Nonuniqueness of weak solutions to the SQG equation

Tristan Buckmaster* Steve Shkoller! Vlad Vicolt

October 3, 2016

Abstract. We prove that weak solutions of the inviscid SQG equations are not unique, thereby answering
Open Problem 11 in [DLS12b]. Moreover, we also show that weak solutions of the dissipative SQG equation
are not unique, even if the fractional dissipation is stronger than the square root of the Laplacian.
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1 Introduction

The two-dimensional surface quasi-geostrophic (SQG) equation is a fundamental example of active scalar
transport, and is classically written [CMT94] as

00 +u-V0=0, (1.1a)
u=R":=VATH, (1.1b)

a transport equation for the unknown scalar field § = 6(x,t), where (z,t) € T?> x R = [-m,7]?> x R. In
(1.1), A = (=A)/2, R = (R1,Ry) is the vector of Riesz-transforms, V4 = (=0, 1), and - = (=9, x1) for
any vector x = (x1,x2). We consider solutions of the SQG equation (1.1) which have zero mean on T2, i.e.
STQ O(z,t)dz = 0, a quantity which is conserved in time even for weak solutions.

In the context of geophysical fluid dynamics, the variable @ denotes the temperature (or surface buoyancy
function) in a rapidly rotating stratified fluid with uniform potential vorticity [HPGS95] and has applications
in both meteorological and oceanic flows [Ped82].

Mathematically, two-dimensional SQG flows have the potential for finite-time singularity formation
[CMT94] and possess striking similarities to three-dimensional Euler solutions; in fact, the vector V+6 is
governed by the same evolution equation as the vorticity of the 3-D Euler flow:

0,(V40) + u -V (V1) = Vu - V4. (1.2)

As such, (1.1) has been intensively analyzed over the past two decades. While the local existence of smooth
solutions in Sobolev spaces H® with s > 2, or Hélder spaces C*® with a > 0, has been established in [CMT94],
to date the question of whether a finite-time singularity may develop from smooth initial datum remains open,
in analogy to the similar question for the 3-D incompressible Euler system. When (1.1) is posed on R? x R
with datum having infinite kinetic energy, a gradient blowup may occur [CC10], but for datum on T? and with
finite energy, it is only known that arbitrarily large growth of high Sobolev norms is possible from arbitrarily
small initial datum [KN12]. The collapsing hyperbolic saddle blowup-scenario from [CMT94] was ruled out
analytically in [Cor98, CF02], and the modern numerical simulations of [CLS*12] were able to resolve the
equations past the initially predicted singular time [CMT94]. A different blowup scenario via a cascade of
filament instabilities of geometrically decreasing spatial and temporal scales was proposed in [Scoll]. The
first example of a non-steady global in time smooth solution was obtained only very recently [CCG16].

1.1 SQG conservation laws

Fundamental to our subsequent analysis is the fact that sufficiently smooth solutions of (1.1) conserve the
square of the H—Y?(T?) norm of §. Upon taking the L? inner product of (1.1a) with A~', integrating
by parts in the nonlinear term, and using that v - VA™'0 = V+A~1 - VA~19 = 0, if follows that if 6 is
sufficiently smooth (6 € L} ,(T? x R) is sufficient, cf. [IV15]), then

H(t) == |0, 1)]3 = 6o

H—1/2(']1‘2) - (13)

2
HH—l/Q(T2)
for initial datum 6, € H’l/Q(’]I‘Q). In fact, the H~1/2 norm of 6 is the Hamiltonian H associated to an action
function (we systematically ignore the factor of 1/2 that is usual present) from which the SQG equation may
be derived via an Euler-Poincaré variational principle [Res95].
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Additionally, due to the pure transport nature of (1.1a), and the fact that the Lagrangian flow induced by
the incompressible vector field u preserves volume, sufficiently smooth solutions of the initial value problem
for (1.1) conserve the LP(T?) norms of 6, so that

16C, D)l e (x2) = 00l (r2) (1.4)

where 0 € LP(T?) is the initial datum, and 1 < p < 00. When p = 2, from elementary properties of the Riesz
transform it follows that the kinetic energy is conserved for smooth solutions |u(-,t)[2(12) = |uol r2(r2).!

As noted in [Taol4], formally the conservation laws (1.3)—(1.4) are immediate consequences of Noether’s
Theorem and the fact that the SQG equation belongs to a general class of active scalar equations satisfied
by the vorticity of a generalized two-dimensional Euler equation on a Lie algebra with a specific inner
product [Res95, Section 2.2] (see also [Taol6, Wasl6, Conl6] for a more recent account). We address this
point of view in more detail in Section 1.4 and Appendix A.1 below, where we also present the momentum
equation for the incompressible velocity field v whose vorticity is the function 6 in (1.1).

While (1.2) suggests that the problem of finite-time singularities for SQG is similar to that for 3-D Euler,
the aforementioned variational point-of-view justifies a direct analogy between the conservation laws for SQG
and those for the 2-D Euler equations: (1.3) plays the role of the conservation of kinetic energy in 2-D Euler,
while (1.4) is analogous to the conservation of the Casimir functions in 2-D Euler. Therefore, we expect that
a turbulent SQG solution exhibits a dual cascade of energy, as predicted by the Batchelor-Kraichnan theory
for two dimensional Euler flows [Con98, Con02, CTV14]. Motivated by two-dimensional turbulence, we are
thus naturally lead to consider weak solutions of the SQG equation.

1.2 Weak solutions of the SQG equation are not unique

Motivated by (1.4) with p = 2 one may define # € L2 (R, L?(T?)) to be a weak solution of (1.1) if

loc

” (00,6 + Ou - V) dadt = 0 (1.5)
RxT2

holds for any smooth test function ¢ € C®(T? x R), so that (1.1) holds in the sense of distributions on
T? x R. Using this definition, it was established in [Res95] that for any 6y in L?, there exists a global-in-time
weak solution to the Cauchy problem for (1.1), with § € L*([0, 00), L?(T?)). See also [PV15] for the global
existence of weak solutions to the 3-D quasi-geostrophic system. We note the stark contrast here with 3-D
Euler, for which the existence of weak solutions for any L? initial datum remains open.

Moreover, we note that the proof of the existence of global weak solutions to SQG is quite different that
the proof of global solutions to 2-D Euler (for which the vorticity is one derivative smoother than the velocity
[MBO02]); in particular, the proof of [Res95] relies on a special structure of the nonlinear term in (1.1), which
arises from the fact that the Fourier multiplier relating 6 to w is an odd function of the frequency. More
precisely,

Ou-Vodr = | ORY0-Vedr = — | R - (0Ve)dr = — | Ou- Veda —f 0[R*+,Ve|odz (1.6)
T2 T2 T2 T2 T2

for any smooth test function ¢. Here and throughout the paper, we denote by [A, B] the commutator of the
operators A and B. Since the commutator [R*:, V¢]| is an operator of order —1, it maps H /2 into H'/2

(see Appendix A.4), so that weak solutions to (1.1) may be defined for distributions 6 € H~1/2. We thus have
the following

Definition 1.1 (Weak solution of SQG). A distribution 0 € L2

loc

(R; H='/2(T?)) is a weak solution of (1.1) if
. 1 _
meiLa, QAT+ (RIORENT00,60) — LRRIO, [N 6 TRS A0 dt = 0

for any ¢ € CF(T? x R) such that div¢ = 0, where (-, -) denotes the H~1/2-H'/2 duality pairing.

I In addition to (1.4), writing the SQG equation in Lagrangian coordinates has further geometric advantages. For instance,
in [CVW15] it is shown that the solutions 6 € C’?C;’a have Lagrangian trajectories which are real-analytic functions of time.
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See also Definition 2.1 for a more intuitive and equivalent formulation of Definition 1.1. For 6 €
L% (R, L*(T?)), Definition 1.1 agrees with that given via (1.5). The boundedness of the Calderén commutator
[A, ¢'] on HY? is used implicitly in Definition 1.1 (cf. Appendix A.4).

Using the cancellation property (1.6), it was further shown in [Mar08] that for 6y € L?, with p > 4/3,
there exists a global weak solution § € L* (R, L?(T?)) to the Cauchy problem for (1.1).

The question of uniqueness of these weak solutions has remained, to date, open and has been isolated as a
challenging open problem in [DLS12b, Problem 11] (see also [Mar08, Rus11, AB15, Con15]).? One of our
main results is that below a certain regularity threshold, weak solutions to the SQG equation are not unique,
thereby answering the question posed in [DLS12b]. We state this result as the following

Theorem 1.2 (Nonuniqueness of weak solutions to SQG). Suppose # : R — Rt is a smooth function with
compact support. Then for every 1/2 < 8 < 4/5 and o < /(2 — ), there exists a weak solution 6, with
A0 e C7CPB, satisfying

. 2
A’Eﬂ(x,t)‘

H(E) — JT do — (1),

forteR.

Indeed, due to the compact support in time of the function # in Theorem 1.2, it follows that the trivial
solution 6 = 0 is not the only weak solution to (1.1) which vanishes on the complement of a given time
interval.

Theorem 1.2 leaves open the question of whether the exponent 8 can be taken arbitrarily close to 1, which
is the Onsager conjecture for the SQG equation (cf. Conjecture 1.5 below).

The proof of Theorem 1.2 relies on a modification of the convex integration scheme employed by [DLS12a,
DLS13, BDLISJ15] to study the Onsager conjecture for the 3-D Euler equations.® It was suggested in [DLS12b,
Shv11, IV15] that the structure of the SQG nonlinearity is non-amenable to convex integration methods,
because the multiplier relating u to 8 is an odd function of frequency. Herein, we overcome this difficulty by
rephrasing the equation in terms of a potential velocity v (whose vorticity is the scalar 6, see Section 1.4), which
allows us to apply Fourier analysis techniques to construct nontrivial high-high-low frequency interactions,
crucial to the method of convex integration. We discuss these details in Section 2.2 below.

1.3 Weak solutions of the dissipative SQG equation are not unique

Note that while weak solutions of the SQG equation may be defined for 6 € LfH; v 2, the existence of weak

solutions obtained in [Res95, Mar08] requires an initial datum which is more regular (e.g. 0y € L for p > 4/3).
Omne may thus ask a natural question: is it possible for that in a given (low) regularity regime one can both
construct weak solutions via compactness arguments (viscosity solutions), and also construct weak solutions
via convex integration?

In order to answer this question in the positive, we consider the fractionally dissipative SQG system

0 +u-VO+A6=0, (1.7a)
u="R"":=V"A"0, (1.7b)

with v € (0,2].
Strong solutions of (1.7) have been considered extensively. The dissipative SQG equation has a natural

scaling symmetry: if §(x,t) is a T?-periodic solution to the Cauchy problem for (1.7) with datum 6y(x),
then 0y (z,t) = \Y710(A\z, \7t) is a T3 = [—7/\, 7/A]*-periodic solution of (1.7) with initial datum 6y \(z) =

20ne may also consider another class of weak solutions, the so-called patch-solutions, or sharp-fronts [Rod05, Gan08]. These
solutions are given by 6 = 1q;), where Q(t) is a compact, simply-connected domain, with smooth boundary, evolving with the
fluid. Although these weak solutions are not smooth as functions on R?, 6 € L (R, L*(R?)), the boundary 0€(t) is smooth and
thus local-in-time existence and uniqueness of such solutions is known. For such patch solutions, an important question is if 0Q(t)
can self-intersect in finite time [CFMRO5, Scoll, GS14]. See also [CFR04, FR11, FR12] for the existence of almost-sharp-fronts.

3 See also [DLS12b, DLS16] for excellent review papers on the applicability of convex integration techniques in fluid dynamics,
and connections to the h-principle.
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A'719(Az). In view of this scaling symmetry, the L* norm is scale invariant for v = 1.* ® Therefore, for v > 1
(1.7) becomes semilinear and subcritical, and the global well-posedness of smooth solutions was established
in [CW99]. The critical case v = 1 is a quasilinear problem, and the global regularity of smooth solutions for
large initial datum was established in [KNV07, CV10], with different proofs given in [KN09, CV12, CTV15].
For v < 1, the supercritical case, the question of finite-time singularities from smooth initial datum remains
completely open, in analogy to the inviscid equations (1.1).% It is known, however, that the global-in-time
weak solutions eventually become smooth [Sil10, Dabl1, Kisll, CZV16], which leads us to consider weak
solutions of (1.7). In analogy to Definition 1.1, we may define a weak solution to (1.7) as follows.

Definition 1.3 (Weak solution of the dissipative SQG equation). The distribution 6 € LZ (R; HY2(T2)) is
a weak solution of (1.7) if

) ) 1 ) )
f (R0, A7 ¢") + (R0, Ry AT100;0") — S(RiRy 0, [A, ¢ TRFAT!0) — (RiF0, A7~ 6%) dt = 0
R

for any ¢ € CF(T? x R) such that div¢ = 0, where (-, -) denotes the H~1/2-H'/2 duality pairing.

Note that Definition 1.3 does not require that solutions verify the local energy inequality nor that they
possess the additional regularity § € L2 (R; HO=1D/2(T2)); the weak solutions we consider need not be
suitable weak solutions (see [CV10]). In contrast to the inviscid SQG equation, for the dissipative SQG
equation it was shown in [Mar08] that for any v > 0 and any 6y € H~/? there exists a global-in-time weak
solution 6 to (1.7).7 See also [BG15] for the global existence of weak solutions when 6y € L1*.

Using the convex integration scheme developed to prove Theorem 1.2, we establish the nonuniqueness
of weak solutions to the v-dissipative SQG equation (1.7), even for a range of values for v above 1, the
subcritical regime.

Theorem 1.4 (Nonuniquess of weak solutions to dissipative SQG). Suppose # : R — R* is a smooth
function with compact support. Then for every 1/2 < < 4/5,0 <~y <2— 8 and o < B/(2 — ), there exists
a weak solution 0, with A=10 € CZC8, satisfying

J.

Therefore, for the dissipative SQG equation, convex integration can coexist with weak compactness. This
flexibility of the PDE (1.7) is both due to the low regularity of the weak solution, and that enforcement of
the local energy inequality is not required. To the best of our knowledge, this is the first instance when the
convex integration scheme can be employed for an evolution equation arising in fluid dynamics, which is
parabolic, and even semi-linear. The main ideas used in the proof of Theorem 1.4 are discussed in Section 2.2.

Note that as 8 — 17, Theorem 1.4 holds with v — 1*. This motivates Conjecture 1.9 below, which
states that for the critical SQG equation (y = 1) we have a dichotomy of regularity exponents, whereby for
B = 1 the energy equality holds, the uniqueness and global regularity of solutions holds; while for g < 1
the uniqueness of weak solutions breaks down and the equation becomes flexible, i.e. amenable to convex
integration constructions.

