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Abstract

For any positive regularity parameter 8 < 1/2, we construct non-conservative weak solutions of the 3D
incompressible Euler equations which lie in H? uniformly in time. In particular, we construct solutions
which have an L?-based regularity index strictly larger than 1/3, thus deviating from the H '/3_regularity
corresponding to the Kolmogorov-Obhukov 5/3 power spectrum in the inertial range.
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1 Introduction

We consider the homogeneous incompressible Euler equations

v +div(vev)+Vp=0 (1.1a)
dive =0 (1.1b)

for the unknown velocity vector field v and scalar pressure field p, posed on the the three dimensional box
T3 = [—7, 7]® with periodic boundary conditions. We consider weak solutions of (1.1), which may be defined



in the usual way for v € L7L2.

We show that within the class of weak solutions of regularity C’?H;/ *~, the 3D Euler system (1.1) is
flezible.r An example of this flexibility is provided by:

Theorem 1.1 (Main result). Fiz 3 € (0,1/2). For any divergence-free vstart, Vend € L?(T3) which have the
same mean, any T > 0, and any € > 0, there exists a weak solution v € C([0,T]; H?(T3)) to the 3D Euler
equations (1.1) such that ||Jv(-,0) — 'UstartHLZ(’E3) <e€and |v(-,T) — UcndHLz(Tg,) <e.

Since the vector field venq may be chosen to have a much higher (or much lower) kinetic energy than the
vector field vgiart, the above result shows the existence of infinitely many non-conservative weak solutions of
3D Euler in the regularity class C?H;/ *”. Theorem 1.1 further shows that the set of so-called wild initial
data is dense in the space of L? periodic functions of given mean. The novelty of this result is that these
weak solutions have more than 1/3 regularity, when measured on a L2-based Banach scale.

Remark 1.2 (Corollaries of the proof). We have chosen to state the flexibility of the 3D Euler equations
as in Theorem 1.1 because it is a simple way to exhibit weak solutions which are non-conservative, leaving the
entire emphasis of the proof on the regularity class in which the weak solutions lie. Using by now standard
approaches encountered in convex integration constructions for the Euler equations, we may alternatively

establish the following variants of flexibility for (1.1) within the class of C’?H;/ *~ weak solutions:

(a) The proof of Theorem 1.1 also shows that: given any 8 < 1/2, T > 0, and E > 0, there exists a weak
solution v € C(R, H(T3)) of the 3D Euler equations such that: supp,v C [-T,T], and |[v(-,0) 2 >
E. Such weak solutions are nontrivial and have compact support in time, thereby implying the non-

uniqueness of weak solutions to (1.1) in the regularity class C?H;/ *7. The argument is sketched in
Remark 3.7 below.

(b) The proof of Theorem 1.1 may be modified to show that: given any § € (0,1/2), and any C* smooth
function e: [0,T] — (0, 00), there exists a weak solution v € C°([0, T]; H?(T®)) of the 3D Euler equations,
such that v(-,t) has kinetic energy e(t), for all t € [0,T]. In particular, the flexibility of 3D Euler in
CYH ;/ >~ may be shown to also hold within the class of dissipative weak solutions, by choosing e to be a
non-increasing function of time. This is further discussed in Remark 3.8 below.

1.1 Context and motivation

Classical solutions of the Cauchy problem for the 3D Euler equations (1.1) are known to exist, locally in
time, for initial velocities which lie in C*® for some a > 0 (see e.g. Lichtenstein [48]). These solutions are
unique, and they conserve (in time) the kinetic energy £(t) = 3 [1s [v(z, t)[*dz, giving two manifestations of
rigidity of the Fuler equations within the class of smooth solutions.

Motivated by hydrodynamic turbulence, it is natural to consider a much broader class of solutions to the
3D Euler system; these are the distributional or weak solutions of (1.1), which may be defined in the natural
way as soon as v € L7L2, since (1.1) is in divergence form. Indeed, one of the fundamental assumptions of
Kolmogorov’s 41 theory of turbulence [46] is that in the infinite Reynolds number limit, turbulent solutions
of the 3D Navier-Stokes equations exhibit anomalous dissipation of kinetic energy; by now, this is considered
to be an experimental fact, see e.g. the book of Frisch [39] for a detailed account. In particular, this
anomalous dissipation of energy necessitates that the family of Navier-Stokes solutions does not remain
uniformly bounded in the topology of LE’B?’OO@ for any a > 1/3, as the Reynolds number diverges, as was
alluded to in the work of Onsager [57].> Thus, in the infinite Reynolds number limit for turbulent solutions
of 3D Navier-Stokes, one expects the convergence to weak solutions of 3D Fuler, not classical ones.

1Loosely speaking, we consider a system of partial differential equations of physical origin to be flexible in a certain regularity
class, if at this regularity level the PDEs are not anymore predictive: there exist infinitely many solutions, which behave in
a non-physical way, in stark contrast to the behavior of the PDE in the smooth category. We refer the interested reader to
the discussion in the surveys of De Lellis and Székelyhidi Jr. [30, 32] which draw the analogy with the flexibility in Gromov’s
h-principle [40].

20nsager did not use the Besov norm HUHBg o= lvll Ly +sup). >0 1217 [[v(- + 2) — v(-)|| Lp; here we use this modern notation
and the sharp version of this conclusion, cf. Constantin, E, and Titi [22], Duchon and Robert [35], Drivas and Eyink [34].



It turns out that even in the context of weak solutions, the 3D Euler equations enjoy some conditional
variants of rigidity. An example is the classical weak-strong uniqueness property.> Another example is the
question of whether weak solutions of the 3D Euler equation conserve kinetic energy. This is the subject of
the Onsager conjecture [57], one of the most celebrated connections between phenomenological theories in
turbulence and the rigorous mathematical analysis of the PDEs of fluid dynamics. For a detailed account we
refer the reader to the reviews [37, 21, 60, 30, 63, 32, 33, 12, 14] and mention here only a few of the results
in the Onsager program for 3D Euler.

Constantin, E, and Titi [22] established the rigid side of the Onsager conjecture, which states that if a
weak solution v of (1.1) lies in L?Bgow for some 8 > 1/3, then v conserves its kinetic energy. The endpoint
case § = 1/3 was addressed by Cheskidov, Constantin, Friedlander, and Shvydkoy [16], who established a
criterion which is known to be sharp in the context of 1D Burgers. By using the Bernstein inequality to
transfer information from L2 into L3 , the authors of [16] also prove energy-rigidity for weak solutions based
on a regularity condition for an L2 based scale: if v € L}H? with 8 > 5/6, then v conserves kinetic energy
(see also the work of Sulem and Frisch [62]). We emphasize the discrepancy between the energy-rigidity
threshold exponents 5/6 for the L?-based Sobolev scale, and 1/3 for LP-based regularity scales with p > 3.

The first flexibility results were obtained by Scheffer [58], who constructed non-trivial weak solutions of
the 2D Euler system, which lie in L?L2 and have compact support in space and time. The existence of
infinitely many dissipative weak solutions to the Euler equations was first proven by Shnirelman in [59], in
the regularity class L{°L2. Inspired by the work [53] of Miiller and Sverak for Lipschitz differential inclusions,
in [29] De Lellis and Székelyhidi Jr. have constructed infinitely many dissipative weak solutions of (1.1) in the
regularity class L° LS° and have developed a systematic program towards the resolution of the flexible of the
Onsager conjecture, using the technique of convez integration. Inspired by Nash’s paradoxical constructions
for the isometric embedding problem [54], the first proof of flexibility of the 3D Euler system in a Holder
space was given by De Lellis and Székelyhidi Jr. in the work [31]. This breakthrough or crossing of the L$°
to CY barrier in convex integration for 3D Euler [31] has in turn spurred a number of results [8, 6, 9, 27
which have used finer properties of the Euler equations to increase the regularity of the wild weak solutions
being constructed. The flexible part of the Onsager conjecture was finally resolved by Isett [43, 42] in the
context of weak solutions with compact support in time (see also the subsequent work by the first and
last authors with De Lellis and Székelyhidi Jr. [11] for dissipative weak solutions), by showing that for any
regularity parameter 8 < 1/3, the 3D Euler system (1.1) is flexible in the class of Cg . weak solutions. We
refer the reader to the review papers [30, 63, 32, 33, 12, 14] for more details concerning convex integration
constructions in fluid dynamics, and for open problems in this area.

Since the aforementioned convex integration constructions are spatially homogenous, they yield weak
solutions whose Holder regularity index cannot be taken to be larger than 1/3 (recall that weak solutions in
L3C8 with 8 > 1/3 must conserve kinetic energy). However, the exponent 1/3 is not expected to be a sharp
threshold for energy-rigidity/flexibility if the weak solutions’ regularity is measured on an LP-based Banach
scale with p < 3. This expectation stems from the measured intermittent nature of turbulent flows, see
e.g. Frisch [39, Figure 8.8, page 132]. In broad terms, intermittency is characterized as a deviation from
the Kolmogorov ’41 scaling laws, which were derived under the assumptions of homogeneity and isotropy
(for a rigorous way to measure this deviation, see Cheskidov and Shvydkoy [20]). A common signature of
intermittency is that for p # 3, the p*® order structure function? exponents (p deviate from the Kolmogorov-
predicted values of /3. We note that the regularity statement v € C?B;’OO corresponds to a structure
function exponent ¢, = sp; that is, Kolmogorov ’41 predicts that s = 1/3 for all p. The exponent p = 2 plays
a special role, as it allows one to measure the intermittent nature of turbulent flows on the Fourier side as
a power-law decay of the energy spectrum. Throughout the last five decades, the experimentally measured
values of (5 (in the inertial range, for viscous flows at very high Reynolds numbers) have been consistently

31f v is a strong solution of the Cauchy problem for (1.1) with initial datum vg € L2, and w € L{*L2 is merely a weak
solution of the Cauchy problem for (1.1), which has the additional property that it its kinetic energy £(t) is less than the kinetic
energy of vg, for a.e. ¢t > 0, then in fact v = w. See e.g. the review [65] for a detailed account.

4In analogy with LP-based Besov spaces, absolute p!" order structure functions are typically defined as Sp(0) =

fOT ng, sz |v(z + £z,t) — v(z,t)|Pdzdxdt. The structure function exponents in Kolmogorov’s 41 theory are then given by

Cp = limsup,_ o+ %, where € > 0 is the postulated anomalous dissipation rate in the infinite Reynolds number limit.

Of course, for any non-conservative weak solution we may define a positive number € = J‘OT |%S(t)\dt as a substitute for
Kolmogorov’s €, which allows one to define (, accordingly.



observed to ezceed the Kolmogorov-predicted value of 2/3 [1, 50, 61, 45, 15, 44, 55|, thus showing a steeper
decay rate in the inertial range power spectrum than the one predicted by the Kolmogorov-Obhukov 5/3
law. Moreover, in the mathematical literature, Constantin and Fefferman [23] and Constantin, Nie, and
Tanveer [24] have used the 3D Navier-Stokes equations to show that the Kolmogorov ’41 prediction (3 = 2/3
is only consistent with a lower bound for (5, instead of an exact equality.

Prior to this work, it was not known whether the 3D Euler equation can sustain weak solutions which
have kinetic energy that is uniformly bounded in time but not conserved, and which have spatial regularity
equal to or exceeding H;/B, corresponding to (o > 2/3; see [12, Open Problem 5] and [14, Conjecture 2.6].
Theorem 1.1 gives the first such existence result. The solutions in Theorem 1.1 may be constructed to have
second order structure function exponent (2 an arbitrary number in (0, 1), showing that (1.1) exhibits weak
solutions which severely deviate from the Kolmogorov-Obhukov 5/3 power spectrum.

We note that in a recent work [18], Cheskidov and Luo established the sharpness of the LZLS° endpoint
of the Prodi-Serrin criteria for the 3D Navier-Stokes equations, by constructing non-unique weak (mild)
solutions of these equations in LY LS, for any p < 2.5 As noted in [18, Theorem 1.10], their approach also
applies to the 3D Euler equations, yielding weak solutions that lie in L} C#? for any 8 < 1, and thus these
weak solutions also have more than 1/3 regularity. The drawback is that the solutions constructed in [18§]
do not have bounded (in time) kinetic energy, in contrast to Theorem 1.1, which yields weak solutions with
kinetic energy that is continuous in time.

Theorem 1.1 is proven by using an intermittent convex integration scheme, which is necessary in order to
reach beyond the 1/3 regularity exponent, uniformly in time. Intermittent convex integration schemes have
been introduced by the first and last authors in [13] in order to prove the non-uniqueness of weak (mild)
solutions of the 3D Navier-Stokes equations with bounded kinetic energy, and then refined in collaboration
with Colombo [7] to construct solutions which have partial regularity in time. Recently, intermittent convex
integration techniques have been used successfully to construct non-unique weak solutions for the transport
equation (cf. Modena and Székelyhidi Jr. [52, 51], Brué, Colombo, and De Lellis [5], and Cheskidov and
Luo [17]), the 2D Euler equations with vorticity in a Lorentz space (cf. [4]), the stationary 4D Navier-Stokes
equations (cf. Luo [49]), the a-Euler equations (cf. [3]), in the context of the MHD equations (cf. Dai [26],
the first and last authors with Beekie [2]), and the effect of temporal intermittency has recently been studied
by Cheskidov and Luo [18]. We refer the reader to the reviews [12, 14] for further references, and for a
comparison between intermittent and homogenous convex integration.

When applied to three-dimensional nonlinear problems, intermittent convex integration has insofar only
been successful at producing weak solutions with negligible spatial regularity indices, uniformly in time. As
we explain in Section 1.2, there is a fundamental obstruction to achieving high regularity: in physical space,
intermittency causes concentrations that results in the formation of intermittent peaks, and to handle these
peaks the existing techniques have used an extremely large separation between the frequencies in consecutive
steps of the convex integration scheme.5 This paper is the first to successfully implement a high-regularity (in
L?), spatially-intermittent, temporally-homogenous, convex integration scheme in three space dimensions,
and shows that for the 3D Euler system any regularity exponent 3 < 1/2 may be achieved.” In fact, the
techniques developed in this paper are the backbone for the recent work [56] of the last two authors, which
gives an alternative, intermittent, proof of the Onsager conjecture.

1.2 1Ideas and difficulties

As alluded to in the previous paragraph, the main difficulty in reaching a high regularity exponent for weak
solutions of (1.1) is that the existing intermittent convex integration schemes do not allow for consecutive
frequency parameters A\, and ;41 to be close to each other. In essence, this is because intermittency smears
out the set of active frequencies in the approximate solutions to the Euler system (instead of concentric
spheres, they are more akin to thick concentric annuli), and several of the key estimates in the scheme
require frequency separation to achieve LP-decoupling (see Section 2.4.1). Indeed, high regularity exponents
necessitate an almost geometric growth of frequencies (A, = A{), or at least a barely super-exponential growth

5See also [19] for a proof that the space C?Lg is critical for uniqueness at p = 2, in two space dimensions.

6This becomes less of an issue when one considers the equations of fluid dynamics in very high space dimensions, cf. Tao [64].

"It was known within the community (see Section 2.4.1 for a detailed explanation) that there is a key obstruction to reaching
a regularity index in L? for a solution to the Euler equations larger than 1/2 via convex integration.



rate Agr1 = AL with 0 < b—1 < 1 (in comparison, the schemes in [13, 7] require b ~ 10®). Essentially
every new idea in this paper is aimed either directly or indirectly at rectifying this issue: how does one take
advantage of intermittency, and at the same time keep the frequency separation to be nearly geometric?

The building blocks used in the convex integration scheme are intermittent pipe flows,® which we describe
in Section 2.3. Due to their spatial concentration and their periodization rate, quadratic interactions of these
building blocks produce both the helpful low frequency term which is used to cancel the previous Reynolds
stress R, and also a number of other errors which live at intermediate frequencies. These errors are spread
throughout the frequency annulus with inner radius A, and outer radius A,;1, and may have size only slightly
less than that of Ji?q. If left untreated, these errors only allow for a very small regularity parameter 5. In
order to increase the regularity index of our weak solutions, we need to take full advantage of the frequency
separation between the slow frequency A\, and the fast frequency Aq11. As such, the intermediate-frequency
errors need to be further corrected via velocity increments designed to push these residual stresses towards the
frequency sphere of radius Ag41. The quadratic interactions among these higher-order velocity corrections
themselves, and in principle also with the old velocity increments, in turn create higher order Reynolds
stresses, which live again at intermediate frequencies (slightly higher than before), but whose amplitude is
slightly smaller than before. This process of adding higher order velocity perturbations designed to cancel
intermediate-frequency higher order stresses has to be repeated many times until all the resulting errors are
either small, or they live at frequency ~ Ay41, and thus are also small upon inverting the divergence. See
Sections 2.4 and 2.6 for a more thorough account of this iteration.

Throughout the process described in the above paragraph, we need to keep adding velocity increments,
while at the same time keeping the high-high-high frequency interactions under control. The fundamental
obstacle here is that when composing the intermittent pipe flows with the Lagrangian flow of the slow velocity
field, the resulting deformations are not spatiotemporally homogenous. In essence, the intermittent nature
of the approximate velocity fields implies that a sharp global control on their Lipschitz norm is unavailable,
thus precluding us from implementing a gluing technique as in [42, 11]. Additionally, we are faced with the
issue that pipe flows which were added at different stages of the higher order correction process have different
periodization rates and different spatial concentration rates, and may a-priori overlap. Our main idea here is
to implement a placement technique which uses the relative intermittency of pipe flows from previous or same
generations, in conjunction with a sharp bound on their local Lagrangian deformation rate, to determine
suitable spatial shifts for the placement of new pipe flows so that they dodge all other bent pipes which live
in a restricted space-time region. This geometric placement technique is discussed in Section 2.5.2.

A rigorous mathematical implementation of the heuristic ideas described in the previous two paragraphs,
which crucially allows us to slow down the frequency growth to be almost geometric, requires extremely sharp
information on all higher order errors and their associated velocity increments. For instance, in order to take
advantage of the transport nature of the linearized Euler system while mitigating the loss of derivatives issue
which is characteristic of convex integration schemes, we need to keep track of essentially infinitely many
sharp material derivative estimates for all velocity increments and stresses. Such estimates are naturally
only attainable on a local inverse Lipschitz timescale, which in turn necessitates keeping track of the precise
location in space of the peaks in the densities of the pipe flows, and performing a frequency localization with
respect to both the Eulerian and the Lagrangian coordinates. In order to achieve this, we introduce carefully
designed cutoff functions, which are defined recursively for the velocity increments (in order to keep track
of overlapping pipe flows from different stages of the iteration), and iteratively for the Reynolds stresses (in
order to keep track of the correct amplitude of the perturbation which needs to be added to correct these
stresses); see Section 2.5. The cutoff functions we construct effectively play the role of a joint Eulerian-and-
Lagrangian Littlewood-Paley frequency decomposition, which in addition keeps track of both the position
in space and the amplitude of various objects (more akin to a wavelet decomposition). The analysis of
these cutoff functions requires estimating very high order commutators between Lagrangian and Eulerian
derivatives which in great part are responsible for the length of this paper (see Section 6 and Appendix A).
Lastly, we mention an additional technical complication: since the sharp control of the Lipschitz norm of the
approximate velocities in our scheme is local in space and time, we need to work with an inverse divergence
operator (e.g. for computing higher order stresses) which, up to much lower order error terms, maintains

8The moniker used in [27] and the rest of the literature for these stationary solutions has been “Mikado flows”. However,
we rely rather heavily on the geometric properties of these solutions, such as orientation and concentration around axes, and
so to emphasize the tube-like nature of these objects, we will frequently use the name “pipe flows”.



the spatial support of the vector fields that it is applied to. Additionally, we need to be able to estimate an
essentially infinite number of material derivatives applied to the output of this inverse divergence operator.
This issue is addressed in Section A.S8.

The rest of the paper is organized as follows. Section 2 contains an outline of the convex integration
scheme, in which we replace some of the actual estimates and definitions appearing in the proof with heuristic
ones in order to highlight the new ideas at an intuitive level. The proof of Theorem 1.1 is given in Section 3,
assuming that a number of estimates hold true inductively for the solutions of the Euler-Reynolds system
at every step of the convex integration iteration. The remainder of the paper is dedicated to showing that
the inductive bounds stated in Section 3.2 may indeed be propagated from step ¢ to step ¢ + 1. Section 4
contains the construction of the intermittent pipe flows used in this paper and describes the careful placement
required to show that these pipe flows do not overlap on a suitable space-time set. The mollification step
of the proof is performed in Section 5. Section 6 contains the definitions of the cutoff functions used in the
proof and establishes their properties. Section 7 breaks down the the main inductive bounds from Section 3.2
into components which take into account the higher order stresses and perturbations. Section 8 then proves
the constituent parts of the inductive bounds outlined in the previous section. Section 9 carefully defines
the many parameters in the scheme, states the precise order in which they are chosen, and lists a few
consequences of their definitions. Finally, Appendix A contains the analytical toolshed to which we appeal
throughout the paper.
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2  Outline of the convex integration scheme

2.1 A guide to the parameters

In order to make sharp estimates throughout the scheme, we will require numerous parameters. For the
reader’s convenience, we have collected in this section the heuristic definitions of all the parameters introduced
in the following sections of the outline. The parameters are listed in Section 2.1.1 in the order corresponding
to their first appearance in the outline. We give as well brief descriptions of the significance of each parameter.

2.1.1 Definitions

Definition 2.1 (Parameters Introduced in Section 1).

(1) B - The regularity exponent corresponding to a final solution v € C (]R; H*B(']I‘g’)).

Definition 2.2 (Parameters Introduced in Section 2.2).

(1) q - The integer which represents the primary stages of the iterative convex integration scheme.

=a - e primary parameter used to quantify frequencies. a an will be chosen later, wit
2) Ag =a®) - The pri d ' j d b will be ch l jth
a € Ry being a sufficiently large positive number and b € R a real number slightly larger than 1.

(8) 0q = )\;25 - The primary parameter used to quantify amplitudes of stresses and perturbations.

(4) 174 = (5;/2/\,1)_1 - The primary parameter used to quantify the cost of a material derivative 9y + v, - V.

Definition 2.3 (Parameters Introduced in Section 2.3).

1
9For technical reasons, 7, 1 will be chosen to be slightly shorter than 8¢ Aq. For the heuristic calculations, one may ignore

1
this modification and simply use ‘r{l =04 Ag.



(1) n - The primary parameter which will be used to divide up the frequencies between A\, and Ag41 and
which will take non-negative integer values. The divisions will be used both for the frequencies of the
higher order stresses in Section 2.4 as well as the thickness of the intermittent pipe flows used to correct
the higher order stresses.

(2) Nmax - A large integer which is fized independently of q and which sets the largest allowable value of n.

4 n+1
(8) rqr1n = (AqA;_&l)(s) - The parameter quantifying intermittency, or the thickness of a tube periodized
at unit scale for values of n such that 0 < n < Npax.'°

a4yt g cayntt
(4) Agn = Ag41Tqt1,n = ,\Ss) )\q+$5) - The minimum frequency present in an intermittent pipe flow
Wyi1n. Equivalently, Ags17qp1.0)" " is the scale to which W1, is periodized.

)‘q,O )‘q,l q,Mmax

Ag | } — ——+ +— + i Ag+1

Aq,0,0 Ag,1,0 Aq,2,0 Ag T +1,0

)‘qul . )\q,n

T \ \ . \ \ \ \ I R S SRR

I —H— ; —+ t ; ; ; ; 1 —— - — — - - i
)\q,n,(] /\q.nJrl,() /\qAn+2,0

)\q;n,.,p )\q,n,erl /\r/.quI./) /\«/.//7J.//7\

Figure 1: Schematic of the frequency parameters appearing in Definitions 2.2 and 2.4.

Definition 2.4 (Parameters Introduced in Section 2.4).

n—1 n—1
(1) For 2 < n < Nmax; Agno = )\S%) %)\;ﬁ) 3 is the minimum frequency present in the higher
order stress Ic%q’n, Conversely, Agn+1,0 i the mazimum frequency present in ]i'iq,n. When n = 0, we set
Aq,0,0 = Aq to be the mazimum frequency present in }D%(Lo = }D%q, and when n =1, A\g1,0 = g0 15 the
minimum frequency present in éq’b while Ay 20 is the mazimum frequency.

(2) p - A secondary parameter which takes positive integer values and which will be used to divide up the
frequencies in between A n.0 and Mg nt1,0, as well as the higher order stresses.

(3) Pmax - A large integer, fized independently of q, which is the largest allowable value of p.

P _P o
(4) Agnp = Ay n 0 Agnii o - The mazimum frequency present in the higher order stress Ry, p for 1 <n <
Nmax 0Nd 1 < p < Prax. Conversely, Mg np—1 15 the minimum frequency in Rqpp,. Whenn =0 and p
takes any value, we adopt the convention that Agop = Ag.
I U B
(5) fon = Ayn1.02gms™ - The increment between frequencies Agnp—1 and Agn,p for n > 1. We have the
equalities

Pmax

Agnp = Agyn,0 5,n’ Agn+1,0 = Ag,n,0 q.n

For ease of notation, when n =0 we set fq, = 1.

4
10Tn particular, this choice gives Tq+l,n+l = T¢15+1,n‘ In our proof, the inequality T§+l,n < 7‘2+1’n+1 plays a crucial role. In
order to absorb ¢ independent constants, as well as to ensure that there is a sufficient gap between these parameters to ensure
decoupling, we have chosen to work with the % instead of the % geometric scale.



(6) Forn=0andp =1, 6g41,01 := 0g+1 is the amplitude of ]%q = ]O%q’o. Forn=0 andp > 2, 5‘1“’0”’0: 0,
since there are no higher order stresses at n = 0. For n > 1 and any value of p, the amplitude of Ry p

is given by
Og+17q
5‘1+1,n717 = 2\ ' H fq,n"

anp=1

One should view the product of fq , terms as a negligible error, which is justified by calculating

Agpi10) 7o A P
H fon = ( 4 +1 0> < ( §\+1) (2.1)
q

0=/ Snimax Aa1,0
and assuming that pmax s large.
Definition 2.5 (Parameters Introduced in Section 2.5).
(1) er - A very small positive number.

(2) Tgy1 = ()\qH)\q_l)Er - A parameter which will be used to quantify deviations in amplitude. In particular,
T, will be used to quantify amplitudes of both velocity fields and (higher-order) stresses.

2.2 Inductive assumptions

o

For every non-negative integer ¢ we will construct a solution (vg, py, Ry) to the Euler-Reynolds system

Byvg + div (vg ® vy) + Vp, = div R, (2.2a)
div, = 0. (2.2b)

Here If?q is assumed to be a trace-free symmetric matrix. The relative size of the approximate solution v,

and the Reynolds stress error ]%q will be measured in terms of the frequency parameter )\, and the amplitude

parameter d,, which are defined in Definition 2.2. We will propagate the following basic inductive estimates

on (vq,f%q):“

1
||”q||H1 <0G Aq (2.3)
||Rq||L1 < 5q+1' (2'4)

We shall see later that in order to build solutions belonging to HP for B approaching %, we must propagate
additional estimates on higher order material and spatial derivatives of both v, and ]%q in L2 and L',
respectively. Roughly speaking, every spatial derivative on either v, or éq costs a factor of A\;. Additional
material derivatives are more delicate and will be discussed further in Section 2.5, but for the time being,
one may imagine that each material derivative Dy 4 := 0 + vq - V on v, or Im%q costs a factor of 7,° L

2.3 Intermittent pipe flows

Pipe flows, both homogeneous and intermittent, have proven to be one of the most useful components of
many convex integration schemes. Homogeneous pipe flows were introduced first by Daneri and Székelyhidi
Jr. [27]. The prototypical pipe flow in the €3 direction is constructed using a smooth function p : R? — R
which is compactly supported, for example in a ball of radius 1 centered at the origin, and has zero mean.
Letting o0 : T? — R be the T2-periodized version of p, the T3-periodic pipe flow W : T2 — R3 is defined as

W(z1, 22, 23) = o(x1,73)€z . (2.5)

It is immediate that W is divergence-free and a stationary solution to the Euler equations. Pipe flows such as
W have been used in convex integration schemes which produce solutions in L>-based spaces [27, 43, 11]. At
VH\S
Ag+1

the ¢'" stage of the iteration, the -periodized pipe flow W (A;41-) is used to construct the perturbation.

UBy ||vgll 1, we actually mean ||vg||co g1 Similarly, |1 Rqll .1 stands for ”éq”c?Ll' Unless stated explicitly otherwise, all
t x t Zx
the norms used in this paper represent analogous uniform in time estimates and will be abbreviated as such.



By contrast, intermittent pipe flows are not spatially homogeneous. Intermittency in the context of
convex integration schemes was introduced by the first and last authors in [13] via intermittent Beltrami
flows, which are defined via their Fourier support and may be likened to modified and renormalized Dirichlet
kernels. Intermittent pipe flows were introduced by Modena and Székelyhidi Jr. in the context of the
transport and transport-diffusion equation [52] and have also been utilized for the higher dimensional (at
least four dimensional'?) Navier-Stokes equations [49, 64]. The precise objects we use are defined in (4.10) in
Proposition 4.4, but let us briefly describe some of their important attributes. The intermittency is quantified

by the parameter ro41, < 1. Let p, ., . : R* = R be defined by py ., () = p(

Tq+1,n
the T?-periodized version of p, ., . Thus one can see that rq41, describes the thickness of the pipes at unit
scale. In order to make the intermittent pipe flows of unit size in L?(T?), one must multiply by a factor of

), and let o, , be

rq_jl)n, meaning that the Lebesgue norms of the resulting object W,. , . scale like
21
P
||W7'q+1,n HLP(TS) ~ Tt (2.6)
Let Wy41.5 be the ﬁ—periodic version of qu +1..- Notice that this implies that the thickness of the

pipes comprising Wy 1, is of order )\;Jil for all n, and that the Lebesgue norms of the periodized object

Wg+1,n depend only on 7¢41.,. Per Definition 2.3, the thickness of the pipes used in the perturbation at
stage ¢ + 1 will be quantified by
a\n+1
Tgtin = :
q n )\q+1

This choice will be jusified upon calculation of the heuristic bounds.

y s 4 ; €2
/L 7 TZ» el 21 (Ag17qrin)
vP4% A
A A2 Y ' '
"4 ,/',
/. 2
n” : : N
27 (Ag17gr1m) " — 21 (Ager)

2 4 2m ()‘q+17"q+1:n)7]

Figure 2: A pipe flow W, 1, which is periodized to scale (Ag+17g41,n) " = )\;}, is placed in a direction parallel to
the ez axis. Upon taking into account periodic shifts, we note that there are r 7, , many options to place this pipe.
This degree of freedom will be used later, see e.g. Figure 7.

2.3.1 Lagrangian coordinates, intermittency, and placements

In order to achieve the optimum regularity 8, we will define the pipe flows which comprise the perturbation
at stage ¢+ 1 in Lagrangian coordinates corresponding to the velocity field v4. Due to the inherent instability
of Lagrangian coordinates over timescales longer than that dictated by the Lipschitz norm of the velocity
field, there will be many sets of coordinates used in different time intervals which are then patched together
using a partition of unity. This technique has been used frequently in recent convex integration schemes,
beginning with work of Isett [41], the first author, De Lellis, and Székelyhidi Jr. [10], and Isett, the first

121n three dimensions, intermittent pipe flows are not sufficiently sparse to handle the error term arising from the Laplacian.
This issue was addressed by Colombo and the first and last authors in [7] through the usage of intermittent jets, and similar
objects have been used in subsequent papers as well (see work of Brue, Colombo, and De Lellis [5], Cheskidov and Luo [17, 18]).
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author, De Lellis, and Székelyhidi Jr. [8], but perhaps most notably in the proof of the Onsager conjecture
by Isett [43] and the subsequent strengthening to dissipative solutions by the first and last authors, De Lellis,
and Székelyhidi Jr. [11].

The proof of Onsager’s conjecture employs the gluing technique to prevent pipe flows defined using
different Lagrangian coordinate systems from overlapping. The intermittent quality of our building blocks,
and thus the approximate solution v,, appears to obstruct the successful implementation of the gluing
technique, since gluing requires a sharp control on the global Lipschitz norm of the velocity field which will
be unavailable. Thus, we cannot use the gluing technique and must control in a different fashion the possible
interactions between two intermittent pipe flows defined using different Lagrangian coordinate systems.

To control these interactions, we have introduced a placement technique (cf. Proposition 4.8) which is used
to completely prevent all such interactions. This placement technique is predicated on a simple observation
about intermittent pipe flows, which to our knowledge has not yet been used in any convex integration
schemes to date. When the diameter of the pipe at unit scale is of size 7441 ,, there are (ry41,,) "2 disjoint
choices for the support of pipe. These choices simply correspond to shifting the intersection of the axis of the
pipe in the plane which is perpendicular to the axis, cf. Proposition 4.3. This degree of freedom is unaffected
by periodization and is depicted in Figure 2 for a ﬁ
exploit this degree of freedom to choose placements for each set of pipes which entirely avoid other sets of
pipes on small discretized regions of space-time. The space-time discretization is made possible through the
usage of cutoff functions which will be discussed in more detail later in Section 2.5. We remark that De Lellis
and Kwon [28] have introduced a placement technique in the context of C®, globally dissipative solutions to
the 3D Euler equations which is predicated on restricting the timescale of the Lagrangian coordinate systems
to be significantly shorter than the Lipschitz timescale. This restriction significantly limits the regularity of
the final solution and is thus not suited for a intermittent scheme aimed at Hz~ regularity.

-periodic intermittent pipe flow W1 ,. We will

2.4 Higher order stresses
2.4.1 Regularity beyond 1/3

The resolution of the flexible side of the Onsager conjecture in [43] and [11] mentioned previously shows
that given some prescribed regularity index g € (0, %), one can construct dissipative weak solutions u in
CP. Conversely, following on partial work by Eyink [36], Constantin, E, and Titi [22] have proven that
conservation of energy in the Euler equations requires only that u € L} (B?,oo) for @ > 1/3. This leaves
open the possibility of building dissipative weak solutions with more than %—many derivatives in LP (T3)
(uniformly in time in our case) for p < 3.

Let us present a heuristic estimate which indicates a regularity limit of H 3 for solutions produced via
convex integration schemes. For this purpose, let us focus on one of the principal parts of the stress in an
intermittent convex integration schemes (for the familiar reader, this is part of the oscillation error). The
perturbations include a coefficient function a which depends on R, and thus for which derivatives cost A,

and which has amplitude 5;&1 (the square root of the amplitude of the stress). These coefficient functions
are multiplied by intermittent pipe flows W, ; o for which derivatives cost A;11 and which have unit size
in L2, but are only periodized to scale (/\q+1rq+1,o)_1. When the divergence lands on the square of the
coefficient function a? in the nonlinear term, the resulting error term satisfies the estimate

5q+1)‘q

|div ! (V(0®)P0(Wgs1,0 @ Wei10)) |12 < . (2.7)
Ag+17q+1,0

The numerator is the size of V(a?) in L', while the denominator is the gain induced by inverting the
divergence at Ag417¢+1,0, which is the minimum frequency of P_o(Wqi1,0 @ Woy10) = Wei1,0 ® Wop1 0 —
Frs Wot1,00Way1 0. Note that we have used implicitly that W1 o has unit L? norm, and that by periodicity
P2o(Wyi1,0 @ W,i1,0) decouples from V(a?). This error would be minimized when 74410 = 1, in which case

—2B+3
q+1

—2Bb+1
q+1

Og+17q

<A
Aot

<Ogq2 = A

— 280> —2Bb<b—1
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= 26b(b—1)<b—1

1

— < T (2.8)
Any intermittency parameter 14410 < 1 would weaken this estimate since the gain induced from inverting
the divergence will only be Aj417¢+1,0 <€ Ag41. On the other hand, we will see that a small choice of
Tq+1,0 Strengthens all other error terms, and because of this, in our construction we will choose r441,0 as in
Definition 2.3, item (3). One may refer to the blog post of Tao [64] for a slightly different argument which
reaches the same apparent regularity limit. This apparent regularity limit is independent of dimension, and
we believe that the method in this paper can not be modified to yield weak solutions with regularity LW P
with s > 1/2, for any p € [1,2].

