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Abstract

We consider the 2D isentropic compressible Euler equations, with pressure law ppρq “ p1{γqργ , with
γ ą 1. We provide an elementary constructive proof of shock formation from smooth initial datum
of finite energy, with no vacuum regions, and with nontrivial vorticity. We prove that for initial data
which has minimum slope ´1{ε, for ε ą 0 taken sufficiently small relative to the Op1q amplitude, there
exist smooth solutions to the Euler equations which form a shock in time Opεq. The blowup time and
location can be explicitly computed and solutions at the blowup time are of cusp-type, with Hölder C1{3

regularity.
Our objective is the construction of solutions with inherent Op1q vorticity at the shock. As such,

rather than perturbing from an irrotational regime, we instead construct solutions with dynamics domi-
nated by purely azimuthal wave motion. We consider homogenous solutions to the Euler equations and
use Riemann-type variables to obtain a system of forced transport equations. Using a transformation to
modulated self-similar variables and pointwise estimates for the ensuing system of transport equations,
we show the global stability, in self-similar time, of a smooth blowup profile.
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1 Introduction

We consider the Cauchy problem for the two-dimensional isentropic compressible Euler equations

Btpρuq ` div pρ ub uq ` ∇ppρq “ 0 , (1.1a)

Btρ` div pρuq “ 0 , (1.1b)
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where u : R2 ˆ R Ñ R2 denotes the velocity vector field, ρ : R2 ˆ R Ñ R` denotes the strictly positive
density, and the pressure p : R2 ˆ R Ñ R` is defined by the ideal gas law

ppρq “ 1
γρ

γ , γ ą 1 .

The sound speed cpρq “
a

Bp{Bρ is then given by c “ ρα where α “
γ´1
2 . The Euler equations (1.1) are a

system of conservation laws: (1.1a) is the conservation of momentum, which can be equivalently written as
Btu` u ¨ ∇u` ργ´2∇ρ “ 0, and (1.1b) is the conservation of mass.

This paper is devoted to the construction of solutions to (1.1) which form a shock in finite time: specif-
ically, starting from smooth initial data with Op1q amplitude and a minimum slope of ´1{ε with ε ą 0
sufficiently small, we construct solutions to the 2D Euler equations (1.1) on a time interval t0 ď t ď T˚,
t0 “ ´ε and T˚ “ Opε

5{4q, for which ρp¨, tq and up¨, tq remain bounded, while |∇ρp¨, tq| Ñ 8 and
|∇up¨, tq| Ñ 8 as t Ñ T˚; moreover, no other type of singularity can form prior to t “ T˚, and detailed
information on the singularity formation at t “ T˚ is provided, including blowup time, location, and profile
regularity.

We are particularly interested in devising solutions to (1.1) which have large1 vorticity at the shock, by
which we mean solutions which are not small perturbations of irrotational flows. As such, our strategy will
be to construct solutions that are perturbations of purely azimuthal wave motion whose simplest (constant)
profiles are of the xK-type with Op1q vorticity at this most basic level. As we shall describe in great detail
below, this is in contrast to those solutions which are small perturbations of irrotational simple plane waves.

We are thus motivated to develop a framework of analysis for solutions which are perturbations of
purely azimuthal waves. Obviously, polar coordinates provide a natural setting for describing such per-
turbative solutions, but more fundamentally, we have discovered that the use of homogeneous solutions to
(1.1) leads to a remarkable reduction of the Euler dynamics precisely to this nearly-azimuthal wave regime,
in which bounded azimuthal waves steepen and then shock, while radial waves (and their slopes) remain
bounded. Owing to the inherent vorticity in the most basic wave motion, the solutions are fundamentally
two-dimensional in their evolution. We provide a precise description of the shock formation for such Euler
solutions, including the blowup time and location, by a transformation to self-similar variables that con-
tain dynamically evolving modulation functions that keep track of the location, time, and amplitude of the
blowup. At the blowup time t “ T˚, the wave profile is of Hölder-class C1{3. In the special case that the
adiabatic exponent γ is equal to 3 and for purely azimuthal initial velocity fields, a series of surprising can-
cellations reduces the 2D Euler dynamics to an elementary study of the Burgers equation. The solution for
the special case that γ “ 3 can be viewed as the purely azimuthal wave motion, and its shock formation is
completely characterized for all time.

Theorem 1.1 (Rough statement of the main theorem). For an open set of smooth initial data with Op1q

amplitude and with minimum initial slope given at initial time t0 to equal ´1{ε, for ε ą 0 taken sufficiently
small, there exist smooth solutions of the Euler equations with Op1q vorticity, which form an asymptotically
self-similar shock in finite time T˚, such that T˚ ´ t0 “ Opεq. The solutions have Op1q vorticity at the
shock, are dominated by azimuthal wave motion, and the location and time of the first singularity can be
explicitly computed. The blowup profile at the first singularity is shown to be a cusp with C1{3 regularity.

The precise statement of the main theorem is given in Theorem 4.4, while the special case that γ “ 3 is
treated in Theorem 3.1.

1Due to the time rescaling symmetry of the Euler equations, by which uβ
px, tq “ β´1upx, β´1tq and ρβpx, tq “

β´1{αρpx, β´1tq are also solutions to (1.1), ∇u can be made smaller or larger by changing the time interval of the evolution.
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1.1 A brief history of the analysis of shock formation for the Euler equations

The mathematical analysis of shock formation for the Euler equations has a long and rich history, particularly
in the case of one space dimension, which allows the full power of the method of characteristics to be
employed. In 1D, the velocity u is a scalar and (1.1) takes the form

Btu` uux ` ργ´2ρx “ 0 , Btρ` pρuqx “ 0 .

Riemann [41] devised the two invariant functions z “ u ´ c{α and w “ u ` c{α which are constant along
the characteristics of the two wave speeds λ1 “ u´ c and λ2 “ u` c:

Btz ` λ1zx “ 0 , Btw ` λ2wx “ 0 .

He proved that from smooth data, shocks can form in finite time. The 1D isentropic Euler equations are an
example of a 2ˆ 2 system of conversation laws. Using Riemann invariants, Lax [26] proved that finite-time
shocks can form from smooth data for general 2ˆ2 genuinely nonlinear hyperbolic systems and Majda [31]
gave a geometric proof which also allowed for 2 ˆ 2 systems with linear degeneracy; John [22] then proved
finite-time shock formation for n ˆ n genuinely nonlinear hyperbolic systems; Liu [27] then generalized
this result. Klainerman-Majda [25] proved the formation of singularities for second-order quasilinear wave
equations which includes the nonlinear vibrating string. See the book of Dafermos [14] for a more extensive
bibliography of 1D results.

In multiple space dimensions, Sideris [42] proved that C1 regular solutions to (1.1) have a finite lifes-
pan by establishing differential inequalities for certain integrals which lead to a proof by contradiction; in
particular, he showed that Opexpp1{εqq is an upper bound for the lifespan (of 3D flows) for data of size ε.
The nature of the proof did not, however, reveal the type of singularity that develops, but rather, that some
finite-time breakdown must occur.

The first proof of shock formation for the compressible Euler equations in the multi-dimensional setting
was given by Christodoulou [7] for relativistic fluids and with the restriction of irrotational flow. Later
Christodoulou-Miao [10] used the same framework to study shock formation in the non-relativistic setting
and also for irrotational flow. Christodoulou’s method is based upon a novel eikonal function (see also
Christodoulou-Klainerman [9] and Klainerman-Rodnianski [23]), whose level sets correspond to character-
istics of the flow; by introducing the inverse foliation density, a function which is inversely proportional
to time-weighted derivatives of the eikonal function, Christodoulou proved that shocks form when the in-
verse foliation density vanishes (i.e., characteristics cross), and that no other breakdown mechanism can
occur prior to such shock formation. The proof relies on the use of a geometric coordinate system, along
which the solution has long time existence, and remains bounded, so that the shock is constructed by the
singular (or degenerate) transformation from geometric to Cartesian coordinates. For the restricted shock
development problem, in which the Euler solution is continued past the time of first singularity but vorticity
production is neglected, see the discussion in Section 1.6 of [8]. Starting with piecewise regular initial data
for which there is a closed curve of discontinuity, across which the density and normal component of ve-
locity experience a jump, Majda [29–31], proved (for more general flows than the 2D isentropic flows) that
such a shock can always be continued for a short interval of time, but with derivative loss. For such shock
initial data, Métivier [38] later reduced the derivative loss to only a 1{2-derivative. Gues-Métivier-Williams-
Zumbrun [20] studied the existence and stability of this multidimensional shock propagation problem in the
vanishing viscosity limit.

A special feature of irrotational flows is that the Euler equations can be expressed as a second-order
quasilinear wave equation with respect to the velocity potential. The first results on shock formation for 2D
quasilinear wave equations which do not satisfy Klainerman’s null condition [24] were established by Alin-
hac [1, 2], wherein a detailed description of the blowup was provided. The geometric framework of [7] has
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influenced more recent analysis of shock formation for quasilinear wave equations. Holzegel-Klainerman-
Speck-Wong [21] have explained the mechanism for stable shock formation for certain types of quasilinear
wave equations with small data in three dimensions. Speck [43] generalized and unified earlier work on
singularity formation for both covariant and non-covariant scalar wave equations of a certain form. He
proved that whenever the nonlinear terms fail Klainerman’s null condition [24], shocks develop in solutions
arising from an open set of small data, and can thus be viewed as a converse to the well-known result of
Christodoulou-Klainerman [9], which showed that when the classic null condition is verified, small-data
global existence holds. For quasilinear wave equations that are derived from the least action principle and
which satisfy the null condition, Miao-Yu [39] proved shock formation using the so-called short pulse data.

The first proof of shock formation for fluid flows with vorticity was given by Luk-Speck [28], for the 2D
isentropic Euler equations with vorticity. The presence of nontrivial vorticity in their analysis does not only
allow for a much larger class of data, but also has two families of waves being propagated, sound waves
and vorticity waves, thus allowing for multiple characteristics (wave speeds) to interact. Their proof uses
Christodoulou’s geometric framework from [7, 10], but develops new methods to contend with the afore-
mentioned vorticity waves, establishes new estimates for the regularity of the transported vorticity-divided-
by-density, and relies crucially on a new framework for describing the 2D compressible Euler equations as
a coupled system of covariant wave and transport equations.

Luk-Speck consider in [28] solutions to Euler which are small perturbations of a subclass of outgoing
simple plane waves. In the 2D Cartesian plane, with coordinates px1, x2q, an outgoing simple plane wave
is defined as a solution to the Euler equations (1.1) which moves to the right along the x1 axis, does not
depend on x2, and has vanishing first Riemann invariant u1 ´ c. The smallness of the perturbation of the
plane wave is measured in terms of the ratio of the maximum wave amplitude to the minimum (negative)
slope of the initial wave profile. Specifically, they construct solutions which are small perturbations of the
irrotational simple plane waves, in which the transverse derivative (to the acoustic characteristics) of u1

blows up, while the tangential derivatives (to the acoustic characteristics) of pρ, u1, u2q remain bounded,
and vorticity is non-vanishing and small at the shock.

1.2 Shock formation with vorticity and the perturbation of purely azimuthal waves

Let us now describe the type of shock wave solutions that we construct and compare them with those of [28].
As noted above, we do not consider perturbations of simple plane waves, but instead construct solutions
which are perturbations of azimuthal waves.

Using 2D polar coordinates pr, θq, we denote the velocity components by u “ purpr, θ, tq, uθpr, θ, tqq.
We consider initial conditions pρp¨, t0q, urp¨, t0q, uθp¨, t0qq which have Op1q amplitude, but with Bθuθp¨, t0q

and Bθρp¨, t0q having a minimum (negative) value of ´1{ε, with 0 ă ε ! 1 taken sufficiently small. There
are two Riemann invariants for the azimuthal flow, which we write as R˘ “ uθ˘ 2

γ´1ρ
pγ ´ 1q{2. The solutions

we construct satisfy the following conditions:

(a) solutions pρ, ur, uθq have Op1q bounds in L8 for t P rt0, T˚q with linear variation in the radial r
direction for ur and uθ and r2{pγ ´ 1q variation for ρ;

(b) |BθR`|, |Bθuθ|, and |Bθρ| are Op1{εq at initial time, and these quantities blow up at time t “ T˚ with
a rate proportional to 1{pT˚ ´ tq, where T˚ ´ t0 “ Opεq;

(c) the blowup profile is of cusp-type with uθp¨, T˚q and ρp¨, T˚q in the Hölder space C1{3;

(d) BθR´ remains bounded on on rt0, T˚q;

(e) Br of pρ, ur, uθq and Bθur are bounded on rt0, T˚q;

(f) the vorticity Bruθ ´ 1
rBθur ` 1

ruθ is non-vanishing and bounded at the shock.
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There is some correspondence between the properties (a)–(f) of our solutions and the solutions con-
structed by Luk-Speck [28], in that we are perturbing purely azimuthal wave motion (in the θ-direction),
and in [28] they are perturbing simple plane wave motion (in the x1-direction). A primary difference is that
the purely azimuthal wave already has nontrivial vorticity, while the simple plane wave is irrotational, and
so we are constructing solutions that are perturbations of flows with nontrivial vorticity. Furthermore, our
method allow us to provide a fairly detailed description of the blowup profile for uθp¨, T˚q and ρp¨, T˚q: the
slope becomes infinite along a line segment, and each function is C1{3 in space.

As we shall next describe, the method we develop to construct shock wave solutions is very different
from the methods of [7, 10, 28]; we rely upon a transformation to modulated self-similar variables together
with the fact that 2D purely azimuthal wave motion is governed by the dynamics of the Burgers equation;
we shall explain how our analysis relies on properties of nonlinear transport equations together with explicit
properties of the asymptotically stable self-similar profile.

2 Outline of the proof

2.1 A new class of solutions that shock

In order to study perturbations of purely azimuthal waves, we write the Euler equations (1.1) in polar coor-
dinates for the variables pρ, ur, uθq as the following system of conservation laws:

`

Bt ` urBr ` 1
ruθBθ

˘

ur ´ 1
ru

2
θ ` ργ´2Brρ “ 0 , (2.1a)

`

Bt ` urBr ` 1
ruθBθ

˘

uθ ` 1
ruruθ ` 1

rρ
γ´2Bθρ “ 0 , (2.1b)

`

Bt ` urBr ` 1
ruθBθ

˘

ρ` ρ
`

1
rur ` Brur ` 1

rBθuθ
˘

“ 0 . (2.1c)

These equations are solved with θ P T “ r´π, πs , r ą 0 and t P rt0, T s. Defining the fluid vorticity
ω “ 1

rBrpruθq ´ 1
rBθur, we shall make use of the fact that ω{ρ is transported as

Bt
ω
ρ ` u ¨ ∇ω

ρ “ 0 . (2.2)

For initial density ρ0 ą 0 that has no vacuum regions, and for nontrivial initial vorticity

ωpr, θ, t0q “ Bruθpr, θ, t0q ´ 1
rBθurpr, θ, t0q ` 1

ruθpr, θ, t0q ‰ 0 ,

we construct smooth solutions to (1.1) that form a shock in finite-time. So that our solutions will be pertur-
bations of azimuthal waves, we shall consider homogeneous solutions.