A"20(z,t)| do = (L)

’ 2

for allteR.B

4For strong solutions, this is the strongest norm on which we have an a priori global in time bound: for any v > 0 we have that
[0(£)]| oo (72 decays exponentially [CC04, CTV15]. In fact, the argument in [CV10] (see [CZV16]) shows that L¥L2 N L%H;/Q
suitable weak solutions (weak solutions which obey the local energy inequality) are bounded L% (T?) for positive time. Thus, in
the class of suitable weak solutions with finite kinetic energy, the L® norm is the most important for a priori control.

5The Hamiltonian # is scaling invariant for v = 3/2.

6The finite-time blowup cannot occur for sufficiently smooth and small initial datum [CC04, Wu05, Miu06, Ju07], and as
v — 17 it also cannot happen for datum that is large, but not exceedingly large [CZV16].

"This solution additionally obeys the energy inequality HO(t)HiI,l/Q + ZSS ||9(s)||§_»1(7,1)/2 ds < ”90‘@1*1/2 for any t > 0.

8The restriction v + 8 < 2 is sharp, in the sense that the C?CE norm for A~14 is scale invariant precisely when v + 8 = 2.
We show here that for datum which is supercritical for the scaling of the equations, parabolic smoothing does not hold.
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1.4 Hydrodynamical systems as geodesic equations

At least since the work of Poincaré [Poi01], it has been well-known that the equations of motion of the
finite-dimensional mechanical systems governed by Newtonian mechanics can be interpreted as the geodesic
equations of a Riemannian metric on configuration space or Lie group (see, for example, [Bri46]). The motion
of a rigid body, for example, is governed by a left-invariant Riemannian metric on the Lie group SO(3)
[MR99, AK98]. In his seminal paper, [Arn66] showed that infinite-dimensional hydrodynamical systems
could also be represented by geodesic equations on the infinite-dimensional group of volume preserving
diffeomorphisms D,,. Specifically, Arnold proved that the incompressible Euler equations are geodesics with
the respect to the L2-right invariant metric on the Lie group D,,. The Euler-Poincaré variational principle
[MR99, AK98] asserts that such hydrodynamical geodesic equations can be computed for a rather general
metric specified on the associated Lie algebra V, the space of divergence-free vector fields, with Lie bracket
given by [u, w] = djuw’ — d;wu’.
For a positive-definite, self-adjoint operator A, we define the metric on V by

(u,w) = LQ Au - wdz. (1.8)

The metric (1.8) is then right-translated over the Lie group D,. As we shall explain Appendix A.1, the
geodesic equations associated to this metric are extrema of the action function

s(u) = JR » Au - udzdt (1.9)

for incompressible Lie-advected variations du that obey suitable boundary conditions, which gives rise to the
following hydrodynamical system:

o +u-Vo+ (Vu)' v =-Vp, (1.10a)
divu =0, (1.10D)
v=Au. (1.10¢)

Here p denotes the pressure function, a Lagrange multiplier enforcing the incompressibility of u. When the
operator A is the identity matrix, then (1.10) is the incompressible Euler equations (with pressure function
p=p+ %|u|2)7 however, the operator A can be differential operator, a nonlocal Fourier multiplier, or even a
more general operator satisfying the positivity and symmetry conditions noted above.” '° '

As observed in [Res95] (see also [Taol6, Was16, Conl6)), if A = A~', then (1.8) is the H~/2 metric on
V, and it follows from (1.10) that w = V* - u obeys

OGA 'w+u-Alw=0.

A simple computation (see Section 2.1 below) shows that § = —A~lw solves the SQG equation (1.1).

1.5 The Onsager conjecture and the uniqueness of weak solutions

As discussed in Section 1.4, solutions to the SQG equation (1.1) are extrema of the action function s(u)
in (1.9), with A = A~!. Since s(u) does not explicitly depend on ¢, for any such system the corresponding
Hamiltonian

H(t) = J At udr = J A00dx (1.11)
T2 T2

is formally conserved (see (1.3)). Inspired by the Onsager conjecture for the incompressible Euler equations
(see the discussion in Section 2.2 below), a fundamental question arises for the SQG equations: do weak
solutions of (1.1) conserve the Hamiltonian H(¢)? One may conjecture the following dichotomy:

9When A = (1 — a?A), a > 0, the metric (1.8) on V is equivalent to the H!-metric, and the system (1.10) corresponds the
well-studied Lagrangian Averaged Euler or Euler-a equations [HMR98]. More generally, if A = (1 — A)®, s € R, then (1.8) is an
H* metric on V, and it was shown in [MRS00, Section 3.3] that the vorticity w = V= -u satisfies 0:(1— A)*w+u-V(1—A)w = 0.

0Letting A be a specially chosen order —2 operator which is self-adjoint and positive-definite, [Tao16] proved that (1.10)
admits locally in time smooth solutions which blow up in finite time.
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Conjecture 1.5 (Onsager conjecture for SQG). Let v = A~'u = A™*R*0. Define ap = 1.1
(a) Ifve C(R;C%(T?)) is a weak solution of the SQG equation, with o > oo, then (1.3) holds on [0, T].

(b) For any 1/2 < a < ap, there exist infinitely many weak solutions of the SQG equation, with v €
C(R; C*(T?)), such that (1.3) fails.

The rigid side (a) of this conjecture was resolved in [IV15], following the classical work of [CET94], by
proving that 8 € L3(R; L3(T?)) implies the conservation of H. In this paper we address the flexible side (b)
of the conjecture, and prove in Theorem 1.2, that (b) holds for a@ < 4/5. The regularity gap, o € [4/5,1),
for nonconservative weak solutions of SQG remains for the same reason that the Onsager conjecture for the
2-D Euler equations remains open, with an open range of values for « in [1/5,1/3).12 This issue is discussed
further in Section 2.2 below. Proving part (b) of Conjecture 1.5 for any « € [4/5,1) appears to be challenging.

Remark 1.6 (Onsager conjecture for extrema of a norm-inducing action functional). The Euler and SQG
equations are particular cases of equations obeyed by extrema of the action functional s(u) in (1.9). For Euler
A = 1Id, while for SQG, A = A~!. In general, let A be any positive-definite self-adjoint operator which is
translation invariant and acts on scalar periodic functions with zero mean, such that [[Awl| 2 g2y ~ [|wl| o 2y
for some a € R. Let u be an extremum of the corresponding action functional, such that v = Au obeys the
hydrodynamical equation (1.10). In analogy with Conjecture 1.5, it is natural to determine the Onsager
exponent ap, such that solutions with regularity above ap conserve the Hamiltonian H = Sqr2 u - vdx, while
solutions with regularity below o do not. Upon rewriting the nonlinear term in (1.10) as u- Vo — (Vv)T - u =
ut(V* - Au), taking an inner product with a mollified version of u and integrating over T2, an argument
similar to [CET94] shows that for v = Au € L}C2, with a > ap =: —a + (1 + a)/3, the Hamiltonian is
conserved. If indeed this choice of ap determines an Onsager dichotomy remains to be shown.

Remark 1.7 (An Lf’w based Banach scale). Naturally, the value of the Onsager exponent oo discussed in
Conjecture 1.5 and Remark 1.6 depends on the precise Banach scale X“ considered. Above, we have only
mentioned the scale of Holder spaces X = C;CS. On the other hand the Hamiltonian H is quadratic in u,
and the nonlinear term in (1.10) is also quadratic in u, so that proving the conservation in time of H for
the Euler [CET94, CCFS08] and SQG equations [[V15] only requires control of the solution in the Banach
scale X% = LfBé‘“, -, With a > . Thus, Conjecture 1.5 may be alternatively posed on this L3-based Banach
scale, without changing the value of ap. It is however conceivable that for an Onsager regularity threshold
ao defined in terms of an L2-based Banach scale, such as X® = L? HZ, the sharp value may be different from
the one discussed in Remark 1.6, which is computed in terms of L, or L7 ,.

Remark 1.8 (Other important threshold exponents). In a recent survey article on the work of J. Nash [Klal6],
other threshold exponents are discussed for which a dichotomy in the behavior of solutions holds, depending
on whether the regularity index of the weak solution is greater than or less than this exponent. For simplicity,
fix the Banach scale X* = C;C%. In analogy to the Onsager exponent cvo, we define the following important
regularity exponents: the Nash exponent ay determines whether the nonlinear evolution is flexible or rigid (in
the sense that h-principles are available); the uniqueness exponent oy determines the uniqueness of solutions;
the well-posedness exponent ayy p determines the local well-posedness of the system; and the scaling exponent
vy which determines the space X“* whose norm is invariant under the natural scaling symmetries of the
equation (see Page 11 in [Klal6]). For instance, in the case of the Euler equations with the Holder scale C;C<
for the velocity field u, we have that awp = 1 (cf. [H633, BT10, EM14, BL15]), ay is also conjectured to be
equal to 1 (only ay < 11is known), ap = 1/3 (cf. [CET94, CCFS08, Isel6]), and oy = 0, and ap < any < apy
(since the convex integration constructions also prove h-principles and nonuniqueness). We note that these
exponents are not the same, and one expects them to be linearly ordered ay < ap < ay < ay < awp
(cf. [Klal6, Equation (0.7)]).

For the inviscid SQG equation, on the Holder scale C;C¢ for the potential velocity field v = A~1u, this gap
between the exponents remains, and one may conjecture that ap = 1, while ayy p = 2. However, in view of

HHere the subindex O of ap stands for Onsager, as was suggested in [Klal6].

2Tndeed, the construction in [BDLISJ15], combined with ideas from [Cho13, CSJ14], or from this paper, shows that h-principles
are available for 2-D Euler with velocity fields in Cf*Cg, for any a < 1/5. The recent construction in [Ise16] does not apply in
two dimensions, since any two non-parallel infinite lines on the plane intersect.
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Theorem 1.4, for the dissipative SQG equation with v = 1 (informally called the critical SQG equation), one
may conjecture that all the exponents discussed in Remark 1.8 are the same, thereby justifying the adjective
“critical”.

Conjecture 1.9 (Exponents for critical SQG). Consider the dissipative SQG equation (1.7) withy = 1, and fix
the Banach scale X = C;C as a way to measure the reqularity of the potential velocity v = A~ u = A~'RL0.
Then 1 =ay = ap = ay = awp.

That a4 = 1 follows from the fact that the L® norm is scaling invariant. The fact that awp,ay < 1
follows e.g. from [CV10], while Theorem 1.4 shows that ap, ay = 4/5. Establishing the remaining inequalities
in Conjecture 1.9 remains open. The above conjecture provides the first nonlinear hydrodynamical PDE for
which the exponents of Remark 1.8 are all the same.

2 OQOutline of the proof

2.1 The SQG momentum equation
We shall make use of two velocity fields to describe the SQG equations: we define the potential velocity
v=Atu, (2.1)

which is thus one derivative smoother than the SQG transport velocity u = R*+6. From (1.10), it follows that
the potential velocity v satisfies

v +u-Vo— (Vo)l'-u=—-Vp, (2.2a)
divo = 0, (2.2b)
u=Av, (2.2¢)

where p = p + u - v. The SQG momentum equation (2.2a) can be equivalently written as'3

O + ut (Vl ‘v) =—Vp.
Upon defining the temperature function 6 as minus the vorticity of the potential velocity:
0=—-Vt.v,
(2.2a) becomes
dpv — ut = —Vp. (2.3)

A direct computation confirms that 6 is indeed a solution of (1.1); taking the scalar product of V+ with (2.3),
we find that 0;(—6) — V+ - (fut) = 0 and hence 0;0 + u - VO = 0, since V+* - u- = —V -u = 0. Note that the
dissipative SQG equation (1.7) also can be written as in (2.2), by adding AVv to the right side of (2.2a).

As we are primarily interested in weak solutions of SQG, we shall need some basic commutator identities.
For all test functions ¢ € C*(T?), we have that

— 0,0 ANv? 0;pdx = j (vjA(?ivjﬁm +v- AUA¢) dx ,
T2 T
and thus,
o 1 . - 1
— 0;v? Av? 0;pdx = ,f 0v7 [A, 0;0] v dx + *J v - AvAgdz.
T2 2 T2 2 T2

This motivates a convenient and equivalent definition of a weak solution, which is clearly equivalent to
Definition 1.1 above.

13 There is yet another form of the SQG equations which should play an important role in the analysis of smooth solutions,
which we write as
(?tqu(u-V)qu([A*l,ul]Vl-u):7VP, divu =0.
This form of SQG is written as a zeroth-order perturbation of the incompressible Euler equations for sufficiently smooth
vector-fields u.
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Definition 2.1 (Weak solution of SQG, momentum form). We say that v € L2 _(R; H'/2(T?)) is a weak
solution of (2.2) if

J ', 049"y + (A7, vi6j¢i> — %(@-vj, [A, ¢ Tv?ydt =0
R

holds for any ¢ € CP(R x T?) such that div$ = 0. Here {,-) denotes the H~Y2-H/2 duality pairing.

Note that for smooth ¢ the operator [A, ¢?] is a zeroth order operator on v (cf. Lemma A.5 below).
Moreover, adding the term S]R@i, AV ¢ty dt to Definition 2.1 gives an equivalent form of Definition 1.3.

Remark 2.2 (Pressure). By taking the divergence of (2.2a) and using (2.2b), we obtain that p solves
—Ap =Tr (Vv Vu— Vo' Vu) — Av - u. (2.4)

For weak solutions, we must interpret p as a distribution, and the elliptic equation (2.4) has the following
distributional formulation: for all test functions ¢ € C*(T?),

J p A¢pdx = f (viAvjaizjqﬁ — @vjAvj&iqS) dz . (2.5)
T2 T2

It follows that .
J p A¢pdx = J (viAvjafjgb + Zv AvAG + 007 [A, 0;p] vj> dr . (2.6)
T2 T2

Therefore, given v € L2(R; HY/2(T?)) formula (2.6) defines p (and therefore also Vp) as a distribution on T2
via

. 1 S . .
<p7 A¢> = <Avja Uza?]¢> + §<AU17 v1A¢> + <aivjv [Aa az¢] Uj>‘
In particular, for v e Ctl/%C;L/s*, the Vp term in (2.2a) is a well-defined distribution.

2.2 The main result and the main ideas of the proof

Employing the potential velocity formulation of SQG, we will prove the following theorem which is easily seen
to imply Theorem 1.2 and Theorem 1.4 (we use the convention that v = 0 is the inviscid SQG equation):

Theorem 2.3 (Nonuniqueness of weak solutions, momentum form). Suppose J# : [0,T] — R* is a smooth
function with compact support. Then for every 1/2 < < 4/5,0<v<2— 8 and 0 < B/(2 — ), there exists
a weak solution v e C7CP satisfying

J.

