'(q) is defined implicitly as the the correct root of the equation Y3 — Y = ¢.
This root is unique for |¢| > 2/(3v3) and so the meaning of Y (¢) is clear; for ¢ € [—2/(3v3),0] we need
to define Y (q) as the smallest root, which is negative and has the limiting behavior Y (0) = —1; while for
q € (0,2/(3v3)] the entropy solution requires us to take the largest root, which is positive and has the limiting
behavior Y(0%) = +1. Since the formula (3.9) is explicit, it is easy to verify the above claims. We have
w(0~,t) = w(0,t) = (t — Ty)"? and w(0F,t) = —(t — Ty)"?. This shows that we have a discontinuity
across the shock location # = 0, the left speed is larger than the right speed at the shock, and their average
is 0, which is why the shock location does not move with time.

Remark 3.3 (The Euler solution continued after the shock). For all ¢t > T, let 6, (t) denote the position
of the discontinuity of w(-, t). Now for all § # 0. (t), w(-, t) is smooth and hence defines a smooth solution
to the Euler equations via the relations p = ug = %rw and u, = 0. By the Lax-Olienik formula, the shock
moves with speed 40, (t) = $(w™+w™), where w™ = limgy g, ;- w(0,t) andw* = limg_,g, 1)+ w(0,1).
For ¢t > T, we denote by I'(t) the line segment given by {(r,0): 8 = 0.(t),r1 < r < re}. Then
for a piecewise smooth function f(-,t) : A, — R, which is discontinuous across I'(¢), we let [f] =
f=(,t) — f*(-,t). From the discontinuity of w(-,t) we have that [p(-,t)] > 0, [ug] > 0, [u,] = 0.

Moreover, the Rankine-Hugoniot conditions require that 4% 6, (t) = EZ]‘]’ . But pﬂz]‘]g 1 - $(w™ +w") and so

the Rankine-Hugoniot condition is satisfied. This shows that (u,, ug, p) is a global entropy solution to the
compressible Euler system with v = 3, which forms a shock at T}, = ¢, becomes discontinuous across the
line segment I'(¢) for times ¢ > ¢, and propagates the shock with the correct shock speed.

4 Formation of shocks for the Euler equations

In this section, we construct a finite-time shock solution to the Euler equations for the general adiabatic
constant v > 1. We achieve this by studying the system of equations (2.11) on the time interval —e < ¢ <
T, = O(¢’"), where T is constructed in the proof and ¢ € (0, 1) is a small parameter to be chosen later.
We prove that a gradient blowup occurs at time T for the variable w, whereas dyz and dya remain bounded.

11
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4.1 Assumptions on the initial datum

In this subsection we describe the initial data that is used to construct the shock wave solutions to (2.11).
The initial time is given by —¢, and the initial data is denoted as

w(f,—e) = wp(H), z(0,—¢) = z(0), a(f,—¢e) = ap(6).
We assume that dywy attains its global minimum at § = 0, and moreover that
wo(0) = ko,  Gpwo(0) = —~ 1, qwo(0) =0,  Fjwo(0) =64, 4.1

for some k¢ > 0 to be determined later and whose main purpose is to ensure that the initial density is
bounded from below by a positive constant (cf. (4.7)), and for an 0 < € « 1 to be determined. We also
assume that wg has its first four derivatives bounded as

-1 4 11

|opwol e <7, ||05wol 0 < e, |o§wol . < T4, HangHLw <e ) 4.2)

which are bounds consistent with (4.1). In order to simplify the proof and to obtain a precise description of
the solution’s profile at the singular time (cf. (4.29) and (4.83) below), it is convenient to assume a slightly
more precise behavior of dypwg near § = 0. For this purpose we assume

/0 , ()? 1
e(Ogwo)(0) — (W) (5”)‘ < mln{40(1 N (5%)2), 261 (539/2)2/3)} 4.3)

for all @ € T, where W is the stable globally self-similar solution to the Burgers equation defined in (2.14).
For z and a we assume that at the initial time we have

[20llcn + llaollgn <1 4.4)

for 0 < n < 4. Furthermore, we assume that wy, zg, and ag all have compact support such that

supp (wo(0) — ko) v supp (20(¢)) U supp (ao(0)) < (—=7/2,7/2) , (4.5)

and in order to ensure the positivity of the initial density we assume that

K
Jwo(-) — Kol < = (4.6)

2
and choose kg suitably. Indeed, in order to ensure that Py(6) = v > 0 for all § € T, we simply choose any
Ko = 4(2 + (Ya)(v0/2)%). 4.7

With this choice of kg, from (2.9), (4.4), and (4.6) we have that (2/a) P§(0) = wo(0) — z0(0) = rofa — 1 >
(2/a)v, thereby ensuring the desired strictly positive lower bound on the initial density.

Remark 4.1 (Consistency of the wy assumptions). condition (4.3), which may be rewritten in terms of
x = 0" as ]5(69100)(9553/2) — (Wo)(#)| < min{ 40({5_2%2), 2(8:932/3)} for all || < me~"2, is consistent
with (4.1)—(4.2) and with (4.5)—(4.6), meaning that we can find an open set of initial conditions satisfying all
of these assumptions. The first bound in the minimum of (4.3) is required in order to ensure that near § = 0
the deviation from the self-similar profile is parabolic; this is needed in view of (4.1) and the Taylor series
of W, near the origin (4.16a). The second condition in the minimum of (4.3) is not required in order to
prove a finite-time singularity theorem; rather, this assumption is needed to characterize the blowup profile
of w(f,t) as t — Ty as being Holder C' '/3 regular. Lastly, we note that (4.3) is consistent with dgwg being

12
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the derivative of a periodic function, which implies that it must have zero average and so dywg cannot have a
definite sign. Since W, (x) < 0 for all z € R, itis important that for |x| » 1, the envelope determined by the
second term on the right side of (4.3) allows dgwy to become positive. Indeed, note that in the Taylor series
of W, around infinity (4.16b), the coefficient of =~ is —1/3, while the coefficient of 2~°A in the Taylor
series about infinity of the right side of (4.3) is 12 > 1/3, which allows dgwy to take on positive values.

Remark 4.2 (L* estimates for the solution). Using assumptions (4.4), (4.6), and the fact that (2.11) is a
system of forced transport equations in which the forcing terms show no derivative loss, we deduce via the
maximum principle that

[w@)ll e + 12O e + la(®)| e < M (4.8)

holds for any M > 4 + 2k, and all times ¢ which are sufficiently small with respect to xo. This argument is
detailed upon in Proposition 4.10 below, cf. estimate (4.78). In particular, these amplitude bounds hold for
all t € [0, T}) since Ty, = O(c°*), and we take € to be sufficiently small, in terms of .

Remark 4.3 (The spatial support of the solution and an extension from T to R). Using (4.8) we obtain

that the transport speeds on the left side of (2.11) are bounded solely in terms of M. Therefore, assuming ¢

to be sufficiently small depending on M and using that the length of [—¢, T’ ) is less than 2¢, by finite speed
3nm 37w

of propagation the solution (w, z, a) of (2.11) restricted to the region T\[— =, 5] is uniquely determined by

the initial data (wo, 20, ag) on the set T\[—F, 7], for all times ¢ € [—¢, T’]. In particular, as a consequence
of the support assumption (4.5), on the region T\[—2T, 3T], the solution (w, z, ) is constant in the angle 6
(albeit a time dependent constant), for all times ¢ € [—¢, Tx]. Hence by abuse of notation we may extend
the domain of (w, z,a) to 6 € R, by setting w(0,t) = w(~w,t), 2(0,t) = z(w,t), and a(0,t) = a(m,t) for
|| > 7. In what follows we adopt this abuse of notation, with the knowledge that the true solution is defined
to be the periodization of the restriction to [—, 7) of the extended solution. Also, we shall use implicitly

throughout the proof that supp (dpw) U supp (0pz) L supp (Gpa) S [—37/4,37/4] .

4.2 Statement of the main result

Theorem 4.4 (Formation of shocks for Euler). Letv > 1, a = "’T_l, O<Ry<ro<rs <R <oo, and
vy > 0. Then, there exist a sufficiently large ko = ro(,vp) > 0, a sufficiently large M = M («, ko, vo) =
1, and a sufficiently small € = ¢(«, ko, Vo, M, Ro, R1,70,71) € (0, 1) such that the following holds.

Assumptions on the initial data. Consider initial datum for the Euler equations (2.1), given at initial
time tg = —e given as follows:

ur(r,0,t9) = rag(0),ug(r,0,ty) = rbo(0), and po(r,0,ty) = TI/QPO(Q) for (r,0) € Apy R, ,

where (ag,bg, Py) € C*(T) and Py = v > 0. Define wy = by + éP(‘))‘, 20 = by — éP(‘))‘, and suppose that
(wo, 20, ag) satisfy assumptions (4.1)—~(4.6).

Shock formation for (a, z,w)-system (2.11). There exists a unique solution (a, z,w) € C([—¢, Ty); C*(T))
to (2.11) which blows up in asymptotically self-similar fashion at time T, and angle 0, such that:

« the blowup time Ty, = O(¢°*) and angle 0, = O(&) are explicitly computable, with 0, = lim; 7, £(t),

supie(—e 1) (lalwrey + [ 2lwremy + |w]pem) < C(M),

limy_,7, dpw(&(t),t) = —o0 and we have m < |Gpw (-, )| poe < ﬁ ast — Ty,

w(-, Ty) has a cusp singularity of Holder C'* regularity.