The higher order stresses mentioned in Section 1.2 will compensate for the losses incurred in this nonlinear
error term when 7441 0 < 1. As we shall describe in the next section, we use the phrase “higher order stresses”
to describe errors which are higher in frequency and smaller in amplitude than ]i'iq, but not sufficiently small
enough or at high enough frequency to belong to ]f?fq+1. Similarly, “higher order perturbations” are used to
correct the higher order stresses and thus increase the extent to which an approximate solution solves the
Euler equations.

2.4.2 Specifics of the higher order stresses

In convex integration schemes which measure regularity in L> (i.e. using Holder spaces C%), pipe flows
interact through the nonlinearity to produce low (= ;) and high (= A,41) frequencies. We denote by
Wg+1,0 the perturbation designed to correct éq. In the absence of intermittency, the low frequencies from
the self-interaction of wgy1,0 cancel the Reynolds stress error ]o%q, and the high frequencies are absorbed by
the pressure up to an error small enough to be placed in éq.}rl. In an intermittent scheme, the self-interaction
of the intermittent pipe flows comprising wg1,0 produces low, intermediate, and high frequencies. The low
and high frequencies play a similar role as before. However, the intermediate frequencies cannot be written
as a gradient, nor are small enough to be absorbed in ,équl This issue has limited the available regularity on
the final solution in many previous intermittent convex integration schemes. In order to reach the threshold
H? , we address this issue using higher order Reynolds stress errors Rq nforn =12 ... nyax, cf. Figure 3.

After the addition of wq41,0 to correct ]D%q, which is labeled in Figure 4 as ﬁ{q,o, low frequency error terms
are produced, which we divide into higher order stresses. To correct the error term of this type at the lowest
frequency, which is labeled R, in Figure 4, we add a sub-perturbation wg41,1. The subsequent bins are
lighter in color to emphasize that they are not yet full; that is, there are more error terms which have yet
to be constructed but will be sorted into such bins. The emptying of the bins then proceeds inductively on
n, as we add higher order perturbations wg1,,, which are designed to correct éq,n. For 1 < n < npax, the
frequency support of Ia%qm ist3

{k S Z3: /\(IJMO < |k‘ < /\q,n+1,0} . (29)

This division will be justified upon calculation of the heuristic bounds in Section 2.7.

Let us now explain the motivation for the division of ]%q’n into the further subcomponents ]i?q’n,p. Suppose
that we add a perturbation w1, to correct ]D%qm for n > 1. The amplitude of wg+1,, would depend on the
amplitude of I-olqm, which in turn depends on the gain induced by inverting the divergence to produce ]-qum,
which depends then on the minimum frequency Ay 0. However, derivatives on the low frequency coefficient
function used to define wq41,, would depend on the mazimum frequency of }D%q n, Which is Ay n41,0. The
(sharp eyed) reader may at this point object that the first derivative on the low-frequency coefficient function
V(a(Rq n)) should be cheaper, since Rq,n is obtained from inverting the divergence, and taking the gradient
of the cutoff function written above should thus morally involve bounding a zero-order operator. However,
constructing the low-frequency coefficient function presents technical difficulties which prevent us from taking
advantage of this intuition. In fact, the failure of this intuition is the sole reason for the introduction of
the parameter p, as one may see from the heuristic estimates later. In any case, increasing the regularity

131n reality, the higher order stresses are not compactly supported in frequency. However, they will satisfy derivative estimates
to very high order which are characteristic of functions with compact frequency support.
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Figure 3: Adding the increment wqy1,0 corrects the stress Io%q’o = Io%q, but produces error terms which live at
frequencies that are intermediate between A\, and Aq41, due to the intermittency of wg4+1,0. These new errors are
sorted into higher order stresses I:EQ n for 1 < n < nmax, as depicted above. The heights of the boxes corresponds to
the amplitude of the errors that will fall into them, while the frequency support of each box increases from Aq for
Rq 0= Rq, to Aq+1 for Rq+1

B of the final solution requires minimizing this gap between the gain in amplitude provided by inverting
the dlvergence and the cost of a derivative, and so we subdivide Rq n into further components Rq n,p for
1 < p < Pras-* Both npay and prax are fixed independently of ¢. Each component Rq n,p then will have
frequency support in the set

{k€Z?: Mnp—1 < |kl <Agnp} = {k €Z%: Agnofnt <[kl < AgnofPn}- (2.10)

Notice that by the definition of f; , in Definition 2.4, 2.10 defines a partition of the frequencies in between
Agn,0 and Ag 10 for 1 < p < ppax. Figure 5 depicts this division, and we shall describe in the heuristic
estimates how each subcomponent Io%qm,p is corrected by wgy1.n,p, With all resulting errors absorbed into
either Ryy1 or Ry, for n’ > n.

Thus, the net effect of the higher order stresses is that one may take errors for which the inverse divergence
provides a weak estimate due to the presence of relatively low frequencies and push them to higher frequencies
for which the inverse divergence estimate is stronger. We will repeat this process until all errors are moved
(almost) all the way to frequency Aq41, at which point they are absorbed into éq+1~ Heuristically, this
means that in constructing the perturbation wq;1 at stage q, we have eliminated all the higher order error
terms which arise from self-interactions of intermittent pipe flows, thus producing a solution v, to the
Euler-Reynolds system at level ¢ + 1 which is as close as possible to a solution of the Euler equations. We
point out that one side effect of the higher order perturbations is that the total perturbation wq,1 has spatial
support which is not particularly sparse, since as n increases the perturbations wgy1,, become successively
less intermittent and thus more homogeneous. At the same time, the frequency support of our solution is

also not too sparse, since b is close to 1 and r441,0 = ()\ )\qﬂ)g, so that many of the frequencies between
Aq and Mgy are active.

14There are certainly a multitude of ways to manage the bookkeeping for amplitudes and frequencies. Using both n and p is
convenient because then n is the only index which quantifies the rate of periodization.
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i Adding wg41,,

ﬁgq,O Rq,l Io{q,n Rq.,n+1 Rq+1

Figure 4: Adding wg41,» to correct I?Zq,n produces error terms which are distributed among the Reynolds stresses
Ryn forn+1<n' < nmax.

2.5 Cut-off functions
2.5.1 Velocity and stress cut-offs

The concept of a turnover time, which is proportional to the inverse of the gradient of the mean flow vy, is
crucial to the previous convex integration schemes mentioned earlier which utilized Lagrangian coordinates.
Since the perturbation is expected to be roughly flowed by the mean flow vy, the turnover time determines a
timescale on which the perturbation is expected to undergo significant deformations. An important property
of pipe flows, first noted by Daneri and Székelyhidi Jr. in [27] and utilized crucially by Isett [43] towards
the proof of Onsager’s conjecture, is that the length of time for which pipe flows written in Lagrangian
coordinates remain approximately stationary solutions to Euler depends only on the Lipschitz norm of the
transport velocity v, and not the Lipschitz norms of the original (undeformed) pipe flow. However, the
timescale under which pipe flows transported by an intermittent velocity field remain coherent is space-time
dependent, in contrast to previous convex integration schemes in which the timescale was uniform across
R x T3. As such, we will need to introduce space-time cut-offs ;,q in order to determine the local turnover
time. In particular, the cut-off 9; , will be defined such that

Vg || oo 5 ATy =7 T (2.11)

<
(supp ¥i,q) ~ q

With such cut-offs defined, we then define in addition a family of temporal cut-offs x; 1 which will be used
to restrict the timespan of the intermittent pipe flows in terms of the local turnover. Each cut-off function
Xi,k,q Will have temporal support contained in an interval of length
L Ay (2.12)
It should be noted that we will design the cut-offs so that we can deduce much more on its support than
(2.11). Since the material derivative D; , := 0, 4+ v, - V will play an important role, we will require estimates
involving material derivatives D,fYq of very high order.'®> We expect the cost of a material derivative to be
related to the turnover time, which itself is local in nature. As such, high order material derivative estimates
will be done on the support of the cut-off functions and will be of the form

N
Hd’i,th,qRq%pHU :

1
15The loss of material derivative in the transport error means that to produce solutions with regularity approaching H 2, we
have to propagate material derivative estimates of arbitrarily high order on the stress.
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Figure 5: The higher order stress I:Zq,n is decomposed into components Izlq,mp, which increase in frequency and
decrease in amplitude as p increases. We use the base of the red boxes to indicate support in frequency, where
frequency is increasing from left to right, and the height to indicate amplitudes. Each subcomponent Io%q,n,p is
corrected by its own corresponding sub-perturbation wq41,»,p, which has a commensurate frequency and amplitude.

In addition to the family of cut-offs 1; ; and x; x4, we will also require stress cut-offs w; j 4.n,p Which
determine the local size of the Reynolds stress errors Ry, p; in particular w; j ¢.n,p will be defined such that

< Ggitnplil AM (2.13)

M
HV Ron,p q+1

’Loo (suPP Wi, j,q,n,p)

Previous intermittent convex integration schemes have managed to successfully cancel intermittent stress
terms with much simpler stress cutoff functions than the ones we use. However, mitigating the loss of spatial
derivative in the oscillation error means that we have to propagate sharp spatial derivative estimates of
arbitrarily high order on the stress in order to produce solutions with regularity approaching H 2. Due to
this requirement, we then have to estimate the second derivative (and higher) of the stress cutoff function

v (4* (Rao))|

which in turn necessitates bounding the local L? norm of V]:’,q,n,p due to the term

)

Ll

(0262 (o) [V

L1

Given inductive estimates about the derivatives of ]O%q only in L' which have not been upgraded to LP for
p > 1, this term will obey a fatally weak estimate, which is why we must estimate Ry, , in L* as in (2.13).

2.5.2 Checkerboard cut-offs

As mentioned in the discussion of intermittent pipe flows, we must prevent pipes originating from different
Lagrangian coordinate systems from intersecting. The first step is to reduce the complexity of this problem
by restricting the size of the spatial domain on which intersections must be prevented. Towards this end,
consider the maximum frequency of the original stress Rq = Rq 0, or any of the higher order stresses Rq n
for n > 1. We may write these frequencies as Ag4171 for >‘qu+1 < r; < 1. We then decompose Rq,n using a
checkerboard partition of unity comprised of bump functions which follow the flow of v, and have support
of diameter ()\(H_lrl)_l. These two properties ensure that we have preserved the derivative bounds on R%qyn.
Thus, we fix the set Q to be the support of an individual checkerboard cutoff function in this partition of
unity at a fixed time, cf. (4.28).
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Suppose furthermore that €2 is inhabited by disjoint sets of deformed intermittent pipe flows which are
periodized to spatial scales no finer than ()\q+17“2)_1 for 0 < r < ry < 1. In practice, ro will be r441 ,, where
Tq+1,» is the amount of intermittency used in the pipes which comprise the perturbation wg41,, which is used
to correct }OBq’n. The pipes which already inhabit £ may first be from previous generations of perturbations
Wqi1m for n' < n, in which case they are periodized to spatial scales much broader than (Mg 1172)” ", or
from an overlapping checkerboard cutoff function used to decompose }?q’n on which a placement of pipes
periodized to spatial scale (/\q+17‘2)_1 has already been chosen. In either case, these pipes will have been
deformed by the velocity field v, on the time-scale given by the inverse of the local Lipschitz norm. We
represent the support of these deformed pipe flows in terms of axes {A;};ez around which the pipes {P;}iez
are concentrated to thickness )‘;+11 (recall from Section 2.3 that all intermittent pipe flows used in our scheme
have this thickness).

We will now explain that one may choose a new set of (straight, i.e. not deformed) intermittent pipe
flows W, ., periodized to scale ()\q+1r2)_1 which are disjoint from each deformed pipe P; and on the
support of Q) and under appropriate restrictions on r1 and ro. Heuristically, this task becomes easier when
ro is smaller, since this means both that we have more choices of placement for the new set, and there are
less pipes P; inhabiting 2. Conversely, this task becomes more difficult when r; is smaller, since then €2 is
larger and will contain more pipes P;. We assume throughout that the deformations of the P;’s are mild
enough to preserve the expected length, curvature, and spacing bounds between neighboring pipes that arise
from writing pipes in Lagrangian coordinates and flowing for a length of time which is strictly less than the
inverse of the Lipschitz norm of the velocity field.

First, we can estimate the cardinality of the set Z (which indexes the axes A; and pipes P;) from above by
r3r7 2. To understand this bound, first note that if we had straight pipes P; periodized to scale (/\q+1r2)_1
inhabiting a cube of side length ()\qul'rl)il, this bound would hold. Using the fact that our deformed pipes
obey similar length, curvature, and spacing bounds as straight pipes and that our set €2 can be considered as
a subset of a cube with side length proportional to (/\q+1T1)_1, the same bound will hold up to dimensional
constants. Secondly, by the intermittency of the desired set of new pipes, we have 75 2 choices for the
placement of the new set, as indicated in Figure 2.

To finish the argument, we must estimate how many of these r 2 choices would lead to non-empty
intersections between the new pipes and any P;. To calculate this bound, we will imagine the placement of
the new set of straight pipes as occurring on a two-dimensional plane which is perpendicular to the axes of
the pipes. After projecting each P; onto this two-dimensional plane, our task is to choose the intersection
points of the new pipes with the plane so that the new pipes do not intersect the shadows of the P;’s.

Given one of the deformed pipes P;, since its thickness is )\;l and its length inside §2 is proportional to

the diameter of ), specifically (/\q+17‘1)_1, we may cover the shadow of P; on the plane with ~ 7! many

balls of diameter /\q__&l. Covering all the P;’s thus requires ~ r3r; ?-r; ! balls of diameter )\;_&1. Now, imagine
the intersection of the new set of pipes with the plane. Each choice of placement defines this intersection
as essentially a set of balls of diameter &~ /\;+11 equally spaced at distance ()\q+1r2)71. The intermittency
ensures that there are r3 2 disjoint choices of placement, i.e. Ty 2 disjoint sets of balls which represent the
intersection of a particularly placed new set of pipes with the plane. As long as

2-T;1<<T52 <:>r§<<ri’

r%rf
there must exist at least one choice of placement which does not produce any intersections between W, .,
and the P;’s. Notice that if r; is too small or if 79 is too large, this inequality will not be satisfied, thus
validating our previous heuristics about r; and 7.
To obey the relative intermittency inequality between r; and ro derived above for placements of new
intermittent pipes on sets of a certain diameter, we will utilize cutoff functions

Cq,i,k,n,f

which are defined using a variety of parameters. The index ¢ describes the stage of the convex integration
scheme, while 7 and k refer to the velocity and temporal cutoffs defined above. The parameter n corresponds
to a higher order stress R, ,, and refers to its minimum frequency A, , 0, quantifying the value of (Ay4171)~*

and the diameter of the support as described earlier. The parameter [ = (I, w,h) depends on ¢ and n and
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Figure 6: In the figure on the left we display T, in which we have: in green, a set of pipe flows (old generation, very
sparse) that were deformed by vg; in blue, the support of a cutoff function Cquikn,l» Whose diameter is ~ (Agr1m1) ™t
Due to the sparseness, very few (if any!) of these green pipes intersect the blie region. The figure on the right
further zooms into the blue region, to emphasize its contents. On the support of Cq‘i, kon i W€ have displayed two sets
of deformed pipe flows, in pink and orange. These pipes flows were deformed also by vg, from a nearby time at which
they were straight and periodic at scale (Ag172)”'. At the current time, at which the above figure is considered,
these pipe flows aren’t quite periodic anymore, but they are close. The question now is: can we place a straight pipe
flow, periodic at scale (Ag4172) ", whose axis is orthogonal to the front face of the blue box (pictured in black), and
which does not intersect any of the existing pipes in this region? To see that this is possible, in Figure 7 we estimate
the area of shadows on this face of the cube.

provides an enumeration of the (three-dimensional) checkerboard covering T? at scale ()\qm)o)_l. On the
support of one of these checkerboard cutoff functions, we can inductively place pipes periodized to scale
()\q+1r2) =, L which are disjoint. The checkerboard cutoff functions and the pipes themselves all follow
the same Velomty field, and so ensuring the disjointness at a single time slice is sufficient.

2.5.3 Cumulative cut-off function

Finally, the variety of cut-offs described above will be combined into the family of cut-offs
i g ksqm,p,d - Midk.qmn,p = Xi,k,qWVi,qWij,q,m.p @ik,

which have timespans of 7,I' _f;l and L? norms

_i i
S DR V) (2.14)

i7j,k7q7n,p,l‘ L2

We will also require a cut-off n, ik qnp i which is defined to be 1 on the support of n
the estimate ) ;
| ST, 2T 2. (2.15)

We remark that (2.14) and (2.15) are only heuristics (see Lemma 6.41 for the precise estimate). Designing
the cut-offs turned out to be for the authors perhaps the most significant technical challenge of the paper.
Their definition will be inductive and estimates involving them will involve several layers of induction.

ko and satisfies
i,3,k,q,m,

Mit j+ kt,q.n,0

L2
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Figure 7: As mentioned in the caption of Figure 6, we consider the image on the right and take the projection of
all pipes present in the blue box (green, pink, orange), onto the front face of the cube (parallel to the e3 — e; plane).
Because these existing pipes were bent by vgq, the shadow does not consist of straight lines, and in fact the projections
can overlap. By estimating the area of this projection, we see that if 75 < r} then there is enough room left to insert
a new pipe flow with orientation axis e (represented by the black disks in the above figure), which will not intersect
any of the projections of the existing pipes, and thus not intersect the existing pipes themselves.

2.6 The perturbation

The intermittent pipe flows of Section 2.3, the higher order stresses of Section 2.4, and the cut-off functions
of Section 2.5 provide the key ingredients in the construction of the perturbation

Mmax Pmax Mmax
Wg+1 = E , § We+1,n,p = § Wq+1,n-
n=0 p=1 n=0
In the above double sum, we will adopt the convention that wg41,0, = 0 unless p = 1 to streamline

notation. Let us emphasize that wgy1 is constructed inductively on n for the following reason. Each
perturbation wg41,, = Z 7 Wg41,n,p Will contribute error terms to all higher order stresses R, 7, for

n>mnand 1 < p < pmax, and so Rq,ﬁ = Zﬁiﬁ" Zc%q’ﬁ,p is not a well-defined object until each wq41,,/ has
been constructed for all n’ < n. For the purposes of the following heuristics, we will abbreviate the cutoff
functions by a, p, and ignore summation over many of the indexes which parametrize the cutoff functions,
as they are not necessary to understand the heuristic estimates. We will freely use the heuristic that the
cutoff functions allow us to use the L° H! norm of v, to control terms (usually related to the turnover time)
which previously required global Lipschitz bounds on v,.

Let @45 : R x T3 — T2 be the solution to the transport equation

6tq)q,k + Vg - V(I)q,k =0

with initial data given to be the identity at time t;, = kr,. We mention that this definition is purely
heuristic, since as mentioned previously, the Lagrangian coordinate systems will have to be indexed by
another parameter which encodes the fact that Vv, is spatially inhomogeneous.'® For the time being let us

1
ignore this issue. Each map ®,; has an effective timespan 7, = (62 A\,) ™', at which point one resets the
coordinates and defines a new transport map ®, ;1 starting from the identity. Let W, ,, denote the pipe
flow with intermittency 7,41, periodized to scale ()\q+1’rq+17n)71. The perturbation wg41,y,p is then defined

16The actual transport maps used in the proof are defined in Definition 6.26.
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heuristically by

Wqt1,n,p(2, 1) Zanp ( gn.p(@ t)) (V(I)q,k(xvt))il (2, )Wot1,n(Pgk(2,1)).

We have adopted the convention that Io%q = I%q’o = ]O%q’o’l and ]o%q’oﬁp = 0 if p > 2. Composing with @,
adapts the pipe flows to the Lagrangian coordinate system associated to vy so that (V®, k) " *W,i1., (P4 x)
is Lie-advected and remains divergence-free to leading order. The perturbation wg1,,,, has the following
properties:

(1) The thickness (at unit scale) of the pipes on which wy415,p is supported depends only on ¢ and n and

is quantified by
4\n+1
A\ (B)
e = (1) (2.16)
q

Thus, the perturbations become less intermittent as n increases, since the thickness of the pipes (pe-
riodized at unit scale) becomes larger as n increases. Notice that the maximum frequency of Ry, , is
Ag.n,p for n > 1 per (2.10), and A, for n = 0, while the minimum frequency of the intermittent pipe flow
Wg+1,n used to construct wgyi.n,p is Ag,n. Referring back to Definition 2.3 and Definition 2.4, we have
that for 1 <n < npax and 1 < p < prax,

01

1—_p _ _p_ 45 1 (4)".s ayntl g (ayntl
)‘qyn,p = Aq,nfqénax ;7;11 0 < )‘q n+1,0 — )‘( ) 6)‘q+$5) < )‘(Q) )‘q+§0) = Aq,m

which ensures that the low frequency portion of wg41,n.p decouples from the high frequency intermittent

pipe flow Wy, ,. For n = 0, the maximum frequency of Rq7o = Rq is Ag, which is much less than A4
per Definition 2.3.

(2) The L? size of wyi1.n,p is equal to the square root of the L' norm of éq’n,p, which in turn depends on
the minimum frequency of Ry, , and will be dq41 1 p, Where we define dg41,0p = dg+1. For n > 1 and
1 < p < pmax, we have from Definition 2.5 that

1)
5q+1,n7p A\

Og+1Aq qun/

amp—=1

(3) For n > 1, derivatives on the low frequency coefficient function of wgy1,,, cost the maximum frequency

of ]%q,mp, which is Ay, p. Forn =0, ]j?qp = ]ilq, so that each spatial derivative on the coefficient function
of wq41,0 costs Ag.

(4) The transport error and Nash error created by the addition of wq1 , , are small enough to be absorbed
into Ry for every n .

(5) Per Definition 2.3, the oscillation error which results from wg1 p,, interacting with itself has minimum

frequenc
q y (é)n+1 1_(é)n+1
— _ 5 5
Agn = Agt1Tq+1n = Ag Agt1 .

2.7 The Reynolds stress error and heuristic estimates

Note that since the relation (2.2) is linear in the Reynolds stress, replacing ¢ with ¢ + 1, the right hand side
can be split into three components:

div (wg41 ® wet1 + éq)
3twq+1 + Vq - qu+1 (217)

wgt1 - Vg,

which we call the oscillation error, transport error and Nash error respectively.
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2.7.1 Type 1 oscillation error

In this section, we sketch the heuristic estimates which justify the following principle: the low frequency,
high amplitude errors arising from the self interaction of an intermittent pipe flow can be transferred to
higher frequencies and smaller amplitudes through the higher order stresses and perturbations. We shall
show that the following estimates are self-consistent and allow for the constructions of solutions approaching
the regularity threshold H3:

"VMéq“ RET Ao (2.18)
dg+17q
HVMRQ7 n,p = A:np 1 H fq, q,np q+1;7l7p)\zjz\,4n,p' (219)
B /<

The higher order stress ]O%qﬁnyp is defined using the spatial Littlewood-Paley projection operator

Plgnp) = Ppgnp13ans) = P>2gnp 1 P<rg s

which projects onto the frequencies from (2.10). We define éq,n,p as follows:

Pmax
o

RQa"»P = Z Z div ™~ ( ( Ay D’ (Rq n’,p )Vq)q k ® v(pq k) : (]P)[q,n,p] (Wq+1,n’ ® Wq+1,n/)) ((quk)) .
n'<np'=1
(2.20)
We pause here to point out an important consequence of this definition. Let n’ be fixed, and consider the
right side of the above equality. Then, due to the periodicity of W, 1, at scale (Ag417¢+1,n7) "+ we havel”

Wqul,N’ & Wqul,n’ =P (Wq+17n’ & Wqul,n’) + IP)7'50 (WquLn’ ® Wqul,n’)
=P_ (Wq+1,n’ ® Wq+1,n/) + PZAq+17‘ (Wq+1,n’ ® Wqul,n’) .

q+1,n/

For n’ > 1, we have that

(é)n +1A1_(§)n +1 >> )\(%)n gAl_(%)n %

)‘q+17"q+1 w = Aq q+1 q q+1 = /\q,n’+1,0 = A‘]vnlapma:ﬂ
where Ay /41,0 is the minimum frequency of Ry /41 = 57“:5 Ry n/41,, while for n’ = 0 we have that
(3),1-(3)
5 5
Ag+1Tq+1,0 = Ag,1 = Aq )‘q+1 = Ag,1,05

which is the minimum frequency of }D%(Ll. Therefore, we have shown that the error terms arising from all
non-zero modes of Wy 1 ,,» ® Wy, are accounted for in the higher order stresses }?qﬁ for m > n’. Thus,
the higher order stresses created by the interaction of wg41 ., Wwill be absorbed into higher order stresses
with strictly larger values of n.

Now assuming that ]o%qm/,p/ and wyy1,n/p are well-defined for all n’ < n and 1 < p’ < prax and using the
heuristic estimates from the previous section for wq41,,’ 7, We can estimate the component of Ic%qmm coming
from wq41 by recalling (2.20) and writing

< 2 : 5q+1,n’,p’)‘q,n’,p’
LT A= A1

8q11Aq
Hn” <n’ fq,n” )\‘Zan/J"

o Z /\qm,"p’—l

o

Ranvp

n'<n Ag.n.p—1
Sy e,
n'<n qv p—1 //< , "

1"We denote by P_o the operator which subtracts from a function its mean in space.
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Og+17q
Yq+17q ] [
S Ag,n.p— 1 f7 "= Orting-

The denominator comes from the gain induced by the combination of the inverse divergence and the
Littlewood-Paley projector Py, ,, ,;. The numerator is the amplitude of V|a,/ (Ry.np)|?, computed us-
ing the chain rule and the assumption (2.19) on V}o%q,nr,p/. We have used that the L? norm of W41,/ is
normalized to unit size. Any derivatives on éqm’p will cost Ag,p p, which is the maximum frequency in the
Littlewood-Paley projector P ,, - Thus, all terms which will land in Iflqm,p will satisfy the correct estimates
gwen that éq,n/,p/ satisfies the correct estimates for n’ <n and 1 < p’ < ppax. Since IiZq =: I—?q,o satisfies the
inductive assumptions, we can initiate this iteration at level n = 0 while satisfying (2.18).

Now that R, , satisfies the appropriate estimates, we can correct it with a perturbation wg41.,,, as
described in the previous section. As before, since Wy 1, has minimum frequency

(1) 3

4 n+1 (4 n+1 4\ 5
ANV LUV C O SO U IO W

Agn = Ag1Tg+1n = Ag q+1
and the minimum frequency in Ry ny1 i Agnt1,0, every error term resulting from the self interaction of
Wqt1,n,p Wil be absorbed into higher order stresses Rq 7 for n > n. Therefore, we can induct on n to add
a sequence of perturbations wgyi,n = 22‘1" Wg+1,n,p Such that all nonlinear error terms are canceled by
subsequent perturbations. Upon reaching nm,ax and recalling (2.1), we can estimate the final nonlinear error

term by

17(%)"max+17 1

Og+1A A Pmax
o H Jom' S 0qv2 == dqp1 (q> < g2

AqH1T g+ nmax Agi1
N <Mmax

nmax+l 1
25, ( 1)(1—(%) - max) 28b
= A1 A1 : <A

<— Qﬁb(b—l) < (b—l) <1_ <§)nmax+1_pl )

1 4 Mmex 1
<—[(1-(2 - .
== ( (5> pmax>

Choosing b to be close to 1 and npax and pmax sufficiently large shows that these error terms are commen-
surate with Hz~ regularity.

2.7.2 Type 2 oscillation error

We now consider the second type of oscillation error, which would arise as a result of two distinct pipes
intersecting and thus serves no purpose in the cancellation of stresses. Beginning with R, = R, we have
that every derivative on ]i'iq,o costs Aq. Therefore, we may decompose ]O%q,o using a checkerboard partition
of unity at scale )\q_l. Referring back to the discussion of the checkerboard cutoff functions, this sets the
value of r1 to be )\q/\;il. Now, suppose that on a single square of this checkerboard, we have placed a set
of intermittent pipe flows W, ¢ which are periodized to scale ()\quqH,O)*l. After flowing the pipes and
the checkerboard square by v, for a short length of time'®, we must place a new set of pipes Wfl 41,0 Which
are disjoint from the flowed pipes W41 0. Given the choice of r1, this will be possible provided that

3
Tgr1,0 = T2 K 7. (2.21)
Thus, the mzmmum amount of intermittency needed to successfully place disjoint sets of intermittent pipes

is (A\q )‘q+1) Per Definition 2.3, our choice of rq41,0 is (Ag )\q+11) ; which is then sufficiently small.

18The length of time is equal to the local Lipschitz norm of vq on the support of the cutoff v; 4, given by the time-cutoff
hidden in an,p.
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Let us now assume that we have successfully corrected ]O%q,n/ for n’ < n, and that we wish to correct
Zp”‘“" Rq7 n,p With a perturbation w41, = g“”f‘ Wyt1,n,p- First, we recall that

M B M
Hv Rynp I r<v5q+1,n7p)‘

q,n,p*

Therefore, we can multiply Rq n,p by a checkerboard partition of unity at scale A 0 > )\q n,p While preserving
these bounds. We must choose values of r; and 73, as in Section 2.5.2. Since for n>2

1—1

ayn=ls g (4)nls py (3)"
)‘q+1741:>‘q,n,0:)‘l50) °A 2 C=Ag41- ( ; ) ,

olut

q+1

and for n =1

4 1 Aq (s '
Ag1,0 = Ag Agp1 > Agta - ()\ ) )
q+1

we have that for all n > 1

5

( Ag )(é)"l-s
Ag+1 '

Recall that ]D%qm,p will be corrected by wg1,n,p, Which is constructed using intermittent pipe flows W1,

with intermittency
n+1
NO&
Tq+l,n = = T2.

Ag+1

v

1

Thus in order to succeed in placing pipes Wy, which avoid both previous generations of pipes, which
are periodized to scales rougher than W, ,, and pipes from the same generation on overlapping cutoff
functions, we must ensure that

3
ro K i

) ( A, >()
<< —_
Agt1
4 n+1
<(5)
AN
5) 125

So our choice of 7441, is sufficient to ensure that we can successfully place intermittent pipe flows when
constructing wy41 5, which are disjoint from all other pipe flows from either previous generations (n’ < n)
or the same generation (the same value of n).

4
5

. (‘&,)<
Agi1

— <4)"‘1.5.3

5 6 4

1

2

—

2.7.3 Nash and transport errors

The heuristic for the Nash and transport errors is that our choice of 7441, provides much more intermittency
than is needed to ensure that linear errors arising from wy41,, , can be absorbed into R,11.'? In other words,
the Type 2 oscillation errors required much more intermittency than the Nash and transport errors will.

90ne may verify that in three dimensions, the minimum amount of mtermlttency needed to absorb the Nash and transport
errors arising from wq41,0 into Rq+1 at regularity approaching H2 isrgr1,0= )\ )\q+1 In general, one can further verify that

glven errors supported at frequency Ag )\q+1 , one could correct them using intermittent pipe flows with minimum frequency

)\q2 )\q+17 while absorbing the resulting Nash and transport errors into ]:Zq+1. One should compare this with (2.21), which shows
3 _3
that the placement technique requires more intermittency, which at level n = 0 corresponds to Ag )‘q+1
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Let us start with the Nash error arising from the addition of wg41,0,1, which is designed to correct ]o%q.
Using decoupling, the cost of a derivative on W, being A,41 (so that inverting the divergence gains a
factor of Ay41), the size of Vy, in L?, and the L' size of Wgt1,n being 74410, the size of this error is

4
1 2 c1/ 1 12 A (g)
——0,16,2\ = 5725/ g .
)‘q+1 q+1 q"q+1,0 >\q+1 q+1%¢ g <>\q+1

This is (much) less than d,42 since

51/2 51/2/\3/2

q+1%¢ Aq 5 -3 —24b
N Otz = /\q+1/\q+1)‘q 1Ag+1 = Agi
q+1

— ZﬁbZ—Bb—Bg(b—l)%

= BEb+1)(b-1)< (b—1)- (2.22)

Choosing b close to 1 will make this error commensurate with Hz regularity.
Let us now estimate the Nash error arising from the addition of wg1 5 for n > 2, given by

Hdiv 7 ((anp VO W 1.0(@0)) - Vo) ‘

Using again decoupling, the cost of a derivative on W1 ,, being Aj+1 (so that inverting the divergence gains
a factor of Ag11), the size of Vv, in L?, the L' size of Wy 1 ,, being 7¢41,,, and (2.1), we have that for n > 2,
the size of this error is

e

1 1 1 1 1 1
Aot ) 5;+1,n,prq+1,n 0 Ag < Ao 5;+1,7z,17"q+1,n 0 Aq
q q
1 A, BN
q+1 q ° 3
_ 1 02 A
Agt1 ( Ag,n.,0 ) (nlzlnfq’ > < q+1> e
: (4)" - g
< 1 5q+1)\ ( /\q > 5 2pmax é)\
= 1 a\n—1 5 4\n—1 5 A 1 q 7\q
q+ )\gs) ‘6 /\q+£ ) 6 q+

Since

1 +1 ? é n—1< é n+1
max 2 6 \5 5

independently of n > 2 if pyax is sufficiently large, the Nash error will be smaller than d,42 based on the

1 1
preceding estimates. Furthermore, one may check that 6.1 1 17¢4+1,1 <041 217¢+1,2, so that the Nash error
arising from the addition of wgy1.1,p is also satisfactorily small for all p.

Now let us consider the transport error. The size of the transport error arising from the addition of

Wat1,n,p 18
div=' ((D WWo W RSP
v t,qn,p gl Vatin )| = Aot Tq 9+1,npTa+1ln
1 1 1
2 2
A\ . ’ 5q+l,n,pqur1;n ’ 6‘1 )‘Q' (223)
q

Thus, the transport error is the same size as the Nash error and is sufficiently small to be put into IO%QH.

3 Inductive assumptions

While in Section 2 we have outlined in broad terms the main steps in the proof of Theorem 1.1, along with
the heuristics for some of the choices we have made in our proof, starting with the current section, we work
with precise estimates.
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In Section 3.1 we introduce some of the notation used in the proof, such as the Euler-Reynolds system,
the mollified velocity, velocity increments, material /directional derivatives, our notation for geometric upper
bounds with tho different bases, and our notation for ||-||,,.