The proof will employ a convex integration scheme, similar in style to that presented in [BDLISJ15] (cf.
[DLS12a, DLS13]). In [BDLISJ15], highly oscillatory Beltrami waves formed the principle building block
in the construction. It was noted in [CDLSJ12, Chol3] that Beltrami waves can be replaced by Beltrami
plane waves (see Section 4.1.2) in order to prove analogous results for the 2-D Euler equations. Such
Beltrami planes waves form a large class of stationary solutions to both the 2-D Euler and the inviscid
SQG equation; as such, they will form the principle building block in the construction presented here. As
a side remark, we note that it is not difficult to see from the analysis in the present paper that the results
in [BDLISJ15, Isel3, Buclb, BDLS16] for the 3-D Euler equations can be extended to the 2-D setting by
replacing Beltrami waves by Beltrami plane waves.

The fundamental aim in any convex integration scheme is to introduce high frequency oscillations that
self-interact due to the nonlinearity in order to produce low frequency modes that cancel error terms. For
SQG this so called high-high-low interaction is highly nontrivial. Indeed, as was already noted in [IV15],

A%v(sv,t)’2 dzx = J Av(z,t) -v(x,t) de = H(t)

'H‘Z

for allt e [0,T7].
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if one works with the usual formulation of the SQG equations (1.1) in terms of the active scalar 6, and
considers a perturbation © = Y, Oy, with Oy(z,t) = ay(t,2)e*** and an amplitude a; which lives at
a frequency much smaller than A, with A » 1, then to leading order the corresponding velocity field is
given by U = Y., Uy, where Uy (z,t) = ROy (z,t) = ik Oy (z,t) + o(A~1). This implies that the high-high
interactions in the nonlinear term div(OU) = %div(zk OrU_i + ©_,Uy) vanish to leading order, since
OrU_k + O _, Ui = a2 (i(—k)* +ikt) + o(A71) = o(A71).1* To overcome this difficulty we work at the level of
the momentum equation for v and employ a bilinear pseudo-product operator (see [CM78] or Appendix A.6
below) to rewrite the nonlinearity u- Vv — (Vv)T -u as the sum of a divergence of a 2-tensor, and a gradient of
a scalar function. Expanding in frequency around our Beltrami plane waves, we will show that the principal
term in high-high-low interactions is of the correct form to cancel low frequency modes. This is achieved in
Section 5.4 below.

We remark that recently, [Isel16] proved the full Onsager’s conjecture for the 3-D Euler equations, employing
a novel technique involving gluing exact solutions to the Euler equations, along with the use of Mikado flows,
introduced in [DSJ16] as a replacement to Beltrami waves. Mikado flows have the advantage of satisfying
better oscillation-error estimates (see Section 3.3 for the definition of the oscillation error in the case of SQG),
since they have disjoint spatial support in a thin cylinder. Unfortunately, the construction is inherently
three-dimensional as it requires that the Mikado flows do not intersect, which is impossible in 2-D. Finding a
suitable replacement for Mikado flows for the case of the SQG equations or the 2-D Euler equations is an
interesting open problem.

2.3 Notation

Throughout this paper, we make use of the Einstein summation convention, in which repeated indices are
summed from 1 to 2. For s € R, the homogeneous Sobolev space norm is HuHiP(W) = Dkeza\joy [U(E) [P [k[?* .

Here it is important that we work with functions of zero mean on T2. The fractional Laplacian A® may be
defined in this context as the Fourier multiplier with symbol |k|*, for all s € R.
For a function f : T? x R — R, we use the notation

|flcs  to denote the space-time norm | f|lco(r,cs(12))

where the spatial Holder norm is defined as the sum of the CY norm and the Hélder seminorm [-]gs. To
distinguish functions with higher regularity in time, we use the norm || fllco e = [1fll oo (g0 (z2))- That is,
t — f(x,t) has o-Holder regularity in time and z — f(x,t) has S-Hélder regularity in space. For f: T? — R
which is just a function of the space variable z, we denote by abuse of notation | f||oo its C°(T?) norm.

Throughout the manuscript we abuse notation and denote by f the periodic extension to all of R? of
a T?-periodic function f. Consequently, throughout the proof we work with R? convolution kernels and
R? Fourier multiplier operators, instead of working with their T2, respectively Z? counterparts, which are
obtained via the Poisson summation formula from their R? analogues. See e.g. [CZ54, pp. 256-261], or
[SWT71, Chapter VII] for the main ideas behind this transference principle. In particular, since we work
with functions on T? which have zero mean, the resulting R? functions have support in frequency in the
complement of a small neighborhood of the origin.

We will use a < b to denote a < Cb for a universal constant C' > 1. Moreover, for an integer N > 1 we
will use DYV to denote any spatial derivative 0%, where |a| = N.

14 This is the reason why in [IV15], one may only consider active scalar equations with non-odd constitutive laws (that is, the
Fourier multiplier relating u to 6 in (1.1) is a non-odd function of frequency), extending prior results in [CFG11, Shv11, Szé12]
for the incompressible porous media equation. See also the recent work [CCF16].

10
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3 Convex integration scheme

We use a convex integration scheme inspired by [BDLISJ15]. We shall construct a sequence of solutions

o

(vq, g, Rq) to the relazed SQG momentum equation

Orvg + g - Vog — (Vug) T - ug + Vp, + ANv, = div R, (3.1a)
divog = 0 (3.1b)
uqg = Av, (3.1c)

where Ifiq is a symmetric trace-free 2 x 2 matrix. The goal is to obtain ]o%q — 0 as ¢ — o (in a suitable
topology), and show that a limiting function v, — v exists, and solves (2.2).

3.1 Parameters

We fix 8 > 1/2 to be the Holder exponent that we expect to obtain for our weak solution v, and write it as

4
g = 5 €
for some 0 < ¢ « 1. For this ¢ > 0 fixed, we also define
0<y<2-p

to be the power of the dissipation in the equation. When v = 0 it is understood that the equation is inviscid,
i.e. that the dissipative term A7 is absent from the equations.
Define the frequency parameter

Ag = A

for some integer Ao » 1 that is sufficiently large integer which is a multiple of 5. Note thus that the spatial
frequency, i.e. wavenumber, parameter ), is strictly increasing in ¢ and grows exponentially. We also define
the amplitude parameter

8, = A\2\728 3.2
q 07q

3.2 Inductive assumption

We shall inductively assume that the potential velocity v, has compact support in frequency, contained inside
the ball of radius 2); and has size

logller + Jugleo < Cody*Aq- (3.3)

where Cp > 1 is a universal constant, independent of any of the other parameters in the construction. Similarly,
we shall inductively assume that R, has compact support in frequency, inside the ball {¢: || < 4A,}, and has
amplitude given by

Héq”CO < ERAg+10g+1 (3.4)

holds, where 7 (t) is the prescribed energy profile and e is a small constant to be chosen precisely in the
construction. We also make the inductive assumption that material derivatives for w, and R, are bounded as

(0 + g - V)vgllco < 00)‘5511 (3.5)
10 + g - V)ugllco < Corldy (3.6)
@0+, V)J%QHCO < A26Y20 0410441 (3.7)

Here C is the same as in (3.3). Additionally, we assume that for the given prescribed energy profile

2
0<2(t) — f Az do < Agy10441 (3.8)
T2
and
LR A g
H(t) — szq] do < SHELEL (1) = 0. (3.9)
’]1‘2

11
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3.3 Inductive step

The convex integration scheme consists of correcting the potential velocity v, with an increment wq41 and an
associated transport velocity increment Aw,y; and obtain new velocity fields

Vg4l = Wqt1 + Vg and  ugy1 = Awgyr + g (3.10)
such that the following holds:

Proposition 3.1 (Main Proposition). Let 5 : [0,T] — R* be a given smooth Hamiltonian profile. Then,

o

for sufficiently large \g € 5N, if the pair (vq, Rq) satisfy assumptions (3.3)—(3.9) specified above then there
exists a new pair (vg41, Rg+1) that satisfy these assumptions with g replaced by g+ 1. Moreover, the difference
Wqt1 = Ugt1 — Vg has frequency support contained in the annulus {£: A\g/2 < |€] < 2X\;} and has size

1
||wq+1||co < CO(S;H (3.11)

for a fized universal constant Cy = 0.

o

We note here that if (v, Ry) solves (3.1) at step ¢, and the new velocity vg41 is given by (3.10), then
upon implicitly'® defining R,41 by
div }OBqH = (atqu + g - quH)
+ (A.'I.Uqul Vg — (Vug)' - Awgyr — (Vug)T - qu)
+ A’Y’U)q+1
+ <d1V .éq + Awq+1 . qu+1 - (VU}q+1)T . Awq+1)

+ Vﬁtﬁ_l
:div Ry + div Ry + div Rp + div Ro + VDg41 (3.12)

o

we have that (vg41, Rg41) solves (3.1) at step ¢ + 1. In (3.12) we have split up the Reynolds stress into a
Transport, Nash, Dissipation, and Oscillation part, and have denoted by py+1 a dummy scalar pressure (which
is different from the p,11 pressure in equation (3.1)). Note that once wq41 is constructed to have frequency
support inside the annulus {\;/2 < [§| < 2),}, it follows from (3.12) and the inductive assumptions on the
frequency support of v, and ]ﬂ%q, that éq+1 has frequency support inside the ball {|¢| < 4Ag41}.

The proof of Proposition 3.1 is the main part of the paper, and is achieved in three steps. The first step,
achieved in Section 4, is to construct the velocity increment wy11 which obeys the estimate (3.11), and verify
that with this perturbation the bounds (3.3) and (3.5)-(3.6) hold with g replaced with ¢ + 1. The second
step, achieved in Section 5, is to show that the induced Reynolds stress R,41 given by (3.12) obeys estimates
(3.4) and (3.7) with ¢ replaced with ¢ + 1. The third step, achieved in Section 6, is to show that the new
velocity field is sufficiently close to the desired Hamiltonian profile, i.e. that bounds (3.8)—(3.9) hold with ¢
replaced with ¢ + 1. Together, these three steps give the proof of the proposition.

Theorem 2.3 is simple consequence of Proposition 3.1, as we show next.

3.4 Proof of Theorem 2.3

Proof of Theorem 2.3. We start the iteration by setting (vo,]flo) to be the trivial zero solution. Then
(3.3)-(3.7) and (3.9) follow trivially. Moreover, choosing Ao sufficiently large we can ensure

H) < Moy = N2,

5 Equation (3.12) only defines div Ii?q+1. The Reynolds stress Ii?q+1 itself is obtained from (3.12) once we invert the divergence
operator, cf. Definition 4.1 below, for the contributions that have large frequency, and we write the low frequency part of the
oscillation error in divergence form.

12
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and thus (3.8) holds. Then, we apply Proposition 3.1 iteratively to obtain a sequence v, converging in C? to
a weak solution

v =19+ Z(qu —vg) = Vo + Z Wyt1
q=0 q=0

of SQG. The convergence in C? follows directly from the frequency support of the perturbations wq and the
estimate (3.11). Moreover, the estimate (3.8) implies that

J.

Note, as a consequence of (3.5) and (3.3), it follows that

A%v(:mt)

FM=%@.

Hatvquco < ||((3,5 + Uq - V)Uq”(jo + Hucho ||Uch1
SAZS, -
Thus, by interpolation, using the decomposition wy = v4 — v4—1 We obtain
1—
||wq||cgcg S ||wq||cg((712 llvg — vqfl‘lalcg
1— o
<llwallpi (Ivalloyeg + Nva-1lloyeo)

1—0o
<047 (Aj4)”
:)\g)\;(lfa)ﬁwo(lfﬁ)
:)\g>\q_6+0(2_6)

Hence, if 0 < %, then v, convergences uniformly in CY C. O

4 The velocity perturbation

4.1 Technical preliminaries
4.1.1 Inverse of the divergence

In defining Rr, Rp, Ro, and Ry, we need to use the fact that any divergence free vector function f with
zero mean on T? may be written as a divergence. More precisely:

Definition 4.1 (Inverse divergence). Let f be divergence free and with zero mean on T2. Then we have
f =div(Bf), orin components f'= (%—(Bf)ij
where
(Bf)9 := —0; A2 f" — ;A2 f7.
For f which is not necessarily divergence free, we define
Bf :=BPf,

where P = Id + R ® R is the Leray projector. Lastly, when f does not have zero mean on T?, we define

Bﬁ=8(f—ﬁaﬁﬂﬂ@m>.

In particular, we have that div(Bf) = Pf is divergence free, and Bf is a symmetric trace free matrix.
Properties of the operator B are discussed in Appendix A.3 below.

13
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4.1.2 Beltrami plane waves

For k € S*, we define
b (&) = iktett s and cr(€) = ettt (4.1)
where we notice that since k € S', we have
by =Vicer,  and  cp = —Vg - by

It is also worth noting here that by is an eigenfunction of A with eigenvalue 1, that is

Acby(€) = bi(€), (4.2)
since k € S'. Also it will be sometimes useful to note that since (k+)* = —k, we have
(b ()" = —ikex(€) = —Veen(©)- (43)

4.1.3 Geometric Lemma

For any finite family of vectors Q — S! and constants aj € C, such that a_j = @, if we set

W(E) =D axbe(§)  and V(€)= Y arer(é),

keQ keQ
then we have the following identity
dive(W @ W) =%vg W|? + (V& - w)ywt
:%vg W - VvV (4.4)
=5V (WP = vP).
Adopting the notation Wi (§) = arbi(§), we also note that

ZWk®W—k = Z ‘ak|2kj‘®kj'.

keQ2 keQ2

Lemma 4.2. Let B.(Id) denote the ball of symmetric 2 x 2 matrices, centered at Id of radius . We can
choose €, > 0 such that there exist disjoint finite subsets

Qs je{l2},
and smooth positive functions
Y € C* (Be, (Id)) , je{1,2}, keQ;,
such that
(a) For each j we have 5Q; < Z2.
(b) If ke Q; then —k € Q; and v, = Y—.
(c) For each R € B (Id) we have the identity

for all R e B._(Id).

14
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(d) Fork, k' € Q;, with k+ k' # 0, we have that |k + K'| > %

Proof of Lemma /.2. First consider the case of constructing Q. Define Qf = {k1, k2, k3} where k; := (1,0),
ko = (2, 5) and k3 := ( %) With these choices we make the following observations. First, the matrices
k:l ® k;- for i = 1,2, 3 are linearly independent. Second, we have the identity

52 . 32
d=(1-—— | k1®k ko ® k ks ®k
( 42_52> 1® 1+242 2 ® 2+242 3 ® k3
7 25
*fkl Rk + *k‘Q ® ko + *k’B ® ks

4&@1& + ka ®ky + fkg ® k3.
Hence, setting Q1 = —Qf U Qf, and applying the inverse function theorem to construct v; we obtain
properties (a)—(d). Similarly, setting Qo = Qf = {k*: k € Q1}, we may construct ~y; for k € Qy and obtain
properties (a)—(d). O

4.1.4 Time cutoffs and the back-to-labels map

We let 0 < x < 1 be a smooth cutoff function which is identically 1 on [1, 2], vanishes on the complement of
[1/2,4], and defines a partition of unity according to

DXt —4) =1
jez

for all t € R. We shall also define

X5 (t) = x(tr 3y — 5) (4.6)

where for ease of notation we suppress the dependence of x; on q.
For every j € Z, we define the following back-to-labels map ®;(x,t) by solving the transport equation

(6t+uq~V)<I>j =0,
Q;(x, jTq41) =,

where we define the time step parameter 7,41 by

= AAgi16Y 4008 (4.7)

q+1 q+1

The motivation for this scaling of 7,41 comes from balancing the oscillation and the transport error (cf. esti-
mates (5.2) and (5.58) below). In particular, we note that

Ty [Vugllg, < mariAgsy? = 25", (48)
so that since 8 < 2, then for A\g large, on a time interval of length 27,1, the flow ®; induced by u, does not
depart substantially from the identity.

