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Abstract. We prove that weak solutions of the inviscid SQG equations are not unique, thereby answering
Open Problem 11 in [DLS12b]. Moreover, we also show that weak solutions of the dissipative SQG equation
are not unique, even if the fractional dissipation is stronger than the square root of the Laplacian.
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1 Introduction

The two-dimensional surface quasi-geostrophic (SQG) equation is a fundamental example of active scalar
transport, and is classically written [CMT94] as

Btθ ` u ¨∇θ “ 0 , (1.1a)

u “ RKθ :“ ∇KΛ´1θ , (1.1b)

a transport equation for the unknown scalar field θ “ θpx, tq, where px, tq P T2 ˆ R “ r´π, πs2 ˆ R. In
(1.1), Λ “ p´∆q1{2, R “ pR1,R2q is the vector of Riesz-transforms, ∇K “ p´B2, B1q, and xK “ p´x2, x1q for
any vector x “ px1, x2q. We consider solutions of the SQG equation (1.1) which have zero mean on T2, i.e.
ş

T2 θpx, tqdx “ 0, a quantity which is conserved in time even for weak solutions.
In the context of geophysical fluid dynamics, the variable θ denotes the temperature (or surface buoyancy

function) in a rapidly rotating stratified fluid with uniform potential vorticity [HPGS95] and has applications
in both meteorological and oceanic flows [Ped82].

Mathematically, two-dimensional SQG flows have the potential for finite-time singularity formation
[CMT94] and possess striking similarities to three-dimensional Euler solutions; in fact, the vector ∇Kθ is
governed by the same evolution equation as the vorticity of the 3-D Euler flow:

Btp∇Kθq ` u ¨∇p∇Kθq “ ∇u ¨∇Kθ. (1.2)

As such, (1.1) has been intensively analyzed over the past two decades. While the local existence of smooth
solutions in Sobolev spaces Hs with s ą 2, or Hölder spaces C1,α with α ą 0, has been established in [CMT94],
to date the question of whether a finite-time singularity may develop from smooth initial datum remains open,
in analogy to the similar question for the 3-D incompressible Euler system. When (1.1) is posed on R2 ˆ R
with datum having infinite kinetic energy, a gradient blowup may occur [CC10], but for datum on T2 and with
finite energy, it is only known that arbitrarily large growth of high Sobolev norms is possible from arbitrarily
small initial datum [KN12]. The collapsing hyperbolic saddle blowup-scenario from [CMT94] was ruled out
analytically in [Cor98, CF02], and the modern numerical simulations of [CLS`12] were able to resolve the
equations past the initially predicted singular time [CMT94]. A different blowup scenario via a cascade of
filament instabilities of geometrically decreasing spatial and temporal scales was proposed in [Sco11]. The
first example of a non-steady global in time smooth solution was obtained only very recently [CCG16].

1.1 SQG conservation laws

Fundamental to our subsequent analysis is the fact that sufficiently smooth solutions of (1.1) conserve the
square of the 9H´1{2pT2q norm of θ. Upon taking the L2 inner product of (1.1a) with Λ´1θ, integrating
by parts in the nonlinear term, and using that u ¨ ∇Λ´1θ “ ∇KΛ´1θ ¨ ∇Λ´1θ “ 0, if follows that if θ is
sufficiently smooth (θ P L3

t,xpT2 ˆ Rq is sufficient, cf. [IV15]), then

Hptq :“ }θp¨, tq}29H´1{2pT2q
“ }θ0}

2
9H´1{2pT2q

(1.3)

for initial datum θ0 P 9H´1{2pT2q. In fact, the 9H´1{2 norm of θ is the Hamiltonian H associated to an action
function (we systematically ignore the factor of 1{2 that is usual present) from which the SQG equation may
be derived via an Euler-Poincaré variational principle [Res95].
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Additionally, due to the pure transport nature of (1.1a), and the fact that the Lagrangian flow induced by
the incompressible vector field u preserves volume, sufficiently smooth solutions of the initial value problem
for (1.1) conserve the LppT2q norms of θ, so that

}θp¨, tq}LppT2q “ }θ0}LppT2q (1.4)

where θ0 P L
ppT2q is the initial datum, and 1 ď p ď 8. When p “ 2, from elementary properties of the Riesz

transform it follows that the kinetic energy is conserved for smooth solutions }up¨, tq}L2pT2q “ }u0}L2pT2q.
1

As noted in [Tao14], formally the conservation laws (1.3)–(1.4) are immediate consequences of Noether’s
Theorem and the fact that the SQG equation belongs to a general class of active scalar equations satisfied
by the vorticity of a generalized two-dimensional Euler equation on a Lie algebra with a specific inner
product [Res95, Section 2.2] (see also [Tao16, Was16, Con16] for a more recent account). We address this
point of view in more detail in Section 1.4 and Appendix A.1 below, where we also present the momentum
equation for the incompressible velocity field v whose vorticity is the function θ in (1.1).

While (1.2) suggests that the problem of finite-time singularities for SQG is similar to that for 3-D Euler,
the aforementioned variational point-of-view justifies a direct analogy between the conservation laws for SQG
and those for the 2-D Euler equations: (1.3) plays the role of the conservation of kinetic energy in 2-D Euler,
while (1.4) is analogous to the conservation of the Casimir functions in 2-D Euler. Therefore, we expect that
a turbulent SQG solution exhibits a dual cascade of energy, as predicted by the Batchelor-Kraichnan theory
for two dimensional Euler flows [Con98, Con02, CTV14]. Motivated by two-dimensional turbulence, we are
thus naturally lead to consider weak solutions of the SQG equation.

1.2 Weak solutions of the SQG equation are not unique

Motivated by (1.4) with p “ 2 one may define θ P L2
locpR, L2pT2qq to be a weak solution of (1.1) if

ż ż

RˆT2

pθBtφ` θu ¨∇φq dx dt “ 0 (1.5)

holds for any smooth test function φ P C8pT2 ˆ Rq, so that (1.1) holds in the sense of distributions on
T2 ˆR. Using this definition, it was established in [Res95] that for any θ0 in L2, there exists a global-in-time
weak solution to the Cauchy problem for (1.1), with θ P L8pr0,8q, L2pT2qq. See also [PV15] for the global
existence of weak solutions to the 3-D quasi-geostrophic system. We note the stark contrast here with 3-D
Euler, for which the existence of weak solutions for any L2 initial datum remains open.

Moreover, we note that the proof of the existence of global weak solutions to SQG is quite different that
the proof of global solutions to 2-D Euler (for which the vorticity is one derivative smoother than the velocity
[MB02]); in particular, the proof of [Res95] relies on a special structure of the nonlinear term in (1.1), which
arises from the fact that the Fourier multiplier relating θ to u is an odd function of the frequency. More
precisely,

ż

T2

θu ¨∇φdx “
ż

T2

θRKθ ¨∇φdx “ ´
ż

T2

θRK ¨ pθ∇φqdx “ ´
ż

T2

θu ¨∇φdx´
ż

T2

θ
“

RK¨,∇φ
‰

θdx (1.6)

for any smooth test function φ. Here and throughout the paper, we denote by rA,Bs the commutator of the
operators A and B. Since the commutator

“

RK¨,∇φ
‰

is an operator of order ´1, it maps 9H´1{2 into 9H1{2

(see Appendix A.4), so that weak solutions to (1.1) may be defined for distributions θ P 9H´1{2. We thus have
the following

Definition 1.1 (Weak solution of SQG). A distribution θ P L2
locpR; 9H´1{2pT2qq is a weak solution of (1.1) if

ż

R
xRKi θ, BtΛ´1φiy ` xRKj θ,RKi Λ´1θBjφ

iy ´
1

2
xRiRKj θ, rΛ, φisRKj Λ´1θy dt “ 0

for any φ P C80 pT2 ˆ Rq such that div φ “ 0, where x¨, ¨y denotes the 9H´1{2- 9H1{2 duality pairing.

1 In addition to (1.4), writing the SQG equation in Lagrangian coordinates has further geometric advantages. For instance,

in [CVW15] it is shown that the solutions θ P C0
t C

1,α
x have Lagrangian trajectories which are real-analytic functions of time.
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See also Definition 2.1 for a more intuitive and equivalent formulation of Definition 1.1. For θ P
L2

locpR, L2pT2qq, Definition 1.1 agrees with that given via (1.5). The boundedness of the Calderón commutator

rΛ, φis on 9H1{2 is used implicitly in Definition 1.1 (cf. Appendix A.4).
Using the cancellation property (1.6), it was further shown in [Mar08] that for θ0 P L

p, with p ą 4{3,
there exists a global weak solution θ P L8pR, LppT2qq to the Cauchy problem for (1.1).

The question of uniqueness of these weak solutions has remained, to date, open and has been isolated as a
challenging open problem in [DLS12b, Problem 11] (see also [Mar08, Rus11, AB15, Con15]).2 One of our
main results is that below a certain regularity threshold, weak solutions to the SQG equation are not unique,
thereby answering the question posed in [DLS12b]. We state this result as the following

Theorem 1.2 (Nonuniqueness of weak solutions to SQG). Suppose H : RÑ R` is a smooth function with
compact support. Then for every 1{2 ă β ă 4{5 and σ ă β{p2 ´ βq, there exists a weak solution θ, with
Λ´1θ P Cσt C

β
x , satisfying

Hptq “
ż

T2

ˇ

ˇ

ˇ
Λ´

1
2 θpx, tq

ˇ

ˇ

ˇ

2

dx “ H ptq .

for t P R.

Indeed, due to the compact support in time of the function θ in Theorem 1.2, it follows that the trivial
solution θ ” 0 is not the only weak solution to (1.1) which vanishes on the complement of a given time
interval.

Theorem 1.2 leaves open the question of whether the exponent β can be taken arbitrarily close to 1, which
is the Onsager conjecture for the SQG equation (cf. Conjecture 1.5 below).

The proof of Theorem 1.2 relies on a modification of the convex integration scheme employed by [DLS12a,
DLS13, BDLISJ15] to study the Onsager conjecture for the 3-D Euler equations.3 It was suggested in [DLS12b,
Shv11, IV15] that the structure of the SQG nonlinearity is non-amenable to convex integration methods,
because the multiplier relating u to θ is an odd function of frequency. Herein, we overcome this difficulty by
rephrasing the equation in terms of a potential velocity v (whose vorticity is the scalar θ, see Section 1.4), which
allows us to apply Fourier analysis techniques to construct nontrivial high-high-low frequency interactions,
crucial to the method of convex integration. We discuss these details in Section 2.2 below.

1.3 Weak solutions of the dissipative SQG equation are not unique

Note that while weak solutions of the SQG equation may be defined for θ P L2
t

9H
´1{2
x , the existence of weak

solutions obtained in [Res95, Mar08] requires an initial datum which is more regular (e.g. θ0 P L
p
x for p ą 4{3).

One may thus ask a natural question: is it possible for that in a given (low) regularity regime one can both
construct weak solutions via compactness arguments (viscosity solutions), and also construct weak solutions
via convex integration?

In order to answer this question in the positive, we consider the fractionally dissipative SQG system

Btθ ` u ¨∇θ ` Λγθ “ 0, (1.7a)

u “ RKθ :“ ∇KΛ´1θ, (1.7b)

with γ P p0, 2s.
Strong solutions of (1.7) have been considered extensively. The dissipative SQG equation has a natural

scaling symmetry: if θpx, tq is a T2-periodic solution to the Cauchy problem for (1.7) with datum θ0pxq,
then θλpx, tq “ λγ´1θpλx, λγtq is a T2

λ “ r´π{λ, π{λs
2-periodic solution of (1.7) with initial datum θ0,λpxq “

2One may also consider another class of weak solutions, the so-called patch-solutions, or sharp-fronts [Rod05, Gan08]. These
solutions are given by θ “ 1Ωptq, where Ωptq is a compact, simply-connected domain, with smooth boundary, evolving with the

fluid. Although these weak solutions are not smooth as functions on R2, θ P L8locpR, L
8pR2qq, the boundary BΩptq is smooth and

thus local-in-time existence and uniqueness of such solutions is known. For such patch solutions, an important question is if BΩptq
can self-intersect in finite time [CFMR05, Sco11, GS14]. See also [CFR04, FR11, FR12] for the existence of almost-sharp-fronts.

3 See also [DLS12b, DLS16] for excellent review papers on the applicability of convex integration techniques in fluid dynamics,
and connections to the h-principle.
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λγ´1θpλxq. In view of this scaling symmetry, the L8 norm is scale invariant for γ “ 1.4 5 Therefore, for γ ą 1
(1.7) becomes semilinear and subcritical, and the global well-posedness of smooth solutions was established
in [CW99]. The critical case γ “ 1 is a quasilinear problem, and the global regularity of smooth solutions for
large initial datum was established in [KNV07, CV10], with different proofs given in [KN09, CV12, CTV15].
For γ ă 1, the supercritical case, the question of finite-time singularities from smooth initial datum remains
completely open, in analogy to the inviscid equations (1.1).6 It is known, however, that the global-in-time
weak solutions eventually become smooth [Sil10, Dab11, Kis11, CZV16], which leads us to consider weak
solutions of (1.7). In analogy to Definition 1.1, we may define a weak solution to (1.7) as follows.

Definition 1.3 (Weak solution of the dissipative SQG equation). The distribution θ P L2
locpR; 9H´1{2pT2qq is

a weak solution of (1.7) if

ż

R
xRKi θ, BtΛ´1φiy ` xRKj θ,RKi Λ´1θBjφ

iy ´
1

2
xRiRKj θ, rΛ, φisRKj Λ´1θy ´ xRKi θ,Λγ´1φiy dt “ 0

for any φ P C80 pT2 ˆ Rq such that div φ “ 0, where x¨, ¨y denotes the 9H´1{2- 9H1{2 duality pairing.

Note that Definition 1.3 does not require that solutions verify the local energy inequality nor that they
possess the additional regularity θ P L2

locpR; 9Hpγ´1q{2pT2qq; the weak solutions we consider need not be
suitable weak solutions (see [CV10]). In contrast to the inviscid SQG equation, for the dissipative SQG
equation it was shown in [Mar08] that for any γ ą 0 and any θ0 P 9H´1{2 there exists a global-in-time weak
solution θ to (1.7).7 See also [BG15] for the global existence of weak solutions when θ0 P L

1`.
Using the convex integration scheme developed to prove Theorem 1.2, we establish the nonuniqueness

of weak solutions to the γ-dissipative SQG equation (1.7), even for a range of values for γ above 1, the
subcritical regime.

Theorem 1.4 (Nonuniquess of weak solutions to dissipative SQG). Suppose H : R Ñ R` is a smooth
function with compact support. Then for every 1{2 ă β ă 4{5, 0 ă γ ă 2´ β and σ ă β{p2´ βq, there exists
a weak solution θ, with Λ´1θ P Cσt C

β
x , satisfying

ż

T2

ˇ

ˇ

ˇ
Λ´

1
2 θpx, tq

ˇ

ˇ

ˇ

2

dx “ H ptq

for all t P R.8

Therefore, for the dissipative SQG equation, convex integration can coexist with weak compactness. This
flexibility of the PDE (1.7) is both due to the low regularity of the weak solution, and that enforcement of
the local energy inequality is not required. To the best of our knowledge, this is the first instance when the
convex integration scheme can be employed for an evolution equation arising in fluid dynamics, which is
parabolic, and even semi-linear. The main ideas used in the proof of Theorem 1.4 are discussed in Section 2.2.

Note that as β Ñ 1´, Theorem 1.4 holds with γ Ñ 1`. This motivates Conjecture 1.9 below, which
states that for the critical SQG equation (γ “ 1) we have a dichotomy of regularity exponents, whereby for
β ě 1 the energy equality holds, the uniqueness and global regularity of solutions holds; while for β ă 1
the uniqueness of weak solutions breaks down and the equation becomes flexible, i.e. amenable to convex
integration constructions.

4For strong solutions, this is the strongest norm on which we have an a priori global in time bound: for any γ ą 0 we have that

}θptq}L8pT2q decays exponentially [CC04, CTV15]. In fact, the argument in [CV10] (see [CZV16]) shows that L8t L
2
x X L

2
t

9H
γ{2
x

suitable weak solutions (weak solutions which obey the local energy inequality) are bounded L8pT2q for positive time. Thus, in
the class of suitable weak solutions with finite kinetic energy, the L8 norm is the most important for a priori control.

5The Hamiltonian H is scaling invariant for γ “ 3{2.
6The finite-time blowup cannot occur for sufficiently smooth and small initial datum [CC04, Wu05, Miu06, Ju07], and as

γ Ñ 1´ it also cannot happen for datum that is large, but not exceedingly large [CZV16].
7This solution additionally obeys the energy inequality ‖θptq‖2

9H´1{2 ` 2
şt
0 ‖θpsq‖2

9Hpγ´1q{2 ds ď ‖θ0‖2
9H´1{2 for any t ě 0.

8The restriction γ ` β ă 2 is sharp, in the sense that the C0
t C

β
x norm for Λ´1θ is scale invariant precisely when γ ` β “ 2.

We show here that for datum which is supercritical for the scaling of the equations, parabolic smoothing does not hold.
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1.4 Hydrodynamical systems as geodesic equations

At least since the work of Poincaré [Poi01], it has been well-known that the equations of motion of the
finite-dimensional mechanical systems governed by Newtonian mechanics can be interpreted as the geodesic
equations of a Riemannian metric on configuration space or Lie group (see, for example, [Bri46]). The motion
of a rigid body, for example, is governed by a left-invariant Riemannian metric on the Lie group SOp3q
[MR99, AK98]. In his seminal paper, [Arn66] showed that infinite-dimensional hydrodynamical systems
could also be represented by geodesic equations on the infinite-dimensional group of volume preserving
diffeomorphisms Dµ. Specifically, Arnold proved that the incompressible Euler equations are geodesics with
the respect to the L2-right invariant metric on the Lie group Dµ. The Euler-Poincaré variational principle
[MR99, AK98] asserts that such hydrodynamical geodesic equations can be computed for a rather general
metric specified on the associated Lie algebra V, the space of divergence-free vector fields, with Lie bracket
given by ru,ws “ Bjuw

j ´ Bjwu
j .