13
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Shock formation for the Euler equations (2.1). Setting b = “+2 and P = (§(w — 2))/*, we define
(ur, ug, p) by (2.6). Consider the time-dependent domain §)(t) defined in (2.13) such that Q(t) < Ag, R,
forall t € [—e,Ty). Then, (ur,ug,p) € C ([—¢,T]; C*(Q(t))) is a unique solution to the Euler equations

(1.1) on the domain §)(t) for all —e <t < T, forany T < T, and

lim Qgug(r,&(t),t) = tl_l}I%* Ogp(r,&(t),t) = —0 forallr € Q(t), (4.9)

t—Ty

e 3 (120 ) lmo) + I3FuC Dl =@y ) + I00ur (Dl ey < C(R1, M) (4.10)
&Tx) k=0
The shock occurs along the line segment I'(Ty) := {(r,0) € Q(T): 0 = 0.}. The graphs of the blowup

profiles ug(r,0,Ty) and p(r,0, Ty) are surfaces with cusps along T'(Ty) and are Hélder C*/* smooth.
Non-trivial vorticity and density at the shock. The vorticity and density satisfy

o
1 Ry v
Wgw(eat)<M27 p(r>97t)>070>07
Sorall (r,0) € Q(t) and t € [—e, Ty).

Remark 4.5. With u = (u,, up), the flow 7, solving d;1,, = u o 1, with initial datum n,,(r, 0, —¢) =
is well defined and smooth on the time interval [—e,T'] for all T < T,. Moreover, since 7,(r,
(r,0) + St_a(u ony)(r, 6, s)ds, by (4.10), we see that

(r,0)
) =

sup |7, t) Lo, < C
[_E7T*) h ( o 1)

Hence, by dominated convergence, we may define (7, 6, Ty) = lim;_,7, 1, (r, 6,t). Thus, the set Q(T)
is well defined.

Remark 4.6. We have established that at the initial singularity time ¢ = T}, both uyp and p have cusp
singularities with C'"/® regularity. For the case that v = 3, we have explained how this cusp singularity
develops an instantaneous discontinuity and is propagated as a shock wave. In Section 5 we conjecture that
the same is true for the more general solution constructed in the previous theorem. We note that Alinhac
[1,2] proved the formation of cusp-type singularities for solutions of a quasilinear wave equation, but the
Euler equations do not satisfy the structure of his equations.

Corollary 4.7 (Open set of initial conditions). The conditions on the initial data (ag, 2o, wo) in Theorem
4.4 may be relaxed so that they may be taken to be in an open neighborhood in the C* topology.

Proof of Corollary 4.7. First note that since the system (2.11) has finite speed of propagation, the support
properties of the initial data described in (4.5) (see also Remark 4.3) are stable under small perturbations in
the C** topology. Second, note that xq and ¢ are free to be taken in an open set (sufficiently large, respectively
sufficiently small), and hence the values of w(0) and dgw(0) stated in (4.1) can be taken in an open set of
possible values. Next, observe that if Hé’gu)o” Lo S £~""2 holds (condition which is stable under small C**
perturbations) then a Taylor expansion around the origin yields

ang(@) = agwo(()) + 053100(0) + (’)(5*11/292)
= (93100(0) + 65749 4 9((9311]0(0) _ 6574) + 0(5711/202) '

Hence by continuity, for any £ > 0 depending on &, if one assumes 93w (0) and 3w (0) — 6e~* to be
sufficiently small, there exists an 6 satisfying |0y| < & such that 0311}0(90) = 0. Hence by the change of
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coordinates 6 — 6 + 6, and taking £ to be sufficiently small, we can relax the condition d3wo(0) = 0 to the
condition that 0wy = 0 is in a sufficiently small neighborhood of 0 and that Jjw(0) lies in a sufficiently
small neighborhood of 6e=%. Next, note that the rescaling wo(6) — u~two(uf), rescales dgw(0) and
leaves dpwp(0) unchanged. Strictly speaking, such a rescaling would modify the domain; however, since our
analysis only concerns a strict subset of the domain (due to (4.5)), and we have finite speed of propagation,
as long as p is sufficiently close to 1 this p-rescaling does not pose an issue. Setting

a(0,t) = pta(uo,t), w0,t) = ptw(pd,t), Z(0,t) = p~ 2(ub, ),

the equation satisfied by (a, w, 2) is of the form (2.11), with the right hand side rescaled by a factor of .
As long as p is sufficiently close to 1, this rescaling has no effect on the proof of Theorem 4.4. Thus the
condition on Jjw(0) may be relaxed to the condition that 93w (0) lies in a sufficiently small neighborhood
of 6. Finally, note that for § small, (4.3) is implied by (4.1) and (4.2). For 6 away from a small neigh-
borhood of 0, the condition (4.3) is an open condition. Thus (4.3) does not pose an impediment to taking
the initial data to lie in an open set. O

4.3 Self-similar variables and solution ansatz

For the purpose of satisfying certain normalization constraints on the developing shock, we introduce three
dynamic variables 7, &, k: [—¢, Ty ] — R, and fix their initial values as at time t = —¢ as

T(—¢) =0, &(—e) =0, k(—€) = Ko. (4.11)

The blowup time T and the blowup location 6, are defined precisely in Remark 4.9. For the moment we
only record that T, = O(¢’#), 7(Ty) = Tk, and that by construction we will ensure 7(t) > t for all
t € [—¢,Ty) (see Remark 4.9 below).

We introduce the following self-similar variables

0—£(t)
(r(t)—t)2

The blowup time is defined by the relation 7(7) = T. In the self-similar time, the blowup time corresponds
to s — +00. We will use frequently the identities

x(0,t) := , s(t) := —log(7(t) —t). (4.12)

PR ds 1—-7
T—t=¢e%, — =

= :1—. S
Tl Skl

where we adopt the notation f = %, and

£ 3(F-1(0-9
(r—1) 2 — )3

Notice that at t = —¢, we have s = —loge and hence e ™% = €.
Using the self-similar variables z and s we rewrite w, z and a as

x = 6%5(9 —£(1)), Opx = egs, orx =

- _6%35 + g(l L

N

S

w(d,t) = e 2W(x,s) + k(t), 2(0,t) = Z(x,s), a(f,t) = A(x, s). (4.13)

As mentioned in Remark 4.3, the functions (W, Z, A) are defined on all of R, but they are constant in x on
the complement of the expanding set {x: — %635/2 <z < %635/2}.
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Inserting the ansatz (4.13) in the system (2.11), we obtain that W, Z and A satisfy the equations

(1—7’)(6’3—%)W+<e§ (m—f+ﬁ—3Z>+%(1—7‘)x+W)é’xW

— —e 2k — Ae2 (1112§‘Z — 3t2a (e 2W + /<;)>

1+a +a

(1—17)0sZ + (65 (1;% — 5) AW+ 31— )z + 652) A

— —Ae~* (@(e—gw + k) — 3+2 )

(1—7)0A + (e% (H%(Z +R) — gf) W+ 31— T')x) 0, A

= 2(13_&)6_8 (—4A2 + (e W Hrh+2Z)2—ale sW +k— Z)2> )

It is convenient to introduce the transport speeds

gw = e <n—é+};—gz), (4.14a)
97 = 15 (ef (3526 =€) + L2w) (4.14b)
1= - (e (ﬁ(z b R)— g‘) + ﬁw) , (4.14c)
and the forcing terms
Fiv = — 50— ((1-20)4Z — 3+ 20)A(3W + 1)),
J— ((1 —20)A(eEW 4 R) — (3 + 2a)AZ> ,

—s

Fy = £

(T Fa)(1=7) (—4A2 + (€7§W + K+ 2)2 - a(ef§W + K — Z)2> ,

so that we can rewrite the evolution equations for W, Z and A as

(05 = D)W+ (9w + % + 75W) W = —e b5 + Ry, (4.15a)
07+ (97 + % + t¢i2) 0,7 = Py, (4.15b)
OsA+ (ga+35) 0, A =Fa. (4.15¢)

As long as the solutions remain smooth, the (W, Z, A) system (4.15) is equivalent to the original (w, z, a)
formulation in (2.11). In particular, the local well-posedness of (4.15) from C*-smooth initial datum of
compact support follows from the corresponding well-posedness theorem for (2.11). The purpose of this
section is to show that the dynamic modulation variables (x,&,7) remain uniformly bounded in C! and
that the functions (W, Z, A) remain uniformly bounded in C* for all s € [—loge, o). Taking into account
the self-similar transformation (4.12)—(4.13), and in view of the continuation criterion (2.12), this means
that no singularities occur prior to time ¢ = Ty. Additionally, we will ensure that d,W (0,s) = —1 for
all s = —loge, which in turn implies through the self-similar change of coordinates that dgw blows up as
— Ty —t)yast — T.

Remark 4.8 (The stable globally self-similar solution of the 1D Burgers equation). We view the evo-
lution (4.15a) as a perturbation of the 1D Burgers dynamics. Indeed, if we set gy = 7 = & = Fiy = 0
in (4.15a), the resulting steady equation is the globally self-similar version of the 1D Burgers equation as
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described in (2.15). We recall that this steady globally self-similar solution W given explicitly by (2.14),
and that its Taylor series expansions of 0, W at z = 0 and = 0, respectively, are given by

0 W = —1+32% — 152 + O(2%) for |z| « 1, (4.162)
0. W = —1a75 — 175 £ O(z75) for |z » 1. (4.16b)

In the proof of our estimates for 0, W and 0., W we will use a number of properties for W, which may be
checked directly using its explicit formula (2.14).