4.1.5 Leray projector and a frequency localizer
Lastly, we define P = Id + R ® R to be the Leray projector, and for k € S* and \,1;1 as above we set

Pyi1k = PPugy (4.9)

q+1

where Py, k is a zero order Fourier multiplier operator with symbol IA(Q;CAQ“ = f(gl(g//\qﬂ — k). That is,

(Pesyin ) (©) = Bin, 1 (O)F(©) —K( ¢ —k) 7).

/\q+1

15
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where the function K~; is a smooth bump function supported on the ball {¢: €] < &}, and such that
IA(M(f) = 1 on the smaller ball {f: €] < %} Note in particular that 0 < a,b we have
C )\a b

q+1| < q+1

sup €] VER s
£eR2

for a suitable constant Cy ; that is independent of Ay41, and similarly

< Cup7?

H |x|bV;K%k/\q+1 q+1

HL;(]R{Q)

holds for 0 < a,b < 2, and the constant Cg 3 is independent of Ag41.
We note here that P x is a convolution operator with kernel K11 x(x), i.e., for f which is T?-periodic
we may write

Pyi1rf(z J Kq1k(y —y)dy,

with a kernel K, 5 that obeys
H|$| v Kq-‘rl k(T HLI (R2) < Ca b)\q+1 (410)

for 0 < a, b, and the constant Cy  is independent of A;11. Here we have implicitly used that RQ R =P —1Id
is a matrix zero order Fourier multiplier, whose symbol is smooth away from the origin.

4.2 Construction of the perturbation

With these notations in hand, we now define the potential velocity perturbation w1 as

werr(z,t) = D1 Xi(OPgs1k (ak, (@, )b (A1 5 (2, 1)) | (4.11)
JEL,keQY;

where the functions a ;(z,t) are to be defined in (4.15) below, and Q; = ; if j is odd, while ; = Qy if j
is even. The definition of Py; ; implies that the increment wg11 has compact support in frequency space
inside {&: Ag41/2 < |§] < 2Ag41}, as required in the inductive step.

Let éq,j define the solution to the transport equation:

(0 + g~ V) Ry =0, (4.12a)
Ry j(2, 7q41) = Ry(@, jrg41), (4.12b)
and set ]
Rgj = Ag+1p;ld — Ry 5 (4.13)
where
LR, 1P Ag+20g+2 .
p(t) := Wﬂnn H(t) — - A2vq’ dx — 5 0) and p; = p(14+17) - (4.14)

The constants p; are chosen in order to ensure convergence of the Hamiltonian to the desired profile. Note
that by the inductive assumption (3.8) we have that

Pj < 041
Then to conclude our definition of the perturbation wq1, we define
(13t)> f . 0
ag,j(z,t) = p] Tk ( Agi1p 1 p; # (4.15)
0 if pj =0.
Note that in order that ay ; is well defined we need to ensure that if p; # 0 then

R‘Lj (xa t)

€ B .
Ag+1pj e (14)
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Since R, ; satisfies a transport equation it suffices to prove that

| ol 70s0)]

Ag+1P;

Co
)<s,,.

By (3.9) is suffices to consider the case when

/\q+15q+1

2
| 5

. 1 .
)~ | [NogGagrn)| do
T

which implies (assuming \g is chosen sufficiently large)

A0,
Py 3

Applying (3.4) yields

Ry (-, 57q+1)] co

< 863
Ag+1pj

Then as long as 2ep < e, we obtain (4.16).
Throughout the paper it will be sometimes convenient to denote

Wyy1,5k = Xj(t)ak,; (2, 1)be(Ag+1®5(z, 1))

so that in adopting the abuse of notation Zj k= Z{j:pj £0},ke, the equation (4.11) reads

War1(2,8) = D Post kTgr1,5k -
Gk

We also adopt the notation

cAgr1P5(T) a0 (ast)—2)k
. t) = — q+1(®;(z,
/(/)qJFla]»k(x? ) Ck(>\q+1x) €

so that
br(Ag+1®@5(2,1)) = br(Ag12) g1,k (2, 1) -

4.3 Bounds on the perturbation
Lemma 4.3. With wgy1 as defined in (4.11), we have that

[wgsillgo < Coduly

q+1

HU‘H1”C1 + Huq+1”co < CoééflAq+1
[ Dt,qwg+1llco < Cqu_fl(s;/fl

Dt q+10q+1llco < CoAlZ 410441

[ Dt,g+1Ug+1llco < C’o/\2+15q+1

for a universal constant Cy = 1, which is the same as the constant in Section 3.2.

(4.16)

(4.17)

(4.18)

In particular, the bounds (4.19b), (4.19d), and (4.19e) show that the inductive estimates (3.3), (3.5), and

(3.6) hold with ¢ replaced with ¢ + 1.
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Proof of Lemma 4.3. From (4.10) it follows that ||[Pgy1xl/co_,co S 1, and hence

lwgtllco = Z [@q+1.5.5|

1/2 1/2
< Z 1supp (x5) |a7€7j Z 1SUPP (x5) S 6Q+1
3.k J

in view of (4.15), and the fact that p; < 51/ Estimate (4.19b) follows from (4.19a), the frequency support
of wy41, and the inductive estimates (3. 3)

In order to estimate the material derivative D; , = 0; + uq - V of wgt1, we note that Dy qax ;(z,t) =0
since }D%q,j obey the transport equation for the vector field ug, and similarly Dy ¢bg(Ag+1®P;(z,t)) = 0 since
the phases ®; also obey the same transport equation. We thus have that

Dy qwgi1 = Dy g (2 Pq+17kwq+1,j,k>

Jik
= > Por1k((0x5)ar i0k(Ags12;)) + D [Drgs Porr s g s1,5,6-
Jik gk
Therefore, by appealing to the boundedness on C° of Py+1.%, the definition of x; in (4.6), and the commutator
estimate (A.18) in Corollary A.8 with s = 0, we arrive at
HDt’qqurluco < T(;+11 Z 1supp(xj) Hak,jllco + Z Hvuq”co ||1Eq+1,j,k||co

g,k
-1 1/2 2¢1/2 1/2
Tg+1 Z Loupp(x)py’ ™ + /\qéq/ Z Lsupp(x;)P;
j J

< ( o+ A251/2) a2

_1 51/2
S Tg+19%+1

since p; < dq41 and by (4.7) we have 7 +1 = A )\44_151/45;441 )\(215;/2, where here we used the fact that
8 < 2.
Using the inductive estimate (3.5) and the bound established above, since

Dt7q+11]q+1 = Dt7q(1]q + wq+1) + Awq+1 . V(Uq + ’l,l)q+1)

we obtain

—1 ¢1/2 2 2
||Dt,q+1vq-~-1Hc0 < )‘ 5 + 7 q+16q+1 + /\q+15q+1 < )\q+164+1'

Similarly,
Awq+1) + A’U}q+1 . V(Uq + Au}q+1),

Dig+1ugs1 = Dig(ug + Pixgia

the inductive estimate (3.6), and Lemma A.6 (with s =1 and A = A\,41) implies

[ Dt,g+1tg+1llco < )‘2511 + HﬁwkﬁlA(Dt,qqurl)Hco + H[uq -V, ]SquHA]quHCO + >\2+15q+1
S N30y A1 T+ Agr i AN2OY26M3 A3, 16
<A 10g4
which concludes the proof of the lemma. O
In estimating the Reynolds stress error, the following bounds concerning the derivatives of ay,; and
Yg+1,5,k are very useful.
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Lemma 4.4. With ay ; as defined in (4.15) and ¥g+1,5k as defined in (4.18), we have that

N N c1/2
”D a'kijCO(suprj) S )\q 5q+1 (420)
for all N =20, and
N 2¢1/2 N 1/45—1/4 N
DYtk | coguupp S (Tar1Aas1X202) " = (Ag0y/0,1") (4.21)

for all N = 1, where the implied constant depends on N.
Proof of Lemma 4.4. Since R, is supported on frequencies less than 4),, it follows from the chain rule
estimate (A.10) and the smoothness of the v, functions that
1 —1/2 1/2-N\—N N
HDNak»J'HCO S qiﬂ’j / HDNR%J'HCO + pj/ Agr1 [DRg+1,5lco

S 5;fl>‘fzv + 5;421)‘;J£V1(/\q)‘q+1)N

where we have also used that p; < dq11. This proves (4.20).
In order to prove (4.21), we appeal to the chain rule estimate (A.10) and the transport estimates (A.7)—
(A.8) and find that

||DN1/}‘1+11jvk||C0( S )\Q+1 ||le?1 (D(I)j - Id)HCU(suprj) + >\£1V+1 HD(I)J - Id”go(

supp x;) SUpp X;)

N
N c D N Cra41|D
S Mgt [DVug | go €T 1Pale0 4 AN (7, 4 Dty o €T IP el )
for a suitable constant C. From (4.8), 7,11 || Dugl[ o0 < 1, and thus we conclude that
N N+1g1/2 | \N 25172\
||D 1/’quLchHcO(suprj) S A1 Ay 0T + A (Tq+1)‘q5q )

N
Nl1/as—1/4 N (s1/45—1/4
S AVo st A (a0 ")

q+1 q+1
N
1/4 ¢—1/4
< (noy o)
since dq+1 < 4. This estimate shows that 1441 ;& lives at spatial frequency Aq5;/45;+1{4. O

5 The Reynolds stress error

5.1 Transport error

Lemma 5.1 (Transport error). For any e > 0, if Ay is sufficiently large then for Ry as defined in (3.12), we
have that

[Rrllco < eAg+20g+2

1/2
||Dt,qRT||co < 5>\3+15qil/\q+25q+2 .

5.1.1 Amplitude of the Transport error
By definition, we have that

Ry = B (D qwg+1)

=B <Z Pyi1,k ((Oexs)an, jbr(Ng+1®5)) + Z[Dt,qqu+1,k]@q+mk>

Jik J.k

= BPux, ., (Z Py, ((0ox5)ar ibe(Ag19;)) + Y [ug van+1,k]wq+1,J}k> (5.1)
J.k gk
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where in the last equality we used the compact support of u4 to conclude that ug-VPgiq 1 = P Agr1 (g - VPgi1 k).
Using Lemma A.6 we obtain

1Rl co < Agts D 1@exs)an,ibrAg+12) o + Agity D311V ugll o 115,505 (Aq+185)l o
J:k Jik

-1 _—1 ¢1/2 —1 2 2¢1/2

S (1+1Tq+15q{&-1 + /\q+1)‘q5;/ 6q{+—1

-1 _—1 ¢1/2
S q+1Tq+15q+1

= AoV

_94 58
S YD VY Y (5.2)

. . . 4 . .
Assuming ) is sufficiently large and 8 < ¢ we obtain our claim.

5.1.2 Material derivative of the Transport error

Using the frequency support of u, and wqy1 we write

Dy g By = [Dt,qu-IB%Aq_,_l]Dt,qqurl + Bﬁ%,\{ﬁ_lDt,q (Z Pq+1,k((5th)ak,jbk()\q+1‘I’j))>
Wk

+ Bﬁmqﬂ Dy (Z[Dt,qa ]P)q+1,k]ﬁq+1,j,k>
j.k
=T +T15 + 13 (53)
The first term in (5.3) is bounded directly using Corollary A.8 and the bound (4.19¢) as
ITtllco < Agfa Vgl oo | Dt gwgill oo

— —1 ¢1/2
S AN PTG

= A3 o3/, (5.4)

We decompose the second term in (5.3) as
T, =BPx,, | (Z[Dt,qaPq+1,k]((5th)ak,jbk(>\q+1‘I’j)) +ZPq+1,k(93Xj)ak,jbk(>\q+1‘1’j)>
3.k Jik
which allows it to be estimated by

ITallco < Agis 2, (IVugllco 1(@ex)an ;08 Aa+1®) | oo + [[(0FX5)an. bk (Ag+125) | o)

3k
-1 2¢1/2_—1 ¢1/2 —2 ¢1/2
< )‘q+1 (/\q(Sq/ 7—q+16q/+1 + 7—qu16q/+1)
—1 _—2 ¢1/2
S q+17—q+16q+1
= A2X\g4104 26411 (5.5)
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Next,

T3 =BPx,,,, Dig (Z Ug - VP kgr1k — Y Papik (g - qu+1,j,k)>
ik ik

= BJS%AQH (2(Dt,q“q) -V (Pqﬂ,k@qﬂ,j,k) + Euq -V ([Dt,qa Pq+1,k]wq+1,j,k)>
J.k gk

+ Bﬁmw (Z tq - V (Par1k ((0rxg)ar 0k (Ag4125))) — X (g - V)ug) - V]I”q+1,k@q+1,j,k>
J.k 7,k

- Bﬁ%xqﬂ (Z[Dt,m Por1,k] (g - Vigs1,50) + quﬂ,k ((Dr,quq) - quJrl,jvk))
Jsk grk

— BP,

FAg+1

(Z Pyirk (g - V((0x5)ak, bk (Mg1195))) = X Pasik (((ug - V)ug) -V@qu,j,k)) :
Jk g,k

In order to estimate T3 we appeal to the inductive bound (3.6), Lemma 4.4, the commutator estimate in
Corollary A.8 (with s = 0 and A = A\j4+1), and to the fact that Tq+1)\3(5;/2 < 1 and the estimate (A.7), imply

~ 1/2 1/2 1/2
@+ 1gallor < langllon + lansllon Aart V8510 S Agbglds + Aqu18gl < Agadg.