For a positive-definite, self-adjoint operator A, we define the metric on V by

pu,wq “

ż

T2

Au ¨ w dx . (1.8)

The metric (1.8) is then right-translated over the Lie group Dµ. As we shall explain Appendix A.1, the
geodesic equations associated to this metric are extrema of the action function

spuq “

ż

R

ż

T2

Au ¨ u dxdt (1.9)

for incompressible Lie-advected variations δu that obey suitable boundary conditions, which gives rise to the
following hydrodynamical system:

Btv ` u ¨∇v ` p∇uqT ¨ v “ ´∇rp, (1.10a)

div u “ 0, (1.10b)

v “ Au . (1.10c)

Here rp denotes the pressure function, a Lagrange multiplier enforcing the incompressibility of u. When the
operator A is the identity matrix, then (1.10) is the incompressible Euler equations (with pressure function
p “ rp` 1

2 |u|
2); however, the operator A can be differential operator, a nonlocal Fourier multiplier, or even a

more general operator satisfying the positivity and symmetry conditions noted above.9 10

As observed in [Res95] (see also [Tao16, Was16, Con16]), if A “ Λ´1, then (1.8) is the 9H´1{2 metric on
V, and it follows from (1.10) that ω “ ∇K ¨ u obeys

BtΛ
´1ω ` u ¨ Λ´1ω “ 0 .

A simple computation (see Section 2.1 below) shows that θ “ ´Λ´1ω solves the SQG equation (1.1).

1.5 The Onsager conjecture and the uniqueness of weak solutions

As discussed in Section 1.4, solutions to the SQG equation (1.1) are extrema of the action function spuq
in (1.9), with A “ Λ´1. Since spuq does not explicitly depend on t, for any such system the corresponding
Hamiltonian

Hptq “
ż

T2

Λ´1u ¨ u dx “

ż

T2

Λ´1θ θ dx (1.11)

is formally conserved (see (1.3)). Inspired by the Onsager conjecture for the incompressible Euler equations
(see the discussion in Section 2.2 below), a fundamental question arises for the SQG equations: do weak
solutions of (1.1) conserve the Hamiltonian Hptq? One may conjecture the following dichotomy:

9When A “ p1´ α2∆q, α ą 0, the metric (1.8) on V is equivalent to the H1-metric, and the system (1.10) corresponds the
well-studied Lagrangian Averaged Euler or Euler-α equations [HMR98]. More generally, if A “ p1´∆qs, s P R, then (1.8) is an
Hs metric on V, and it was shown in [MRS00, Section 3.3] that the vorticity ω “ ∇K ¨u satisfies Btp1´∆qsω`u ¨∇p1´∆qsω “ 0.

10Letting A be a specially chosen order ´2 operator which is self-adjoint and positive-definite, [Tao16] proved that (1.10)
admits locally in time smooth solutions which blow up in finite time.

6



T. Buckmaster, S. Shkoller, V. Vicol Nonuniqueness of weak solutions to SQG

Conjecture 1.5 (Onsager conjecture for SQG). Let v “ Λ´1u “ Λ´1RKθ. Define αO “ 1.11

(a) If v P CpR;CαpT2qq is a weak solution of the SQG equation, with α ą αO, then (1.3) holds on r0, T s.

(b) For any 1{2 ă α ă αO, there exist infinitely many weak solutions of the SQG equation, with v P
CpR;CαpT2qq, such that (1.3) fails.

The rigid side (a) of this conjecture was resolved in [IV15], following the classical work of [CET94], by
proving that θ P L3pR;L3pT2qq implies the conservation of H. In this paper we address the flexible side (b)
of the conjecture, and prove in Theorem 1.2, that (b) holds for α ă 4{5. The regularity gap, α P r4{5, 1q,
for nonconservative weak solutions of SQG remains for the same reason that the Onsager conjecture for the
2-D Euler equations remains open, with an open range of values for α in r1{5, 1{3q.12 This issue is discussed
further in Section 2.2 below. Proving part (b) of Conjecture 1.5 for any α P r4{5, 1q appears to be challenging.

Remark 1.6 (Onsager conjecture for extrema of a norm-inducing action functional). The Euler and SQG
equations are particular cases of equations obeyed by extrema of the action functional spuq in (1.9). For Euler
A “ Id, while for SQG, A “ Λ´1. In general, let A be any positive-definite self-adjoint operator which is
translation invariant and acts on scalar periodic functions with zero mean, such that ‖Aw‖L2pT2q « ‖w‖ 9HapT2q

for some a P R. Let u be an extremum of the corresponding action functional, such that v “ Au obeys the
hydrodynamical equation (1.10). In analogy with Conjecture 1.5, it is natural to determine the Onsager
exponent αO, such that solutions with regularity above αO conserve the Hamiltonian H “

ş

T2 u ¨ vdx, while
solutions with regularity below αO do not. Upon rewriting the nonlinear term in (1.10) as u ¨∇v´p∇vqT ¨u “
uKp∇K ¨ Auq, taking an inner product with a mollified version of u and integrating over T2, an argument
similar to [CET94] shows that for v “ Au P L3

tC
α
x , with α ą αO “: ´a ` p1 ` aq{3, the Hamiltonian is

conserved. If indeed this choice of αO determines an Onsager dichotomy remains to be shown.

Remark 1.7 (An L3
t,x based Banach scale). Naturally, the value of the Onsager exponent αO discussed in

Conjecture 1.5 and Remark 1.6 depends on the precise Banach scale Xα considered. Above, we have only
mentioned the scale of Hölder spaces Xα “ CtC

α
x . On the other hand the Hamiltonian H is quadratic in u,

and the nonlinear term in (1.10) is also quadratic in u, so that proving the conservation in time of H for
the Euler [CET94, CCFS08] and SQG equations [IV15] only requires control of the solution in the Banach
scale Xα “ L3

tB
α
3,8, with α ą αO. Thus, Conjecture 1.5 may be alternatively posed on this L3-based Banach

scale, without changing the value of αO. It is however conceivable that for an Onsager regularity threshold
αO defined in terms of an L2-based Banach scale, such as Xα “ L2

t
9Hα
x , the sharp value may be different from

the one discussed in Remark 1.6, which is computed in terms of L8t,x or L3
t,x.

Remark 1.8 (Other important threshold exponents). In a recent survey article on the work of J. Nash [Kla16],
other threshold exponents are discussed for which a dichotomy in the behavior of solutions holds, depending
on whether the regularity index of the weak solution is greater than or less than this exponent. For simplicity,
fix the Banach scale Xα “ CtC

α
x . In analogy to the Onsager exponent αO, we define the following important

regularity exponents: the Nash exponent αN determines whether the nonlinear evolution is flexible or rigid (in
the sense that h-principles are available); the uniqueness exponent αU determines the uniqueness of solutions;
the well-posedness exponent αWP determines the local well-posedness of the system; and the scaling exponent
α˚ which determines the space Xα˚ whose norm is invariant under the natural scaling symmetries of the
equation (see Page 11 in [Kla16]). For instance, in the case of the Euler equations with the Hölder scale CtC

α
x

for the velocity field u, we have that αWP “ 1 (cf. [Hö33, BT10, EM14, BL15]), αU is also conjectured to be
equal to 1 (only αU ď 1 is known), αO “ 1{3 (cf. [CET94, CCFS08, Ise16]), and α˚ “ 0, and αO ď αN ď αU
(since the convex integration constructions also prove h-principles and nonuniqueness). We note that these
exponents are not the same, and one expects them to be linearly ordered α˚ ď αO ď αN ď αU ď αWP

(cf. [Kla16, Equation (0.7)]).

For the inviscid SQG equation, on the Hölder scale CtC
α
x for the potential velocity field v “ Λ´1u, this gap

between the exponents remains, and one may conjecture that αO “ 1, while αWP “ 2. However, in view of

11Here the subindex O of αO stands for Onsager, as was suggested in [Kla16].
12Indeed, the construction in [BDLISJ15], combined with ideas from [Cho13, CSJ14], or from this paper, shows that h-principles

are available for 2-D Euler with velocity fields in Cαt C
α
x , for any α ă 1{5. The recent construction in [Ise16] does not apply in

two dimensions, since any two non-parallel infinite lines on the plane intersect.
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Theorem 1.4, for the dissipative SQG equation with γ “ 1 (informally called the critical SQG equation), one
may conjecture that all the exponents discussed in Remark 1.8 are the same, thereby justifying the adjective
“critical”.

Conjecture 1.9 (Exponents for critical SQG). Consider the dissipative SQG equation (1.7) with γ “ 1, and fix
the Banach scale Xα “ CtC

α
x as a way to measure the regularity of the potential velocity v “ Λ´1u “ Λ´1RKθ.

Then 1 “ α˚ “ αO “ αU “ αWP .

That α˚ “ 1 follows from the fact that the L8 norm is scaling invariant. The fact that αWP , αU ď 1
follows e.g. from [CV10], while Theorem 1.4 shows that αO, αU ě 4{5. Establishing the remaining inequalities
in Conjecture 1.9 remains open. The above conjecture provides the first nonlinear hydrodynamical PDE for
which the exponents of Remark 1.8 are all the same.

2 Outline of the proof

2.1 The SQG momentum equation

We shall make use of two velocity fields to describe the SQG equations: we define the potential velocity

v “ Λ´1u , (2.1)

which is thus one derivative smoother than the SQG transport velocity u “ RKθ. From (1.10), it follows that
the potential velocity v satisfies

Btv ` u ¨∇v ´ p∇vqT ¨ u “ ´∇p, (2.2a)

div v “ 0, (2.2b)

u “ Λv , (2.2c)

where p “ rp` u ¨ v. The SQG momentum equation (2.2a) can be equivalently written as13

Btv ` u
K p∇K ¨ vq “ ´∇p .

Upon defining the temperature function θ as minus the vorticity of the potential velocity:

θ “ ´∇K ¨ v ,

(2.2a) becomes

Btv ´ θu
K “ ´∇p. (2.3)

A direct computation confirms that θ is indeed a solution of (1.1); taking the scalar product of ∇K with (2.3),
we find that Btp´θq ´∇K ¨ pθuKq “ 0 and hence Btθ ` u ¨∇θ “ 0, since ∇K ¨ uK “ ´∇ ¨ u “ 0. Note that the
dissipative SQG equation (1.7) also can be written as in (2.2), by adding Λγv to the right side of (2.2a).

As we are primarily interested in weak solutions of SQG, we shall need some basic commutator identities.
For all test functions φ P C8pT2q, we have that

´

ż

T2

Biv
jΛvjBiφdx “

ż

T

`

vjΛBiv
jBiφ` v ¨ Λv∆φ

˘

dx ,

and thus,

´

ż

T2

Biv
jΛvjBiφdx “

1

2

ż

T2

Biv
j rΛ, Biφs v

j dx `
1

2

ż

T2

v ¨ Λv∆φdx.

This motivates a convenient and equivalent definition of a weak solution, which is clearly equivalent to
Definition 1.1 above.

13 There is yet another form of the SQG equations which should play an important role in the analysis of smooth solutions,
which we write as

Btu` pu ¨∇qu´ Λ
´

rΛ´1, uKs∇K ¨ u
¯

“ ´∇P , div u “ 0 .

This form of SQG is written as a zeroth-order perturbation of the incompressible Euler equations for sufficiently smooth
vector-fields u.

8
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Definition 2.1 (Weak solution of SQG, momentum form). We say that v P L2
locpR;H1{2pT2qq is a weak

solution of (2.2) if

ż

R
xvi, Btφ

iy ` xΛvj , viBjφ
iy ´

1

2
xBiv

j , rΛ, φisvjy dt “ 0

holds for any φ P C80 pRˆ T2q such that div φ “ 0. Here x¨, ¨y denotes the 9H´1{2- 9H1{2 duality pairing.

Note that for smooth φ the operator rΛ, φis is a zeroth order operator on v (cf. Lemma A.5 below).
Moreover, adding the term

ş

Rxv
i,Λγφiy dt to Definition 2.1 gives an equivalent form of Definition 1.3.

Remark 2.2 (Pressure). By taking the divergence of (2.2a) and using (2.2b), we obtain that p solves

´∆p “ Tr
`

∇v ∇u´∇vT ∇u
˘

´∆v ¨ u . (2.4)

For weak solutions, we must interpret p as a distribution, and the elliptic equation (2.4) has the following
distributional formulation: for all test functions φ P C8pT2q,

ż

T2

p ∆φdx “

ż

T2

`

viΛvjB2
ijφ´ Biv

jΛvjBiφ
˘

dx . (2.5)

It follows that
ż

T2

p ∆φdx “

ż

T2

ˆ

viΛvjB2
ijφ`

1

2
v ¨ Λv∆φ` Biv

j rΛ , Biφs v
j

˙

dx . (2.6)

Therefore, given v P L2pR; 9H1{2pT2qq formula (2.6) defines p (and therefore also ∇p) as a distribution on T2

via

xp,∆φy “ xΛvj , viB2
ijφy `

1

2
xΛvi, vi∆φy ` xBiv

j , rΛ , Biφs v
jy.

In particular, for v P C
1{2´
t C

4{5´
x , the ∇p term in (2.2a) is a well-defined distribution.

2.2 The main result and the main ideas of the proof

Employing the potential velocity formulation of SQG, we will prove the following theorem which is easily seen
to imply Theorem 1.2 and Theorem 1.4 (we use the convention that γ “ 0 is the inviscid SQG equation):

Theorem 2.3 (Nonuniqueness of weak solutions, momentum form). Suppose H : r0, T s Ñ R` is a smooth
function with compact support. Then for every 1{2 ă β ă 4{5, 0 ď γ ă 2´ β and σ ă β{p2´ βq, there exists
a weak solution v P Cσt C

β
x satisfying

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vpx, tq

ˇ

ˇ

ˇ

2

dx “

ż

T2

Λvpx, tq ¨ vpx, tq dx “ H ptq

for all t P r0, T s.

The proof will employ a convex integration scheme, similar in style to that presented in [BDLISJ15] (cf.
[DLS12a, DLS13]). In [BDLISJ15], highly oscillatory Beltrami waves formed the principle building block
in the construction. It was noted in [CDLSJ12, Cho13] that Beltrami waves can be replaced by Beltrami
plane waves (see Section 4.1.2) in order to prove analogous results for the 2-D Euler equations. Such
Beltrami planes waves form a large class of stationary solutions to both the 2-D Euler and the inviscid
SQG equation; as such, they will form the principle building block in the construction presented here. As
a side remark, we note that it is not difficult to see from the analysis in the present paper that the results
in [BDLISJ15, Ise13, Buc15, BDLS16] for the 3-D Euler equations can be extended to the 2-D setting by
replacing Beltrami waves by Beltrami plane waves.

The fundamental aim in any convex integration scheme is to introduce high frequency oscillations that
self-interact due to the nonlinearity in order to produce low frequency modes that cancel error terms. For
SQG this so called high-high-low interaction is highly nontrivial. Indeed, as was already noted in [IV15],

9
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if one works with the usual formulation of the SQG equations (1.1) in terms of the active scalar θ, and
considers a perturbation Θ “

ř

k Θk, with Θkpx, tq “ akpt, xqe
iλk¨x and an amplitude ak which lives at

a frequency much smaller than λ, with λ " 1, then to leading order the corresponding velocity field is
given by U “

ř

k Uk, where Ukpx, tq “ RKΘkpx, tq “ ikKΘkpx, tq ` opλ
´1q. This implies that the high-high

interactions in the nonlinear term divpΘUq “ 1
2 divp

ř

k ΘkU´k ` Θ´kUkq vanish to leading order, since
ΘkU´k`Θ´kUk “ a2

kpip´kq
K` ikKq` opλ´1q “ opλ´1q.14 To overcome this difficulty we work at the level of

the momentum equation for v and employ a bilinear pseudo-product operator (see [CM78] or Appendix A.6
below) to rewrite the nonlinearity u ¨∇v´p∇vqT ¨u as the sum of a divergence of a 2-tensor, and a gradient of
a scalar function. Expanding in frequency around our Beltrami plane waves, we will show that the principal
term in high-high-low interactions is of the correct form to cancel low frequency modes. This is achieved in
Section 5.4 below.

We remark that recently, [Ise16] proved the full Onsager’s conjecture for the 3-D Euler equations, employing
a novel technique involving gluing exact solutions to the Euler equations, along with the use of Mikado flows,
introduced in [DSJ16] as a replacement to Beltrami waves. Mikado flows have the advantage of satisfying
better oscillation-error estimates (see Section 3.3 for the definition of the oscillation error in the case of SQG),
since they have disjoint spatial support in a thin cylinder. Unfortunately, the construction is inherently
three-dimensional as it requires that the Mikado flows do not intersect, which is impossible in 2-D. Finding a
suitable replacement for Mikado flows for the case of the SQG equations or the 2-D Euler equations is an
interesting open problem.

2.3 Notation

Throughout this paper, we make use of the Einstein summation convention, in which repeated indices are
summed from 1 to 2. For s P R, the homogeneous Sobolev space norm is }u}29HspT2q

“
ř

kPZ2zt0u |pupkq|
2|k|2s .

Here it is important that we work with functions of zero mean on T2. The fractional Laplacian Λs may be
defined in this context as the Fourier multiplier with symbol |k|s, for all s P R.

For a function f : T2 ˆ RÑ R, we use the notation

}f}Cβ to denote the space-time norm }f}C0pR;CβpT2qq

where the spatial Hölder norm is defined as the sum of the C0 norm and the Hölder seminorm r¨sCβ . To
distinguish functions with higher regularity in time, we use the norm ‖f‖Cσt Cβx “ ‖f‖CσpR;CβpT2qq. That is,

t ÞÑ fpx, tq has σ-Hölder regularity in time and x ÞÑ fpx, tq has β-Hölder regularity in space. For f : T2 Ñ R
which is just a function of the space variable x, we denote by abuse of notation ‖f‖C0 its C0pT2q norm.

Throughout the manuscript we abuse notation and denote by f the periodic extension to all of R2 of
a T2-periodic function f . Consequently, throughout the proof we work with R2 convolution kernels and
R2 Fourier multiplier operators, instead of working with their T2, respectively Z2 counterparts, which are
obtained via the Poisson summation formula from their R2 analogues. See e.g. [CZ54, pp. 256–261], or
[SW71, Chapter VII] for the main ideas behind this transference principle. In particular, since we work
with functions on T2 which have zero mean, the resulting R2 functions have support in frequency in the
complement of a small neighborhood of the origin.

We will use a À b to denote a ď Cb for a universal constant C ě 1. Moreover, for an integer N ě 1 we
will use DN to denote any spatial derivative Bαx , where |α| “ N .

14 This is the reason why in [IV15], one may only consider active scalar equations with non-odd constitutive laws (that is, the
Fourier multiplier relating u to θ in (1.1) is a non-odd function of frequency), extending prior results in [CFG11, Shv11, Szé12]
for the incompressible porous media equation. See also the recent work [CCF16].
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3 Convex integration scheme

We use a convex integration scheme inspired by [BDLISJ15]. We shall construct a sequence of solutions
pvq, pq, R̊qq to the relaxed SQG momentum equation

Btvq ` uq ¨∇vq ´ p∇vqqT ¨ uq `∇pq ` Λγvq “ div R̊q (3.1a)

div vq “ 0 (3.1b)

uq “ Λvq (3.1c)

where R̊q is a symmetric trace-free 2 ˆ 2 matrix. The goal is to obtain R̊q Ñ 0 as q Ñ 8 (in a suitable
topology), and show that a limiting function vq Ñ v exists, and solves (2.2).