At this stage it is convenient to record the differentiated version of the system (4.15). For n € N, after
applying 07 to (4.15) we obtain from the Leibniz rule that

(0, + 25 + S0 W + ndagw ) B2W + (gw + % + T2 W) W = B (4.17a)
(68 n 37n + n—iiln;eleQa Z—l—nawgz) a 7+ (gZ + 31: + 7622) anJrlZ F(n) (4.17b)
(05 + % +ndoga) A+ (9a+ ) 3T A= YV @.17¢)

where the forcing terms are given by

n—1
Fy = 00 Fw — 1200t gw e W — 1pzs ). (”) (L 0hw + ahgw ) ax+Hiw

(S

n—1
(n) - é’”FZ — 1n>26 gza Z —1,>3 Z ( ) <ﬁ€ 6’;24— ﬁk )6” k-HZ

FXL) =00 FA — 152 Z (Z) okgaonhtlyg,
k=2

4.4 Constraints on W at x = 0 and the definitions of the modulation variables

Inspired by the self-similar analysis of the 1D Burgers equation in [12], we impose the following constraints
at z = 0, which fully characterize the developing shock:

W(0,s) =0, W (0,5) = —1, 2W(0,s) =0. (4.18)

These constraints will fix our choices of 7(¢), {(¢), and x(t). In order to compactly write the computations
in this section, we shall denote

P(s) = 9(0,8),  palr,s) = dop(,5) s pualz,s) = Pop(x,5), ete. (4.19)

for any function ¢ = p(x, ).
In view of (4.18), in addition to (4.15a) we need to record (4.17a) for n = 1 and n = 2. Using (4.17a)
we spell out these two equations

(0 + 1+ W + i ei 2e) Wo + (ow + % + L5 W) Way = FY (4.20a)
(00 + 3+ 2 Wo + (203 2,) W + (gw + 5 + 25 W) o = B (4.20b)

where the forcing terms are given by

FY:=0,Fw, and FP :=0a.Fy— 2 ZyuW . 4.21)

1—
(1+a)(1 T)
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Using the notation (4.19), and inserting the constraints (4.18) into (4.20a) we arrive at

—7+ U965 20(5) = —(1 — ) F(s),

which implies that

7= 52 20(s) — e 7 (FE2(A2)0s) — 2 (nA(s) — e 5 As)) ) (422)

Plugging in the constraints (4.18) into (4.15a) and (4.20b), we further obtain that
—gi(s) = Fiy(s) — t5e 2 (4.232)
9 ()W ha(s) = Fyp™ (s). (4.23b)

Since we will prove that W2, _(s) = 5, we solve the system (4.23a)—(4.23b) as

. s B
. Fyp®
k=(1- 7.')65 <FI9V(S) + I/VOVV(S)> . (4.24b)

The equations (4.22), (4.24a), and (4.24b) are the evolution equations for the dynamic modulation variables
which are used in the proof. We also note here that in view of (4.14a) and (4.24a) we may write

o) = B =0 ) @25)
gw(z,s ~e2 x,8)—2°(s)), .
W:?acx( ) (1 + a)(l - 7—)
which provides us with a useful bound for gy for |z| < 1.
4.5 Bootstrap assumptions
For the dynamic modulation variables, we assume that
k()] < 260,  |T(H)| <ei,  |E(t)] < 6Me (4.262)
. 3 . 1
()] < M3, |7(t)] < e, ] (t)] < 3m (4.26b)

forall t < T,.
Note that from (4.8) and (4.26a) we deduce that (we use kg < M)

W (s)| e <2Me2  and | Z(s)] 10 + [A(8)] e < M (4.27)

for all s > — log e. Therefore, no bootstrap assumptions are needed for the C° norms of (W, A, Z).
For the higher order derivatives of W we assume the following estimates for all times s > —loge

|62W |, < M3, [aiW],., <M. (4.28)
We further assume the more precise bounds

$2

_ T/ < )
(Wa(z,s) — Wa(z)| < 20011 2) (4.29)
12 |x|
|ng(l‘,s)| < m, 4.30)
|W:m:x(075) - 6| < 17 (431)

18
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where W is the exact self-similar solution of the Burgers equation given by (2.14) (see [3]). A comment is
in order concerning (4.29): this inequality and properties of the function W, imply that

IWa(-8)| 0 <1 for all s> —loge. (4.32)
Moreover, we note that (4.30) implies
[Wae (-5 8)| o < 12 for all s> —loge. (4.33)
For the functions Z and A our bootstrap assumptions are
102 2] o + 7 Al r < Mem (3700, (4.34)
for 1 < n < 4, where § = 0(«) > 0 is defined as

_ min{a, 1}

21+ 0) (4.35)

Note, that by definition, we have § < %. Moreover, ¢ is independent of € or M, and depends only on o. We
use essentially that v > 1 to ensure that § > 0.

Remark 4.9 (Estimating the blowup time and the blowup location). The blowup time T} is defined
uniquely by the condition 7(7}) = Ty which in view of (4.11) is equivalent to

T
f (1= #(8))dt = .

We note that in view of the 7 estimate in (4.26b), we have that |T}| < 2c”*. We also note here that the
bootstrap assumption (4.26b) and the definition of T} ensures that 7(¢) > ¢ for all t € [—¢,T}). Indeed,
when ¢t = —¢ we have 7(—¢) = 0 > —¢, and the function t — Sis(l — T)dt' — e =t — 7(t) is strictly
increasing. The blowup location is determined by 6, = £(T% ), which by (4.11) is the same as

Ty |
0, = | £@)dt.

In view of (4.26b) we deduce that |0,.| < 6Me, so that the blowup location is O(e) close to the origin.

4.6 Closure of bootstrap

Throughout the proof we shall use the notation < to denote an inequality which holds up to a sufficiently
large multiplicative constant C' > 0, which may only depend on « (hence on ), but not on s, M, or €.
4.6.1 The Z estimates

First we consider the equation obeyed by Z,, given by (4.17b) with n = 1. Recalling (4.14b), and appealing
to the bootstrap assumptions (4.26b), (4.29) (in fact, we use its consequence, the bound (4.32)), and (4.34),
we see that the damping term in the Z, evolution may be bounded from below as

§+63Zx+agzz§+e§Zx (1—-a)W,

2 1-7 " 2 1-7 (1-7)(1+a)
> 3 (1+ 2&-%) <Mg‘S + |1_a‘> > 1 +4 (4.36)
2 1+« 2
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for all s > — log e, where we have used the parameter § = §(«) defined in (4.35) above. In deriving (4.36),
we have used that

11—«
1+«

(1+ Qsi) (Ms‘3 + ’

><(1+2ei)(M55+125) <1-6

which is true as long as ¢ is taken to be sufficiently small, depending only on « (through §), and on M.

On the other hand, the forcing term in the Z, equation, Fg) = 0, F7 may be estimated using (4.8),
(4.26a), (4.28), and (4.34) as

678

21,

51— (Male (W 40| 12150 ) + 1410 (78 IWallge + 1221 1))

< Me™? (Mef(%ﬂs)s + 67%>
< M2 55 4.37)

With (4.36) and (4.37), from (4.17b) with n = 1 and a standard maximum principle argument (cf. Lemma A.1,
estimate (A.2), with \p = % + 0, A\p = %, and sy = — log ¢), we obtain that

HZ:U(S)”Lw < HZx(_ log S)HLoo 67(%+6)(s+10gs) + M26(176) logsef(%Jré)s

< (5175 n M2€176> o (3+0)s

where we used (4.4) to deduce | Z,(—loge)|;w = e 10020l 0 < £3. Then, taking ¢ sufficiently small in
terms of M, and using 6 < 1/4 we obtain

_(%4-5)8 < 76—(5-"—5)8 (438)

INES
®

1Z2(8) | < €

closing the bootstrap (4.34) for Z,.
Similarly to the estimate for 0,7, we note that for 2 < n < 4, the damping term in (4.17b) may be
bounded from below as

3 +1 s 3 s
S Tt 4 ndagz > S —n(1+257) [Wal o — (n+ 1)(1+ 267)e3 0,2 o
3 3
> 7” —n(l+2e1) — 5(1 + 2e1) M > ' (4.39)

for all s > —loge, by appealing to our bootstrap assumptions and by assuming ¢ is sufficiently small in
terms of M. On the other hand, using our bootstrap assumptions, and the strong bound established earlier
in (4.38), one may show that the forcing term on the right side of (4.17b) may be estimated as

n—1
(n n n S\l Ak k n—k
(], S 1P+ 1220 102+ 1ams 5 (022, + [, ) [er 2],

n—1

S M2 4 Mede G0 1,y S M ot

L@
k=2
L L n—1
<M <g4e<2+5>8 + 1inss) kZQ ag“lz(m) , (4.40)
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where we have assumed ¢ to be sufficiently small, dependent on M in order to bound the first term on the

second line in terms of the second term. We also remark that since 07 Z (-, —loge) = s dyzo(-), by (4.4)
we have
|02 2 (-, —loge)l o < =%,

forall n > 2.
Let us first treat the case n = 2, when the second term on the right side of (4.40) is absent. Therefore,
in view of (4.39)—(4.40), and applying Lemma A.1 to the evolution equation for 07 Z given by (4.17b) (with

Ap = %,]—"0 = Msi, and \p = % + 6), we arrive using (A.1) at

022(5)] . = 220, ~0g )| e300 4 M (3400
< 626735 + Mgie*(%+5)5 < M5i67(5+5)s 4.41)

forall s > —loge.