To this end, motivated by the homogeneous solutions introduced for studying singularity formation in
incompressible flows by Elgindi and Jeong [18], we consider the new variables ru and rρ such that

upr, θ, tq “ rrupr, θ, tq and ρpr, θ, tq “ r
2

γ´1
rρpr, θ, tq ,

and recalling that α “
γ´1
2 , with respect to these new variables, the system (2.1) takes the form:

pBt ` rurrBr ` ruθBθq rur ` ru2r ´ ru2θ ` 1
α rρ2α ` rρ2α´1rBrrρ “ 0 , (2.3a)

pBt ` rurrBr ` ruθBθq ruθ ` 2rurruθ ` rρ2α´1Bθrρ “ 0 , (2.3b)

pBt ` rurrBr ` ruθBθq rρ`
γ
αrurrρ` rρ prBrrur ` Bθruθq “ 0 . (2.3c)

Notice that all powers of r have cancelled (expect for the rBr operator which is dimensionless), and hence,
if at time t “ t0, the initial data is given as

rurpr, θ, t0q “ a0pθq , ruθpr, θ, t0q “ b0pθq , rρpr, θ, t0q “ P0pθq , (2.4)
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where a0, b0, and P0 are independent of r, then ru and rρ remain independent of r for as long as the solution
stays smooth (and hence unique), and thus the system (2.3) reduces to

pBt ` bBθq a` a2 ´ b2 ` α´1P 2α “ 0 (2.5a)

pBt ` bBθq b` 2ab` P 2α´1BθP “ 0 (2.5b)

pBt ` bBθqP `
γ
αaP ` PBθb “ 0 , (2.5c)

and then the solution to the Euler equations (2.1) is given by

uθpr, θ, tq “ rbpθ, tq , urpr, θ, tq “ rapθ, tq and ρpr, θ, tq “ r1{αP pθ, tq . (2.6)

The fluid vorticity and fluid divergence corresponding to the ansatz (2.4) are given by

ωpr, θ, tq “ 2bpθ, tq ´ Bθapθ, tq , (2.7a)

div upr, θ, tq “ 2a` Bθb , (2.7b)

so that the vorticity is therefore nontrivial as long as 2b ı Bθa. Setting

ϖ “
2b´ Bθa

P
,

from equation (2.2), we have that
Btϖ ` bBθϖ “ a

αϖ . (2.8)

Next, we define the Riemann invariants w and z associated to the tangential velocity b and density P ,
and their associated wave speeds λ1, λ2, as

w “ b`
1

α
Pα , z “ b´

1

α
Pα , (2.9a)

λ1 “ b´ Pα “
1 ´ α

2
w `

1 ` α

2
z , λ2 “ b` Pα “

1 ` α

2
w `

1 ´ α

2
z . (2.9b)

Then, the pa, b, P q-system (2.3) can be written as the following system for the variables pa, z, wq:
`

Bt ` λ2Bθ
˘

w ` a
2

`

p1 ´ 2αqz ` p3 ` 2αqw
˘

“ 0 , (2.10a)
`

Bt ` λ1Bθ
˘

z ` a
2

`

p1 ´ 2αqw ` p3 ` 2αqz
˘

“ 0 , (2.10b)
`

Bt ` w`z
2 Bθ

˘

a` a2 ´ 1
4pw ` zq2 ` α

4 pw ´ zq2 “ 0 . (2.10c)

Notice that while z andw are not actual invariants, the advantage of the pa, z, wq-system is that no derivatives
appear in the forcing of the transport.

In order to transform the w and z equations into the form of a perturbed Burgers-type equation, we
define t “ 1`α

2
rt so that Bt “ 1`α

2 B
rt. For notational simplicity, we shall write t for rt, in which case (2.10)

becomes:

Btw `

´

w ` 1´α
1`αz

¯

Bθw “ ´a
´

1´2α
1`α z ` 3`2α

1`α w
¯

, (2.11a)

Btz `

´

z ` 1´α
1`αw

¯

Bθz “ ´a
´

1´2α
1`α w ` 3`2α

1`α z
¯

, (2.11b)

Bta` 1
1`αpw ` zqBθa “ ´ 2

1`αa
2 ` 1

2p1`αq
pw ` zq2 ´ α

2p1`αq
pw ´ zq2 . (2.11c)

While the local-in-time well-posedness in Sobolev spaces of the system (2.11) follows from the well-
posedness of the Euler equations, we shall take the opposite view that solutions to the Euler equations
are constructed from solutions of (2.11) together with (2.6) and (2.9).
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Lemma 2.1. For initial data pw, z, aq|t“t0 “ pw0, z0, a0q in CkpTq, k ě 1, there exists a time T depending
on the CkpTq-norm of this data, such that there exists a unique solution pw, z, aq P Cprt0, T s;CkpTq to
(2.11). Furthermore, the solution continues to exist on rt0, T˚s if

ż T˚

t0

`

}Bθwp¨, tq}L8pTq ` }Bθzp¨, tq}L8pTq ` }ap¨, tq}L8pTq

˘

dt ă 8 . (2.12)

Proof of Lemma 2.1. We set β0 “ 1´α
1`α , β1 “ 1´2α

1`α , β2 “ 3`2α
1`α , β3 “ 1

1`α , and define the characteristics
of the three wave-speeds in (2.11) by

Btψw “ w ˝ ψw ` β0z ˝ ψw ,

Btψz “ z ˝ ψz ` β0w ˝ ψz ,

Btψa “ β3pw ˝ ψa ` z ˝ ψaq ,

which are the identity at time t0. Letting W “ w ˝ ψw, Z “ z ˝ ψz , and A “ a ˝ ψa, the system (2.11) is
then equivalent to

BtW “ ´A ˝ ψ´1
a ˝ ψw

`

β1Z ˝ ψ´1
z ˝ ψw ` β2W

˘

,

BtZ “ ´A ˝ ψ´1
a ˝ ψz

`

β1W ˝ ψ´1
w ˝ ψz ` β2Z

˘

,

BtA “ β3

”

´2A2 ` 1
2

`

W ˝ ψ´1
w ˝ ψa ` Z ˝ ψ´1

z ˝ ψaq2 ´ α
2 pW ˝ ψ´1

w ˝ ψa ´ Z ˝ ψ´1
z ˝ ψa

˘2
ı

,

Btψw “ W ` β0Z ˝ ψ´1
z ˝ ψw ,

Btψz “ Z ` β0W ˝ ψ´1
w ˝ ψz ,

Btψa “ β3pW ˝ ψ´1
w ˝ ψa ` Z ˝ ψ´1

z ˝ ψaq ,

with initial data pW,Z,Aqt“t0 “ pw0, z0, a0q P CkpTq and pψw, ψz, ψaq|t“t0 “ pId, Id, Idq. Since this sys-
tem does not present derivative losses, a standard Picard iteration argument proves the existence, uniqueness,
and well-posedness of this coupled system on some time interval rt0, T s, in the class Cprt0, T s, CkpTqq.
This local in time solution may be continued as long as the transport velocities remain bounded in L1

tLipx –
indeed, this condition ensures the unique solvability and invertibility of the Lagrangian maps pψw, ψz, ψaq

introduced above. Lastly, we have excluded }w}L8 and }z}L8 from (2.12) because these remain finite if
a P L1

tL
8
x , while }Bθa}L8 remains bounded due to the boundedness of }ϖ}L8 from (2.8).

From a solution pw, z, aq of (2.11), we obtain a solution to the Euler equations (1.1) using that b “ w`z
2 ,

P “

´

αpw´zq

2

¯1{α

and defining pu, ρq using (2.6). Given the Euler velocity field u, we define the Lagrangian
flow ηu as the solution to Btηu “ u ˝ ηu for t ą t0 with ηupr, θ, t0q “ pr, θq. We shall consider annular
regions

Ar,r “ tpr, θq : r ă r ă r, θ P Tu

for radii 0 ă r ă r ă 8. Given 0 ă R0 ă r0 ă r1 ă R0, we consider a small annulus Ar0,r1 properly
contained in a large annulus AR0,R1 . We define the time-dependent domain

Ωptq “ ηupAr0,r1 , tq Ă AR0,R1 for t P rt0, T˚s , (2.13)

where the inclusion holds for T˚ sufficiently small whenever u P L8
t L

8
x .

We shall construct solutions to (2.11) which form a shock in finite time and satisfy properties (a)-(f)
listed above. Before describing our method of construction which is based on a transformation into self-
similar variables, there is a singularly interesting choice for the adiabatic parameter γ which allows for a
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particularly simple construction of shock formation. When γ “ 3, and hence α “ 1, it will be shown
that the system (2.11) can be reduced exactly to Btw ` wBθw “ 0 with a “ 0 and z “ 0, in which case
we have a purely azimuthal wave solution pρ, ur, uθq “ 1

2prw, 0, rwq with a precise time and location for
the shock formation, coming from the well-known solution to the Burgers equation. As noted above, we
view this purely azimuthal wave as the polar analogue of the simple plane wave, because the radial velocity
component vanishes as does the first Riemann invariant.

2.2 A transformation to self-similar variables with modulation functions

Turning to the case of general adiabatic exponent γ ą 1 for the Euler system (1.1), we shall next introduce
a self-similar transformation [19] with dynamic modulation variables [33]. Let

xpθ, tq :“
θ ´ ξptq

pτptq ´ tq
3
2

, s :“ ´ logpτptq ´ tq ,

and define the new variables pA,Z,W q by

wpθ, tq “ e´ s
2W px, sq ` κptq , zpθ, tq “ Zpx, sq , apθ, tq “ Apx, sq .

This is a self-similar transformation2 with three dynamic modulation variables, ξptq, τptq, and κptq, each
satisfying relatively simple ordinary differential equations. This technique was developed in the context
of the Schrödinger equation [33–35] the nonlinear heat equation [36], the generalized KdV equation [32],
the nonlinear wave equation [37] and other dispersive problems, and it has recently been applied to solve
problems in fluid dynamics [6, 11–13, 15, 17]. In all these cases, the role of the modulation variables is to
enforce certain orthogonality conditions required to study perturbations of the self-similar blowup. In our
context, the modulation variables ξptq, τptq, and κptq, respectively, control precisely the shock location,
blowup time, and wave amplitude. In the absence of these dynamic variables, the above rescaling coincides
with the well-known self-similar transformation for the Burgers equation (see [3, 12, 16, 40]), but the use of
the modulation variables allows us to impose constraints on W and its first and second derivatives at x “ 0.

Upon switching to self-similar variables, the pa, z, wq-system (2.11) is transformed to self-similar evo-
lution equations for pA,Z,W q detailed below in (4.15). As we have noted above, for the special case that
γ “ 3, this system of self-similar equations reduces to the self-similar Burgers evolution, and a key feature
of our proof is that the construction of shocks which are perturbations of purely azimuthal waves exactly co-
incides with the self-similar perturbation of the Burgers equation. Of paramount importance to our analysis,
then, is the explicit representation of the stable, steady-state, self-similar Burgers profile [3]

W pxq “

˜

´
x

2
`

ˆ

1

27
`
x2

4

˙1{2
¸1{3

´

˜

x

2
`

ˆ

1

27
`
x2

4

˙1{2
¸1{3

, (2.14)

solving the steady self-similar Burgers equation

´
1

2
W `

ˆ

3x

2
`W

˙

BxW “ 0 . (2.15)

2We note that our use of self-similar variables to construct the blowup is in some ways analogous to the use of geometric
coordinates in the construction scheme of [7,10,28] wherein the long time existence in geometric coordinates leads to a finite-time
blowup by the singular transformation back to Cartesian coordinates. We also note that self-similar variables have been used in a
very different way to study the problem of self-similar 2D shock reflection off a wedge [4, 5].
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Our proof of finite-time blowup for Bθuθ and Bθρ relies upon showing that Bθw has finite-time blowup,
which in turn relies upon the global existence of solutions to the pApx, sq, Zpx, sq,W px, sqq-system (4.15)
for x P R and s P r´ logp´t0q,8q. Since

Bθwpθ, tq “ esBxW px, sq , es “
1

τptq ´ t
, (2.16)

by letting the blowup time modulation variable τptq satisfy τp0q “ 0 and τpT˚q “ T˚ and the blowup
location modulation variable ξptq satisfy ξp0q “ 0 and ξpT˚q “ θ˚, we see that as s Ñ 8, |Bθwpθ˚, tq| Ñ 8

at a rate proportional to 1{pT˚ ´ tq. Note, that all points θ which are not equal to θ˚, when converted to the
self-similar variable x, are sent to ˘8 as s Ñ `8. In the proof, we show that |BxW | À p1 ` x2q´1{3 and
hence from this bound, it follows that

ˇ

ˇWxpe3s{2pθ ´ ξq, sq
ˇ

ˇ À e´spθ ´ θ˚q´2{3, and from (2.16), Bθwpθ, tq
does not blowup as t Ñ T˚.

The pA,Z,W q-system (4.15) consists of transport type equations, which allow us to use L8-type es-
timates to construct global-in-time solutions in C4. We view the W equation (4.15a) as producing the
dominant dynamics, and the key to our analysis is a careful comparison of W px, sq with W pxq. In par-
ticular, differentiation of the system (4.15) shows that the equations satisfied by BnxW , BnxZ, and BnxA for
n “ 0, 1, 2, 3, 4, have either damping or anti-damping terms that depend on the solutions and their deriva-
tives. It is only when n “ 4 that a clear damping term emerges, while for n “ 1 and n “ 2, a very
subtle analysis must be made for the evolution equations of both BxW ´ BxW and B2

xW ´ B2
xW ; a very

delicate analysis allows us to find lower-bounds for the damping terms in these equations by specially con-
structed rational functions that are found with the help of Taylor expansions of BxW near x “ 0 and x “ 8

(see, in particular, (4.54) and (4.65)). A bootstrap procedure is employed wherein we assume bounds for
pA,Z,W, τ, ξ, κq as well as their derivatives, and then proceed to close the bootstrap argument with even
better bounds.

2.3 Paper outline

In Section 3, we consider the case that γ “ 3, and we have the simple example of purely azimuthal shock
formation. In this special case, the dynamics are reduced entirely to those of the Burgers equation. The
formation of shocks for the 2D Euler equations with general adiabatic exponent γ ą 1 is then treated
in Section 4; a detailed description of the data is given, the main theorem is stated, and the proof of is
given. Concluding remarks are stated in Section 5. We include Appendix A which contains some important
maximum-principle-type lemmas for solutions of non-locally forced and damped transport equations.

3 Purely azimuthal waves and shocks: a simple example

In the case that γ “ 3, some remarkable cancellations occur in the homogeneous solutions of the Euler
equations which allow for an exceedingly simple mechanism of shock formation, in which a smooth purely
azimuthal wave travels around the circle, steepens and forms a shock wave which can be continued for all
time. Our general construction of shock waves for all γ ą 1 will be a perturbation of this purely azimuthal
shock wave solution, but we shall first describe this simple solution.

For the most concise presentation, we shall consider the Euler equations posed on a two-dimensional
annular domain Ar0,r1 where 0 ă r0 ă r1 ă 8 with the standard no-flux boundary conditions ur|r“r0 “

ur|r“r1 “ 0.
In view of (2.4), the no-flux boundary condition requires that a ” 0 for all time. Therefore, from

equation (2.5a), we must have the relation

b2 “
2

γ ´ 1
P γ´1 (3.1)

9
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for all time. If we impose condition (3.1) at t “ 0, an explicit computation verifies that the evolution
equations (2.5) preserve the constraint (3.1) if and only if γ “ 3, in which case, we have that b “ P , and
hence from (2.9), the Riemann invariants are given by

w “ 2b and z “ 0 .

Thus, with a “ 0 and z “ 0, the system (2.11) reduces to a single equation for the unknown w, which we
identify as the 1D Burgers equation,

Btw ` wBθw “ 0 wpθ, 0q “ w0pθq , θ P T “ r´π, πs , (3.2)

solved on T with periodic boundary conditions. It is well known that any initial datum w0 which has a
negative slope at a point forms a shock (or infinite slope) in finite time. Note that for γ “ 3, the formula
(2.7a) shows that the vorticity ω “ 2b “ w and hence, ω is nontrivial even for the purely azimuthal wave.
We shall sometimes use w1 to denote Bθw.

Theorem 3.1 (Construction of the purely azimuthal shock). For γ “ 3, let 0 ă r0 ă r1 be arbitrary, and
consider initial datum ur “ 0, uθ “ ρ0 “ 1

2rw0, in Ar0,r1 , where w0 P C8pTq is such that w0 ě ν0 ą 0.
Suppose that

}w0}L8 ď 1 , (3.3)

and that there is a single point θ0 P T such that w1
0pθ0q “ minθPTw0pθq, and that

Bθw0pθ0q “ ´
1

ε
(3.4)

for some ε ą 0. Then the solution w of (3.2), develops a singularity at time T˚ “ ε and angle θ˚ “

θ0 ` εw0pθ0q. Moreover, the functions ur “ 0, uθ “ 1
2rwpθ, tq, and ρ “ 1

2rwpθ, tq form the unique smooth
solution to the initial value problem for the Euler system (2.1) in the domain Ar0,r1 , on the time interval
r0, εq. This solution satisfies the bounds

sup
tPr0,T˚q

´

}ρp¨, tq}L8pAr0,r1 q ` }up¨, tq}L8pAr0,r1 q

¯

ď 2r1 , (3.5)

sup
tPr0,T˚q

´

}Brρp¨, tq}L8pAr0,r1 q ` }Brup¨, tq}L8pAr0,r1 q

¯

ď 2 , (3.6)

lim
tÑT˚

Bθρpθ˚, tq “ lim
tÑT˚

Bθuθpθ˚, tq “ ´8 . (3.7)

The vorticity and density satisfy

ν0 ď ωpθ, tq ď 1, ρpr, θ, tq ě r0
ν0
2 , (3.8)

for all θ P T and t P r0, εq.

Proof of Theorem 3.1. For smooth initial datum w0, we solve (3.2). Differentiating (3.2) gives the equation
BtpBθwq `wB2

θw` pBθwq2 “ 0. Define the flow ψpθ, tq by Btψpθ, tq “ wpψpθ, tq, tq and ψpθ, 0q “ θ. Then
BtpBθw ˝ψq ` pBθw ˝ψq2 “ 0 so that pBθwq ˝ψ “

Bθw0
t`Bθw0

and ψpθ, tq “ θ` tw0pθq. Hence from (3.4), Bθw
forms a shock at time T˚ “ ε at the point θ˚ “ θ0 ` tw0pθ0q, implying (3.7). By the maximum principle
and (3.3) we have

sup
tPr0,T˚q

}wp¨, tq}L8 ď 1 and min
θPT

wpθ, tq ě ν0 .