3.1 Parameters

We fix β ą 1{2 to be the Hölder exponent that we expect to obtain for our weak solution v, and write it as

β “
4

5
´ ε

for some 0 ă ε ! 1. For this ε ą 0 fixed, we also define

0 ď γ ă 2´ β

to be the power of the dissipation in the equation. When γ “ 0 it is understood that the equation is inviscid,
i.e. that the dissipative term Λγ is absent from the equations.

Define the frequency parameter

λq “ λq0

for some integer λ0 " 1 that is sufficiently large integer which is a multiple of 5. Note thus that the spatial
frequency, i.e. wavenumber, parameter λq is strictly increasing in q and grows exponentially. We also define
the amplitude parameter

δq “ λ2
0λ
´2β
q . (3.2)

3.2 Inductive assumption

We shall inductively assume that the potential velocity vq has compact support in frequency, contained inside
the ball of radius 2λq and has size

}vq}C1 ` }uq}C0 ď C0δ
1{2
q λq. (3.3)

where C0 ě 1 is a universal constant, independent of any of the other parameters in the construction. Similarly,
we shall inductively assume that R̊q has compact support in frequency, inside the ball tξ : |ξ| ď 4λqu, and has
amplitude given by

}R̊q}C0 ď εRλq`1δq`1 (3.4)

holds, where H ptq is the prescribed energy profile and εR is a small constant to be chosen precisely in the
construction. We also make the inductive assumption that material derivatives for wq and R̊q are bounded as

‖pBt ` uq ¨∇qvq‖C0 ď C0λ
2
qδq (3.5)

‖pBt ` uq ¨∇quq‖C0 ď C0λ
3
qδq (3.6)∥∥∥pBt ` uq ¨∇qR̊q∥∥∥

C0
ď λ2

qδ
1{2
q λq`1δq`1. (3.7)

Here C0 is the same as in (3.3). Additionally, we assume that for the given prescribed energy profile

0 ď H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq

ˇ

ˇ

ˇ

2

dx ď λq`1δq`1 (3.8)

and

H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq

ˇ

ˇ

ˇ

2

dx ď
λq`1δq`1

8
ñ R̊qp¨, tq ” 0 . (3.9)
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3.3 Inductive step

The convex integration scheme consists of correcting the potential velocity vq with an increment wq`1 and an
associated transport velocity increment Λwq`1 and obtain new velocity fields

vq`1 “ wq`1 ` vq and uq`1 “ Λwq`1 ` uq (3.10)

such that the following holds:

Proposition 3.1 (Main Proposition). Let H : r0, T s Ñ R` be a given smooth Hamiltonian profile. Then,
for sufficiently large λ0 P 5N, if the pair pvq, R̊qq satisfy assumptions (3.3)–(3.9) specified above then there

exists a new pair pvq`1, R̊q`1q that satisfy these assumptions with q replaced by q` 1. Moreover, the difference
wq`1 “ vq`1 ´ vq has frequency support contained in the annulus tξ : λq{2 ď |ξ| ď 2λqu and has size

‖wq`1‖C0 ď C0δ
1
2
q`1 (3.11)

for a fixed universal constant C0 ě 0.

We note here that if pvq, R̊qq solves (3.1) at step q, and the new velocity vq`1 is given by (3.10), then

upon implicitly15 defining R̊q`1 by

div R̊q`1 “

´

Btwq`1 ` uq ¨∇wq`1

¯

`

´

Λwq`1 ¨∇vq ´ p∇vqqT ¨ Λwq`1 ´ p∇uqqT ¨ wq`1

¯

` Λγwq`1

`

´

div R̊q ` Λwq`1 ¨∇wq`1 ´ p∇wq`1q
T ¨ Λwq`1

¯

`∇rpq`1

“: divRT ` divRN ` divRD ` divRO `∇rpq`1 (3.12)

we have that pvq`1, R̊q`1q solves (3.1) at step q ` 1. In (3.12) we have split up the Reynolds stress into a
Transport, Nash, Dissipation, and Oscillation part, and have denoted by rpq`1 a dummy scalar pressure (which
is different from the pq`1 pressure in equation (3.1)). Note that once wq`1 is constructed to have frequency
support inside the annulus tλq{2 ď |ξ| ď 2λqu, it follows from (3.12) and the inductive assumptions on the

frequency support of vq and R̊q, that R̊q`1 has frequency support inside the ball t|ξ| ď 4λq`1u.
The proof of Proposition 3.1 is the main part of the paper, and is achieved in three steps. The first step,

achieved in Section 4, is to construct the velocity increment wq`1 which obeys the estimate (3.11), and verify
that with this perturbation the bounds (3.3) and (3.5)–(3.6) hold with q replaced with q ` 1. The second
step, achieved in Section 5, is to show that the induced Reynolds stress R̊q`1 given by (3.12) obeys estimates
(3.4) and (3.7) with q replaced with q ` 1. The third step, achieved in Section 6, is to show that the new
velocity field is sufficiently close to the desired Hamiltonian profile, i.e. that bounds (3.8)–(3.9) hold with q
replaced with q ` 1. Together, these three steps give the proof of the proposition.

Theorem 2.3 is simple consequence of Proposition 3.1, as we show next.

3.4 Proof of Theorem 2.3

Proof of Theorem 2.3. We start the iteration by setting pv0, R̊0q to be the trivial zero solution. Then
(3.3)-(3.7) and (3.9) follow trivially. Moreover, choosing λ0 sufficiently large we can ensure

H ptq ď λ1δ1 “ λ3´2β
0 ,

15Equation (3.12) only defines div R̊q`1. The Reynolds stress R̊q`1 itself is obtained from (3.12) once we invert the divergence
operator, cf. Definition 4.1 below, for the contributions that have large frequency, and we write the low frequency part of the
oscillation error in divergence form.

12



T. Buckmaster, S. Shkoller, V. Vicol Nonuniqueness of weak solutions to SQG

and thus (3.8) holds. Then, we apply Proposition 3.1 iteratively to obtain a sequence vq converging in Cβ to
a weak solution

v “ v0 `
ÿ

qě0

pvq`1 ´ vqq “ v0 `
ÿ

qě0

wq`1

of SQG. The convergence in Cβ follows directly from the frequency support of the perturbations wq and the
estimate (3.11). Moreover, the estimate (3.8) implies that

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vpx, tq

ˇ

ˇ

ˇ

2

dx “ H ptq .

Note, as a consequence of (3.5) and (3.3), it follows that

‖Btvq‖C0 ď ‖pBt ` uq ¨∇qvq‖C0 ` ‖uq‖C0 ‖vq‖C1

Àλ2
qδq .

Thus, by interpolation, using the decomposition wq “ vq ´ vq´1 we obtain

‖wq‖Cσt C0
x
À ‖wq‖1´σ

C0
tC

0
x
‖vq ´ vq´1‖σC1

tC
0
x

À ‖wq‖1´σ
C0
tC

0
x

´

‖vq‖C1
tC

0
x
` ‖vq´1‖C1

tC
0
x

¯σ

Àδ
1´σ
2

q

`

λ2
qδq

˘σ

“λ2
0λ
´p1´σqβ`2σp1´βq
q

“λ2
0λ
´β`σp2´βq
q

Hence, if σ ă β
2´β , then vq convergences uniformly in Cσt C

0
x.

4 The velocity perturbation

4.1 Technical preliminaries

4.1.1 Inverse of the divergence

In defining RT , RD, RO, and RN , we need to use the fact that any divergence free vector function f with
zero mean on T2 may be written as a divergence. More precisely:

Definition 4.1 (Inverse divergence). Let f be divergence free and with zero mean on T2. Then we have

f “ divpBfq, or in components f i “ BjpBfqij

where

pBfqij :“ ´BjΛ
´2f i ´ BiΛ

´2f j .

For f which is not necessarily divergence free, we define

Bf :“ BPf ,

where P “ Id`RbR is the Leray projector. Lastly, when f does not have zero mean on T2, we define

Bf :“ B
ˆ

f ´
1

|T2|

ż

T2

fpxqdx

˙

.

In particular, we have that divpBfq “ Pf is divergence free, and Bf is a symmetric trace free matrix.
Properties of the operator B are discussed in Appendix A.3 below.
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4.1.2 Beltrami plane waves

For k P S1, we define

bkpξq “ ikKeik¨ξ and ckpξq “ eik¨ξ (4.1)

where we notice that since k P S1, we have

bk “ ∇Kξ ck and ck “ ´∇Kξ ¨ bk.

It is also worth noting here that bk is an eigenfunction of Λ with eigenvalue 1, that is

Λξbkpξq “ bkpξq , (4.2)

since k P S1. Also it will be sometimes useful to note that since pkKqK “ ´k, we have

pbkpξqq
K “ ´ikckpξq “ ´∇ξckpξq. (4.3)

4.1.3 Geometric Lemma

For any finite family of vectors Ω Ă S1 and constants ak P C, such that a´k “ ak, if we set

W pξq :“
ÿ

kPΩ

akbkpξq and V pξq :“
ÿ

kPΩ

akckpξq ,

then we have the following identity

divξpW bW q “
1

2
∇ξ |W |

2
` p∇Kξ ¨W qWK

“
1

2
∇ξ |W |

2
´ V∇V

“
1

2
∇ξ

´

|W |
2
´ |V |

2
¯

.

(4.4)

Adopting the notation Wkpξq “ akbkpξq, we also note that

ÿ

kPΩ

Wk bW´k “
ÿ

kPΩ

|ak|
2
kK b kK .

Lemma 4.2. Let BεpIdq denote the ball of symmetric 2 ˆ 2 matrices, centered at Id of radius ε. We can
choose εγ ą 0 such that there exist disjoint finite subsets

Ωj Ă S1, j P t1, 2u ,

and smooth positive functions

γk P C
8
`

Bεγ pIdq
˘

, j P t1, 2u , k P Ωj ,

such that

(a) For each j we have 5Ωj Ă Z2.

(b) If k P Ωj then ´k P Ωj and γk “ γ´k.

(c) For each R P Bεγ pIdq we have the identity

R “
1

2

ÿ

kPΩj

pγkpRqq
2
pkK b kKq, (4.5)

for all R P Bεγ pIdq.

14
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(d) For k, k1 P Ωj, with k ` k1 ‰ 0, we have that |k ` k1| ě 1
2 .

Proof of Lemma 4.2. First consider the case of constructing Ω1. Define Ω`1 “ tk1, k2, k3u where k1 :“ p1, 0q,
k2 :“ p 3

5 ,
4
5 q and k3 :“ p 3

5 ,´
4
5 q. With these choices we make the following observations. First, the matrices

kKi b k
K
i for i “ 1, 2, 3 are linearly independent. Second, we have the identity

Id “

ˆ

1´
52 ¨ 32

42 ¨ 52

˙

k1 b k1 `
52

2 ¨ 42
k2 b k2 `

52

2 ¨ 42
k3 b k3

“
7

16
k1 b k1 `

25

32
k2 b k2 `

25

32
k3 b k3

“
7

16
kK1 b k

K
1 `

25

32
kK2 b k

K
2 `

25

32
kK3 b k

K
3 .

Hence, setting Ω1 “ ´Ω`1 Y Ω`1 , and applying the inverse function theorem to construct γk we obtain
properties (a)–(d). Similarly, setting Ω2 “ ΩK1 “ tk

K : k P Ω1u, we may construct γk for k P Ω2 and obtain
properties (a)–(d).

4.1.4 Time cutoffs and the back-to-labels map

We let 0 ď χ ď 1 be a smooth cutoff function which is identically 1 on r1, 2s, vanishes on the complement of
r1{2, 4s, and defines a partition of unity according to

ÿ

jPZ
χ2pt´ jq “ 1

for all t P R. We shall also define

χjptq “ χptτ´1
q`1 ´ jq (4.6)

where for ease of notation we suppress the dependence of χj on q.
For every j P Z, we define the following back-to-labels map Φjpx, tq by solving the transport equation

pBt ` uq ¨∇qΦj “ 0 ,

Φjpx, jτq`1q “ x ,

where we define the time step parameter τq`1 by

τ´1
q`1 “ λqλq`1δ

1{4
q δ

1{4
q`1 . (4.7)

The motivation for this scaling of τq`1 comes from balancing the oscillation and the transport error (cf. esti-
mates (5.2) and (5.58) below). In particular, we note that

τq`1 ‖∇uq‖C0
ď τq`1λ

2
qδ

1{2
q “ λ

´1`β{2
0 , (4.8)

so that since β ă 2, then for λ0 large, on a time interval of length 2τq`1, the flow Φj induced by uq does not
depart substantially from the identity.

4.1.5 Leray projector and a frequency localizer

Lastly, we define P “ Id`RbR to be the Leray projector, and for k P S1 and λq`1 as above we set

Pq`1,k “ PP«kλq`1
(4.9)

where P«λq`1k is a zero order Fourier multiplier operator with symbol pK«kλq`1
“ pK«1pξ{λq`1 ´ kq. That is,

pP«kλq`1fq
ppξq “ pK«kλq`1pξq

pfpξq “ pK«1

ˆ

ξ

λq`1
´ k

˙

pfpξq,

15
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where the function pK«1 is a smooth bump function supported on the ball tξ : |ξ| ď 1
8u, and such that

pK«1pξq “ 1 on the smaller ball
 

ξ : |ξ| ď 1
16

(

. Note in particular that 0 ď a, b we have

sup
ξPR2

|ξ|a|∇b
ξ
pK«kλq`1 | ď Ca,bλ

a´b
q`1

for a suitable constant Ca,b that is independent of λq`1, and similarly∥∥|x|b∇a
xK«kλq`1

∥∥
L1
xpR2q

ď Ca,bλ
a´b
q`1

holds for 0 ď a, b ď 2, and the constant Ca,b is independent of λq`1.
We note here that Pq`1,k is a convolution operator with kernel Kq`1,kpxq, i.e., for f which is T2-periodic

we may write

Pq`1,kfpxq “

ż

R2

Kq`1,kpyqfpx´ yqdy ,

with a kernel Kq`1,k that obeys ∥∥|x|b∇a
xKq`1,kpxq

∥∥
L1
xpR2q

ď Ca,bλ
a´b
q`1 (4.10)

for 0 ď a, b, and the constant Ca,b is independent of λq`1. Here we have implicitly used that RbR “ P´ Id
is a matrix zero order Fourier multiplier, whose symbol is smooth away from the origin.

4.2 Construction of the perturbation

With these notations in hand, we now define the potential velocity perturbation wq`1 as

wq`1px, tq “
ÿ

jPZ,kPΩj

χjptqPq`1,k

`

ak,jpx, tqbkpλq`1Φjpx, tqq
˘

, (4.11)

where the functions ak,jpx, tq are to be defined in (4.15) below, and Ωj “ Ω1 if j is odd, while Ωj “ Ω2 if j
is even. The definition of Pq`1,k implies that the increment wq`1 has compact support in frequency space
inside tξ : λq`1{2 ď |ξ| ď 2λq`1u, as required in the inductive step.

Let R̊q,j define the solution to the transport equation:

pBt ` uq ¨∇q R̊q,j “ 0 , (4.12a)

R̊q,jpx, jτq`1q “ R̊qpx, jτq`1q , (4.12b)

and set
Rq,j :“ λq`1ρjId´ R̊q,j (4.13)

where

ρptq :“
1

p2πq2
min

ˆ

H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq

ˇ

ˇ

ˇ

2

dx´
λq`2δq`2

2
, 0

˙

and ρj “ ρpτq`1jq . (4.14)

The constants ρj are chosen in order to ensure convergence of the Hamiltonian to the desired profile. Note
that by the inductive assumption (3.8) we have that

ρj ď δq`1 .

Then to conclude our definition of the perturbation wq`1, we define

ak,jpx, tq :“

#

ρ
1
2
j γk

´

Rq,jpx,tq
λq`1ρj

¯

if ρj ‰ 0

0 if ρj “ 0.
(4.15)

Note that in order that ak,j is well defined we need to ensure that if ρj ‰ 0 then

Rq,jpx, tq

λq`1ρj
P BεγpIdq .
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Since Rq,j satisfies a transport equation it suffices to prove that∥∥∥R̊qp¨, jτq`1q

∥∥∥
C0q

λq`1ρj
ď εγ . (4.16)

By (3.9) is suffices to consider the case when

epjτq`1q ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vqpx, jτq`1q

ˇ

ˇ

ˇ

2

dx ě
λq`1δq`1

8
,

which implies (assuming λ0 is chosen sufficiently large)

ρj ě
λqδq`1

8
.

Applying (3.4) yields

}R̊qp¨, jτq`1q}C0

λq`1ρj
ď 8εR

Then as long as 2εR ď εγ we obtain (4.16).
Throughout the paper it will be sometimes convenient to denote

rwq`1,j,k “ χjptqak,jpx, tqbkpλq`1Φjpx, tqq (4.17)

so that in adopting the abuse of notation
ř

j,k “
ř

tj:ρj‰0u,kPΩj
, the equation (4.11) reads

wq`1px, tq “
ÿ

j,k

Pq`1,k rwq`1,j,k .

We also adopt the notation

ψq`1,j,kpx, tq “
ckpλq`1Φjpx, tqq

ckpλq`1xq
“ eiλq`1pΦjpx,tq´xq¨k (4.18)

so that

bkpλq`1Φjpx, tqq “ bkpλq`1xqψq`1,j,kpx, tq .

4.3 Bounds on the perturbation

Lemma 4.3. With wq`1 as defined in (4.11), we have that

‖wq`1‖C0 ď C0δ
1{2
q`1 (4.19a)

‖vq`1‖C1 ` ‖uq`1‖C0 ď C0δ
1{2
q`1λq`1 (4.19b)

‖Dt,qwq`1‖C0 ď C0τ
´1
q`1δ

1{2
q`1 (4.19c)

‖Dt,q`1vq`1‖C0 ď C0λ
2
q`1δq`1 (4.19d)

‖Dt,q`1uq`1‖C0 ď C0λ
3
q`1δq`1 (4.19e)

for a universal constant C0 ě 1, which is the same as the constant in Section 3.2.