With (4.41) in hand, we return to treat the case n = 3. Then the second term on the right side of (4.40)
is estimated by a constant multiple of M 2e5e=(210)s, Therefore, the total estimate on the force for 02 Z is
given by HFS) HLOO < M2:ie~(3+9)5 The only modification, as compared to the case n = 2, is that M

becomes M?2. Therefore, an argument similar to the one yielding (4.41) gives the estimate
H&EZ(S)“LOO < M2eie~ (2195 (4.42)

Using (4.41) and (4.42), we next return to the forcing estimate (4.40) for n = 4. Similar arguments yield
HF 24) HLOO <M 3556_(%”)8, by taking ¢ to be sufficiently small, in terms of M. Yet another application of
Lemma A.1, similarly to (4.41) implies that

|622(s)| . < MPetem (G5, (4.43)

Lo ~
In conclusion, assuming that ¢ is taken to be sufficiently small, dependent on M, then the bounds (4.41),
(4.42), and (4.43) close the bootstrap assumptions for 07 Z (with 2 < n < 4) stated in (4.34).
4.6.2 The A estimates

Next we turn to the 07 A estimates for 1 < n < 4. These bounds are established very similarly to the Z
estimates proven earlier. The damping term in (4.17c¢) is estimated using (4.32) and (4.34) as

3n  n(WeteiZ,) _ 3n  n(l+2:5)(1+ Med) _n @)
= 2 ) *

3n+ 0 +
- n —_ B
2 AT S T At a)(1—7) 2 1+a

upon taking £ small enough in terms of § (as defined in (4.35) above) and in terms of &« > 0 and M. The
forcing term on the right side of (4.17¢) may be bounded from above using our bootstrap assumptions as

|

a;;—’““AHLOO . (4.45)

n
. < M2 + Ml{n>2} Z
L k=2

Moreover, note that by (4.4) we have

3
2

Ha;JLA(v _log €)HLoo <e¢
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for all n > 1. At this stage one may employ a similar scheme to the one employed in the Z estimates. First,
we treat the case n = 1 since in that case the second forcing term on the right side of (4.45) is absent. With
(4.44) in mind we apply Lemma A.1, and deduce (similarly to (4.41)) that

02 A(8) 700 < 8%6_(%4_6)5, (4.46)
L

where again we absorbed M? and the implicit constants by assuming ¢ to be sufficiently small. Using the
bound (4.46) we may return the case n = 2, and use that the extra forcing term present on the right side

of (4.45) is bounded a constant multiple of M |0, A < M cie(3+0)s, upon taking ¢ sufficiently small.
This argument may be then iterated essentially because in the sum on the right side of (4.45) we always have
n—k+1 < n—1, so that only norms of A that are already known to be small arise. Using Lemma A.1 one
may then show iteratively that

|02 A(s) | e € M Tedem (GO (4.47)
for all 2 < n < 4. Taking ¢ sufficiently small, dependent on M, then (4.46) and (4.47) close the bootstrap
assumptions on 07 A stated in (4.34).

4.6.3 Bounds on the modulation variables 7, x, and ¢
From (4.22), using the bounds (4.8), (4.26a), (4.38), and (4.46), we obtain
171 % €2 1 Zel e + €5 1Al g (1Zall o + €78) + €78 [ Aall o (1Z] 0 + o)
<eie ¥ 4 Me® (sie*‘ss + 1) + i (10 (M + ko)
The implicit constant is universal. Hence for s > — log ¢, upon taking  small to be sufficiently small solely
in terms of M and §, we obtain from the above that

7| < Ceie™ < Ceitd < Lt (4.48)

Integrating in ¢ for ¢ < T, and using that 7(—¢) = 0, we obtain
7] < $ei,

proving the 7 bounds in (4.26a)—(4.26b).
Aa consequence of (4.24b), (4.8) and the bootstrap assumptions, by inspection we obtain

o] < 23 (yFVOV(s){ + ’FI?‘}(Q)(S)D < M3

assuming that M is taken to be sufficiently large (in terms of just universal constants). Integrating in ¢ from
—e to T, and assuming that ¢ is sufficiently small (in terms of M and ko), yields

|k(t)] < %/{0 .

This establishes the « bounds in (4.26a)—(4.26b).
Similarly, from(4.24a), (4.8) and the bootstrap assumptions, by inspection we obtain

‘5’ < ||+ |ZO(S)| +e3

Fp®| < §(m0 + M) < 3M

upon taking ¢ to be sufficiently small, in terms of M, and recalling cf. Remark 4.2 that 2o < M. Integrating
in t from —e to T}, which obeys |Ty| < 2¢°4, and using that £(—¢) = 0, we arrive at

()| < 5Me,
which proves the £ estimates in (4.26a)—(4.26b).
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4.6.4 Estimates for W/

The third derivative at z = 0. Our first goal is to establish (4.31). The evolution of 6§W0(s).is obtained
by restricting (4.17a) with n = 3 to « = 0, using the constraints (4.18), and the definition of ¢ in (4.24a).
We obtain (noting that 92 Fyyr also contains the term 05 W):

(as w1 ) e o - mm(s)) W (o)

Fyy?(s) (1-a)eiZ0(s) e 3(1-20)
e2(3 + 20) s
) (HAQM(S) —3e QAﬁx(S)) ~ (4.49)

We bound the terms of the above evolution using (4.8), (4.26b), (4.28), (4.31), (4.32), and (4.34). After a
calculation, we obtain that the right side of (4.49) is bounded by

<M <M2€—(%+5)5 i Me—(1+5)5> 1 Me 05 4 M2 (1H0)s 4 =3 (HOMQ—(%M)S 4 Me—(1+5)s)
g Me—68

where we have assumed ¢ to be sufficiently small such that the second term dominates all other terms. On the
other hand, the damping term on the left side of (4.49) may be estimated in absolute value, upon appealing
to the first inequality in (4.48), by

< Eieiés + Mefés + Me™$ < M@itss
for s > —loge. Therefore, by also appealing to the bootstrap assumption (4.31), we have proven that

00, (5)] < Me (W0, (s)| + 1) < Me .

Recalling that W2 . (0) = 6, and using the fundamental theorem of calculus in time, we obtain
S
/ M
’Wa[;)xx(s> - 6’ S MJ 6_68 ds' < 756 < 5% (4.50)
—loge

upon taking ¢ to be sufficiently small, in terms of M and ¢. Since € < 1, we close the bootstrap (4.31).

The first derivative. We prove (4.29) in two steps, first for || < ¢ for some ¢ > 0 to be determined below
(cf. (4.51)), and then for |x| > ¢. Using a Taylor expansion around x = 0 together with the constraints (4.18),
we obtain

1 3
Wa(z,s) + 1 — 322 = 2 <2W£m(s) — 3) + %Wmm(x’, s)

for some z’ with |2’| < |z|. Using (4.50) and (4.28) we arrive at

M 14
|Wx(xas) +1- 3-T2| < :EQ <5g + él‘|> < .’E2 <€g + 6>

for all |z| < ¢. Then, recalling (4.16a), we see that the above estimate implies

LL’2

— MY
_ < 2 s 1 2 <
(Wa(z,s) —Wa|<w (62 + 5 + 15¢ > )]
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for all |z| < ¢, as soon as we choose

1
40M’
M sufficiently large, and ¢ sufficiently small in terms of M and . Thus, we improve upon the bootstrap

assumption (4.29) for |z| < ¢, as desired.
It remains to establish (4.29) for |z| = ¢. For this purpose it is convenient to define

4.51)

S

W=w-W,

so that from (4.20a) and the differentiated form of (2.15), Wx is the solution of

W, +2W, (1-a)e3Z, \~ 3 W\ ~
<53+1+ i +( aje: >Wx+<gw+x+ )Wm

1—7 (1+a)(1—7) 2 1—7
_ W+ 7W \ — Wy (1—a)e2Z, \ —
_axFW_<gW+1_7._>Wxx_<1_7._+(1+a)(1_7._>>wz. (4.52)

Note that by (4.18) and (4.16a), we have W(O7 s) = WN/x(O, s) = V[r\//M(O7 s) = 0. Next, we define

Wa(l + 22)

Viz,s) = 5

x
so that establishing (4.29) is equivalent to proving that |V| < o for all s > —loge and all [z > £. Itis
important here that we are avoiding z = 0 (since we concerned with |z| > £), in view of the division by z2.
It follows from (4.52) and a short computation that

W, +2W, (1—a)e3Z, 2 3z W
ds 1 : : )V
V+< R +(1+a)(1—7')+x(1+x2)(gW+2+1— >)
3x w
*(W*ﬁm)vx
~ (L+ 2?0 Fw N W\ A+ 2 )Wae  (iWe | (1—a)e2Z, \ (L+2°)W,
B x2 IW TS x2 1-7 (Q14+a)(1—7) x2
1 +2)Wa (., ,. @)? .,
- V() —— _da' 4.53
1—7 x? 0 (x)1+(x/)2 v @.53)

The evolution equation for V' takes the form of a damped and non-locally forced transport equation, of the
general form given in (A.3) below. Our goal is to apply Lemma A.2 to (4.53).