The bounds (3.5)–(3.6) and (3.8) follow directly from the definitions of uθ, ρ,ω and the above estimate.

10
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Remark 3.2 (The Burgers solution continued after the singularity). In Theorem 3.1 we have considered
datum with a global (negative) minimum attained at a single point θ0, and thus w2

0pθ0q “ 0 and w3
0 pθ0q ą 0.

It is shown in [12, Proposition 9] that in the Burgers equation the finite time blowup arising from such initial
datum is asymptotically self-similar and that the blowup profile is precisely the stable global-self similar
profile W defined in (2.14). Moreover, at the blowup time T˚ “ ε the solution is Hölder C1{3 smooth near
the singular point. To simplify the discussion, upon taking into account a Galilean transformation and a
rescaling of the initial datum, we have that the blowup occurs at θ “ 0 with speed wp0, T˚q “ 0, and
that wpθ, T˚q „ θ

1{3 to leading order in |θ| ! 1. The solution of the Burgers equation may be continued
in a unique way as an entropy solution also after the blowup time T˚, starting from this Hölder 1{3 initial
datum, and we still denote this solution aswp¨, tq. We claim that instantaneously, for any t ą T˚, the entropy
solutionwp¨, tq has a jump discontinuity, with the discontinuity propagating at the correct shock speed, given
by the Rankine-Hugoniot condition. This phenomenon is explained in [16, Chapter 11]: for t ą T˚ one may
compute an explicit forward globally self-similar solution, and one notices that this self-similar solution
is not single-valued; we thus must have a jump in the solution w at a location and a speed determined by
the Rankine-Hugoniot condition. The argument in [16] can be easily made precise by taking advantage of
the Lax-Oleinik formula. For simplicity, let us consider initial datum wpθ, T˚q “ θ

1{3, which allows us to
perform explicit calculations. For t ą T˚ the Lax-Oleinik formula tells us that the entropy solution equals

wpθ, tq “

θ ´ pt´ T˚q
3{2Y 3

´

θ
pt´T˚q3{2

¯

t´ T˚

(3.9)

where the function Y “ Y pqq is defined implicitly as the the correct root of the equation Y 3 ´ Y “ q.
This root is unique for |q| ą 2{p3

?
3q and so the meaning of Y pqq is clear; for q P r´2{p3

?
3q, 0s we need

to define Y pqq as the smallest root, which is negative and has the limiting behavior Y p0q “ ´1; while for
q P p0, 2{p3

?
3qs the entropy solution requires us to take the largest root, which is positive and has the limiting

behavior Y p0`q “ `1. Since the formula (3.9) is explicit, it is easy to verify the above claims. We have
wp0´, tq “ wp0, tq “ pt ´ T˚q

1{2 and wp0`, tq “ ´pt ´ T˚q
1{2. This shows that we have a discontinuity

across the shock location θ “ 0, the left speed is larger than the right speed at the shock, and their average
is 0, which is why the shock location does not move with time.

Remark 3.3 (The Euler solution continued after the shock). For all t ě T˚, let θ˚ptq denote the position
of the discontinuity of wp¨, tq. Now for all θ ‰ θ˚ptq, wp¨, tq is smooth and hence defines a smooth solution
to the Euler equations via the relations ρ “ uθ “ 1

2rw and ur “ 0. By the Lax-Olienik formula, the shock
moves with speed d

dtθ˚ptq “ 1
2pw´`w`q, wherew´ “ limθÑθ˚ptq´ wpθ, tq andw` “ limθÑθ˚ptq` wpθ, tq.

For t ą T˚, we denote by Γptq the line segment given by tpr, θq : θ “ θ˚ptq, r1 ď r ď r2u. Then
for a piecewise smooth function fp¨, tq : Ar0,r1 Ñ R, which is discontinuous across Γptq, we let JfK “

f´p¨, tq ´ f`p¨, tq. From the discontinuity of wp¨, tq we have that Jρp¨, tqK ą 0, JuθK ą 0, JurK “ 0.
Moreover, the Rankine-Hugoniot conditions require that d

dtθ˚ptq “
JρuθK
JρK . But JρuθK

JρK “ 1
2pw´ `w`q and so

the Rankine-Hugoniot condition is satisfied. This shows that pur, uθ, ρq is a global entropy solution to the
compressible Euler system with γ “ 3, which forms a shock at T˚ “ ε, becomes discontinuous across the
line segment Γptq for times t ą ε, and propagates the shock with the correct shock speed.

4 Formation of shocks for the Euler equations

In this section, we construct a finite-time shock solution to the Euler equations for the general adiabatic
constant γ ą 1. We achieve this by studying the system of equations (2.11) on the time interval ´ε ď t ă

T˚ “ Opε
5{4q, where T˚ is constructed in the proof and ε P p0, 1q is a small parameter to be chosen later.

We prove that a gradient blowup occurs at time T˚ for the variable w, whereas Bθz and Bθa remain bounded.

11
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4.1 Assumptions on the initial datum

In this subsection we describe the initial data that is used to construct the shock wave solutions to (2.11).
The initial time is given by ´ε, and the initial data is denoted as

wpθ,´εq “ w0pθq, zpθ,´εq “ z0pθq, apθ,´εq “ a0pθq.

We assume that Bθw0 attains its global minimum at θ “ 0, and moreover that

w0p0q “ κ0, Bθw0p0q “ ´ε´1, B2
θw0p0q “ 0, B3

θw0p0q “ 6ε´4 , (4.1)

for some κ0 ą 0 to be determined later and whose main purpose is to ensure that the initial density is
bounded from below by a positive constant (cf. (4.7)), and for an 0 ă ε ! 1 to be determined. We also
assume that w0 has its first four derivatives bounded as

}Bθw0}L8 ď ε´1,
›

›B2
θw0

›

›

L8 ď ε´5{2,
›

›B3
θw0

›

›

L8 ď 7ε´4,
›

›B4
θw0

›

›

L8 ď ε´11{2 , (4.2)

which are bounds consistent with (4.1). In order to simplify the proof and to obtain a precise description of
the solution’s profile at the singular time (cf. (4.29) and (4.83) below), it is convenient to assume a slightly
more precise behavior of Bθw0 near θ “ 0. For this purpose we assume

ˇ

ˇ

ˇ

ˇ

εpBθw0qpθq ´ pW xq

ˆ

θ

ε3{2

˙
ˇ

ˇ

ˇ

ˇ

ď min

#

p θ
ε3{2 q2

40p1 ` p θ
ε3{2 q2q

,
1

2p8 ` p θ
ε3{2 q

2{3q

+

(4.3)

for all θ P T, where W is the stable globally self-similar solution to the Burgers equation defined in (2.14).
For z and a we assume that at the initial time we have

}z0}Cn ` }a0}Cn ď 1 (4.4)

for 0 ď n ď 4. Furthermore, we assume that w0, z0, and a0 all have compact support such that

supp pw0pθq ´ κ0q Y supp pz0pθqq Y supp pa0pθqq Ď p´π{2, π{2q , (4.5)

and in order to ensure the positivity of the initial density we assume that

}w0p¨q ´ κ0}L8 ď
κ0
2
, (4.6)

and choose κ0 suitably. Indeed, in order to ensure that P0pθq ě ν0 ą 0 for all θ P T, we simply choose any

κ0 ě 4p2 ` p2{αqpν0{2qαq. (4.7)

With this choice of κ0, from (2.9), (4.4), and (4.6) we have that p2{αqPα0 pθq “ w0pθq ´ z0pθq ě κ0{2 ´ 1 ě

p2{αqνα0 , thereby ensuring the desired strictly positive lower bound on the initial density.

Remark 4.1 (Consistency of the w0 assumptions). condition (4.3), which may be rewritten in terms of
x “ θε´3{2 as

ˇ

ˇεpBθw0qpxε
3{2q ´ pW xqpxq

ˇ

ˇ ď mint x2

40p1`x2q
, 1
2p8`x2{3q

u for all |x| ď πε´3{2, is consistent
with (4.1)–(4.2) and with (4.5)–(4.6), meaning that we can find an open set of initial conditions satisfying all
of these assumptions. The first bound in the minimum of (4.3) is required in order to ensure that near θ “ 0
the deviation from the self-similar profile is parabolic; this is needed in view of (4.1) and the Taylor series
of W x near the origin (4.16a). The second condition in the minimum of (4.3) is not required in order to
prove a finite-time singularity theorem; rather, this assumption is needed to characterize the blowup profile
of wpθ, tq as t Ñ T˚ as being Hölder C1{3 regular. Lastly, we note that (4.3) is consistent with Bθw0 being

12
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the derivative of a periodic function, which implies that it must have zero average and so Bθw0 cannot have a
definite sign. SinceW xpxq ă 0 for all x P R, it is important that for |x| " 1, the envelope determined by the
second term on the right side of (4.3) allows Bθw0 to become positive. Indeed, note that in the Taylor series
of W x around infinity (4.16b), the coefficient of x´2{3 is ´1{3, while the coefficient of x´2{3 in the Taylor
series about infinity of the right side of (4.3) is 1{2 ą 1{3, which allows Bθw0 to take on positive values.

Remark 4.2 (L8 estimates for the solution). Using assumptions (4.4), (4.6), and the fact that (2.11) is a
system of forced transport equations in which the forcing terms show no derivative loss, we deduce via the
maximum principle that

}wptq}L8 ` }zptq}L8 ` }aptq}L8 ď M (4.8)

holds for any M ě 4` 2κ0, and all times t which are sufficiently small with respect to κ0. This argument is
detailed upon in Proposition 4.10 below, cf. estimate (4.78). In particular, these amplitude bounds hold for
all t P r0, T˚q since T˚ “ Opε

5{4q, and we take ε to be sufficiently small, in terms of κ0.

Remark 4.3 (The spatial support of the solution and an extension from T to R). Using (4.8) we obtain
that the transport speeds on the left side of (2.11) are bounded solely in terms of M . Therefore, assuming ε
to be sufficiently small depending on M and using that the length of r´ε, T˚q is less than 2ε, by finite speed
of propagation the solution pw, z, aq of (2.11) restricted to the region Tzr´3π

4 ,
3π
4 s is uniquely determined by

the initial data pw0, z0, a0q on the set Tzr´π
2 ,

π
2 s, for all times t P r´ε, T˚s. In particular, as a consequence

of the support assumption (4.5), on the region Tzr´3π
4 ,

3π
4 s, the solution pw, z, aq is constant in the angle θ

(albeit a time dependent constant), for all times t P r´ε, T˚s. Hence by abuse of notation we may extend
the domain of pw, z, aq to θ P R, by setting wpθ, tq “ wpπ, tq, zpθ, tq “ zpπ, tq, and apθ, tq “ apπ, tq for
|θ| ą π. In what follows we adopt this abuse of notation, with the knowledge that the true solution is defined
to be the periodization of the restriction to r´π, πq of the extended solution. Also, we shall use implicitly
throughout the proof that supp pBθwq Y supp pBθzq Y supp pBθaq Ď r´3π{4, 3π{4s .

4.2 Statement of the main result

Theorem 4.4 (Formation of shocks for Euler). Let γ ą 1, α “
γ´1
2 , 0 ă R0 ă r0 ă r1 ă R1 ă 8, and

ν0 ą 0. Then, there exist a sufficiently large κ0 “ κ0pα, ν0q ą 0, a sufficiently large M “ Mpα, κ0, ν0q ě

1, and a sufficiently small ε “ εpα, κ0, ν0,M,R0, R1, r0, r1q P p0, 1q such that the following holds.
Assumptions on the initial data. Consider initial datum for the Euler equations (2.1), given at initial

time t0 “ ´ε given as follows:

urpr, θ, t0q “ ra0pθq , uθpr, θ, t0q “ rb0pθq , and ρ0pr, θ, t0q “ r
1{αP0pθq for pr, θq P AR0,R1 ,

where pa0, b0, P0q P C4pTq and P0 ě ν0 ą 0. Define w0 “ b0 ` 1
αP

α
0 , z0 “ b0 ´ 1

αP
α
0 , and suppose that

pw0, z0, a0q satisfy assumptions (4.1)–(4.6).
Shock formation for pa, z, wq-system (2.11). There exists a unique solution pa, z, wq P Cpr´ε, T˚q;C4pTqq

to (2.11) which blows up in asymptotically self-similar fashion at time T˚ and angle θ˚, such that:

• the blowup time T˚ “ Opε
5{4q and angle θ˚ “ Opεq are explicitly computable, with θ˚ “ limtÑT˚

ξptq,

• suptPr´ε,T˚q

`

}a}W 1,8pTq ` }z}W 1,8pTq ` }w}L8pTq

˘

ď CpMq,

• limtÑT˚
Bθwpξptq, tq “ ´8 and we have 1

2pT˚´tq ď }Bθwp¨, tq}L8 ď 2
T˚´t as t Ñ T˚,

• wp¨, T˚q has a cusp singularity of Hölder C1{3 regularity.
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Shock formation for the Euler equations (2.1). Setting b “ w`z
2 and P “ pα2 pw ´ zqq

1{α, we define
pur, uθ, ρq by (2.6). Consider the time-dependent domain Ωptq defined in (2.13) such that Ωptq Ă AR0,R1

for all t P r´ε, T˚s. Then, pur, uθ, ρq P C
`

r´ε, T s;C4pΩptqq
˘

is a unique solution to the Euler equations
(1.1) on the domain Ωptq for all ´ε ď t ď T , for any T ă T˚, and

lim
tÑT˚

Bθuθpr, ξptq, tq “ lim
tÑT˚

Bθρpr, ξptq, tq “ ´8 for all r P Ωptq , (4.9)

sup
tPr´ε,T˚q

1
ÿ

k“0

´

}Bkrρp¨, tq}L8pΩptqq ` }Bkrup¨, tq}L8pΩptqq

¯

` }Bθurp¨, tq}L8pΩptqq ď CpR1,Mq . (4.10)

The shock occurs along the line segment ΓpT˚q :“ tpr, θq P ΩpT˚q : θ “ θ˚u. The graphs of the blowup
profiles uθpr, θ, T˚q and ρpr, θ, T˚q are surfaces with cusps along ΓpT˚q and are Hölder C1{3 smooth.

Non-trivial vorticity and density at the shock. The vorticity and density satisfy

1

M2
ď ωpθ, tq ď M2 , ρpr, θ, tq ě

R
1{α

0 ν0
2

ą 0 ,

for all pr, θq P Ωptq and t P r´ε, T˚q.

Remark 4.5. With u “ pur, uθq, the flow ηu solving Btηu “ u ˝ ηu with initial datum ηupr, θ,´εq “ pr, θq

is well defined and smooth on the time interval r´ε, T s for all T ă T˚. Moreover, since ηupr, θ, tq “

pr, θq `
şt

´εpu ˝ ηuqpr, θ, sqds, by (4.10), we see that

sup
r´ε,T˚q

}ηup¨, tq}L8pAr0,r1 q ď C

Hence, by dominated convergence, we may define ηupr, θ, T˚q “ limtÑT˚
ηupr, θ, tq. Thus, the set ΩpT˚q

is well defined.

Remark 4.6. We have established that at the initial singularity time t “ T˚, both uθ and ρ have cusp
singularities with C1{3 regularity. For the case that γ “ 3, we have explained how this cusp singularity
develops an instantaneous discontinuity and is propagated as a shock wave. In Section 5 we conjecture that
the same is true for the more general solution constructed in the previous theorem. We note that Alinhac
[1, 2] proved the formation of cusp-type singularities for solutions of a quasilinear wave equation, but the
Euler equations do not satisfy the structure of his equations.

Corollary 4.7 (Open set of initial conditions). The conditions on the initial data pa0, z0, w0q in Theorem
4.4 may be relaxed so that they may be taken to be in an open neighborhood in the C4 topology.

Proof of Corollary 4.7. First note that since the system (2.11) has finite speed of propagation, the support
properties of the initial data described in (4.5) (see also Remark 4.3) are stable under small perturbations in
theC4 topology. Second, note that κ0 and ε are free to be taken in an open set (sufficiently large, respectively
sufficiently small), and hence the values of w0p0q and Bθw0p0q stated in (4.1) can be taken in an open set of
possible values. Next, observe that if

›

›B4
θw0

›

›

L8 ď ε´11{2 holds (condition which is stable under small C4

perturbations) then a Taylor expansion around the origin yields

B2
θw0pθq “ B2

θw0p0q ` θB3
θw0p0q ` Opε´11{2θ2q

“ B2
θw0p0q ` 6ε´4θ ` θpB3

θw0p0q ´ 6ε´4q ` Opε´11{2θ2q .