In particular, the bounds (4.19b), (4.19d), and (4.19e) show that the inductive estimates (3.3), (3.5), and
(3.6) hold with q replaced with q ` 1.
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Proof of Lemma 4.3. From (4.10) it follows that ‖Pq`1,k‖C0ÑC0 À 1, and hence

‖wq`1‖C0 À
ÿ

j,k

‖ rwq`1,j,k‖

À
ÿ

j,k

1supppχjq ‖ak,j‖C0 À
ÿ

j

1supppχjqρ
1{2
j À δ

1{2
q`1

in view of (4.15), and the fact that ρj À δ
1{2
q`1. Estimate (4.19b) follows from (4.19a), the frequency support

of wq`1, and the inductive estimates (3.3).
In order to estimate the material derivative Dt,q “ Bt ` uq ¨∇ of wq`1, we note that Dt,qak,jpx, tq “ 0

since R̊q,j obey the transport equation for the vector field uq, and similarly Dt,qbkpλq`1Φjpx, tqq “ 0 since
the phases Φj also obey the same transport equation. We thus have that

Dt,qwq`1 “ Dt,q

˜

ÿ

j,k

Pq`1,k rwq`1,j,k

¸

“
ÿ

j,k

Pq`1,k

`

pBtχjqak,jbkpλq`1Φjq
˘

`
ÿ

j,k

rDt,q,Pq`1,ks rwq`1,j,k.

Therefore, by appealing to the boundedness on C0 of Pq`1,k, the definition of χj in (4.6), and the commutator
estimate (A.18) in Corollary A.8 with s “ 0, we arrive at

‖Dt,qwq`1‖C0 À τ´1
q`1

ÿ

j,k

1supppχjq ‖ak,j‖C0 `
ÿ

j,k

‖∇uq‖C0 ‖ rwq`1,j,k‖C0

À τ´1
q`1

ÿ

j

1supppχjqρ
1{2
j ` λ2

qδ
1{2
q

ÿ

j

1supppχjqρ
1{2
j

À

´

τ´1
q`1 ` λ

2
qδ

1{2
q

¯

δ
1{2
q`1

À τ´1
q`1δ

1{2
q`1

since ρj À δq`1 and by (4.7) we have τ´1
q`1 “ λqλq`1δ

1{4
q δ

1{4
q`1 ě λ2

qδ
1{2
q , where here we used the fact that

β ă 2.
Using the inductive estimate (3.5) and the bound established above, since

Dt,q`1vq`1 “ Dt,qpvq ` wq`1q ` Λwq`1 ¨∇pvq ` wq`1q

we obtain

‖Dt,q`1vq`1‖C0 À λ2
qδq ` τ

´1
q`1δ

1{2
q`1 ` λ

2
q`1δq`1 À λ2

q`1δq`1.

Similarly,

Dt,q`1uq`1 “ Dt,qpuq ` rP«λq`1
Λwq`1q ` Λwq`1 ¨∇puq ` Λwq`1q,

the inductive estimate (3.6), and Lemma A.6 (with s “ 1 and λ “ λq`1) implies

‖Dt,q`1uq`1‖C0 À λ3
qδq `

∥∥∥ rP«λq`1ΛpDt,qwq`1q

∥∥∥
C0
`

∥∥∥ruq ¨∇, rP«λq`1Λswq`1

∥∥∥
C0
` λ3

q`1δq`1

À λ3
qδq ` λq`1τ

´1
q`1δ

1{2
q`1 ` λq`1λ

2
qδ

1{2
q δ

1{2
q`1 ` λ

3
q`1δq`1

À λ3
q`1δq`1

which concludes the proof of the lemma.

In estimating the Reynolds stress error, the following bounds concerning the derivatives of ak,j and
ψq`1,j,k are very useful.
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Lemma 4.4. With ak,j as defined in (4.15) and ψq`1,j,k as defined in (4.18), we have that∥∥DNak,j
∥∥
C0psuppχjq

À λNq δ
1{2
q`1 (4.20)

for all N ě 0, and ∥∥DNψq`1,j,k

∥∥
C0psuppχjq

À

´

τq`1λq`1λ
2
qδ

1{2
q

¯N

“

´

λqδ
1{4
q δ

´1{4
q`1

¯N

(4.21)

for all N ě 1, where the implied constant depends on N .

Proof of Lemma 4.4. Since Rq is supported on frequencies less than 4λq, it follows from the chain rule
estimate (A.10) and the smoothness of the γk functions that∥∥DNak,j

∥∥
C0 À λ´1

q`1ρ
´1{2
j

∥∥DNRq,j
∥∥
C0 ` ρ

1{2´N
j λ´Nq`1 ‖DRq`1,j‖NC0

À δ
1{2
q`1λ

N
q ` δ

1{2
q`1λ

´N
q`1pλqλq`1q

N

where we have also used that ρj À δq`1. This proves (4.20).
In order to prove (4.21), we appeal to the chain rule estimate (A.10) and the transport estimates (A.7)–

(A.8) and find that∥∥DNψq`1,j,k

∥∥
C0psuppχjq

À λq`1

∥∥DN´1 pDΦj ´ Idq
∥∥
C0psuppχjq

` λNq`1 ‖DΦj ´ Id‖NC0psuppχjq

À λq`1τq`1

∥∥DNuq
∥∥
C0 e

Cτq`1}Duq}C0 ` λNq`1

´

τq`1 ‖Duq‖C0 e
Cτq`1}Duq}C0

¯N

for a suitable constant C. From (4.8), τq`1 ‖Duq‖C0 ď 1, and thus we conclude that∥∥DNψq`1,j,k

∥∥
C0psuppχjq

À λq`1τq`1λ
N`1
q δ1{2

q ` λNq`1

´

τq`1λ
2
qδ

1{2
q

¯N

À λNq δ
1{4
q δ

´1{4
q`1 ` λNq

´

δ1{4
q δ

´1{4
q`1

¯N

À

´

λqδ
1{4
q δ

´1{4
q`1

¯N

since δq`1 ď δq. This estimate shows that ψq`1,j,k lives at spatial frequency λqδ
1{4
q δ

´1{4
q`1 .

5 The Reynolds stress error

5.1 Transport error

Lemma 5.1 (Transport error). For any ε ą 0, if λ0 is sufficiently large then for RT as defined in (3.12), we
have that

‖RT ‖C0 ď ελq`2δq`2

‖Dt,qRT ‖C0 ď ελ2
q`1δ

1{2
q`1λq`2δq`2 .

5.1.1 Amplitude of the Transport error

By definition, we have that

RT “ B pDt,qwq`1q

“ B

˜

ÿ

j,k

Pq`1,k

`

pBtχjqak,jbkpλq`1Φjq
˘

`
ÿ

j,k

rDt,q,Pq`1,ks rwq`1,j,k

¸

“ B rP«λq`1

˜

ÿ

j,k

Pq`1,k

`

pBtχjqak,jbkpλq`1Φjq
˘

`
ÿ

j,k

ruq ¨∇,Pq`1,ks rwq`1,j,k

¸

(5.1)
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where in the last equality we used the compact support of uq to conclude that uq¨∇Pq`1,k “ rP«λq`1
puq ¨∇Pq`1,kq.

Using Lemma A.6 we obtain

‖RT ‖C0 À λ´1
q`1

ÿ

j,k

‖pBtχjqak,jbkpλq`1Φjq‖C0 ` λ
´1
q`1

ÿ

j,k

‖∇uq‖C0 ‖χjak,jbkpλq`1Φjq‖C0

À λ´1
q`1τ

´1
q`1δ

1{2
q`1 ` λ

´1
q`1λ

2
qδ

1{2
q δ

1{2
q`1

À λ´1
q`1τ

´1
q`1δ

1{2
q`1

“ λqδ
1{4
q δ

3{4
q`1

“ λ
´2` 5β

2
0 λq`2δq`2. (5.2)

Assuming λ0 is sufficiently large and β ă 4
5 we obtain our claim.

5.1.2 Material derivative of the Transport error

Using the frequency support of uq and wq`1 we write

Dt,qRT “ rDt,q,B rP«λq`1
sDt,qwq`1 ` B rP«λq`1

Dt,q

˜

ÿ

j,k

Pq`1,k

`

pBtχjqak,jbkpλq`1Φjq
˘

¸

` B rP«λq`1
Dt,q

˜

ÿ

j,k

rDt,q,Pq`1,ks rwq`1,j,k

¸

“ T1 ` T2 ` T3 (5.3)

The first term in (5.3) is bounded directly using Corollary A.8 and the bound (4.19c) as

‖T1‖C0 À λ´1
q`1 ‖∇uq‖C0 ‖Dt,qwq`1‖C0

À λ´1
q`1λ

2
qδ

1{2
q τ´1

q`1δ
1{2
q`1

“ λ3
qδ

3{4
q`1δ

3{4
q . (5.4)

We decompose the second term in (5.3) as

T2 “B rP«λq`1

˜

ÿ

j,k

rDt,q,Pq`1,ks
`

pBtχjqak,jbkpλq`1Φjq
˘

`
ÿ

j,k

Pq`1,kpB
2
tχjqak,jbkpλq`1Φjq

¸

which allows it to be estimated by

‖T2‖C0 À λ´1
q`1

ÿ

j,k

`

‖∇uq‖C0 ‖pBtχjqak,jbkpλq`1Φjq‖C0 `
∥∥pB2

tχjqak,jbkpλq`1Φjq
∥∥
C0

˘

À λ´1
q`1

´

λ2
qδ

1{2
q τ´1

q`1δ
1{2
q`1 ` τ

´2
q`1δ

1{2
q`1

¯

À λ´1
q`1τ

´2
q`1δ

1{2
q`1

“ λ2
qλq`1δ

1{2
q δq`1. (5.5)
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Next,

T3 “ B rP«λq`1
Dt,q

˜

ÿ

j,k

uq ¨∇Pq`1,k rwq`1,j,k ´
ÿ

j,k

Pq`1,k puq ¨∇ rwq`1,j,kq

¸

“ B rP«λq`1

˜

ÿ

j,k

pDt,quqq ¨∇ pPq`1,k rwq`1,j,kq `
ÿ

j,k

uq ¨∇ prDt,q,Pq`1,ks rwq`1,j,kq

¸

` B rP«λq`1

˜

ÿ

j,k

uq ¨∇
`

Pq`1,k

`

pBtχjqak,jbkpλq`1Φjq
˘˘

´
ÿ

j,k

ppuq ¨∇quqq ¨∇Pq`1,k rwq`1,j,k

¸

´ B rP«λq`1

˜

ÿ

j,k

rDt,q,Pq`1,ks puq ¨∇ rwq`1,j,kq `
ÿ

j,k

Pq`1,k ppDt,quqq ¨∇ rwq`1,j,kq

¸

´ B rP«λq`1

˜

ÿ

j,k

Pq`1,k

`

uq ¨∇
`

pBtχjqak,jbkpλq`1Φjq
˘˘

´
ÿ

j,k

Pq`1,k pppuq ¨∇quqq ¨∇ rwq`1,j,kq

¸

.

In order to estimate T3 we appeal to the inductive bound (3.6), Lemma 4.4, the commutator estimate in

Corollary A.8 (with s “ 0 and λ “ λq`1), and to the fact that τq`1λ
2
qδ

1{2
q À 1 and the estimate (A.7), imply

‖ rwq`1,j,k‖C1 À ‖ak,j‖C1 ` ‖ak,j‖C0 λq`1 ‖∇Φj‖C0 À λqδ
1{2
q`1 ` λq`1δ

1{2
q`1 À λq`1δ

1{2
q`1.

All these yield

‖T3‖C0 À λ´1
q`1

ÿ

j,k

`

‖Dt,quq‖C0 λq`1 ‖ rwq`1,j,k‖C0 ` ‖uq‖C0 λq`1 ‖uq‖C1 ‖ rwq`1,j,k‖C0

˘

` λ´1
q`1

ÿ

j,k

´

‖uq‖C0 λq`1τ
´1
q`1 ‖ak,j‖C0psuppχjq

` ‖uq‖C0 ‖uq‖C1 λq`1 ‖ rwq`1,j,k‖C0

¯

` λ´1
q`1

ÿ

j,k

`

‖uq‖C1 ‖uq‖C0 ‖ rwq`1,j,k‖C1 ` ‖Dt,quq‖C0 ‖ rwq`1,j,k‖C1

˘

` λ´1
q`1

ÿ

j,k

`

‖uq‖C0 τ
´1
q`1 ‖ak,jbkpλq`1Φjq‖C1 ` ‖uq‖C0 λq ‖uq‖C1 ‖ rwq`1,j,k‖C1

˘

À λ3
qδqδ

1{2
q`1 ` λqδ

1{2
q τ´1

q`1δ
1{2
q`1

À λqδ
1{2
q τ´1

q`1δ
1{2
q`1

“ λ2
qλq`1δ

3{4
q δ

3{4
q`1. (5.6)

Combining (5.4), (5.5) and (5.6) we obtain

‖Dt,qRT ‖C0 Àλ
3
qδ

3{4
q δ

3{4
q`1 ` λ

2
qλq`1δ

1{2
q δq`1 ` λ

2
qλq`1δ

3{4
q δ

3{4
q`1

Àλ2
qλq`1δ

3{4
q δ

3{4
q`1

“λ
´3`7β{2
0 λ2

q`1 δ
1{2
q`1λq`2δq`2, .

This completes the proof of Lemma 5.1.

5.2 Nash error

Lemma 5.2 (Nash error). For any ε ą 0, if λ0 is sufficiently large then for RN as defined in (3.12), we
have that

‖RN‖C0 ď ελq`2δq`2,

‖Dt,qRN‖C0 ď ελ2
q`1δ

1{2
q`1λq`2δq`2 . (5.7)
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5.2.1 Amplitude of the Nash error

We recall from (3.12) and the definition of B that we may write

RN “ ´B
`

p∇uqqT ¨ wq`1

˘

` B
`

Λwq`1 ¨∇vq ´ p∇vqqT ¨ Λwq`1

˘

“ ´B
`

p∇uqqT ¨ wq`1

˘

` B
`

p∇K ¨ vqqΛwKq`1

˘

“: N1 `N2. (5.8)

The bound on N1 is direct. Recalling the definition of wq`1, and recalling that uq is supported on frequencies
|ξ| ď 2λq ď λq`1{8, upon applying (A.11) with λ “ λq`1 (which is inherent in Pq`1,k), we obtain

‖N1‖C0 À
‖uq‖C1

λq`1

ÿ

j,k

‖ rwq`1,j,k‖C0

À
λ2
qδ

1{2
q δ

1{2
q`1

λq`1
.

It is convenient to rewrite the term N2, exploring the special structure of the perturbations wq`1. We
note that since bKk pξq “ ipkKqKeik¨ξ “ ´ikeik¨ξ “ ´∇ξckpξq, we may write

ΛwKq`1 “
ÿ

j,k

ΛPq`1,k

`

χjak,jψq`1,j,kbkpλq`1xq
K
˘

“ ´
1

λq`1

ÿ

j,k

ΛPq`1,k

`

χjak,jψq`1,j,k∇ckpλq`1xq
˘

“ ´
1

λq`1
∇
ÿ

j,k

ΛPq`1,k

`

χjak,jψq`1,j,kckpλq`1xq
˘

`
1

λq`1

ÿ

j,k

ΛPq`1,k

`

χj∇
`

ak,jψq`1,j,k

˘

ckpλq`1xq
˘

.

Therefore, recalling that B has incorporated into it the Leray projector P, we have that

N2 “
1

λq`1
B

˜

∇p∇K ¨ vqq
ÿ

j,k

ΛPq`1,k

`

χjak,jckpλq`1Φjq
˘

¸

`
1

λq`1
B

˜

p∇K ¨ vqq
ÿ

j,k

ΛPq`1,k

`

∇
`

χjak,jψq`1,j,k

˘

ckpλq`1xq
˘

¸

. (5.9)

In order to bound N2 we again use (A.11) with λ “ λq`1 and obtain

‖N2‖C0 À
1

λ2
q`1

‖vq‖C2

ÿ

j,k

∥∥ΛP«λq`1
pχjak,jckpλq`1Φjqq

∥∥
C0

`
1

λ2
q`1

‖vq‖C1

ÿ

j,k

∥∥∥ΛP«λq`1

´

χj∇ak,jckpλq`1Φjq ` χjak,j∇ψq`1,j,kckpλq`1xq
¯
∥∥∥
C0

À
1

λ2
q`1

λ2
qδ

1{2
q λq`1δ

1{2
q`1 `

1

λ2
q`1

λqδ
1{2
q λq`1

´

λqδ
1{2
q`1 ` δ

1{2
q`1λqδ

1{4
q δ

´1{4
q`1

¯

À
λ2
qδ

1{2
q δ

1{2
q`1

λq`1
`

λ2
q

λq`1
δ3{4
q δ

1{4
q`1

where in the second last inequality we have used Lemma 4.4. We see that the first terms in the above bound
obeys the same estimate as N1. Then again using δq`1 ă δq we obtain

‖RN‖C0 À
λ2
q

λq`1
δ3{4
q δ

1{4
q`1 “ λ

´3` 7β
2

0 λq`2δq`2

Thus we obtain the desired estimate so long as β ă 6
7 and λ0 is sufficiently large.

22



T. Buckmaster, S. Shkoller, V. Vicol Nonuniqueness of weak solutions to SQG

5.2.2 Material derivative of the Nash error

Recall that uq has frequency support inside of the ball of radius 2λq ď λq`1{8, and therefore

N1 “ B
`

p∇uqqT ¨ wq`1

˘

“ B rP«λq`1

`

p∇uqqT ¨ wq`1

˘

where we denote by rP«λq`1 the Fourier multiplier operator whose symbol is supported on frequencies
tξ : λq`1{4 ď |ξ| ď 4λq`1u, and is identically 1 on the annulus tξ : 3λq`1{8 ď |ξ| ď 3λq`1u. Therefore,
appealing to Corollary A.8 (with s “ ´1 and λ “ λq`1), we have that

‖Dt,qN1‖C0 ď

∥∥∥B rP«λq`1
Dt,q

`

p∇uqqT ¨ wq`1

˘

∥∥∥
C0
`

∥∥∥rDt,q,B rP«λq`1
s
`

p∇uqqT ¨ wq`1

˘

∥∥∥
C0

À
1

λq`1

∥∥Dt,q

`

p∇uqqT ¨ wq`1

˘
∥∥
C0 `

1

λq`1
‖∇uq‖C0

∥∥p∇uqqT ¨ wq`1

∥∥
C0

À
1

λq`1

´∥∥Dt,qp∇uqqT
∥∥
C0 ‖wq`1‖C0 ` ‖∇uq‖C0 ‖Dt,qwq`1‖C0 ` ‖∇uq‖2

C0 ‖wq`1‖C0

¯

.

Using the inductive hypothesis (3.6), we have that

‖Dt,qp∇uqq‖C0
À ‖uq‖2

C1 ` ‖Dt,quq‖C1 À λ4
qδq.