The main observation which allows us to bound the solution V' of (4.53) is that the explicit formula for
W in (2.14) implies the lower bound

_ 2 3r | — 6>
1+2 — | = z —— 4.54
* Wx+x(1+x2)<2+w> 14 822 (454)

for all z € R. Since we are analyzing || > /¢, the above estimate yields a strictly positive damping term in
the V' equation. In order to see this, let us estimate the remaining terms in the damping factor for V' on the
left side of (4.53). We claim that for all || > ¢, we have that

512
< —
4(1 + 822)

[MIY)

+e (4.55)

1—7

ﬁ§+2ﬂvz+ (1—a)e3Z, 2 L. W
17 Q+a)1—7 " z1+a22) IV
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Indeed, using the 7 estimate (4.26b), the fact that ‘Wx| < 1, and the bootstrap assumptions, we deduce that

W, + 27W, (1—a)esZ, 2W 1 322 1 5
<420 [ —22 _ foci4 M
-7 Gra0-7 a9 SUHE) paam H20+Me
2
ST oM (4.56)

< —
4(1 4 822)

since ¢ is sufficiently small. Here we have used that 17/(0, s) = 0, and thus that

— 1 |z (a:')2 72
Wo(a, 8)| da’ < J da’ < |
@9l dr < oAy | T o™ S a1 a9

2W (z, s)
z(1 + 22)

9 ||
<
] (1 + 22) L

Similarly, using the constraint (4.18) and the bound (4.32), we may directly estimate

217W (z,s)] - de
r(1+22)(1—-7) =z

1o )
f (Wa(a,s)| da’ < 4e7 . (4.57)
0

Recall the identities (4.25) and (4.21). Note that by (4.34) we have |Z(z, s) — Z%(s)| < M|x\ef(%+5)s.
Then, by appealing to (4.8), (4.34) and the constraints (4.18), we may deduce that

(1 - a)et )
—Qa)ez

lgw (z, 5)] < — | Z(x,s) — ZO(S) +
-l W)
< lal Me™® + |0 iy | o + €% |23
< |z| Me™% + M%e™% + Me™%¢

SOIM x| e (4.58)

ol

for any ¢ < |z|. Choosing ¢ sufficiently small in terms of ¢ and M, and combining (4.56)—(4.58) yields the
proof of (4.55). In turn, combining (4.54) and (4.55) we obtain that the total damping term in (4.53) may be
bounded from below as

1+

~ I _ s 2
Wy +2W, (1—a)e2Z, 2 < 3z W >>2( J (4.59)

1—7 1+a)(1—=7) =z(1+a2?) 1+ 8z2)

. . . o . s 2 2 .
pointwise for all [z| > ¢. Here we have implicitly used that e2 < & < Tiisem for |z| = ¢ since by

(4.51), £ is small enough when M is large. From (4.59) and the fact that the function is monotone

92
2(1+8x2)
increasing in |x|, we obtain that the damping term in (4.53) is bounded from below by A\p :=
all |z| > ¢, as required by (A.4).

Our next observation concerns the last term on the right side of (4.53), which is nonlocal in V. We may
write this term as the integral of V' (2, s) against the kernel

for

9¢2
2(1+8¢2)

1 (1+22)W ()

x/ 2
3 10,01 (2") &)

K(z,2',s) = —

1—7 T

Since we know W, exactly, we may show that pointwise in x and s we have the bound

T 2y rlzf ! 1a
[Wae| (1+ 2 )J (a)? ., _ 3(1+2e)a? (4.60)

K(z,2',s)|dx’" < . <
Jolte e < S | e < S
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In view of (4.59), (4.60), and the bound 3(1 + 2¢"/*) < 9/2 - 3/1, which holds since ¢ is sufficiently small, the
kernel KC obeys the assumption (A.6) of Lemma A.2.

Next, we estimate the forcing term in (4.53) for |z| > ¢ in order to identify the constant Fy from
Lemma A.2. Indeed, using the explicit properties of W, the first line on the right side of (4.53) is bounded
from above by

‘1 + 22 w H(l + 22)W 1y
Lo (|z|=0) z

+ 2] +217]
Lo (|z]>0) T L™ (Jz|=0) x

A s 1+2)W,
+2 (11 [We | o + €2 12 1 ) H(;)

Lo (|z]>0)

|x|=£

— gw . _ . s
S e s PP L B (G B AT

L (a0
1 1

<O 2M%e 5 + 0 Me %% 4 o1+ 0721 + Me_‘ss)

< 072 M0

where we have employed (4.8), (4.26b) (4.34), (4.58), and assumed ¢ to be sufficiently small, dependent on
M. Therefore, taking ¢ smaller if need be, the estimate on the force required by (A.5) in Lemma A.2 holds,
with F = ¢3.

Lastly, we verify the bounds (A.7). We already know that for |z| < ¢, and for s > — loge, we have the
inequality |V (z, s)| < 1/40. Moreover, in view of the assumption (4.3), at the initial time s = —loge we
have that ze2 = 6 and thus

1+ 22 — g3 + 02 — (0 1
|V (z,—loge)| = —5— ’Wm(x, —loge) — Wz(x)} = —5— |e(dpwo)(0) — W <3> < —.
T 0 €2 40
Thus, (A.7) holds with m = 1/20.
In order to apply Lemma A.2 we finally need to verify the condition (A.8). In view of our determined
values for A\p, Fy and m, we have

N

1 902
> 4e

Ap = o >
TAD T 502(1 + 82)

— 4Fy

once ¢ is chosen to be sufficiently small, in terms of ¢ < 1 (and thus of M). Also, note that by Remark 4.3 we
have that W, is compactly supported, while from (4.16b) we have that W, decays as |x| — c0. Therefore,
we have |V (z,-)| — 0 as |x| — 00. We may thus apply Lemma A.2 and conclude from (A.9) that

3
V S - < —
IV )o@ < g5
which proves the bootstrap assumption (4.29).

The second derivative. We note that from (4.28), the constraint W,.(0,s) = 0 in (4.18), and the bound
(4.50), we obtain that

2
Waa(@,5)| < [0 Waza (0,5) + 5 [02W] .0
M 2 _ 7z

1
Tt T forall z] < —, 4.61)
2 (1+$2)% =1 M

< (6+¢3) 2| +

and all s > — loge. Here we have assumed that M is sufficiently large. This shows that (4.30) automatically
holds for |z| < 1/m, with an even better constant.
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Next, we observe that (4.2) implies |02W (-, —log 5)HLoo < 1land |[0iW (-, —loge)| < 1. Using (4.1),
and a Taylor expansion, together with the uniform bound (4.2), we conclude that

W (z, —loge)|| <min{6|ﬂ:|+x2 1} <A (4.62)
LA = 277~ (1+ 22)1/2 )
for all z € R.
Similarly to the above subsection, in order to prove (4.30) for |z| large, we introduce a new variable
which is a weighted version of W,.; we define

21
V() = L) xW”(x’S) . 4.63)

From (4.20b), we see that V (z, s) is a solution of

o+ §+3Wx+2(1—a)e§Zx 1 L3, W _ B+20)eA ) &
: 2 17 At -7 20+ \M T2 1) T Ura)l-7)
3x w
6_%(14-%2% _s _s
=~ aiP ((1 —20)(AZ)gs — (3 + 20) (Am(e SW + k) + 2¢ 2AIWI>>
_ s 2\ 1
! a)e2(1+x)2Zme' 4.64)

Here we have used that 02 Fyy- contains a term with a factor of W,; the corresponding weighted term has
been grouped with the other damping terms on the left of (4.64). The idea is simple: the damping term in
(4.64) is larger than the forcing term, for all || > 1/Mm, once ¢ is chosen sufficiently small.

In order to make this precise, we first estimate the damping term from below. The main observation is
that for the exact self-similar profile W, we have

s S 1 3T — x?
2 (2 > T 4.65
2+3W +x(1+x2)(2+w) 1+ a2 (4.63)

for all z € R. This bound is similar to (4.54), and it holds because we know W precisely. Using the estimates
(4.8), (4.26b), (4.32), (4.34), (4.58) and (4.65), we thus may bound from below

5, 3We  201-a)e3Z, 1 (gw 3 W \ (3+2)c°A

2 1-7 (14+4a)(d-7) 1422\ =z 2 z(l—17) I1+a)(1—7)

> T — (3 +6¢1) |W _OMe - Cﬁ—lM—‘*+ﬁ —CMe™* (4.66)
T 1422 c v © 1+ 22 ¢ x ¢ '

where C' > 0 only depends on «. Using (4.29) and the fundamental theorem of calculus, we have

1 ~ 1 W 31}2 1 1 ’ y2
3+ 62%) [Wo| + —— | = | < s + ¢
@+ 6h [T+ || < me o AT s mae y’
« T Lk
< —F 4
51+ 22 ©
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where we used that ‘1;—?2 Sg fi‘;% ’ < 1 for all z € R. Taking ¢ sufficiently small, depending on M, «, 6,

we may thus bound the right hand side of (4.66), and thus the total damping terms on the left side of (4.64),
from below by

422 5 1
2

= m — €2 =2 —— for all |$| = (467)

2M?2 M’
upon taking € to be small enough in terms of ¢ and M.

Similarly, for |x| > 1/m the forcing term on the right hand side of (4.64) may be bounded by

s (1 + 2)3 s s 3 1+ ZyxWy
< 3L T)? (142 sl + (|Aua] (€7 [W] + ) + €75 | A W2 ) ) + ALt at)} |
|z |z
1+ 22)2
< (M2~ + MMS)W < M2e% (4.68)
x

where we assumed ¢ to be sufficiently small dependent on M.
To close the bootstrap, we wish to apply Lemma A.2 (with IC = 0) to the evolution equation (4.64).
Using (4.61) and (4.62), the condition (A.7) is satisfied with m = 14 and Q = {z : |z| < 1/m}. From

(4.68) we verify that (A.5) holds with Fy = sg, after talking ¢ to be small enough to absorb the implicit
constant and the M? factor. Owing to (4.67), the condition (A.8) then amounts to checking

1
DR

|
SIS

14

which is easily seen to be satisfied by taking ¢ to be sufficiently small, dependent on M. Applying

Lemma A.2 we obtain 21
V. =5 <0
L 2

which closes the bootstrap (4.30) upon recalling the definition of V in (4.63).