All these yield

ITsllco < Agta 2, (IDrguallco Mgt B gkl oo + lluglloo Mg llugllon 1@g+1,5.kll o)
3.k

A7k 2 (Hualloo Ags17aity ol oo upp gy + Mtallco Ttallen Mgt 141,xllco)

Jsk
+ )‘;Jil (Huqllcl Huqnco ||wq+1,j,k |cl + ||Dt,quq||co ”qurl,j’k ‘Cl)
Jsk
+ )‘;-&1 (HuchO 7—;4-11 ”ak)jbk(/\q-%lq)j)llcl + HuchO Aq Huchl ||wq+1,j,k||cl>
3k
35 51/2 /2, —1 s1/2
S N300, + N0y 2Tl 6.
SRV s et e
3/4
= A2), 1030001 (5.6)
Combining (5.4), (5.5) and (5.6) we obtain
: 3/4 3/4 £3/4
IDe g Rl o SAZEYAG2Y + N2 116126, 11 + A2Ag18/ 4820,
2 3/4 53/4
SN 18480

—3+78/22 1/2
=X / Ag+1 5qil/\q+25q+2a~

This completes the proof of Lemma 5.1.

5.2 Nash error
Lemma 5.2 (Nash error). For any e > 0, if Ao is sufficiently large then for Ry as defined in (3.12), we
have that

HRNHCO < eXg20g+2,

IDegRvll oo < eX241002 Agradyra - (5.7)
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5.2.1 Amplitude of the Nash error
We recall from (3.12) and the definition of B that we may write
Ry = =B ((Vug)" - wgi1) + B (Awgs1 - Vog — (Vog)" - Awgy1)
=-B ((V“q)T ‘wee1) + B ((vl 'vq)Awé_ﬂ)
: Ny + No. (58)

The bound on NN; is direct. Recalling the definition of wy41, and recalling that u, is supported on frequencies
€] < 2Ag < Ag41/8, upon applying (A.11) with A = A\j41 (which is inherent in Pgq 1), we obtain

lugllor <y~
7; C N @g1,.kll o
q+1 ik

A

[Vl o

1/2c1/2
>\26 §q+1

/\q+1
It is convenient to rewrite the term N», exploring the special structure of the perturbations wq41. We

note that since by (§) = i(kt)Let € = —ike™™¢ = —V¢ck(€), we may write

Awaﬂ = Z APy 1k (XGan,jg+1,5,606(Agr12)h)
Tk

Y ZAPqul k(Xj0k j¥qr1,5 1V R (A1)
a+l

\Y Z APgi1k (Xjak,jqurl,j,ka()‘q+1x))

\ ZAPq+1 k(G V (ak,j¥q 41,50 ck(Ag1)).
atl 5% a+l

Therefore, recalling that B has incorporated into it the Leray projector P, we have that

B (V(VL . Uq)ZAPq-ﬁ-l,k (Xjak,jck(/\q+1‘1)j))>

Jik

+ ! B ((VL 'UQ)ZAP(I+1»7€ (V(Xjak,j1/)q+17j,k)Ck(/\q+133))> . (5.9)

)‘q+1 ik
In order to bound N2 we again use (A.11) with A = A\,4; and obtain
[Vz2llco = quch D AP o Ot jer(Ag4129) | o
q 7.k

+ )\T lvgllcs ), HAP%H (vaak,jCk()\qH‘I’j) + Xjak,jv¢q+1,j,k0k(/\q+1$)) Hco
2, :

Js

)\251/2/\q+15;i21+ )\ 5 2>\q+1 ()\ sY2 4§12y 51/4(;—1/4)

)\2+1 g+1 q+1 q+1
q

9 ¢1/2¢1/2

)\ 6 5‘1"‘1 + )\3 63/461/4
< )\q+1 )\q+ q+1

where in the second last inequality we have used Lemma 4.4. We see that the first terms in the above bound
obeys the same estimate as Ni. Then again using é44+1 < d, we obtain

1/4 +%
HRNHCO ~ 63/46,1{;,_1 = 0 2 )\q+25q+2

Thus we obtain the desired estimate so long as § < g and g is sufficiently large.
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5.2.2 Material derivative of the Nash error
Recall that u, has frequency support inside of the ball of radius 2A, < A\;41/8, and therefore
N1 =B ((Vug)" - wgi1) = B’]BM\Q+1 (Vug)" - wys1)

where we denote by IT’M\Q .. the Fourier multiplier operator whose symbol is supported on frequencies
{€: Ng+1/4 < €] < 4N\g41}, and is identically 1 on the annulus {€: 3A\;+1/8 < [¢] < 3Ag41}. Therefore,
appealing to Corollary A.8 (with s = —1 and A = A\j41), we have that

HDt,quHCU < HBFN)Q)\QJADLQ ((qu)T : wq+1) HCO + H[Dt;Q’Bﬁ%/\qul] ((qu)T . ’U)q_;,_l)‘

Co
1 1
< Ag+1 [Pea ((Vug)" wq“)HCO + g+l Vgl co H(qu)T ‘ wq+1||co
1
S (HDt,q(qu)THco lwgs1llco + 1Vatgll o 1 Degwgsll o + 1 Vauglfi ||wq+1||co) :
q

Using the inductive hypothesis (3.6), we have that
2
||Dt7q(vuq)||co < ||uq||cl + HDt,quchl < /\35q-
From Lemma 4.3, we conclude that
1
)‘q+1
—1 y251/2_—1 51/2
S )‘q+1)‘q§q/ Tq+15q+1

_ \3¢3/453/4
= A353/ 50

1/2 — 1/2
1D0aN oo < — (Mdady iy + A2y 0,02 )

—4+72 o (172
=X )‘q+15q+1/\q+25q+2'

In order to estimate the material derivative of N, we recall (5.9), and as above, using the compact support
of vy, we find that

—/\q+1Dt7qN2 = Dt,qBﬁg)\q+l <V(VJ‘ . Uq)ZAPq+17k’ (xjakdck()\qH‘I)j)))
ik

+ thlgﬁm)\ﬁ_l ((VL . ’Uq) ZAPq+1,k(va(ak,jwq-&-l,j,k)ck(Aq+1x))>
7.k

= (Bﬁz)\qHDt,q + [-Dt,qa B.ﬁg)\q+l:|) (V(Vl . 'Uq) Z APq+1,k (Xjak’jck(kq+1@j))>
J.k

+ (BFN)@)\Q_HDW] + [Dt,q, BFN)&)\Q_H]) <(VJ‘ . vq)EAPqul,k (V(Xjak7j¢q+17j’k)Ck(>\q+1x))> .
Tk

We now appeal to the commutator estimate of Corollary A.8: first with A = Ag41 and s = 0 for [D, 4, B]SNAQH],

second with A = A\;11 and s = 1 for [D; 4, APq11 %], and third with A = Ag41 and s = —1 for [Dt,q,Bf’zA
We obtain that

Ag+1 ||Dt,qN2||co < Z HDt,qv(Vl 'Uq)HCo ||Xjak,j||co + HV(VL 'Uq)Hco (HX;‘akJHCo + ||qu||co ||Xjak7j||(;0)
k,j

+ ||vuq||co Hv(vl : Uq)”go Z ||Xjak,j||co + Z HDt,q(vL ) Uq)”go Hva(ak,ﬂ/’q-s-Lj,k)”co
k’j k7]

q+1]‘

+ DI walloo (106G ¥ @015 o + 1V8allco 16V (k90 41.58) o )
k,j

+ ||vuq||co Z HVL”"qHCo |‘va(ak,j¢q+17j,k)||co .
k)j
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Using the previously established bounds and the inductive estimates yields

[ Dt,gNallco < /\;}1)‘3%5;61 + A A8 (7'(11115;631 + )\35;/25;421)

T AL (it + A2032) (M0y L+ 8B A1 A20)2)

3 1/2
< ABg,007

Combining the above estimates shows that

3/4 1/2 —44+ T8 1/2
”DtﬂRn” < /\252/4%4-1 + )‘géqdq{&-l < )‘0 : /\§+15q{-1/\q+25q+2 .

8
Therefore (5.7) holds so long as 3 < =.

5.3 Dissipation error

Lemma 5.3 (Dissipation error). For any e > 0, if Ay and q are sufficiently large then for Rp as defined in
(3.12), we have that

|Rp ”00 < eXg20g+42

1/2
D4 gRpllco < eX2, 1047 A g 120042

5.3.1 Amplitude of the dissipation error
By definition,

RD = BA’YU)qul = BA’YJBN)\LHI’U}Q+1. (510)
Therefore, it follows from Bernstein’s inequality for Fourier multipliers [LR02] that

-1
HRDHCO < /\34—1 qu-&-lncﬂ
—1.1/2
SJ /\’qy-k—ltsq-&-l

282 \y+4—2
< NN T A 20442

Thus we obtain the stated estimate so long as v <2 — (3, 8 < 1 and ) is sufficiently large.

5.3.2 Material derivative of the dissipation error

The estimate on the material derivative of the dissipation error follows directly from (5.10), the previously
established bound (4.19¢) for the material derivative of the perturbation, and the commutator estimate of
Corollary (A.8) in which we set A = Aj41, and s = v — 1, which is the order of the Fourier multiplier operator

BAVPN)\QH. ‘We obtain that

HDLqRD”CO < H(BA’YIS%MH)Dt,qquHCO + H [Dt,m BA’YﬁQ)‘qJA] wq+1’

Co
-1 -1
< )‘Z+1 ”Dt,qqurl”cO + )‘Z+1 ”qu”co ||wq+1||co

< N (gl + A2012)5, 2

q+1\Tg+1 q+1
v o51/43/4
p >‘q/\q+15q 6q+1
_ \YtTB/2—4yy4+B8-2 2 1/2
= )\0 )\q )\q+16q+1)\q+26q+2‘

Thus again we obtain the stated estimate if v < 2 — 5 and ¢ is sufficiently large.
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5.4 Oscillation error

Lemma 5.4 (Oscillation error). For any € > 0, if Ao and q are sufficiently large, then for Ro as defined in
(3.12), we have that

||RO||C0 < 5>\q+25q+2 )

1/2
IDigRoll o < eX2, 100 Agaadys -

5.4.1 Decomposition of the oscillation error

Recall from (3.12) that the oscillation error Rg is defined so that the following equality is satisfied:

div Ro = div Ry + Awgy1 - Vwgsr — (Vwgs1)T - Awgyy

— div (Z X3 (Ry — éqvj)> + div (Z X3 (Ryj + ijq+11d)>
- :

J

+ (Awgi1 - Vg = (Vug1)” - Awgyn ) (5.11)

Remark 5.5. Note that in the above formula, as well as throughout this paper, we somewhat abuse notation
and write }}; to mean the summation Z{j:pﬁéo}.w It this then important to note that in view of (3.9), the

decomposition (5.11) is valid so long as

2 dr < Aq+16q+1
h 8

A2y,

A1) — f

T2
on the support of x; for p; = 0. The proof of this fact will be delayed to Lemma 6.1, equation (6.1).

Recalling that

werr(@,t) = Y Porig@arige  with  @gragn = X5 (Daki (@, Dbr(Ag19; (2, 1)),
{j:p; #0}
keQ;

the term Awgi1-Vwgr1 — (Vwgs1)T - Awgiq in (5.11) has both high and low frequency components, depending
whether k # —k" or k = —k’. We notice that due to the frequency localization induced by Py1 1, for k, k" € Q;
with k + k" # 0, we have that 1/2 < |k + k| < 2, and due to the localization in the angular frequency variable,
we obtain that

APg 41,5 Wq+ 1,56 - VPqi 11 Was1,jr ke = Prxg i (APgi1 s @qs15k - VPt k@5 1) (5.12)
and
~ T ~ jase ~ T ~
(VP 1, 5Wgr1,5,k)" ® APgit i Wai1,jrir = Pongyr (VPor1k@ai,jn)" @ APyt brWgsn o i) -

We shall thus isolate the high-frequency part of Ro due to the nonlinear interactions in Awg41 - Vwg41 —
(qu+1)T “Awg1, as

RO high = BP%#( D0 (APyi k@i i) 'V(Pqﬂ,k'@qﬂg’a”))

5ok
k+4+k/#0
~ ~ T ~
—BPui | Yy (VPeara@rign) - (APt i@gir ) |- (5.13)
Gk
k4K #0

16We also denote by Zj,k the double sum Z{j:pﬂﬁo} Zkeﬁjv and similarly Zj,j/,k,k/ denotes a quadruple sum.
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Similarly, we need to isolate the low-frequency part of Awgy1 - Vwgi1 — (Vwgi1)? - Awgq1 which occurs when
k+ Kk =0. Since Q1 n Qo = &, k+ k' = 0 implies that j = j/, so that upon symmetrizing, we may define
the low frequency part of the nonlinear term as

1

Tik = 5 ((quﬂ,kﬁqﬂ,j,k) V(Pgs1,-kDg11,5,—k) + (APt xWgs1,5k) * V(Por1,—£Wgs1,5,—k)

- (VPqul,k'[Equl,j,k)T' (APgi1,—kWgi1,5,—k) — (V]P)qul,fk'[Equl,j,fk)T : (APqH,k@qH,j,k)) (5.14)

The challenge now is to obtain the decomposition
Tk = div(Qjk) + VPjk (5.15)

for a suitably defined 2-tensor Q;; which gains one derivative over 7} and obeys good transport estimates,
and a scalar function P; . This is achieved in Section 5.4.2, equation (5.31) below. In turn, the decomposition
(5.15) allows us to write the oscillation stress as

ZX?(Rq — Ry )+ (Z X?Rq,j + Z QjJ@) + R0 high
J J Jk
= RO,approx + RO,low + RO,high ) (516)

Ro

where we have used the notation R, ; and Q;x to denote the traceless parts of R, ; and Qj s, respectively.
We have also used the fact that B already contains the Leray projector, so that it annihilates gradients.

5.4.2 The definition of 9, ;

Before explaining how we obtain the 2-tensor Q,j and prior to estimating the three terms in (5.16), two

technical remarks are in order. First, since Pgy1 xbr(Ag+12) = bp(Ag412), we may write

Py 1,6@gr1,5k = W1,k + X5 [ Pas 1,5 Qe j¥q+1,5,k |0k (Ags1) (5.17)
and thus
War1 = Y Wgr1k + X5 [Pt ik @ gtk |bk(Ag1). (5.18)
J,k gk

And second, since A and P41, commute, using (4.2) we may write

APgi1 kWa+1,5.k = Xj0k,jVq+1,5,kPa+ 1,600k (Ag117) + X [Pgt1,640, @k, j¥qg+1,5,5 10k (Ag+17)

= )\q+1@q+17j,k + Xj [Pq+17k/\, ak,jwq+1,j7k]bk()\q+1x). (519)
and thus
Awgir = Agi1 D st + D X [Par1kA, anj¥q 1,100k (Aga12)- (5.20)
g,k J.k

Let us define the potential vorticity associated to the perturbation Pqi1 1 Wq+1,5,% as
Dk = V- Pygt kWas,jik- (5.21)
Using the identity
Af-Vg—(V9)" Af = AfH(VE-g) = (R(VE- 1)) (V* - 9) (5.22)

which holds for any vector fields f,g: T? — C? with V- f = 0, we may write 7, x, as defined in (5.14), in the
convenient form
Tik =

)

(RO k)0~ + D k(RI;,—k)) = T (Ij,k, V5, —1) (5.23)

N | =
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where as usual R = (Ry, R2) is the Riesz-transform vector. Our goal next is to rewrite the operator 7
defined by (5.23) as a sum of a pressure gradient and a divergence of a 2-tensor.