From Lemma 4.3, we conclude that

‖Dt,qN1‖C0 À
1

λq`1

´

λ4
qδqδ

1{2
q`1 ` λ

2
qδ

1{2
q τ´1

q`1δ
1{2
q`1

¯

À λ´1
q`1λ

2
qδ

1{2
q τ´1

q`1δ
1{2
q`1

“ λ3
qδ

3{4
q δ

3{4
q`1

“ λ
´4` 7β

2
0 λ2

q`1δ
1{2
q`1λq`2δq`2 .

In order to estimate the material derivative of N2, we recall (5.9), and as above, using the compact support
of vq, we find that

´λq`1Dt,qN2 “ Dt,qB rP«λq`1

˜

∇p∇K ¨ vqq
ÿ

j,k

ΛPq`1,k

`

χjak,jckpλq`1Φjq
˘

¸

`Dt,qB rP«λq`1

˜

p∇K ¨ vqq
ÿ

j,k

ΛPq`1,k

`

χj∇
`

ak,jψq`1,j,k

˘

ckpλq`1xq
˘

¸

“

´

B rP«λq`1
Dt,q ` rDt,q,B rP«λq`1

s

¯

˜

∇p∇K ¨ vqq
ÿ

j,k

ΛPq`1,k

`

χjak,jckpλq`1Φjq
˘

¸

`

´

B rP«λq`1
Dt,q ` rDt,q,B rP«λq`1

s

¯

˜

p∇K ¨ vqq
ÿ

j,k

ΛPq`1,k

`

∇
`

χjak,jψq`1,j,k

˘

ckpλq`1xq
˘

¸

.

We now appeal to the commutator estimate of Corollary A.8: first with λ “ λq`1 and s “ 0 for rDt,q,B rP«λq`1s,

second with λ “ λq`1 and s “ 1 for rDt,q,ΛPq`1,ks, and third with λ “ λq`1 and s “ ´1 for rDt,q,B rP«λq`1
s.

We obtain that

λq`1 ‖Dt,qN2‖C0 À
ÿ

k,j

∥∥Dt,q∇p∇K ¨ vqq
∥∥
C0 ‖χjak,j‖C0 `

∥∥∇p∇K ¨ vqq∥∥C0

´∥∥χ1jak,j∥∥C0 ` ‖∇uq‖C0 ‖χjak,j‖C0

¯

` ‖∇uq‖C0

∥∥∇p∇K ¨ vqq∥∥C0

ÿ

k,j

‖χjak,j‖C0 `
ÿ

k,j

∥∥Dt,qp∇K ¨ vqq
∥∥
C0 ‖χj∇pak,jψq`1,j,kq‖C0

`
ÿ

k,j

∥∥∇K ¨ vq∥∥C0

´∥∥χ1j∇pak,jψq`1,j,kq
∥∥
C0 ` ‖∇uq‖C0 ‖χj∇pak,jψq`1,j,kq‖C0

¯

` ‖∇uq‖C0

ÿ

k,j

∥∥∇Kvq∥∥C0 ‖χj∇pak,jψq`1,j,kq‖C0 .
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Using the previously established bounds and the inductive estimates yields

‖Dt,qN2‖C0 À λ´1
q`1λ

4
qδqδ

1{2
q`1 ` λ

´1
q`1λ

2
qδ

1{2
q

´

τ´1
q`1δ

1{2
q`1 ` λ

2
qδ

1{2
q δ

1{2
q`1

¯

` λ´1
q`1λqδ

1{2
q

´

τ´1
q`1 ` λ

2
qδ

1{2
q

¯´

λqδ
1{2
q`1 ` δ

1{2
q`1λq`1τq`1λ

2
qδ

1{2
q

¯

À λ3
qδqδ

1{2
q`1 .

Combining the above estimates shows that

‖Dt,qRn‖ À λ3
qδ

3{4
q δ

3{4
q`1 ` λ

3
qδqδ

1{2
q`1 À λ

´4` 7β
2

0 λ2
q`1δ

1{2
q`1λq`2δq`2 .

Therefore (5.7) holds so long as β ă 8
7 .

5.3 Dissipation error

Lemma 5.3 (Dissipation error). For any ε ą 0, if λ0 and q are sufficiently large then for RD as defined in
(3.12), we have that

‖RD‖C0 ď ελq`2δq`2

‖Dt,qRD‖C0 ď ελ2
q`1δ

1{2
q`1λq`2δq`2

5.3.1 Amplitude of the dissipation error

By definition,

RD “ BΛγwq`1 “ BΛγ rP«λq`1wq`1. (5.10)

Therefore, it follows from Bernstein’s inequality for Fourier multipliers [LR02] that

‖RD‖C0 À λγ´1
q`1 ‖wq`1‖C0

À λγ´1
q`1δ

1{2
q`1

ď λ2β´2
0 λγ`β´2

q`1 λq`2δq`2.

Thus we obtain the stated estimate so long as γ ă 2´ β, β ă 1 and λ0 is sufficiently large.

5.3.2 Material derivative of the dissipation error

The estimate on the material derivative of the dissipation error follows directly from (5.10), the previously
established bound (4.19c) for the material derivative of the perturbation, and the commutator estimate of
Corollary (A.8) in which we set λ “ λq`1, and s “ γ´ 1, which is the order of the Fourier multiplier operator

BΛγ rP«λq`1
. We obtain that

‖Dt,qRD‖C0 ď

∥∥∥pBΛγ rP«λq`1
qDt,qwq`1

∥∥∥
C0
`

∥∥∥”Dt,q,BΛγ rP«λq`1

ı

wq`1

∥∥∥
C0

À λγ´1
q`1 ‖Dt,qwq`1‖C0 ` λ

γ´1
q`1 ‖∇uq‖C0 ‖wq`1‖C0

À λγ´1
q`1 pτ

´1
q`1 ` λ

2
qδ

1{2
q qδ

1{2
q`1

À λqλ
γ
q`1δ

1{4
q δ

3{4
q`1

“ λ
γ`7β{2´4
0 λγ`β´2

q λ2
q`1δ

1{2
q`1λq`2δq`2.

Thus again we obtain the stated estimate if γ ă 2´ β and q is sufficiently large.
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5.4 Oscillation error

Lemma 5.4 (Oscillation error). For any ε ą 0, if λ0 and q are sufficiently large, then for RO as defined in
(3.12), we have that

‖RO‖C0 ď ελq`2δq`2 ,

‖Dt,qRO‖C0 ď ελ2
q`1δ

1{2
q`1λq`2δq`2 .

5.4.1 Decomposition of the oscillation error

Recall from (3.12) that the oscillation error RO is defined so that the following equality is satisfied:

divRO “ div R̊q ` Λwq`1 ¨∇wq`1 ´ p∇wq`1q
T ¨ Λwq`1

“ div

˜

ÿ

j

χ2
j pR̊q ´ R̊q,jq

¸

` div

˜

ÿ

j

χ2
j pR̊q,j ` ρjλq`1Idq

¸

`

´

Λwq`1 ¨∇wq`1 ´ p∇wq`1q
T ¨ Λwq`1

¯

. (5.11)

Remark 5.5. Note that in the above formula, as well as throughout this paper, we somewhat abuse notation
and write

ř

j to mean the summation
ř

tj:ρj‰0u.
16 It this then important to note that in view of (3.9), the

decomposition (5.11) is valid so long as

H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq

ˇ

ˇ

ˇ

2

dx ď
λq`1δq`1

8

on the support of χj for ρj “ 0. The proof of this fact will be delayed to Lemma 6.1, equation (6.1).

Recalling that

wq`1px, tq “
ÿ

tj:ρj‰0u
kPΩj

Pq`1,k rwq`1,j,k with rwq`1,j,k “ χjptqak,jpx, tqbkpλq`1Φjpx, tqq ,

the term Λwq`1 ¨∇wq`1´p∇wq`1q
T ¨Λwq`1 in (5.11) has both high and low frequency components, depending

whether k ‰ ´k1 or k “ ´k1. We notice that due to the frequency localization induced by Pq`1,k, for k, k1 P Ωj
with k` k1 ‰ 0, we have that 1{2 ď |k` k1| ď 2, and due to the localization in the angular frequency variable,
we obtain that

ΛPq`1,k rwq`1,j,k ¨∇Pq`1,k1 rwq`1,j1,k1 “ rP«λq`1
pΛPq`1,k rwq`1,j,k ¨∇Pq`1,k1 rwq`1,j1,k1q (5.12)

and

p∇Pq`1,k rwq`1,j,kq
T b ΛPq`1,k1 rwq`1,j1,k1 “ rP«λq`1

`

p∇Pq`1,k rwq`1,j,kq
T b ΛPq`1,k1 rwq`1,j1,k1

˘

.

We shall thus isolate the high-frequency part of RO due to the nonlinear interactions in Λwq`1 ¨∇wq`1 ´

p∇wq`1q
T ¨ Λwq`1, as

RO,high “ B rP«λq`1

˜

ÿ

j,j1,k,k1

k`k1‰0

`

ΛPq`1,k rwq`1,j,k

˘

¨∇
`

Pq`1,k1 rwq`1,j1,k1
˘

¸

´ B rP«λq`1

˜

ÿ

j,j1,k,k1

k`k1‰0

`

∇Pq`1,k rwq`1,j,k

˘T
¨
`

ΛPq`1,k1 rwq`1,j1,k1
˘

¸

. (5.13)

16We also denote by
ř

j,k the double sum
ř

tj:ρj‰0u

ř

kPΩj
, and similarly

ř

j,j1,k,k1 denotes a quadruple sum.
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Similarly, we need to isolate the low-frequency part of Λwq`1 ¨∇wq`1´p∇wq`1q
T ¨Λwq`1 which occurs when

k ` k1 “ 0. Since Ω1 X Ω2 “ H, k ` k1 “ 0 implies that j “ j1, so that upon symmetrizing, we may define
the low frequency part of the nonlinear term as

Tj,k “
1

2

˜

`

ΛPq`1,k rwq`1,j,k

˘

¨∇
`

Pq`1,´k rwq`1,j,´k

˘

`
`

ΛPq`1,k rwq`1,j,k

˘

¨∇
`

Pq`1,´k rwq`1,j,´k

˘

´
`

∇Pq`1,k rwq`1,j,k

˘T
¨
`

ΛPq`1,´k rwq`1,j,´k

˘

´
`

∇Pq`1,´k rwq`1,j,´k

˘T
¨
`

ΛPq`1,k rwq`1,j,k

˘

¸

. (5.14)

The challenge now is to obtain the decomposition

Tj,k “ divpQj,kq `∇Pj,k (5.15)

for a suitably defined 2-tensor Qj,k which gains one derivative over Tj,k and obeys good transport estimates,
and a scalar function Pj,k. This is achieved in Section 5.4.2, equation (5.31) below. In turn, the decomposition
(5.15) allows us to write the oscillation stress as

RO “
ÿ

j

χ2
j pR̊q ´ R̊q,jq `

˜

ÿ

j

χ2
j R̊q,j `

ÿ

j,k

Q̊j,k

¸

`RO,high

“: RO,approx `RO,low `RO,high , (5.16)

where we have used the notation R̊q,j and Q̊j,k to denote the traceless parts of Rq,j and Qj,k, respectively.
We have also used the fact that B already contains the Leray projector, so that it annihilates gradients.

5.4.2 The definition of Qj,k

Before explaining how we obtain the 2-tensor Qj,k and prior to estimating the three terms in (5.16), two
technical remarks are in order. First, since Pq`1,kbkpλq`1xq “ bkpλq`1xq, we may write

Pq`1,k rwq`1,j,k “ rwq`1,j,k ` χj
“

Pq`1,k, ak,jψq`1,j,k

‰

bkpλq`1xq (5.17)

and thus

wq`1 “
ÿ

j,k

rwq`1,j,k `
ÿ

j,k

χj
“

Pq`1,k, ak,jψq`1,j,k

‰

bkpλq`1xq. (5.18)

And second, since Λ and Pq`1,k commute, using (4.2) we may write

ΛPq`1,k rwq`1,j,k “ χjak,jψq`1,j,kPq`1,kΛbkpλq`1xq ` χjrPq`1,kΛ, ak,jψq`1,j,ksbkpλq`1xq

“ λq`1 rwq`1,j,k ` χjrPq`1,kΛ, ak,jψq`1,j,ksbkpλq`1xq. (5.19)

and thus

Λwq`1 “ λq`1

ÿ

j,k

rwq`1 `
ÿ

j,k

χjrPq`1,kΛ, ak,jψq`1,j,ksbkpλq`1xq. (5.20)

Let us define the potential vorticity associated to the perturbation Pq`1,k rwq`1,j,k as

ϑj,k “ ∇K ¨ Pq`1,k rwq`1,j,k. (5.21)

Using the identity

Λf ¨∇g ´ p∇gqT Λf “ ΛfKp∇K ¨ gq “
`

R
`

∇K ¨ f
˘˘

p∇K ¨ gq (5.22)

which holds for any vector fields f, g : T2 Ñ C2 with ∇ ¨ f “ 0, we may write Tj,k, as defined in (5.14), in the
convenient form

Tj,k “
1

2
ppRϑj,kqϑj,´k ` ϑj,kpRϑj,´kqq “: T pϑj,k, ϑj,´kq (5.23)
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where as usual R “ pR1,R2q is the Riesz-transform vector. Our goal next is to rewrite the operator T
defined by (5.23) as a sum of a pressure gradient and a divergence of a 2-tensor.

By an abuse of notation concerning Fourier transforms and Fourier series, we can rewrite T as a bilinear
Fourier operator whose `th component is given by

2
`

T `pf, gq
˘^
pξq “

ż

R2

pR`fq^pξ ´ ηqpgpηq dη `

ż

R2

pR`gq^pηq pfpξ ´ ηq dη

“

ż

R2

ipξ ´ ηq`

|ξ ´ η|
pfpξ ´ ηqpgpηq dη `

ż

R2

iη`

|η|
pgpηq pfpξ ´ ηq dη

“

ż

R2

ˆ

ipξ ´ ηq`

|ξ ´ η|
`
iη`

|η|

˙

pfpξ ´ ηqpgpηq dη .

Rearranging the symbol, we have that

ipξ ´ ηq`

|ξ ´ η|
`
iη`

|η|
“
i
`

pξ ´ ηq` |η| ` η` |ξ ´ η|
˘

|ξ ´ η| |η|

“
iξ` |η|

|ξ ´ η| |η|
`
iη` p|ξ ´ η| ´ |η|q

|ξ ´ η| |η|

“
iξ`

|ξ ´ η|
`

iη`

|ξ ´ η| |η|

ż 1

0

ˆ

d

dr
|η ´ rξ|

˙

dr

“
iξ`

|ξ ´ η|
´

iη`

|ξ ´ η| |η|
ξm

ż 1

0

pη ´ rξq
m

|η ´ rξ|
dr

“
`

iξ`
˘ 1

|ξ ´ η|
` piξmq

iη`

|η|

1

|ξ ´ η|
smpξ ´ η, ηq

where we define the symbol s : R2 ˆ R2 Ñ C by

smpζ, ηq “

ż 1

0

i pp1´ rqη ´ rζq
m

|p1´ rqη ´ rζ|
dr. (5.24)

An important property of the symbol sm (which will later be essential to our proof) is that

smp´η, ηq “
iηm

|η|
(5.25)

which is the symbol of the Riesz transform Rm. As a result of the above computations, may write

`

T `pf, gq
˘^
pξq “

iξ`

2

ż

R2

pfpξ ´ ηq

|ξ ´ η|
pgpηq dη `

iξm

2

ż

R2

smpξ ´ η, ηq
pfpξ ´ ηq

|ξ ´ η|

iηl

|η|
pgpηq dη. (5.26)

Upon defining the bilinear pseudo-product operator Sm in Fourier space as

pSmpf, gqq^ pξq :“

ż

R2

smpξ ´ η, ηq pfpξ ´ ηqpgpηq dη , (5.27)

we then obtain from (5.26) the following formula for T :

T `pf, gq “
1

2
B`pΛ

´1fgq `
1

2
BmpSmpΛ´1f,R`gqq . (5.28)

The representation (5.27) of the bilinear operator Sm is not very convenient to estimate; instead, we compute
the inverse Fourier transform with respect to ξ and rewrite Sm as

Smpf, gqpxq :“
1

p2πq2

ż ż

R2ˆR2

smpζ, ηq pfpζqpgpηqeix¨pζ`ηqdζ dη , (5.29)
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and upon further computing the inverse Fourier transform with respect to pη, ζq P R4, we rewrite Sm as
follows:

Smpf, gqpxq “
ż ż

R2ˆR2

Ksmpx´ y, x´ zqfpyqgpzqdydz , (5.30)

where Ksm is the inverse Fourier transform in R4 of sm. Thus, another way to view Sm is as a bilinear
convolution operator. We refer to [CM78, GT02, MS13] and Appendix A.6 for further properties of pseudo-
product operators of the type (5.24), and for the equivalence of the definitions (5.29)–(5.30).

In view of (5.23) and (5.28), we have now defined the tensor Qj,k and the scalar Pj,k in (5.15), namely

Tj,k “
1

2
∇
`

Λ´1ϑj,k ϑj,´k
˘

`
1

2
div

´

S
´

Λ´1ϑj,k,Rϑj,´k
¯¯

,

so that

pQj,kq
m`
“

1

2
Sm

`

Λ´1ϑj,k,R`ϑj,´k
˘

, (5.31)

Pj,k “ Λ´1ϑj,kϑj,´k ,

with the bilinear pseudo-product operator Sm being defined by (5.29).

5.4.3 Canceling the principal part of the RO,low stress

Before estimating RO,low, we need to extract the leading order term in the matrices Qj,k defined by (5.31).
For this purpose recall cf. (4.9) and (5.21) that

ϑj,k “ ∇K ¨
`

P«kλq`1
rwq`1,j,k ` pRbRqP«kλq`1

rwq`1,j,k

˘

“ P«kλq`1

`

∇K ¨ rwq`1,j,k

˘

.