The fourth derivative. The evolution of the fourth derivative of W is governed by (4.17a) with n = 4. The
damping term in this equation may be bounded from below as

11 5 11 . .
S+ T W + 40w > o =51+ 26%) (1+ 4¢3 [012]) .. )
11 1
> 5 —5(1+2¢4) (14 4p2%) = T (4.69)

where we have used that |W,| < 1, ¢ is sufficiently small, and (4.34) holds. On the other hand, the forcing
term F? may be estimated using (4.26b), (4.27), (4.28), and (4.32)~(4.34) as

3
AETEW + )|, + W e [W e + Y W lew 3 12154

HFV(;”HLOO S e 5 |AZ|pu+ et
k=1

2 —s 3 T —8s 3
SMe "+ Mi4+ Mie™® < Ma (4.70)

assuming € to be sufficiently small dependent on M. Appealing to Lemma A.l, estimate (A.1), with
Arp=0,A\p =1/4,and Fp = C M7 where C is the (universal) implicit constant in (4.70), we arrive at

M
o <[ AW (., —loge)|,., e T¢I L ACMT <14 40MT < @.71)

o s :

I
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for any s > — loge. In the second inequality above, we have used the initial datum assumption (4.2) on the
fourth derivative of the initial datum, while in the third inequality we have used that M is sufficiently large,
in terms of the universal constant C'. This estimate proves the fourth derivative bound in (4.28).

Global bound for the third derivative. Using the mean value theorem and the bound (4.71) we have
|sz:p(xa 3) - szft(oa 5)| < |:E‘ M

which may be combined with (4.50) to arrive at

W

M 1
|Waze(z,8)| <6+ es + |z| M < for |z] < ; (4.72)
2 AM s
and all s > —loge, assuming M is sufficiently large. At the initial time, in view of (4.2), the estimate
3
Mz
[Wase(z, —loge)| <7< =5 4.73)
holds for all z € R. We next claim that
3
3M14
[Waga(2, s)| < 4 (4.74)

holds for all s > —loge and all |z| > 1/(4M'/*). The estimate (4.74) would then immediately imply the
bootstrap assumption for the third derivative in (4.28). The proof of (4.74) is based on Lemma A.2 (with
K = 0), and a lower bound on the damping term for the 03W evolution.

We recall from (4.17a) with n = 3, and carefully computing the forcing term F; (3), that

W, 4(1 —a)e2Z, _ (3+2a)e*A ) 4 3z w 4
(a MR SR LU we-e vy v s Sl s ey e ) AU AU i w) L
- A0 =F 1_7) (3 +20) (2 (e—%WH)+3e—%a§AazW+3e—%aan§W) —(1-20)8%(42))
I+a)(1—7) )(1— 7) -7\ -

holds. In order to prove (4.74), we first estimate the right side of (4.75). From (4.8), (4.26b), (4.28), (4.32),
and (4.34), we may directly estimate the error term on the right side of (4.75) in absolute value by

< MZ%e7% 41 (4.76)

assuming M is sufficiently large, and ¢ is sufficiently small, dependent on M and 4. Returning to the
damping term in the evolution for 03W, for any x and any s > — log ¢, we have that

W, 41l —a)e2Z, (3+2a)e"A

4(1+ 0, W) + — + ; ;
( ) 1—-7 (1+a)(1-17) ( a)(1—17)
al1+W s 2ch _8M Mz 3
T 201 +a2)) © T Tvar ¢

Above we have appealed to (4.8), (4.26b), (4.29), (4.32), and (4.34), and have taken ¢ to be sufficiently
small, in terms of M and é. In the second inequality above we have also appealed to the pointwise estimate

1+ W, W > 0 holds for all z € R. Now, for|m|>1/(4Mi)we obtain that
W,  4(1—a)ezZ 3+2a)e A 1 1
11+ o,w)+ We M -a)erZy  (B+2a)e A > @)
L=7 (+a)l=7) (@+a)1=7)" 14+16M2 32M>
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upon taking ¢ sufficiently small, solely in terms of M and J.

We return to (4.75) with the information (4.76) and (4.77) in hand. In view of (4.73), we know that at
the initial time and on the compact set Q@ = {z: |z| < 1/(4M %)}, the inequality (4.74) holds, with the
constant 3/4 being replaced by the constant 1/2, i.e. condition (A.7) is satisfied with m = M i Moreover,
from (4.76) and (4.77), condition (A.8) amounts to checking

1
32M2
where C'is the implicit constant in (4.76). This condition is true so long as M is sufficiently large and ¢ is

chosen sufficiently small, dependent on M. Hence we may apply Lemma A.2 to deduce that (4.74) holds
forall s > —loge.

> 4(CM3° +1)

]

M

4.7 Proof of Theorem 4.10

In this section we show that the already established bootstrap bounds (4.26a)—(4.34), together with a num-
ber of a-posteriori estimates give the proof of Theorem 4.10. First, we note that from (4.12)—(4.13), the
definition of T in Remark 4.9, and (4.26a)—(4.34), we obtain that the solutions (w, z, a) remain C* smooth
at all times prior to T%. Second, we remark that (4.18) implies dpw({(t),t) = e*W,(0,s) = —e®, while
(4.32) yields ||Opw(-, t)||; < €. These bounds prove the claimed blowup behavior of dgw as ¢t — T, upon
recalling that e® and 1/(Ty —t) only differ by a factor < 2. Third, we notice that the claimed ¢ dependent
bounds on T} and 6, were established in Remark 4.9, while Remark 4.2 (see also estimate (4.78) below)
give the claimed amplitude bounds for (w, z, a).

It remains for us to prove that | dpa(-, )| w. [w(:,t)] s, and |dpz(-, t)| ;- remain uniformly bounded
on [—¢, Ty), that the claimed upper and lower bounds for the vorticity hold, and that the lower bound for the
density also holds. In Proposition 4.10 below, we prove the desired vorticity, density and dga bounds. The
uniform-in-time Holder C''/* bound is more delicate and it does not directly follow from the proven bootstrap
estimates. Rather, to establish this C'/* bound, we use the second estimate on the right side of (4.91) and
prove that it can be propagated forward in time, in self-similar variables. This is achieved in Section 4.11.
As explained in Remark 4.11 below, these improved bounds on the blowup profile W as |z| — o, imply
the desired Holder estimate. Using this information, we prove in Section 4.7.3 that the distance between
the Lagrangian flow of the transport velocity in the z equation and £(¢) remains too large as t — T, for a
blowup to occur; namely, this distance is O(Ty — t) instead of O((T, — t)*?), which in turn implies that
Opz remains uniformly bounded all the way up to the blowup time 7.

Finally, once these a posteriori estimates for (w, z,a) as well as for w and P are established, the esti-
mates for solutions (u,, ug, p) of the Euler equations (2.1) immediately follow from the the definition of the
Riemann variables (2.9) together with our homogeneity assumption (2.6) on the solutions. We note that the
blowup segment I'(7% ) is the natural extension of the blowup point 6, in the radial direction.

4.7.1 Density, vorticity, and dga bounds

Proposition 4.10. Let vy, ko, M, €, and T} be as in the statement of Theorem 4.4, and assume that (wy, 2o, ao)
satisfy the bounds (4.1)—(4.6). Then, we have that the L™ bound (4.8) holds, and additionally that the bounds

1
% <SPO.)<M, 5 <w@n) <M, |da(0,0)] <3M>,

hold for all 0 € T and for all t € [0, T).
Proof of Proposition 4.10. From (2.11) we see that any ¢ € {w, z,a} satisfies an equation of the type
o + AMw, 2)¢’ = Q(w, z,a) where @ is an explicit quadratic polynomial which obeys |Q(w, z,a)| <
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Cq(max{|w|,]|z|,]al})? for some constant C,, that only depends on «, and ) is a speed that is explicitly
computable in terms of w, z and «.. Recall that our initial datum assumptions imply %02 < wg < 3%0/2 on T,
and that | 29|y« + [|ao| ;. < 1. From the maximum principle for forced transport equations, upon recalling
that |7, | < e, and upon taking ¢ to be sufficiently small, we deduce that

Ko

g Swtt)<2h0 26l <20 ol t)]pe <2 (4.78)

for any ¢ € [—&,Ty). The above estimate shows that (4.8) holds as soon as M > 4 + 2k, as claimed in
Remark 4.2.
Since P = (§(w — 2))"*, from (4.78) we deduce that

sup  |P(, )| poery < (o + 1)) < M, (4.79)
tE[—E,T*)

upon taking M to be sufficiently large (in terms of « and kg), and moreover that
PO,1) = (3 (5 -2)" =2 >0 (4.80)

forall @ € T and t € [—¢, T4 ), by appealing to the lower bound (4.7) on k¢. The above two bounds give the
desired density estimates.

Next, we consider estimates related to the vorticity. Since wg = 2by — dgpag = wo + z9 — gay, from
(4.4), (4.7), and (4.7) we deduce that

5L 2 < wp < 20 +2 < 26,
and since wg = %8, from (4.79)—(4.80) we obtain

KQ_ 4rg
4M <w0 v

A

Furthermore, from equation (2.8), we have that o obeys a forced transport equation, and upon composing
this equation with the flow of b, and exponentiating, the standard Gronwall inequality and the previously
established bound (4.78) imply that

Fo o Fo -2 gy < 202 8Ro forall — te[—e,Ty)

— X € o X Wi, X — € x—, < .