In Section 3.2 we introduce the principal amplitude and frequency parameters used in proof (the precise
definitions and the order of choosing these parameters is detailed in Section 9.1). Next, in Sections 3.2.1
and 3.2.2 we state the primary inductive assumptions for the velocity, velocity increments, and Reynolds
stress. These primary estimates hold on the support of previous generation velocity cutoff functions, which
are inductively assumed to satisfy a number of properties, listed in Section 3.2.3. Lastly, in Section 3.2.4
we list a number of bounds for the velocity increments and mollified velocities, which involve all possible
combinations of space and material derivatives, up to a certain order. These bounds are technical in nature,
and should be ignored at a first reading; their sole purpose is to allow us to bound commutators between
D™ and Dy, for very high values of n and m.

In conclusion, in Section 3.4 we show that if we are able to propagate the previously stated inductive
estimates from step ¢ to step g + 1, for every ¢ > 0, then Theorem 1.1 follows. At the end of the section we
discuss the modifications to the proof which would be necessary in order to obtain other types of flexibility
statements.

3.1 General notations

As is standard in convex integration schemes for the Euler system [29], we introduce the Euler-Reynolds
system for the unknowns (vq, Ry):

Dyvg + div (vg ® vy) + Vpg = div R, (3.1a)
div v, = 0. (3.1b)

o

Here and throughout the paper, the pressure p, is uniquely defined by solving Ap, = divdiv (Rq — vy ® vg),
with [ pgdx = 0.

In order to avoid the usual derivative-loss issue in convex integration schemes, for ¢ > 0 we use the
space-time mollification operator defined in Section 9.4 — equation (9.64), to smoothen out the velocity field
Vg as:

ve, = Py.a.q- (3.2)

In particular, we note that spatial mollification is performed at scale Xq_l (which is just slightly smaller than
)\q_l), while temporal mollification is at scale 7,_1 (which is a lot smaller than 7,_1).
Next, for all ¢ > 1, define

Wy 1= Vg — Vg, _,, Ug 1= Vg, — Vg, (3.3)
For consistency of notation, define wg = vy and ug = vy,. Note that

Uuq = Pg,z,tWq + (PQ7xat’U€q—1 - Ueq—l) (3.4)

so that we may morally think that u, = wg+ a small error term (the smallness of this error term will be
ensured by choosing a mollifier with a large number of vanishing moments, cf. (9.62)).
We use the following notation for the material derivative corresponding to the vector field vy, :

Dy =0t +vy, - V. (3.5)
With this notation, we have that
Dig=Dig-1+ug- V. (3.6)
We also introduce the directional derivatives
Dy :=uy-V (3.7)

which allow us to transfer information between D, ;1 and D, 4 via Dy ¢ = Dy g1 + Dy.
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Remark 3.1 (Geometric upper bounds with two bases). If for a sequence of numbers {a,, }»>0, and
for two parameters 0 < A < A we have the bounds

an, < A", forall n<N,
an < AV=A""N- forall n > N,

for some N, > 1, we will abbreviate these bounds as
an < M(n,Ni, A\ A)
where we define
M (n, Ny A, A) 1= Amin{nNo} pmax{n=N..0) (3.8)

for all n > 0. The first entry of M (-,-, A\, A) measures the index in the sequence (typically number of
derivatives considered) and the second entry determines the index after which the base of the geometric
bound changes from A to A. This notation has the following consequence, which will be used throughout
the paper: if 1 < X\ < A, then

M (a, Noy \, A ) M (b, Ny A A) < M (a+ b, Ny, M\ A) . (3.9)
When either a or b are larger than N, the above inequality creates a loss; for a + b < N,, it is an equality.

Remark 3.2 (Norms are uniform in time). Throughout this section, and the remainder of the paper, in
order to abbreviate notation we shall use the notation || f||,, to denote Hf||L?Q(Lp(T3)). That is, all LP norms
stand for LP norms in space, uniformly in time. Similarly, when we wish to emphasize a set dependence of
an LP norm, we write || f||, ), for some space-time set & C R x T3, to stand for ||1q Flpes (Lo (r2y)-

3.2 Inductive estimates

o

The proof is based on propagating estimates for solutions (v,, R,) of the Euler-Reynolds system (3.1),
inductively for ¢ > 0. In order to state these bounds, we first need to fix a number of parameters in terms
of which these inductive estimates are stated. We start by picking a regularity exponent 8 € (1/3,1/2), and a
super-exponential rate parameter b € (1,3/2) such that 28b < 1. In terms of this choice of 8 and b, a number
of additional parameters (Nmax, - - - Nin) are fixed, whose precise definition is summarized for convenience in
items (iii)—(xii) of Section 9.1. Note that at this point the parameter a.(/3,b) from item (xiii) in Section 9.1
is not yet fixed. With this choice, we then introduce the fundamental g-dependent frequency and amplitude
parameters from Section 9.2. We state here for convenience the main g-dependent parameters defined in
(9.15), (9.17), (9.18), and (9.21):

P T S U e (3.100)
Agin )
Tt =0, A T Tgi1 = ( ;“) A Apler (3.10b)
q

where the constant cg is defined by (9.6). The & symbols in (3.10) mean that the left side of the ~ symbol
lies between two (universal) constant multiples of the right side (see e.g. (9.16)).

Remark 3.3 (Usage of the symbol < and choice of a.). Throughout the subsequent sections, we will
make frequent use of the symbol <. We emphasize that any implicit constants indicated by < are only
allowed to depend on the parameters defined in Section 9.1, items (i)—(xii). The implicit constants in < are
however always independent of the parameters a and ¢, which appear in (3.10). This allows us at the end of
the proof, cf. item (xiii) in Section 9.1 to choose a.(3,b) to be sufficiently large so that for all a > a.(8,0)
and all ¢ > 0, the parameter I';41 appearing in (3.10) is larger than all the implicit constants in < symbols
encountered throughout the paper. That is, upon choosing a, sufficiently large, any inequality of the type
A < B which appears in this manuscript, may be rewritten as A <T';41B, for any ¢ > 0.
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In order to state the inductive assumptions we use four large integers, defined precisely in Section 9.1.
For the moment it is just important to note that these fixed parameters are independent of ¢ and that they
satisfy the ordering

I« Ncut,t < Nind,t < Nind,v < Nﬁn . (311)

The precise definitions of these integers, and the meaning of the < symbols in (3.11), are given in (9.9),
(9.10), (9.11), and (9.14). Roughly speaking, the role of these parameters is as follows:

® Nyt ¢ is the number of sharp material derivatives which are built into the velocity and stress cutoff
functions.

® Ning,¢ is the number of sharp material derivatives propagated for velocities and stresses.

e Ning,v is used to quantify the number of (lossy) higher order space and time derivatives for velocities
and stresses.

e Ng, is used to quantify the highest order derivatives appearing in the proof.
Next, we state the inductive assumptions for the velocity increments and stresses at various levels ¢ > 0.
Throughout the section we frequently refer to the notation M (n, N, A\, A) from (3.8).
3.2.1 Primary inductive assumption for velocity increments

We make L? inductive assumptions for Uqr =g, — Vg, , at levels ¢’ strictly below q. Forall 0 < ¢’ < g—1
we assume that

n m
Hﬂ’i,q’le DYy 1ug

|L2 < 5;{2/\/1 (n; 2Nind,vv )\q’a Xq’) M (m, Nind,t» Ffl/’rqi,il, ?(;il) (312)

holds for all n +m < Ng,.
At level g, we assume that the velocity increment w, satisfies

[¢1.0-1 D™D}, ywq| o < T '0,2ARM (m, Ninae, T ey T 7)) (3.13)

for n,m < TNinq,v. Moreover, recalling from (9.67) that supp,f denotes the temporal support of a function
f, we inductively assume that

supp, (Ry1) € [T1, T3] = supp,(w,) € [T = (Ag18) 71 1o+ (A1) 7] - (3.14)

3.2.2 Inductive assumption for the stress

For the Reynolds stress ]D%q, we make L' inductive assumptions
[0 Dy s, < TG0 M (Mo T3 7T (3.15)
for all 0 < n,m < 3Njpd,v-

3.2.3 Inductive assumption for the previous generation velocity cutoff functions

More assumptions are needed in relation to the previous velocity perturbations and old cutoffs functions.
First, we assume that the velocity cutoff functions form a partition of unity for ¢’ < ¢ — 1:

S Wwig=1 and  igthig =0 for |i—i|>2. (3.16)
i>0

Second, we assume that there exists an émax = imax(q) > 0, which is bounded uniformly in ¢ as

b+1 . 4
Z—Zr(b—l)7

IN

< .
1S imax(q) (3.17)
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such that

Yo =0 forall i>ima(q), and D@ < \F (3.18)

forall ¢ <g—1. Forall 0 < ¢ < ¢—1and 0 < i < iy we assume the following pointwise derivative
bounds for the cutoff functions ;. For mixed space and material derivatives (recall the notation from
(3.5)) we assume that

]-supp P, e k o 8
e (| LI P Dry 1 ) i
1/}1#1/ =1
M (K’ Nind.v, FQ’AQ’vFQ’Xq/) M (Ma Ning,t — Ncut,tarz 417y AR q_’i-l;q_/l> (3.19)

for K, M,k > 0 with 0 < K + M < Ng,, where «, 8 € N¥ are such that |a| = K and |3| = M. Lastly, we
consider mixtures of space, material, and directional derivatives (recall the notation from (3.7)). Then with
K, M, «, and k as above, and with N > 0, we assume that

k
(H DD}, ) Vig

=1

1SUPP Vi q
wlf(NJrKJr]V[)/Nﬁn
g

/L)

<M (N, Ninav, Ly A, Ty dgr ) (T8 75 KM (M, Nina s — News,, T2
5 q q q q 3 3

1 ~—1
717 ST TN (3.20)

as long as 0 < N + K + M < Ngy,.
In addition to the above pointwise estimates for the cutoff functions ; 4/, we also assume that we have
a good L' control. More precisely, we postulate that

i 445
gl STy ifcb where C, = P (3.21)

holds for 0 < ¢’ < g —1 and all 0 <7 < inax(q).

3.2.4 Secondary inductive assumptions for velocities

Next, for 0 < ¢ <q—1,0<i <imax, k>1, K,M >0, a, 8 € NF with |a| = K and |3| = M, we assume
that the following mixed space-and-material derivative bounds hold

k
‘ (TIp Dl )ug
i=1 Lo (supp ¥; o)
(Fj;ilél/z)M (K’ 2Nind,V7Fq’)‘q’an’) M (M’ Nind"“ q++17— ’ l’rq }Fl? 1) (3'22)

for K+ M <3Ntn/2 + 1,

k
’ (TIpp, ) Do,
=1 L~ (supp wiyq/)

S (10, R )M (K, 2Nigae Ty g, Ay ) MM N, T 7 T ) (3.23)
for K + M < 3Nsin/2, and

q'+1%q
| (HD“ Dl )wq,
Lo (supp ¢, o)

< (UHL6.° 02 )M (K,zNind,V,rq,Aq/,Xq,) M (M, Ninde, o970, T H%—l) (3.24)
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for K + M < 3Nmn/o + 1. Additionally, for N > 0 we postulate that mixed space-material-directional
derivatives satisfy

k
N i i
HD (TI Dy 7y e
i=1 Lo (supp ¢; o)

S (L0 M (N 4 K 2N, T Agrs Mg ) MM N, T2 70 T 7 ) (3.252)

q +17— ’
< (67 M (N,Qde,v,FqIAq/,qu) (T M (M, Ninae, T2 7 T ﬁ—,l) (3.25b)
whenever N + K + M < 3Nsin /2 + 1.

Remark 3.4. Identity (A.39) shows that (3.25b) automatically implies the bound

N
||D Df q/u’l HLOQ suppq’b )
< (T8 M (N,2Nind7v,rq/Aq/,Xq/) M (M Nipa o, Ty T 7y ) (3.26)

for all N + M < 3Nsn/2 4+ 1. To see this, we take B = D; os—1 and A = Dy, so that A+ B = Dy . The
estimate (3.26) now is a consequence of 1dent1ty (A.39) and the parameter inequalities F°9i?{77i1 <7, !

(which follows from (9.40)) and Fl,f’lﬂ q_,l <7, ! (which is a consequence of (3.18) and (9.43)). In a similar

fashion, the bound (3.20) and identity (A.39) imply that

lsupp%,q/
wl_(N""M)/Nﬁn
1,9’

DN DM i g |
<M (N, Nind.v: Ty g, rq,Xq,) M (M, Nindt — News,ts 071, T ﬁ—,l) (3.27)

for all N + M < Ng,. Indeed, the above estimates follow from the same parameter inequalities mentioned
above, and from identity (A.39) with A= Dy and B =Dy 4 _;.

Remark 3.5. The inductive assumptions for the velocities given in Sections 3.2.1 and 3.2.4, with the
definition of the mollifier operator Py .+ in Section 9.4, imply that the new velocity field v, = wq + vg,_, is
very close to its mollification v, , uniformly in space and time. That is, we have

D" Dy (v, — v < 2,262 M (mQNind’v, Aq,Xq) M (m,Niga g, 7 4T L 0T (3.28)

‘I)HLoo 1 Tg—1

for all n,m < 3Njpq,v. The proof of the above bound is given in Lemma 5.1, cf. estimate (5.4).

3.3 Main inductive proposition

[Take this subsection as a whole, and copy it in PUP file] The main inductive proposition, which propagates
the inductive estimates in Section 3.2 from step g to step ¢ + 1, is as follows.

Proposition 3.6. Fiz § € [1/3,1/2) and choose b € (1,1/28). Solely in terms of 5 and b, define the parameters
Nmax Cb; CR7 Co, €1, OR, Ncut,tz Ncut,x; Nind,t; Nind,v; Ndcm d7 and Nﬁn; by the deﬁm’tions in Section 91}
items (1)—(xii). Then, there exists a sufficiently large a, = a.(B,b) > 1, such that for any a > a., the
following statement holds for any ¢ > 0. Given a velocity field v whzch solves the Euler-Reynolds system
with stress Rq, define ve,, wq, and ug via (3.2)~(3.3). Assume that {ug }7,_ 0 satisfies (3.12), wq obeys (3.13)-

(3.14), Io%q satisfies (3.15), and that for every ¢’ < q— 1 there exists a partition of unity {1; o }i>0 such that
properties (3.16)—(3.18) and estimates (3.19)—(3.25) hold. Then, there exists a velocity field vgi1, a stress
éq+1; and a partition of unity {1 q}q>0, such that vg41 solves the Euler-Reynolds system with stress Iflq+1,
uq satisfies (3.12) for ¢’ = q, w1 obeys (3.13)—(3.14) for ¢ — g +1, éq+1 satisfies (3.15) for g — q+1,
and the 1; 4 are such that (3.16)—(3.25) hold when ¢’ — q.
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3.4 Proof of Theorem 1.1

Choose the parameters 3, b, ..., ay, as described in Section 9.1, and assume that with these parameter choices,
and for any a > a., we are able to propagate the inductive bounds claimed in Sections 3.2.1-3.2.4 from step ¢
to step g+ 1, for all ¢ > 0; this is achieved in Sections 6-8. We next show that if @ > a, is chosen sufficiently
large, depending additionally on the vstart, Vend, I > 0, and € > 0 from the statement of Theorem 1.1, then
the inductive assumptions imply Theorem 1.1.

Without loss of generality, assume that fjr?» Vstart (T)dr = fTS Vend(x)dx = 0. Since these functions lie in
L?(T3), there exists R > 0 such that upon defining

o

(1) .
Vg = = ]PﬁRvstart s and = HJJSRrUend ;

where P<p denotes the Fourier truncation operator to frequencies |£| < R, we have that

08" = vstart || L2 (r9) + 1057 = Venall L2(rs) < = - (3.29)

N

Note that v(()l),v(()Q) € C°°(T?), and thus by the classical local well-posedness theory plus propagation of

regularity (see Foias, Frisch, and Temam [38]), there exists Ty > 0 and unique strong solutions v(}) €
C>®((—=Tp, To) x T?) and v® € C=°((T — Ty, T +Tp) x T?) of the 3D Euler system (1.1), such that v (z,0) =
vél)(m) and v (z,T) = v(()2)(x). Without loss of generality, we may take Ty < T/a.

Next, let ¢: [0,7] — [0, 1] be a non-increasing C* smooth function such that ¢ =1 on [0, 7o/2] and ¢ =0
on [Tp,T]. Define the C*°-smooth function

vo(z,t) := o)W (z,t) + o(T — t)o® (z,1) . (3.30)

On [0,T7, vo solves the Euler-Reynolds system (3.1) for a suitable zero mean scalar pressure pg, with the
C*°-smooth stress R defined by

Ro(z,t) := (0pp) () RvD (2, ) — (9p)(T — t)RvP (z, 1)
+ o) (e(t) — 1) (@M @vM) (@, 1) + o(T — t)(o(T — 1) — (P &) (2, 1), (3.31)

where R is the classical nonlocal inverse-divergence operator (see (A.100) for the definition). From the above
definition and the fact that ¢ =1 on [0, To/2], we deduce that

suppt(}o%o) C [Tofo, T —To/2]. (3.32)

This fact will be needed towards the end of the proof.

For consistency of notation, we also define v_; = vy_, = u_; = 0, so that vy = wp holds by (3.3). For
the velocity cutoffs, we let 19 _; = 1 and #; _1 = 0 for all ¢ > 1. It is then immediate to check that the
{%:,—1}i>0 satisfy the inductive assumptions (3.16)—(3.21), for ¢’ = —1, with the derivative bounds (3.19)
and (3.20) being empty statements for K + M > 1, respectively when N+ K+ M > 1. Moreover, the bounds
(3.12) and (3.22)—(3.25b) hold for ¢' = —1 since the left side of these inequalities vanishes identically. Lastly,
the assumption (3.14) is empty since there is no R_; stress to speak of.

It thus remains to verify that the pair (vg, Ro) defined in (3.30)—(3.31) satisfies the estimates (3.13) and
(3.15), where by the above choices we have D; _1 = J;. Note that the parameter Ni,q was already chosen;
thus, we have that

D”@{”EOH <oo.  (3.33)

= max Do o max
Caatum a H at UO”L (0,T;L2(T3)) + 2 Lo<(0,T;L1(T3))

0<n,m<TNind,v 0<n,m<3Nind,v

Note that Cgatum only depends on vggart, Vend, the cutoff frequency R > 0, the choice of the cutoff function

¢, on T > 0, and on the parameter Nijnq . In particular, Cqatum does not depend on the parameter a, which

is the base of the exponential defining A, in (3.10). Defining 71 = Tg' = A\;" and 71 = Ty = A"

(these parameters are never used again), and that A\g > a > a, > 1, we thus have that (3.13) and (3.15) hold
if we ensure that

—151/2 —Cr
Caatum < F() 60 and Caatum < Fo 01 . (334)
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Using that er is sufficiently small with respect to 8 and b, we have that I’glé(l)/z = )\asr)\gbﬂ)ﬁﬂ)\a’g >
(MAgHEFDB/2 > (gb=1/2)8 Also, by using that er is chosen to be sufficiently small with respect to 3 and
b, we have that Ty ®§; = )\(()4b+1)ar/\§b_1m > (Mg )8 > (gb=1/2)*=DB Thus, if in addition to a > a.,
as specified by item (xiii) in Section 9.1, if we choose a > a. to be sufficiently large in terms of 8,b and the
constant Cyatum from (3.33), in order to ensure that

12
a(b D8 Z 4Cdatum7

then the condition (3.34) is satisfied. We make this choice of a, and thus all the estimates claimed in
Sections 3.2.1-3.2.4 hold true for the base step in the induction, the case ¢ = 0.

Proceeding inductively, these estimates thus hold true for all ¢ > 0. This allows us to define a function
v e C0,T; HP (T3)) for any 3’ < 3 via the absolutely convergent series®’

v=lim vy = vo + Z(UqH — V) = vo + Z (wgi1 + (ve, —vg)) (3.35)

QA)OO
q20 q=0

where we recall the notation (3.2) and (3.3). Indeed, by (3.13), (3.16), and interpolation, we have that

lwgll o < 21“;16;/2/\5/ = 211;1)\;1)+ 1)/3/2)\;(@75') which is summable for ¢ > 0 whenever 3/ < 3. By appeal-

ing to the bound (3.28), we furthermore obtain that ||wq — quHﬁ’ < /\;25(1/2)\5/ < A(lﬂ 1)ﬁ/2)\q_2_(6_ﬂ/),
which is again summable over ¢ > 0. This justifies the definition of v in (3.35), and the fact that
v E CO(JO,T; HF (T3)) for any 3’ < B. Finally, we note that by additionally appealing to (3.15), which
yields ||Rgl|1 S Ty “®dg41 — 0 as ¢ — oo, in view of (3.1) the function v defined in (3.35) is a weak solution
of the Euler equations on [0, 7.

In order to complete the proof, we return to (3.35) and note that due to (3.14) (with ¢ = 1), the property
(3.32) of Ry, and the fact that )\05(1)/2 = )\éfﬂ)\(lb Ve > 4/1, (which holds upon choosing a sufficiently large
with respect to Tp, 3,b), we have that w; = 0 on the set [0, 70/4] x T3 U [T — To/a, T| x T3. Thus, from (3.35)

and the previously established bounds for w, (via (3.13), (3.16)) and v, — v, (via (3.28)), we have that

llv — UOHLOO([0,T0/4]U[T7T0/4’T];L2(']]'3)) < Z quHLoo([o,T];L?(TS)) + Z qu o U‘ZHLOO([O,T];Lz('ES))

q>2 q>0

<oxy ST A AT A
q>2 q>0

SO Vb P DY Sl T
< 8GN T VATEY L g\(PrNE N 2E
< )\;w—l)zs/z +4A81/2

€
<t (3.36)

once a (and thus Ao and A1) is taken to be sufficiently large with respect to b, 3, and e. Here, in the
second-to-last inequality we have used that B(b% + b — 1) < 3/2, which holds since 8 < /2 and b < 3/2.
Combining (3.36) with the definition of the functions vV, v(?), and vy, and the bound (3.29), we deduce
that [[v(+,0) — vstart || f2(ps) < € and [[v(+, T) — venallp2(psy < €. This concludes the proof of Theorem 1.1, with
B being replaced by an arbitrary 5’ € (0, 3).

Remark 3.7 (Modifications for achieving compact support in time). The proof outlined above may
be easily modified to show the existence of infinitely many weak solutions in C?H;/ >~ which are nontrivial
and have compact support in time, as mentioned in Remark 1.2. The argument is as follows. Let (t) be a
C*> smooth cutoff function, with ¢ =1 on —[T/4,7/4] and ¢ =0 on R\ [-T/2,T/2]. Then, instead of (3.30),
we define define vg(z,t) = Ep(t)(sin(x3),0,0). Note that the kinetic energy of vy at time ¢ = 0 is larger
E(27)°?/2 > 2E, and that vo has time-support in [~7/2,T/2]. Since (sin(x3),0,0) is a shear flow, the zero

7:10 Ugr = 250Uy We choose to work with (3.35)

20We may equivalently define v = limg_s00 vg = limg— oo wq + Zg
because it highlights the dependence on vg.
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order stress Ry is given by E¢’ (t) multiplied by a matrix whose entries are zero, except for the (1,3) and
(3,1) entries which equal — cos(z3) (see [12, Section 5.2] for details). The point is that Ry is smooth, and
its time-support lies in the interval 7/4 < |t| < T/2, which plays the role of (3.32). Using the same argument
used in the proof of Theorem 1.1, we may show that for a sufficiently large, the above defined pair (vy, ]o%o)
satisfies the inductive assumptions at level ¢ = 0, and that these inductive assumptions may be propagated to
all ¢ > 0. As in (3.36), we deduce that the limiting weak solution solution v has kinetic energy at time ¢ = 0
which is strictly larger than E. The fact that supp ,vo,supp;Ro C [—T/2,T/2], combined with the inductive
assumption (3.14) and the fact that the mollification procedure in Lemma 5.1 expands time-supports by

at most a factor of 7,1 < (/\q_ldjl/_? 1)~ L, implies that the the weak solution v has time-support in the set
[t| < T/ + 42(]20()\(15;/2)_1 < T/y 4+ 8\, Choosing a sufficiently large shows that supp o C [T, T].

Remark 3.8 (Modifications for attaining a given energy profile). The intermittent convex integra-
tion scheme described in this paper may be modified to show that within the regularity class C’?H;/ -,
weak solutions of 3D Euler may be constructed to attain any given smooth energy profile, as mentioned in
Remark 1.2. The main modifications required to prove this fact are as follows. As in previous schemes (see
e.g. De Lellis and Székelyhidi Jr. [31], equations (7) and (9), or [13], equations (2.5) and (2.6), etc.) we need
to measure the distance between the energy resolved at step ¢ in the iteration, and the desired energy profile
e(t). The energy pumping produced in steps ¢ — ¢ + 1 by the additions of pipe flows which comprise the
velocity increments wq1, and the error due to mollification, was already understood in detail in Daneri and
Székelyhidi Jr. [27] and in [11]. An additional difficulty in this paper is due to the presence of the higher
order stresses: the energy profile would have to be inductively adjusted also throughout the steps n — n+1
and p — p+ 1. The other difficulty is the presence of the cutoff functions. This issue was however already
addressed in [13], cf. Sections 4.5, 4.5, 6; albeit for a simpler version of the cutoff functions, which only
included the stress cutoffs. With some effort, the argument in [13] may be indeed modified to deal with the
cutoff functions present in this work.

4 Building blocks

In Section 4.1, we specify in Propositions 4.1 and Proposition 4.3 the axes and shifts, respectively, that will
characterize our intermittent pipe flows. A sufficiently diverse set of vector directions for the axes ensures
that we can span a neighborhood of the identity in the space of symmetric 3 x 3 matrices using positive linear
combinations of simple tensors. Proposition 4.3 crucially describes the r=2 choices of placement afforded
by the parameter r, which quantifies the diameter of the pipe. Then in Proposition 4.4, we construct the
intermittent pipe flows used in the rest of the paper and specify the essential properties. Section 4.2 contains
Lemma 4.7, which studies the evolution of the axes of the pipes under flow by an incompressible velocity
field and related properties. Section 4.3 contains Proposition 4.8, which is the placement lemma used to
eliminate the Type 2 oscillation errors. We remark that the results of this section are only used in Section 8
- first to ensure the cancellation of errors in Section 8.3, and second to show that the Type 2 errors vanish
in Section 8.7.

4.1 A careful construction of intermittent pipe flows
We recall from [54, Lemma 1] or [27, Lemma 2.4] a version of the following geometric decomposition:

Proposition 4.1 (Choosing Vectors for the Axes). Let Bis(Id) denote the ball of symmetric 3 x 3
matrices, centered at 1d, of radius 1/2. Then, there exists a finite subset = C S? N Q3, for every & € =
there exists a smooth positive function v¢: C™ (Bi;(I1d)) — R, such that for each R € Bij,(Id) we have the
identity

R=) (k(R)*¢®¢. (4.1)

§eE

Additionally, for every & in Z, there exist vectors £2),£3) € S2NQ® such that {£,6?), €3} is an orthonormal
basis of R®, and there exists a least positive integer ny such that ny&,n @ n, B € Z3, for every € € Z.
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In order to adapt the proof of Proposition 4.8 to pipe flows oriented around axes which are not parallel
to the standard basis vectors eq, es, or es, it is helpful to consider functions which are periodic not only with
respect to T2, but also with respect to a torus for which one face is perpendicular to the axis of the pipe
(i.e., that one edge of the torus is parallel to the axis).

€1

D

<€ > e -
L. N — > ( (3)
) £ 3 ¢
¢ £
@ @)
¥ 4 ¢

Figure 8: The torus on the left, T?, has axes parallel to the usual coordinate axes, while the torus on the right,
denoted ’]1'2‘, has been rotated and has axes parallel to a new set of vectors &, 5(2), and 5(3).

Definition 4.2 (']I‘g-periodicity). Let {£,62) 3} ¢ S2NQ? be an orthonormal basis for R3, and let
f:R3 = R". We say that f is Tg—periodic if for all (ky, ks, k3) € Z2 and (x1,2,73) € R3,

f ((3?175627563) + 2 (k’1§ + kot @ + k3§(3))) = f(x1, 22, x3) (4.2)

and write f : ']I‘g — R, If{£,62) G} = {e1, eq,e3}, i.e. the standard basis for R, we drop the subscript
€ and write T3. For sets S C R3, we say that S is ']I‘g—pem'odz'c if the indicator function of S is ']I‘g—pem'odz'c.

3
Additionally, if L is a positive number, we say that f is (%)—pem’odic if

f ((1’1,552,953) + 2% (klf + k@ 4 ksf(g))> = f(x1, 22, 23)

3
for all (ki,ko,k3) € Z3 and (w1,22,23) € R®. Note that if L is a positive integer, %—periodicity implies
']Tg-pem'odicity.

We can now construct shifted intermittent pipe flows concentrated around axes with a prescribed vector
direction ¢ while imposing that each flow is supported in a single member of a large collection of disjoint
sets. For the sake of clarity, we split the construction into two steps. First, in Proposition 4.3 we construct
the shifts and then periodize and rotate the scalar-valued flow profiles and potentials associated to the pipe
flows W¢ » . The support and placement properties are ensured at the level of the flow profile and potential.
Next, we use the flow profiles to construct the pipe flows themselves in Proposition 4.4.

Proposition 4.3 (Rotating, Shifting, and Periodizing). Fiz £ € 2, where E is as in Proposition 4.1.
Let r=1, X\ € N be given such that A\r € N. Let » : R — R be a smooth function with support contained inside
a ball of radius i. Then for k € {0,...,r=t — 1}2, there exist functions %])fﬂ.’f :R3 — R defined in terms of
», satisfying the following additional properties:

ATy

3
(1) We have that %];,r,s is simultaneously (E{—i)—pem’odic and (&>—pem’0dic.
3
(2) Let F¢ be one of the two faces of the cube )\E‘fb which is perpendicular to €. Let Gy, C Fe N 27Q3 be

the grid consisting of r~2-many points spaced evenly at distance 2m(An.)~t on Fe and containing the
origin. Then each grid point gy for k € {0,...,r=1 — 1}? satisfies

(supp %])f’ré NFe) C {x s — gkl <27 (4)\n*)71} . (4.3)
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3
(3) The support of %)\ re CONSists of a pipe (cylinder) centered around a (—3) -periodic and ( Te )—perz’odz’c

line parallel to &, which passes through the point gi. The radius of the cylinder’s cross-section is as given
n (4.3).

(4) Fork # k', suppsc§ .  Nsupp s}, ¢ = 0.

N

\ 4

Figure 9: We have pictured above a grid on the front face of T* in which there are 4> = (Ar)? many periodic cells,
each with 4% = r~2 many subcells of diameter 16> = A™*. The periodized axes of the pipes are the green lines, and
they have been placed in the highlighted red squares on the front face of the torus.

Proof of Proposition 4.3. For r—* € N, which quantifies the rescaling, and for k = (kq, ko) € {0,...,7r~1 —1}?
which quantifies the shifts, define s to be the rescaled and shifted function

1 T T
k 1 2
T1,T9) (= — — —k,— —k ) 4.4
%T( b 2) 27TT‘%<27T7” b 27r 2 ( )

Then (21, 29) € supp »F if and only if

I 2 ) 2 1

EN N Y :

’271'7“ 1+ 27r 2l =16 (4.5)
This implies that
1 1 1 Ta 1

M - <2 < - .
b 4*27”" shitp Rogsgshtg (46)
Since these inequalities cannot be satisfied by a single pair (z,y) for both k = (k1,k2) and k' = (K}, k)

simultaneously when k # k', it follows that
supp »* N supp %ff/ =0 (4.7)

for all k # k’. Also, notice that plugging k; = 0 and k; = r~! — 1 into (4.6) shows that the set of x; for
which there exists (k1, k2) such that »*(x) # 0 is contained in

< <2 3rm
__° r— 2"
2 1 ) )

which is a set with diameter strictly less than 27w. Therefore, periodizing in x; will not cause overlap in
the supports of the periodized objects. Arguing similarly for zo and enumerating the pairs (ki, ka) with
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k€ {0,...,r~1 —1}2, we overload notation and denote by »”, the T2-periodized version of »*. Thus we have
produced r~2-many functions which are T2-periodic and which have disjoint supports.

Now define G, C T? to be the grid containing r~2-many points evenly spaced at distance 27r and
containing the origin. Then

G, ={gp :=2mrk: k€ {0,...,r ' —1}?} C 27Q?.

% contains g,g as the center of its support but no other grid points.

Let £ € Z be fixed, with the associated orthonormal basis {£,£3),¢®)}. For 2 = (21,22, 73) € R® and
Ar € N, define

Thus the support of each function s

%§7r,§(a:) = P (n*)\mj €@ vz 5(3)> . (4.8)

Then for (kih ko, kg) S Z?’,

2 2 2
e (3: n A—:(kl, ko, k3)> s (n*)\r<x n )\—:(kl, ko, kg)) €@, n*)\r(x n /\—:(kl, ko, kg)) -§<3>>

k (n*)\m: . 5(2), NEATT - 5(3))
= %§ r,f(x)

s

since n,£?) 0, £B) € Z% and »* is T?-periodic, and thus 7y e 1 E{—i—periodic. Similarly,

27
%1;77,75 <l’ =+ W(klg —+ k2§(2) + k3€(3))>

2T

2w )
— (2) 3)) . @
%, (n*Ar(er 3 (k1€ + k28 + k3é )) 13 ,n*/\r(x—l- 5

TNy

(k1€ + ko€ ® + ko ™)) - £<3>)

TNy

= 5" (n*/\rx . 5(2), NgATT - 5(3))

o (krf + kof@ + ka®) - €@ = 2rky,  2m(ki€ 4 ko€® + kse®)) . €O = onky
3 3
and s* is T2-periodic. Thus %i,r,f is %fl*—periodic, and as a consequence %—periodic as well. Therefore, we
have proved point 1.

To prove point 2, define
Gar = {gk = 27k, (W) €@+ 2mky (M) E®) Lk ks € {0, — 1}} . (4.9)

We claim that %];,r,£|Fs is supported in a 27 (4An,)~!-neighborhood of gi. To prove the claim, let x € F¢ be
such that %];,T,E (z) # 0. Then since

N (@) = 52 (n*)\m €@ nora 5(3)) 7

we can use (4.5) to assert that x € supp %I/{,r,ﬁ if and only if © = (21, 2, x3) satisfies

2

neArz - €6
+|— <

2

NeATT - 5(2)
—_— —k —k
! 2mr 2

2rr

1
16

=

(Jj . ],‘)— 27Tk£(2)—|—27rk€(3) 2< 271' 2
Lrt2,08 At el 2 —\dn)\/) "’

which proves the claim.
Items 3 and 4 follow immediately after noting that %’jﬂ,_& is constant on every plane parallel to Iy, and

that the grid points g, € G, around which the supports of %]Af,r,g are centered, are spaced at a distance
which is twice the diameters of the supports. O
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Proposition 4.4 (Construction and properties of shifted Intermittent Pipe Flows). Fiz a vector
€ belonging to the set of rational vectors = C Q3 from Proposition 4.3, r—1, A\ € N with M\ € N, and large
integers 2Ng, and d. There exist vector fields ng,)\,r : T2 = R3 for k € ~{0,...,r‘1 — 1}2 and implicit
constants depending on Ng, and d but not on A or r such that:

(1) There exists o0 : R? — R given by the iterated Laplacian A% =: o of a potential ¥ : R? — R with
compact support in a ball of radius i such that the following holds. Let ng,)\,r and 19’57)\7,0 be defined as in
Proposition 4.3. Then there exist [U'g)\,r : T — R? such that

curlUE  , = EX"2AY (0 ) = €0k n, = WE - (4.10)

(2) Each of the sets of functions {Ulg,)\,’r}k” {glg)\’r}k, {ﬂlg,A,r}k: and {ng,/\,r}k satisfy items 1—4. In par-

ticular, when k # k', we have that the intersection of the supports of Wi’)"T and W’g:)\’r is empty, and
similarly for the other sets of functions.