Hence by continuity, for any ε ą 0 depending on ε, if one assumes B2
θw0p0q and B3

θw0p0q ´ 6ε´4 to be
sufficiently small, there exists an θ0 satisfying |θ0| ď ε such that B2

θw0pθ0q “ 0. Hence by the change of

14
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coordinates θ ÞÑ θ` θ0, and taking ε to be sufficiently small, we can relax the condition B2
θw0p0q “ 0 to the

condition that B2
θw0 “ 0 is in a sufficiently small neighborhood of 0 and that B3

θw0p0q lies in a sufficiently
small neighborhood of 6ε´4. Next, note that the rescaling w0pθq ÞÑ µ´1w0pµθq, rescales B3

θw0p0q and
leaves Bθw0p0q unchanged. Strictly speaking, such a rescaling would modify the domain; however, since our
analysis only concerns a strict subset of the domain (due to (4.5)), and we have finite speed of propagation,
as long as µ is sufficiently close to 1 this µ-rescaling does not pose an issue. Setting

rapθ, tq “ µ´1apµθ, tq, rwpθ, tq “ µ´1wpµθ, tq, rzpθ, tq “ µ´1zpµθ, tq ,

the equation satisfied by pra, rw, rzq is of the form (2.11), with the right hand side rescaled by a factor of µ.
As long as µ is sufficiently close to 1, this rescaling has no effect on the proof of Theorem 4.4. Thus the
condition on B3

θw0p0q may be relaxed to the condition that B3
θw0p0q lies in a sufficiently small neighborhood

of 6ε´4. Finally, note that for θ small, (4.3) is implied by (4.1) and (4.2). For θ away from a small neigh-
borhood of 0, the condition (4.3) is an open condition. Thus (4.3) does not pose an impediment to taking
the initial data to lie in an open set.

4.3 Self-similar variables and solution ansatz

For the purpose of satisfying certain normalization constraints on the developing shock, we introduce three
dynamic variables τ, ξ, κ : r´ε, T˚s Ñ R, and fix their initial values as at time t “ ´ε as

τp´εq “ 0, ξp´εq “ 0, κp´εq “ κ0. (4.11)

The blowup time T˚ and the blowup location θ˚ are defined precisely in Remark 4.9. For the moment we
only record that T˚ “ Opε

5{4q, τpT˚q “ T˚, and that by construction we will ensure τptq ą t for all
t P r´ε, T˚q (see Remark 4.9 below).

We introduce the following self-similar variables

xpθ, tq :“
θ ´ ξptq

pτptq ´ tq
3
2

, sptq :“ ´ logpτptq ´ tq . (4.12)

The blowup time is defined by the relation τpT˚q “ T˚. In the self-similar time, the blowup time corresponds
to s Ñ `8. We will use frequently the identities

τ ´ t “ e´s,
ds

dt
“

1 ´ 9τ

τ ´ t
“ p1 ´ 9τqes,

where we adopt the notation 9f “
df
dt , and

x “ e
3
2
spθ ´ ξptqq, Bθx “ e

3
2
s, Btx “

´ 9ξ

pτ ´ tq
3
2

´
3p 9τ ´ 1qpθ ´ ξq

2pτ ´ tq
5
2

“ ´e
3
2
s 9ξ `

3

2
p1 ´ 9τqxes .

Notice that at t “ ´ε, we have s “ ´ log ε and hence e´s “ ε.
Using the self-similar variables x and s we rewrite w, z and a as

wpθ, tq “ e´ s
2W px, sq ` κptq , zpθ, tq “ Zpx, sq , apθ, tq “ Apx, sq . (4.13)

As mentioned in Remark 4.3, the functions pW,Z,Aq are defined on all of R, but they are constant in x on
the complement of the expanding set tx : ´ 3π

4 e
3s{2 ď x ď 3π

4 e
3s{2u.

15
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Inserting the ansatz (4.13) in the system (2.11), we obtain that W , Z and A satisfy the equations

p1 ´ 9τq
`

Bs ´ 1
2

˘

W `

´

e
s
2

´

κ´ 9ξ ` 1´α
1`αZ

¯

` 3
2p1 ´ 9τqx`W

¯

BxW

“ ´e´ s
2 9κ´Ae´ s

2

´

1´2α
1`α Z ´ 3`2α

1`α pe´ s
2W ` κq

¯

p1 ´ 9τqBsZ `

´

e
s
2

´

1´α
1`ακ´ 9ξ

¯

` 1´α
1`αW ` 3

2p1 ´ 9τqx` e
s
2Z

¯

BxZ

“ ´Ae´s
´

1´2α
1`α pe´ s

2W ` κq ´ 3`2α
1`α Z

¯

p1 ´ 9τqBsA`

´

e
s
2

´

1
1`αpZ ` κq ´ 9ξ

¯

` 1
1`αW ` 3

2p1 ´ 9τqx
¯

BxA

“ 1
2p1`αq

e´s
´

´4A2 ` pe´ s
2W ` κ` Zq2 ´ αpe´ s

2W ` κ´ Zq2
¯

.

It is convenient to introduce the transport speeds

gW :“ 1
1´ 9τ e

s
2

´

κ´ 9ξ ` 1´α
1`αZ

¯

, (4.14a)

gZ :“ 1
1´ 9τ

´

e
s
2

´

1´α
1`ακ´ 9ξ

¯

` 1´α
1`αW

¯

, (4.14b)

gA :“ 1
1´ 9τ

´

e
s
2

´

1
1`αpZ ` κq ´ 9ξ

¯

` 1
1`αW

¯

, (4.14c)

and the forcing terms

FW :“ ´ e´ s
2

p1`αqp1´ 9τq

´

p1 ´ 2αqAZ ´ p3 ` 2αqApe´ s
2W ` κq

¯

,

FZ :“ ´ e´s

p1`αqp1´ 9τq

´

p1 ´ 2αqApe´ s
2W ` κq ´ p3 ` 2αqAZ

¯

,

FA :“ e´s

2p1`αqp1´ 9τq

´

´4A2 ` pe´ s
2W ` κ` Zq2 ´ αpe´ s

2W ` κ´ Zq2
¯

,

so that we can rewrite the evolution equations for W , Z and A as

`

Bs ´ 1
2

˘

W `

´

gW ` 3x
2 ` 1

1´ 9τW
¯

BxW “ ´e´ s
2 9κ
1´ 9τ ` FW , (4.15a)

BsZ `

´

gZ ` 3x
2 ` 1

1´ 9τ e
s
2Z

¯

BxZ “ FZ , (4.15b)

BsA`
`

gA ` 3x
2

˘

BxA “ FA . (4.15c)

As long as the solutions remain smooth, the pW,Z,Aq system (4.15) is equivalent to the original pw, z, aq

formulation in (2.11). In particular, the local well-posedness of (4.15) from C4-smooth initial datum of
compact support follows from the corresponding well-posedness theorem for (2.11). The purpose of this
section is to show that the dynamic modulation variables pκ, ξ, τq remain uniformly bounded in C1 and
that the functions pW,Z,Aq remain uniformly bounded in C4 for all s P r´ log ε,8q. Taking into account
the self-similar transformation (4.12)–(4.13), and in view of the continuation criterion (2.12), this means
that no singularities occur prior to time t “ T˚. Additionally, we will ensure that BxW p0, sq “ ´1 for
all s ě ´ log ε, which in turn implies through the self-similar change of coordinates that Bθw blows up as
´ 1{pT˚ ´ tq as t Ñ T˚.

Remark 4.8 (The stable globally self-similar solution of the 1D Burgers equation). We view the evo-
lution (4.15a) as a perturbation of the 1D Burgers dynamics. Indeed, if we set gW “ 9τ “ 9κ “ FW ” 0
in (4.15a), the resulting steady equation is the globally self-similar version of the 1D Burgers equation as
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described in (2.15). We recall that this steady globally self-similar solution W given explicitly by (2.14),
and that its Taylor series expansions of BxW at x “ 0 and x “ 8, respectively, are given by

BxW “ ´1 ` 3x2 ´ 15x4 ` Opx6q for |x| ! 1 , (4.16a)

BxW “ ´1
3x

´ 2
3 ´ 1

9x
´ 4

3 ` Opx´ 8
3 q for |x| " 1 . (4.16b)

In the proof of our estimates for BxW and BxxW we will use a number of properties for W , which may be
checked directly using its explicit formula (2.14).

At this stage it is convenient to record the differentiated version of the system (4.15). For n P N, after
applying Bnx to (4.15) we obtain from the Leibniz rule that

´

Bs ` 3n´1
2 `

n`1n‰1

1´ 9τ BxW ` nBxgW

¯

BnxW `

´

gW ` 3x
2 ` 1

1´ 9τW
¯

Bn`1
x W “ F

pnq

W (4.17a)
´

Bs ` 3n
2 `

n`1n‰1

1´ 9τ e
s
2 BxZ ` nBxgZ

¯

BnxZ `

´

gZ ` 3x
2 ` 1

1´ 9τ e
s
2Z

¯

Bn`1
x Z “ F

pnq

Z (4.17b)
`

Bs ` 3n
2 ` nBxgA

˘

BnxA`
`

gA ` 3x
2

˘

Bn`1
x A “ F

pnq

A (4.17c)

where the forcing terms are given by

F
pnq

W :“ BnxFW ´ 1ně2BnxgW BxW ´ 1ně3

n´1
ÿ

k“2

ˆ

n

k

˙

´

1
1´ 9τ BkxW ` BkxgW

¯

Bn´k`1
x W

F
pnq

Z :“ BnxFZ ´ 1ně2BnxgZBxZ ´ 1ně3

n´1
ÿ

k“2

ˆ

n

k

˙

´

1
1´ 9τ e

s
2 BkxZ ` BkxgZ

¯

Bn´k`1
x Z

F
pnq

A :“ BnxFA ´ 1ně2

n
ÿ

k“2

ˆ

n

k

˙

BkxgA Bn´k`1
x A .

4.4 Constraints on W at x “ 0 and the definitions of the modulation variables

Inspired by the self-similar analysis of the 1D Burgers equation in [12], we impose the following constraints
at x “ 0, which fully characterize the developing shock:

W p0, sq “ 0, BxW p0, sq “ ´1, B2
xW p0, sq “ 0 . (4.18)

These constraints will fix our choices of τptq, ξptq, and κptq. In order to compactly write the computations
in this section, we shall denote

φ0psq “ φp0, sq , φxpx, sq “ Bxφpx, sq , φxxpx, sq “ B2
xφpx, sq , etc. (4.19)

for any function φ “ φpx, sq.
In view of (4.18), in addition to (4.15a) we need to record (4.17a) for n “ 1 and n “ 2. Using (4.17a)

we spell out these two equations
´

Bs ` 1 ` 1
1´ 9τWx `

p1´αq

p1`αqp1´ 9τq
e

s
2Zx

¯

Wx `

´

gW ` 3x
2 ` 1

1´ 9τW
¯

Wxx “ F
p1q

W (4.20a)
´

Bs ` 5
2 ` 3

1´ 9τWx `
2p1´αq

p1`αqp1´ 9τq
e

s
2Zx

¯

Wxx `

´

gW ` 3x
2 ` 1

1´ 9τW
¯

Wxxx “ F
p2q

W (4.20b)

where the forcing terms are given by

F
p1q

W :“ BxFW , and F
p2q

W :“ BxxFW ´ 1´α
p1`αqp1´ 9τq

e
s
2ZxxWx . (4.21)

17
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Using the notation (4.19), and inserting the constraints (4.18) into (4.20a) we arrive at

´ 9τ `
p1´αq

1`α e
s
2Z0

xpsq “ ´p1 ´ 9τqF
0,p1q

W psq ,

which implies that

9τ “ 1´α
1`αe

s
2Z0

xpsq ´ e´ s
2

´

1´2α
1`α pAZq0xpsq ´ 3`2α

1`α pκA0
xpsq ´ e´ s

2A0psqq

¯

. (4.22)

Plugging in the constraints (4.18) into (4.15a) and (4.20b), we further obtain that

´g0W psq “ F 0
W psq ´ 1

1´ 9τ e
´ s

2 9κ (4.23a)

g0W psqW 0
xxxpsq “ F

0,p2q

W psq . (4.23b)

Since we will prove that W 0
xxxpsq ě 5, we solve the system (4.23a)–(4.23b) as

9ξ ´ κ´ 1´α
1`αZ

0psq “ ´p1 ´ 9τqe´ s
2
F

0,p2q

W

W 0
xxxpsq

, (4.24a)

9κ “ p1 ´ 9τqe
s
2

˜

F 0
W psq `

F
0,p2q

W

W 0
xxxpsq

¸

. (4.24b)

The equations (4.22), (4.24a), and (4.24b) are the evolution equations for the dynamic modulation variables
which are used in the proof. We also note here that in view of (4.14a) and (4.24a) we may write

gW px, sq “
F

0,p2q

W

W 0
xxxpsq

`
p1 ´ αq

p1 ` αqp1 ´ 9τq
e

s
2

`

Zpx, sq ´ Z0psq
˘

, (4.25)

which provides us with a useful bound for gW for |x| À 1.

4.5 Bootstrap assumptions

For the dynamic modulation variables, we assume that

|κptq| ď 2κ0, |τptq| ď ε
5
4 , |ξptq| ď 6Mε (4.26a)

| 9κptq| ď M3, | 9τptq| ď ε
1
4 ,

ˇ

ˇ

ˇ

9ξptq
ˇ

ˇ

ˇ
ď 3M (4.26b)

for all t ă T˚.
Note that from (4.8) and (4.26a) we deduce that (we use κ0 ď M )

}W psq}L8 ď 2Me
s
2 and }Zpsq}L8 ` }Apsq}L8 ď M (4.27)

for all s ě ´ log ε. Therefore, no bootstrap assumptions are needed for the C0 norms of pW,A,Zq.
For the higher order derivatives of W we assume the following estimates for all times s ě ´ log ε

›

›B3
xW

›

›

L8 ď M
3
4 ,

›

›B4
xW

›

›

L8 ď M . (4.28)

We further assume the more precise bounds

ˇ

ˇWxpx, sq ´W xpxq
ˇ

ˇ ď
x2

20p1 ` x2q
, (4.29)

|Wxxpx, sq| ď
12 |x|

p1 ` x2q
1{2
, (4.30)

|Wxxxp0, sq ´ 6| ď 1 , (4.31)
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where W is the exact self-similar solution of the Burgers equation given by (2.14) (see [3]). A comment is
in order concerning (4.29): this inequality and properties of the function W x imply that

}Wxp¨, sq}L8 ď 1 for all s ě ´ log ε. (4.32)

Moreover, we note that (4.30) implies

}Wxxp¨, sq}L8 ď 12 for all s ě ´ log ε. (4.33)

For the functions Z and A our bootstrap assumptions are

}BnxZ}L8 ` }BnxA}L8 ď Me´p 1
2

`δqs , (4.34)

for 1 ď n ď 4, where δ “ δpαq ą 0 is defined as

δ “
mintα, 1u

2p1 ` αq
ą 0. (4.35)

Note, that by definition, we have δ ď 1
4 . Moreover, δ is independent of ε or M , and depends only on α. We

use essentially that γ ą 1 to ensure that δ ą 0.

Remark 4.9 (Estimating the blowup time and the blowup location). The blowup time T˚ is defined
uniquely by the condition τpT˚q “ T˚ which in view of (4.11) is equivalent to

ż T˚

´ε
p1 ´ 9τptqqdt “ ε .

We note that in view of the 9τ estimate in (4.26b), we have that |T˚| ď 2ε
5{4. We also note here that the

bootstrap assumption (4.26b) and the definition of T˚ ensures that τptq ą t for all t P r´ε, T˚q. Indeed,
when t “ ´ε we have τp´εq “ 0 ą ´ε, and the function t ÞÑ

şt
´εp1 ´ 9τqdt1 ´ ε “ t ´ τptq is strictly

increasing. The blowup location is determined by θ˚ “ ξpT˚q, which by (4.11) is the same as

θ˚ “

ż T˚

´ε

9ξptqdt .

In view of (4.26b) we deduce that |θ˚| ď 6Mε, so that the blowup location is Opεq close to the origin.

4.6 Closure of bootstrap

Throughout the proof we shall use the notation À to denote an inequality which holds up to a sufficiently
large multiplicative constant C ą 0, which may only depend on α (hence on γ), but not on s, M , or ε.