Here pK«kλq`1
pξq “ pK«1pξ{λq`1´kq is the Fourier symbol of P«kλq`1

. Using the precise definition of rwq`1,j,k

in (4.17), the definition of bk and ck in (4.1), and the notation (4.18), we obtain

Λ´1ϑj,k “ Λ´1P«kλq`1

`

∇K ¨ rwq`1,j,k

˘

“ P«kλq`1
RK ¨ rwq`1,j,k

“ χjpik
Kq ¨RKP«kλq`1

´

ak,jψq`1,j,kckpλq`1xq
¯

(5.32)

and

R`ϑj,´k “ R`P«´kλq`1

`

∇K ¨ rwq`1,j,´k

˘

“ ´χjpik
Kq ¨∇KR`P«´kλq`1

´

ak,jψq`1,j,´kc´kpλq`1xq
¯

. (5.33)

We note that since multiplication by ckpλq`1xq results in a shift by λq`1k in frequency, the Fourier analogues
of (5.32) and (5.33) are

`

Λ´1ϑj,k
˘^
pξq “ ´χjptq

k ¨ ξ

|ξ|
pK«1

ˆ

ξ

λq`1
´ k

˙

pak,jψq`1,j,kq
^
pξ ´ kλq`1q (5.34)

and

`

R`ϑj,´k
˘^
pξq “ χjptqiξ

` pk ¨ ξq

|ξ|
K«1

ˆ

ξ

λq`1
` k

˙

pak,jψq`1,j,´kq
^
pξ ` kλq`1q. (5.35)
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Inserting (5.34)–(5.35) in formula (5.31), and recalling (5.27)–(5.29), we obtain that

Qm`
j,kpxq “

χ2
j ptq

2p2πq2

ż ż

R2ˆR2

p´ismpζ, ηqq
k ¨ ζ

|ζ|
pK«1

ˆ

ζ ´ kλq`1

λq`1

˙

pak,jψq`1,j,kq
^
pζ ´ kλq`1q

ˆ η`
k ¨ η

|η|
pK«1

ˆ

η ` kλq`1

λq`1

˙

pak,jψq`1,j,´kq
^
pη ` kλq`1qe

ix¨pζ`ηqdζdη

“
χ2
j ptq

2p2πq2

ż ż

R2ˆR2

p´ismpζ ` kλq`1, η ´ kλq`1qq
k ¨ pζ ` kλq`1q

|ζ ` kλq`1|
pK«1

ˆ

ζ

λq`1

˙

pak,jψq`1,j,kq
^
pζq

ˆ pη` ´ k`λq`1q
k ¨ pη ´ kλq`1q

|η ´ kλq`1|
pK«1

ˆ

η

λq`1

˙

pak,jψq`1,j,´kq
^
pηqeix¨pζ`ηqdζdη

“
χ2
j

2

1

p2πq2

ż ż

R2ˆR2

Mm`
k pζ, ηq pak,jψq`1,j,kq

^
pζq pak,jψq`1,j,´kq

^
pηqeix¨pζ`ηqdζdη (5.36)

where in the second to last line we have used the change of variables in ζ and η by shifting with ˘kλq`1, and
in the last line we have denoted

Mm`
k pζ, ηq

“ ´ismpζ ` kλq`1, η ´ kλq`1q
k ¨ pζ ` kλq`1q

|ζ ` kλq`1|
pK«1

ˆ

ζ

λq`1

˙

pη` ´ k`λq`1q
k ¨ pη ´ kλq`1q

|η ´ kλq`1|
pK«1

ˆ

η

λq`1

˙

“:

ż 1

0

Mm`
k,r pζ, ηqdr. (5.37)

and

Mm`
k,r pζ, ηq “

`

p1´ rqη ´ rζ ´ kλq`1

˘m

|p1´ rqη ´ rζ ´ kλq`1|
pη` ´ k`λq`1q

ˆ
k ¨ pζ ` kλq`1q

|ζ ` kλq`1|

k ¨ pη ´ kλq`1q

|η ´ kλq`1|
pK«1

ˆ

ζ

λq`1

˙

pK«1

ˆ

η

λq`1

˙

. (5.38)

We observe here that the multiplier Mm`
kr defined in (5.38) has two important features: the first concerns

smoothness and will allow us to establish bounds on the induced bilinear pseudo-product operator, while the
second concerns structure, and allows us to define the principal term in Qm`

j,k and cancel the leading order
term in the oscillation stress RO,low.

First, we note that by (5.37), we have that

Mm`
k,r pζ, ηq “ λq`1pM

˚
k,rq

m`

ˆ

ζ

λq`1
,

η

λq`1

˙

(5.39)

where

pM˚
k,rq

m`pξ1, ξ2q “

`

p1´ rqξ2 ´ rξ1 ´ k
˘m

|p1´ rqξ2 ´ rξ1 ´ k|
pξ`2 ´ k

`q
k ¨ pξ1 ` kq

|ξ1 ` k|

k ¨ pξ2 ´ kq

|ξ2 ´ k|
pK«1 pξ1q pK«1 pξ2q (5.40)

for ξ1, ξ2 P R2. We notice here that M˚
k,r is independent of λq`1, and that by the definition of pK«1, the

multiplier M˚
k,r is supported on pξ1, ξ2q P B1{8p0q ˆB1{8p0q. The latter property ensures that |ξ1 ` k| ě 1{2,

|ξ2 ´ k| ě 1{2, and |k ` p1´ rqξ1 ´ rξ2| ě 1{8. This ensures that the multiplier M˚
k,r is infinitely many times

differentiable, with bounds that are uniform in r P p0, 1q.
Second, we note that from (5.38) it follows that

Mm`
k,r p0, 0q “ ´λq`1k

mk` (5.41)

whenever k P S1. Moreover, by the definition of the inverse Fourier transform, we have that

1

p2πq2

ż ż

R2ˆR2

pak,jψq`1,j,kq
^
pζq pak,jψq`1,j,´kq

^
pηqeix¨pζ`ηqdζdη

“ ak,jpxqψq`1,j,kpxqak,jpxqψq`1,j,´kpxq

“ a2
k,jpxq , (5.42)
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since by (4.18), ψq`1,j,kpxqψq`1,j,´kpxq “ 1.
Therefore, combining (5.36)–(5.42), we decompose Qm`

j,k as a principal and commutator term:

Qm`
j,k “ ´

λq`1

2
χ2
j pk b kq

m`a2
k,j `

rQm`
j,k

“
λq`1

2
χ2
j

`

kK b kK ´ Id
˘ml

a2
k,j `

rQm`
j,k . (5.43)

where,t since |k| “ 1, TrpkK b kKq “ 1, and where

rQm`
j,kpxq “

χ2
j

2p2πq2

ż 1

0

ż ż

R2ˆR2

`

Mm`
k,r pζ, ηq ´M

m`
k,r p0, 0q

˘

ˆ pak,jψq`1,j,kq
^
pζq pak,jψq`1,j,´kq

^
pηqeix¨pζ`ηqdζdηdr.

Next, we use the mean value theorem together with (5.39), and find that

rQm`
j,kpxq “

χ2
j

2p2πq2

ż 1

0

ż 1

0

ż ż

R2ˆR2

`

pζ ¨∇ζ ` η ¨∇ηqM
m`
k,r

˘

pr̄ζ, r̄ηq

ˆ pak,jψq`1,j,kq
^
pζq pak,jψq`1,j,´kq

^
pηqeix¨pζ`ηqdζdηdr̄dr

“
χ2
j

2p2πq2

ż 1

0

ż 1

0

ż ż

R2ˆR2

`

´i∇ξ1pM
˚
k,rq

m`
˘

ˆ

r̄ζ

λq`1
,
r̄η

λq`1

˙

¨ p∇pak,jψq`1,j,kqq
^
pζq

ˆ pak,jψq`1,j,´kq
^
pηqeix¨pζ`ηqdζdηdr̄dr

`
χ2
j

2p2πq2

ż 1

0

ż 1

0

ż ż

R2ˆR2

`

´i∇ξ2pM
˚
k,rq

m`
˘

ˆ

r̄ζ

λq`1
,
r̄η

λq`1

˙

¨ p∇pak,jψq`1,j,´kqq
^
pηq

ˆ pak,jψq`1,j,kq
^
pζqeix¨pζ`ηqdζdηdr̄dr

“

´

rQp1qj,k
¯m`

pxq `
´

rQp2qj,k
¯m`

pxq. (5.44)

Note that rQ
p1q
j,k and rQ

p2q
j,k are both bilinear pseudo-product operators, and thus similarly to the equivalence

between (5.29)–(5.30) we may take the inverse Fourier transform of (5.44) with respect to the variable
pζ, ηq P R4. For pz1, z2q P R2ˆR2, we denote the inverse Fourier transforms of the above vectors of multipliers
as

pKp1qk,r,r̄q
m`pz1, z2q “

λ4
q`1

r̄4

`

´i∇ξ1pM
˚
k,rq

m`
˘_

ˆ

λq`1z1

r̄
,
λq`1z2

r̄

˙

, (5.45a)

pKp2qk,r,r̄q
m`pz1, z2q “

λ4
q`1

r̄4

`

´i∇ξ2pM
˚
k,rq

m`
˘_

ˆ

λq`1z1

r̄
,
λq`1z2

r̄

˙

. (5.45b)

It follows from basic scaling properties of the Fourier transform that

´

rQp1qj,k
¯m`

pxq “
χ2
j

2

ż 1

0

ż 1

0

ż ż

R2ˆR2

pKp1qk,r,r̄q
m`px´ z1, x´ z2q ¨∇pak,jψq`1,j,kqpz1q pak,jψq`1,j,´kq pz2qdz1dz2dr̄dr

“: χ2
j
rSp1q,m`k

`

∇pak,jψq`1,j,kq, ak,jψq`1,j,´k

˘

(5.46)

´

rQp2qj,k
¯m`

pxq “
χ2
j

2

ż 1

0

ż 1

0

ż ż

R2ˆR2

pKp2qk,r,r̄q
m`px´ z1, x´ z2q ¨∇pak,jψq`1,j,´kqpz2q pak,jψq`1,j,kq pz1qdz1dz2dr̄dr

“: χ2
j
rSp2q,m`k

`

ak,jψq`1,j,k,∇pak,jψq`1,j,´kq
˘

(5.47)

Here as usual we have identified the T2-periodic functions of z1 and z2 with their periodic extensions to all of
R2. The precise form of the above kernels appearing in (5.46)–(5.47) is not important. The only important
property of these kernels, which we will use repeatedly when bounding these bilinear convolution operators,
is that for i P t1, 2u, with the notation z “ pz1, z2q P R2 ˆ R2, we have that∥∥∥za∇b

zpK
piq
k,r,r̄q

m`
∥∥∥
L1
z1,z2

pR2ˆR2q
ď Ca,b

ˆ

λq`1

r̄

˙|b|´|a|

(5.48)
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uniformly for r P p0, 1q, and for all 0 ď |a|, |b| ď 1. The bound (5.48) follows upon rescaling from the fact
that the multiplier M˚

k,r defined in (5.40) is in C80 pB1{8p0q ˆB1{8p0qq, and thus so are Bξ1M
˚
k,r and Bξ2M

˚
k,r.

In summary, the decomposition (5.43)–(5.44), allows us to split the low frequency part of the oscillation
error, defined by (5.16), as

RO,low “ O̊1 ` O̊2

where the principal term O̊1 is the traceless part of

O1 “
ÿ

j

χ2
j R̊q,j `

λq`1

2

ÿ

j,k

`

kK b kK ´ Id
˘

χ2
ja

2
k,j (5.49)

while O̊2 is the traceless part of the commutator terms, given by

O2 “
ÿ

j,k

rQp1qj,k ` rQp2qj,k “ O21 `O22. (5.50)

The key observation here is that the O̊1 term vanishes. Indeed, by the definition of the ak in (4.15), and
of the functions γk in (4.5), we have

R̊q,j
λq`1

`
1

2

ÿ

kPΩj

a2
k,jpk

K b kKq “ ρjId ,

which shows that O̊1 “ 0, since the traceless part of a multiple of the identity is the zero matrix. Therefore,
we may summarize our computations in this section as

RO,low “ O̊21 ` O̊22 (5.51)

with O21 and O22 as defined by (5.44)–(5.50).

5.4.4 Amplitude of the RO,approx stress

In order to bound RO,approx, we recall cf. (4.12) that

´

R̊q ´ R̊q,j

¯

px, jτq`1q “ 0

where jτq`1 is the center of the time-support of χj , and moreover

Dt,q

´

R̊q ´ R̊q,j

¯

“ Dt,qR̊q. (5.52)

We may thus appeal to the inductive assumption (3.7) and the transport estimate (A.4) to find that∥∥∥R̊q ´ R̊q,j∥∥∥
C0psuppχjq

À τq`1λ
2
qδ

1{2
q λq`1δq`1

À λqδ
1{4
q δ

3{4
q`1 . (5.53)

Upon summing over j, we arrive at

‖RO,approx‖C0 ď
ÿ

j

χ2
j

∥∥∥R̊q ´ R̊q,j∥∥∥
C0psuppχjq

ď λqδ
1{4
q δ

3{4
q`1 . (5.54)
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5.4.5 Amplitude of the RO,low stress

The map from matrices to their traceless part is clearly bounded and thus in view of (5.51), we need to
estimate O21 and O22. We only show the estimate for O21, since the one for O22 is identical, upon changing
p1q with p2q below. For this purpose we use (5.46)–(5.47) and the kernel estimate (5.48) with |a| “ |b| “ 0 to
conclude that

‖O21‖C0 À
ÿ

j,k

χ2
j

∥∥∥ rSp1q,m`k

`

∇pak,jψq`1,j,kq, ak,jψq`1,j,´k

˘

∥∥∥
C0

À
ÿ

j,k

χ2
j ‖∇pak,jψq`1,k,jq‖C0 ‖ak,jψq`1,j,´k‖C0 sup

r,r̄Pp0,1q

∥∥∥pKp1qk,r,r̄qm`∥∥∥
L1pR2ˆR2q

À δ
1{2
q`1

´

λqδ
1{2
q`1 ` δ

1{2
q`1τq`1λq`1λ

2
qδ

1{2
q

¯

À δq`1τq`1λq`1λ
2
qδ

1{2
q

“ λqδ
1{4
q δ

3{4
q`1 .

Therefore
‖RO,low‖C0 ď λqδ

1{4
q δ

3{4
q`1 . (5.55)

5.4.6 Amplitude of the RO,high stress

We recall cf. (5.13) that

RO,high “ O3 ´O4 (5.56a)

O3 “ B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

`

ΛPq`1,k rwq`1,j,k

˘

¨∇
`

Pq`1,k1 rwq`1,j1,k1
˘

(5.56b)

O4 “ B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

`

∇Pq`1,k rwq`1,j,k

˘T
¨
`

ΛPq`1,k1 rwq`1,j1,k1
˘

. (5.56c)

The O3 estimate. Appealing to (5.17) and (5.19), we have that

O3 “ B rP«λq`1λq`1

ÿ

j,j1,k,k1

k`k1‰0

div
``

rwq`1,j,k

˘

b
`

rwq`1,j1,k1
˘ ˘

` B rP«λq`1 div

˜

ÿ

j,j1,k,k1

k`k1‰0

`

λq`1 rwq`1,j,k

˘

b
`

χj1
“

Pq`1,k1 , ak1,j1ψq`1,j1,k1
‰

bk1pλq`1xq
˘

¸

` B rP«λq`1 div

˜

ÿ

j,j1,k,k1

k`k1‰0

`

χjrPq`1,kΛ, ak,jψq`1,j,ksbkpλq`1xq
˘

b
`

Pq`1,k1 rwq`1,j1,k1
˘

¸

“: O31 `O32 `O33. (5.57)

For O31, we need to compute carefully the divergence before estimating it. From (4.4),

O31 “λq`1B rP«λq`1

˜

ÿ

j,j1,k,k1

k`k1‰0

χjχj1

ˆ

bk1pλq`1xq b bkpλq`1xq ´
1

2
bk1pλq`1xq ¨ bkpλq`1xqId

˙

ˆ∇ pak,jψq`1,j,kak1ψq`1,j1,k1q

¸
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We thus obtain from Lemma 4.4 that

}O31}C0 À
ÿ

j,j1,k,k1

‖χjχj1∇ pak,jψq`1,j,kak1ψq`1,j1,k1q‖C0

À λqδq`1 ` δq`1τq`1λq`1λ
2
qδ

1{2
q

À λqδ
1{4
q δ

3{4
q`1 . (5.58)

Using the commutator estimate (A.17) (with s “ 0 and λ “ λq`1; and respectively with s “ 1 and λ “ λq`1)
and Lemma 4.4, we have

‖O32‖C0 ` ‖O33‖C0 À
ÿ

j,j1,k,k1

‖ rwq`1,j,k‖C0 ‖∇pak1,j1ψq`1,j1,k1q‖C0psupppχj1 q

À δ
1{2
q`1

´

λqδ
1{2
q`1 ` δ

1{2
q`1τq`1λq`1λ

2
qδ

1{2
q

¯

À λqδ
1{4
q δ

3{4
q`1 .

Combining the above estimates yields

‖O3‖C0 ď λqδ
1{4
q δ

3{4
q`1. (5.59)

The O4 estimate. In order to bound the O4 part of the oscillation error, we note that

B
`

p∇ rwq`1,j,kq
T ¨ rwq`1,j1,k1 ` p∇ rwq`1,j1,k1q

T ¨ rwq`1,j,k

˘

“
1

2
B p∇ p rwq`1,j,k ¨ rwq`1,j1,k1qq “ 0 (5.60)

since B contains the Leray projector. Therefore, using (5.17) and (5.19) we obtain

O4 “ B rP«λq`1

˜

ÿ

j,j1,k,k1

k`k1‰0

`

χj∇
“

Pq`1,k, ak,jψq`1,j,ksbkpλq`1xq
˘T
¨ pλq`1 rwq`1,j1,k1q

¸

` B rP«λq`1

˜

ÿ

j,j1,k,k1

k`k1‰0

p∇Pq`1,k rwq`1,j,kq
T
¨
`

χj1
`“

Pq`1,k1Λ, ak1,j1ψq`1,j1,k1
‰

bk1pλq`1xq
˘˘

¸

“ O41 `O42. (5.61)

Appealing to the formula

∇
“

Pq`1,k, ak,jψq`1,j,ksbkpλq`1xq “
“

Pq`1,k,∇pak,jψq`1,j,kqsbkpλq`1xq `
“

Pq`1,k, ak,jψq`1,j,ks∇bkpλq`1xq,

the commutator estimate (A.17) (with s “ 0 and λ “ λq`1), and Lemma 4.4, we obtain the bound

‖O41‖C0 À λ´1
q`1

ÿ

j,j1,k,k1

´

λ´1
q`1

∥∥∇2pak,jψq`1,j,kq
∥∥
C0psuppχjq

` ‖∇pak,jψq`1,j,kq‖C0psuppχjq

¯

λq`1 ‖ rwq`1,j1,k1‖C0

À δ
1{2
q`1

´

λ´1
q`1λ

2
qδ

1{2
q`1 ` λ

´1
q`1τ

2
q`1λ

2
q`1λ

4
qδq ` λqδ

1{2
q`1 ` δ

1{2
q`1τq`1λq`1λ

2
qδ

1{2
q

¯

À
λ2
qδ

1{2
q δ

1{2
q`1

λq`1
` λqδ

1{4
q δ

3{4
q`1

À λqδ
1{4
q δ

3{4
q`1.