(3) W’g_’)\’r s a stationary, pressureless solution to the Euler equations, i.e.

divwi,, =0,  div (Wg,,e@W,,)=0.

1
(4) W/Ts WE N, @WE,, =E6®¢

(5) For all n < 2Ngy,,

||vn19]€c7/\n"||m(¢r3) < anp(3-1), ané’]g,/\,er(W) < anp(3-1) (4.11)
and , .
IV UE sl oy S An-1p(3-1) IV WE sl o sy S Arr(3-1), (4.12)

(6) Let ® : T3 x [0,T] — T? be the periodic solution to the transport equation

0P +v-VO =0, (4.13a)
Py, =, (4.13b)

with a smooth, divergence-free, periodic velocity field v. Then

VO (W, 0®) =curl (VOT - (Uf,,0®)). (4.14)
(7) For Py, ,) @ Littlewood-Paley projector, ® as in (4.13), and A = (V®)~*,
[V ' (AP[ALAQ] (Wenr @ Wenr) (‘P)ATH

= A?{ ]P)D\l,)\z] (Wg)\,'rwé,)\,r) ((I))ajA;
= AJEFE ;AT P, 0 ((@’E,A,T)Q) (4.15)

i

fori=1,23.

Remark 4.5. The identity (4.15) is one of the main advantages of pipe flows over Beltrami flows. The
utility of this identity is that when checking whether a pipe flow W¢ » , which has been deformed by @ is
still an approximately stationary solution of the pressureless Euler equations, one does not need to estimate
any derivatives of We » , - only derivatives on the flow map ®, which will cost much less than A.

Remark 4.6. The formulation of (4.15) is useful for our inversion of the divergence operator, which is
presented in Proposition A.17 and the subsequent remark. We refer to the statement of that proposition
and the subsequent remark for further properties related to (4.15).
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Proof of Proposition 4.4. With the definition W]g,/\m = §Q§,>\,ra the equality A~24Ad (ﬁg,h,r) = Qg)\’r follows
from the proof of Proposition 4.3, specifically equations (4.4), (4.4), and (4.8). The equality curl Ulg%r =
We a,r follows as well using the standard vector calculus identity curl curl = Vdiv — A. Secondly, properties
(1), (2), and (4) from Proposition 4.3 for 19’5)“ follow from Proposition 4.3 applied to s = ¢¥. The same
properties for ng, A U}g) Ao and W’g A follow from differentiating. Next, it is clear that W’g A Solves the
pressureless Euler equations since ¢ - Vgg A, = 0. The normalization in (4) follows from imposing that

1
W/ (Ad’l?(l'hl‘g))g d&Cl dxg = 1,
R2

recalling that orthogonal transformations, shifts, and scaling do not alter the LP norms of T3-periodic
functions, and using (4.4). The estimates in (5) follow similarly using (4.4). The proof of (4.14) in (6) can
be found in the paper of Daneri and Székelyhidi Jr. [27].

The proof of (4.15) from (7) is simple and similar in spirit to (6) but perhaps not standard, and so we
will check it explicitly here. We first set P to be the T3-periodic convolution kernel associated with the
projector Py, »,) and write

. ((V‘I))—lp[)\l’)\z] (Werr © We ) (¢’)(V<I>)‘T> (z)
=9, (V070 ([ P)Wer, 8 Wer )@ - ) dy ) (72) 7o)
—v,. (/ (VO) ™ (@)P(y) (Wepr ® We ) (@( — 1)) (V) T () dy)
T3

= ([ PO (90 @ Wer (B = ) © (V) @)Wien (0o =) di) . (416)
Then applying (4.14), we obtain that (4.16) is equal to

- P(y) (V)™ (@)Wenr (2(x = y))) - Vo (V) (@) We (22 — ) dy.

Writing out the i*" component of this vector and using the notation A = (V®)~!, we obtain

[ - P(y) (A@)We xr (@(x = y))) - Vi (A(2)We x,((z — y))) dy|

3

= /TS P(y) Af (2)WE 5 (®(x — 9)) A} ()0 W 5 (D(2 — )0 () dy
* . P(y) AL (2)WE 5 (B(z — )0 A} ()W (Bl — 1)) dy. (4.17)
Since the second term in (4.17) can be rewritten as

. P(y) A7 (@)WE 5 - (®(z — )5 Aj(2)WE 5, (P( — y)) dy
= A ()P, g (WEALWE ) (8(2))0; 4] (2),
to conclude the proof, we must show that the first term in (4.17) is equal to 0. Using that
AL 0; "™ = b,

and
k 1
WX rOkWe y =0

for all [, we can simplify the first term as

[, Pu) AW (B = 1) A0, 0 (00— )05, () dy
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= /Ts P(y)énkwf,)\’r(@(x - y))A}(x)anWé’A’T(¢($ —y))dy

= /]1‘3 P(y)WE,A,r((I)(CU - y))A?(x)aleg’/\’T«b(fL‘ — y)) dy

proving (4.15). O

4.2 Deformed pipe flows and curved axes

Lemma 4.7 (Control on Axes, Support, and Spacing). Consider a convex neighborhood of space
Q C T3. Letv be an incompressible velocity field, and define the flow X (z,t)

WX (z,t) = v (X (x,t),t) (4.18a)
K=ty = @, (4.18b)
and inverse ®(x,t) = X ~(x,t)
0P +v-VO =0 (4.19a)
¢t:to =XT. (419b)

Define Q(t) := {x € T3 : ®(x,t) € Q} = X(Q,t). For an arbitrary C > 0, let 7 > 0 be a parameter such that

1
r< (5;/2Aqr§jf) . (4.20)

Furthermore, suppose that the vector field v satisfies the Lipschitz bound?!

sup ||VU('>t)||Loo(Q(t)) < 5;/2)\qrqc+1 : (4.21)
te[to—T,t()-'rT]
Let W’}\Hl,“ : T3 — R3 be a set of straight pipe flows constructed as in Proposition 4.3 and Proposition 4./

which are 11‘73—;067’2'0dic for g < r < 1 and concentrated around azxes {A;};cz oriented in the vector
Ag+1T Agt+1
direction & for € € 2. Then W := W§ (®(x,t)) : Qt) X [to — 7, to + 7] satisfies the following conditions:

a+1,75€
(1) We have the inequality
diam(Q(t)) < (1+T,};) diam(Q). (4.22)

(2) If x and y with © # y belong to a particular axis A; C Q, then

X(z,t) - X(yt) _x-y o
X (z,t) — X(y,t)] |z —y + di(z, y,1) (4.23)

-1

where |6;(x,y,t)| < T .

(3) Let x and y belong to a particular azis A; C Q. Denote the length of the azis A;(t) := X(A; NQ,t) in
between X (z,t) and X (y,t) by L(z,y,t). Then

L(z,y,t) < (1+T,.1) |z —yl. (4.24)

2
L—neighborhood of
471* /\q+1

U Aq(t). (4.25)

. . . 71
(4) The support of W is contained in a (1 + Fq+1)

21The implicit constant in this inequality is assumed to be independent of g, cf. (6.60).
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(5) W is “approzimately periodic” in the sense that for distinct axes A;, Aj with t # j and dist (A, NQ, A; N
0) =d,
(LT 1) d < dist (Ai(t), A;(t)) < (1+T L) d. (4.26)

Proof of Lemma 4.7. First, we have that for z,y € Q,

(X (2, 1) = X(y,1)| =

¢
x —y+/ 0s X (z,5) — 05X (y, s) ds
to

<lo=yl+ [ (X (w5)5) =0 (X)) ds.

Furthermore,
’vZ(X(x,s),s)—v s)| = ‘/ 00" (X (x +t(y —x),5),8) X (x +t(y —x),s)(y —x)*dt
< IVl oo (o)) IVX N poe (2s)) 12 — ¥
3.1
< 56112 AquC+1|$ -yl

Integrating this bound from ¢y to ¢ and using a factor of I';11 to absorb the constant, we deduce that
(=T ) v —y| < [X(z,t) = X(y,0)] < (14T L) | —yl. (4.27)

The inequality in (4.22) follows immediately.
To prove (4.23), we will show that for z,y € QN A; for a chosen axis A;,

[z =yl [ X(2,8) = X(y,1)] o

At time tg, the above quantity vanishes. Differentiating inside the absolute value in time, we have that

X(z,t) = X(y, )}
|X( 1) = X(y, 1)
X(z,t) =0 X(y,t) X, t) = X(y, ) (0 X(x,t) = 0 X(y, 1) - (X(,t) = X(y, 1))
\X(%t) X(y, 0 1X(2,t) = X(y, 1)1 [ X (2,1) = X(y, 1)
_ v(X(z,0),t) —u(X(y, 1), t)  X(x,t) = X(y,t) (v(X(2,1),t) = v(X(y,1),1)) - (X(2,¢) = X(y,1))
| X (2,t) = X(y, 1) [ X (2, 1) = X(y, 1) X (2,t) = X(y, 1)[? '

Utilizing the mean value theorem and the Lipschitz bound on v and (4.27), we deduce

’U(X(.’L',t)ﬁ) — U(X(y7t)7t) _ X(l‘,t) _ X(yat) (U(X(.’L‘,t),t) — U(X(y7t)7t)) ) (X(.T,t) — X(yvt))

| X (2, 1) = X(y, 1)l [ X (2,t) = X(y, )] | X (2, 1) = X(y, 1)[?
< 2||VU||Loo

< 26 A I‘q 1
1
Integrating in time from to to ¢ for |t — ¢o| < ((5 A I‘qCij) and using the extra factors of I'gy; to again

kill the constants, we obtain (4.23).
To prove (4.24), we parametrize the curve using X to obtain

1
L(xvy,w:/o VX(z+r(y—a), 1) - (@ —y)| dr < (14 T74) [z — yl.

The claims in (4.25) and (4.26) follow immediately from (4.27) and (4.3). O
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4.3 Placements via relative intermittency

We now state and prove the main proposition regarding the placement of a new set of intermittent pipe flows
which do not intersect with previously placed and possibly deformed pipes within a subset €2 of the full torus
T2. We do not claim that intersections do not occur outside of Q. In applications, € will be the support
of a cutoff function.?? We state the proposition for new pipes periodized to spatial scale ()\q+17"2)71 with
axes parallel to a direction vector £ € E. By “relative intermittency,” we mean the inequality (4.31) satisfied
by 71 and r9. The proof proceeds, first in the case £ = e3, by an elementary but rather tedious counting
argument for the number of cells in a two-dimensional grid which may intersect a set concentrated around
a smooth curve. In applications, these correspond to a piece of a periodic pipe flow concentrated around its
deformed axis and then projected onto a plane. Then using (1) and (2) from Proposition 4.3, we describe the
minor adjustments needed to obtain the same result for new pipes with axes parallel to arbitrary direction
vectors £ € E.

Proposition 4.8 (Placing straight pipes which avoid bent pipes). Consider a neighborhood of space
Q C T2 such that
diam(Q2) < 16(A\g1171) "1, (4.28)

where Xa/x,s1 <1y < 1. Assume that there exist smooth T3-periodic curves {An}nN§1 C Q% and T3-periodic
sets {Sn}ﬁ’gl C Q satisfying the following properties:

(1) There exists a positive constant Ca and a parameter ro, with 11 < ro < 1 such that

Nq < Carary?. (4.29)

(2) For any x,x’ € A, let the length of the curve A,, which lies between x and x' be denoted by Ly, ; ..
Then, for every 1 <n < Nq we have

Ln,x,w’ <2 |=7) - -T/| . (430)

(3) For every 1 < n < Ngq, we have that S,, is contained in a 27 (1 —l—I‘q__&l) (4n*/\q+1)_1—neighb0rhood of Ay.

Then, there ezists a geometric constant Cy > 1 such that if

C.Cary <73, (4.31)
then, for any & € E (recall the set Z from Proposition 4.1), we can find a set of pipe flows W§3+177‘2,§: T — R3
which are ~L° -periodic, concentrated to width —2— around azes with vector direction &, satisfy the

Ag+172 AXgr1iny

properties listed in Proposition 4.4, and for all n € {1,..., No},
ki
suppWy? L e NS = 0. (4.32)

Remark 4.9. As mentioned previously, the sets S,, will be supports of previously placed pipes oriented
around deformed axes A,,. The properties of S,, and A,, will follow from Lemma 4.7.

Proof of Proposition 4.8. For simplicity, we first give the proof for £ = e3, and explain how to treat the case
of general £ € = at the end of the proof.

The proof will proceed by measuring the size of the shadows of the {Sn}nNg1 when projected onto the
face of the cube T2 which is perpendicular to es, so it will be helpful to set some notation related to this
projection. Let F., be the face of the torus T? which is perpendicular to e3. For the sake of concreteness,
we will occasionally identify F,, with the set of points = (21,2, 23) € T? such that x3 = 0, or use that
F., is isomorphic to T?. Let AP be the projection of A, onto F,., defined by

AP = {(z1,22) € Foy : (x1,22,23) € Ap}, (4.33)

22Technically, 2 will be a set slightly larger than the support of a cutoff function. See (8.115), (8.118), and (8.129).
23That is, the range of each curve is contained in §2; otherwise replace the curves with A, N Q.
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and let S? be defined similarly as the projection of S, onto F.,. For # = (z1,72,73) € T3 and 2’ =
(2}, 2, 25) € T we let P(x) = (x1,22) € F., and P(2') = (2,2%) € F., be the projection of these points
onto F,,. Since projections do not increase distances, we have that

|P(z) — P(2)] < |o —2']. (4.34)

Since both A,, and AP are smooth curves?® and can be approximated by piecewise linear polygonal paths,
(4.34), (4.28), and (4.30) imply that if Lﬁ,z,m/ is the length of the projected curve AP in between the points
P(z) and P(z'), then

LP

D e <2 — '] <32(Agpar) (4.35)
In particular, taking x and z’ to be the endpoints of the curve A,,, we obtain a bound for the total length
of AP. Additionally, (4.34) and the third assumption of the lemma imply that S? is contained inside

a 2m(1l + I‘q_jl)(4n*)\q+1)*1—neighborhood of AP. Finally, since W§ si1.ra,es 15 independent of x3 for all
k € {0, .. —1}2, it is clear that the concluswn (4.32) will be achieved if we can show that there exists a
shift kg such that

SP N (supp Who N{zs = O}) =0, (4.36)

for all 1 <n < Nq. To prove (4.36), we will apply a covering argument to each SE.
Let Sy,,, be the grid of (Ag+174)-many open squares contained in F,,, evenly centered around a grid of
(Ag+17+)*-many points Gy, ,, which contains the origin. By Proposition 4.3, for each choice of k = (k1,k2) €

Ag+1,T2,€3

{0,... ,r;l — 1}2, the support of the shifted pipe W§q+1,r2,es intersects Fe, in a W—nelghborhood of a
finite subcollection of grid points from G, ,, which we call G’;\ , and which by construction is )\L-
q+1 q+1T2M %

periodic. Furthermore, two subcollections for k& # k' contain no grid points in common. Let S'}\qﬂ be the

so that S  and S’f\/ are disjoint if k # k’. To
q+1

set of open squares centered around grid points in GA ot Nt

prove (4.36), we will identify a shift kg such that the set of squares S’/{ZH has empty intersection with S? for

all n. Then by Proposition 4.3, we have that the pipe flow W 0
we will have verified (4.36).

In order to identify a suitable shift kg such that Sk°+ has empty intersection with S?, we first present
a generous cover for SP; see Flgure 10 Let 1 € AP be arbitrary. Set s;, € Sy, to be the grid square
of sidelength 2”n* containing x1,%° and let Sy, 9 be the 3 x 3 cluster of squares surrounding sx1 Then

— )\ CIf
possible, choose x5 € AP so that Sw%g is disjoint from S, g, and iteratively continue choosing z; € AP w1th
Sz, 0 disjoint from ij79 with 1 < 57 < i —1. Due to aforementioned observation about the lower bound on
the length of AP in each S, 9, after a finite number of steps, which we denote by i,, one cannot choose
i, ., € A} sothat Sz, o is disjoint from previous clusters; see Figure 10. By the length constraint on A},
and the observations on the length of A? NS, ¢ for each i, we obtain the bound

.. k
intersects F,. inside of Sy , and so
q+1,72,€3 3 )\q+1

27

either i is w1th1n distance o of an endpoint of AP, or the length of AP NS, ¢ is at least

82001r1) ™" 2 |A2] > (i — 2)27 (nAgy1)

which implies that i,, may be bounded from above as

-1
in < 32217”71* +2< 6n*r1_1 +2< 871*7“1_1 (4.37)
since 7“1_1 > 1. By the definition of 4,, any point x € AP which does not belong to any of the clusters
{8z, 0}i1, must be such that S, 9 has non-empty intersection with S, ¢ for some j < i,,. Thus, if we denote
by 5., 81 be the cluster of 9 x 9 grid squares centered at x;, it follows that = belongs to S, g1, and thus A} C
Ui<i, Sz;,81- Furthermore, since it was observed earlier that SE is contained inside a 27r(1—|—I‘q_i1) (4n*)\q+1)_1_
neighborhood of AP | we have in addition that

in
St C | S
i=1

24Technically, the proof still applies if AP is self-intersecting, but the conclusions of Lemma 4.7 eliminate this possibility, so
we shall ignore this issue and use the word “smooth”.
251f z1 is on the boundary of more than one square, any choice of s, will work.
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The diameter of the projection of € onto F, is < 16(/\q+1r1)’1

Figure 10: The boundary of the projection of 2 onto the face F., is represented by the black oval. The blue grid
cells represent the elements of Sy, ,, while the center points are the elements of G»_,,. A projected pipe S} with
axis AP is represented in shades of green. A point x; € A}, its associated grid cell s.,, and its 3 x 3 cluster S;,,0 are
represented in pink. The union of the pink clusters, U; Sz, 9, generously covers Sh.

Thus, we have covered S? using no more than
814, < 81-8n,r; ' = 648n,r "

grid squares. Set C, = 1300n,. Repeating this argument for every 1 < n < N and taking the union over
n, we have thus covered U,<n,S? using no more than

1
EC’*CA eyt <y (4.38)
grid squares of sidelength ﬁ; the strict inequality in (4.38) follows from the assumption (4.31).

In order to conclude the proof, we appeal to a pigeonhole argument, made possible by the bound (4.38).
Indeed, the left side of (4.38) represents as an upper bound on the number of grid cells in Sy,,, which are
deemed “occupied” by U,<n,SZ, while the right side of (4.38) represents the number of possible choices for
the shifts ko € {0,...,7; " — 1}? belonging to the /\qf—“-periodic subcollection S’;ZH. See Figure 11 for

172
details. We conclude by (4.38) and the pigeonhole principle that there exists a “free” shift kg € {0, ...,r5 T
1}?2 such that none of the squares in S’;‘fﬁl intersect the covering U;<;, Sz, 81 of Up<n,SE. Choosing the pipe

flow Wko

A r9,e3"7

To p;glx;eQZCﬁe Proposition when & # e3, first consider the portion?® of Q C R3 restricted to the cube
[—m,7]?, denoted Q;_x s, and consider similarly Sp[(_r 73 and Ap|[_z xj3. Let 3T be the 3 x 3 x 3 cluster
of periodic cells for ']I‘g centered at the origin. Then [—m,7]® is contained in this cluster, and in particular
[, 7]® has empty intersection with the boundary of 3’11‘2’ (understood as the boundary of the 3']I‘§—periodic
cell centered at the origin when simply viewed as a subset of R3). Thus Q0,273 Snli—m,np3, and Ap|_x 7

we have proven (4.36), concluding the proof of the lemma when £ = e5.

26Recall that 2 is a T3-periodic set but can be considered as a subset of R3, cf. Definition 4.2.
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In this periodic cell of sidelength 2m(Ag4172m4) 1. we check which grid cells are still available.

Figure 11: We revisit Figure 10. The union of the pink clusters Sy, o covers S5. We would like to determine which
set S¥0  of 2" _periodic grid cells is free (we index these cells by the shift parameter ko), so that we can place

Ag+1 Aq+17T2Mx
a Af#—periodic pipe flow W’f\‘;ﬂ roieq Al the centers of the cells. This pipe flow then will not intersect the cells
B . T2,

taken up by the union of the pink clusters U;Sz,,9. Towards this purpose, consider one of the red periodic cells of
sidelength /\qj#; e.g. bottom row, second from left. This cell contains r3-many blue cells of sidelength Aqizrn*
which in the figure we index by an integer k € {1,...,36} (that is, 72 = 6). In order to determine which of these
blue cells are “free,” we verify for every k whether a periodic copy of the k-cell lies in union of the pink clusters
Ui Se;,0; if yes, we label this index k in black, and we also label with the same number the cell in U;S;,,9 where this
cell appears. For instance, the cell with label 9 appears three times within the union of the pink cluster; the cell with
label 3 appears twice; while the cell with label 36 appears just once. In the above figure we discover that there are
only three “free” blue cells, corresponding to the red indices 7, 12, and 20. Any of these indices indicates a location

where we may place a new pipe flow W’;‘;H royeq) 11 the figure we have chosen ko to correspond to the label 7, and
27

have represented by a XoTirans
q

1727

)

-periodic array of purple circles the intersections of the pipes in W§2+1,rz,eg with Fe,.

also have empty intersection with the boundary of STZ’ and may be viewed as 3']I‘§’—periodic sets. Up to a
dilation which replaces 3T2’ with T2, we have exactly satisfied the assumptions of the proposition, but with
T3-periodicity replaced by T¢-periodicity. This dilation will shrink everything by a factor of 3, which we may
compensate for by choosing a pipe flow W3, r, ¢, and then undoing the dilation at the end. Any constants
related to this dilation are g-independent and may be absorbed into the geometric constant C, at the end
of the proof. At this point we may then redo the proof of the proposition with minimal adjustments. In
particular, we replace the projection of S,, and A, onto the face F,, of the box T? with the projection of the
restricted and dilated versions of S;, and A,, onto the face F¢ of the box 'I[‘g’. We similarly replace the grids
and squares on F,, with grids and squares on Fp, exactly analogous to (4.3). The covering argument then

proceeds exactly as before. The proof produces pipes belonging to the intermittent pipe flow W’ggqﬂ .y

which are 3)\jﬁ—periodic and disjoint from the dilated and restricted versions of the S,’s. Undoing the
at1n=
dilation, we find that W’;‘;H ra,€ 1 %—periodic and disjoint from each S,,. Then all the conclusions of
T2, P
Proposition 4.8 have been achieved, finishing the proof. O
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5 Mollification

Because the principal inductive assumptions for the velocity increments (3.13) and the Reynolds stress (3.15)
are only assumed to hold for a limited number of space and material derivatives (< 7Njyqv and < 3Njng,v
respectively), and because in our proof we need to appeal to derivative bounds of much higher orders,
it is customary to employ a mollification step prior to adding the convex integration perturbation. This
mollification step is discussed in Lemma 5.1. Note that the mollification step is only employed once (for
every inductive step ¢ — ¢ + 1), and is not repeated for the higher order stresses Ry, ,. In particular,
Lemma 5.1 already shows that the inductive assumption (3.12) holds for ¢’ = g.

o

Lemma 5.1 (Mollifying the Euler-Reynolds system). Let (vq, R,) solve the Euler-Reynolds system
(3.1), and assume that ; g, ug for ¢’ < q, wg, and Ry satisfy (3.12)~(3.25b). Then, we mollify (vq, Rq) at
spatial scale )\;1 and temporal scale Tq—1 (cf. the notation in (9.64)), and accordingly define

v, = Pya,tVq and égq = ”Pq,x’tlo%q . (5.1)
The mollified pair (v, éeq) satisfy

atvgq + div (”qu X qu) + Vpgq = div ﬁigq + div j%;omm , (52&)
divug, =0. (5.2b)

The commutator stress ]ilgomm satisfies the estimate (consistent with (3.15) at level ¢+ 1)

|prp e < DL e M (m Nina s, 7y D7) (5:3)

t,q~q

for all n,m < 3Ning,v, and the we have that

1D D (e, = 0) [ e < A7202M (1 2Nina v Ags Ag ) M (0 Niva oo T 4T 55T (5.4)

for all n,m < 3Ninq,v. Furthermore,
uq = ’qu — Ug(rl

satisfies the bound (3.12) with ¢' replaced by q, namely

¥ DDl < M (1, PN Ao X M (N T 7). (59)

q'qg—1> "g—1

for alln+m < 2Ngy,. In fact, when either n > 3Ning,y 0r m > 3Ning,v are such that n+m < 2Ngy,, then the
above estimate holds uniformly

1D Dyt e < T3 62 M (1 2Nt Ags Ag ) M (1 Nina g 737 7)) (5.6)

Finally, Io%gq satisfies bounds which extend (3.15) to

for alln +m < 2Ng,. In fact, the above estimate holds uniformly

n m »
d’l&qle Dt,qflqu

S0, M (1 2N Ag Ay ) M (m, N, D200 70Y) (5.7)

|prD e, | S D001 M (1 2N Ags A ) M (1 Ninas 7,70, 774) (5.8)

whenever either n > 3Ningv or m > 3Ning~ are such that n +m < 2Ngj,.

Remark 5.2 (L* estimates on the support of ¢; ;,_1). The bounds (5.6) and (5.8) provide L> estimates
for D" D{",_, applied to u, and respectively Ry, , but only when either n or m are sufficiently large. In the
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remaining cases, we note that (5.5), combined with the partition of unity property (3.16), and the inductive
assumption (3.19) (with M = 0, and K = 4), implies the bound
DDy 5,/ X/"M (1, 2Nigt s Ags Aq ) M (1, N0, 7321 T 771 (5.9)

2 1uqHL°°(Suppw1q 1)’\’ Tg-1

for all n,m < 3Ninqv. Indeed, we may apply Lemma A.3 (estlmate (A.18b)) with 1/12- = Yiq—1, [ = uq,
Cr = " p = ATyt € Ay (6 (938), A = Ay X = Ay s = 75 'The i = 7, Ny = M,

q—D
Ni = Ninay, and No = 2Ngy, to conclude that (5.9) holds for all n +m < 2Nﬁn — 2, and in particular for
n,m S 3Nlnd,v

A similar argument, shows that estimate (5.7) and Lemma A.3 imply

HD D Ry,

ST 0 AM (1, 2Nina s Ags Ag ) M (m, Niga o, T3 720 7)) (5.10)

L2 (supp ¢i,q—1)
for n +m < 2Ng, — 4, and in particular for n,m < 3Njuq,v.

Proof of Lemma 5.1. The bound (5.3) requires a different proof than (5.5) and (5.7), so that we start with
the former.
Proof of (5.3). Recall that

égomm = Pq,w,tvqép x,tVq — Pq,w,t(vqévq) . (5.11)

We note cf. (9.64) that P, ., mollifies in space at length scale Xq, and in time at time scale 77(;11. Let
us denote by K, the space-time mollification kernel for P, ; ;, which thus equals the product of the bump

functions (;S(x)qb(le . For brevity of notation, (locally in this proof) it is convenient to denote space-time
q

points as (a:,t), (y, s),(z,7) € T* xR

(l‘,t) = 9’ (y, S) =K, (Z,’I") = C (5.12)

écomm

Using this notation we may write out the commutator stress explicitly, and symmetrizing the resulting

expression leads to the formula
H>comm -1 °
Remm) = 5 [ (0= = 00— )8 (00— )~ 06— ) Ky (K, () drdg. (513)
(T3 xR)?

Expanding v, in a Taylor series in space and time around 6 yields the formula

N.—1
- 1
vg(0— k) =0,(0) + D mpaamq(e))(—n)@m) + Ry (6, k) (5.14)

|a|+m=1
where the remainder term with N, derivatives is given by
Ne (er,m) ! N.—1 paagm
Ry.(0,5) = > —=(=r) ; (1 =) D0 vq(0 — i) dn. (5.15)

alm!
|| +m=N,

The value of N, will be chosen later so that Ninq+ < N¢ = Ninq,v — 2, more precisely, such that conditions
(5.24) and (9.50a) hold.
Using that by (9.62) all moments of K, vanish up to order N, we rewrite (5.13) as

Ne—1
Hcomm o N (7,€)(a,m) aam
RS (0)7/1?@ > D0 v (6 ) ®s Ry (0, k) K4(k) de

|a]+m=1

—/ RNC(H,H)é)RNC(G,n)Kq(H) dk
T3 xR

44



- / / Ry, (0, 5) G aym R, (0, C) Ko ()4 (C) i dC
(T3 xR)?
. EPT(6) + ROPT(9) + R (6) (5.16)

where we have used the notation (9.66).
In order to prove (5.3), we first show that every term in D”D%R;(’mm can be decomposed into products
of pure space and time differential operators applied to products of vy, and v,. More generally, for any

sufficiently smooth function F' = F(z,t) and for any n,m > 0, the Leibniz rule implies that

D"DPYF =D"(0s+ vy, - Va)"F = > dpmnrn(2,t)D" 0" F (5.17a)
m'<m
n'+m’<n4+m

m—m’ k
dpmont me (2,1) = Z Z c(myn, k,v, ) H (Dwamw T t)) (5.17b)
(=1

k=0 {yeN*: |y|=n—n'+k,
BeNF: |B|l=m—m/—k}

where c¢(m, n, k,~, 8) denotes an explicitly computable combinatorial coefficient which depends only on the
factors inside the parenthesis, and are in particular independent of ¢ (which is why we do not carefully
track these coefficients). Identity (5.17a)—(5.17b) holds because D and J; commute; the proof is based on
induction on n and m. Clearly, if Dy, in (5.17a) is replaced by Dy 41, then the same formula holds, with
the vy, factors in (5.17b) being replaced by v, _,

In order to prove (5.3) we consider (5.17a)—(5.17b) for n,m < 3Njuq, and with F = égomm. In order
to estimate the factors dy m n/m in (5.17b), we need to bound D"90;"v, for n < 6Ninav + Ng and m <
3Ning,v + Ne, with n +m < 6Njyq,v + Ne. Recall that vy = wg + ve,_, and thus we will obtain the needed
estimate from bounds on D"0;"w, and D"0;"vg,_,. We start with the latter.

We recall that vy, , = wg—1 +vg,_,. Using (3.16) with ¢’ = ¢ — 2 and the inductive assumption (3 13)

with ¢ replaced with ¢ —1, we obtain from Sobolev interpolation that ||wg—1]|; 0 < [lwg—1 ||1/4 HD2wq 1 HL2 S
6;/2 3/2 . Additionally, combining (3.24) with ¢’ = ¢ — 2 and (3.18) with ¢’ = ¢ — 2, we obtain va

)\g_QFZ'Tl"Hd;/Ql <A 25q/_21. Jointly, these two estimate imply

q— 2||Loc "S

1
g—tll e S gl oo + [0, o] e S 02N

Now, using that vg,_, = Py_1,2,tv¢—1, and that the mollifier operator P;_1 ., localizes at scale Xq_l in space
and 7, "L in time, we deduce the global estimate

N8 T (5.18)

q—1%g—1

(R AT PR

for n 4+ m < 2Ng,. Note that from the definitions (9.19) and (9.20), it is immediate that 7, < T';'7,

As mentioned earlier, the bound for the space-time derivatives of vy, _, needs to be comblned w1th snmlar
estimates for w, in order to yield a control of v,. For this purpose, we appeal to the Sobolev embedding
H? C L* and the bound (3.13) (in which we take a supremum over 0 < i < iy, and use (9.43)) to deduce

10" Dol o S D™ DFgmatwall gz S (0NN a0 )™ (5.19)

for all n < TNjpq,v —2 and m < 7Nijnq. Using the above estimate we may apply Lemma A.10 with the
decomposition 0y = —vy,_, -V 4+ Dygq 1 = A+ B, v = —v,_, and f = w,. The conditions (A.40) in
Lemma A.10 holds in view of the inductive estimate (3.24) at level ¢ — 1, with the following choice of
parameters: p =00, Q=T C, = A} 16q 1 Ve = Nindyv — 2, A = Tym1hg—1, Ao = Ag—1, Vi = Ninar,

=N 7, =Ty 7 ', and N = 3Niin /2. On the other hand, using (5.19) we have that condltlon
(A.41) holds with the parameters: p = oo, Q = T3, C; = 5q/2 Aps Ap = )\f = Agy g = pp =T 7,0 -1,
and N, = 7Njnav — 2. We deduce from (A.44) and the inequalities Xq_l < Ag and )\q_ldq/fl)\q <T;'7 1~q_}1
(cf. (9.39), (9.43), and (9.20)), that

D07 wg | oo S (8,2 AN (T, 4T H)™ (5.20)
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holds for n +m < 7Njpq,v — 2.
By combining (5.18) and (5.20) with the definition (3.3) we thus deduce

1D vy || o S (N30, AR (LT, )™ (5.21)

for all n 4+ m < 7Njnqv — 2, where we have used that )\3716;/721 > 5,11/2)\3 and that quQ < Fq_l?qill. By the
definition of v, in (5.1) we thus also deduce that

D0 e, || e S (18,2 AR (F LT, )™ (5.22)

for all n +m < 7Njnq~ — 2. Note that by the definition of the mollifier operator P, ; +, any further space

derivative on v, costs a factor of Xq, while additional temporal derivatives cost T4—1, up to a 2Ngy, total
number of derivatives.
With (5.22) in hand, we may return to (5.17b) and deduce that for n,m < 3Niyq,.v, we have

’
m—m

_ ’ o~ _ _ /7 1
il e D2 Xy HEE T RN AT,
k=0
SR G v K (5.23)
In the last inequality above we have used that /\q)\g_qu(;;/f 1 <7 ~_1 4T, which is a consequence of

(9.39), (9.43), and (9.20). )
Returning to (5.17a) with F' = R®™™, we use the expansion in (5.16), the definition (5.15), and the

bound (5.21) to estimate D”,ﬁfn,égomm when n’, m’ < 3Njnq,. Using (5.21) and the choice
Ne = Ning,y — 2, (5.24)
which is required in order to ensure that n’ +m’ + N, < 7Njnq,v — 2, we first obtain the pointwise estimate

a-19 Ay HelE Ty (5.25)

[a]+m1=Nc¢

D o B (0.,)] S (a8 YD [

where we recall the notation in (5.12). Using (5.25), the Leibniz rule, and the fact that A\,I'; < Xq, we may
estimate

HDTL am CommH
Lo

< (A 151/21) Z Z )\n'+|a\+|a/\(?—jlrfl)m’Jrﬂnerz/ |/<;(“+a"m1+m2)||Kq(n)\d/<;
q—1-q e N, |of [ q q q T3 xR
( 161/2 ) Z Z AZ'HQ\HQI\(77;_111“;1)m/+m1+m2xqf\a|*\a'\7’:(1"111""7"2

|| +m1=Nc |o/|[+m2=N,
4 /2 n' (~—1 1—1\m'1—2N,
()‘q 16q 1) )‘q (ququ ) 1_‘q

whenever n/,m’ < 3Njpqy. It is clear that a very similar argument also gives the bound

HDn 8171 RcommH )\4 1/2 ) A

qlqlq

" (=1 p—1ym' p—2N,
(qull"q ) r,
for the same range of n’ and m'. Lastly, by combining (5.25), (5.21), and the Leibniz rule, we similarly
deduce
HDn 87’” CommH
LOC
N.—1
1 n/ (0% Ql s - m/ m m
()\3 15q/21) Z Z )\q +lal+] \(ququl) +m1+ 2/

!
’H(oﬂra ymi+mz) |K,(k)|dr
lo|+ma=1|a/[+ms=N, T2 xR
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Nc.—1
/2 n'+lal+]a’| (=—1 1\m/ +mi4+ma Y —|a|—|a’ | zm1+me
( 15 ) E E : )‘q ( F ) ' 2)‘q Tg—1
|a]+m1=1|a/|+ma=N,

SECVRT A DYECAN v S PR

Combining the above three bounds, identity (5.16) yields

HDn 8m RcommH )\4 161/2 ) " (~(;_11Fq—1)m’1—1q—Nc—1 (526)
whenever n/,m’ < 3Njpqg,v.
Lastly, by combining (5.17a) with (5.23) and (5.26) we obtain
n ym pcomm 4 1/2 ni~—1 p—1ymp—N.—1
HD D" R Hm N8 2 anE AT T,

t,q" g q—1%g—1

for all n,m < 3Njng,v. Therefore, in order to verify (5.3), we need to verify that

1 n(~— my— N n -
(CYART ¥ LoV Cmi o )nNSF qﬁ%wﬁwﬁmmmmq,ff)

q—1%g—1

for all 0 < n,m < 3Njnq. Since A\; < )\qH, 1 <7, and 7, To- lI‘ >, =1 > =1 the above condition is

q— 17
ensured by the more restrictive condltlon

~—1 —1 Nind,t ~—1 Nind,t
A I‘1+cR5q 1 (qurq > <28 DLHCr dg-1 <Tq1> < TN = [y 2 (5.27)

gq+1 —1 q+1
dg+2 Tq dg+2

Tg—1

which holds as soon as Ninq,v is chosen sufficiently large with respect to Ning; see (9.50a) below. This
completes the proof of (5.3).