4.6.1 The Z estimates

First we consider the equation obeyed by Zx, given by (4.17b) with n “ 1. Recalling (4.14b), and appealing
to the bootstrap assumptions (4.26b), (4.29) (in fact, we use its consequence, the bound (4.32)), and (4.34),
we see that the damping term in the Zx evolution may be bounded from below as

3

2
`
e

s
2Zx

1 ´ 9τ
` BxgZ “

3

2
`
e

s
2Zx

1 ´ 9τ
`

p1 ´ αqWx

p1 ´ 9τqp1 ` αq

ě
3

2
´ p1 ` 2ε

1
4 q

ˆ

Mεδ `
|1 ´ α|

1 ` α

˙

ě
1

2
` δ (4.36)
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for all s ě ´ log ε, where we have used the parameter δ “ δpαq defined in (4.35) above. In deriving (4.36),
we have used that

p1 ` 2ε
1
4 q

ˆ

Mεδ `

ˇ

ˇ

ˇ

ˇ

1 ´ α

1 ` α

ˇ

ˇ

ˇ

ˇ

˙

ď p1 ` 2ε
1
4 q

´

Mεδ ` 1 ´ 2δ
¯

ď 1 ´ δ

which is true as long as ε is taken to be sufficiently small, depending only on α (through δ), and on M .
On the other hand, the forcing term in the Zx equation, F p1q

Z “ BxFZ may be estimated using (4.8),
(4.26a), (4.28), and (4.34) as

›

›

›
F

p1q

Z

›

›

›

L8
À

e´s

1 ´ 9τ

´

}Ax}L8

´›

›

›
pe´ s

2W ` κq

›

›

›

L8
` }Z}L8

¯

` }A}L8

´

e´ s
2 }Wx}L8 ` }Zx}L8

¯¯

À Me´s
´

Me´p 1
2

`δqs ` e´ s
2

¯

À M2e´ 3
2
s . (4.37)

With (4.36) and (4.37), from (4.17b) with n “ 1 and a standard maximum principle argument (cf. Lemma A.1,
estimate (A.2), with λD “ 1

2 ` δ, λF “ 3
2 , and s0 “ ´ log ε), we obtain that

}Zxpsq}L8 À }Zxp´ log εq}L8 e
´p 1

2
`δqps`log εq `M2ep1´δq log εe´p 1

2
`δqs

À

´

ε1´δ `M2ε1´δ
¯

e´p 1
2

`δqs

where we used (4.4) to deduce }Zxp´ log εq}L8 “ ε
3
2 }Bθz0}L8 ď ε

3
2 . Then, taking ε sufficiently small in

terms of M , and using δ ď 1{4 we obtain

}Zxpsq}L8 ď ε
1
4 e´p 1

2
`δqs ď

M

2
e´p 1

2
`δqs , (4.38)

closing the bootstrap (4.34) for Zx.
Similarly to the estimate for BxZ, we note that for 2 ď n ď 4, the damping term in (4.17b) may be

bounded from below as

3n

2
`
n` 1

1 ´ 9τ
e

s
2 BxZ ` nBxgZ ě

3n

2
´ np1 ` 2ε

1
4 q }Wx}L8 ´ pn` 1qp1 ` 2ε

1
4 qe

s
2 }BxZ}L8

ě
3n

2
´ np1 ` 2ε

1
4 q ´ 5p1 ` 2ε

1
4 qMεδ ě

3

4
, (4.39)

for all s ě ´ log ε, by appealing to our bootstrap assumptions and by assuming ε is sufficiently small in
terms of M . On the other hand, using our bootstrap assumptions, and the strong bound established earlier
in (4.38), one may show that the forcing term on the right side of (4.17b) may be estimated as

›

›

›
F

pnq

Z

›

›

›

L8
À }BnxFZ}L8 ` }BnxgZ}L8 }BxZ}L8 ` 1ně3

n´1
ÿ

k“2

´

e
s
2

›

›

›
BkxZ

›

›

›

L8
`

›

›

›
BkxgZ

›

›

›

L8

¯ ›

›

›
Bn´k`1
x Z

›

›

›

L8

À M2e´s `Mε
1
4 e´p 1

2
`δq ` 1tně3u

n´1
ÿ

k“2

M
›

›

›
Bn´k`1
x Z

›

›

›

L8

À M

˜

ε
1
4 e´p 1

2
`δqs ` 1tně3u

n´1
ÿ

k“2

›

›

›
Bn´k`1
x Z

›

›

›

L8

¸

, (4.40)
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where we have assumed ε to be sufficiently small, dependent on M in order to bound the first term on the
second line in terms of the second term. We also remark that since BnxZp¨,´ log εq “ ε

3n
2 Bnθ z0p¨q, by (4.4)

we have
}BnxZp¨,´ log εq}L8 ď ε3 ,

for all n ě 2.
Let us first treat the case n “ 2, when the second term on the right side of (4.40) is absent. Therefore,

in view of (4.39)–(4.40), and applying Lemma A.1 to the evolution equation for BnxZ given by (4.17b) (with
λD “ 3

4 , F0 “ Mε
1
4 , and λF “ 1

2 ` δ), we arrive using (A.1) at

›

›B2
xZpsq

›

›

L8 À
›

›B2
xZp¨,´ log εq

›

›

L8 e
´ 3

4
ps`log εq `Mε

1
4 e´p 1

2
`δqs

À ε
9
4 e´ 3

4
s `Mε

1
4 e´p 1

2
`δqs À Mε

1
4 e´p 1

2
`δqs (4.41)

for all s ě ´ log ε.
With (4.41) in hand, we return to treat the case n “ 3. Then the second term on the right side of (4.40)

is estimated by a constant multiple of M2ε
1
4 e´p 1

2
`δqs. Therefore, the total estimate on the force for B3

xZ is
given by

›

›

›
F

p3q

Z

›

›

›

L8
À M2ε

1
4 e´p 1

2
`δqs. The only modification, as compared to the case n “ 2, is that M

becomes M2. Therefore, an argument similar to the one yielding (4.41) gives the estimate

›

›B3
xZpsq

›

›

L8 À M2ε
1
4 e´p 1

2
`δqs . (4.42)

Using (4.41) and (4.42), we next return to the forcing estimate (4.40) for n “ 4. Similar arguments yield
›

›

›
F

p4q

Z

›

›

›

L8
À M3ε

1
4 e´p 1

2
`δqs, by taking ε to be sufficiently small, in terms of M . Yet another application of

Lemma A.1, similarly to (4.41) implies that

›

›B4
xZpsq

›

›

L8 À M3ε
1
4 e´p 1

2
`δqs . (4.43)

In conclusion, assuming that ε is taken to be sufficiently small, dependent on M , then the bounds (4.41),
(4.42), and (4.43) close the bootstrap assumptions for BnxZ (with 2 ď n ď 4) stated in (4.34).

4.6.2 The A estimates

Next we turn to the BnxA estimates for 1 ď n ď 4. These bounds are established very similarly to the Z
estimates proven earlier. The damping term in (4.17c) is estimated using (4.32) and (4.34) as

3n

2
` nBxgA “

3n

2
`
npWx ` e

s
2Zxq

p1 ` αqp1 ´ 9τq
ě

3n

2
´
np1 ` 2ε

1
4 qp1 `Mεδq

1 ` α
ě
n

2
` δ , (4.44)

upon taking ε small enough in terms of δ (as defined in (4.35) above) and in terms of α ą 0 and M . The
forcing term on the right side of (4.17c) may be bounded from above using our bootstrap assumptions as

›

›

›
F

pnq

A

›

›

›

L8
À M2e´s `M1tně2u

n
ÿ

k“2

›

›

›
Bn´k`1
x A

›

›

›

L8
. (4.45)

Moreover, note that by (4.4) we have

}BnxAp¨,´ log εq}L8 ď ε
3
2 ,
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for all n ě 1. At this stage one may employ a similar scheme to the one employed in the Z estimates. First,
we treat the case n “ 1 since in that case the second forcing term on the right side of (4.45) is absent. With
(4.44) in mind we apply Lemma A.1, and deduce (similarly to (4.41)) that

}BxApsq}L8 ď ε
1
4 e´p 1

2
`δqs , (4.46)

where again we absorbed M2 and the implicit constants by assuming ε to be sufficiently small. Using the
bound (4.46) we may return the case n “ 2, and use that the extra forcing term present on the right side
of (4.45) is bounded a constant multiple of M }BxA}L8 À Mε

1
4 e´p 1

2
`δqs, upon taking ε sufficiently small.

This argument may be then iterated essentially because in the sum on the right side of (4.45) we always have
n´ k` 1 ď n´ 1, so that only norms of A that are already known to be small arise. Using Lemma A.1 one
may then show iteratively that

}BnxApsq}L8 À Mn´1ε
1
4 e´p 1

2
`δqs (4.47)

for all 2 ď n ď 4. Taking ε sufficiently small, dependent on M , then (4.46) and (4.47) close the bootstrap
assumptions on BnxA stated in (4.34).

4.6.3 Bounds on the modulation variables τ , κ, and ξ

From (4.22), using the bounds (4.8), (4.26a), (4.38), and (4.46), we obtain

| 9τ | À e
s
2 }Zx}L8 ` e´ s

2 }A}L8

´

}Zx}L8 ` e´ s
2

¯

` e´ s
2 }Ax}L8 p}Z}L8 ` κ0q

À ε
1
4 e´δs `Me´s

´

ε
1
4 e´δs ` 1

¯

` ε
1
4 e´p1`δqs pM ` κ0q

The implicit constant is universal. Hence for s ě ´ log ε, upon taking ε small to be sufficiently small solely
in terms of M and δ, we obtain from the above that

| 9τ | ď Cε
1
4 e´δs ď Cε

1
4

`δ ď 1
2ε

1
4 . (4.48)

Integrating in t for t ď T˚, and using that τp´εq “ 0, we obtain

|τ | ď 1
2ε

5
4 ,

proving the τ bounds in (4.26a)–(4.26b).
Aa consequence of (4.24b), (4.8) and the bootstrap assumptions, by inspection we obtain

| 9κ| ď 2e
s
2

´

ˇ

ˇF 0
W psq

ˇ

ˇ `

ˇ

ˇ

ˇ
F

0,p2q

W psq
ˇ

ˇ

ˇ

¯

ď M3

assuming that M is taken to be sufficiently large (in terms of just universal constants). Integrating in t from
´ε to T˚, and assuming that ε is sufficiently small (in terms of M and κ0), yields

|κptq| ď 3
2κ0 .

This establishes the κ bounds in (4.26a)–(4.26b).
Similarly, from(4.24a), (4.8) and the bootstrap assumptions, by inspection we obtain

ˇ

ˇ

ˇ

9ξ
ˇ

ˇ

ˇ
ď |κ| `

ˇ

ˇZ0psq
ˇ

ˇ ` e´ s
2

ˇ

ˇ

ˇ
F

0,p2q

W

ˇ

ˇ

ˇ
ď 3

2pκ0 `Mq ď 5
2M

upon taking ε to be sufficiently small, in terms ofM , and recalling cf. Remark 4.2 that 2κ0 ď M . Integrating
in t from ´ε to T˚, which obeys |T˚| ď 2ε

5{4, and using that ξp´εq “ 0, we arrive at

|ξptq| ď 5Mε ,

which proves the ξ estimates in (4.26a)–(4.26b).
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4.6.4 Estimates for W

The third derivative at x “ 0. Our first goal is to establish (4.31). The evolution of B3
xW

0psq is obtained
by restricting (4.17a) with n “ 3 to x “ 0, using the constraints (4.18), and the definition of 9ξ in (4.24a).
We obtain (noting that B3

xFW also contains the term B3
xW ):

˜

Bs ` 4

ˆ

1 ´
1

1 ´ 9τ

˙

` 3
e

s
2

1 ´ 9τ

1 ´ α

1 ` α
Z0
xpsq ´

e´sp3 ` 2αq

p1 ` αqp1 ´ 9τq
A0psq

¸

W 0
xxxpsq

“
F

0,p2q

W psq

W 0
xxxpsq

W 0
xxxxpsq `

p1 ´ αqe
s
2Z0

xxxpsq

p1 ` αqp1 ´ 9τq
´

e´ s
2 p1 ´ 2αq

p1 ` αqp1 ´ 9τq
pAZq0xxxpsq

`
e´ s

2 p3 ` 2αq

p1 ` αqp1 ´ 9τq

´

κA0
xxxpsq ´ 3e´ s

2A0
xxpsq

¯

. (4.49)

We bound the terms of the above evolution using (4.8), (4.26b), (4.28), (4.31), (4.32), and (4.34). After a
calculation, we obtain that the right side of (4.49) is bounded by

À M
´

M2e´p 1
2

`δqs `Me´p1`δqs
¯

`Me´δs `M2e´p1`δqs ` e´ s
2

´

κ0Me´p 1
2

`δqs `Me´p1`δqs
¯

À Me´δs

where we have assumed ε to be sufficiently small such that the second term dominates all other terms. On the
other hand, the damping term on the left side of (4.49) may be estimated in absolute value, upon appealing
to the first inequality in (4.48), by

À ε
1
4 e´δs `Me´δs `Me´s À Me´δs

for s ě ´ log ε. Therefore, by also appealing to the bootstrap assumption (4.31), we have proven that
ˇ

ˇBsW
0
xxxpsq

ˇ

ˇ À Me´δsp
ˇ

ˇW 0
xxxpsq

ˇ

ˇ ` 1q À Me´δs .

Recalling that W 0
xxxp0q “ 6, and using the fundamental theorem of calculus in time, we obtain

ˇ

ˇW 0
xxxpsq ´ 6

ˇ

ˇ À M

ż s

´ log ε
e´δs1

ds1 À
M

δ
εδ ď ε

δ
2 (4.50)

upon taking ε to be sufficiently small, in terms of M and δ. Since ε ă 1, we close the bootstrap (4.31).

The first derivative. We prove (4.29) in two steps, first for |x| ď ℓ for some ℓ ą 0 to be determined below
(cf. (4.51)), and then for |x| ě ℓ. Using a Taylor expansion around x “ 0 together with the constraints (4.18),
we obtain

Wxpx, sq ` 1 ´ 3x2 “ x2
ˆ

1

2
W 0
xxxpsq ´ 3

˙

`
x3

6
Wxxxxpx1, sq

for some x1 with |x1| ă |x|. Using (4.50) and (4.28) we arrive at

ˇ

ˇWxpx, sq ` 1 ´ 3x2
ˇ

ˇ ď x2
ˆ

ε
δ
2 `

M |x|

6

˙

ď x2
ˆ

ε
δ
2 `

Mℓ

6

˙

for all |x| ď ℓ. Then, recalling (4.16a), we see that the above estimate implies

ˇ

ˇWxpx, sq ´W x

ˇ

ˇ ď x2
ˆ

ε
δ
2 `

Mℓ

6
` 15ℓ2

˙

ď
x2

40p1 ` x2q
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for all |x| ď ℓ, as soon as we choose

ℓ ď
1

40M
, (4.51)

M sufficiently large, and ε sufficiently small in terms of M and δ. Thus, we improve upon the bootstrap
assumption (4.29) for |x| ď ℓ, as desired.

It remains to establish (4.29) for |x| ě ℓ. For this purpose it is convenient to define

ĂW “ W ´W ,

so that from (4.20a) and the differentiated form of (2.15), ĂWx is the solution of
˜

Bs ` 1 `
ĂWx ` 2W x

1 ´ 9τ
`

p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq

¸

ĂWx `

ˆ

gW `
3x

2
`

W

1 ´ 9τ

˙

ĂWxx

“ BxFW ´

˜

gW `
ĂW ` 9τW

1 ´ 9τ

¸

W xx ´

˜

9τW x

1 ´ 9τ
`

p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq

¸

W x . (4.52)

Note that by (4.18) and (4.16a), we have ĂW p0, sq “ ĂWxp0, sq “ ĂWxxp0, sq “ 0. Next, we define

V px, sq “
ĂWxp1 ` x2q

x2

so that establishing (4.29) is equivalent to proving that |V | ď 1
20 for all s ą ´ log ε and all |x| ě ℓ. It is

important here that we are avoiding x “ 0 (since we concerned with |x| ą ℓ), in view of the division by x2.
It follows from (4.52) and a short computation that

BsV `

˜

1 `
ĂWx ` 2W x

1 ´ 9τ
`

p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq
`

2

xp1 ` x2q

ˆ

gW `
3x

2
`

W

1 ´ 9τ

˙

¸

V

`

ˆ

gW `
3x

2
`

W

1 ´ 9τ

˙

Vx

“
p1 ` x2qBxFW

x2
´

ˆ

gW `
9τW

1 ´ 9τ

˙

p1 ` x2qW xx

x2
´

˜

9τW x

1 ´ 9τ
`

p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq

¸

p1 ` x2qW x

x2

´
1

1 ´ 9τ

p1 ` x2qW xx

x2

ż x

0
V px1q

px1q2

1 ` px1q2
dx1 . (4.53)

The evolution equation for V takes the form of a damped and non-locally forced transport equation, of the
general form given in (A.3) below. Our goal is to apply Lemma A.2 to (4.53).