The term O42 is bounded similarly, by appealing to the commutator estimate (A.17) (with s “ 1 and
λ “ λq`1):

‖O42‖C0 À λ´1
q`1

ÿ

j,j1,k,k1

λq`1 ‖ rwq`1,j,k‖C0 ‖∇pak1,j1ψq`1,j1,k1q‖C0psuppχj1 q

À δ
1{2
q`1

´

λqδ
1{2
q`1 ` δ

1{2
q`1τq`1λ

2
qδ

1{2
q

¯

ď λqδ
1{4
q δ

3{4
q`1 .
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Combining the above estimates, we arrive at the bound

‖O4‖C0 À λqδ
1{4
q δ

3{4
q`1. (5.62)

5.4.7 Bound on RO

Combining the estimates (5.54), (5.55), (5.59) and (5.62) yields

‖RO‖C0 À λqδ
1{4
q δ

3{4
q`1 “ λ

´2` 5β
2

0 λq`2δq`2.

Assuming λ0 is sufficiently large and β ă 4
5 we obtain our claim.

5.4.8 Material derivative of the RO,approx stress

We recall cf. (5.16) and (5.52) that

Dt,qRO,approx “
ÿ

j

χ2
jDt,q

´

R̊q ´ R̊q,j

¯

` 2
ÿ

j

χjχ
1
j

´

R̊q ´ R̊q,j

¯

“
ÿ

j

χ2
j

´

Dt,qR̊q

¯

` 2
ÿ

j

χjχ
1
j

´

R̊q ´ R̊q,j

¯

.

Therefore, using the inductive estimate (3.7), the fact that the χ2
j form a partition of unity, and the previously

established bound (5.53), we obtain that

‖Dt,qRO,approx‖C0 À λ2
qδ

1{2
q λq`1δq`1 ` τ

´1
q`1

´

τq`1λ
2
qδ

1{2
q λq`1δq`1

¯

À λ2
qδ

1{2
q λq`1δq`1 .

5.4.9 Material derivative of the RO,low stress

Recall cf. (5.51) that RO,low “ O̊21 ` O̊22, terms which are defined in (5.50), with (5.46)–(5.47). Trivially,∥∥∥Dt,q

´

O̊21 ` O̊22

¯
∥∥∥
C0
ď ‖Dt,q pO21 `O22q‖C0 .

We only show the estimate for O21, since the one for O22 is identical, upon changing p1q with p2q below.

Note that in view of (5.48) the bilinear convolution operators defining rQ
p1q
j,k has a kernel which obeys the

conditions of Lemma A.9. Moreover, by construction we have

Dt,qpak,jψq`1,j,kq “ Dt,qpak,jψq`1,j,´kq “ 0

and thus, using the notation (A.22) we obtain

Dt,q

´

rSp1q,m`k p∇pak,jψq`1,j,kq, ak,jψq`1,j,´kq

¯

“ rSp1q,m`k pDt,q p∇pak,jψq`1,j,kqq , ak,jψq`1,j,´kq ` rSp1q,m`k p∇pak,jψq`1,j,kq, Dt,qpak,jψq`1,j,´kqq

`

”

Dt,q, rSp1q,m`k

ı

p∇pak,jψq`1,j,kq, ak,jψq`1,j,´kq

“ rSp1q,m`k p∇uq ¨∇pak,jψq`1,j,kq, ak,jψq`1,j,´kq `

”

Dt,q, rSp1q,m`k

ı

p∇pak,jψq`1,j,kq, ak,jψq`1,j,´kq.
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From (5.48) and Lemma A.9 it then follows that

‖Dt,qO21‖C0 À
ÿ

j,k

‖χj‖C0

∥∥χ1j∥∥C0

∥∥∥ rSp1q,m`k p∇pak,jψq`1,j,kq, ak,jψq`1,j,´kq

∥∥∥
C0

`
ÿ

j,k

∥∥χ2
j

∥∥
C0

∥∥∥ rSp1q,m`k p∇uq ¨∇pak,jψq`1,j,kq, ak,jψq`1,j,´kq

∥∥∥
C0

`
ÿ

j,k

∥∥χ2
j

∥∥
C0

∥∥∥”Dt,q, rSp1q,m`k

ı

p∇pak,jψq`1,j,kq, ak,jψq`1,j,´kq

∥∥∥
C0

À
ÿ

j,k

‖χj‖C0

∥∥χ1j∥∥C0 ‖∇pak,jψq`1,j,kq‖C0 ‖ak,jψq`1,j,´k‖C0

`
ÿ

j,k

∥∥χ2
j

∥∥
C0 ‖∇uq‖C0 ‖∇pak,jψq`1,j,kq‖C0 ‖ak,jψq`1,j,´k‖C0

À pτ´1
q`1 ` λ

2
qδ

1{2
q qpλqδ

1{2
q`1 ` δ

1{2
q`1τq`1λq`1λ

2
qδ

1{2
q qδ

1{2
q`1

À λ2
qλq`1δ

1{2
q δq`1

The estimate for O22 is similar, and we obtain that

‖Dt,qRO,low‖C0 ď λ2
qλq`1δ

1{2
q δq`1 .

5.4.10 Material derivative of the RO,high stress

Recall cf. (5.56), the decomposition of RO,high “ O3 ´O4. Applying Dt,q “ Bt ` uq ¨∇ to the O3 equation,
we find that

Dt,qO3 “

”

Dt,q,B rP«λq`1

ı

ÿ

j,j1,k,k1

k`k1‰0

`

ΛPq`1,k rwq`1,j,k

˘

¨∇
`

Pq`1,k1 rwq`1,j1,k1
˘

` B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

`

rDt,q,ΛPq`1,ks rwq`1,j,k

˘

¨∇
`

Pq`1,k1 rwq`1,j1,k1
˘

` B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

`

ΛPq`1,kpDt,q rwq`1,j,kq
˘

¨∇
`

Pq`1,k1 rwq`1,j1,k1
˘

` B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

`

ΛPq`1,k rwq`1,j,k

˘

¨ rDt,q,∇Pq`1,k1s
`

rwq`1,j1,k1
˘

` B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

`

ΛPq`1,k rwq`1,j,k

˘

¨∇Pq`1,k1
`

Dt,q rwq`1,j1,k1
˘

“: rO31 ` rO32 ` rO33 ` rO34 ` rO35.

The term rO31 is bounded directly using Corollary A.8, estimate (A.18), with λ “ λq`1 and s “ ´1 as∥∥∥ rO31

∥∥∥
C0
À λ´1

q`1 ‖∇uq‖C0

ÿ

j,j1,k,k1

λq`1 ‖ rwq`1,j,k‖C0 λq`1 ‖ rwq`1,j1,k1‖C0

À λq`1λ
2
qδ

1{2
q δq`1 .

Similarly, the terms rO32 and rO34 are bounded using (A.18) with λ “ λq`1 and s “ 1 as∥∥∥ rO32

∥∥∥
C0
`

∥∥∥ rO34

∥∥∥
C0
À λ´1

q`1

ÿ

j,j1,k,k1

λq`1 ‖∇uq‖C0 ‖ rwq`1,j,k‖C0 λq`1 ‖ rwq`1,j,k‖C0

À λq`1λ
2
qδ

1{2
q δq`1 .
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In order to bound rO33 and rO35 we note that by the construction of wq`1 we have that

Dt,q rwq`1,j,kpx, tq “ χ1jptqak,jpx, tqbkpλq`1Φjpx, tqq “
χ1jptq

χjptq
rwq`1,j,kpx, tq.

This fact allows us to rewrite rO33 and rO35 as follows:

rO33 “ B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

χ1j
χj

`

ΛPq`1,kp rwq`1,j,kq
˘

¨∇
`

Pq`1,k1 rwq`1,j1,k1
˘

,

rO35 “ B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

χ1j1

χj1

`

ΛPq`1,k rwq`1,j,k

˘

¨∇Pq`1,k1
`

rwq`1,j1,k1
˘

,

and upon noting that ∥∥∥∥χ1jχj
∥∥∥∥` ∥∥∥∥χ1j1χj1

∥∥∥∥ À τ´1
q`1 ,

we may use the bounds previously established for O3 to conclude that∥∥∥ rO33

∥∥∥
C0
`

∥∥∥ rO35

∥∥∥
C0
À τ´1

q`1 ‖O3‖C0

À τ´1
q`1λqδ

1{4
q δ

3{4
q`1

ď λq`1λ
2
qδ

1{2
q δq`1 .

Bounding the material derivative of O4 is very similar. We first write Dt,qO4 as

Dt,qO4 “

”

Dt,q,B rP«λq`1

ı

ÿ

j,j1,k,k1

k`k1‰0

`

∇Pq`1,k rwq`1,j,k

˘T
¨
`

ΛPq`1,k1 rwq`1,j1,k1
˘

` B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

`“

Dt,q,∇Pq`1,k

‰

rwq`1,j,k

˘T
¨
`

ΛPq`1,k1 rwq`1,j1,k1
˘

` B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

χ1j
χj

`

∇Pq`1,k rwq`1,j,k

˘T
¨
`

ΛPq`1,k1 rwq`1,j1,k1
˘

` B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

`

∇Pq`1,k rwq`1,j,k

˘T
¨
`“

ΛPq`1,k1 , Dt,q

‰

rwq`1,j1,k1
˘

` B rP«λq`1

ÿ

j,j1,k,k1

k`k1‰0

χ1j1

χj1

`“

Dt,q,∇Pq`1,k

‰

rwq`1,j,k

˘T
¨
`

ΛPq`1,k1 rwq`1,j1,k1
˘

,

and using similar arguments as above, together with the bound previously established on O4, we obtain that

‖Dt,qO4‖C0 À τ´1
q`1 ‖O4‖C0 ` λ

´1
q`1 ‖∇uq‖C0

ÿ

j,j1,k,k1

λq`1 ‖ rwq`1,j,k‖C0 λq`1 ‖ rwq`1,j1,k1‖C0

À τ´1
q`1λqδ

1{4
q δ

3{4
q`1 ` λq`1δq`1λ

2
qδ

1{2
q

À λ2
qλq`1δ

1{2
q δq`1 ,

which concludes the proof of the material derivative estimate for RO,high.
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5.4.11 Bound on the material derivative of RO

Combining all the estimates yields

‖Dt,qRO‖C0 À λ2
qλq`1δ

1{2
q δq`1 “ λ´3`3β

0 λ2
q`1 δ

1{2
q`1λq`2δq`2

from which we obtain our desired estimate if β ă 1 and λ0 is sufficiently large.

5.5 Concluding bounds on the new Reynolds stress

Combining all the estimates above, we now show that for the new Reynolds stress R̊q`1, estimate (3.4) holds
with q replaced by q ` 1 as follows:

Proposition 5.6. Assuming λ0 is sufficiently large then (3.4) and (3.7) hold, and

}R̊q}C0 ď εRλq`1δq`1 , (5.63)∥∥∥pBt ` uq ¨∇qR̊q∥∥∥
C0
ď λ2

qδ
1{2
q λq`1δq`1. (5.64)

Proof. The first estimate (5.63) follows directly from Lemmas 5.1–5.4. To prove (5.64), first note that since

‖Λwq`1‖C0 À λq`1δ
1{2
q`1, and R̊q`1 has compact support in frequency in the ball of radius 4λq`1, we obtain

from Lemmas 5.1–5.4 that if λ0 is sufficiently large, then∥∥∥Dt,q`1R̊q`1

∥∥∥
C0
ď

∥∥∥Dt,qR̊q`1

∥∥∥
C0
`

∥∥∥Λwq`1 ¨∇R̊q`1

∥∥∥
C0

ď
1

2
λ2
q`1δ

1{2
q`1λq`2δq`2 `

1

2
λq`1δ

1{2
q`1λq`1λq`2δq`2 “ λ2

q`1δ
1{2
q`1λq`2δq`2 .

6 The Hamiltonian increment

In this section, we conclude the proof of Proposition 3.1 by showing that (3.8) and (3.9) hold with q replaced
by q ` 1. We begin by stating some consequences of the inductive estimates in Section 3.2:

Lemma 6.1. If t is in the support of the cut-off function χj, then
ˇ

ˇ

ˇ

ˇ

ż

T2

ˆ

ˇ

ˇ

ˇ
Λ

1
2 vqpx, tq

ˇ

ˇ

ˇ

2

´

ˇ

ˇ

ˇ
Λ

1
2 vqpx, τq`1jq

ˇ

ˇ

ˇ

2
˙

dx

ˇ

ˇ

ˇ

ˇ

` |H ptq `H pτq`1jq| ď
λq`2δq`2

16
. (6.1)

Consequently, if ρj ‰ 0 then on the support of χj

λq`1 |ρptq ´ ρj | ď
λq`2δq`2

16
, (6.2)

and by the definition (4.14)

H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq

ˇ

ˇ

ˇ

2

dx ě
7λq`2δq`2

16
. (6.3)

If ρj “ 0 then by the definition (4.14) and (3.9)

epjτq`1q ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vqpx, jτq`1q

ˇ

ˇ

ˇ

2

dx ď
9λq`2δq`2

16
and R̊qp¨, tq ” 0 .

Proof. Using the equation for vq, we have that

ˇ

ˇ

ˇ

ˇ

ż

T2

ˆ

ˇ

ˇ

ˇ
Λ

1
2 vqpx, tq

ˇ

ˇ

ˇ

2

´

ˇ

ˇ

ˇ
Λ

1
2 vqpx, τq`1jq

ˇ

ˇ

ˇ

2
˙

dx

ˇ

ˇ

ˇ

ˇ

“ 2

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

τq`1j

Λ
1
2 vq ¨ div Λ

1
2Rq dx

ˇ

ˇ

ˇ

ˇ

ˇ

À |t´ τq`1j|λ
2
qδ

1
2
q λq`1δq`1

À τq`1λ
2
qδ

1
2
q δq`1λq`1

“ λqδ
1{4
q δ

3{4
q`1 ,
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where in the second to last line, we used that by our hypothesis |t´ τq`1j| ď 4τq`1. Trivially, we have that

|H ptq `H pτq`1jq| À τq`1 .

Thus,

ˇ

ˇ

ˇ

ˇ

ż

T2

ˆ

ˇ

ˇ

ˇ
Λ

1
2 vqpx, tq

ˇ

ˇ

ˇ

2

´

ˇ

ˇ

ˇ
Λ

1
2 vqpx, τq`1jq

ˇ

ˇ

ˇ

2
˙

dx

ˇ

ˇ

ˇ

ˇ

` |H ptq `H pτq`1jq| À
´

λ
´2`5β{2
0 ` λ

´3β{2
0 λ´3`3β

q`2

¯

λq`2δq`2

Hence, if β ă 4
5 , the lemma is proved.

We are now in position to prove that (3.8) and (3.9) hold with q replaced by q ` 1.

Proposition 6.2. If ρpjq ‰ 0 and t is in the support of χj, then

λq`2δq`2

4
ď H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq`1

ˇ

ˇ

ˇ

2

dx ď
3λq`2δq`2

4
. (6.4)

Otherwise, if t is not in the support of the cut-off χj with ρpjq ‰ 0, then

H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq`1

ˇ

ˇ

ˇ

2

dx ď
9λq`2δq`2

16
and R̊q`1p¨, tq ” 0 . (6.5)

As a consequence of (6.4) and (6.5), it follows that (3.8) and (3.9) hold with q replaced by q ` 1.

Proof. Assume that t is not on the support of any cut-off χj with ρj ‰ 0, then since wq`1p¨, tq ” 0 and

R̊q`1p¨, tq “ R̊qp¨, tq (see Lemma 6.1 above) then R̊q`1p¨, tq ” 0. Moreover, we have

H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq`1

ˇ

ˇ

ˇ

2

dx “ H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq

ˇ

ˇ

ˇ

2

dx,

and thus by (6.1) we obtain (6.5).
Now assume ρpjq ‰ 0 and t is on the support of χj . By computation it follows that

H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq`1

ˇ

ˇ

ˇ

2

dx “ H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq

ˇ

ˇ

ˇ

2

dx` 2

ż

T2

Λ
1
2 vq ¨ Λ

1
2wq`1 dx´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq

ˇ

ˇ

ˇ

2

dx

“ H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq

ˇ

ˇ

ˇ

2

dx´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2wq`1

ˇ

ˇ

ˇ

2

dx

where we used the disjoint frequency support of vq and wq`1. Utilizing the frequency supports of rwq`1,j,k we
obtain

ż

T2

ˇ

ˇ

ˇ
Λ

1
2wq`1

ˇ

ˇ

ˇ

2

dx “

ż

T2

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

k,k1,j,j1

Λ
1
2Pq`1,k rwq`1,j,k

ˇ

ˇ

ˇ

ˇ

ˇ

2

dx

“
ÿ

k,j1

ż

T2

Λ
1
2Pq`1,k rwq`1,j,k ¨ Λ

1
2Pq`1,´k rwq`1,j,´k dx

“
ÿ

k,j

ż

T2

Λ
1
2Pq`1,k pχjak,jbkpλq`1Φjqq ¨ Λ

1
2Pq`1,´k pχja´k,jb´kpλq`1Φjqq . dx

Then, by the definition of bk, estimates (5.18) and (5.20), and the fact that the mean of a high frequency
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object vanishes, it follows that

ż

T2

ˇ

ˇ

ˇ
Λ

1
2wq`1

ˇ

ˇ

ˇ

2

dx “

ż

T2

wq`1 ¨ Λwq`1 dx

“
ÿ

k,j

ż

T2

λq`1χ
2
j |ak|

2
dx

`
ÿ

j,k

ż

T2

χj
“

Pq`1,k, ak,jψq`1,j,k

‰

bkpλq`1xq ¨ Λwq`1 dx

`
ÿ

j,k

ż

T2

rwq`1,j,k ¨ χjrPq`1,´kΛ, ak,jψq`1,j,´ksb´kpλq`1xq dx

“: p2πq2λq`1

ÿ

j

χ2
jρj ` E1 ` E2.

Using Lemmas 4.3, 4.4, and A.6 we may estimate

E1 ` E2 À
ÿ

j,k

χj ‖∇pak,jψq`1,j,kq‖ δ1{2
q`1

À λqδq`1 ` λqδ
1{4
q δ

3{4
q`1

À λqδ
1{4
q δ

3{4
q`1 “ λ

´2`5β{2
0 λq`1δq`2.