Proof of (5.5) and (5.6). Using Holder’s inequality and the extra factor of T';! present in (5.6), it is
clear than for all n,m such that (5.6) holds, the estimate (5.5) is also true. The proof is thus split in three
parts: first we consider n,m < 3Njnq,, then we consider m > 3Njnq v, and lastly n > 3Njpq,v.

We start with the proof of (5.5). In view of (3.4), we first bound the main term, P, , ;w,, which we
claim may be estimated as

1 1 N ~
H'@Z]i,qlenDZlq_llpq,x,twq||L2 < 5(5(1/2./\/1 <n7 2Nind,va )\qa )\q) M (m Nlnd 2ty T q 11an q 11) (528)
for all n, m < 3Njpq,v, and as
1D Dy Pasetw| oo < T 2052 M (1, 2Nint s Ags Ag ) M (1 Nina 737 7)) (5.29)

when n + m < 2Ngy, and either 7 > 3Niuqv or m > 3Ning,v. By the definition of P, ,+ in (9.64), in view of
the moment condition (9.62) for the associated mollifier kernel, we have that

P,z twq(0) — wq(G)

1
= / K, ( (—r)(m™) / (1- n)NC_lD()‘@[””wq(G —nk)dndk (5.30)
T3 x 0

alm/l[
\a|+m” N.

where we have appealed to the notation in (5.12), and Ne = Njpq,v — 2. For n,m < 3Njnq,v, we appeal to the
identity (5.17a) with F' = Py, yw, — wg, and with D, , replaced by D, 4_1, to obtain
HDnDZ?q—l(qu,twq - wq)HLoc S Z lldn,m,nt e || oo HDn 07" (Pgwswq — Wq) (5.31)

m’'<m
n'+m'§n+m

Lo
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where

/
m—m

k
Anmn! m’ = Z Z c(m,n, k,v,p) H (Dwafquil(m,to .
=1

k=0 {yeN*: |y|=n— n+k
BEN®: |B|l=m—m'—k}

From (5.18), and the parameter inequality Agfléq/ 1)\q 1< Iy !, we deduce the bound

1 1"
n m
| o v, JE

SaTH )
LOO

for n” +m” < 2Ng,, and therefore

’

||dn m,n’, m’HLoo ~ An " (Nq_lqu l)mfm . (532)

Combining this estimate with the bound (5.20), we deduce that

—n! ~— _ e ’ ’
DDy Py )| e S 0 N G| DY O (P - w,)
m’'<m
n’+m'§n+m

n—n'~—1 p—1\ym—m
s X > ANTTEAT
m’'<m || +m’' =N,
n'4+m’<n+m

N T [ )] o)
X

Loe

1/242 n+lal (=—1 p=1ym+m'"" Y —|a|zm’"’
SJ((Sq Aq) Z )‘q (Tq—qu ) )‘q Tg—1
|a]+m/"=N,

S (SN AT )T N (5.33)
Next, we claim that the above estimate is consistent with (5.28): for n,m < 3Nj,q we have

(G NN (FA T )T S T A M (m Nins T Ty AT ) (5:34)

’ql

Recalling the definition of N, in (5.24), the above bound is in turn implied by the estimate

=1 Nind,t
3412 q—1 Nind,v
Fqu < —1 ) S Fq

qul

which holds since Ning,v > Nina; in fact, it is easy to see that the above condition is less stringent than
(5.27). Summarizing (5.33)—(5.34), and appealing to the inductive assumption (3.13), we deduce that

||7v[’z q— 1DnD§nq 1Pg,x tquLz N ||¢z g—1D" DY - 1quL2 + HDnDt q— 1 (P, twg — wq)HLoo
ST A0 M (m Ninaye, 7, 4T 7 4T (5.35)

7q1

for all 0 < n,m < 3Njuq,v. The above estimate verifies (5.28).
We next turn to the proof of (5.29). The key observation is that when establishing (5.35), the two
main properties of the mollification kernel K (x) which we have used are: the vanishing of the moments

ffMR —k)@mdi = 0 for 1 < |af + m” < Nipay and the fact that [|Ky(k)(—£) @™ | prian <
)\q la‘ for all |a] +m” < Nipa,v. We claim that, for any 7 4+ m < 2Ng,, the kernel

K™ (y, s) == Dol Kq(y, s)\; "7y

q q

satisfies exactly the same two properties. The second property, about the L' norm, is immediate by scaling
and the above definition, from the properties of the Friedrichs mollifier densities ¢ and ¢ from (9.62).
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Concerning the vanishing moment condition, we note that K, én’m) has in fact more vanishing moments than
K, as is easily seen from integration by parts in x. The upshot of this observation is that in precisely the
same way that (5.35) was proven, we may show that

n m n
| DD DO Py |

< Z levq DDy 1wq||L2 + HD” Tq_l(D58?Pq7x,twq — wy)

‘LW

ST, 151/"‘)\”)\”(“1 IR (5.36)
for all 0 < n,m < 3Njpa,y, and for all 0 < n+m < 2Ngy,. Here we have used (3.16) and (3.18) with ¢/ = ¢—1,
and the parameter inequality 7, ~! F’max_l <7, /\ Nq__llfgl.

Next, consider n+m < 2Nﬁn buch that n S 3de,V and m > 3Nipg,v. Define m = m — 3Njpq, > 0, which
are the number of excess material derivatives not covered by the bound (5.35). We rewrite the term which
we need to estimate in (5.29) as

| D" Dty Pa | o = | D7Dy DYy P (5.37)
Using (5.17a)—(5.17b) we expand Dglq_l into space and time derivatives and apply the Leibniz rule to deduce

Dt q— 17) x,tWq = Z dm n’ m’Dn 8 Pq,m tWq (5383,)

'<im
m' <m

3|
3

S
3L
ol

s g (,1) = 3 c(m. k,7,8) [ (Dwaff%fl(x,t)) . (5.38b)
=0 {4eN*: pl=—'+h, t=1
BeNF: |B|l=m—m'—k}

b

Using the Leibniz rule, the previously established bound (5.36), and the Sobolev embedding H? C L, we
deduce that

’I’L m(lv
HD tg—1 th 1Pq,m,tquLm

n 3Nind,v
a b n—a 1y3Nind,v—b i’ qm/’
’SZ Z Z HD Dtv‘lfldm*ﬁ,’ml Lo HD Dt,q—l D at ,P‘Ll”twq L
a=0 b=0 mgm
"t <m
n  3Nind,v
a b —151/2yn—aYn'+2/=—1 1—1\3Nijpa,v—b/=—1 \m'
SZ 1D D8 o P P N (T (TS (5.39)
a=0 b=0 mgm
A +m <m

Thus, in order to obtain the desired bound on (5.37), we need to estimate space and material derivatives
DD}, of the term defined in (5.38b), and in particular for Dwaff%_l. We may however appeal to

(5.31)—(5.32) with (Py,z, 1w, — wq) replaced by D“"@f%g%l, and to the bound (5.18) to deduce that

a/_a// _1~71 b/_b//
5 E )\q (Fq 7—q—l)
b <b’
a”+b”_<a'+b'
4 1/2 a’ Yve —1=—1\b'+5,
5 ()‘ 16 ))‘q )\q—l(Fq 7—q—l)
' Yve—1/m—1=—1 \b'+B,+1
S A AL (T 7 —) .

a/ b/ ﬁ[ a// b// ﬁe
HD DY D", D" Doy,

oo

where in the last estimate we have used the parameter inequality \*
bound and the definition (5.38b) we deduce that

o 15;/ A1 < I, '7,". Using the above

’

ay—7a' (Fq 1~—1 )b+’ﬁ17’rﬁ . (540)

DD} gy dim e || e S XA -1
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The above display may be combined with (5.39) and yields

n 3Nind,v ym
HD Dt,q—l Dt,q—IPQ7$7twq oo
3Nind,v
—151/2yn\2 N—7n' (p—1z—1 \b+m—m' (=—1 17—1\3Nina,v—b/=—1 \m'
ST D > NLETR) (7ol ) (Tg=1)
b=0 m’' <m
A +m’ <at+m
—151/2yny2 —1~=—1 \m—m' (=—1 \m/
ST D (T 70 (7,20 (5.41)
m/<m

where we have recalled that 3Ni,q,v + ™M = m. The above estimate has to be compared with the right side
of (5.29), and for this purpose we note that for m’ < m = m — 3Njyqv we have

N 7)™ (7)™ S M (1, 2N, Ay A ) Ty 0 (757

—3Nind,v /~— ; 3 1 o~
S Fq & (Tq_lqu_l)de’tM (n, 2Nind,v, Aqa /\q) M (m7 Nindfm Tq_117 Tq_ll)
where we have used the fact that m —m' > m — m = 3Njnq,v. Taking Ninav > Nina,¢ such that

Xi (7~—qil17'¢171)de’t < FgNind’V72 ) (5.42)

a condition which is satisfied due to (9.50c), it follows from (5.41) that (5.29) holds whenever m > 3Ninq,v,
1N < 3Nipd,v, and m +n < 2Ng,,.

It remains to consider the case n > 3Njna v, and n +m < 2Ng,. In this case we still use (5.38a)—(5.38Db),
but with m replaced by m, and similarly to (5.39), but by appealing to the bounds (5.18) and (5.32) instead
of (5.40), we obtain

HDnD?qflpq,qu HLoo

SN NI I RM (n = a0 8N Ay ) (7)™

ST S REM (1, BN Mgy g ) (7)™

To conclude the proof of (5.29) in this case, we note that for n > 3N;,q the definition (9.19) implies

M (’I’L, 3Nind,v; /\qa Xq) S F;.ElNind’vM (n7 2Nind,vv /\qv Xq)

and this factor is sufficiently small to absorb losses due to bad material derivative estimates. Indeed, we
have that

164232 M (n,gmmd,v, Aq,Xq) ()

~_1 \ Nina,
. B i T b T —1 —5Nip, v
/S Fq 55;/2/\/1 (n’ 2Nind,v7 )\q, )\q) M (m7 Nind7t7 Tq_ll, Tq—ll) 1“2)\2 < q ) Fq+l a
S Fq—l(S;/zM (n, 2Nind,v, Ags /\q) M (m, Nind,t,Tq__ll, -1 )

q—1

by appealing to the condition Niygv > Ninat given in (9.50b). This concludes the proof of (5.29) for all
n +m < 2Ng,, if either n or m are larger than 3Ni,q v.
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The bounds (5.28)—(5.29) estimate the leading order contribution to u,. According to the decomposi-
tion (3.4), the proofs of (5.5) and (5.6) are completed if we are able to verify that

D" DJ. | (Py s — Id)ug < T, 20 M (12N Ags A ) M (0 Nigas 724, 724 (5.43)

q—lHLoo qg—1

holds for all n +m < 2Ngy,.
In order to establish this bound, we appeal to (5.31)—(5.32) and obtain

1D Dy (P = W)oe, [l S D0 N AT | D 0 (P — 1)
m'<m
n'+m'§n+m

(5.44)

q—1 L

for n,m > 0 such that n +m < 2Ng,. Here we distinguish two cases. If either n > 3Njuq,v or m > 3Ninq v,
then we simply appeal to (5.18), use that P, commutes with D and J;, and obtain from the above display
that

10" DYy s (Pyat = v, |
SO NTTEATT N SON LT

’
m'<m
n'4+m’<n+m

1 n(—=—— — m
< a8 N EATTY
S (/\3 15;/ 1)(Tq 1Tq ) mdtr md:vM (n72Nind,vy)‘47xq> M (m7 Nina 4 Tq 11’ Tq 11)

A

(Na 10,0720, 2 (g 7 )N T M Y2602 M (1, 2N Ags hg ) M (s Nina 737 7 )
Using that Ningv > Nina s, as described in (9.50c¢), the above estimate then readily implies (5.43).

We are thus left to consider (5.44) for n,m < 3Njnq.,. In this case, the bound for the term || D™ 87 (P 1. —
Id)wve,_, ||z present in (5.44) is different. Similarly to (5.30) we use that the kernel K, has vanishing moments
of orders between 1 and Njpq,, and thus we have

,P(vatqu 1 (0) — Vg (0)

1
mdv a.m!’ . _ o am”’
= g K —g)@m?) / (1 —p)Nma =t DG 0y (0 — k) dndr.  (5.45)

|O¢H—m” dev T3 0

Using (5.18) and (5.45), we may then estimate

HD"’a;n’ (Pyoot — Id)vg

5 (/\4 1(51/2 ) Z /\ \a|~m”1xn +\a|(r—1~q—1)m +m'’

|a|+m/"=Nina,v

( 151/2 ) 7dev)\n (F—1~—1)77L .

q

g—1 L

Combining the above display with (5.44) we arrive at

||Dnth 1(qut_ld)”€q 1HLOO

1/2 —Nind,v n ~
< (Ngoa8 )0 N (0T )
( 1(51/2 )(Nq 1Tq— 1) i“d’th md’VM (n,2Nind7V,Aq,Xq> M (m, de ) Tgq 11a Tq 11) : (546)

Using that Ning v > Ninat, see condition (9.50c), the above estimate concludes the proof of (5.43).
Combining the bounds (5.28), (5.29), and (5.43) concludes the proofs of (5.5) and (5.6).
Proof of (5.4). By (3.3) we have that

v, — Vg = (Pgat — Id)vg = Py — Id)wg + (Pg,ze — Id)ve

q—1"

o1



From (5.33) and (5.34) we deduce that the first term on the right side of the above display is bounded as
HDnD?qfl(Pq)Ivt - Id)quLm

1212y 2 =—1 Ning.e —Nina,v ) yn . -1 pim1 ~—1 -1
< (5q T2\2(F; Yy ) VeI APM (my Niga e, 75 4T L 74T L)

while the second term is estimated from (5.46) as
| D™Dy 1Pyt — 1d)ve, ||, o
~ ; —Nind,v 3 -1 =~
5 ((5;/_21)\371(Tq_117q71>de’th & ) M (n, 2Nind,V7 )\qy )\q) M (m7 Nind,t7 7-q_117 Tq_ll) 3

for n,m < 3Njnqv. Since Ningv > Ninay, see e.g. the parameter inequality (9.50a), the above two displays
directly imply (5.4).

Proof of (5.7) and (5.8). The argument is nearly identical to how the inductive bounds on w, in (3.13)
were shown earlier to imply bounds for P, , ;w, as in (5.28). The crucial ingredients in this proof were: that
for each material derivative the bound on the mollified function Py, ;w, is relaxed by a factor of I'y, that
the cost of space derivatives is relaxed from A, to Xq when n > Njug,v, and that the available number of
estimates on the un-mollified function wy was much larger than Ninq . (more precisely 7Ninq ). But the same
ingredients are available for the transfer of estimates from Iflq to é@q = Pq,x7tﬁiq. Indeed, the derivatives
available in (3.15) extend significantly past Niyq,y (this time up to 3Ninq,), when comparing the desired
bound on R@q in (5.7) with the available inductive bound in (3.15) we note that the cost of each material
derivative is relaxed by a factor of I'y, and that the cost of each additional space derivative is relaxed from
Aq to Xq when n is sufficiently large. To avoid redundancy, we omit these details. O

6 Cutoffs

This section is dedicated to the construction of the cutoff functions described in Section 2.5, which play the
role of a joint Eulerian-and-Lagrangian Littlewood-Paley frequency decompositon, which in addition keeps
track of the size of objects in physical space. During a first pass at the paper, the reader may skip this
technical section — if the Lemmas 6.8, 6.14, 6.18, 6.21, 6.35, 6.36, 6.38, 6.40, 6.41, and Corollaries 6.27
and 6.33 are taken for granted.

This section is organized as follows. In Section 6.1 we define the velocity cutoff functions ; 4, recursively
in terms of the previous level (meaning g—1) velocity cutoff functions v, ;—1 which are assumed to satisfy the
inductive bounds and properties mentioned in Section 3.2.3. In Section 6.2 we then verify that the velocity
cutoff functions at level g, and the velocity fields u, and vy, satisfy all the inductive estimates claimed in
Sections 3.2.3 and 3.2.4, for ¢’ = ¢. This section is the bulk of Section 6; and it is here that the various
commutators between Eulerian (space and time) derivatives and Lagrangian derivatives cause a plethora of
difficulties.

Remark 6.1 (Inductive assumptions which involve cutoffs and commutators). We note that by
the conclusion of Section 6.2 we have verified all the inductive assumptions from Section 3.2, except for
(3.13)—(3.14) for the new velocity increment wq1, and (3.15) for the new stress .éq+1. These three inductive
assumptions will be revisited, broken down, and restated in Section 7 and proven in Section 8.

Next, in Section 6.3 we introduce the temporal cutoffs x; x4, indexed by k which are meant to subdivide
the support of the velocity cutoff v; 4 into time slices of width inversely to the local Lipschitz norm of
vg,. This allows us in Section 6.4 to properly define and estimate the Lagrangian flow maps induced by
the incompressible vector field v, , on the support of ¥; ¢xi ke We next turn to defining the stress cutoff

o

functions wj j ¢n,p, indexed by j, for the stress Ry np, on the support of ;4. Coupling the stress and
velocity cutoffs in this way allows us in Section 6.7 to sharply estimate spatial and material derivatives of
these higher order stresses, but also to estimate the derivatives of the stress cutoffs themselves. At last, we
define in Section 6.8 the checkerboard cutoffs Cq,i, koD indexed by an address [= (I,w, h) which identifies a
specific cube of side-length 27/\, , o within T3. This specific size of the support of Cq,i,k,n,fis important for

ensuring that Oscillation Type 2 errors vanish (see Lemmas 8.11 and 8.12). These cutoff functions are flowed
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by the backwards Lagrangian flows ®;  , defined earlier, explaining their dependence on the indices g, 7, k.
Lastly, the cumulative cutoff function 7, ikl is defined in Section 6.9, along with some of its principal
properties. We emphasize that this cumulative cutoff has embedded into it information about the local size
and cost of space/Lagrangian derivatives of both the velocity, the stress, and the Lagrangian maps.

6.1 Definition of the velocity cutoff functions

For all ¢ > 1 and 0 < m < Ngyt ¢, we construct the following cutoft functions. The proof is contained in
Appendix A.2.

Lemma 6.2. For all ¢ > 1 and 0 < m < Neyt, there exist smooth cutoff functions ’(Zm,q7’(/}m,q : [0,00) =
[0, 1] which satisfy the following.

(1) The support of {/;m,q is precisely the set [O, I‘g(mﬂ)], and furthermore
(a) On the interval [07 %Fg(mﬂ)}  Umg =1
(b) On the interval [i (m+1) FQ(mH }, Um.q decreases from 1 to 0.
(2) The support of Y, 4 is precisely the set [%,F?I(m—H)} , and furthermore

(a) On the interval [%, 1], Ym,q increases from 0 to 1.

(b) On the interval [1, irﬁ(m“)], Ym.q = 1.
c n the interval |+ , , Um ecreases from 1 to 0.
On the i RS S il T from 1 to 0

(8) For all y > 0, a partition of unity is formed as

)+ 3w, ( —2i( m“)y) —1 (6.1)

i>1
(4) wm \q and 'l/)m ,q ( —21(m+1) ) satisfy

supp Jm,q(') M supp wm,q ( q ~2i(m+1) ) 0 if > 2,

SUPP Y 4 (I’f"(mﬂ)-) N Supp ¥m 4 (F_2’ (m+1). ) 0 if |i—d>2. (6.2)

(5) For 0 < N < Ngy, when 0 <y < Fg(mﬂ) we have

|DN'lpm,q<y)‘ < F—ZN(m+1) (6 3)
(b q ()1 N Nawm ™ . '

For%<y<1wehave

N
(¢m,q(y))1_N/Nﬁ" ~
while for %F?f’"*” <y< F?](mﬂ) we have
DN,
| Ym,q(y)] < F(]—2N(m+1). (6.5)

()= N

In each of the above inequalities, the implicit constants depend on N but not m or q.
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Definition 6.3. Given i,j,q > 0, we define
iv = 1(j,q) = ix(j) = min{i > 0: [}, > T7}.

In view of the definition (3.10), we see that

in(j) = jlogw - logwl)] [ toe ([a*'T) —1og (o))

Tog(hg11) —log(Ay) T og ([a?T) = log ([a*"])

One may check that as ¢ — 0o or a — 00, i,(j) converges to [%W for any j, and so if a is sufficiently large,
1x(j) is bounded from above and below independently of ¢ for each j. Note that in particular, for j = 0 we
have that . (j) = 0.

At stage g > 1 of the iteration (by convention wy = up = 0) and for m < Ngyy,, and j,, > 0, we can now
define

cut x

—2m
Pngeal®1) = 3 L0705 O™ " (ATES) DD g P (66)

Definition 6.4 (Intermediate Cutoff Functions). Given ¢ > 1, m < Newt, and jn,, > 0 we define
wmaimajqu by

wm,im,jm,q(wv t) = ¢m7q+1 (F;f(7m_7*(jm))(m+l)h2 q(x’ t)) (6.7)
for iy > i.(Jm), while for iy = ix(jm),

l[}m,i*(jm),jm,q(xvt) = wm,q-‘rl (hgn,jm,q(xvt)) . (68)
The intermediate cutoff functions V¥, i, j,..q are equal to zero for ipm < iy(jm).

The indices 4., and j,, will be shown to run up to some maximal values 4y,,x and Zmax to be determined
in the proof (see Lemma 6.14 and (6.27)). With this notation and in view of (6.1) and (6.2), it immediately

follows that
Zdjm%mqu_ Z wmlmjmq Z '?nlmjmq_]' (6.9)

i >0 i >tx (Jm) {im : Fj;j;lzrgm}

2 2,

. .
for any m and for |i,, —i,]

/l/}myhnvjqu/l/}mvi;nvj'mmq = O (6'10)

Definition 6.5 (m'™ Velocity Cutoff Function). For ¢ > 1 and i,, > 0?7, we inductively define the m*"
velocity cutoff function

72”71%»‘1 - Z wj,,”q LY i jm,q (6.11)

{]m R (Jm)}

In order to define the full velocity cutoff function, we use the notation

= Lim o' = (10, oo i, ) € Npoot ™ (6.12)

m= O -
to denote a tuple of non-negative integers of length Nyt ¢ + 1.

Definition 6.6 (Velocity cutoff function). For 0 < i < 4,,4,(q) and g > 0, we inductively define the
velocity cutoff function 1; 4 as follows. When g =0, we let

Yio = {1 fi= 0. (6.13)

0 otherwise.

2TLater we will show that Vmim,q = 0 if 4 > 4max
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Then, we inductively on q define

cut t

?, = > H Grin g (6.14)

I max G =1
{ 0<m<Ncyt,t " }

The sum used to define 1); , for ¢ > 1 is over all tuples with a maximum entry of . The number of such
tuples is clearly g-independent once it is demonstrated in Lemma 6.14 that i, < imax(¢) (Which implies
1 < imax(q)), and imax(q) is bounded above independently of g.

For notational convenience, given an i as in the sum of (6.14), we shall denote

for all ¢ > 1.

Necut,t Necus, s
supp H Yimsima | = [ SUPP (Ymine.q) = supP (¥7,) - (6.15)
m=0

Ncut,t +1

In particular, we will frequently use that (z,t) € supp (¥ 4) if and only if there exists ie N, such that
MAX)<m <Ny, im = 1, and (z,t) € supp (¥5 ).
6.2 Properties of the velocity cutoff functions
6.2.1 Partitions of unity
Lemma 6.7 (¢, ,,, 4 - Partition of unity). For all m, we have that
Z Vri L =1, Vimima¥myir g =0 for |ip, —il,| > 2. (6.16)

im >0

Proof of Lemma 6.7. The proof proceeds inductively. When ¢ = 0 there is nothing to prove as ¥y, ;. 4 is not
defined. Thus we assume ¢ > 1. From (6.13) for ¢ = 0 and (3.16) for ¢ > 1, we assume that the functions
{43 ,_1}j>0 form a partition of unity. To show the first part of (6.16), we may use (6.9) and (6.11) and
reorder the summation to obtain

2 2
Z wm im,q T Z Z Jm,q—1 mv@nvjqu(z’t)

i >0 i >0 {.7771: 1*(]771)Sim}
- Z 1Z)Jm,q 1 Z mzmmmq Z ql} Jma—1 = L.
Jm=>0 {im5 imZi*(jm)} Jm=>0

=1 by (6.9)

The last equality follows from the inductive assumption (3.16).
The proof of the second claim is more involved and will be split into cases. Using the definition in (6.11),
we have that

2 2 2 2
Vi gPmit, g = Z Z Vima—1%510 0= 1P im G g Pimsity i1
{dmstm 2w (Gm) } {500 100 294 (37) }
Recalling the inductive assumption (3.16), we have that the above sum only includes pairs of indices j,, and

Jr, such that |jn, — ji,| < 1. So we may assume that

(z,t) € SUPP Yrm iy jm,q O SUPP Yimiz it a5 (6.17)

where |j, — j.| < 1. The first and simplest case is the case j,, = j,,. We then appeal to (6.10) to deduce
that it must be the case that |, —i/,| < 1 in order for (6.17) to be true.

Before moving to the second and third cases, we first show that by symmetry it will suffice to prove
that ¥, 4, ¢¥m.i ¢ = 0 when ir, < im — 2. Assuming this has been proven, let iy, ,im, be given with
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lim, — imo| = 2. Without loss of generality we may assume that 4,,, > iy,,, which implies that i,,, > i, + 2.
Using the assumption and setting i, = iy, and 4, = ip, we deduce that ¥, i, ¢¥m,i,,.q = 0. Thus, we
have reduced the proof to showing that ¥, i,, ¢¥m.i: ¢ = 0 when 7, < i, — 2, which we will show next by
contradiction.
Let us consider the second case, j,, = jm + 1. When iy, = i4(jim), using that i, (jim) < ix(fm + 1), we
obtain
iy < in —2= 0 () — 2 < i + 1) = (500,

and so by Definition 6.4, we have that ¢, ;» ;s ,= 0. Thus, in this case there is nothing to prove, and we
need to only consider the case i, > i4(j,). From (6.17), points 1 and 2 from Lemma 6.2, and Definition 6.4,
we have that

1t 1) (=i Giom MA1) (i +1—ix (im
Bm o a(T,1) € §FE]+1 )( (4 ))7F<(1+1 )( (Gm)) 7 (6.182)
Bt 1,0 (, £) < TUP D i Gm ), (6.18D)

Note that from the definition of A, ;. 4 in (6.6), we have that

Mm+1) (2« (Jm+1)—ix(Gm
F<(1+1 -0 )= ))hm,jerl,q:hm,jm,q‘

Then, since i}, < i,, — 2, from (6.18b) we have that
I“f(m+1)(i7rtfi*(jTVL))h — I“f(m+1)(ivrtfi*(jTVL))h F(m+1)(i*(jm+1)7i*(jm))

q+1 ™M, Jm,q q+1 m,jm+1,q% g4+1

7(m+1)(im7i*( ‘M)) (m+1)(i;n+17i*(jm+1)) ('m+1)(i*( ‘7n+1)77;*( A'm))
<l e P L) ’ ’

_ p(mAD) (i, +1—im)
- Fq—&-l

—(m+1)
<T,.
Since m > 0, the above estimate contradicts the lower bound on Ay, ;,. ¢ in (6.18a) because I‘qj}l < 1/2 for
a sufficiently large.

We move to the third and final case, j/, = jn — 1. As before, if i,, = .(jm), then since i, (jm) <
ix(jm — 1) + 1, we have that

i < im — 2= 14 (Jm) = 2 < (G = 1) = 1 <x(fm — 1) = ix (i) »

which by Definition 6.4 implies that ¢, ;» ;- 4 = 0, and there is nothing to prove. Thus, we only must
consider the case i, > i.(jm ). Using the definition (6.6) we have that

Pon g = Dy DOm0 g

On the other hand, for 4, <i,, — 2 we have from (6.18b) that

(m-‘,—l)(i:”-‘rl—i*(jm—l)) (m+1)(i7n_1_i*(j7rz_1))
hm,jm—Lq S Fq+1 S Fq+1 .

Therefore, combining the above two displays and the inequality —i.(jm) > —i.(jm — 1) — 1, we obtain the
bound
= (m+1)(im =i« (jm)) = (m+1) (im —ix () (mA1) (G (Fm —1) =i (Fm ) (M +1) (i — 1= s (jm —1))
Fq+1 hm,jm,q = Fq+1 Fq+1 Fqul
_ p—(m+1)
- Fq+1 ?
As before, since m > 0 this produces a contradiction with the lower bound on h,, j,. . given in (6.18a), since
Il <1 O

With Lemma 6.7 in hand, we can now verify the inductive assumption (3.16) at level q.
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Lemma 6.8 (v, , is a partition of unity). We have that for ¢ > 0,

SR =1, digig=0 for [i—i|>2. (6.19)

i>0

Proof of Lemma 6.8. When ¢ = 0, both statements are immediate from (6.13). To prove the first claim for
q > 1, let us introduce the notation

A ={i= 10y .-y IN : max i, = 1. 6.20
’ (i -0y v, o) 0<m<Neur,e (6:20)
Then
Neut,t
2 _ 2
¢i7q - H mem,q’
;EAi m=0
and thus
Ncut,,t, Ncut,,t,
2 _ 2 _ 2
E :wi,q - § : § : H wm,im,q - E : H wm,im,q
>0 120 Fep, m=0 i’eNNcut,t‘Fl m=0
0
Necut,s Neut,t

H szn,im,q = lel
m=0

m=0 \in>0

after using (6.16).
To prove the second claim, assume towards a contradiction that there exists |i — i’| > 2 such that
Vi qWir,q > 0. Then

Neut,¢

0 # V7 0, = Z Z H ¢3n,im,q¢72n,i;n,q- (6.21)

ien;iren, m=0

In order for (6.21) to be non-vanishing, by (6.16), there must exist i = (05 -3 INewe,) € Ay and P =
(i{),...,if\,m,t) € A, such that iy, —i,] < 1 for all 0 < m < Ngygy. By the definition of ¢ and 4/, there
exist m, and m/, such that

im, = max i = 1, iin/* = max i, =1
But then
i =, <y, 1<y, +1=10+1
"=y Sy + 1<y, + 1 =041,
implying that |i — /| < 1, a contradiction. O

In view of the preceding two lemmas and (6.10), and for convenience of notation, we define

Vi g(,1) = (W34 g (0. ) + 02, (2. 8) + 92y (2, ) (6.22)
which are cutoffs with the property that
Yizg =1 on supp (Yig). (6.23)

Remark 6.9 (Rewriting v, ;). The definition (6.14) is not convenient to use directly for estimating ma-
terial derivatives of the v; , cutoffs, because differentiating the terms ., ;. 4 ndividually ignores certain
cancellations which arise due to the fact that {¢n i, ¢}i,.>0 is a partition of unity (as was shown above
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in Lemma 6.7). For this purpose, we re-sum the terms in the definition (6.14) as follows. For any given
0 <m < Neyst, we introduce the summed cutoff function

m 6, T Z wm Jim ,q (624)

im =0

and note via Lemma 6.7 its chief property:

D(\Ij?n ) q) = D(/(/)En,i,q)lsupp (Ym,it1,q) — D(¢3n,i,q)1supp (Ym,it1,q) * (625)

The above inclusion holds because on the support of ¥, ;,. o with i, < i, we have that ¥, ; , = 1. With
the notation (6.24) we return to the definition (6.14) and note that

cut: t Ncuc,t
2 _ § : 2
i,q ,l/} m,i,q H \Ilm ,4,q H (\I/m” 4, m”,i,q)
m’'= m!'’'=m+1
Neut,t Neut,t
= E wm ,0,q H \I/m ,1,q H ‘I’m”i 1,9 (626)
m’=0 m'’ =m+1

Remark 6.10 (Size of maximal j,, in (6.11)). Define j,(i,¢) = max{j: i.(j) < i} to be the largest index
of j,, appearing in the sum in (6.11). We note here that

iy <r-ta <l (6.27)

holds. This fact will be used later on in the proof in conjunction with Lemma 6.14 to bound the maximal
values of j,,.

The following lemma is a direct consequence of the definitions of the cutoffs.