The main observation which allows us to bound the solution V of (4.53) is that the explicit formula for
W in (2.14) implies the lower bound

1 ` 2W x `
2

xp1 ` x2q

ˆ

3x

2
`W

˙

ě
6x2

1 ` 8x2
(4.54)

for all x P R. Since we are analyzing |x| ě ℓ, the above estimate yields a strictly positive damping term in
the V equation. In order to see this, let us estimate the remaining terms in the damping factor for V on the
left side of (4.53). We claim that for all |x| ě ℓ, we have that

ˇ

ˇ

ˇ

ˇ

ˇ

ĂWx ` 2 9τW x

1 ´ 9τ
`

p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq
`

2

xp1 ` x2q

ˆ

gW ` ĂW `
9τW

1 ´ 9τ

˙

ˇ

ˇ

ˇ

ˇ

ˇ

ď
5x2

4p1 ` 8x2q
` ε

δ
2 . (4.55)
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Indeed, using the 9τ estimate (4.26b), the fact that
ˇ

ˇW x

ˇ

ˇ ď 1, and the bootstrap assumptions, we deduce that
ˇ

ˇ

ˇ

ˇ

ˇ

ĂWx ` 2 9τW x

1 ´ 9τ
`

p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq
`

2ĂW

xp1 ` x2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď p1 ` 2ε
1
4 q

ˆ

3x2

20p1 ` x2q
` 2ε

1
4 `Mεδ

˙

ď
5x2

4p1 ` 8x2q
` 2Mεδ (4.56)

since ε is sufficiently small. Here we have used that ĂW p0, sq “ 0, and thus that
ˇ

ˇ

ˇ

ˇ

ˇ

2ĂW px, sq

xp1 ` x2q

ˇ

ˇ

ˇ

ˇ

ˇ

ď
2

|x| p1 ` x2q

ż |x|

0

ˇ

ˇ

ˇ

ĂWxpx1, sq
ˇ

ˇ

ˇ
dx1 ď

1

10 |x| p1 ` x2q

ż |x|

0

px1q2

1 ` px1q2
dx1 ď

x2

10p1 ` x2q
.

Similarly, using the constraint (4.18) and the bound (4.32), we may directly estimate

2 | 9τW px, sq|

xp1 ` x2qp1 ´ 9τq
ď

4ε
1
4

x

ż x

0

ˇ

ˇWxpx1, sq
ˇ

ˇ dx1 ď 4ε
1
4 . (4.57)

Recall the identities (4.25) and (4.21). Note that by (4.34) we have
ˇ

ˇZpx, sq ´ Z0psq
ˇ

ˇ ď M |x|e´p 1
2

`δqs.
Then, by appealing to (4.8), (4.34) and the constraints (4.18), we may deduce that

|gW px, sq| ď
p1 ´ αqe

s
2

p1 ` αqp1 ´ 9τq

ˇ

ˇZpx, sq ´ Z0psq
ˇ

ˇ `

ˇ

ˇ

ˇ
F

0,p2q

W

ˇ

ˇ

ˇ

W 0
xxxpsq

À |x|Me´δs `
›

›BxxF
0
W

›

›

L8 ` e
s
2

›

›Z0
xx

›

›

L8

À |x|Me´δs `M2e´s `Me´δs

À ℓ´1M |x| e´δs (4.58)

for any ℓ ď |x|. Choosing ε sufficiently small in terms of δ and M , and combining (4.56)–(4.58) yields the
proof of (4.55). In turn, combining (4.54) and (4.55) we obtain that the total damping term in (4.53) may be
bounded from below as

1 `
ĂWx ` 2W x

1 ´ 9τ
`

p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq
`

2

xp1 ` x2q

ˆ

gW `
3x

2
`

W

1 ´ 9τ

˙

ě
9x2

2p1 ` 8x2q
(4.59)

pointwise for all |x| ě ℓ. Here we have implicitly used that ε
δ
2 ď ℓ2

16 ď x2

4p1`8x2q
for |x| ě ℓ since by

(4.51), ℓ is small enough when M is large. From (4.59) and the fact that the function 9x2

2p1`8x2q
is monotone

increasing in |x|, we obtain that the damping term in (4.53) is bounded from below by λD :“ 9ℓ2

2p1`8ℓ2q
for

all |x| ě ℓ, as required by (A.4).
Our next observation concerns the last term on the right side of (4.53), which is nonlocal in V . We may

write this term as the integral of V px1, sq against the kernel

Kpx, x1, sq “ ´
1

1 ´ 9τ

p1 ` x2qW xxpxq

x2
1r0,xspx

1q
px1q2

1 ` px1q2
.

Since we know W xx exactly, we may show that pointwise in x and s we have the bound
ż

R

ˇ

ˇKpx, x1, sq
ˇ

ˇ dx1 ď

ˇ

ˇW xx

ˇ

ˇ p1 ` x2q

p1 ´ 9τqx2

ż |x|

0

px1q2

1 ` px1q2
dx1 ď

3p1 ` 2ε
1{4qx2

1 ` 8x2
. (4.60)
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In view of (4.59), (4.60), and the bound 3p1` 2ε
1{4q ď 9{2 ¨ 3{4, which holds since ε is sufficiently small, the

kernel K obeys the assumption (A.6) of Lemma A.2.
Next, we estimate the forcing term in (4.53) for |x| ě ℓ in order to identify the constant F0 from

Lemma A.2. Indeed, using the explicit properties of W , the first line on the right side of (4.53) is bounded
from above by

›

›

›

›

1 ` x2

x2
BxFW

›

›

›

›

L8p|x|ěℓq

`

˜

›

›

›

gW
x

›

›

›

L8p|x|ěℓq
` 2 | 9τ |

›

›

›

›

W

x

›

›

›

›

L8p|x|ěℓq

¸

›

›

›

›

p1 ` x2qW xx

x

›

›

›

›

L8p|x|ěℓq

` 2
´

| 9τ |
›

›W x

›

›

L8 ` e
s
2 }Zx}L8

¯

›

›

›

›

p1 ` x2qW x

x2

›

›

›

›

|x|ěℓ

À ℓ´2 }BxFW }L8p|x|ěℓq `

›

›

›

gW
x

›

›

›

L8p|x|ěℓq
` | 9τ | ` ℓ´2p| 9τ | ` e

s
2 }Zx}L8q

À ℓ´2M2e´s ` ℓ´1Me´δs ` ε
1
4 ` ℓ´2pε

1
4 `Me´δsq

À ℓ´2Mεδ

where we have employed (4.8), (4.26b) (4.34), (4.58), and assumed ε to be sufficiently small, dependent on
M . Therefore, taking ε smaller if need be, the estimate on the force required by (A.5) in Lemma A.2 holds,
with F0 “ ε

δ
2 .

Lastly, we verify the bounds (A.7). We already know that for |x| ď ℓ, and for s ě ´ log ε, we have the
inequality |V px, sq| ď 1{40. Moreover, in view of the assumption (4.3), at the initial time s “ ´ log ε we
have that xε

3
2 “ θ and thus

|V px,´ log εq| “
1 ` x2

x2
ˇ

ˇWxpx,´ log εq ´W xpxq
ˇ

ˇ “
ε3 ` θ2

θ2

ˇ

ˇ

ˇ

ˇ

εpBθw0qpθq ´W x

ˆ

θ

ε
3
2

˙ˇ

ˇ

ˇ

ˇ

ď
1

40
.

Thus, (A.7) holds with m “ 1{20.
In order to apply Lemma A.2 we finally need to verify the condition (A.8). In view of our determined

values for λD,F0 and m, we have

mλD “
1

20

9ℓ2

2p1 ` 8ℓ2q
ě 4ε

δ
2 “ 4F0

once ε is chosen to be sufficiently small, in terms of ℓ ď 1 (and thus ofM ). Also, note that by Remark 4.3 we
have that Wx is compactly supported, while from (4.16b) we have that W x decays as |x| Ñ 8. Therefore,
we have |V px, ¨q| Ñ 0 as |x| Ñ 8. We may thus apply Lemma A.2 and conclude from (A.9) that

}V p¨, sq}L8pRq ď
3

80

which proves the bootstrap assumption (4.29).

The second derivative. We note that from (4.28), the constraint Wxxp0, sq “ 0 in (4.18), and the bound
(4.50), we obtain that

|Wxxpx, sq| ď |x|Wxxxp0, sq `
x2

2

›

›B4
xW

›

›

L8

ď p6 ` ε
δ
2 q |x| `

M

2
x2 ď

7 |x|

p1 ` x2q
1
2

, for all |x| ď
1

M
, (4.61)

and all s ě ´ log ε. Here we have assumed thatM is sufficiently large. This shows that (4.30) automatically
holds for |x| ď 1{M , with an even better constant.
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Next, we observe that (4.2) implies
›

›B2
xW p¨,´ log εq

›

›

L8 ď 1 and
›

›B4
xW p¨,´ log εq

›

› ď 1. Using (4.1),
and a Taylor expansion, together with the uniform bound (4.2), we conclude that

}Wxxpx,´ log εq} ď min

"

6 |x| `
x2

2
, 1

*

ď
7 |x|

p1 ` x2q1{2
(4.62)

for all x P R.
Similarly to the above subsection, in order to prove (4.30) for |x| large, we introduce a new variable

which is a weighted version of Wxx; we define

rV px, sq “
p1 ` x2q

1
2Wxxpx, sq

x
. (4.63)

From (4.20b), we see that rV px, sq is a solution of

Bs rV `

˜

5

2
`

3Wx

1 ´ 9τ
`

2p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq
`

1

xp1 ` x2q

ˆ

gW `
3x

2
`

W

1 ´ 9τ

˙

´
p3 ` 2αqe´sA

p1 ` αqp1 ´ 9τq

¸

rV

`

ˆ

gW `
3x

2
`

W

1 ´ 9τ

˙

Bx rV

“ ´
e´ s

2 p1 ` x2q
1
2

xp1 ` αqp1 ´ 9τq

´

p1 ´ 2αqpAZqxx ´ p3 ` 2αq

´

Axxpe´ s
2W ` κq ` 2e´ s

2AxWx

¯¯

´
p1 ´ αqe

s
2 p1 ` x2q

1
2ZxxWx

xp1 ` αqp1 ´ 9τq
. (4.64)

Here we have used that B2
xFW contains a term with a factor of Wxx; the corresponding weighted term has

been grouped with the other damping terms on the left of (4.64). The idea is simple: the damping term in
(4.64) is larger than the forcing term, for all |x| ě 1{M , once ε is chosen sufficiently small.

In order to make this precise, we first estimate the damping term from below. The main observation is
that for the exact self-similar profile W , we have

5

2
` 3W x `

1

xp1 ` x2q

ˆ

3x

2
`W

˙

ě
x2

1 ` x2
(4.65)

for all x P R. This bound is similar to (4.54), and it holds because we knowW precisely. Using the estimates
(4.8), (4.26b), (4.32), (4.34), (4.58) and (4.65), we thus may bound from below

5

2
`

3Wx

1 ´ 9τ
`

2p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq
`

1

1 ` x2

ˆ

gW
x

`
3

2
`

W

xp1 ´ 9τq

˙

´
p3 ` 2αqe´sA

p1 ` αqp1 ´ 9τq

ě
x2

1 ` x2
´ p3 ` 6ε

1
4 q

ˇ

ˇ

ˇ

ĂWx

ˇ

ˇ

ˇ
´ CMe´δs ´

1

1 ` x2

˜

Cℓ´1Me´δs `

ˇ

ˇ

ˇ

ˇ

ˇ

ĂW

x

ˇ

ˇ

ˇ

ˇ

ˇ

¸

´ CMe´s (4.66)

where C ą 0 only depends on α. Using (4.29) and the fundamental theorem of calculus, we have

p3 ` 6ε
1
4 q

ˇ

ˇ

ˇ

ĂWx

ˇ

ˇ

ˇ
`

1

1 ` x2

ˇ

ˇ

ˇ

ˇ

ˇ

ĂW

x

ˇ

ˇ

ˇ

ˇ

ˇ

ď
3x2

20p1 ` x2q
` ε

1
4 `

1

|x| p1 ` x2q

ˇ

ˇ

ˇ

ˇ

ż x

0

y2

20p1 ` y2q
dy

ˇ

ˇ

ˇ

ˇ

ď
x2

5p1 ` x2q
` ε

1
4
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where we used that
ˇ

ˇ

ˇ

1`x2

x3

şx
0
y2dy
1`y2

ˇ

ˇ

ˇ
ď 1 for all x P R. Taking ε sufficiently small, depending on M,α, δ,

we may thus bound the right hand side of (4.66), and thus the total damping terms on the left side of (4.64),
from below by

ě
4x2

5p1 ` x2q
´ ε

δ
2 ě

1

2M2
for all |x| ě

1

M
, (4.67)

upon taking ε to be small enough in terms of δ and M .
Similarly, for |x| ě 1{M the forcing term on the right hand side of (4.64) may be bounded by

À e´ s
2

p1 ` x2q
1
2

|x|

´

|pAZqxx| `

´

|Axx| pe´ s
2 |W | ` κq ` e´ s

2 |AxWx|

¯¯

`
e

s
2 p1 ` x2q

1
2 |ZxxWx|

|x|

À pM2e´s `Me´δsq
p1 ` x2q

1
2

|x|
À M2e´δs (4.68)

where we assumed ε to be sufficiently small dependent on M .
To close the bootstrap, we wish to apply Lemma A.2 (with K ” 0) to the evolution equation (4.64).

Using (4.61) and (4.62), the condition (A.7) is satisfied with m “ 14 and Ω “ tx : |x| ď 1{Mu. From
(4.68) we verify that (A.5) holds with F0 “ ε

δ
2 , after talking ε to be small enough to absorb the implicit

constant and the M2 factor. Owing to (4.67), the condition (A.8) then amounts to checking

14
1

2M2
ě e´ δ

2

which is easily seen to be satisfied by taking ε to be sufficiently small, dependent on M . Applying
Lemma A.2 we obtain

›

›

›

rV
›

›

›

L8
ď

21

2
ă 12

which closes the bootstrap (4.30) upon recalling the definition of rV in (4.63).

The fourth derivative. The evolution of the fourth derivative of W is governed by (4.17a) with n “ 4. The
damping term in this equation may be bounded from below as

11

2
`

5

1 ´ 9τ
BxW ` 4BxgW ě

11

2
´ 5p1 ` 2ε

1
4 q

´

1 ` 4e
s
2

›

›B4
xZ

›

›

L8

¯

ě
11

2
´ 5p1 ` 2ε

1
4 q

´

1 ` 4Mεδs
¯

ě
1

4
(4.69)

where we have used that |Wx| ď 1, ε is sufficiently small, and (4.34) holds. On the other hand, the forcing
term F

p4q

W may be estimated using (4.26b), (4.27), (4.28), and (4.32)–(4.34) as

›

›

›
F

p4q

W

›

›

›

L8
À e´ s

2 }AZ} 9C4 ` e´ s
2

›

›

›
Ape´ s

2W ` κq

›

›

›

9C4
` }W } 9C3 }W } 9C2 `

3
ÿ

k“1

}W } 9Ck e
s
2 }Z} 9C5´k

À M2e´s `M
3
4 `M

7
4 e´δs À M

3
4 (4.70)

assuming ε to be sufficiently small, dependent on M . Appealing to Lemma A.1, estimate (A.1), with
λF “ 0, λD “ 1{4, and F0 “ CM

3
4 where C is the (universal) implicit constant in (4.70), we arrive at

›

›B4
xW p¨, sq

›

›

L8 ď
›

›B4
xW p¨,´ log εq

›

›

L8 e
´ 1

4
ps`log εq ` 4CM

3
4 ď 1 ` 4CM

3
4 ď

M

2
(4.71)
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for any s ě ´ log ε. In the second inequality above, we have used the initial datum assumption (4.2) on the
fourth derivative of the initial datum, while in the third inequality we have used that M is sufficiently large,
in terms of the universal constant C. This estimate proves the fourth derivative bound in (4.28).