SM 4M IZ40) 140} *
Here we have used that ¢ is taken sufficiently small in terms of «, kg, M and ry. Combining the above
bound with (4.79)—(4.80) and the identity w = w P, we deduce that
8HOM

1 Koo 2
Wg 16M<w(-,t)< ” <M<, for all te[—e Ty,

which is the desired vorticity upper and lower bound. Here we have assumed that M/ may be taken to be
sufficiently large, in terms of k¢ and 1. Finally, since dpa = w + z — w we deduce from the above bound
and (4.78) that

|dgal-,t)] oo < 2k0 + 2 < 3M?, for all te[—eTy), (4.81)

upon taking M sufficiently large, in terms of k¢ and 1. O
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4.7.2 Sharp bounds for W and W, as |x| — oo and Holder 1/3 estimates

From the bootstrap assumption (4.29) we know that as || — oo we have ‘WN/}C

= ’Wx — WJ;‘ < 1/20. Note,
however, that (4.16b) implies the asymptotic behavior |x2/3Wx’ — 1/3 as |x| — o0. Our goal is to show
that in fact IV itself also has a |x|72/ * decay rate as |z| — oo, uniformly in s. To prove this, we show that

this asymptotic behavior is valid for Wx, which we recall satisfies the evolution equation (4.52). In order to
normalize the behavior at infinity, we consider the function V defined as

V(z,s) = (&P + 8)Wy(z, ), (4.82)

where the translation of 2 by 8 will be explained below in the course of the argument. Our objective is to
show that

V(- 8)| 0 <1 (4.83)

for all s > —loge. We remark that at the initial time s = — log &, we have

6°3
|V(z,—loge)| = —+ 8

in view of assumption (4.3) on the initial datum. Additionally, note that by (4.29), we have

£(2pw0) (0) — (W) (f/)‘ < % forall  zcR,

2(,.2/3
xé(x?° +8) 1
<TE T2 forall <2, 4.84
and thus (4.83) is automatically satisfied with a better constant (1,2 instead of 1) for |z| < 2.
Similarly to (4.53), a simple computation shows that V' satisfies

~ 2:% (3 W4+ W 3z W
s 1+ We+2W, — ——— | = v,
V+< + We + 3 1 3) <2+ . >>V+<gw+2+1_T>V

(2 B W 23 = TWa (1-— a)eme 2/3 —
(SU +8)81FW <gW+ 1_7-_> (SU +8)sz (1_7._4‘ (1+Oé)(1—7.') (SU +8)Wx

F(Wy +2W,) + %G%Zx 9,23 W aw
- = ( + V

1—7 3 +8) \(1—7)z =z
1 — * 1

It is convenient to rewrite (4.85) schematically as
ee}
0sV + D(x, )V +U(x, s)Vy = Fi(z,s) + Fa(x,s) + J V(' s)K(z,2',s)dx’ (4.86)
0

where D and U are determined by the first line on the left side of (4.85), the forcing term 7 is given by
the first line on the right side of (4.85), the forcing term F3 is given by the second line on the right side of

(4.85), and K is defined by the last line of the V evolution as K(z, 2, 8) = — 1= (27 + 8)W 4 (2) L[;,))é}fig )

The argument fundamentally consists of a comparison between the damping term D with the Li,—norm of
the kernel K, similar in spirit to the one used to prove Lemma A.2.
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Using the fundamental theorem of calculus, the fact that W(O, s) = 0, and the bootstrap assumption
(4.83), we obtain the following lower bound on the damping term:

D(z,s) =1 -

_ 2073 (3 w1 Jx dx’

W, — ———— ————— ) =: Dupper
3(x%5 + 8) o (z) + 8) pper (7)

1
x2/3 +8 2 x =z

On the other hand, using our bound for 7 (4.48), we have that

.CL'/

lzl g
/ / 1/4 2/3 A7 .
JR ‘K(m,x ,s)| dx’ < (1 +2e7)(z™7 +8) ’Wm(x)’fo 7@/)23 et Diower () -
The choice of the translation constant 8 in the weight appearing in (4.82) was chosen so that by letting € be
sufficiently small, we ensure that

0 < Diower(z) < Dupper(z),  forall |z > 2. (4.87)

While, in fact, Digywer(z) < %Dupper(x) for |z| > 2 as required by (A.6), the reason we cannot apply
Lemma A.2 is that for || » 1 we have Dypper () = 52~ + O(|z| "), and so we cannot obtain a uniform
in x lower bound on the damping, as required by (A.4). Nonetheless, we will still apply an argument similar
to the one used to prove Lemma A.2.

Next, we estimate the forcing term 7. The most delicate term is the one due to 0, Fyy, which is bounded
using (4.83) and the support property discussed in Remark 4.3, as

H (2™ + 8)63;FWHLOO <e P

(1’2/3 + 8)&1«(142) HLOC + 6—5/2

(™ + 8)&%14HLOO He_S/QW + HHLOC

)

where the implicit constant depends only on «. The remaining forcing terms are easier to estimate since we
already know the decay rates W, = O(|z|~*) and W, = O(|z|~*) as |z| — oo. Using the available
estimate (4.48) for 7, the bound (4.38) for 0.7, and the third line of (4.58) to bound gy, after a computation
we deduce that the total forcing term may be estimated as

+ e Al o (1 + H(x% + 8)WW,

< M?%e7%5 4 Me™*

| Fi(, )] e < OM%e™% + CMe™® < e (4.88)

by choosing ¢ to be sufficiently small in terms of M and the constant C' which only depends on «. Similarly,
we have that

1F2( 8) | oo (fafz2) < e, (4.89)

which follows from the previously established properties of 7, W, W, Z,, and gy, after choosing ¢ to be
sufficiently small in terms of «, , M.
In order to conclude the proof of (4.83), we claim that
3

V8l < 5 (490)
which would show that the bootstrap assumption (4.83) holds with an even better constant (3/4 instead of 1),
thereby closing it. If (4.90) were to fail at some time s; > — log ¢, by continuity in time there exists a time
sp € (—loge, s1) such that |[V(-,8)| e = [[V(-,50)] o = /8 forall s € [sg,s1]. Then, for s € [sg, 51) we
may evaluate (4.86) at the global maximum of |V|, which is ensured to be attained at a point x,, = 4 (s)
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with || > 2, since W, is compactly supported, (z7* + 8) [Wa| — 13 <5 as x| — o0, and (4.84) holds.
Without loss of generality, let us consider the case when V(z,(s), s) is the global maximum for V (the case
of a global minimum is treated similarly). At this maximum point ), vanishes, and using (4.87) we obtain

D(x+(s), s)V(24(5),5) = Dupper(x(5)) [V(- 8)] 1
= Diower(2(5)) [V (-, 8)| o = U K(zy(s),2',s)V(2', s)dx’| .
R
Therefore, at x,(s) the second term on the left side of (4.86) dominates the third term on the right side of

(4.86). Next, via a standard Rademacher argument (applicable since V is smooth), and using the bounds
(4.88)—(4.89) we obtain that a.e. in s

d —ds
Z IV 8) e < 267
Using that by assumption |V(, so)| ;. = /8, we integrate the above inequality for s > sy and deduce that

IV(08) e < (5 + 1)es=” —1 <34

for all s > sp > — log e, upon taking € to be sufficiently small. This provides the desired contradiction and
thus (4.90) holds, concluding the proof.

Remark 4.11 (Uniform Holder bounds). Estimate (4.83) and properties of the function 1, imply that

2

\Wx(x,s)| < ﬁ

+|Walz)| < 4.91)

B + 8
forall z € Rand s > —loge. Since W (0, s) = 0 for all s, integrating the above estimate in x we arrive at
W (z,5)] < 6| (4.92)

for all z € R and s > — loge. The bounds (4.83)—(4.92) imply that w € L®([—e, Ty); C'3(T)). To see
this, consider any two points 6 # 6’ € T. Accordingly, define the points x = (QT__%QQ #1 = (97:5)(;/)2 by the

scaling (4.12). Due to the description (4.13) of w we have that

lw(0,t) —w(@',t)]  |W(x,s) —W(',s)]
10— o|'" - |z — a!|'® . (499

At this stage we remark that when 2’ = 0, and x is taken to be arbitrary, the bound (4.92) implies that the
right side of (4.93) is bounded by 6 uniformly in s. To consider the general case of x # z/, we combine
(4.91) with (4.32) to deduce that |W,(z, s)| < (1 + 22)~"/ where the implicit constant is universal. Then,
using the fundamental theorem of calculus we estimate

_ / z 2\—1/3
aup Wlzs) =Wt G (L )y

S <1
>z’ |.’IJ — $,’1/3 >z’ (IE - .’13/)1/3

where the implicit constant is universal, and is in particular independent of s. This concludes the proof of
the uniformy in time Holder 1/3 estimate for w. It is not hard to see that C'* Holder norms of w, with o > 1/3
blow up as t — T} with a rate proportional to (T} — )" ~**/2,
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4.7.3 Bounds for dyz ast — T,

In view of the relation gz = €2, Z, and the already established bound (4.34), we have that | 2(-, )| ;o <
2M (T — t)~ 9, for t € [—¢,Ty). Here we have used that

Q=™ (Tu—t)<7(t) —t < (1 +e/) (T — 1), (4.94)

which is a consequence of Remark 4.9 and the identity 7(t) —t = ¢ — St_s(l —7) = Sf* (1 — 7), and the
fact that 7(¢) — t = e~°. We may, however, show that dygz remains in fact bounded as ¢t — T.
Upon differentiating (2.11b) with respect to 8, we obtain

<5t + (z + i—iw) 89) (0g2) = ((992’ + 1+°‘59w) (Ogz) — 11+23a(59w) 3+2°‘ a(0pz)
— =z 00a((1 = 20)w + (3 + 2a)z) . (4.95)

Note that by (4.78) and (4.81), we know that a, z, w, and dypa remain uniformly bounded in L*(T) over
[—¢,T%), and so we may think of these terms as constants in (4.95). Moreover, since |0p2o ;- < 1, the
term —(0pz)? on the right side of (4.95) cannot by itself cause a finite time singularity in time O(¢). The
blowup of Jypz could only be caused by the terms involving dpw on the right side of (4. 95) speciﬁcally the

—172(092)(dpw) term is dominant near a putative singularity of dgz. Indeed, |Opw| 0 = € [Wy|| . =

e® = (12)(Ty —t)~ !, and so S [Opw(-,t)| ;e = 400, which could be sufficient to cause a singularity.
Our main observatlon is that if we compose (4.95) with its natural Lagrangian flow (,, (t), defined as

%CQO (t) = Z(Cﬁo (t)’ ) + mw(@'o (t)vt) ) <90(_8) =bo, (4.96)

then the quantity XT"; Opw(Cp, (t),t)dt is the relevant one to study for bounding |0pz| ;.. We claim that as
t — T the quantity |Ogw((p,(t),t)| does not blow up at a non-integrable rate. Once the claim is proven,
standard ODE arguments imply that the solution dgz of (4.95) remains bounded in L* as t — T.