Lemma 6.11. If (z,t) € supp (¥m. i, jm.q) then

m+1)(tm+1—ix (Jm
B g < Do (D), (6.28)
Moreover, if iy > ix(jm) we have
A1) (im —in (om
I (7)) DR (6.29)

on the support of Ym i, in.q- AS a consequence, we have

1D Dy yta| e upp 1y < 0 Tt ML)V (7 T ™)™ (6.30)
HDNth luq||L°<> (supp ¥i,q) < 61/21—‘;111()‘ r ) ( ! F;i?i) (6~31)

for all 0 <m, M < Neyst and 0 < N < Neyg x-

Proof of Lemma 6.11. Estimates (6.28) and (6.29) follow directly from the definitions of QZm’q+1 and Y, g+1-
In order to prove (6.30), we note that for (z,t) € supp (¥m.i,,,q), by (6.11) there must exist a j,, with
4 (jm) < i such that (x,t) € supp (¥m,i,..im.q)- Using (6.28), we conclude that

(m+1)(i7n+1_i*(jm)) 7/*(]m) 7/*(],,;)-’-2 —1 \m gl
Uall o (oupp ) < Lo Lot (LA V(L™ e ) me

=8,/ Tt (AT )Y (r 4T )™ (6.32)

HDNDqu—l

which completes the proof of (6.30). The proof of (6.31) follows from the fact that we have employed the
mazimum over m of i,, to define ¢; , in (6.6). O

An immediate corollary of the bound (5.9) and of the previous Lemma is that estimates for the derivatives
of u, are also available on the support of ; 4, instead of ¥; g—1.
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Corollary 6.12. For N, M < 3Njnq,v, and ¢ > 0, we have the bound

|DNDM_, S T30 M (N, 2Nina v, Todg, A ) M (M N T 7 7 ) (6.33)

uqHLw(suppwi,,Q) ~ T q+1%%q qg—1>'qg—1

Recall that if either N > 3Ningv or M > 3Ninay are such that N + M < 2Ngy,, suitable estimates for
DNDM . ug are already provided by (5.6).

Proof of Corollary 6.12. When 0 < N < Ngyex and 0 < M < Neyet < Ning s, the desired bound was already
established in (6.31).

For the remaining cases, note that if 0 < m < Ngy ¢ and (z,t) € SUpp ¥m, i, ¢, there exists j,, > 0 with
14 (jm) < im, such that (z,t) € supp¥;,, q—1. Thus, we may appeal to (5.9) and deduce that

DY DM g S 5N M (N, MNind. Aq,Xq) M (M, Ny, TIm 174 570

Since iy (jim) < iy, implies Fgm < Ffz’j;l, we deduce that

N pM 1/273 5N im+l_—1 ~—1
DY DIt oy S O N EM (N, 20w, Ags Ag ) M (M, N1, T 77, 77

Note that the above estimate does not have a factor of I‘Z’j_‘fl next to the 5;/ * at the amplitude.
We now consider two cases. If Neyt x < N < 3Njna,v, then

M (N,2Nind’v,)\q,xq) < T, Nevex M (N,2Nind,v7Fqu,Xq) .
On the other hand, if Neyt ¢+ < M < 3Nipg,v, then

im+l_—1 ~—1 —2Ncut, ¢ im+3_—1 ~—1
M(M, Ning,t, I'g7t 7 qul,qul) ,SF(HlC“ M(M,Nind’t,Fqﬁl qul,qul) .

Combining the above three displays, and recalling the definition of ; , in (6.14), we deduce that if either
N > Neyg,x or M > Neygt,, we have

||DND%_1UQ||Lw(supp Vi)

< SN max{ Ty Neves T 2Newee A (N, Nind.v. rqu,Xq) M (M, Ny g, THAT271 1)

q°q

and the proof of (6.33) is completed by taking Neus x and Neye s sufficiently large to ensure that

—2Ncut,t

~3/2 _Ncut,x
A/ max{l', N D

}<1. (6.34)

This condition holds by (9.51). O

6.2.2 Pure spatial derivatives

In this section we prove that the cutoft functions 1; , satisfy sharp spatial derivative estimates, which are
consistent with (3.19) for ¢’ = q.

Lemma 6.13 (Spatial derivatives for the cutoffs). Fiz ¢ > 1, 0 < m < Newst, and i, > 0. For all
Jm >0 such that i,, > i.(jm) and all N < Ngn, we have

|DN1/)m,im7jm7Q| < 3y
1supp (Vima—1) W ~ M (N, Nind,va Aqrq, Aqrq) ’ (635)
wmﬂflmvjm;q
which in turn implies
DNy, ~
M < M (NN ATy AT (6.36)
q

for alli >0, all N < Ngy,.
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Proof of Lemma 6.13. We first show that (5.9) implies (6.35). We distinguish two cases. The first case is
when ¥ = 9, 41, O ¥ = Py, g1 and we have the lower bound

Y 1
2(tm —1% (Jm))(m~+1 2(m—+1
[ b S quil ) (6.37)

so that (6.5) applies. The goal is then to apply Lemma A.4 to the function ¢ = Jm’q+1 or ¥ = Y g41
as described above in conjunction with I'y, = F;Til, r= I‘é’ffl)(zm_’*(mn, and h(z,t) = (hpmj, .q(2,1))%
The assumption (A.21) holds by (6.3) or (6.5) for all N < Ngy,, and so we need to obtain bounds on the
derivatives of hfn g0 Which are consistent with assumption (A.22) of Lemma A.4. For B < Ngy, the Leibniz
rule gives

B Ncut,x
—iw(Gm) (=1 i (Gm)+2y—m —n—B g1 n+B' m
DR o ISP ST S T U (T St (D) T B e A D E Dy
B’'=0 n=0
X Ty 39 (r Ty ) 7m0 T ) T BB S D BB D | (6.38)

For the terms with L € {n + B’,n+ B — B’} < N¢ux we may appeal to appeal to estimate (6.28), which
gives

e (Gm) /=1 in (Gm)+2\ —m “Le— m
r Y )(qulr 4 )+) (AL'g) L‘sq 1/2HDLDt7q*1

m=+1)(tm+1—tx(Jm
gt ol < rimt Gn)) " (6.39)

ug|
TN Lo (supp Y i jom a)

On the other hand, for Neysx < L € {n+ B',n+ B — B’} < Neutx + B < 2Ng, — Ning ¢, we may appeal to
appeal to estimates (5.6) and (5.9), and since m < Ngygt < Ning ¢, we deduce that

— s (Jm — ik (Jm)+2\—m —Lg—1/2 m
T, 0 (g Dl ) 12y mm )y =L (72 2T

; G ) =2t LY _ ~
S (O, 50 ) 0 XN M (L 2N e Ay A
<M (L, MNind.v, 1, A;liq)

+1) (i +1—ix (jim -1y
< FEITl ) (4 14 (g ))M (L72Nind,v, 1>>\q 1>\q> . (640)

In the last inequality we have used that i,, > i.(jm), while in the second to last inequality we have used
that if L > Ngysx then FqL > )\2/2, which follows once Neytx is chosen to be sufficiently large, as in (9.51).
Summarizing the bounds (6.38)—(6.40), since n < Ngyg, x, we arrive at

1 DO h ol

S L) M (e + By 2Nina, 1,471, ) Ty D0 700

SUPP (Vs .a—1Pmim im.a
q+1

X 2(m+1) (i +1—is (Gim
SM (37 Nind,vs AgL'g, )\qu> Fqs-l ) (Gm))

whenever B < Ng,. Here we have used that 2N¢ytx < Ningv. Thus, assumption (A.22) holds with Cj, =

I’zfﬁﬂ)(imﬂq*(jm)), A=TgA, A= Xqu, N, = Njpg,v. Note that with these choices of parameters, we

have Chl"qfl“’2 = 1. We may thus apply Lemma A.4 and conclude that

|DNwm,im ,jm-,qy
SUPP (Yjm.a-1) " 1-N/Ngn
wmyimyjqu

1 <M (N, Nind.v, Aqrq,erq)

for all N < Ngy, proving (6.35) in the first case.
Recalling the inequality (6.37), the second case is when ¢ = 1, 441 and

2 ~2(im—is (Gm)) (m+1) _ L 2(m+1)
LG Wi S < T (6.41)
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However, since 1, 441 is uniformly equal to 1 when the left hand side of the above display takes values in
[1, }les_”ZH)] (6.35) is trivially satisfied. Thus we may reduce to the case that

—2(tm =« (Jm)) (m+1)
™m,jm,q~ q+1 ’ < L. (642)

h2

As in the first case, we aim to apply Lemma A.4 with h = hgmjnuq’ but now with I'y = 1 and I' =
Fgﬁfl)(im%*(jm)). From (6.4), the assumption (A.21) holds. Towards estimating derivatives of h, for the
terms with L € {n + B’,n+ B — B’} < Nyt x, (6.42) gives immediately that
7i*(jm) —1 Z*(]M)+2 Lgc—1 L (m+1)(2m77*(%ﬂ))
Fq-‘,—l ( Fq+1 ) ()‘QF ) 6 /2 HD tq luqHL"O(suppwm imdmaa) Fq—i—l . (643)
Conversely, when Neytx > L, we may argue as in the estimates which gave (6.40), only this time using that
since i, > ix(jm), we can achieve the slightly improved bound?®

F((]Tfl)(i,ri*(jm))M (L, WNind v, 1, ,\q—lxq) . (6.44)

We then arrive at

B
1supp (Yjm.a=1¥m im im.q) |D h7”»]m:‘1|

< (Aqrq)BM (2Ncut,x 4 B72Nind,V7 1’)\—13\'(1) Fiiﬂ’ll+1)(’bm*2*(.]m))

SM (B, Nind,vs AqL'qs quq> P2 D (im =i (im))

whenever B < Ngj, again using that 2N¢yex < Nipg,v. Thus, assumption (A.22) now holds with C, =

Fzﬁﬂ)(lm_z*(]m)) A =Ty\; A=Ay, No = Nipay. Note that with these new choices of parameters, we

still have CthQF 2 = 1. We may thus apply Lemma A.4 and conclude that

N
| DY Y s
supp (¥, ,q—1) 1/}1—N/Nﬁn

mMytmsJm 4

1 S M (N, Nind,vaAqFQ7XqFQ)

for all N < Ngy,, proving (6.35) in the second case.
From the definition (6.11), and the bound (6.35) we next estimate derivatives of the m** velocity cutoff
function ., 4,,.q, and claim that

‘DN¢m,im7q|
¢1_N/Nﬁn

mytm,q

5 M (N, Nind7va )‘qu7 erq) (645)

for all 4, > 0, all N < Ng,. We prove (6.45) by induction on N. When N = 0 the bound trivially holds,
which gives the induction base. For the induction step, assume that (6.45) holds for all N’ < N — 1. By the
Leibniz rule we obtain

N-1

N / N

DN(%b?n,i,,L,q) = 21/’m,im,qDN¢m,imq + Z (N’) D" 77[J”"him,q DN=N z/}m,im,q (646)
N’'=1

and thus

N N N- N’ N-N’

D ’(/}m;innq _ D ( m 7fm7q _ 1 Z ( ) D ’l/)m)iﬂl q D wm yim g
NN — o 2NN 1) AN N, T (V=N N
?ﬁ me,im,q 2 '=1 wm,im,q w

mMyim,q M,yim,q

Since N, N — N’ < N — 1 by the induction assumption (6.45) we obtain

’DN¢m7im,q‘ |DN( m,i q)| g
SN S + M (N, Nin s AT ATy ) - (6.47)

Myl ,q mMytm,q

28This bound was also available in (6.40), but we wrote the worse bound there to match the chosen value of Cp,.
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Thus, establishing (6.45) for the Nth derivative, reduces to bounding the first term on the right side of the
above. For this purpose we recall (6.11) and compute

DY (0] 1
1/]2 N/meq = 7/)2_N/Nﬁn Z Z( ) .7m>q 1)DN K(¢m 7fm77m7q)

mMyim,q Myimsq  {Jm: s (fm) Sim } K=0

N K N-K 2—K/Ngin ) 2—(N—K)/Ngin
_ 3 Sy Z N = K\ Vg1 Ymimimea
N L1 Lo 1/127N/Nﬁn
{Gm : i (Gm)<im } K=0L1=0 L2=0 My, ,q
L K—-L L N—-K—-L
D 1,1/)jmaq_1 D 1¢]m7q 1 D 2/1/)mvimwjm7q D 2d)maim»jm7q

,l]Z}l_Ll/Nﬁn wl (K —=L1)/Nfin ¢1_L2/Nﬁn d)l_(N_K_L?)/Nfin
Jm,q—1 Jm,q—1 Myim,Jm g Myt Jm g

X

Since K, N — K < N, and vj,, q—1,%m,i,,.j.q < 1 we have by (6.14) that

2—K/Ntin 2= (N—K)/Ntin 2—N/Ntin ; 2—N/Nfin
wjmyqfl wm,im,jm,q wﬂm q—1 z/}m yim s Jm g <1.
1/}2—N/Nﬁn - 1/}2 N/me

Myem, ,q m,im,q

Furthermore, the estimate (6.35), the inductive assumption (3.19), combined with the parameter estimate
rq_liq_l < TyAg (see (9.38)) and the previous three displays, conclude the proof of (6.45). In particular,
note that this upper bound is independent of the value of .

In order to conclude the proof of the Lemma, we argue that (6.45) implies (6.36). Recalling (6.14), we
have that 1? 74 is given as a sum of products of z/Jm inm.q» for which suitable derivative bounds are available
(due to (6. 45)). Thus, the proof of (6.36) is again done by induction on N, mutatis mutandi to the proof
of (6.45): indeed, we note that 12 ..q Was also given as a sum of squares of cutoff functions, for which
derivative bounds were available. The proof of the induction step is thus again based on the application of
the Leibniz rule for 2 4 in order to avoid redundancy we omit these details. O

6.2.3 Maximal indices appearing in the cutoff

A consequence of the inductive assumptions, Lemma 6.11, and of Lemma 6.13 above, is that we may a priori
estimate the maximal ¢ appearing in ; 4, labeled as imax(q).

Lemma 6.14 (Maximal i index in the definition of the cutoff). There exists imax = tmax(q) > 0,
determined by the formula (6.53) below, such that

Yig =0 forall i> imax (6.48)
and
Dimex < \7/* (6.49)

holds for all ¢ > 0, where the implicit constant is independent of q. Moreover imax(q) is bounded uniformly
m q as
4

T (6.50)

Z‘max(q) <

assuming Ao is sufficiently large.
[Take the below proof as a whole, and copy it]

Proof of Lemma 6.14. Assume i > 0 is such that supp (¢;,4) 7 0. Our goal is to prove that I}, ; < /\2/3

From (6.14) it follows that for any (x,t) € supp (t;,4), there must exist at least one 7 = (io, ... 1+ INgwr.. ) SUCh

that o, max im =1, and with ¥, ;. .(x,t) # 0 for all 0 < m < Ny ¢. Therefore, in light of (6.11), for each
sSms cut,t

such m there exists a maximal j,, such that i (jm) < iy, with (z,t) € supp (¥j,..q—1) N SUPP (Vi ivn jm.q)-
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In particular, this holds for any of the indices m such that ,, = i. For the remainder of the proof, we fix
such an index 0 < m < Ny ¢

If we have i = iy, = x(jm) = 4+ (Jm, q), since (x,t) € supp (¢, 4—1), then by the inductive assumption
(3.18), we have that j,, < imax(q¢ —1). Then, due to (6.27), we have Fq+l <Tim < I‘fj"""(qfl), and thus

i,y < Dy Dimax @D <127 < A5, (6.51)

The last inequality above uses the fact that )\( T < Ag+1 since b > 1 and a is taken sufficiently large.

On the other hand, if i = 4,, > i.(jm) + 1, from (6.29) we have |h,, ;. o(x,t)] > (1/2)T mﬂ)(z"‘ﬂ*(””)),
and by the pigeonhole principle, there exists 0 < n < Nyt x with

L (mA1) (i —in (Grm)) i (Gom) 51 —1 pie(im)+2\m
2Ncutxrq+1 L™ 82 (ALg) " (7, 4 Ty o)™

1 1 _
]_"lm 5 /2)\n 1 ]_'\lm"r2
2Ncut b atlq ( o+l ) ’

|D" DYy uq(z, t)] >
>

and we also know that (x,t) € supp (¢, q—1)- By (5.9), the fact that Neye x < 2Nindg,v—2, and Neug .t < Nina,e,
we know that

D™D} ug(z, )] < Myd2Ap X2 (7, Dot ym
< MyS NN (7 4 Tl ) L ym
< MySy P AN (r T )™

for some constant M, which is the maximal constant appearing in the < symbol of (5.9) with n 4+ m < Ngy,.
In particular, Mj is independent of q. The proof is now completed, since the previous two inequalities and
the assumption that 4, =7 > imax(q) + 1 imply that

Diy < 2Newex M2 < N2 (6.52)
In view of (6.51) and (6.52), the value of imax is chosen as
imaX(Q) = Sup {Z q+1 < )‘5/3} (653)
To show that imax(g) < 00, and in particular that it is bounded independently of ¢, note that

log(A/) 9
log(Tgt1)  er(b—1)’

as ¢ — oo. This, assuming Ao is sufficiently large, since (b — 1)er < 1/5, the bound (6.50) holds. O

6.2.4 Mixed derivative estimates

Recall from (3.7) the notation D, = u, - V for the directional derivative in the direction of u,. With this
notation, cf. (3.6) we have D; ; = Dy 41 + Dq. Thus, D, derivatives are useful for transferring bounds on
Dy ¢—1 derivatives to bounds for D, 4 derivatives.

From the Leibniz rule we have that

K
s => fixD’ (6.54)
j=1
where

K
fix = > ¢k | [ D ug (6.55)
=1

{veNE: |y|=K—j}
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where c¢; i~ are explicitly computable coefficients that depend only on K, j, and 7. Similarly to the co-
efficients in (A.49), the precise value of these constants is not important, since all the indices appearing
throughout the proof are taken to be less than 2Ng,. The decomposition (6.54)—(6.55) will be used fre-
quently in this section.

Remark 6.15. Since throughout the paper the maximal number of spatial or material derivatives is bounded
from above by 2Ng,, which is a number that is independent of ¢, we have not explicitly stated the formula
for the coefficients ¢, k.5 in (A.49), as all these constants will be absorbed in a < symbol. We note however
that the proof of Lemma A.13 does yield a recursion relation for the c, g, which may be used if desired to
compute the ¢, 1 g explicitly.

With the notation in (6.55) we have the following bounds.

Lemma 6.16. For ¢ > 1 and 1 < K < 2Ng,, the functions {fj,K}]K:1 defined in (6.55) obey the estimate
1D £l o sapp ey S (Tt82) M (a + K — j,2Ninav: Ty, Xq) . (6.56)

for any a < 2Ng, — K+ 7, and any 0 < i < imax(q).

Proof of Lemma 6.16. Note that no material derivative appears in (6.55), and thus to establish (6.56) we
appeal to Corollary 6.12 with M = 0, and to the bound (5.6) with m = 0. From the product rule we obtain
that

K
||DafjHLoo(suPP1/111,q) 5 Z Z H “Daé+’yzuq‘|L°°(supp wi,q)
{(YENK : [y|=K —j} {a€NF: |al=a} £=1
K
s X > TIriiosm (ae+ 76 2MNia Todgs A )

{(YENK : |y|=K—j} {a€NF: |a|=a} £=1

< (DL 622K M <a + K — j, 2Ninavs Tghg, Xq)
since |y| = K — j. O

Next, we supplement the space-and-material derivative estimates for u, obtained in (5.6) and (6.33), with
derivatives bounds that combine space, directional, and material derivatives.

Lemma 6.17. For g > 1 and 0 < i < imax, we have that

|DY Dy Dy

uqHL‘”(SUpp Pirq)
< (T 6K M (N + K, 2Nina.v, Ty Ay, Xq) M (M, Ninae, 57,0, 70-1)

< (IiheM (N, 2Nind,v, TgAg, )\q) (o7 )M (M Nigae, TS 7 707 Y)

holds for 0 < K + N + M < 2Ngy,.

Proof of Lemma 6.17. The second estimate in the Lemma follows from the parameter inequality Féiif’xqé;/ 2 <

Ty L which is a consequence of (9.39). In order to prove the first statement, welet 0 <a < Nand1 < j < K.
From estimate (6.33) and (5.6) we obtain

||DN_a+th]\7/¢[I*1u‘1HL°°(supp bi,q) 5 (Ff;jrlld;h)M (N —ati 2Nind’w Fqu’ )\q)

i+3_—1 ~—1
x M (M, Nind’t,rq_i_qu_l,Tq_l) ,

which may be combined with (6.54)—(6.55), and the bound (6.56), to obtain that

||DND§(D%;—1“11HL°°(supp Pig)
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N K
S Z Z ||Dafj7KHL°°(SUPp"/’i,q) ’|DN7HJD%J—11”‘1||L°°(supp Yi,q)

a=0 j=1
< @8I M ( N + K, 2Ninav, Ty, Xq) M (M, Ninao, D575, 7))
holds, concluding the proof of the lemma. O

The next Lemma shows that the inductive assumptions (3.22)—(3.25b) hold also for ¢’ = q.
Lemma 6.18. Forq>1, k> 1, o, 3 € N¥ with |a| = K and |3| = M, we have

k
(H DaiDtﬁ,fzfl)“q
i=1 Lo° (supp i,q)

5 (FZiljl_aé/Q)M (K, 2Nind,V7 Fqu7 Xq) M (]\47 Nind,t7 F;i?;_ngl, F;jl}'q—l) (657)

for all K + M < 3Nan/o+ 1. Additionally, for N > 0, the bound

HDN(ﬁ DD,y )ug

i=1 Lo (supp i q)
S (T8, M (N + K, 2Nina v, Ty Ay, Xq) M (M, Ninae, T3 75 T 070 (6.58)
< (TSP M (N, 2Nind,v,rqu,Xq) (P97 )M (M, N, T3 71 T 500 (6.59)

holds for all 0 < K + M + N < 3Nan/a 4 1. Lastly, we have the estimate

for all K + M < 3Nan/2. and

k

(ITo*D;) D,

=1

Lo (supp i,q)

< (L5, )M (K MNind.v, rqu,Xq) M (M, Nipa o, T 077 T 770 (6.60)

g+1%q

k

(TI D7, )v,

i=1

Le° (supp i,q)

S (TR0 A M (K, 2Nina,o Todgs Ag ) M (M, N, T 7, 1 T L7 ) (6.61)
for all K + M < 3Nein/2 4 1.

Remark 6.19. As shown in Remark 3.4, the bound (6.59) and identity (A.39) imply that estimate (3.26)
also holds with ¢’ = gq.

Proof of Lemma 6.18. We note that (6.59) follows directly from (6.58), by appealing to the parameter in-

equality I‘;rl:’) 63/2Xq < 7,!, which is a consequence of (9.39). We first show that (6.57) holds, then establish
(6.58), and lastly, prove the bounds (6.60)—(6.61).

Proof of (6.57). The statement is proven by induction on k. For k = 1 the estimate is given by
Corollary 6.12 and the bound (5.6); in fact, for & = 1 we have derivatives estimates up to level 2Ng,, and
not just 3Nsin /2 4+ 1. For the induction step, assume that (6.57) holds for any ¥’ < k — 1. We denote

k;l
Py = (H Daipfg_l)uq (6.62)
=1
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and write
k
(I1D™ Dy )ua = (D DY (D™ DY) Pis
i=1
— (Dt DIER) By 4 DO [ DA D™ DY P, (6.63)

The first term in (6.63) already obeys the correct bound, since we know that (6.57) holds for ¥ = k — 1. In
order to treat the second term on the right side of (6.63), we use Lemma A.12 to write the commutator as

t,qg—1»

Dok {Dﬁk Dak—1:| D?,Z_—llpk—Q

Qe —
| k—1

—pn Y B (H (athyq_l)W(D)> ptmhlp . (6.64)

T Y
ISMSBk’Y'(ﬂk DU

From Lemma A.13 and the Leibniz rule we claim that one may expand

Ak —1 Ap—1

I (@d Dy g-1)*(D) = Z g; D’ (6.65)

(=1

for some explicit functions g; which obey the estimate

a Yatog_1—7 i _ _ l~
1D gj”L“(Sur)pwi,q) SA1 M, Nind,t, g1y COqul’ L, qujl) (6.66)

for all a such that a + ap_1 — j + |y| < 3Nsn/2. The claim (6.66) requires a proof, which we sketch next.
Using the definition (6.11), the inductive estimate (3.23) at level ¢’ = ¢ — 1 and with k = 1, the parameter
inequality (9.39) at level ¢ — 1, for any 0 < m < Ny, we have that

|D*D; ,_y Dv,

a—1 ||L°°(supp Ymim,q)
< a b
= E ||D Dt,q—lDwrl||L°°(supp1/)jm,q—1)
{gm: D™ <L}
Gm 1 1/2 \Ya+1 . Jm —Co—1 —1=-1
< > (TIm 6 2 DATLM (b, Nina e, TIm 7 T 7))
{Gm s Ty <y
i 12 \Ta+1 im p—co -l p-lz—1
S Ty Ped,~ )N 5M (b,Nind,tanT-qu Te—1> g 7'q—l)

< XZ_IM (b+ 1, Ninas, F211F<;C07'q_—117 Fq_l?q_—ll)

for all @ + b < 3Nsin/2. Thus, from the definition (6.14) we deduce that

10D} 41Dt |y S Mot M (0 1 Niwa e, Ty Ty 97, T, (6.67)

for all a + b < 3Nsin /2. When combined with the formula (A.49), which allows us to write
(ad Dy g-1)"(D) = fy,q-1-V (6.68)

for an explicit function f, ;1 which is defined in terms of v, _,, estimate (6.67) and the Leibniz rule gives
the estimate

||Daf%qleLoo(suppwi,q) S AgaM (% Nind,t, Fz+11—‘;c°7'q:11, Pq_17~'qill) (6.69)

for all a + v < 3Nsin /2. In order to conclude the proof of (6.65)—(6.66), we use (6.68) to write

g1 Q-1 k-1
H (ad Dy g—1)"(D) = H (fyea-1-V) = Z 9; D’
=1 £=1 =t
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and now the claimed estimate for g; follows from the previously established bound (6.69) for the f,, ;—1’s
and their derivatives, and the Leibniz rule.
With (6.65)—(6.66) in hand, and using estimate (6.57) with ¥’ = k — 1, we return to (6.64) and obtain

HDak [Dtﬁz 1, DR 1] Dﬁk P QH
Le° (supp i,q)
QO —1

< Z Z HDak ( Dijk+5k 1— \"/|P )H
7=1 1<|y|<Bk L2 (supp i, q)

s ¥ 5ol

j=1 1<\'y\<ﬂ a'=

’Da +]D/3k+/3k 1— "Y‘P H

Le°(supp vi,q) Le°(supp vi,q)

Xk —1 Qg

S j{j DA T M (1] Nana e T T 0, 0 T 7, (T 63/%)

J=1 |y|=1a’=0

x M (K —op — Q-1 +7J+ alazNind,qu)\qu) M (M - |’7‘7 Nind,mrqigT,;l 1—\(;31;(1—1)

< (TS M (K,Qde,v,rqu,Xq)M(M Nina,e TS 74 Do 7o) (6.70)

for M < Nipa and K + M < 3Nein/2 4+ 1. The +1 in the range of derivatives is simply a consequence that
the summand in the third line of the above display starts with j > 1 and with |y| > 1. This concludes the
proof of the inductive step for (6.57).

Proof of (6.58). This estimate follows from Lemma A.10. Indeed, letting v = f = uy, B = Dy 41,
Q = supp i q, p = 00, the previously established bound (6.57) allows us to verlfy condltlons (A 40)—(A.41)
of Lemma A.10 with N, 3Ntm/2+1 Co=Cr =T 57 Ay = A =Tyhg, Ao = Ap = Agy Nio = 2Nind v, o =
py = qufi Tq— Yo Hy = i = FqHT s Nt = Ninat- As |a| = K and |5| = M, the bound (6.58) now is a direct
consequence of (A.42).

Proof of (6.60) and (6.61). First we consider the bound (6.60), inductively on k. For the case k = 1
the main idea is to appeal to estimate (A.44) in Lemma A.10 with the operators A = D,, B = D; ,—1 and
the functions v = u, and f = Duy,, so that D"(A + B)™f = D"Dy Dvy,. As before, the assumption
(A.40) holds due to (6.57) with Q = supp); 4, N. = 3New/f2 + 1, C, = F;fla;/“’, Ao = Thg, Ay = Ag, N, =
2Nind v, o = Ffﬁ_?i ;11, y = 1—\;_&17_(1—1, and Ny = Njyqt. Verifying condition (A.41) is this time more
involved, and follows by rewriting f = Dvg, = Dugy+ Dvg,_,. By using (6.57), and the parameter inequality
.t < L 57" (cf. (9.40)), we conveniently obtain

(H DD, ) Du,
i=1 Lo (supp ¢i,q)

< (TSP X,) M (K,2Nind7v,f‘q)\q,xq) M (M, Nipao, T 077 T L 770 (6.71)

q+17q—

q+17q

for all |a| + |8] = K + M < 3Nsin/2 (note that the maximal number of derivatives is not 3N /2 + 1 anymore,
but instead it is just 3Nen/2; the reason is that we are estimating Du, and not ug). On the other hand, from
the inductive assumption (3.23) with ¢’ = ¢ — 1 we obtain that

k
( [[ oD 1)D%71
i=1 Lo (supp ¥j,q—1)

for K + M < 3Nsn/2. Recalling the definitions (6.11)—(6.14) and the notation (6.15), we have that (x,t) €
supp (1i,q) if and only if (z,¢) € supp (¢;,), and thus for every m € {0,...,Neut,}, there exists jn, with

S (Fg+15;/_21)(xq71)K+1M (M, Nind,t,rg or— b 71 )

g—17 'g—1

F < Ff;jrl < FfH_l and (z,t) € supp (¢¥;,,.q—1). Thus, the above stated estimate and our usual parameter
mequahtles imply that

k

( [[ oD 1)DU@471

i=1

S 0, 81 o) KM (M Nia 1 Ty T 71,7

ql’ql

Le°(supp vi,q)
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< (TEAG ) (TgAg) KM (M Niga o T 97, LT L7 ) (6.72)

whenever K + M < 3Nia /2. Here we have used that 5;/51Xq_1 < 5;/2Xq and that FfIHF;CUTq:ll < Féjrchq’l <

;J:ﬁq_l, for all i < ipax. In the last inequality, we have used (9.20) and (6.49). Combining (6.71) and
(6.72) we may now verify condition (A.41) for f = Duy , with p = oo, Q = supp (¥4 4), C5 = Ff;lléé/zxq,
Ap = Fqu,Xf = Xq,Nw = 2Ning,v, pr = Ff;_cl"Tq_l,ﬁf = Fq__&l?q_l,Nt = Ninat, and N, = 3Nan/2. We may
thus appeal to (A.44) and obtain that

| D* D}, Doy, ||L°°(SHPP Yiq)

< (AR M (K, 2N, Toda,

x M (M, Nind,e, max{T 971 THL 6223, ), max{T, |, 7 Ff]i;lléj/ﬁq})

whenever K + M < 3Nsin /2. The parameter inequalities F;‘mlé;/ﬁq < 7! from (9.39) and Ff;_%é;/zxq <71
which follows from (9.43) and (6.49), conclude the proof of (6.60) for k = 1.

In order to prove (6.60) for a general k, we proceed by induction. Assume the estimate holds for every
k' <k —1. Proving (6.60) at level k is done in the same way as we have established the induction step (in

k) for (6.57). We let
~ k/
Py = |[[ D> D7, | Du,

i=1

and decompose

t,q’

k
=1

and note that the first term is directly bounded using the induction assumption (at level k — 1). To bound
the commutator term, similarly to (6.64)-(6.66), we obtain from Lemmas A.12 and A.13 that

ak—1
] pher B B! = i | pBetBe-hlp
D™ [ D2, D= | DY Py = D™ Y TG - > GD7 | DB,
1<hI<sy =

where one may use the previously established bound (6.60) with k£ = 1 (instead of (6.67)) to estimate
||Da§j||[,00(supp Yiq) S M (a +og—1 — jv 2Nind,va Fq)‘q, )‘q> M ("V|v Nind,ta ]-—‘21(:107—(1717 F;i17,:¢171) . (673)

Note that the above estimate is not merely (6.66) with ¢ increased by 1. Rather, the above estimate is
proven in the same way that (6.66) was proven, by first showing that the analogous version of (6.69) is

Y i—co,_—1 p—1 ~—1
||Daf%Q| Lo (supp ¥4 .q) 5 M (aazNind,van)‘qv)‘q) M ('77 Nind,tarz_i,_clqu arq.l,_qu ) 5

from which the claimed estimate (6.73) on D®g; follows. The estimate

o o |

L (supp ¥i,q)

< (T 61 M (K +1,2Nind,v rqu,Xq) M (M, Ninao, TS L Ty 7t (6.74)
follows similarly to (6.70), from the estimate (6.73) for g;, and the bound (6.60) with k£ — 1 terms in the
product. This concludes the proof of estimate (6.60).

To conclude the proof of the Lemma, we also need to establish the estimates for vy, claimed in (6.61).
The proof of this bound is nearly identical to that of (6.60), as is readily seen for k = 1: we just need to
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replace Du, estimates with wu, estimates, and D”qul bounds with Ve, _y bounds. For instance, instead of

(6.71), we appeal to (6.59) and obtain a bound for DX DM u, which is better than (6.71) by a factor of A,
and which holds for K + M < 3Nsin/2 4 1. This estimate is sharper than required by (6.61). The estimate for
DX DM ¢V, 1s obtained similarly to (6.72), except that instead of appealing to the induction assumption
(3.23) at level q' = q—1, we use (3.24) with ¢’ = ¢ — 1. The Sobolev loss A2_; is then apparent from (3.24),
and the estimates hold for K + M < 3Nsin/2 + 1. These arguments establish (6.61) with k¥ = 1. The case of
general k > 2 is treated inductively exactly as before, because the commutator term is bounded in the same

way as (6.74), except that K + 1 is replaced by K. To avoid redundancy, we omit these details. O

6.2.5 Material derivatives

The estimates in the previous sections, which have led up to Lemma 6.18, allow us to estimate mixed space,
directional, and material derivatives of the velocity cutoff functions v; 4, which in turn allow us to establish
the inductive bounds (3.19) and (3.20) with ¢’ = q.