By an abuse of notation concerning Fourier transforms and Fourier series, we can rewrite T as a bilinear
Fourier operator whose ¢'" component is given by

~

2(T(1.9)" (€)= | (RD" (€= dn+ | (R0 (w)f(€~n) dn
L

[ iE=n)" A in 2o
- [ |f(€ n)g()dn+fR2|| dfie—n) d

‘J (|§ - |n|>f5 mg() dn -

Rearranging the symbol, we have that

i(€=m)* i (€= Inl+ 0"l —nl)

E—nl Il 1€ — ] [n]
_ i€l in" (1€ =] = |nD)
1€ =l n| & = nlnl
e, ()
= + — |n—r&l| dr
ol "l o \ar 7T
L SER [ f (n—re)"
[E=nl1&=nllnl™ Jo [n—r¢
= (i€") —— + (ig™) L. L mie—nn)
&=l |17| fE—n"
where we define the symbol s: R? x R? — C by
1, m
i((L=r)n—r])
s™(C,m :f dr. 5.24
= Tia=am=rd] 20
An important property of the symbol s” (which will later be essential to our proof) is that
m in™
8" (=n,m) = W (5.25)

which is the symbol of the Riesz transform R™. As a result of the above computations, may write

~

§r o zf‘ fle—mn € e dE=m i
(T(f.9)" (&) = B |g(n) dn+ = L@ & —nmn)=—F—7 €l Tn° g(n) dn. (5.26)

Upon defining the bilinear pseudo-product operator 8" in Fourier space as

~

(S™(f.9))" (&) == JRQ s"(&=n.n)f(&=m)g(n) dn, (5.27)

we then obtain from (5.26) the following formula for 7

T'(f,9) = 30(A™ fg) + Lon(S™ (A7 £, RYg) . (525)

The representation (5.27) of the bilinear operator S™ is not very convenient to estimate; instead, we compute
the inverse Fourier transform with respect to £ and rewrite S as

: ia-(C-n)
SS90 = Gy JJRMRQ (¢ F(©)ge ¢ dy, (5.29)
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and upon further computing the inverse Fourier transform with respect to (1,() € R*, we rewrite S™ as
follows:

S™(f.9)(x) = ”R  Kano == 2)f0)al:)dyd:. (5.30)

where K m is the inverse Fourier transform in R* of s™. Thus, another way to view S™ is as a bilinear
convolution operator. We refer to [CM78, GT02, MS13] and Appendix A.6 for further properties of pseudo-
product operators of the type (5.24), and for the equivalence of the definitions (5.29)—(5.30).

In view of (5.23) and (5.28), we have now defined the tensor Q;  and the scalar P;; in (5.15), namely

1 1
T = 5V (A5 050) + 5 div (S (A7 0,0 R0 ) )
so that

me  Lam am
(Qjn)™ = 55 (A9, R ) (5.31)
Pix = A_lﬁjykﬁj’,k ,

with the bilinear pseudo-product operator ™ being defined by (5.29).

5.4.3 Canceling the principal part of the R ow stress

Before estimating Ro 10w, we need to extract the leading order term in the matrices Q; j defined by (5.31).
For this purpose recall cf. (4.9) and (5.21) that

Vi =V*. (Pairgsr Wat1,jk + (R R)Paior, 1 Wat1,5,k)
= Pk, (VL W14,k -

Here IA(MMQH &) = IA(M(é“/)\qH — k) is the Fourier symbol of Pxpy,,,. Using the precise definition of @y 1 j x
in (4.17), the definition of by and ¢ in (4.1), and the notation (4.18), we obtain

—1 —1 1~ 1~
A0 = A Poprgy (V7 - @Wgr1ik) = Pokngn R - Wgin ik

= x;(ik") - R Py, ., (ak,ﬂbq-i-l,j,kck(/\q-&-lx)) (5.32)
and
RY; = R Pa_ior sy (V5 Wgs1j—t)
= —x;(ikt) - VIR Pe_pn, ., (ak,ﬂ//qﬂ,j,—kc—k(>\q+1$))- (5.33)

We note that since multiplication by cx(Ag+12) results in a shift by A,41k in frequency, the Fourier analogues
of (5.32) and (5.33) are

A k- &~ N
(A~19;) (€)=xj(t)|§|£Km( d k) (ak jgrr i) (€ = EAgsr) (5.34)

and

(R*0;—x)" (€) = x;(t)i€" e

e <>\§ i k) (ak j¥g+1.5.-k)" (§ + kAge1)- (5.35)
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Inserting (5. 34) (5 35) in formula (5.31), and recalling (5.27)—(5.29), we obtain that

m k-C~ ¢ — kX )
Qj,lf(x) = J‘J‘ —i8™ C 77)) K~1 ( q+1> (ak,jwq+17j’k) (C _ k)‘qul)
RQXRQ q Agi1
k-nz + kX ) N
X né ‘77|77K%1 <77 S 1¢]+1> (ak,jiﬁqul’j’,k) (17 + k)\q+1)eza: (C-H?)dCd’I]
q+

_ X - m k- (C+ kA1) 2 ¢ ' \A
= 3 JJWXWFZS (C+kAgs1,m — kAgi1)) I k)\q;' K1 <)\q+1> (ar jgr1in)" (€)

k-(n—k\gt1) o N
x (' = KAq41) m("_ 5 jjf)f% ( : )(ak,mqﬂ,j,k) (n)e'= (T dCdy
q

Aot

2
i 1 A A -
e | o M) (1,500 (O @) () ey (530

where in the second to last line we have used the change of variables in ¢ and n by shifting with +kX;41, and
in the last line we have denoted

M (¢,m)
, k- (C+ kAgi1) & ¢ Y k- (n—FkXg1) & n
— —is™(C + kA —kAgy1) U R — kA K.
PHE T R = BT AT ) T e T e e
1
= f M (¢, )dr. (5.37)
0

(L= —rC—krg1)" ,
T —1C —Eagpa] 1~ F A1)

E-(C+ kA1) k- (n—kXgy1) & < ¢ )A ( 7 )
K. K. . 5.38
I¢ + k/\q+1| In — k>‘q+1| ' Ag+1 ' Ag+1 ( )

We observe here that the multiplier M;™¢ defined in (5.38) has two important features: the first concerns
smoothness and will allow us to establish bounds on the induced bilinear pseudo-product operator, while the
second concerns structure, and allows us to define the principal term in Q;{’,f and cancel the leading order
term in the oscillation stress Ro jow-

First, we note that by (5.37), we have that

ML) = A0 (55 ) (5.39)

)‘q+1 )‘q+1

MM (¢,m) =

where

(1=r)&—r& — k)" k(& +k) k- (§&2—Fk)
|(1—7)&e — 7861 — K &1+ k[ |&2—FK]

for &1,&; € R2. We notice here that M*T is independent of A;41, and that by the definition of K~1, the
multiplier M,:“ is supported on (£1,&2) € By/s(0) x Bys(0). The latter property ensures that |§; + k| > 1/2,
|62 — k| > 1/2, and |k + (1 — )& — r&2| = 1/8. This ensures that the multiplier M}* is infinitely many times
differentiable, with bounds that are uniform in r € (0,1). 7

Second, we note that from (5.38) it follows that

M(0,0) = —Ags1k™k* 5.41
q

(M}, )™ (&, &) = (€5 — k) Ku (6)Ka (&) (5.40)

whenever k € St. Moreover, by the deﬁmtlon of the inverse Fourier transform, we have that
1 A A i
52 JJ (akjPar14.k)" Q) (ar jthgs1,g—r)" (e CHDdCdn
(2m) R2 xR2
= k(@) g 41,5k (0)ak ()Y 11,5,-k(T)

=ap ;(z), (5.42)
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since by (4.18), ¥g11,5,6(2)Vg+1,5,-k(z) = 1.
Therefore, combining (5.36)—(5.42), we decompose Q;’?,f as a principal and commutator term:

A
Qrt =~k k)l + O
A 1 ml X
= "T*Xi (* @kt — Id) ap ; + Q. (5.43)

wheret since |k| = 1, Tr(kJ- ® kt) =1, and where

- i [ [, st -0

% (arj¥qr1gn) " (C) (ang¥qr1g—r)" (n)e™ M d¢dndr.
Next, we use the mean value theorem together with (5.39), and find that
Ayme X5 ¢
m(r) = =L Ve +n-V)M™) (7,7
Ot = g | | [ [ (€ Ve n-vaz) )

X (ak,j¥Pq+1,5, k)" (C) (a, i%q+1,5,— k)" (n)em(CJrn)dCdﬁdfdr

) f f J f (196 ME)™) (517 5 ) - (Flatenan))” (O
R? xR2 q+1 q+1
(ar,j¥qr1,j—k)" (n)e'™ M d¢dndrdr

fj fJ (—iVey (M} T)ml) ( i ) ikl ) “(V(ak,jg+1,5,-1))" (1)
R2 xR? Ag+1 Ag+t
x (ak j¥q11,5%)" (O™ D d¢dndrdr

= (@)™ @+ (92)™ (). (5.4

Note that @51,2 and @gzlz are both bilinear pseudo-product operators, and thus similarly to the equivalence
between (5.29)—(5.30) we may take the inverse Fourier transform of (5.44) with respect to the variable
(¢,n) € RY. For (21, 22) € R? x R?, we denote the inverse Fourier transforms of the above vectors of multipliers
as

)‘4 . v )\ z )\ zZ
(K )™ (2, 22) = 20 (=i, (M, )0 ¥ ( 25 Zarl2 ) (5.45a)
T T T
N1 A A
(K2 )™ (2, 22) = S5 (<iVg, (MF,)™) () (5.45b)
v T T T

It follows from basic scaling properties of the Fourier transform that

()@ =3 [ [ 07— 100 ) Pl 1) k) (o)

=: 23(1 ’mz(v(am%ﬂgk) k., Pq+1,5,—k) (5.46)
~ mel X
(@) @-3 | f ([ M 21— ) Vet () (st i) Go)iesdzsdrds
]R2><]R2
=: X?SIEQ M (g g1 V(@ qa1g,—k) (5.47)

Here as usual we have identified the T?-periodic functions of z; and z, with their periodic extensions to all of
R2. The precise form of the above kernels appearing in (5.46)—(5.47) is not important. The only important
property of these kernels, which we will use repeatedly when bounding these bilinear convolution operators,
is that for i € {1,2}, with the notation z = (21, 22) € R? x R?, we have that

A\ ol
<C,, ( o > (5.48)
R2 xRR2) T

a,b —

VKL, ™|

1
Ll 2o
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uniformly for r € (0,1), and for all 0 < |al,|b] < 1. The bound (5.48) follows upon rescaling from the fact
that the multiplier M = defined in (5.40) is in Cg°(B1/s(0) x By/s(0)), and thus so are d¢, M and 0g, M’ .

In summary, the decomposmon (5.43)—(5.44), allows us to split the low frequency part of the oscillation
error, defined by (5.16), as

RO,low = Ol + 02

where the principal term Ool is the traceless part of

Zx i + q“ M (- @k —1d) x2dl, (5.49)

J:k
while O, is the traceless part of the commutator terms, given by

Oy = Z Q(l) = 091 + Oos. (550)

The key observation here is that the O; term vanishes. Indeed, by the definition of the aj in (4.15), and
of the functions v in (4.5), we have

> ap(kt @ k) = p;ld,

1
Agr1 2 keQ;

which shows that él = (, since the traceless part of a multiple of the identity is the zero matrix. Therefore,
we may summarize our computations in this section as

Ro,jow = O21 + O22 (5.51)

with Og1 and Oy as defined by (5.44)—(5.50).

5.4.4 Amplitude of the Rp approx Stress
In order to bound R approx, We recall cf. (4.12) that

(Rq - Rtm’) (2,7q+1) =0
where j7,41 is the center of the time-support of x;, and moreover
Dy q (éq - R?q,j) = Dt7qéq- (5~52)

We may thus appeal to the inductive assumption (3.7) and the transport estimate (A.4) to find that

5 P 261/2
HRq Rzm’ O (supp x;) S Tq+1>‘q5q Ag+10g+1
< A\OLASHY (5.53)
Upon summing over j, we arrive at
1/453/4
HRO,approcho ZXJ Rq; CO(supp x;) < Aq 5 5q+1 (5.54)
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5.4.5 Amplitude of the Ry o stress

The map from matrices to their traceless part is clearly bounded and thus in view of (5.51), we need to
estimate O and Ogy. We only show the estimate for Osq, since the one for Oos is identical, upon changing
(1) with (2) below. For this purpose we use (5.46)—(5.47) and the kernel estimate (5.48) with |a| = |b] =0 to
conclude that

S(1),me
1021llco £ 22 8™ (V @k ithos 1500 anthasri )|

ik o
(1) \me
<O X IV (ak¥gs1n.) ak,jPq+1,4,—k sup H(’C s ‘
%E J H ( Jratlk,j ||co H Jratlyg Hco re(0,1) k,r, ) L1 (R2 xR2)
2 2 | <1/2
< 005 (MaByi 4 e A 2012
< Og1Tgr1 Mg r1A26
= AOMAGHY
Therefore i
IR tow | o < Ag0Y/ 4821 . (5.55)
5.4.6 Amplitude of the Rp pigh stress
We recall cf. (5.13) that
Ro high = O3 — O4 (5.56a)
O3 =BPur Y, (APosip@yrrgn) -V (Postio@grn o) (5.56b)
J,3" koK
k+k'#0
~ " T "
O1=BPur, Y, (VPeria@arign) - (APeriw@orryw)- (5.56c)
gk

The O3 estimate. Appealing to (5.17) and (5.19), we have that

O3 = BPox,,, Ags1 D1 div ((Wgi1im) ® (Wgp14m) )
Gk
k+k/#0

+ 13’13%,\(1+1 div ( Z (Ag1@g1,5.0) ® (X57 [Pgs1,075 ak’,j'qurl,j’,k']bk’()\q+155)))
g Rk
k+k!#0

+ BPxy,., div ( D1 (6GPar1kA, ax g1 s klbk(Ag17)) ® (Pqﬂ,k’ﬁqﬂ,jxk’))
G0k
k+k’#0

=: 031 + O33 + Oss. (5.57)

For Os1, we need to compute carefully the divergence before estimating it. From (4.4),

~ 1
031 :)‘q-‘rlBP%/\qu ( Z X X5 <bk/(/\q+1l‘) ® bk()\q+1l‘) - ibk/()\q+1x) . bk()\q+1.’L‘)Id)