Global bound for the third derivative. Using the mean value theorem and the bound (4.71) we have

|Wxxxpx, sq ´Wxxxp0, sq| ď |x|M

which may be combined with (4.50) to arrive at

|Wxxxpx, sq| ď 6 ` ε
δ
2 ` |x|M ď

M
3
4

2
for |x| ď

1

4M
1
4

(4.72)

and all s ě ´ log ε, assuming M is sufficiently large. At the initial time, in view of (4.2), the estimate

|Wxxxpx,´ log εq| ď 7 ď
M

3
4

2
(4.73)

holds for all x P R. We next claim that

|Wxxxpx, sq| ď
3M

3
4

4
(4.74)

holds for all s ą ´ log ε and all |x| ě 1{p4M
1{4q. The estimate (4.74) would then immediately imply the

bootstrap assumption for the third derivative in (4.28). The proof of (4.74) is based on Lemma A.2 (with
K ” 0), and a lower bound on the damping term for the B3

xW evolution.
We recall from (4.17a) with n “ 3, and carefully computing the forcing term F

p3q

W , that
˜

Bs ` 4 p1 ` BxW q `
9τWx

1 ´ 9τ
`

4p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq
´

p3 ` 2αqe´sA

p1 ` αqp1 ´ 9τq

¸

B3
xW `

ˆ

gW `
3x

2
`

W

1 ´ 9τ

˙

B4
xW

“
e´ s

2

p1 ` αqp1 ´ 9τq

´

p3 ` 2αq

´

B3
xApe´ s

2W ` κq ` 3e´ s
2 B2
xABxW ` 3e´ s

2 BxAB2
xW

¯

´ p1 ´ 2αqB3
xpAZq

¯

´
p1 ´ αqe

s
2

p1 ` αqp1 ´ 9τq

`

B3
xZBxW ` 3B2

xZB2
xW

˘

´
3

1 ´ 9τ

`

B2
xW

˘2 (4.75)

holds. In order to prove (4.74), we first estimate the right side of (4.75). From (4.8), (4.26b), (4.28), (4.32),
and (4.34), we may directly estimate the error term on the right side of (4.75) in absolute value by

À M2e´δs ` 1 (4.76)

assuming M is sufficiently large, and ε is sufficiently small, dependent on M and δ. Returning to the
damping term in the evolution for B3

xW , for any x and any s ě ´ log ε, we have that

4 p1 ` BxW q `
9τWx

1 ´ 9τ
`

4p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq
´

p3 ` 2αqe´sA

p1 ` αqp1 ´ 9τq

ě 4

ˆ

1 `W x ´
x2

20p1 ` x2q

˙

´ 2ε
1
4 ´ 8Mεδ ´ 6Mε ě

x2

1 ` x2
´ ε

δ
2 .

Above we have appealed to (4.8), (4.26b), (4.29), (4.32), and (4.34), and have taken ε to be sufficiently
small, in terms of M and δ. In the second inequality above we have also appealed to the pointwise estimate
1 `W x ´ 3x2

4p1`x2q
ě 0 holds for all x P R. Now, for |x| ą 1{p4M

1
4 q we obtain that

4 p1 ` BxW q `
9τWx

1 ´ 9τ
`

4p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq
´

p3 ` 2αqe´sA

p1 ` αqp1 ´ 9τq
ě

1

1 ` 16M
1
2

´ ε
δ
2 ě

1

32M
1
2

, (4.77)
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upon taking ε sufficiently small, solely in terms of M and δ.
We return to (4.75) with the information (4.76) and (4.77) in hand. In view of (4.73), we know that at

the initial time and on the compact set Ω “ tx : |x| ď 1{p4M
1
4 qu, the inequality (4.74) holds, with the

constant 3{4 being replaced by the constant 1{2, i.e. condition (A.7) is satisfied with m “ M
3
4 . Moreover,

from (4.76) and (4.77), condition (A.8) amounts to checking

M
3
4

1

32M
1
2

ě 4pCM2εδ ` 1q

where C is the implicit constant in (4.76). This condition is true so long as M is sufficiently large and ε is
chosen sufficiently small, dependent on M . Hence we may apply Lemma A.2 to deduce that (4.74) holds
for all s ě ´ log ε.

4.7 Proof of Theorem 4.10

In this section we show that the already established bootstrap bounds (4.26a)–(4.34), together with a num-
ber of a-posteriori estimates give the proof of Theorem 4.10. First, we note that from (4.12)–(4.13), the
definition of T˚ in Remark 4.9, and (4.26a)–(4.34), we obtain that the solutions pw, z, aq remain C4 smooth
at all times prior to T˚. Second, we remark that (4.18) implies Bθwpξptq, tq “ esWxp0, sq “ ´es, while
(4.32) yields }Bθwp¨, tq}L8 ď es. These bounds prove the claimed blowup behavior of Bθw as t Ñ T˚, upon
recalling that es and 1{pT˚ ´ tq only differ by a factor ď 2. Third, we notice that the claimed ε dependent
bounds on T˚ and θ˚ were established in Remark 4.9, while Remark 4.2 (see also estimate (4.78) below)
give the claimed amplitude bounds for pw, z, aq.

It remains for us to prove that }Bθap¨, tq}L8 , rwp¨, tqsC1{3 , and }Bθzp¨, tq}L8 remain uniformly bounded
on r´ε, T˚q, that the claimed upper and lower bounds for the vorticity hold, and that the lower bound for the
density also holds. In Proposition 4.10 below, we prove the desired vorticity, density and Bθa bounds. The
uniform-in-time HölderC1{3 bound is more delicate and it does not directly follow from the proven bootstrap
estimates. Rather, to establish this C1{3 bound, we use the second estimate on the right side of (4.91) and
prove that it can be propagated forward in time, in self-similar variables. This is achieved in Section 4.11.
As explained in Remark 4.11 below, these improved bounds on the blowup profile W as |x| Ñ 8, imply
the desired Hölder estimate. Using this information, we prove in Section 4.7.3 that the distance between
the Lagrangian flow of the transport velocity in the z equation and ξptq remains too large as t Ñ T˚ for a
blowup to occur; namely, this distance is OpT˚ ´ tq instead of OppT˚ ´ tq

3{2q, which in turn implies that
Bθz remains uniformly bounded all the way up to the blowup time T˚.

Finally, once these a posteriori estimates for pw, z, aq as well as for ω and P are established, the esti-
mates for solutions pur, uθ, ρq of the Euler equations (2.1) immediately follow from the the definition of the
Riemann variables (2.9) together with our homogeneity assumption (2.6) on the solutions. We note that the
blowup segment ΓpT˚q is the natural extension of the blowup point θ˚ in the radial direction.

4.7.1 Density, vorticity, and Bθa bounds

Proposition 4.10. Let ν0, κ0,M, ε, and T˚ be as in the statement of Theorem 4.4, and assume that pw0, z0, a0q

satisfy the bounds (4.1)–(4.6). Then, we have that theL8 bound (4.8) holds, and additionally that the bounds

ν0
2

ď P pθ, tq ď M,
1

M2
ď ωpθ, tq ď M2, |Bθapθ, tq| ď 3M2 ,

hold for all θ P T and for all t P r0, T˚q.

Proof of Proposition 4.10. From (2.11) we see that any φ P tw, z, au satisfies an equation of the type
Btφ ` λpw, zqφ1 “ Qpw, z, aq where Q is an explicit quadratic polynomial which obeys |Qpw, z, aq| ď
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Cαpmaxt|w| , |z| , |a|uq2 for some constant Cα that only depends on α, and λ is a speed that is explicitly
computable in terms of w, z and α. Recall that our initial datum assumptions imply κ0{2 ď w0 ď 3κ0{2 on T,
and that }z0}L8 ` }a0}L8 ď 1. From the maximum principle for forced transport equations, upon recalling
that |T˚| ď ε, and upon taking ε to be sufficiently small, we deduce that

κ0
4

ď wp¨, tq ď 2κ0 }zp¨, tq}L8 ď 2 }ap¨, tq}L8 ď 2 (4.78)

for any t P r´ε, T˚q. The above estimate shows that (4.8) holds as soon as M ě 4 ` 2κ0, as claimed in
Remark 4.2.

Since P “ pα2 pw ´ zqq
1{α, from (4.78) we deduce that

sup
tPr´ε,T˚q

}P p¨, tq}L8pTq ď pαpκ0 ` 1qq
1{α ď M , (4.79)

upon taking M to be sufficiently large (in terms of α and κ0), and moreover that

P pθ, tq ě
`

α
2

`

κ0
4 ´ 2

˘˘1{α
ě ν0

2 ą 0 (4.80)

for all θ P T and t P r´ε, T˚q, by appealing to the lower bound (4.7) on κ0. The above two bounds give the
desired density estimates.

Next, we consider estimates related to the vorticity. Since ω0 “ 2b0 ´ Bθa0 “ w0 ` z0 ´ Bθa0, from
(4.4), (4.7), and (4.7) we deduce that

κ0
4 ď κ0

2 ´ 2 ď ω0 ď 3κ0
2 ` 2 ď 2κ0 ,

and since ϖ0 “ ω0
P0

, from (4.79)–(4.80) we obtain

κ0
4M ď ϖ0 ď 4κ0

ν0
.

Furthermore, from equation (2.8), we have that ϖ obeys a forced transport equation, and upon composing
this equation with the flow of b, and exponentiating, the standard Grönwall inequality and the previously
established bound (4.78) imply that

κ0
8M

ď
κ0
4M

e´ 2t
α ď ϖp¨, tq ď

4κ0
ν0

e
2t
α ď

8κ0
ν0

, for all t P r´ε, T˚q .

Here we have used that ε is taken sufficiently small in terms of α, κ0,M and ν0. Combining the above
bound with (4.79)–(4.80) and the identity ω “ ϖP , we deduce that

1

M2
ď
κ0ν0
16M

ď ωp¨, tq ď
8κ0M

ν0
ď M2 , for all t P r´ε, T˚q ,

which is the desired vorticity upper and lower bound. Here we have assumed that M may be taken to be
sufficiently large, in terms of κ0 and ν0. Finally, since Bθa “ w ` z ´ ω we deduce from the above bound
and (4.78) that

}Bθap¨, tq}L8 ď 2κ0 ` 2
8κ0M

ν0
ď 3M2 , for all t P r´ε, T˚q , (4.81)

upon taking M sufficiently large, in terms of κ0 and ν0.
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4.7.2 Sharp bounds for W and Wx as |x| Ñ 8 and Hölder 1{3 estimates

From the bootstrap assumption (4.29) we know that as |x| Ñ 8 we have
ˇ

ˇ

ˇ

ĂWx

ˇ

ˇ

ˇ
“

ˇ

ˇWx ´W x

ˇ

ˇ ď 1{20. Note,

however, that (4.16b) implies the asymptotic behavior
ˇ

ˇx
2{3W x

ˇ

ˇ Ñ 1{3 as |x| Ñ 8. Our goal is to show
that in fact Wx itself also has a |x|

´2{3 decay rate as |x| Ñ 8, uniformly in s. To prove this, we show that
this asymptotic behavior is valid for ĂWx, which we recall satisfies the evolution equation (4.52). In order to
normalize the behavior at infinity, we consider the function V defined as

Vpx, sq “ px
2{3 ` 8qĂWxpx, sq , (4.82)

where the translation of x2{3 by 8 will be explained below in the course of the argument. Our objective is to
show that

}Vp¨, sq}L8 ď 1 (4.83)

for all s ě ´ log ε. We remark that at the initial time s “ ´ log ε, we have

|Vpx,´ log εq| “

˜

θ
2{3

ε
` 8

¸

ˇ

ˇ

ˇ

ˇ

εpBθw0qpθq ´ pW xq

ˆ

θ

ε3{2

˙ˇ

ˇ

ˇ

ˇ

ď
1

2
, for all x P R ,

in view of assumption (4.3) on the initial datum. Additionally, note that by (4.29), we have

|Vpx, sq| ď
x2px2{3 ` 8q

20p1 ` x2q
ď

1

2
, for all |x| ď 2 , (4.84)

and thus (4.83) is automatically satisfied with a better constant (1{2 instead of 1) for |x| ď 2.
Similarly to (4.53), a simple computation shows that V satisfies

BsV `

˜

1 ` ĂWx ` 2W x ´
2x

2{3

3px2{3 ` 8q

˜

3

2
`
W ` ĂW

x

¸¸

V `

ˆ

gW `
3x

2
`

W

1 ´ 9τ

˙

Vx

“ px
2{3 ` 8qBxFW ´

ˆ

gW `
9τW

1 ´ 9τ

˙

px
2{3 ` 8qW xx ´

˜

9τW x

1 ´ 9τ
`

p1 ´ αqe
s
2Zx

p1 ` αqp1 ´ 9τq

¸

px
2{3 ` 8qW x

´

˜

9τpĂWx ` 2W xq ` 1´α
1`αe

s
2Zx

1 ´ 9τ
´

2x
2{3

3px2{3 ` 8q

ˆ

9τW

p1 ´ 9τqx
`
gW
x

˙

¸

V

´
1

1 ´ 9τ
px

2{3 ` 8qW xx

ż x

0
Vpx1q

1

px1q
2{3 ` 8

dx1 . (4.85)

It is convenient to rewrite (4.85) schematically as

BsV ` Dpx, sqV ` Upx, sqVx “ F1px, sq ` F2px, sq `

ż 8

0
Vpx1, sqKpx, x1, sqdx1 (4.86)

where D and U are determined by the first line on the left side of (4.85), the forcing term F1 is given by
the first line on the right side of (4.85), the forcing term F2 is given by the second line on the right side of
(4.85), and K is defined by the last line of the V evolution as Kpx, x1, sq “ ´ 1

1´ 9τ px
2{3 `8qW xxpxq

1r0,xspx1q

px1q2{3`8
.

The argument fundamentally consists of a comparison between the damping term D with the L1
x1-norm of

the kernel K, similar in spirit to the one used to prove Lemma A.2.
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Using the fundamental theorem of calculus, the fact that ĂW p0, sq “ 0, and the bootstrap assumption
(4.83), we obtain the following lower bound on the damping term:

Dpx, sq ě 1 ´
1

x2{3 ` 8
` 2W x ´

2x
2{3

3px2{3 ` 8q

ˆ

3

2
`
W

x
`

1

x

ż x

0

dx1

px1q
2{3 ` 8

˙

“: Dupperpxq

On the other hand, using our bound for 9τ (4.48), we have that

ż

R

ˇ

ˇKpx, x1, sq
ˇ

ˇ dx1 ď p1 ` 2ε
1{4qpx

2{3 ` 8q
ˇ

ˇW xxpxq
ˇ

ˇ

ż |x|

0

dx1

px1q
2{3 ` 8

“: Dlowerpxq .

The choice of the translation constant 8 in the weight appearing in (4.82) was chosen so that by letting ε be
sufficiently small, we ensure that

0 ă Dlowerpxq ď Dupperpxq, for all |x| ě 2. (4.87)

While, in fact, Dlowerpxq ď 3
4Dupperpxq for |x| ě 2 as required by (A.6), the reason we cannot apply

Lemma A.2 is that for |x| " 1 we have Dupperpxq “ 5x´2{3 `Op|x|
´1

q, and so we cannot obtain a uniform
in x lower bound on the damping, as required by (A.4). Nonetheless, we will still apply an argument similar
to the one used to prove Lemma A.2.

Next, we estimate the forcing term F1. The most delicate term is the one due to BxFW , which is bounded
using (4.83) and the support property discussed in Remark 4.3, as

›

›

›
px

2{3 ` 8qBxFW

›

›

›

L8
À e´s{2

›

›

›
px

2{3 ` 8qBxpAZq

›

›

›

L8
` e´s{2

›

›

›
px

2{3 ` 8qBxA
›

›

›

L8

›

›

›
e´s{2W ` κ

›

›

›

L8

` e´s }A}L8

´

1 `

›

›

›
px

2{3 ` 8qW x

›

›

›

L8

¯

À M2e´δs `Me´s

where the implicit constant depends only on α. The remaining forcing terms are easier to estimate since we
already know the decay rates W x “ Op|x|

´2{3
q and W xx “ Op|x|

´5{3
q as |x| Ñ 8. Using the available

estimate (4.48) for 9τ , the bound (4.38) for BxZ, and the third line of (4.58) to bound gW , after a computation
we deduce that the total forcing term may be estimated as

}F1p¨, sq}L8 ď CM2e´δs ` CMe´s ď e´δs{2 (4.88)

by choosing ε to be sufficiently small in terms ofM and the constant C which only depends on α. Similarly,
we have that

}F2p¨, sq}L8p|x|ě2q ď e´δs{2 , (4.89)

which follows from the previously established properties of 9τ , Wx, W x, Zx, and gW , after choosing ε to be
sufficiently small in terms of α, δ,M .

In order to conclude the proof of (4.83), we claim that

}Vp¨, sq}L8 ď
3

4
(4.90)

which would show that the bootstrap assumption (4.83) holds with an even better constant (3{4 instead of 1),
thereby closing it. If (4.90) were to fail at some time s1 ą ´ log ε, by continuity in time there exists a time
s0 P p´ log ε, s1q such that }Vp¨, sq}L8 ě }Vp¨, s0q}L8 “ 5{8 for all s P rs0, s1s. Then, for s P rs0, s1q we
may evaluate (4.86) at the global maximum of |V|, which is ensured to be attained at a point x˚ “ x˚psq
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with |x˚| ě 2, since Wx is compactly supported, px
2{3 ` 8q

ˇ

ˇW x

ˇ

ˇ Ñ 1{3 ă 5{8 as |x| Ñ 8, and (4.84) holds.
Without loss of generality, let us consider the case when Vpx˚psq, sq is the global maximum for V (the case
of a global minimum is treated similarly). At this maximum point Vx vanishes, and using (4.87) we obtain

Dpx˚psq, sqVpx˚psq, sq ě Dupperpx˚psqq }Vp¨, sq}L8

ě Dlowerpx˚psqq }Vp¨, sq}L8 ě

ˇ

ˇ

ˇ

ˇ

ż

R
Kpx˚psq, x1, sqVpx1, sqdx1

ˇ

ˇ

ˇ

ˇ

.