In order to achieve this we crucially recall Remark 6.9. Note that if we were to directly differentiate

6.14), then we would need to consider all vectors ic NNC“"H_1 such that maxo<m<n = ¢, and then
0

cut,t m

for each one of these 7 consider the term Loupp (w;q)Dt’Q*l(w?n,im,q) for each 0 < m < Ngyt,¢; however in this

situation we encounter for instance a term with ¢ = 0 and 4, = i for all 1 < m’ < Ngyt; the bounds

available on this term would be catastrophic due to the mismatch ig < i, for all m’ > 0. Identity (6.26)

precisely permits us to avoid this situation, because it has essentially ordered the indices {zm}N““t 5 to be

non-increasing in m. Indeed inspecting (6. 26) and using identity (6.25) and the definitions (6.15), (6.24), w
see that

(z,t) € supp (Dt,q—1¢$,q) s Jie Ng““““ and 30 < m < Neygt

with i, € {i — 1,4} and = max iy =1
OSmISNcut,t

such that (z,t) € supp (¢ ,) Nsupp (Dt,g—1¥m, iy q)

and i, < i,, whenever m < m’ < Neygt - (6.75)

The generalization of characterization (6.75) to higher order material derivatives D}, is direct: (z,t) €

supp (D%—1¢?,q) if and only if there exists i € Ng eut L With maximal index equal to ¢, such that for every

0 < m < Nyt for which (2,¢) € supp (¢7,) N supp (Dt,g—19¥m,i,..q) (there are potentially more than one
such m if M > 2 due to the Leibniz rule), we have i, < i,, € {i — 1,i} whenever m < m’. In light of this
characterization, we have the following bounds:

Lemma 6.20. Let ¢ > 1, 0 < i < imax(q), and fix = Ngc“t’tﬂ such that Maxo<m<Ney . im = i, as in
the right side of (6.75). Fiz 0 < m < Neu,y such that i, € {i — 1,1} and such that iy < i, for all
m < m’' < Newt. Lastly, fix jm such that is(jm) < im. For N, K, M,k >0, o, 3 € N* such that |a| =
and |B| = M, we have

Lsupp (w;q)lsupp (Yjm.a—1)

7/)1 (K+M)/Ngin
Myim,Jmq

(H Da’Dt q— 1) 7/’m,im,jm7q

<M (K, Nind.vs Dy g, Aqrq) M (M, Nina s = Newp, TH3 771 T 71) (6.76)

for all K such that 0 < K + M < Ng,. Moreover,

k
DN (H DazDB’zq 1) 'L/)m,im,jm,q

=1

Lsupp (¥3,4) Lsupp (¢,0,0-1)

17(N+K+M)/ijn
wmn'm JIm,q

S M (N, Ninas Todgs AT ) (T3 97, )5 M (M, Nina = Newso a7 T 771 (6.77)

holds whenever 0 < N + K + M < Ng,.

69



Proof of Lemma 6.20. Note that for M = 0 estimate (6.76) was already established in (6.35). The bound
(6.77) with M = 0, i.e., an estimate for the DV DXt ;. ;. 4, holds by appealing to the expansion (6.54)—
(6.55), the bound (6.56) (which is applicable since in the context of estimate (6.77) we work on the support

of 1; 4), to the bound (6.76) with M = 0, and to the parameter inequality Fgﬁoéé/ 2Xq <7 L (which follows
from (9.39)). The rest of the proof is dedicated to the case M > 1. The proofs are very similar to the proof
of Lemma 6.13, but we additionally need to appeal to bounds and arguments from the proof of Lemma 6.18.

Proof of (6.76). As in the proof of Lemma 6.13, we start with the case k¥ = 1, and estimate
DEDM iy jm.q for K + M < Ngn, with M > 1. We note that just as D, the operator Dy 41 is a
scalar differential operator, and thus the Fad di Bruno argument which was used to bound (6.35) may be re-
peated. As was done there, we recall the definitions (6.7)—(6.8) and split the analysis in two cases, according
to whether (6.37) or (6.42) holds.

Let us first consider the case (6.37). Our goal is to apply Lemma A.5 to the function ¢ = ., g4+1 or ¢ =

G, with Ty = DAL T = DU =i0mD) S 4y = p2 . (x,t), and Dy = Dy 4. Estimate (A.24)

holds by (6.3) and (6.5), so that it remains to obtain a bound on the material derivatives of (hm ;. q(2,t))?
and establish a bound which corresponds to (A.25) on the set supp (17 )OSUPP (¥5,.,,—1%m,isn jm,q)- Similarly
to (6.38), for K’ + M’ < Ng, the Leibniz rule and definition (6.6) gives

DX'DM" 2

r_ ' —2(mA1)is (G
4 m,jm,q S ()‘ql—‘q)K (Tq—11F2 )M F ( +) (J )

~ q+1 q+1

K’ M/ Ncut,x
_ _ _ 1" PSS 1" _ 1" M//
X Z Z Z (qull“gﬂ) ML) TR Oq 2|k lelql ugq|
K"=0 M"=0 n=0
_ _ _ ’ 1" _ _ 4 " _ 17 1" M/_M//
X (7 T2 )M M (3 ) ==K G et K My (6,75
By the characterization (6.75), for every (x,t) in the support described on the left side of (6.76) we
have that for every m < R < Ngyy, there exists ir < i,, and jr with i.(jr) < ig, such that (z,t) €
SUPP Vjr.q—1VR,in.jn.q- AS & consequence, for the terms in the sum (6.78) with L € {n+ K", n+ K'— K"} <
Neutx and R € {m+ M",m+ M’ — M"} < Ney s, we may appeal to estimate (6.28) which gives a bound
on AR ;¢ and thus obtain

(R+1)ix (jr) p(R+1) (ir+1—ix (4r))
S Fq-ﬂ,—l JR Fq+1 R IR

(Do) ") 750, 2 |ID* DY _yug|

SUPP YR,ig,ig,q)
(R+1)(im+1)
B I‘qul .

On the other hand, if L > Ngyt x, or if R > Ngye ¢, then by (5.6) and (5.9) we have that

-1 2 —R —Lg¢—1 L R
(Tq—1Fq+1) ()‘qrq> 6q /QHD Dt7q71uq’|L°°(supp1/)jm,q,1)

i L 9P o~ . .
< NPT ET 20 M (L, Minav, 1, Ay 1)\q> M (R, Ny, Tim 70

<M (L, MNind.v, 1, Aq—lxq) M (R, Nipa e, Tt 7, L) (6.79)
since Neyg x and Neyg ¢ were taken sufficiently large to obey (9.51). Combining (6.78)—(6.79), we may derive
that

K' nM' 2
1supp(wz,q)1supp(wjm,q—l) D™ Dig1lm .
< Fzgrn#l)(im—i*(jm)ﬂ)(Aqrq)K/(Tl;jlerrl)M/M <2Ncut,x + K’ 2Ning v, 17)\(1_1Xq) Fq—f?ln(im—i-l)
M’ _ )
x 3 M (m+ M Ninae, T mg a7 ) Mmoo+ M= MY Nipa o, Tt 7007, )

M"=0

2(mA1) (b —ix () +1 (=1 im ’ =1y
S.» I—‘qs,-l ! Grm) )()\QFQ)K (ququ+T3)M M (Kl7 Nind,v, 17 )\q 1)\q)

X M (MI7 Nind,t - Ncut,ta 177—q71]-—\;4£i1m+1)7’:71 )

g—1
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S FEE:?—Fl)(im_i* (jm)—‘rl)M <K/a Nind,v» Fq>\q7 Fq}:q> M (Mlv Nind,t - Ncut,t, T;jlrf]igp F3+1?(;,11)

S l—wzg—TTl?z+l)(im—i*(j7rz)+1)M <K/7 Nind,v; Fq>\zp quq) M (M/, Nind,t _ Ncut,t; Tq—_llIw(LI-::?i’ Fq_il;(;l) (680)

for all K’ + M’ < Ng,. Here we have used that Ninqv > 2Ning ¢, that m < Ney ¢, and that 4,, < i. The

upshot of (6.80) is that condition (A.25) in Lemma A.5 is now verified, with Cj, = Fzsr”frl)(i"“i*(j"")ﬂ), and

A=TgAg, A =TgAg, =7, Tini® i =T2 7", Ny = Nind,v, and Ny = Nina,e — Neur,e. We obtain from
(A.26) and the fact that (I',I')72C, = 1 that (6.76) holds when k = 1 for those (z,t) such that h, ;.. 4(z,t)
satisfies (6.37). The case when hy, j, q(x,t) satisfies the bound (6.42) is nearly identical, as was the case in
the proof of Lemma 6.13. The only changes are that now I'y, = 1 (according to (6.4)), and that the constant
Cr, which we read from the right side of (6.80) is now improved to 1"25:?“)(1’"_“(””)). These two changes
offset each other, resulting in the same exact bound. Thus, we have shown that (6.76) holds when k = 1.

The general case k > 1 in (6.76) is obtained via induction on k, in precisely the same fashion as the proof
of estimate (6.57) in Lemma 6.18. At the heart of the matter lies a commutator bound similar to (6.70),
which is proven in precisely the same way by appealing to the fact that we work on supp (1/1; q) C supp (Yiq),
and thus bound (6.66) is available; in turn, this bound provides sharper space and material estimates than
required in (6.76), completing the proof. In order to avoid redundancy we omit further details.

Proof of (6.77). This estimate follows from Lemma A.10 with v = ug, B = Dy g—1, f = Ym,in, jom.q> & =

supp (w;q)ﬁsupp (¥j,,.9=1)0SUPP (¥ iy jimq)> ad p = co. Technically, the presence of the ¢;T;L(’]j\ij§+M)/Nﬁ“

factor on the left side of (6.77) means that the bound doesn’t follow from the statement of Lemma A.10,
but instead, it follows from its proof; the changes to the argument are minor and we ignore this distinction.
First, we note that since  C supp (¢ 4), estimate (6.57) allows us to verify condition (A.40) of Lemma A.10
with N, = 3Nn/z + 1, Cy = T5E67% Ay = Todgs de = Ay Ny = 2Ninay = Ninds pro = Tot3770 i, =
I‘qjil'fq*l? N¢ = Nind.t > Nind,t — Neut,t. On the other hand, condition (A.41) of Lemma A.10 holds in view of
(6.76) with Cy = 1, \p = TgAgs Ay = DgAg, Ny = Ninav, 1y = Dot m 2 iy = T 7t Ny = Nindye — Neae,-
As |a| = K and |8] = M, the bound (6.77) is now a direct consequence of (A.42) and the parameter

inequality Féilléé/quXq < Fflffrq_l “= F;‘ff&;/zxq <77t ef. (9.39). O

A direct consequence of Lemma 6.20 and identity (6.75) is that the inductive bounds (3.19) and (3.20)
hold for ¢’ = g, as is shown by the following Lemma.

Lemma 6.21 (Mixed spatial and material derivatives for velocity cutoffs). Let ¢ > 1, 0 < i < imax(q),
N,K,M,k >0, and let o, B € NF be such that |o| = K and |3| = M. Then we have

k
1 o b
"I (R4 M)/New (HD lDt,’ql> Yig
7/’7:,4 =1
SM (K’ Nind,v, FgAq, Fqu) M (M7 Nind,t — Neut,ts Ff;.?iTq__ll, Fq__&ﬁq_l) (6.81)
for K+ M < Ngp, and
1 k
N o B
¢1_(N+K+M)/Nfin D <H DqlDt,lq—1> ¢i,q
q 1=1
SM (N’ Nind.v; I'gAg, quq) (Ffzjriqu_l)KM (M» Nind,t — Neut,t, Féi?iT;jh quiﬁq_l) (6.82)

holds for N + K + M < Ngy,.

Remark 6.22. As shown in Remark 3.4, the bound (6.82) and identity (A.39) imply that estimate (3.27)
also holds with ¢’ = ¢, namely that

1

w'l_(N“!‘M)/Nfin
2,9

|DND%I’(M,¢1| 5 M (N, Nind,v; Fq)\q, Fqu) M (M, Nind,t - Ncut,ta Ff]:tclquilv F;ﬁl?qil)

(6.83)
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for N + M < Ng,. Note that for all M > 0 we have

i—co,_ —1 p—1 ~—1
M (Ma Nind,t - Ncut,ta r o, 7Fq+17—q )

g+l 'q
—(Nind,s —Ncut,t) —1 ~—1\Ncut i—co+1_—1 p—1 ~—1
<T,; (rl a7y 1) ™ M (M, Ninae, D3 L D7, )
i—co+1_—1 p—1 ~—1
< M (M, Ninae, Dz L T o070

once Ning ¢ is taken to be sufficiently large when compared to Ney,¢ to ensure that

() < T

for all ¢ > 1. This condition holds in view of (9.52). In summary, we have thus obtained

1

N M
——vrann [P Digtial
wi,q
S M (N, Nina s TgAgs g ) M (M, N o, Ty 7 T 7 o1

for N + M < Ngj.

Proof of Lemma 6.21. Note that for M = 0 estimate (6.81) holds by (6.36). The bound (6.82) holds for
M = 0, due to the expansion (6.54)—(6.55), the bound (6.56) on the support of ¥; 4, to the bound (6.82)
with M = 0, and to the parameter inequality nggoag/ﬁq < 77t (cf. (9.39)). The rest of the proof is
dedicated to the case M > 1.

The argument is very similar to the proof of Lemma 6.13 and so we only emphasize the main differences.
We start with the proof of (6.81). We claim that in a the same way that (6.35) was shown to imply (6.45),
one may show that estimate (6.76) implies that for any i and 0 < m < Ny as on the right side of (6.75)
(in particular, as in Lemma 6.18), we have that

1

k
supp (¥7,,) ar 1B
(KA N <HD ’thql> Vi
1bm,im,q =1
S, M <K7 Nind,vv Fq)\qv erlq) M (M7 Nind,t - Ncut,xa Fér.?iTq__lp F(;_il;(;l) . (685)

The proof of the above estimate is done by induction on k. For k = 1, the first step in establishing (6.85)

is to use the Leibniz rule and induction on the number of material derivatives to reduce the problem to an
72+(K+M)/NfinDKDM

My ,q t,g—1
proven. The derivatives of w?n,z‘m,q are now bounded via the Leibniz rule and the definition (6.11). Indeed,

’ ’ . .
when DX DM’ | derivatives fall on 2, ;

estimate for 1 (¥2 ,); this is achieved in precisely the same way that (6.47) was

m,lm,

im.q the required bound is obtained from (6.76), which gives the

same upper bound as the one required by (6.85). On the other hand, if DK_K/D%Z:QW derivatives fall
on w?myq_l, the required estimate is provided by (3.27) with ¢’ = ¢ — 1 and 7 replaced by j,,; the resulting
estimates are strictly better than what is required by (6.85). This shows that estimate (6.85) holds for k& = 1.
We then proceed inductively in & > 1, in the same fashion as the proof of estimate (6.57) in Lemma 6.18; the
corresponding commutator bound is applicable because we work on supp (¥mi,..q) Nsupp (¢:,q). In order to
avoid redundancy we omit these details, and conclude the proof of (6.85).

As in the proof of Lemma 6.13, we are now able to show that (6.81) is a consequence of (6.85). As

before, by induction on the number of material derivatives and the Leibniz rule we reduce the problem to an

estimate for w;q2+(K+M)/N““ Hle DD (17 ,); see the proof of (6.47) for details. In order to estimate

derivatives of w?’ o We use identities (6.25) and (6.26), which imply upon applying a differential operator,
say Dy q—1, that

Neut,t m—1 Necut,t

2 2 2 2
Dt’Q*l(,(/]i,q) = Dt#]*l E | I ‘Ilm',i,q : wm,i,q : I | \I/m”,ifl,q
0

m=0 m’'= m/ =m+1
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Ncut,t m—1 Ncut.t

— 2 2 2 2

- Dt,qfl('lz[}m’,i,q) H \Ijm’,i,q " ¥myiq H \I/m”,ifl,q
m=0 m’=0 0<m/<m—1 m’’ =m-+1

m’#m/’

Neut,t Neut,s m—1

2 2 2 2

+ H \I,m’,i7q ' 1pm,i,q : Dt;Q*l(\IIﬁl”,ifl,q) H \Pm”;iqu

m=0 m'' =m+1m'=0 m+1§m”§Ncut,t

1" — /!
m' #m
Ncut,t m—1 Ncut,t
2 2 2

+ \I}m’,i,q . Dt,qfl(wm,i,q) : H \Ilm”,ifl,q . (686)

m=0 m’=0 m/' =m+1

Higher order material derivatives of 1/}% ¢» and mixtures of space and material derivatives are obtained simi-
;

larly, by an application of the Leibniz rule. Equality (6.86) in particular justifies why we have only proven
(6.85) for jand 0 <m < Neut,t as on the right side of (6.75)! With (6.85) and (6.86) in hand, we now repeat
the argument from the proof of Lemma 6.13 (see the two displays below (6.47)) and conclude that (6.81)
holds.

In order to conclude the proof of the Lemma, it remains to establish (6.82). This bound follows now
directly from (6.81) and an application of Lemma A.10 (to be more precise, we need to use the proof of this
Lemma), in precisely the same way that (6.76) was shown earlier to imply (6.77). As there are no changes
to be made to this argument, we omit these details. O

6.2.6 L' size of the velocity cutoffs

The purpose of this section is to show that the inductive estimate (3.21) holds with ¢’ = gq.

Lemma 6.23 (Support estimate). For all 0 < i < imax(q) we have that
gl 2 ST (6.87)
where Cy, is defined in (3.21) and thus depends only on b.

Proof of Lemma 6.25. 1f i < (C, — 1)/2 then (6.87) trivially holds because 0 < 1; , < 1, and |T3| < T'yqq
for all ¢ > 1, once a is chosen to be sufficiently large. Thus, we only need to be concerned with ¢ such that
(Co+1)/2 < i < imax(q)-

First, we note that Lemma 6.7 imply that the functions ¥,, ;+ , defined in (6.24) satisfy 0 < \Ilfn’i,’q <1,
and thus (6.26) implies that

Neut,t

il < Y ¥miallpa - (6.88)
m=0

Next, we let j.(i) = j.«(i,q) be the maximal index of j,, appearing in (6.11). In particular, recalling also
(6.27), we have that

IV VADES VITIRS FADEES (6.89)

Using (6.11), in which we simply write j instead of j,,, the fact that 0 < w?,qfl,qufn’i’j’q < 1, and the
inductive assumption (3.21) at level ¢ — 1, we may deduce that

Ju(i)—2
1Ym,iallpr < 9501l r + 1950 -1a-1llps + D 1¥0-19migall oo
7=0
o o Jw(i)—2
ST 2-0FC L P 225 LN upp (45,9 19mija)| - (6.90)

=0
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The second term on the right side of (6.90) is estimated using the last inequality in (6.89) as

F;2j*(i)+2+cb < F;ﬁ§F3+Cb < ]_"q*f'?’cb*ll"é'f'cb_b(cb—l) — I‘q*flfrczrl (6.91)

where in the last equality we have used the definition of C; in (3.21). Clearly, the first term on the right
side of (6.90) is also bounded by the right side of (6.91). We are left to estimate the terms appearing in the
sum on the right side of (6.90). The key fact is that for any j < j.(i) — 2 we have that i > i.(j) + 1; this
can be seen to hold because b < 2. Recalling the definition (6.7) and item 2 of Lemma 6.2, we obtain that
for j < 7.(i) — 2 we have

1 2(m—+1
Supp (¥j,g—1%m,i,j,4) € {(az t) € supp (Y q-1): hiy 50 qu(ﬂw ) (i~ (J))}

2(m—+1)(1—14
- {(x’t): w?i,q 1hm,j q = qug-l-i_ e (]))} . (692)

In the second inclusion of (6.92) we have appealed to (6.23) at level ¢ — 1. By Chebyshev’s inequality and
the definition of Ay, j , in (6.6) we deduce that

|Supp (7/}] q—lwm 7, q)|

m+1)(i—ix 2i4(j) o— —92n — e 2 2
< 4F ( +1)(i—ix(4)) Z Fq+1 5q 1(/\qrq) 2 ( 1 Fq-‘,El)+ ) iji,q D" th luqu .
n=0

Since in the above display we have that n < Ncyug,x < 2Njngv and m < Newgt < Ning,t, we may combine the
above estimate with (5.5) and deduce that

Cut WX

SUPD (g 1th 1.0)| < AT 2D OIp 2000 (g io)-2) Z g

—2i 1p—i—2\2m
< 8T 7 (TIF'T 177)
—2i4C
3 (6.93)

In the last inequality we have used that FJ < Fq+1v that m > 0, and that C, > 2 (since b < 6).
Combining (6.88), (6.90), (6.91), and (6 93) we deduce that

300l 1 < Newe,e g (0) T2

In order to conclude the proof of the Lemma, we use that Ny ¢ is a constant independent of ¢, and that by
(6.90) and (3.17) we have

o doglgy1 . 4b
* <i1——— < max bgi
Je(i) < i logT, = 'ma (a) =1

Thus j. (i) is also bounded from above by a constant independent of ¢ and upon taking a sufficiently large
we have

_ _ ANgyt,tb
Ncut,t]*( )Fq+1 = Wl_tl)rﬁl =

which concludes the proof. [

6.3 Definition of the temporal cutoff functions

Let x : (=1,1) — [0,1] be a C*° function which induces a partition of unity according to

sz(' —k)=1. (6.94)

kEZ
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Consider the translated and rescaled function

X (tr TR = k)

which is supported in the set of times t satisfying
[t — 7D 3972k < D397 = te [(k— D7l 4 2 (k+ D)7l %% . (6.95)

We then define temporal cut-off functions

Xika(t) = X0y (1) = x (t7 'Tp 92 — k) (6.96)
It is then clear that
107" Xi kgl S (To e+ 2r ™ (6.97)
for m > 0 and
Xi,khq(t))(i,kg,q(t) =0 (6.98)

for all t € R unless |k1 — k2| < 1. In analogy to ¥4 4, we define

Nl=

X i,k q) (1) 1= (X%i,k—l,q)(t) + X%i,k,q)(t) + X?i,k-i—l,q) (t)> ) (6.99)
which are cutoffs with the property that
X(ihet,q) = 1 o0 supp (X (i kq))- (6.100)
Next, we define the cutoffs x; 1,4 by
Xidea(t) = Xy (1) = x (t7, T3 T — T 55k) - (6.101)
For comparison with (6.95), we have that X; » 4 is supported in the set of times ¢ satisfying

|t — 7D 1k| < 7l 7. (6.102)

As a consequence of these definitions and a sufficiently large choice of Ag, let (4, k) and (¢*, k*) be such that
SUPD Xi k,q N SUPP Xi* kg 7 0 and i* € {i — 1,4,i+ 1}, then
SUPP Xik,g C SUPP Xi*,k*q- (6.103)

Finally, we shall require cutoffs X, ,, ,, which satisfy the following three properties:

o

(1) yq,n,p(t) =1lon SUPPth,n,p

-1
(2) Xynp(t) =0 if =0 forall [t — | < (55/2Aqrg +1)

a—
B,

(3) agnyq,n,p § (5;/2)‘q1—‘3+1)
For the sake of specificity, recalling (9.63), we may set

Xgnp = (b(tzl/zA 2 )X 1 . (6.104)
( q q q+1> t:||éq n,p | 1/2 1 1/2 1 >0
s LOO([t—(5q Aqr‘§+l) ,f,+<5q ’\QF§+1) }XT‘S)

It is then clear that X, , , slightly expands and then mollifies the characteristic function of the time support

of Ry p so that the inductive assumptions (7.12), (7.19), and (7.26) regarding the time support of wg 1., .p
may be verified.
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6.4 Estimates on flow maps

We can now make estimates regarding the flows of the vector field v, on the support of a cutoff function.

Lemma 6.24 (Lagrangian paths don’t jump many supports). Let ¢ > 0 and (xo, o) be given. Assume

that the index i is such that ¥7 (xo,t0) > Kk*, where K € [%.1]. Then the forward flow (X (t),t) =

(X (20, t0;t),t) of the velocity field vy, originating at (xo,to) has the property that 17 (X (t),t) > «°/2 for all

. a1 ,
t be such that |t — to| < (5q/2)\qfflfi> , which by (9.39) and (9.19) is satisfied for |t — to| < TqF;f{5+c°.

Proof of Lemma 6.24. By the mean value theorem in time along the Lagrangian flow (X (t),t¢) and (6.83),
we have that

[i,q(X (t),1) — i g(w0,to)| < [t —to| [ De.g%iqll o
<[t —tol | Dt,g-1%igll Lo + [t —tol lug - Vigll foo -

From Lemma 6.21, Lemma 6.13, Lemma 6.11, and (9.41), we have that

IDtg1%igll e + g - Vibigll oo S Totime + 67T AT
1 i+2
S8, A TS,

and hence, under the working assumption on |t — ¢y we obtain

|thiq(X (w0, 03 1), ) — i q(z0,t0)| ST oty (6.105)

for some implicit constant C' > 0 which is independent of ¢ > 0. From the assumption of the lemma and
(6.105) it follows that

Pig(X(t),t) >k —CT .}y > ~/va

for all ¢ > 0, since we have that x > 1/16 and CF;+11 < /100, which holds independently of ¢ once Ag is

chosen sufficiently large. O
Corollary 6.25. Suppose (x,t) is such that 7 (z,t) > k*, where k € [L/16,1]. For to such that [t — to| <

-1 ;
(5;/2/\qff;‘§) , which is in particular satisfied for |t — to| < qu—‘;i#ﬂo; define xo to satisfy

x = X(xg, to; t).

That is, the forward flow X of the velocity field v, , originating at xo at time to, reaches the point x at time
t. Then we have

i q(x0,t0) # 0.

Proof of Corollary 6.25. We proceed by contradiction and suppose that ; 4(zo,%) = 0. Without loss of
generality we can assume ¢t < to. By continuity, there exists a minimal time ¢’ € (¢, to] such that for
2’ = 2/(t") defined by

x=X(2',t';t),

we have
'(/)i,q (x', t/) =0.
By minimality and (6.19), there exists an ¢’ € {i — 1,7 + 1} such that

Yalal ) =1.
Applying Lemma 6.24, estimate (6.105), we obtain

w)i’,q (X(I/7t/;t)a t) - 1/}1'/7(1(1'/, t/)| = W’z",q(%t) - ’l/)i/7q(z/at/)| /S F;—&l . (6106)
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1 1 1 1
Here we have used that |t/ — | < |tg — t] < ( 842\ Fflfﬁ) < ( 54°\ F;If’) , so that Lemma 6.24 is

applicable. Since 1y 4(2’,1') = 1, from (6.106) we see that i 4(z,t) > 0, and so 7 (z,t) =1 =7 (x,1).
Then we obtain

Pa(zt) =1-07 (2,1)

1
= 1+ v q(@,1) (1 — i q(2,1))
= (1 +thir g(x,1)) (wi’,q(xl,ﬂ) — Vi q(,1))

1—‘q—l-l

which is a contradiction once Ay is chosen sufficiently large, since we assumed that z/;i q(z,t) > k2 and
Kk > 1/6. O

Definition 6.26. We define ®; 1 4(x,t) := @ ) (x,t) to be the flows induced by v, with initial datum at
time kTqF;j_l given by the identity, i.e.

{ (6t + ve, V)q)i_’k’q =0

@iyk,q(%k'fqrq_iﬁ =T. (6.107)

We will use D®; 1) to denote the gradient of ®(; 5y (which is a thus matrix-valued function). The inverse
of the matrix D®; ;) is denoted by (D<I>(Z-7k))_1, in contrast to Dq)&lk), which is the gradient of the inverse
map q)&}k).

Corollary 6.27 (Deformation bounds). For k € Z, 0 < i < imax, ¢ > 0, and 2 < N < 3Nan/a + 1, we
have the following bounds on the support of 1 q(z,t)Xi k,q(t)-

||D(I)(i7k) - Id||L°<>(supp (Yi,qXi,k.q)) ™~ F;Jrl

(6.108)
1Y@k e e (w1 S DM (N — 1, 2Nind.vs rqu,Xq) (6.109)
[P 9) ™" = 14l[ L upp (1 o5 0.0 < Lt (6.110)

(6.111)
(

HDN_l ((D(D(i k) _1) HL”(supP (Yi,qXi,k,q)) ™ F’;‘LM (N ~ L 2N, g, Xq)

e

(1, k) H F(;JilM (N - 17 2Nind,vy I‘q)\q; Xq)

Lo (supp (Yi,qXi,k,q))

Furthermore, we have the following bounds for 1 < N + M < 3Nsn /2:

< ANM (M, Niga,o, T3S0 L 770001 (6.113)

N—N’' M HN’+1
HD DiyD D(ik) H a+17q 2 Tq L1

L (supp (Yi,qXi,k,q))

[ i | M (N ) (6200

Loc(bupp (sz qXL k q))

for all0 < N’ < N.

Proof of Corollary 6.27. Let ty := TqF;ilk. For ¢ is on the support of X; x4, we may assume from (6.102)
that |t — | < TqI‘q_fr‘f%. Moreover, since the {wi qti#>0 form a partition of unity, we know that there

exists i’ such that ¢7 (z,t) > 1/2 and ' € {i — 1,i,i + 1}. Thus, we have that [t — ;| < Fq_il"’l"’q’,
and Corollary 6.25 is applicable. For this purpose, let xo be defined by X (xg,tr;t) = x, where X is the
forward flow of the velocity field vy, , which equals the identity at time t;. Corollary 6.25 guarantees that
(w0, tr) € supp (Vi q)-

The above argument shows that the flow (X (o, tx;t),¢) remains in the support of ¢,/ , for all ¢ such that

[t —tr]| < Tqufjc” where i’ € {i — 1,4, + 1}. In turn, using estimate (6.60), this shows that

sup | Dvg, (X (o, trst), 1) S ||Dvg ||Lm(Supp Wra ) S F;i%(gl/z

—i4c
|t—tk|§7'qrq+1 0
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To conclude, using (4) from Lemma A.1 and (9.39), we obtain

—itcoi+2 51/27 -1
HD‘b(i,k) - IdHLoo(supp (Wi,q Xi k) STl OPq+15q/2/\q ST

which implies the desired estimate in (6.108). Similarly, since the flow (X (zo,?x;),t) remains in the support
of 1 4 for all ¢ such that [t — ;| < TqI’;_ﬁC“, for N > 2 the estimates in (3) from Lemma A.1 give that

HDN‘I)(Z'JC) HLoc(supp (i,q Xirkoa)) S Tqr«?flrco HDN% HLOO(

< TqF;iJ{co(in%‘sé/z))‘qM (N — 1, 2Ning v, FgAg, Aq)

supp (Yi+,q))

ST, LM (N —1, 2Nind’V,Fqu,Xq) .

Here we have used the bound (6.60) with M =0 and K = N — 1 up to N = 3Nsn /2 + 1.

The first bound on the inverse matrix follows from the fact that matrix inversion is a smooth function in
a neighborhood of the identity and fixes the identity. The second bound on the inverse matrix follows from
the fact that det D®; ;) = 1, so that we have the formula

cof chaﬁk) = (D®(;x)) "

Then since the cofactor matrix is a C'°° function of the entries of D®, we can apply Lemma A.4 and the
bound on DN‘P(Z',;Q). Note that in the application of Lemma A.4, we set h = D®(; ) —Id, I' = 'y = 1,
Cp = I‘;jl, and the cost of the spatial derivatives to be that given in (6.109). The final bound on the inverse

flow CID(_ilk) follows from the identity

DY (‘D@,lk)) (z) = DN ((D%,k))fl (‘I’*l(fﬂ))) 7 (6.115)

the Faa di Bruno formula in Lemma A .4, induction on N, and the previously demonstrated bounds.
The bound in (6.113) will be achieved by bounding

t,q’

DN-N’ [DM DN'+1:| D s

which after using that Dy ,®(; ) = 0 will conclude the proof. Towards this end, we apply Lemma A.14,
specifically Remark A.16 and Remark A.15, with v = v, and f = ®(; ). The assumption (A.50) (adjusted
to fit Remark A.15) follows from (6.60) with Ny = 3Nsn/2, C,, = Ff;lld;h, A = Ay = Xq, Ly = FZ:_CI"Tq_l,
by = Fq;ll?q’l, and Ny = Ninq¢. The assumption (A.51) follows with C; = quh from (6.109) and the fact
that D; ¢®(;x) = 0. The desired bound then follows from the conclusion (A.56) from Remark A.16 after

using Fq_h to absorb implicit constants. The bound in (6.114) will follow again from Lemma A.5 after using

that (Dq)(i’k)) ~!is a smooth function of D®; 1,y in a neighborhood of the identity, which is guaranteed from
(6.108). As before, weset I' =Ty, =1 and Cj, = F;&l in the application of Lemma A.5. The derivative costs
are precisely those in (6.113). O

6.5 Stress estimates on the support of the new velocity cutoff functions
Before giving the definition of the stress cutoffs, we first note that the can upgrade the L' bounds for
Yiq—1 D" DY, 1 Ry, available in (5.7), to L' bounds for Vi D" DY Ry, . We claim that:

Lemma 6.28 (L' estimates for zeroth order stress). Let Ioiigq be as defined in (5.1). For ¢ > 1 and
0 <4 <'imax(q) we have the estimate

|p*pr, R

| oy T % 6,41 M (k,2Nind,v,Aqrq7Xq)M (m, Nina o T30 T 7Y (6.116)

for all k +m < 3Nain /2,
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Proof of Lemma 6.28. The first step is to apply Lemma A.14, in fact Remark A.15, to the functions v = vy, _,,
f= éeq, with p =1, and on the domain Q = supp (¢; 4—1). The bound (A.50) holds in view of the inductive

assumption (3.23) with ¢’ = ¢ — 1, for the parameters C, = F1+16 e Ay = Ay = Xq_l, Ly = F’ oyl

q—1 q—1

=T T(;ll, Ny = 2Nind,v, NVt = Nipat, and for N, = 3Nsin /2. On the other hand, the assumption (A.51)
holds due to (o 7) and the fact that ¢;4 4 1 =1on supp (1i,g—1), with the parameters C; = I"C Og+1,
Ar = Ag, )\f = /\q, Nz = 2Nina,v, pf = I‘ers To— 1, = 1, N = Nina ¢, and N, = 2Ng,. We thus conclude

from (A.54) that

().

/S F;CR(sq-‘rlM <|a‘7 2Nind,va )‘Qa Xq) M (|B|a Nind,ta FZJF?)Tq_jlv ?q_fll)
L1 (supp (¥i,9-1))

whenever |a| + || < 3Na/2. Here we have used that Ag_; < A, and that Fé‘*‘ld;/_r“lxq_l <Tidsr <77
(in view of (9.39), (9.43), and (3.18)). In particular, the definitions of ¢; 4 in (6.14) and of ¥, ;,, 4 in (6.11)
imply that

k
| | (H Da DtIBZI 1) ézq
i=1 L (supp (¢i,q))

ST, %6, M (|a|, Nind.v, Aq,Xq) M (18], Ninayg, T8 724 70 (6.117)

for all |a| 4 || < 3Nsin /2. )
The second step is to apply Lemma A.10 with B = Dy 1, A = uq -V, v = uy, f = Ry, p =1, and
Q = supp (¥;4). In this case D¥(A+B)™ f = DkDZlqégq, which is exactly the object that we need to estimate
in (6.116). The assumption (A.40) holds due to (6.57) with C,, = 1’";116;/27 Ao =TyAg, Ao = Mgy Ny = 2Nina v,
=T e =T H%—l N¢ = Nindt, and N, = 3Nen/2+ 1. The assumption (A. 41) holds due to (6.117)

q+17g—1> " =
w1th the parameters Cy = I'; ®d,41, Ap = Ag, Af = Ag, No = 2Nina v, puf = FquTq Ll =7, Ny = Nindes
and N, = 3Nin/2. The bound (A.44) and the parameter inequalities F’Hd /2)\ < Fl o 2Tq_1 < Fqil?_l
and T/t 7!, <TI0 97" (which hold due to (9.40), (9.39), (9.43), and (3.18)) then dlrectly imply (6.116),
concluding the proof. O

Remark 6.29 (L' estimates for higher order stresses). As discussed in Sections 2.4 and 2.7, in order
to verify at level ¢ + 1 the inductive assumptions in (3.13) for the new stress R,41, it will be necessary
to consider a sequence of intermediate (in terms of the cost of a spatial derivative) objects R%%n,p indexed
by n for 1 < n < npax and 1 < p < ppax. For notational convenience, when n = 0 and p = 1, we define
éq,O,l = ]o%gq, and estimates on Jo%q,o are already provided by Lemma 6.28. Whenn =0 and p > 2, ]i?q’o,p =0.
For1<n<npaxxand1 <p< Pmax; the higher order stresses ]%q n,p are deﬁned in Section 8.1, specifically in
(8.7). Note that the definition of Rq n,p 18 glven as a finite sum of sub-objects H, for n’ < n—1 and thus

gm.p
requires induction on n. The definition of Hq n.p 18 contained in Section 8.3, specifically in (8.35) and (8.52).