For the remainder of this proof we drop the subindex 6y of (g, (it is frozen) and we use e~ * and T} — ¢
interchangeably as they are comparable up to a factor of 1 + £'/* by (4.94). By the definition of T in (4.13)
and the previously established bound (4.91), we have that

3s

W, ((C(t) - 5(75))67,3)’ < T*l_t (1 - W) o (4.97)

20w ((2),B)] = ¢ 7

Consider the case that {(T) # £(T%). Then, by continuity, |((t)—&(t)| = ¢ for ¢ sufficiently close to T.
Therefore, from (4.97), [Opw({(t), t)| is bounded. Otherwise, ((t)—{(t) — 0ast — Ty. Our goal is to show
that there exists a constant ¢, such that for all ¢ sufﬁciently close to Ty we have |((t) — &(t)| = c«(Tx — t).
Once this claim is established, it follows from (4.97) that S |Ogw(¢(t), )] dt < o, as desired.

It remains to prove the claimed lower bound for ¢ — £. Using the definition of {(¢) in (4.96) and the
definition of § in (4.24a), we derive that

¢(t) — &(t)

Il
Iy
—~
~—
—
CA
—~
S
~—
S
~—
|
==
+‘I
QIR
g
—~
LA
—~
S
~—
S
~—
IS8
hS

= Li(t) + Ix(t) — Ls(t) (4.98)
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where e=* = 7(t') — t'. From (4.26b) we deduce that I, (t) > 152 (Ty — t), upon taking € sufficiently
small in terms of M and kq. It is essential here that o > 0, i.e. v > 1. Using (4.78) we immediately obtain

that | I2(t)| < ﬁ(T* — t). Lastly, using our bootstrap assumptions and the estimate (4.92), after a tedious

computation we deduce that the integrand of /3 may be bounded in absolute value as < e 9 < (T — 1 )5,
and therefore |I3(t)| < (T —t)'+° < €9(Ty — t). We collect the above estimates and insert them in (4.98),
to deduce that |¢(t) — £(t)] = 22 (T, — t) — 25 (T — t) > 135 (T% — t), by taking rg sufficiently large,
in terms of . As discussed above, this lower bound concludes our proof for the boundedness of dyz.

5 Concluding remarks

By considering homogeneous solutions to the isentropic 2D compressible Euler equations, and using a
transformation to self-similar coordinates with dynamic modulation variables, we have proven that for an
open set of smooth initial data with O(1) amplitude, O(1) vorticity, and with minimum initial slope —1/,
there exist smooth solutions of the Euler equations which form an asymptotically self-similar shock within
O(e) time. Our method is based on perturbing purely azimuthal waves which inherently possess nontrivial
vorticity, and thus, our constructed solutions have O(1) vorticity at the shock, as well as a lower-bound on
the density, so that no vacuum regions can form during the formation of the shock singularity.

A key feature of our method is that the purely azimuthal wave is governed exactly by the Burgers equa-
tions (as demonstrated for the special case that v = 3), and thus our construction uses precise information
on the stable self-similar solution W of the Burgers equation. This allows us to provide detailed information
about the blowup: by using the ODEs solved by 7(¢) and £(t), it is possible to compute the exact blowup
time and location for our solutions to the 2D Euler equations. Moreover, we have shown that the blowup
profiles have cusp singularities with Holder C /3 regularity.

We have shown in Remark 3.3 that in the case that v = 3, the first singularity can be continued as a dis-
continuous propagating shock wave for all time.? In fact, we believe that the solutions we have constructed
have this type of continuation property for general v > 1.

Conjecture 5.1. Given that the asymptotically self-similar shock solutions constructed in Theorem 4.4 form
aC's cusp at the initial blowup time ¢ = T, these solutions can be continued for short time as propagating
piecewise smooth discontinuous (possibly non-unique) shock profiles which solve the Euler equations on
either side of the time-dependent curve of discontinuity, and the evolution of this shock (or discontinuity) is
governed by the Rankine-Hugoniot conditions.

The solution we have constructed consists of a sound wave which steepens and shocks in the azimuthal
direction as well as the azimuthal velocity which also steepens and shocks in the azimuthal direction. The
radial component of velocity can steepen in the azimuthal direction but does not shock.

Conjecture 5.2. Suppose that (p, u,, ug) denotes the solution to the Euler equations given in Theorem 4.4.
Then at the first blowup time ¢ = T, the variable dgu, is Lipschitz and no better. In turn, let ©2(¢) denote
the material curve defined in (2.13). Then 0€2(7}) forms a corner singularity.

A Toolshed

Lemma A.1. Assume that the function f = f(x, s) obeys the forced and damped transport equation

Osf +Df +Uf =F

3Note that even the purely azimuthal shock solution has vorticity, and this is extremely important for the shock continuation
problem as initially irrotational flows can generate vorticity after the shock [7].
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for s € [so,0) and x € R. Assume that U, D and F are smooth, that
inf D(z,8) = A\p

(z,8)ER X [s0,00)

for some Ap € R, and that
IF 8 on(y < Foe ™A

forall s = s, for some Fy € [0,0) and A\p € R. For A\p < A\p the function f obeys the estimate

- S—Si ‘F —S
7 )gm < IS0l €207 4 emodr, (A1)

forall s = sg. On the other hand, for A\p > A\p, we have

—Ap(s—s Foe sorr —Ap(s—s
17 )l < 1o slm €00 4 S0 mntem). (A2

forall s = sy.
Proof of Lemma A.1. Let dstp = U o1 for s > s and ¥(z, s9) = x. Then (eszo(pow)dsl(f o w)) =

esio (Doy)ds’ (F o 1)), from which it follows by integration that

f(x,8) = f(z,s0)e S (Pov)dr J e S P (F o )ds

S0

From this identity, the inequalities (A.1) and (A.2) immediately follow. ]

The following lemma is a version of the maximum principle which is tailored to the needs of this paper.

Lemma A.2. Assume that the function f obeys the damped and non-locally forced transport equation
&ﬂ%@+9m@ﬂ%$+uw$%ﬂ%®=fm$+ff@ﬁ%@ﬁ%ﬂf (A3)
R

for s € [sp,0) and x € R. Assume that the drift D, the transport velocity U, the forcing F and the
kernel IC are smooth functions, and assume we are given that the solution [ decays at spatial infinity:
lim e |f(z,s)| = 0. Let Q = R be a compact set, and assume that on its complement the damping obeys

inf D(xz,s) = Ap >0 (A4

(z,8)€Q2° % [s0,00)
and that the forcing is bounded as
[ (s 8)) poo ey < Fo < 0 (A.5)

for all s = sq. For the kernel K we assume the estimate
f ‘IC(:L’,SU/, s)‘ dx’ < %D(x, s) for all (x,s) € Q° x [s0,00). (A.6)
R

Then, if for some m > 0 we have
15 50 ooy < 30 and 1£Co8) Lo () < 3 (A7)
and the the forcing-to-damping relation
mAp = 4Fp (A.8)
holds, then the solution f obeys
1) ey < 3m (A9)

forall s = sp.
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Proof of Lemma A.2. Assume for the sake of contradiction that (A.9) fails. Then, by the smoothness of
solutions to (A.3) and the assumption that the solution f vanishes as || — oo, there exists a first time s, and
alocation x, such that | f (s, )| = 3m/a. In view of (A.7) we must have x, € Q°. We may first assume that
1 attains its global maximum at this point, i.e. that f (s, x,) = 37m/4. By the minimality of s,, we must have
(0sf)(z4,8¢) = 0. We will prove that the opposite inequality holds, thereby contradicting the existence
of the breakthrough point (x, s«). For this purpose, evaluate the forced and damped transport equation
at (x4, S«), and note that because f attains its global maximum at this point, we have 0, f (4, sx) = 0.
Additionally, from the assumption on the kernel, we have

f f(@ 8:)K (2, 2", 54)da’| < %Hf('as*)”LOC‘(R)D(x*vS*) = %f($*»5*)p(93*75*)
R

and therefore, using (A.8) we obtain

(Osf) (s, 8x) < |F(xs, 84)| — iD(x*,s*)f(x*,s*) < Fo— f’—Gm)\D < —% <0

which yields the desired contradiction.

If on the other hand f attains its global minimum at this point, i.e. f(Ss,xs) = —3m/a, then by the
minimality of s,, we must have (0sf)(z4, sx) < 0. We prove that the opposite inequality holds, yielding
the contradiction. For this purpose, evaluate the forced and damped transport equation at (x, s« ), and note
that because f attains its global minimum at this point, we have 0, f (x4, sx) = 0. Also, we have

JRf($/73*)’C($*al‘/a sx)da’| < % Hf(‘73*)HLOO(R) D(ws, 85) = _%f(x*a $x)D(@, Sx)

so that

(Os ) (@, Sx) = F (s, 85) — %D(x*,s*)f(:c*,s*) > —Fo + l%mx\p > i}"o > 0.
Therefore, the breakthrough point (x, s, ) does not exist, concluding the proof of (A.9). O
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