53" kK
k+k!'#0

XV (ak,j%q+1,5,k @k Vq+1,5 k") >
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We thus obtain from Lemma 4.4 that
[0s1llco s X0 1x5X5rV (@, s, ki gt k) co
3,3’ kK
< >\q5q+1 + 5q+17’q+1/\q+1)\§5;/2

< NIV (5.58)

Using the commutator estimate (A.17) (with s = 0 and A = A\g41; and respectively with s = 1 and A = Ag41)
and Lemma 4.4, we have
[032]lco + 033l co < j,j/z,k],k, @415l 0o 1V (@5 a1 | o gouppin, )
S 5;421 ()‘qdéfl + 5;f17q+1>\q+1)\35;/2)
< A\OASHY

Combining the above estimates yields

1030 < Agdy/ 60l (5.59)

The O, estimate. In order to bound the O4 part of the oscillation error, we note that

~ ~ ~ - 1 ~ ~
B((Vgs140)" - Wagr,grb + (Vgsjrw)” - Wgp1,5k) = 3BV (@qi1,0 - Tgs1,574)) = 0 (5.60)

since B contains the Leray projector. Therefore, using (5.17) and (5.19) we obtain

~ T ~
04 = BP%,\qul ( Z (va[ﬂpq-ﬁ-l,k, ak,j¢q+17j,k]bk(/\q+1x)) . ()‘q+1wq+1,j’,k’)>

53" kK
k+k!'#0

+ Bﬁ%)\q+1 ( Z (VPq+1’kﬁq+1,j,k)T . (XJ’ ([Pqul,k:’Aa ak/’j/zqurl’j/’k/]bk/()\q+19€))) >
J

37 ke, k!
k+k/#0

= Oy41 + Oya. (5.61)
Appealing to the formula
V[Pgs1.k, @k jVq+1,5,k]06(Ag1%) = [Par1e, V(arj¥g+1,5k) 106 (Ag1%) + [Pgst, @k jPq+1,5.6] VOk (Ag12),

the commutator estimate (A.17) (with s = 0 and A = A;11), and Lemma 4.4, we obtain the bound

[0allco € Aty D] (Mh HVQ(ak,jqu,j,k)HCO(suprj) + Hv(ak,j%ﬂ,j,k)||co(suppxj)) Agt1 [Wqs1,5 k]l co
G3 Rk

<ol2 (A;legagﬁ AT AR NS, 4+ A2+ 53421Tq+1Aq+1A35;/2)

)\2(51/261/2 ,
< DL ot SHASY
Agr1
< AoV

The term Oy is bounded similarly, by appealing to the commutator estimate (A.17) (with s = 1 and
A= /\q+1):

10s2llco €Azt D) Mg [@gr1j
G4 Rk

<05 (Mgl + 0 hmaNi)?)

|cO |‘v(ak/7j11/}q+17j/7kl)||Co(suppxj,)

< AgOY g

q+1 -
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Combining the above estimates, we arrive at the bound
104]l o < AgOY/ 1621 (5.62)
5.4.7 Bound on Rp
Combining the estimates (5.54), (5.55), (5.59) and (5.62) yields
[Rollco < /\q5§/452/+41 = >‘072+%ﬁ)\q+25q+2-
Assuming ) is sufficiently large and 8 < % we obtain our claim.

5.4.8 Material derivative of the Ro ,pprox Stress

We recall cf. (5.16) and (5.52) that
Dy qRo,approx = ZX?Dt,q (éq - éq,j) + QZ XjX;' (éq - éq,j)
J J
= 2 X? (anéq) + 2 Z XjX;' (]ﬂ%q — ]?i:q’j) .
J J

Therefore, using the inductive estimate (3.7), the fact that the x? form a partition of unity, and the previously
established bound (5.53), we obtain that

251/2 -1 251/2
”Dt»qRO’apprOX”CO < >‘q5q/ Ag+10g+1 + Tg+1 (Tq+1>‘q5q/ )‘q+15q+1)

< AZ6Y 2 Ag 416441 -

5.4.9 Material derivative of the Rp 1o stress

Recall cf. (5.51) that Ro jow = Oa + 0022, terms which are defined in (5.50), with (5.46)—(5.47). Trivially,

HDt,q (0021 + 0022> < || Diyq (O21 4 O22)|| o -

oo

We only show the estimate for Os;, since the one for Oss is identical, upon changing (1) with (2) below.

Note that in view of (5.48) the bilinear convolution operators defining C}y]z has a kernel which obeys the
conditions of Lemma A.9. Moreover, by construction we have

Dy g(ak,j¥g+1,5,k) = Dig(an, j¥qs1,5,—k) =0

and thus, using the notation (A.22) we obtain
3(1),me
Dy q (Sk (V(ak,jwqﬂ,j,k),ak,ﬂ/’qﬂ,j,—k))

S(1),me S(1),me
= S (D (V{ah j¥qs1,48)) @it gomi) + Sp ™ (V (@ jtgr1,5k)s Do (ak i1 gi—1))
S(1),me
+ [Dt,q,S,i ) ] (V(ak,j¥g+1,5.k)s @k jPq+1,5,—k)

S me Iy ml
= S;il)’ (Vug - V(ak, j¥g+1,5k), Ok, j%q+1,5,—k) + [Dt,q,S,il)’ ] (V(ak,j%q+1,5,k) Ok, jPq+1,5,—k)-
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From (5.48) and Lemma A.9 it then follows that

1DeqO21llco < X 15l co 11Xl o
J.k

o(1),me
S (V(ak,j¢q+1,j,k),ak,ﬂ/’qﬂ,j,—k)’

Co

S(1),mé

+ 21 co S (Vg - V(ak,j%ﬂ,j,k),ak,ﬂ//qﬂ,j,—k)’ oo

7.k
(1),me

+ 211X o [Dt,quzg)m ] (V(ak,ﬂ/fqﬂ,j,k%ak7j¢q+1,j,—k)‘ oo

7.k
!
< DGl 1G]] o 1V (@ g4 1.5.0) oo lak j8q+1.5.—kll co
ik

+ 210G | o Vgl co 11V (an g 11.5.0) Lo lak 5%q 41,5, —kll co

ik

S (g + >\35;/2)()\q5;fl + 5;<3qu+1/\(1+1)\35;/2)5;€1
< /\(21)‘q+16;/2§q+1
The estimate for Og is similar, and we obtain that

IDt,gRotowllco < AoAgs104/ %6441 -

5.4.10 Material derivative of the R nhign stress

Recall cf. (5.56), the decomposition of Ro nigh = O3 — O4. Applying Dy 4 = 0 + uq - V to the O3 equation,
we find that

Dt,qOB = [Dt,anﬁ%/\qul] Z (qu+1,kwq+l,j,k) : v(HD<1+1,If/wq-',-l,j’,k’)

7,3 k,k’
k+4+k’#0
+BPur Y, ([Drg APgi1 k] i jik) - V (Pogr e @gsn o)
G kK
k+k’#0
+BPuxr Y, (APgi1k(Dig@ainin)) - V(Por1 wr@grr i)
G kK
k+k’#0
+BPor, Y, (APgy1x@gsi1ik) - [Dig VPgi1p] (@gs15)
G Rk
k+k'#0

+BPuy,,, Y (APgurk@r1jk) - VPas1p (Deg@osn )
G370k
k+k'#0

=: 031 + O32 + O33 + O34 + Oss.

The term Os; is bounded directly using Corollary A.8, estimate (A.18), with A = A\;41 and s = —1 as

|05t ., = Xti I19uallce D5 Aasa ITrainllon Age 1Tl
5,3k, k'

< Agr1 X261 26441 -

Similarly, the terms 632 and 534 are bounded using (A.18) with A = A\j41 and s =1 as

|G|, +[[Osa]| o 27 23 At gl 3415l A 41,5
7,37k, Kk’

< A1 A20 28011 -

o
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In order to bound 533 and 535 we note that by the construction of wg1 we have that

X;(t)

Dy qWqt1,j.1(%,1) = Xj(t)ar j (2, )bk (Ag41P; (2, 1)) = Xj,i(t)@qﬂ,j,k(x,t)
J

This fact allows us to rewrite 533 and 535 as follows:

/
X N N
Oss = BPar,., Y “L(APe1k(@ai1ik)) -V (Poriwasnjow)
7,9k, k'
k+k'#0

~ ~ X 2 ~
Os5 = BPxx, 1. 2 (AP kW 1,5k) - VPoraw (@gi150)
G ek X7’

k+k/¢o

and upon noting that

|
X

we may use the bounds previously established for O3 to conclude that

< 71 [0sllco

03], + 0]
co co

<7 51/45;;/;‘1

< Mg 1 A26Y26,41

Bounding the material derivative of Oy is very similar. We first write D; ;04 as

Dy 404 = [Dt,q,[ﬂsz,\q“] Z (VPqul,kqurl,j,k)T' (APg1, 1 Wys1,57,0)

L
k+k!/#0

+ Bﬁg)\q+1 Z (I:Dt7q7 qu+17k]wq+l7j7k)T . (A]Pq_;'_l’k/'l’z)q_’_l’j/’k/)

PR
k4+k’#0
X/ T
N ! N R
+BPuy,, Y, SE(VPeraasrgin) - (APgrr kg i)
G4 Rkt X
k+k'#0

+ Bﬁm)\q+1 Z (qu-kl,kwq-&-l,j,k):r ([APgs1,0, Dig | @gs1,j 1)

7.3 kK
k+k’#0
~ XJ T ~
+ BPM\{;H Z ([Dt 0 VPqi1, k]wq+1 Js k) ’ (APqH,k’qu,j'yk’) )
G ek XT'
k+k'#0

and using similar arguments as above, together with the bound previously established on O4, we obtain that

1D1.q0allco S 731 10allco + Mgt IVuglicn D A 1@as1gkll o Ager [Tarn gl co
VR
S TEAAOYOY + A8y 10260

2
< )‘q q+15q 5q+1a

which concludes the proof of the material derivative estimate for Ro pigh.
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5.4.11 Bound on the material derivative of Rp
Combining all the estimates yields
—34: 1/2
IDegRollco $ AeAgr16y/ 2041 = A 23002, 5q/+1)\q+25q+2

from which we obtain our desired estimate if 8 < 1 and )\ is sufficiently large.

5.5 Concluding bounds on the new Reynolds stress

Combining all the estimates above, we now show that for the new Reynolds stress éq_}rl, estimate (3.4) holds
with ¢ replaced by g + 1 as follows:

Proposition 5.6. Assuming \g is sufficiently large then (3.4) and (3.7) hold, and
|Rgllco < erAg 110441, (5.63)
H(at g VIR <N A6 (5.64)

Proof. The first estimate (5.63) follows directly from Lemmas 5.1-5.4. To prove (5.64), first note that since

lAwgi1llco < )\q+15;f1, and Rq+1 has compact support in frequency in the ball of radius 4\;4+1, we obtain
from Lemmas 5.1-5.4 that if Ay is sufficiently large, then

ot < [Pty + S

C

1 12 1 1/2 1/2
< 5)‘3+15q/+1>‘q+25q+2 + §>‘q+15qil)‘q+1>‘q+25q+2 = )‘3+15q/+1>‘q+25q+2 :

6 The Hamiltonian increment

In this section, we conclude the proof of Proposition 3.1 by showing that (3.8) and (3.9) hold with ¢ replaced
by ¢ + 1. We begin by stating some consequences of the inductive estimates in Section 3.2:

Lemma 6.1. Ift is in the support of the cut-off function x;, then

2 1 2 Ag+20
f (\Aévq(m)] - ]Aqu(x,Tqu)‘ ) da| + A (8) + H (rgpaj)| < “E2SEEE (6.1)
T2
Consequently, if p; # 0 then on the support of x;
Ag+20042
Ag+1]p(t) — pjl < ‘”176%7 (6.2)
and by the definition (4.14)
2 TAg+20
(1) —f Abw | do > Pax2larz (6.3)
- 16
If pj = 0 then by the definition (4.14) and (3.9)
2 INg+20 o
e(jrg+1) — JQ ‘A%vq(x,quH)‘ dz < % and Ry(-,t) =0 .
T

Proof. Using the equation for v4, we have that

t
=2 J A%vq . divA%Rq dx

Tq+1J

er (‘Aévq(z,t)r - ‘Aévq(I,Tq_,_lj)r) dr

1
I\253
S [t = 74417 A50G Ag+10g41
2 1
2
S Tq+1)‘q5q (5q+1>\q+1

= A0/

q+1>
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where in the second to last line, we used that by our hypothesis |t — 74417] < 47441. Trivially, we have that
() + H(Tg415)| < Tg+1 -

Thus,

q+2

Jm (’A%vq(x,t)r - ‘Aéuq(g;,Tqu)f) dx

FIA W) + A i)l S (A5 20N ) Agiady

Hence, if 8 < %, the lemma is proved. O
We are now in position to prove that (3.8) and (3.9) hold with ¢ replaced by ¢ + 1.

Proposition 6.2. If p(j) # 0 and t is in the support of x;, then

1 2
% < () —f [y da < %ﬂ (6.4)
'JI‘Z

Otherwise, if t is not in the support of the cut-off x; with p(j) # 0, then

INgeadqsn

16

2
‘ dr <

HA(t) — Lz ‘A%“qﬂ and Ry (1) =0. (6.5)

As a consequence of (6.4) and (6.5), it follows that (3.8) and (3.9) hold with q replaced by q + 1.

Proof. Assume that ¢ is not on the support of any cut-off x; with p; # 0, then since wg41(-,t) = 0 and
Ry+1(-,t) = Ry(,t) (see Lemma 6.1 above) then R, 1(-,t) = 0. Moreover, we have

1
Az,

1 2
(1) — L ‘Aquﬂ‘ dz = (1) — f dz,

T2
and thus by (6.1) we obtain (6.5).
Now assume p(j) # 0 and ¢ is on the support of x;. By computation it follows that

2
’ dz

L2
Aqu‘ dr + 2

L2
szq’

HA(t) — er )A%vqﬂ dz = H(t) _J

T2 T2
1 2
— (%) —f Aqu‘ dx—J
T2 T2

where we used the disjoint frequency support of v, and wg;. Utilizing the frequency supports of W41 5% We
obtain

J.

1 1
Az, - A2wgqq do — Jz
-

2
’dac

1
AZwg i

2
1 ~

AZPg iy kWor1 k| da

Bk .5

1 ~ 1 ~
= LQ A2Pgi1 kWqt15k - A2Pgi1, kW15, da
kg’

L 2
AE’UJqul‘ dx =
T2

:ij A2 Py i (XG0 (Age1®5)) - A2 Pyit _k (Xjak -k (Ag1®;)) - do
k,j VT

Then, by the definition of by, estimates (5.18) and (5.20), and the fact that the mean of a high frequency
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object vanishes, it follows that

J.