Therefore, at x˚psq the second term on the left side of (4.86) dominates the third term on the right side of
(4.86). Next, via a standard Rademacher argument (applicable since V is smooth), and using the bounds
(4.88)–(4.89) we obtain that a.e. in s

d

ds
}Vp¨, sq}L8 ď 2e´δs{2 .

Using that by assumption }Vp¨, s0q}L8 “ 5{8, we integrate the above inequality for s ě s0 and deduce that

}Vp¨, sq}L8 ď p5{8 ` 1qe
4
δ
εδ{2

´ 1 ă 3{4

for all s ą s0 ą ´ log ε, upon taking ε to be sufficiently small. This provides the desired contradiction and
thus (4.90) holds, concluding the proof.

Remark 4.11 (Uniform Hölder bounds). Estimate (4.83) and properties of the function W x imply that

|Wxpx, sq| ď
1

x2{3 ` 8
`

ˇ

ˇW xpxq
ˇ

ˇ ď
2

x2{3
(4.91)

for all x P R and s ě ´ log ε. Since W p0, sq “ 0 for all s, integrating the above estimate in x we arrive at

|W px, sq| ď 6 |x|
1{3 (4.92)

for all x P R and s ě ´ log ε. The bounds (4.83)–(4.92) imply that w P L8pr´ε, T˚q;C
1{3pTqq. To see

this, consider any two points θ ‰ θ1 P T. Accordingly, define the points x “
θ´ξptq

pτ´tq3{2 ‰ x1 “
θ1´ξptq

pτ´tq3{2 by the
scaling (4.12). Due to the description (4.13) of w we have that

|wpθ, tq ´ wpθ1, tq|

|θ ´ θ1|
1{3

“
|W px, sq ´W px1, sq|

|x´ x1|
1{3

. (4.93)

At this stage we remark that when x1 “ 0, and x is taken to be arbitrary, the bound (4.92) implies that the
right side of (4.93) is bounded by 6 uniformly in s. To consider the general case of x ‰ x1, we combine
(4.91) with (4.32) to deduce that |Wxpx, sq| À p1 ` x2q´1{3 where the implicit constant is universal. Then,
using the fundamental theorem of calculus we estimate

sup
xąx1

|W px, sq ´W px1, sq|

|x´ x1|
1{3

À sup
xąx1

şx
x1p1 ` y2q´1{3dy

px´ x1q
1{3

À 1

where the implicit constant is universal, and is in particular independent of s. This concludes the proof of
the uniformy in time Hölder 1{3 estimate for w. It is not hard to see that Cα Hölder norms of w, with α ą 1{3

blow up as t Ñ T˚ with a rate proportional to pT˚ ´ tq
p1 ´ 3αq{2.
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4.7.3 Bounds for Bθz as t Ñ T˚

In view of the relation Bθz “ e
3s{2BxZ, and the already established bound (4.34), we have that }Bθzp¨, tq}L8 ď

2MpT˚ ´ tq´1`δ, for t P r´ε, T˚q. Here we have used that

p1 ´ ε
1{4qpT˚ ´ tq ď τptq ´ t ď p1 ` ε

1{4qpT˚ ´ tq , (4.94)

which is a consequence of Remark 4.9 and the identity τptq ´ t “ ε ´
şt

´εp1 ´ 9τq “
şT˚

t p1 ´ 9τq, and the
fact that τptq ´ t “ e´s. We may, however, show that Bθz remains in fact bounded as t Ñ T˚.

Upon differentiating (2.11b) with respect to θ, we obtain
´

Bt `

´

z ` 1´α
1`αw

¯

Bθ

¯

pBθzq “ ´

´

Bθz ` 1´α
1`αBθw

¯

pBθzq ´ 1´2α
1`α apBθwq ´ 3`2α

1`α apBθzq

´ 1
1`αBθa

`

p1 ´ 2αqw ` p3 ` 2αqz
˘

. (4.95)

Note that by (4.78) and (4.81), we know that a, z, w, and Bθa remain uniformly bounded in L8pTq over
r´ε, T˚q, and so we may think of these terms as constants in (4.95). Moreover, since }Bθz0}L8 ď 1, the
term ´pBθzq2 on the right side of (4.95) cannot by itself cause a finite time singularity in time Opεq. The
blowup of Bθz could only be caused by the terms involving Bθw on the right side of (4.95); specifically the
´1´α

1`αpBθzqpBθwq term is dominant near a putative singularity of Bθz. Indeed, }Bθw}L8 “ es }Wx}L8 “

es ě p1{2qpT˚ ´ tq´1, and so
şT˚

´ε }Bθwp¨, tq}L8 “ `8, which could be sufficient to cause a singularity.
Our main observation is that if we compose (4.95) with its natural Lagrangian flow ζx0ptq, defined as

d
dtζθ0ptq “ zpζθ0ptq, tq ` 1´α

1`αwpζθ0ptq, tq , ζθ0p´εq “ θ0 , (4.96)

then the quantity
şT˚

´ε Bθwpζθ0ptq, tqdt is the relevant one to study for bounding }Bθz}L8 . We claim that as
t Ñ T˚ the quantity |Bθwpζθ0ptq, tq| does not blow up at a non-integrable rate. Once the claim is proven,
standard ODE arguments imply that the solution Bθz of (4.95) remains bounded in L8 as t Ñ T˚.

For the remainder of this proof we drop the subindex θ0 of ζθ0 (it is frozen) and we use e´s and T˚ ´ t
interchangeably as they are comparable up to a factor of 1 ˘ ε

1{4 by (4.94). By the definition of W in (4.13)
and the previously established bound (4.91), we have that

|Bθwpζptq, tq| “ es
ˇ

ˇ

ˇ
Wx

´

pζptq ´ ξptqqe
3s
2 , s

¯ˇ

ˇ

ˇ
À

1

T˚ ´ t

ˆ

1 `
|ζptq ´ ξptq|

pT˚ ´ tq3{2

˙´2{3

. (4.97)

Consider the case that ζpT˚q ‰ ξpT˚q. Then, by continuity, |ζptq´ξptq| ě c for t sufficiently close to T˚.
Therefore, from (4.97), |Bθwpζptq, tq| is bounded. Otherwise, ζptq´ξptq Ñ 0 as t Ñ T˚. Our goal is to show
that there exists a constant c˚ such that for all t sufficiently close to T˚ we have |ζptq ´ ξptq| ě c˚pT˚ ´ tq.
Once this claim is established, it follows from (4.97) that

şT˚

´ε |Bθwpζptq, tq| dt ă 8, as desired.
It remains to prove the claimed lower bound for ζ ´ ξ. Using the definition of ζptq in (4.96) and the

definition of 9ξ in (4.24a), we derive that

ζptq ´ ξptq “

ż T˚

t

9ξpt1q ´ zpζpt1q, t1q ´ 1´α
1`αwpζpt1q, t1qdt1

“ 2α
1`α

ż T˚

t
κpt1qdt1 `

ż T˚

t

1´α
1`αZ

0ps1q ´ Z

ˆ

pζpt1q ´ ξpt1qqe
3s1

2 , s1

˙

dt1

´

ż T˚

t

1´α
1`αe

´ s1

2 W

ˆ

pζpt1q ´ ξpt1qqe
3s1

2 , s1

˙

` p1 ´ 9τqe´ s1

2
F

0,p2q

W ps1q

W 0
xxxps1q

dt1

“ I1ptq ` I2ptq ´ I3ptq (4.98)
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where e´s1

“ τpt1q ´ t1. From (4.26b) we deduce that I1ptq ě ακ0
1`αpT˚ ´ tq, upon taking ε sufficiently

small in terms of M and κ0. It is essential here that α ą 0, i.e. γ ą 1. Using (4.78) we immediately obtain
that |I2ptq| ď 4

1`αpT˚ ´ tq. Lastly, using our bootstrap assumptions and the estimate (4.92), after a tedious
computation we deduce that the integrand of I3 may be bounded in absolute value as À e´δs1

À pT˚ ´ t1qδ,
and therefore |I3ptq| À pT˚ ´ tq1`δ À εδpT˚ ´ tq. We collect the above estimates and insert them in (4.98),
to deduce that |ζptq ´ ξptq| ě ακ0

1`αpT˚ ´ tq ´ 5
1`αpT˚ ´ tq ě 1

1`αpT˚ ´ tq, by taking κ0 sufficiently large,
in terms of α. As discussed above, this lower bound concludes our proof for the boundedness of Bθz.

5 Concluding remarks

By considering homogeneous solutions to the isentropic 2D compressible Euler equations, and using a
transformation to self-similar coordinates with dynamic modulation variables, we have proven that for an
open set of smooth initial data with Op1q amplitude, Op1q vorticity, and with minimum initial slope ´1{ε,
there exist smooth solutions of the Euler equations which form an asymptotically self-similar shock within
Opεq time. Our method is based on perturbing purely azimuthal waves which inherently possess nontrivial
vorticity, and thus, our constructed solutions have Op1q vorticity at the shock, as well as a lower-bound on
the density, so that no vacuum regions can form during the formation of the shock singularity.

A key feature of our method is that the purely azimuthal wave is governed exactly by the Burgers equa-
tions (as demonstrated for the special case that γ “ 3), and thus our construction uses precise information
on the stable self-similar solutionW of the Burgers equation. This allows us to provide detailed information
about the blowup: by using the ODEs solved by τptq and ξptq, it is possible to compute the exact blowup
time and location for our solutions to the 2D Euler equations. Moreover, we have shown that the blowup
profiles have cusp singularities with Hölder C1{3 regularity.

We have shown in Remark 3.3 that in the case that γ “ 3, the first singularity can be continued as a dis-
continuous propagating shock wave for all time.3 In fact, we believe that the solutions we have constructed
have this type of continuation property for general γ ą 1.

Conjecture 5.1. Given that the asymptotically self-similar shock solutions constructed in Theorem 4.4 form
a C1{3 cusp at the initial blowup time t “ T˚, these solutions can be continued for short time as propagating
piecewise smooth discontinuous (possibly non-unique) shock profiles which solve the Euler equations on
either side of the time-dependent curve of discontinuity, and the evolution of this shock (or discontinuity) is
governed by the Rankine-Hugoniot conditions.

The solution we have constructed consists of a sound wave which steepens and shocks in the azimuthal
direction as well as the azimuthal velocity which also steepens and shocks in the azimuthal direction. The
radial component of velocity can steepen in the azimuthal direction but does not shock.

Conjecture 5.2. Suppose that pρ, ur, uθq denotes the solution to the Euler equations given in Theorem 4.4.
Then at the first blowup time t “ T˚, the variable Bθur is Lipschitz and no better. In turn, let Ωptq denote
the material curve defined in (2.13). Then BΩpT˚q forms a corner singularity.

A Toolshed

Lemma A.1. Assume that the function f “ fpx, sq obeys the forced and damped transport equation

Bsf ` Df ` UBxf “ F
3Note that even the purely azimuthal shock solution has vorticity, and this is extremely important for the shock continuation

problem as initially irrotational flows can generate vorticity after the shock [7].
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for s P rs0,8q and x P R. Assume that U , D and F are smooth, that

inf
px,sqPRˆrs0,8q

Dpx, sq ě λD

for some λD P R, and that
}Fp¨, sq}L8pRq ď F0e

´sλF

for all s ě s0, for some F0 P r0,8q and λF P R. For λF ă λD the function f obeys the estimate

}fp¨, sq}L8 ď }fp¨, s0q}L8 e
´λDps´s0q `

F0

λD ´ λF
e´sλF . (A.1)

for all s ě s0. On the other hand, for λF ą λD, we have

}fp¨, sq}L8 ď }fp¨, s0q}L8 e
´λDps´s0q `

F0e
´s0λF

λF ´ λD
e´λDps´s0q . (A.2)

for all s ě s0.

Proof of Lemma A.1. Let Bsψ “ U ˝ ψ for s ą s0 and ψpx, s0q “ x. Then d
ds

´

e
şs
s0

pD˝ψqds1

pf ˝ ψq

¯

“

e
şs
s0

pD˝ψqds1

pF ˝ ψq, from which it follows by integration that

fpx, sq “ fpx, s0qe
´

şs
s0

pD˝ψqdr
`

ż s

s0

e´
şs
s1 pD˝ψqds2

pF ˝ ψqds1 .

From this identity, the inequalities (A.1) and (A.2) immediately follow.

The following lemma is a version of the maximum principle which is tailored to the needs of this paper.

Lemma A.2. Assume that the function f obeys the damped and non-locally forced transport equation

Bsfpx, sq ` Dpx, sqfpx, sq ` Upx, sqBxfpx, sq “ Fpx, sq `

ż

R
fpx1, sqKpx, x1, sqdx1 (A.3)

for s P rs0,8q and x P R. Assume that the drift D, the transport velocity U , the forcing F and the
kernel K are smooth functions, and assume we are given that the solution f decays at spatial infinity:
lim|x|Ñ8 |fpx, sq| “ 0. Let Ω Ă R be a compact set, and assume that on its complement the damping obeys

inf
px,sqPΩcˆrs0,8q

Dpx, sq ě λD ą 0 (A.4)

and that the forcing is bounded as

}Fp¨, sq}L8pΩcq ď F0 ă 8 (A.5)

for all s ě s0. For the kernel K we assume the estimate
ż

R

ˇ

ˇKpx, x1, sq
ˇ

ˇ dx1 ď 3
4Dpx, sq for all px, sq P Ωc ˆ rs0,8q . (A.6)

Then, if for some m ą 0 we have

}fp¨, s0q}L8pRq ď 1
2m, and }fp¨, sq}L8pΩq ď 1

2m, (A.7)

and the the forcing-to-damping relation

mλD ě 4F0 (A.8)

holds, then the solution f obeys

}fp¨, sq}L8pRq ď 3
4m (A.9)

for all s ě s0.
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Proof of Lemma A.2. Assume for the sake of contradiction that (A.9) fails. Then, by the smoothness of
solutions to (A.3) and the assumption that the solution f vanishes as |x| Ñ 8, there exists a first time s˚ and
a location x˚ such that |fps˚, x˚q| “ 3m{4. In view of (A.7) we must have x˚ P Ωc. We may first assume that
f attains its global maximum at this point, i.e. that fps˚, x˚q “ 3m{4. By the minimality of s˚, we must have
pBsfqpx˚, s˚q ě 0. We will prove that the opposite inequality holds, thereby contradicting the existence
of the breakthrough point px˚, s˚q. For this purpose, evaluate the forced and damped transport equation
at px˚, s˚q, and note that because f attains its global maximum at this point, we have Bxfpx˚, s˚q “ 0.
Additionally, from the assumption on the kernel, we have

ˇ

ˇ

ˇ

ˇ

ż

R
fpx1, s˚qKpx˚, x

1, s˚qdx1

ˇ

ˇ

ˇ

ˇ

ď 3
4 }fp¨, s˚q}L8pRq Dpx˚, s˚q “ 3

4fpx˚, s˚qDpx˚, s˚q

and therefore, using (A.8) we obtain

pBsfqpx˚, s˚q ď |Fpx˚, s˚q| ´ 1
4Dpx˚, s˚qfpx˚, s˚q ď F0 ´ 3

16mλD ď ´F0
4 ă 0

which yields the desired contradiction.
If on the other hand f attains its global minimum at this point, i.e. fps˚, x˚q “ ´3m{4, then by the

minimality of s˚, we must have pBsfqpx˚, s˚q ď 0. We prove that the opposite inequality holds, yielding
the contradiction. For this purpose, evaluate the forced and damped transport equation at px˚, s˚q, and note
that because f attains its global minimum at this point, we have Bxfpx˚, s˚q “ 0. Also, we have

ˇ

ˇ

ˇ

ˇ

ż

R
fpx1, s˚qKpx˚, x

1, s˚qdx1

ˇ

ˇ

ˇ

ˇ

ď 3
4 }fp¨, s˚q}L8pRq Dpx˚, s˚q “ ´3

4fpx˚, s˚qDpx˚, s˚q

so that
pBsfqpx˚, s˚q ě Fpx˚, s˚q ´ 1

4Dpx˚, s˚qfpx˚, s˚q ě ´F0 ` 3
16mλD ě 1

4F0 ą 0 .

Therefore, the breakthrough point px˚, s˚q does not exist, concluding the proof of (A.9).
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