Finally, applying (4.14), (6.2) and (6.3) and β ă 4{5 we obtain

λq`2δq`2

4
ď H ptq ´

ż

T2

ˇ

ˇ

ˇ
Λ

1
2 vq`1

ˇ

ˇ

ˇ

2

dx ď
3λq`2δq`2

4

which concludes the proof.

A Appendix

A.1 Variational principle for hydrodynamical systems

We provide a derivation of the system (1.10). Many models of incompressible hydrodynamical systems
can be written as geodesic equations of right-invariant metrics on the Lie group Dµ, the group of volume-
preserving diffeomorphisms, with group multiplication given by composition on the right. The Lie algebra V
associated to this group is the vector space of divergence-free vector fields. The Lie bracket on V is given by
ru, vs “ Bjuv

j ´ Bjvu
j .

On V we (formally) define the metric

pu,wq “

ż

T2

Au ¨ w dx ,

where A is a self-adjoint, positive operator. This metric is then right-translated over the Lie group Dµ. We
then define the Lagrangian function l on the Lie algebra V by

lpuq “
1

2
pu, uq “

ż

T2

Au ¨ u dx . (A.1)

The well-known Euler-Poincaré variational principle provides a simple procedure for computing the
equations of motion associated to the Lagrangian l on the Lie algebra V . We shall state this as the following
proposition, whose proof can be found in Chapter 13 of [MR99]).

Proposition A.1 (Euler-Poincaré Variational Principle). With l : V Ñ R given by (A.1), the following are
equivalent:
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(a) uptq :“ upt, ¨q is a geodesic curve, solving

d

dt

δl

δu
“ ´ ad˚u

δl

δu
,

where ad˚u is defined by
pad˚u v, wq “ ´pv, ru,wsq,

for u, v, w in V;

(b) the curve uptq is an extremum of the action function

spuq “

ż

lpuptqqdt,

for variations of the form
δu “ Btw ` rw, us,

where w P V vanishes at the endpoints t “ 0 and t “ T .

We make use of Proposition A.1 (b) to derive (1.10). We define the potential velocity

v “ Au,

and compute the first variation of spuq “
şT

0
lpuqdt:

δspuq ¨ δu “

ż T

0

ż

T2

v ¨ δu dxdt

“

ż T

0

ż

T2

vi
`

Btw
i ` Bjw

iuj ´ Bju
iwj

˘

dxdt

“ ´

ż T

0

ż

T2

`

Btv
i ` Bjv

iuj ` Biu
jvj

˘

wi dxdt .

Setting δspuq ¨ δu “ 0 for all divergence-free variations w, and applying the Hodge decomposition, we find
that there exists a pressure function rp : T2 Ñ R such that

Btv
i ` Bjv

iuj ` Biu
jvj “ ´Birp , (A.2a)

div u “ 0 , (A.2b)

which is the general hydrodynamical system (1.10).

A.2 Transport and composition estimates

In this section we gather some classical estimates for transport equations. For refer the reader to e.g. [Buc14,
Section 4.3] or [BDLISJ15, Proposition D.1] for proofs of these classical facts.

In this section we recall some well known results regarding smooth solutions of the transport equation:

Btf ` u ¨∇f “ g, (A.3a)

f |t0 “ f0, (A.3b)

where u “ upt, xq is a given smooth vector field. We denote the corresponding material derivative by
Dt “ Bt ` u ¨ ∇. Moreover, define by Φpt, ¨q to be the inverse of the flow associated to the vector field u
starting at time t0 as the identity, i.e., Φ “ X´1, where d

dtXpx, tq “ upXpx, tq, tq and Xpx, t0q “ x. Then we
have:
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Lemma A.2 (Transport estimates). Assume t ą t0. Any solution f of (A.3) satisfies

‖fptq‖C0 ď ‖f0‖C0 `

ż t

t0

‖gpτq‖C0 dτ , (A.4)

‖Dfptq‖C0 ď ‖Df0‖C0 e
pt´t0q‖Du‖C0 `

ż t

t0

ept´τq‖Du‖C0 ‖Dgpτq‖C0 dτ , (A.5)

and, more generally, for any N ě 2 there exists a constant C “ CpNq so that∥∥DNfptq
∥∥
C0 ď

`∥∥DNf0

∥∥
C0 ` Cpt´ t0q

∥∥DNu
∥∥
C0 ‖Df0‖C0

˘

eCpt´t0q‖Du‖C0

`

ż t

t0

eCpt´τq‖Du‖C0
`
∥∥DNgpτq

∥∥
C0 ` Cpt´ τq

∥∥DNv
∥∥
C0 ‖Dgpτq‖C0

˘

dτ. (A.6)

Moreover,

‖DΦptq ´ Id‖C0 ď ept´t0q‖Du‖C0 ´ 1 ď pt´ t0q ‖Du‖C0 e
pt´t0q‖Du‖C0 , (A.7)∥∥DNΦptq

∥∥
C0 ď Cpt´ t0q

∥∥DNu
∥∥
C0 e

Cpt´t0q‖Du‖C0 , (A.8)

holds for all N ě 2 and a suitable constant C “ CpNq.

In order to take advantage of Lemma A.2 we also need to appeal to the following standard composition
estimate:

Lemma A.3 (Chain rule). Let Ψ : Ω Ñ R and u : Rd Ñ Ω be two smooth functions, with Ω Ă RD. Then,
for every N P Nzt0u there is a constant C such that∥∥DN pΨ ˝ uq

∥∥
C0 ď C

´

‖DΨ‖C0

∥∥DNu
∥∥
C0 ` }DΨ}CN´1 ‖u‖N´1

C0

∥∥DNu
∥∥
C0

¯

. (A.9)∥∥DN pΨ ˝ uq
∥∥
C0 ď C

´

‖DΨ‖C0

∥∥DNu
∥∥
C0 ` }DΨ}CN´1 ‖Du‖NC0

¯

. (A.10)

where C “ CpN, d,Dq.

A.3 Inverse of the divergence

In this section we prove a number of estimates for the operator B defined in Definition 4.1. We take advantage
of the frequency localization of our perturbation and establish the following lemma.

Lemma A.4 (Inverse divergence gains a derivative). Let B be as defined in Definition 4.1. For f : T2 Ñ C2

that is smooth, we have that

divpBfq “ P
ˆ

f ´
1

|T2|

ż

T2

fpxqdx

˙

,

and Bf is a symmetric, trace-free matrix. Fix λ ě 1, and denote by P«λ a Fourier multiplier operator with
symbol that is supported on tξ : λ{2 ď |ξ| ď 2λu and is identically 1 on tξ : 3λ{4 ď |ξ| ď 3λ{2u. Then, for a
smooth functions f, g : T2 Ñ C, with suppppgpξqq Ă tξ : |ξ| ď λ{4u, we have

∥∥B`gpxqP«λfpxq˘∥∥C0 À
‖g‖C0 ‖P«λf‖C0

λ
À

‖g‖C0 ‖f‖C0

λ
(A.11)

‖rB, gpxqsP«λfpxq‖C0 À
‖g‖C1 ‖P«λf‖C0

λ2
À

‖g‖C1 ‖f‖C0

λ2
(A.12)

for some implicit universal constant C ą 0.

Proof of Lemma A.4. The first assertions follow directly from the definition of B. In order to prove (A.11)
we note that by the assumption on the frequency support of g, we have

gpxqP«λfpxq “ rP«λ
`

gpxqP«λfpxq
˘
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where we have denoted

rP«λ “ P«2j´2λ ` P«2j´1λ ` P«2jλ ` P«2j`1λ.

Thus, by the definition of B and applying twice the Bernstein inequality on L8, we obtain∥∥B`gpxqP«λfpxq˘∥∥C0 À
1

λ
‖gpxqP«λfpxq‖C0 À

1

λ
‖g‖C0 ‖f‖C0 .

Lastly, in order to prove (A.12) we note that since B has components which are Fourier multipliers, we
have

rB, gsP«λf “ B
`

gP«λf
˘

´ gBP«λf

“ B rP«λ
`

gP«λf
˘

´ gB rP«λP«λf

“ rB rP«λ, gsP«λf.

Denoting by K«λ the real convolution kernel corresponding to the Fourier multiplier operator B rP«λ (which
is a symbol of order ´1), one may check that it obeys the bounds∥∥|x|b∇aK«λpxq

∥∥
L1pR2q

ď Cλa´b´1 (A.13)

for all a, b ě 0, and some constant C “ Cpa, bq. Therefore, by the mean value theorem

rB rP«λ, gsP«λfpxq “

ż

Rd
pgpyq ´ gpxqqK«λpx´ yqP«λfpyqdy

“ ´

ż

Rd

ˆ
ż 1

0

∇gpy ´ τpy ´ xqqdτ
˙

¨ py ´ xqK«λpx´ yqP«λfpyqdy

and the kernel estimate (A.13) with b “ 1 and a “ 0 we arrive at∥∥∥rB rP«λ, gsP«λf
∥∥∥
C0
À ‖Dg‖C0 ‖|x|K«λpxq‖L1 ‖P«λf‖C0

À λ´2 ‖g‖C1 ‖f‖C0 .

This concludes the proof of the lemma.

A.4 Calderon commutator

We recall cf. [LR02, Theorem 10.3, Page 99] and [Mar08, Lemma 2.2, Page 50].

Lemma A.5 (Calderon commutator). Let p P p1,8q and ϕ PW 1,8pT2q. Then for any v P LppT2q with zero
mean on T2 we have that

‖rΛ, ϕsv‖Lp Àp ‖ϕ‖W 1,8 ‖v‖Lp (A.14)

where the constant implicitly depends on p. Moreover, for s P r0, 1s, if ϕ P W 2,8pT2q and v P HspT2q has
zero mean on T2, then17

‖rΛ, ϕsv‖Hs Às ‖ϕ‖W 2,8 ‖v‖Hs (A.15)

Note that in the aforementioned references the results are stated for functions defined on R2, whose
Fourier support is at a positive distance from the origin. The same proofs work in the periodic case T2, if the
functions we consider have zero mean. To see that (A.14) holds one uses the Poisson summation convention

17The constant in (A.15) is not sharp. See e.g. [Mar08] where the constant is given as max

"

‖∇ϕ‖C0 , ‖ϕ‖ 9B2
2,8

*

.
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to write the kernel associated to Λ as in [CC04], so that off the diagonal, the singular integral kernel K
associated to rΛ, ϕs is given by

Kpx, yq “ c
ÿ

kPZ2

ϕpxq ´ ϕpyq

|x´ y ´ k|3

For k “ 0 the proof closely follows the R2 case, while for k ‰ 0 we are dealing with an L1 kernel. Assertion
(A.15) spaces follows from the case s “ 0 (which holds by letting p “ 2 in (A.14)), the case s “ 1 (which
holds since ∇rΛ, ϕs “ rΛ, ϕs∇ ` rΛ,∇ϕs and the bound (A.14) with p “ 2), and interpolation. We omit
further details.

A.5 Material derivatives and convolution operators

We recall (similarly to [IV15, Lemma 7.2]) a commutator estimate involving convolution operators and
material derivatives.

Lemma A.6. Let s P R, λ ě 1, and let TK be an order s convolution operator localized at length scale λ´1.
That is, TK acts on smooth functions f as

TKfpxq “

ż

R2

Kpyqfpx´ yqdy

for some kernel K : R2 Ñ R that obeys∥∥|x|a∇bKpxq
∥∥
L1pR2q

À λb´a`s (A.16)

for all 0 ď a, |b| ď 1 and some implicit constants C “ Cpa, bq. Then, for any smooth function f : T2 Ñ C
and smooth incompressible vector field u : T2 Ñ R2 we have

‖ru ¨∇, TKsf‖C0 ď λs ‖∇u‖C0 ‖f‖C0 .

Similarly, we have

‖rb, TKsf‖C0 ď λs´1 ‖∇b‖C0 ‖f‖C0 (A.17)

for smooth functions b, f : T2 Ñ C.

Proof of Lemma A.6. The proof is direct, and uses that div u “ 0. We have

|TKpu ¨∇fqpxq ´ upxq ¨∇TKfpxq| “
ˇ

ˇ

ˇ

ˇ

ż

R2

pupxq ´ upx´ yqq ¨∇fpx´ yqKpyqdy
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

R2

pupxq ´ upx´ yqq ¨∇Kpyqfpx´ yqdy
ˇ

ˇ

ˇ

ˇ

ď ‖∇u‖C0

ż

R2

|fpx´ yq||y||∇Kpyq|dy

ď ‖∇u‖C0 ‖f‖C0 ‖|y|∇Kpyq‖L1

at which stage we use that the kernel is integrable cf. (A.16).
For the second assertion, we use the mean value theorem. We have

|TKpb fqpxq ´ bpxqTKfpxq| “

ˇ

ˇ

ˇ

ˇ

ż

R2

pbpxq ´ bpx´ yqq fpx´ yqKpyqdy

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ż

R2

ˆ
ż 1

0

∇bpx´ λyqdλ
˙

¨ yKpyqfpx´ yqdy

ˇ

ˇ

ˇ

ˇ

ď ‖∇b‖C0 ‖f‖C0 ‖|y|Kpyq‖L1

so that the proof is completed upon using (A.16).

43



T. Buckmaster, S. Shkoller, V. Vicol Nonuniqueness of weak solutions to SQG

Remark A.7. When s “ 0, examples of such operators TK are given by zero-order Fourier multiplier
operators with frequency support inside a shell at |ξ| « λ. For instance, the kernel associated to the operator
Pq`1,k obeys (A.16) for λ “ λq`1, and s “ 0. Similarly, the kernel associated to the Fourier multiplier
operator ΛPq`1,k obeys (A.16) for λ “ λq`1, and s “ 1, while the kernel of BPq`1,k obeys (A.16) for λ “ λq`1,
and s “ ´1.

An immediate consequence of Lemma A.6 is:

Corollary A.8. Let λ ě 1, s P R, and let K be a kernel which obeys (A.16). Given a smooth divergence
free vector field u : T2 Ñ R2, we have

‖rDt, TKsf‖C0 À λs ‖∇u‖C0 ‖f‖C0 . (A.18)

where as usual we denote Dt “ Bt ` u ¨∇.

A.6 Material derivatives and bilinear convolution operators

The bilinear convolution operators we are interested here arise from pseudo-product operators, as defined
by Coifman and Meyer [CM78]. Equivalently, these are translation invariant multilinear operators, see
e.g. [GT02, Section 6] and [MS13, Chapter 2.13] for details. Let ξ “ pξ1, ξ2q P R2ˆR2. Let M : R2ˆR2 Ñ R
be a smooth multiplier. For two Schwartz functions f1, f2 : R2 Ñ R, define the bilinear pseudo-product
operator SM pf1, f2q by

SM pf1, f2qpxq “
1

p2πq2

ż ż

R2ˆR2

Mpξ1, ξ2q pf1pξ1q pf2pξ2qe
ix¨pξ1`ξ2qdξ1dξ2. (A.19)

Equivalently, denoting by KM pz1, z2q “M_pz1, z2q the inverse Fourier transform of M in R2 ˆ R2, we may
write

SM pf1, f2qpxq “

ż ż

R2ˆR2

KM px´ y1, x´ y2qf1py1qf2py2qdy1dy2 (A.20)

for Schwartz functions f1, f2 : R2 Ñ R. As opposed to [CM78, GT02] which consider kernels of Calderón-
Zygmund type, here we only need to consider kernels KM which obey∥∥|z|aBbzKM pzq

∥∥
L1pR2ˆR2q

ď Ca,bλ
|b|´|a| (A.21)

for some λ ě 1, all 0 ď |a|, |b| ď 1 and some constants Ca,b ą 0. Examples are the kernels defined in (5.45).
Therefore, in contrast to [CM78, Theorem 1], for us the boundedness of SM from Lp1 ˆ Lp2 Ñ Lp, where
1{p1 ` 1{p2 “ 1{p is automatic, and even includes the case p1 “ p2 “ p “ 8, which is the only case needed in
this paper.

Instead, here we are interested in the commutator between SM and Dt “ Bt ` u ¨∇x, where u : R2 Ñ R2,
which is divergence free vector field. We have

Lemma A.9. Let λ ě 1, let KM be a kernel which obeys (A.21), and let SM be the corresponding bilinear
convolution operator given by (A.20). Given a smooth divergence free vector field u : T2 Ñ R2, we denote

rDt, SM spf1, f2q “ DtpSM pf1, f2qq ´ SM pDtf1, f2q ´ SM pf1, Dtf2q. (A.22)

Then we have

‖rDt, SM spf1, f2q‖C0 ď C ‖∇u‖C0 ‖f1‖C0 ‖f2‖C0 (A.23)

for some constant C ą 0, which is independent of λ.
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Proof of Lemma A.9. Upon taking a material derivative of (A.20) and using the product rule, we obtain

DtpSM pf1, f2qqpxq ´ SM pDtf1, f2qpxq ´ SM pf1, Dtf2qpxq

“

ż ż

R2ˆR2

ujpxqBjxKM px´ y1, x´ y2qfpy1qfpy2qdy1dy2

´

ż ż

R2ˆR2

KM px´ y1, x´ y2qu
jpy1qB

j
y1fpy1qfpy2qdy1dy2

´

ż ż

R2ˆR2

KM px´ y1, x´ y2qfpy1qu
jpy2qB

j
y2fpy2qdy1dy2

“

ż ż

R2ˆR2

`

ujpxqBjz1KM px´ y1, x´ y2q ` u
jpxqBjz2KM px´ y1, x´ y2q

˘

fpy1qfpy2qdy1dy2

`

ż ż

R2ˆR2

ujpy1qB
j
y1KM px´ y1, x´ y2qfpy1qfpy2qdy1dy2

`

ż ż

R2ˆR2

ujpy2qB
j
y2KM px´ y1, x´ y2qfpy1qfpy2qdy1dy2

“

ż ż

R2ˆR2

``

ujpxq ´ ujpy1q
˘

Bjz1KM px´ y1, x´ y2q `
`

ujpxq ´ ujpy2q
˘

Bjz2KM px´ y1, x´ y2q
˘

ˆ fpy1qfpy2qdy1dy2

“

ż ż

R2ˆR2

ˆ

ujpxq ´ ujpy1q

x´ y1

˙

px´ y1qB
j
z1KM px´ y1, x´ y2qfpy1qfpy2qdy1dy2

`

ż ż

R2ˆR2

ˆ

ujpxq ´ ujpy2q

x´ y2

˙

px´ y2qB
j
z2KM px´ y1, x´ y2qfpy1qfpy2qdy1dy2.

The lemma now follows from condition (A.21) with |a| “ |b| “ 1.
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[DLS16] C. De Lellis and L. Székelyhidi, Jr. High dimensionality and h-principle in PDE. arXiv:1609.03180,
2016.
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