2
1
Az wq+1‘ dr = J Wqt1 - Awgq1 dx
T2

2
:ZJ /\q+1xi|ak| dz
kg U T2
+2) J X [Pasnkr @ik ]or(Agia) - Awgiy da
gk VT

+ EJ War1,5k * Xi[Pgr1,— kN, ak jVqr1,5,—k]b—k(Ngr12) d
gk VT

=: (27)°Ags1 Y, XGp; + E1 + Ea.
J

Using Lemmas 4.3, 4.4, and A.6 we may estimate

1/2
Byt By £ )% [V anjvgen i) 02
g,k

< Agdgsr + A0V 16T,

S WA S W VT
Finally, applying (4.14), (6.2) and (6.3) and 8 < 4/5 we obtain

3Ag 420442

da <
v 1

2
Aa+200+2 ,f A%vqu\
1 -

which concludes the proof. O

A Appendix

A.1 Variational principle for hydrodynamical systems

We provide a derivation of the system (1.10). Many models of incompressible hydrodynamical systems
can be written as geodesic equations of right-invariant metrics on the Lie group D,,, the group of volume-
preserving diffeomorphisms, with group multiplication given by composition on the right. The Lie algebra V
associated to this group is the vector space of divergence-free vector fields. The Lie bracket on V is given by
[u, v] = djuv? — d;vu’.

On V we (formally) define the metric

(u, w) :J Au - wdz,
T2

where A is a self-adjoint, positive operator. This metric is then right-translated over the Lie group D,. We
then define the Lagrangian function ! on the Lie algebra V by

l(u) = %(u,u) = JT? Au - udx. (A1)

The well-known Euler-Poincaré variational principle provides a simple procedure for computing the
equations of motion associated to the Lagrangian [ on the Lie algebra V. We shall state this as the following
proposition, whose proof can be found in Chapter 13 of [MR99]).

Proposition A.1 (Euler-Poincaré Variational Principle). Withl:V — R given by (A.1), the following are
equivalent:
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(a) u(t) :=u(t,-) is a geodesic curve, solving

ao_
dt du sy’

where ad’ is defined by
(ad: v, w) = 7(1}’ [’U,7 w])a

for u,v,w in V;

(b) the curve u(t) is an extremum of the action function

s(u) = j (u(t))dt,

for variations of the form
ou = dyw + [w, ul,

where w € V vanishes at the endpointst =0 and t =T.

We make use of Proposition A.1 (b) to derive (1.10). We define the potential velocity
v = Au,

and compute the first variation of s(u) = SOT I(u)dt:

T
0s(u) - du = f J v - dudxdt
o Jr?

T
:f f v’ (G’ + 0w’ — djutw) dadt
o Jr2

T
—J J (040" + 0jv"u! + Sl v?) w' dadt .
o Jr2

Setting ds(u) - du = 0 for all divergence-free variations w, and applying the Hodge decomposition, we find
that there exists a pressure function p : T? — R such that

ot + ('7’jviuj + 0;uiv! = —0;p, (A.2a)

divu =0, (A.2b)

which is the general hydrodynamical system (1.10).

A.2 Transport and composition estimates

In this section we gather some classical estimates for transport equations. For refer the reader to e.g. [Bucl4,
Section 4.3] or [BDLISJ15, Proposition D.1] for proofs of these classical facts.
In this section we recall some well known results regarding smooth solutions of the transport equation:

of +u-Vf=g, (A.3a)

flto = fo, (A.3b)
where u = u(t,z) is a given smooth vector field. We denote the corresponding material derivative by
Dy = 0y + u - V. Moreover, define by ®(¢,-) to be the inverse of the flow associated to the vector field u

starting at time to as the identity, i.e., ® = X !, where %X(z,t) = u(X(x,t),t) and X (z,tp) = . Then we
have:
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Lemma A.2 (Transport estimates). Assume t > to. Any solution f of (A.3) satisfies

t
1F@llco < 1 follco +£ lg(m)llgo dr, (A4)

t
IDf()llco < 1D follgo e TNIPulco 1 f et=nIPulco || Dg(7)| co dr, (A.5)

to

and, more generally, for any N > 2 there exists a constant C = C(N) so that

1D fB)llco < (1Y foll o + C ¢ =t} [|DYull o 1D foll o) e 1ExIe0

t
+ J eCt=lIPuleo (I DNg(1)]| o + C(t = 1) || DV | o 1Dg(T) | o) d- (A.6)
to
Moreover,
| D®(t) — 1d|| 5o < etTPIPulco 1 < (2 —tg) || Dul| o et PUlco (A7)
[DN® ()| o < C(t —to) || DN u| o eCUNIPulco (A.8)

holds for all N = 2 and a suitable constant C = C(N).

In order to take advantage of Lemma A.2 we also need to appeal to the following standard composition
estimate:

Lemma A.3 (Chain rule). Let ¥ : Q — R and u : R — Q be two smooth functions, with Q = RP. Then,
for every N € N\{0} there is a constant C such that

IDY (0wl o < € (ID¥llo [PV ull o + ID¥lov— [l 1DVl ) - (A.9)
|DN (W o )| .0 < C <||D\IJHCO |DNul| o + D on ||Du|\go> . (A.10)

where C = C(N,d, D).

A.3 Inverse of the divergence

In this section we prove a number of estimates for the operator B defined in Definition 4.1. We take advantage
of the frequency localization of our perturbation and establish the following lemma.

Lemma A.4 (Inverse divergence gains a derivative). Let B be as defined in Definition 4.1. For f: T? — C?
that is smooth, we have that

a(sf) = (- 2 [ stwra)

and Bf is a symmetric, trace-free matriz. Fix A = 1, and denote by Py a Fourier multiplier operator with
symbol that is supported on {&: N\/2 < |&| < 2A\} and is identically 1 on {&: 3\/4 < |&| < 3N\/2}. Then, for a
smooth functions f,g: T? — C, with supp(g(€)) < {€: €] < \/4}, we have

0 P% 0 0 0

606061 Pur ) < VP s s U )
1 P% f 0 1 f 0

118,92 Par ()0 < eI Pr len  oller [l (A1)

for some implicit universal constant C > 0.

Proof of Lemma A.4. The first assertions follow directly from the definition of B. In order to prove (A.11)
we note that by the assumption on the frequency support of g, we have

g(x)Purf(z) = Pex (9(z)Purf(2))
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where we have denoted
ﬁzk - P~2j72>\ + PNQJ"IA + Pygiyx + P%2j+1)\.

N

Thus, by the definition of B and applying twice the Bernstein inequality on L, we obtain

162 Perf @)l ca < 5 o) Parf@lco < 5 lgllco 1 fllco-

Lastly, in order to prove (A.12) we note that since B has components which are Fourier multipliers, we
have

[B,g]1Puxf = B(gPsxf) — gBPxxf
= BPor(gPsrf) — gBPuPrf
= [Bﬁw)\vg]P%Af

Denoting by K. the real convolution kernel corresponding to the Fourier multiplier operator BP. A (which
is a symbol of order —1), one may check that it obeys the bounds

|||x|bva/cm(x)||Ll(R2) <o et (A.13)

for all a,b > 0, and some constant C' = C(a, b). Therefore, by the mean value theorem

[BPxx, 9] Porf ()

| (o) = s@)eart@ = nParsw)ay

1
== JRd U Vyly =y — w))dT) (Y = 2)Kaa(z = y) Par fy)dy
0
and the kernel estimate (A.13) with b =1 and a = 0 we arrive at

H[Bﬁ%)\ag]Pz)\f’

S [1Dgllco 2l (@)] L1 1Pxafll o

<A Ngller 1 £llco -

Co

This concludes the proof of the lemma. O

A.4 Calderon commutator
We recall cf. [LR02, Theorem 10.3, Page 99] and [Mar08, Lemma 2.2, Page 50].

Lemma A.5 (Calderon commutator). Let p € (1,0) and o € WH®(T?). Then for any v € LP(T?) with zero
mean on T? we have that

1A eloll o Sp ll@llwee 0]l Lo (A.14)

where the constant implicitly depends on p. Moreover, for s € [0,1], if ¢ € W*%(T?) and v € H*(T?) has
zero mean on T?, then'”

1A loll e s el 0l g (A.15)

Note that in the aforementioned references the results are stated for functions defined on R?, whose
Fourier support is at a positive distance from the origin. The same proofs work in the periodic case T2, if the
functions we consider have zero mean. To see that (A.14) holds one uses the Poisson summation convention

17The constant in (A.15) is not sharp. See e.g. [Mar08] where the constant is given as max {||Vg0||co sl g2 }
2,0
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to write the kernel associated to A as in [CCO04], so that off the diagonal, the singular integral kernel K
associated to [A, ¢] is given by
p(z
Ko e 3 20200

keZ?
For k = 0 the proof closely follows the R? case, while for k # 0 we are dealing with an L' kernel. Assertion
(A.15) spaces follows from the case s = 0 (which holds by letting p = 2 in (A.14)), the case s = 1 (which
holds since V[A, ¢] = [A, 9]V + [A, V] and the bound (A.14) with p = 2), and interpolation. We omit
further details.
A.5 Material derivatives and convolution operators

We recall (similarly to [IV15, Lemma 7.2]) a commutator estimate involving convolution operators and
material derivatives.

Lemma A.6. Let se R, A > 1, and let Tk be an order s convolution operator localized at length scale \~1.
That is, Tk acts on smooth functions f as

Tef(w) = | K=y

for some kernel K: R? — R that obeys

|z]*V K (z < A\bmats (A.16)

@)l 1 ey

for all 0 < a,|b] < 1 and some implicit constants C = C(a,b). Then, for any smooth function f: T? — C
and smooth incompressible vector field u: T? — R? we have

-V, T fllco < A [Vl go I £llco -

Similarly, we have

16, Trc ] fllco < A7 VBl o 1 £ll o (A.17)
for smooth functions b, f: T2 — C.

Proof of Lemma A.6. The proof is direct, and uses that divu = 0. We have

el V1)0) ) VT f @) = | [ (o) = ate =) V1l = 0K

[, ()~ e =) VE G0 = )

<[¥uls [ 176~ nllIE W)ldy
< IVulen | lln 117K ().

at which stage we use that the kernel is integrable cf. (A.16).
For the second assertion, we use the mean value theorem. We have

Tk (b f)(2) = b(x)Tk f ()] =

JRQ (b(z) —b(z —y)) f(z - y)K(y)dy’
i <L1 Vb(x — Ay)d)\> YK (y) f(z — y)dy‘

< Vbllo [l fllgo Ty K ()]l s

so that the proof is completed upon using (A.16). O
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Remark A.7. When s = 0, examples of such operators Tk are given by zero-order Fourier multiplier
operators with frequency support inside a shell at |{] ~ A. For instance, the kernel associated to the operator
Pyt1,% obeys (A.16) for A = Ag41, and s = 0. Similarly, the kernel associated to the Fourier multiplier
operator A1 obeys (A.16) for A = A,41, and s = 1, while the kernel of BP,41  obeys (A.16) for A = Ag41,
and s = —1.

An immediate consequence of Lemma A.6 is:

Corollary A.8. Let A > 1, s € R, and let K be a kernel which obeys (A.16). Given a smooth divergence
free vector field u: T? — R2, we have

IDe: Tre] fllgo 5 A IVl o (1 Fll o - (A.18)

where as usual we denote Dy = 0; +u - V.

A.6 Material derivatives and bilinear convolution operators

The bilinear convolution operators we are interested here arise from pseudo-product operators, as defined
by Coifman and Meyer [CM78|. Equivalently, these are translation invariant multilinear operators, see
e.g. [GT02, Section 6] and [MS13, Chapter 2.13] for details. Let & = (&1,&2) € R2 x R%. Let M: R2xR? -» R
be a smooth multiplier. For two Schwartz functions fi, fo: R?> — R, define the bilinear pseudo-product
operator Sas(f1, f2) by

Sl @) = s [ [ Mg @)fi@)R(e)e @ e (A19)

Equivalently, denoting by Kps(21,22) = MY (21, 22) the inverse Fourier transform of M in R? x R?, we may
write

m(f1, f2)(z JJW - (x —y1, 2 —y2) fr(y1) f2(y2)dy1 dy2 (A.20)

for Schwartz functions fi, fo: R? — R. As opposed to [CM78, GT02] which consider kernels of Calderén-
Zygmund type, here we only need to consider kernels K; which obey

12|02 Kar (2) < CopAlal (A.21)

s a2 iy

for some A > 1, all 0 < |a|,|b] < 1 and some constants Cy, > 0. Examples are the kernels defined in (5.45).
Therefore, in contrast to [CM78, Theorem 1], for us the boundedness of Sy, from LP* x LP2 — LP, where
1/p1 + 1/p2 = 1/p is automatic, and even includes the case p; = ps = p = 0, which is the only case needed in
this paper.

Instead, here we are interested in the commutator between Sy; and Dy = 0; + u - V,, where u: RZ — R2,
which is divergence free vector field. We have

Lemma A.9. Let A\ = 1, let Ky be a kernel which obeys (A.21), and let Sy be the corresponding bilinear
convolution operator given by (A.20). Given a smooth divergence free vector field u: T? — R?, we denote

[Dy, Sml(f1, f2) = De(Sa(f1, f2)) — Sm(Difr, f2) — Sm(f1, Difa). (A.22)

Then we have

I[Ds; Sa1(f15 f2)llco < ClIVullgo [ f1llco llf2ll o (A.23)

for some constant C > 0, which is independent of \.
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Proof of Lemma A.9. Upon taking a material derivative of (A.20) and using the product rule, we obtain

Di(Sm(f15 2))(@) = Smr(Difrs f2)(2) = Sm(f1, Dif2) ()

JJD@ R2 w (2) 05 K (x — y1 — y2) f(y1) f (y2) dyr dys
- JJRZ R2 Ku(@ =y - yQ)Uj(yl)azjl-lf(yl)f(yQ)dyldy2
- JJRQ . Ky (z —y1,0 — yz)f(yﬁuj(y2)8§2f(y2)dyldy2

J].. | @@ Karte = =) + w0 @ Kasle = n. = ) £0n) ) e

ffm . (1), K (x = y1, @ — o) f (1) f (y2) dyr dya

” o W 2)8, K (2 = g1, w = 92) f(42) f(y2)dyndye

JJ.R2><]R2 (0! () = (1)) 0L, Knr (@ — g1, — yo) + (v (2) — 0! (y2)) 0L, Kne(z — y1, @ — 42))

x f(y1) f(y2)dyidyz

JJRMRQ (Uj o) v (y1)> (z —y1)0L, K (@ — y1, @ — y2) f(y1) f (y2) dyrdya

=11

f fszRz <u = (yQ)) (2 — y2)0L, Kt (@ = y1. @ — y2) f(92) f (y2)dya dyo.

T —Y2

The lemma now follows from condition (A.21) with |a| = |b] = 1. O
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