Estimates on H;n ,» on the support of 1; 4 are stated in (7.15), (7.22), and (7.29) and proven in Section 8.6.

For the time being, we assume that éq,n,p is well-defined and satisfies L' estimates similar to those alluded
to in (2.19); more precisely, we assume that
kpym p
D55t

k
5 6q+1,nﬁp)\q,n,p

Pl 11 supp ) M (m,Nina,e, Doy, LT 70 (6.118)
for all 0 < £+ m < Ngpn. For the purpose of defining the stress cutoff functions, the precise definitions of
the n and p-dependent parameters §q41,n,ps Ag,n,ps Nfin,n, and c, present in (6.118) are not relevant. Note
however that definitions for A, ,, , for n = 0 are given in (9.26), while for 1 <n < npax and 1 < p < pyay, the
definitions are given in (9.29). Similarly, when n = 0, we let 6441,0p = F;CRéqH as is consistent with (9.32),
and when 1 < n < npax and 1 < p < pax, 0g+1.n,p is defined in (9.34). Finally, note that there are losses
in the sharpness and order of the available derivative estimates in (6.118) relative to (6.116). Specifically,
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the higher order estimates will only be proven up to Ngnn, which is a parameter that is decreasing with
respect to n and defined in (9.37). For the moment it is only important to note that Ngy, n > 14Njng,, for
all 0 < n < npax, which is necessary in order to establish of (3.13) and (3.15) at level ¢ + 1. Similarly, there
is a loss in the cost of sharp material derivatives in (6.118), as ¢, will be a parameter which is decreasing
with respect to n. When n = 0, we set ¢, = ¢g so that (6.116) is consistent with (6.118). For 1 < n < npax,
cp is defined in (9.35).

6.6 Definition of the stress cutoff functions

For ¢ > 1,0 <4 <imax, 0 <1 < Nypax, and 1 < p < phpax, in analogy to the functions A,
keeping in mind the bound (6.118), we define

, in (6.6), and

3Jms

Ncut,x Ncut,t

gz%q,n,p(x7t) =1+ Z Z 5q_f1,n,p(rq+1)\q,nyp)i2k(Féjrcln+27_qil)72m|DkDZLqR47"»P(x7t)|2' (6119)
k=0 m=0

With this notation, for j > 1 the stress cut-off functions are defined by

Wi (@) = You41 (TeHd Giamp(@.1)) (6.120)

while for j = 0 we let
Wi,O,q,n,p(x7t) = /[Z;O,q%»l (gi,q,n,p(mv t)) s (6121)

where g 441 and @ZO,qul are as in Lemma 6.2. The above defined cutoff functions w; j 4.np Will be shown to
obey good estimates on the support of the velocity cutoffs 1); ; defined earlier.

6.7 Properties of the stress cutoff functions
6.7.1 Partition of unity

An immediate consequence of (6.1) with m = 0 is that for every fixed ¢, n, we have

2
Wi j.gnp = 1 (6.122)
Jj=0
on T3 x R. Thus, {w%7j7q7n7p}j20 is a partition of unity.

6.7.2 L estimates for the higher order stresses

We recall cf. (6.4) and (6.5) that the cutoff function ) 411 appearing in the definition (6.120) satisfies
different derivative bounds according to the size of its argument. Accordingly, we introduce the following
notation.

Definition 6.30 (Left side of the cutoff function w; jg4np). Forj > 1 we say that

(z,t) €5upp (W gnp)  if  Ya<T Hgignp(z.t) <1. (6.123)

When j = 0 we do not define the left side of the cutoff function w; o g.n,p-

Directly from the definition (6.119)—(6.121), the support properties of the functions ¢g 4+1 and on’q+1
stated in Lemma 6.2, and using Definition 6.30, it follows that:

Lemma 6.31. For all 0 <m < Neyst, 0 <k < Newex, and j > 0, we have that

: o 2 +1 c ) — . —
1supp (wi,j,q,n,p)|DkDZLqRq,n,p(xat)| < 11q$1 )5q+17n,p(rq+1/\qm,p)k(rfl-i-cl +27_q 1)m'

In the above estimate, if we replace Loupp (w; ;. 4n.) With Loy @ 5 g (cf. Definition 6.30), then the factor

Fzgfl) may be sharpened to in_l. Moreover, if j > 1, then gi g np(x,t) > (1/4)F21_1.
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Lemma 6.31 provides sharp L°° bounds for the space and material derivatives of fiq,n,p, at least when
the number of space derivatives is less than N¢,; x, and the number of material derivatives is less than Neyg ¢
If we are willing to pay a Sobolev-embedding loss, then (6.118) implies lossy L* bounds for large numbers
of space and material derivatives.

Lemma 6.32 (Derivative bounds with Sobolev loss). For ¢ > 1, n >0, and 0 < i < imax, we have
that:
k . k+3 i—cnt1_—1 p—1 ~—
HD DTQRQ’"”’HLW(suppwi @) S 0qttmp A npM (s Nina i, T T A7) (6.124)

for all k +m < Ngpn — 4.

Proof of Lemma 6.32. We apply Lemma A.3 to f = Io%qm,p, with 9; = 15 4, and with p = 1. Assumption

(A.16) holds in view of (6.36), with the parameter choice p = TyAy < Tq11Aq = Mg 0,1 < Agn,p, Where the
inequalities follow immediately from (9.26)-(9.29). The assumption (A.17) holds due to (6.118), with the
R L

. i—Cp _ -1 =1 _ —
parameter choices C¢ = dg41,n,ps A=A = Agnp, i = U775 i =T 17,7, Nt = Nina,t, and No = Nip p-

The Lemma now directly follows from (A.18b) with p = 1. O
We note that Lemmas 6.31 and 6.32 imply the following estimate:

Corollary 6.33 (L>° bounds for the stress). For ¢ >0, 0 < i < imax, 0 <1 < Npax, and 1 < p < prax

we have
DD R H
H g7 ramop L (supp 1;,qNSUpp wi,j,q,n,p)
2(j+1 i 1 el A~
S FqulJr )5q+1,n,p(Fq+1/\q,n,p)kM (m, Nind. ¢, F;+c11'+27'q 1, Fq-i}qu 1) (6.125)
for all k+m < Ngpn ,, — 4. In the above estimate, if we replace supp (Wi j.q.n,p) With supp (w'li_,j,q,n,p) (¢cf. Def-
ingtion 6.30), then the factor Fzgfl) may be sharpened to Fiil'

Proof of Corollary 6.33. For m < Neyt ¢ and k& < Nyt x, the bound (6.125) is already contained in Lemma 6.31
(both for supp (i j.g,n,p), and the improved bound for supp (wf; , ). When either k > Nyt x or m >
Neut,s, we appeal to estimate (6.124) and the parameter bound
k i—cn+1 _— 1 ~—
5!1-‘:-17"»1))‘!12?1?'/\4 (m’ Nind, b, I‘q+cl - Tq 1’ I‘q+117—q 1)

—k—min{m,Nina,+} 3 k i—cp+2,_—1 1—1 ~—1
< (Fq+1 )‘q,n,p 5q+1,nvp(rq+1/\qvn7p) M(m’Nindvhrquln Tq 7Fq+17_q )

k i—cp+2__—1 -1 ~—1
< 6Q+1»W7P(Fq+1/\q7n7p) M (m7Nind,t7Fq+1 Tq 7Fq+17—q ) .

The second estimate in the above display is a consequence of the fact that when either & > Ngutx or
m > Neut ¢, since Neye,x > Neut,t, we have

—k—min{m,Ninq,:} \ 3 —Necut,t 3
Lot X STt A <1, (6.126)
once Nyt (and hence Neyt x) are chosen large enough, as in (9.51). O

In the proof of Lemma 6.36 below, we shall require one more L* bound for ]Oi’q,mp, which is for iterates
of space and material derivatives. It is convenient to record this bound now, as it follows directly from
Corollary 6.33.

Corollary 6.34. For ¢ >0, 0 <14 <imax, 0 <1 < Npax, 1 <P < Prax, and a, B € NIS we have

k
H <H DaZfo:]) Rq7n7p
{=1

2(j+1 a i—Cn _ 1 ~—
/S Fqgf_ )5Q+17"71)(Fq+1)‘q,n,p)| ‘M (|/8|7 Nind,t7Fq+cl +2Tq 17Fq—i{17-q 1) (6127)

L= (supp ¥i,qNSUPP Wi, j,q,n,p)

for all |a| + |8] < Naun — 4. In the above estimate, if we replace supp (w; jqgn.p) With supp (

(cf- Definition 6.30), then the factor Fzgfl) may be sharpened to in_l.

L
Wi j.q.n.p)
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Proof of Corollary 6.54. The proof follows from Corollary 6.33 and Lemma A.14. The bounds corresponding
t0 SUPp Wy j,q,n,p and supp wy j.an,p are identical (except for the improvement r§$f R F(QI{H in the later
case), so we only give details for the former. Since Dy, = 0y + vg, - V, Lemma A.14 is applied with v = vy,
f= ]D%q,mp, Q = supp 1; ¢ N SUPPW; j.q,n.p, a0d p = 00. In view of estimate (6.60) and the fact that 3Nen/2 >
Nfinn, the assumption (A.50) holds with C, = Ff;lﬁé/z, A =TgAg, Ay = Ay, Ny = 2Ninay, fy = Ff;cf‘Tq_l,
Ty = ]."qjl?q_l, and N; = Njyat. On the other hand, the bound (6.127) implies assumption (A.51) with
2(j+1 5N —ent2 -1 ~ el ~— _ .
Cr = Fq(ﬁg )&Ijlvnﬂp’ Af = Ap = Dgpidgnp, iy = I‘;Jrcl +27—q Yoy = I‘qiqu 1 and N; = Nijuas. Since
Av S Af, Ay < Ap, o < py, and i, = fif, we deduce from the bound (A.54) (in fact, its version mentioned
in Remark A.15) that (6.127) holds, thereby concluding the proof. Here we are also implicitly using the

parameter estimate C, A, < ¢, which holds due to (9.39). O

6.7.3 Maximal j index in the stress cutoffs

[Take this sub-sub-section as a whole, and copy it]

Lemma 6.35 (Maximal j index in the stress cutoffs). Fiz ¢ > 0, 0 < n < npax, and 1 < p < Prax-
There exists a jmax = Jmax(q, 1, p) > 1, determined by (6.128) below, which is bounded independently of q,
n, and p as in (6.129), such that for any 0 < i < imax(q), we have

1Z)i,q wi,j,q,n,p =0 fO?" all .7 > jmax~

Moreover, the bound

2(jmax—1) < \3
Fq+1 ~ )‘q,mp

holds, with an implicit constant that independent of ¢ and n.

Proof of Lemma 6.35. We define jnax by

1 1Og(Mb\/ 8Ncut,chut,t)\2,n)p) (6 128)

Jmax = ]max(qanap) = 5 1Og<Fq+1)
where M, is the implicit ¢, n, p, and i-independent constant in (6.124); that is we take the largest such
constant among all values of £ and m with k4+m < Ng, ,—4. To see that jmax may be bounded independently
of ¢, n, and p, we note that Ay, p < Ag41, and thus

log(Mb 8Ncut,xNecut t) +3 IOg()\q+1) 3b
2-max§1+ 2 4 %1_’_7 as - 00.
’ log(Tg+1) er(b—1) ¢
Thus, assuming that a = A\ is sufficiently large, we obtain that
4b
2 .max 91Uy S 7 4N 6129
Jmax(@m:0) < — -1 (6.129)

forall g > 0,0 <n < Npax, and 1 < p < prax-

To conclude the proof of the Lemma, let j > jmax, as defined in (6.128), and assume by contradiction
that there exists a point (z,t) € supp (¢; qwi j.qn,p) 7 0. In particular, j > 1. Then, by (6.119)—(6.120) and
the pigeonhole principle, we see that there exists 0 < k < Ny x and 0 < m < Ngye ¢ such that

. 2 _
‘DkDZLqRq,n,p(xvt” > q—H5q+l7n,p(Fq+1)‘q,n7p)k(FZ?CH+27_1)m~

/N . N q+1 q
SNcut,chut,t

On the other hand, from (6.124), we have that
|DkD1T’qRQ7n,P(x7 t)‘ S Mb/\g,n,p(sq+1an,P/\](;,n,p<F(i1:-C1n+1Tq_1)m'

The above two estimates imply that

2(Jmax+1 27 / —k— 3 / 3
Fq(il ) é Fqil S Mb 8Ncut,chut,th+1 m)\q,m;w é Mb 8Ncut,chut,t)\q,n,pv

which contradicts the fact that j > jmax, as defined in (6.128). O
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6.7.4 Bounds for space and material derivatives of the stress cutoffs

Lemma 6.36 (Derivative bounds for the stress cutoffs). For ¢ > 0, 0 < n < npax, 1 < P < Pmax,
0 < i <'imax, and 0 < j < jmax, we have that

N M
1SUPPTPi,q|D Dy'qwi j.qm.p
1—(N+M)/Ngin

,5,4,1,p

fO’]“ all N+ M < Nﬁn,n - Ncut,x - Ncut,t —4.

S (Fq+1)‘q,n7p)NM (Ma Nind,t — Ncut,t7FZ;c1"+27'q_17F;_&l?q_l) (6.130)

Remark 6.37. Notice that the sharp derivative bounds in (6.130) are only up to Ninat — Neut,s. In order
to obtain bounds up to Ninqt, we may argue exactly as in the string of inequalities which converted (6.83)
into (6.84), resulting in the bound

13upp¢i. |DND£‘,Jwiyj7q7"7P| N i—cy43_—1 =1 ~—1
iq_(N+M)/quirl ’S(Fq*‘l)\‘la”vp) M(M’ Niﬂd,t’F;—&-cln Tq ’Fq—HTq ) (6.131)

1,4,q,m,p
Proof of Lemma 6.36. For simplicity, we only treat here the case j > 1. Indeed, for j = 0 we simply replace
Y0,q+1 With g 441, which by Lemma 6.2 has similar properties to g 4+1.

The goal is to apply the Faa di Bruno Lemma A.5 with ¥ = g 41, I' = I’;_il,
h(z,t) = gignp(x,t), so that g = w; j ¢ np-

Because the cutoff function ¥ = g 441 satisfies slightly different estimates depending on whether we are
in the case (6.4) or (6.5), assumption (A.24) holds with I'y, = 1, and respectively I'y, = I‘q_il, depending on
whether we work on the set supp (w;-’j’q’n’p) or on the set supp (wj j.q.n.p) \SUPP (w;-}j’q’n,p) (cf. Definition 6.30).
We have in fact encountered this same issue in the proof of Lemmas 6.13 and 6.20. The slightly worse value
of 'y for (x,t) € supp (wi‘ j7q7n’p) is however precisely balanced out by the fact that in Corollary 6.34 the
bound (6.127) is improved by a factor for I'2, ; on supp (wf ;. ,,,,)- Since in the end these two factors of I'Z |
cancel out, as they did in Lemmas 6.13 and 6.20, we only give the proof of the bound (6.130) for (z,t) €

supp (Wi j,q.n.p) \ SUPP (wl—‘ﬁj’q’n’p), which is equivalent to the condition that 1 < F;_E{givqm’p(z,t) < T2,

Dt = Dt7q7 and

Note moreover that we do not perform any estimates for (x,t) such that 1 < F;f{g,-7q7n,p(x,t) < ()2,
since in this region g 441 = 1 (see item 2(b) in Lemma 6.2) and so its derivatives equal to 0. Therefore, for
the remainder of the proof we work with the subset of suppw; j g,n,p on which we have

(1/4)F§+1 < F;-E{Qi,qm,p(xv t) < F54—1 : (6.132)

This ensures that assumption (A.24) of Lemma A.5 holds with I'y, = P;ir

In order to verify condition (A.25), the main requirement is a supremum bound for DN D%gi’q’n)p in L
on the support of ¥; qw; j q.np- In this direction, we claim that for all (z,t) as in (6.132), we have

lsuppwi,q ’DND%]giaQ1"7P($7t)| S inﬁ2(rq+l>\q,n,p)NM (M7 Nind,t - Ncut,t»]-—‘Zlcln-i_QTq_l»F;il;q_l) (6133)

for all N+ M < Ngnn — Neut,x — Neut,t — 4. Thus, assumption (A.25) of Lemma A.5 holds with C;, = szﬂa
A=\= Dyt1Agnp, 4= FZ}%"‘”‘%{H = l"qjilﬁfl, and Ny = Ninat — Neut,¢. In particular, we note that
(IyI)~2C, = 1, and estimate (A.26) of Lemma A.5 directly implies (6.130).

Thus, in order to complete the proof of the lemma it remains to establish estimate (6.133). As in the proof
of Lemma 6.13, it is more convenient to first estimate DY DM (g; g.np(,1)?), as its definition (cf. (6.119))
makes it more amenable to the use of the Leibniz rule. Indeed, for all N + M < Ngp n — Newex — Neus,t — 4
we have that

N M
N M
N M 2 _
D Dtnglﬂqmmi Z Z <N/) <M'>

N’'=0 M’'=0

N <N ’ ’ o N Y o
STt DN D% DkDZ”qRq,n)p DN-N pM-M DkD[”qqun,p

DD

i—Cn+2, _—
k=0 m=0 62+1,n,p(Fq+1)\qmv[))2k(rlq+cl P tym
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Combining the above display with estimate (6.127) and the fact that k+m+ N + M < Ng, , — 4, we deduce

NPM 2
Lsupp i g Nsupp wij.g,n |D Dt,qgi,q,n7p|

M Ncut,x Neus,t

N
1
< -
NNX: Z Z Z 52 (Fq+1)\q,n,p>2k(1—‘;:_c1n+2 71)2m

=0 M'=0 k=0 m=0 %gq+1,np Tq

X Fz(j+1)6q+1,n7p(rq+1)‘q7n,p)N,+kM (M/ + m, Nind,t7 Fiicn+27-q_17 F_l ;_1)

g+1 a+1 a+17q
2(j+1) N—N'+k / i—Ccn+2_—1 p—1 ~—1
x Iy Og+1,n,p(Lg+1Aq,n,p) M (M — M" +m, Ning ¢, 1ﬂ31+cl Ty Uiy )
4(3+1) N i—cn42,_—1 p—1 ~—1
S, Fq+1 (Fq+1>‘q,n,p) M (M7 Nind,t - Ncut,ta FZ+‘:1 Tq arq+17—q ) . (6134)

Lastly, we show that the bound (6.134) and the fact that we work with (z,t) such that (6.132) holds, implies
(6.133). This argument is the same as the one found earlier in (6.45)—(6.47). We establish (6.133) inductively
in K for N+ M < K. We know from (6.132) that (6.133) holds for K =0, i.e., for N = M = 0. So let us
assume by induction that (6.133) was previously established for any pair N’ + M’ < K — 1, and fix a new
pair with N + M = K. Similarly to (6.46), the Leibniz rule gives

N pPyM (2 N M
D Dt,q(gi,q,n,p) = 29i,qmp D" Dy Yi,qm.p

N M N’ M’ N—N' yM—M’
= Z <N’) <M’> D Dtyq Ji,qn.p D Dt,q Gi,q,n,p -
0<N'<N
0<M'<M
O<N'+M'<N+M
Since every term in the sum on the right side of the above display satisfies 1 < N’ + M’ < K — 1, these
terms are bounded by our inductive assumption, and we deduce that

| DY D1 (92am.0)]

N M
Lsupp i, |D Dt,qgl}q,n,p’ S %
i,q,n,p

2(2j+2) N i—cn+2_—1 p—1 =—1
+ I‘qul (Fqul)\q,n,p) M (M7 Nind,t - Ncut,tarq+1 Tq 7Fq+17q )

9i,q,n,p

Thus, (6.133) also holds for N + M = K by combining the above display with (6.132) (which implies
Gignp > 1—‘33:12)’ and with estimate (6.134) (which gives the bounds for the derivatives of g7, ). This
concludes the proof of (6.133) and thus of the Lemma. O

6.7.5 L" norm of the stress cutoffs

Lemma 6.38. Let ¢ > 0. For r > 1 we have that

ro (6.135)

@i gamp | L (supp wis o) = Tat

holds for all 0 < i < imax, 0 < 7 < Jmax, 0 €1 < Nax, and 1 < p < pmax- The implicit constant is
independent of i,7,q,n and p.

Proof of Lemma 6.38. The argument is similar to the proof of (6.87). We begin with the case r = 1. The
other cases r € (1, 00] follow from the fact that w; j 4., < 1 and Lebesgue interpolation.

For j = 0 we are done since by definition 0 < w; j ¢.np < 1, thus we consider only j > 1. Since, ¥;j404 =1
on supp (¥Yi+,q), and using Lemma 6.31, we see that for any (x,t) € supp (¢i+ qwi j g.n,p) We have

Newt.x News, .
2 2 2 : < |¢ii27quD1TqRq7n,P(x7t)|2
Vit2,q9iqnp = Vit2,q T > 5

k=0 m=0 ~g¢+l,n,p

1 4
. > T .
i—Cpn —1\2m — +1
(Fq+1)\q,n,p)2k(rq+1 Jr2Tq 1)2 16 ¢

Using that a + b > Va2 + b2 for a,b > 0, and using s > 64 for 7 > 1, we conclude that

g+1
Necut,x Neut,t kpym p
Z [Vix2,¢ D" Dy Ry np(,1)] S 1P2j
i— n 2 _— =16 +1*
k=0 m=0 5q+1=n,p(rq+1/\q7n7p)k(F;Jrcl * Tq 1)m 161

84



Therefore, using Chebyshev’s inequality and the inductive assumption (6.118), we obtain

[supp (Vit,qWi,j,q,n.p)]

< H( t): Yit2,4Giqnp > (Y16)L q+1}‘

Neu Y Neu s 2
- < Wjii?qukD%n Ry p(z,1)] 1 2;
SHEUED DD e, 2 (0l
k=0 m=0 ‘1+17n7p(rq+1)‘q,n,p) (Fq+1 Tq )
vut VX (‘ut .t
2j nt2 _— k .
< 16T 14 Z Z 5q+1 np(Lat1Agnp)” (FZ+C1 * Tq Hmm ’ Yix2, DDy Ry p o

k=0 m=0

cut x cut t

S0 Y0 > T
k=0 m=0

27
S Fqul

where the implicit constant only depends on Ny . The proof is concluded since the L' norm of a function
with range in [0, 1] is bounded by the measure of its support. O

6.8 Definition and properties of the checkerboard cutoff functions

For 0 < n < npax, consider all the . T ~-periodic cells contained in T3, of which there are A3 ;. Index these

cells by integer triples [= (l,w,h) for l w,h € {0,...; g no— 1}. Let Xq ;- be a partition of unity adapted
to this checkerboard of periodic cells which satlsﬁes

3 (Xq,nf)z —1 (6.136)

I=(1,w,h)

—

for any ¢ and n. Furthermore, for [= (L,w, h), I* = (I*,w*, h*) € {0, ..., \g.n,0 — 1} such that

|t =17 > 2, |lw —w*| > 2, |h —h*| > 2,
we impose that
Xq n qu i =0 (6.137)

Definition 6.39 (Checkerboard Cutoff Function). Given ¢, 0 < n < Nimax, @ < imax, and k € Z, we
define

Crinmil@t) =X, | 7 (Pikg(z,t)). (6.138)

Lemma 6.40. The cutoff functions {Cq ik f}f satisfy the following properties:

(1) The material derivative Dy, (Cq%k’nf) vanishes.

(2) For eacht € R and all x € T,
2
Z (Cq,i,k,n,f(x’t)) =1L (6.139)

I=(l,w,h)
(8) We have the spatial derivative estimate for all m < 3Nsn/2 + 1

ST o (6.140)

m
HD qui,kynf

‘LOO (supp ¥i,qXi,k.q)

(4) There exists an implicit dimensional constant independent of q, n, k, i, and [ such that for all (z,t) €
supp @[}i,q%i,k,q:

diam (supp (Cw’k’n’l{,t))) < (Agmo) L (6.141)
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Proof of Lemma 6.40. The proof of (1) is immediate given that qu .n.p 18 precomposed with the flow map

®; kg (6.139) follows from (1), (6.136), and the fact that for each t € R, ®; 1. ,(¢, -) is a diffeomorphism of T3.
The spatial derivative estimate in (6.140) follows from Lemma A.4, (6.109), and the parameter definitions

in (9.19), (9.26), and (9.29). The property in (6.141) follows from the construction of the &  rfunctions

(which can be taken simply as a dilation by a factor of A, 1 of a g-independent partition of unity on R?)
and (6.108). O

6.9 Definition of the cumulative cutoff function

Finally, combining the cutoff functions defined in Definition 6.6, (6.120)—(6.121), and (6.96), we define the
cumulative cutoff function by

ﬁi,jk,q,n’pj(% t) = Vi (z, t)wi’j,qm’p(xa t)Xi,k,q(t)Yq,n,p(t)Cq,i’kynj(xﬂ t).

Since the values of ¢ and n are clear from the context, the values in I are irrelevant in many arguments, and
the time cutoffs , ,, , are only used in Section 8.9, we may abbreviate the above using any of

Nijkqmp T t) = Mijkgnp(@,6) =065k (@, 1) = V) (@, Owi,5) (@, 0)X 6,k )k (2, 7).

It follows from Lemma 6.8, (6.122), (6.94), and (6.139) that for every (q,n,p) fixed, we have a partition of
unity

> Zznij,k,q,n,p,f(x’t) =L (6.142)

i,j>0keZ |

The sum in ¢ goes up to imax (defined in (6.53)), while the sum in j goes up t0 jmax (defined in (6.128)). In
analogy with ;4 4, we define

=

Wi, g (@, 1) o= <W?i,j_1)(m,t) + Wi gy (@, t) + w?i,jﬂ)(z,t)) : (6.143)
which are cutoffs with the property that
Wi j+) = 1 on supp (w j))- (6.144)

We then define
Neik,gk,4) (2, 1) 1= Vit g (2, )w(i, ) (2, )X k,a () i g 1T 1), (6.145)

which are cutoffs with the property that
Mg kt) = Cqigny  O0 SUPP (V) Wi 1)X(ik))- (6.146)
We conclude this section with estimates on the L” norms of the cumulative cutoff function 7 ; x)-

Lemma 6.41. For ry,ry € [1,00] with % + % =1 we have

—2(A+L )+ 42
S [subD 1, | S T (6.147)
T

Proof of Lemma 6.41. Applying Lemma 6.23, Lemma 6.38, Holder’s inequality, and interpolating yields

|supp (¥4,4) NSUPP (Wi, j.q.mp)| < ||Vt qwii i || 1

< ||77[1i:|:,q||Lr1 |w(i,ji)| Lr2
_20=-1)—C 2(i—1)
5 Fq+1 1 T2
Using - + .- = 1 and that the _; , . form a partition of unity (6.142), gives (6.147). O

86



7 From ¢ to g+ 1: breaking down the main inductive estimates

The overarching goal of this section is to state several propositions which decompose the verification of the
main inductive assumptions (3.13) and (3.14) for the perturbation wy41 and (3.15) for the stress R, into
digestible components. We remind the reader, cf. Remark 6.1, that the rest of the inductive estimates
stated in Section 3.2.3 are proven in Section 6. We begin in Section 7.1 with Proposition 7.1, which simply
translates the main inductive assumptions into statements phrased at level ¢ + 1. At this point, we then
introduce in Section 7.2 a handful of notations which will be necessary in order to state the propositions
which form the constituent parts of the proof of Proposition 7.1. The next three propositions (7.3, 7.4, and
7.5) are described and presented in Section 7.3. They are significantly more detailed than Proposition 7.1,
as they contain the precise estimates that will be propagated throughout the construction and cancellation

of the higher order stresses R, 7. These three propositions will be verified in Section 8.

7.1 Induction on ¢
The main claim of this section is an induction on gq.

Proposition 7.1 (Inductive Step on q). Given vy, foigq, and ]fl’gomm satisfying the Euler-Reynolds system

Opve, + div (vg, ® vg,) + Vpg, = div ]3% + div égomm (7.1a)
divwg, =0 (7.1b)

with ve,, éeq, and ]%gomm satisfying the conclusions of Lemma 5.1 in addition to (3.12)-(3.25b), there exist
Vg1 = Vg, + Wey1 and ]O%q_,_l which satisfy the following:

(1) vg+1 and ]O?q_u solve the Euler-Reynolds system

o

Ovg+1 + div (V441 ® Vg41) + Vg1 = Ry (7.2a)
divvg41 = 0. (7.2b)

(2) For all k,m < TNipg v,

o g el 1
waDth,qwq‘*‘lHLz S Fq-&l(sqz-%l)‘];-i-lM (m, Nind,t: 7 111q+11’7-q 111(1-12}1) : (7.3)
Furthermore, we have that

supp, (Ry) C [T1, 1] = supp(wein) © [T1 = (0g8/) LT+ M) | (74)

(8) For all k,m < 3Ning,v,

m —C i _ 1 o~

‘ wi,qD’“Dt,qRqHHLl < T f8a2Mn M (my Ninae, T 7 T 7Y (7.5)

Remark 7.2. In achieving the conclusions (7.2), (7.3), and (7.5), we have verified the inductive assumptions
(3.13)-(3.15) at level g + 1. The inductive assumption (3.12) at levels ¢’ < ¢ + 1 follows from Lemma (5.1).
The proof of Proposition 7.1 will entail many estimates which are much more detailed than (7.3) and (7.5),
but for the time being we record only the basic estimates which are direct translations of (3.13)-(3.15) at
level g + 1.

7.2 Notations

The proof of Proposition 7.1 will be achieved through an induction with respect to n, where 0 < 1 < npax

Pmax
corresponds to the addition of the perturbation wgi17 = Z Wq41,7,5- LThe addition of each perturbation
p=1
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Wq+1,7 Will move the minimum effective frequency present in the stress terms to Ag7+1,0. This induction on
7 requires three sub-propositions; the base case n = 0, the inductive step from 7 — 1 to 1 for 1 < npax — 1,
and the final step from nyax — 1 to npmax. Throughout these propositions, we shall employ the following
notations.

(1)

n - An integer taking values 0 < 1 < npyay over which induction is performed. At every step in the
induction, we add another component wg1 5 of the final perturbation

Mmax Pmax

Wq+1 = E E :wq+1,ﬁ,5'

=0 p=1

We emphasize that the use of i at various points in statements and estimates means that we are currently
working on the inductive step at level 7.

n - An integer taking values 1 < n < nyax which correspond to the higher order stresses éqm. Occa-
sionally, we shall use the notation 132%0 = .éeq to streamline an argument. We emphasize that n will be
used at various points in statements and estimates to reference higher order objects in addition to those
at level n, and so will satisfy the inequality n < n.

H"’ n,p - Lhe component of }?q’n,p originating from an error term produced by the addition of w1 /.
The parameter n’ will always be a subsidiary parameter used to reference objects created at or below

the level m that we are currently working on, and so will satisfy n’ < n.

Pg,n,p] - We use the spatial Littlewood-Paley projectors P, ,, ;) defined by
IEI)>)\qn » if n = Nmax, P = Pmax + 1
ol = T (7.6)
B llgngnmmmlgpgpmax

q,n,p—lﬁ)‘q,n-,p)

where P, y,) is defined in Section 9.4 as P>),P<y,. Note that for n = nyax and p = pmax + 1,
Pl nmas,pmax+1] PrOjects onto all frequencies larger than Ay .. prax = Agnmax+1,0- Errors which include
the frequency projector P, 117 will be small enough to be absorbed into Rq+1.

We shall frequently utilize sums of Littlewood—Paley projectors P, , ;) to decompose products of inter-
mittent pipe flows periodized to scale )\ 7 These sums will be written in terms of three parameters
- 1, P, and n. As a consequence of (7. 6) (9.29), (9.23), and (9.22), we have that A\j 7410 < Ag5 for
0 <71 < Npax, so that

Mmax Pmax
< ST Pl + P[q,nmax,pmxﬂ]) Poxgn =PoxgaiolPer s =Poa,q (7.7)

n=n+1 p=1

A consequence of (7.7) is that for )\ —perlodlc functions?® where 0 < 7 < Npay,

f= ][ f+Psoa, .
Mmax Pmax
n=n+1 p=1

These equalities will be useful in the calculations in Section 8.3, and we will recall their significance when
we estimate the Type 1 errors in Section 8.6.

o ~

Ry, - Any stress term which satisfies the estimates required of JO%QH and which has already been
estimated at the 1" stage of the induction; that is, error terms arising from the addition of wq1,, for
n’ <n. We exclude R;°™™ from R? 1, only absorbing it at the very end when we define R4 ,. Thus

R?ill Rq+1 + (errors coming from wgy1 741 that also go into ]iZqH) . (7.9)

29We note that in the second equality in (7.8), such functions do not have active frequencies in between Ag,ii+1,0 and Ag 5
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7.3 Induction on n

The first proposition asserts that there exists a perturbation wyi10 which we add to vy, so that vy =
Vg, + Wqq1,0 satisfies the following First, v4,0 solves the Euler-Reynolds system with a righthand side
amp which belong respectively to ]D%(H_l and ]ﬂ%q%p for 1 < n < npmax and
1 < p < DPmax. Secondly, wgy1,0 satisfies estimates which in particular imply the inductive assumptions
required of the velocity perturbation wyy; in (7.3).3° Thirdly, kO o+1 satisfies the estimates required of Ry

consisting of stresses Rq .1 and HO

in the inductive assumption (6.118) (with an extra factor of smallness). Finally, each HY? on.p Satisfies the

inductive assumptions required of Ry, , in (6.118).
Proposition 7.3 (Induction on n: The Base Case 1 = 0). Under the assumptions of Proposition 7.1

Pmax

(equivalently the conclusions of Lemma 5.1), there exist wqi1,0 = Z Wg+41,0,p = Wq+1,0,1> R91+1f and Hgn »

p=1
for 1 <n < npax and 1 < p < pmax such that the following hold.
(1) vq,0 := vy, + weq1,0 s0lvEs

Mmax Pmax

Orvg,0 + div (V4,0 ® vg,0) + Vg0 = div ( °q+1) +div (Z > Hi. p> +div ™ (T.10a)
n=1 p=1

divvg o = 0. (7.10b)

(2) For all k+m < Ngn o — Neut,t — Neut,x — 2Ngec —9 and 1 < p < prax (although only wqei1,0,1 is non-zero)

k 3+% N +4 =1
D D?qwqﬂ:ov?HLZ(supplpw)5 (,~,+10sz1+12 Agr1M (m, Nina ¢, 740 F;Jrclo ' Tq Fq+1) (7.11)

Furthermore, we have that
suppt(]i?q) C o] = SuPpt(wq+l,0,5) c [Tl - (Aq(s;/zrq—&-l)ilaTQ + (Aqéé/zrq+l)71} - (712)
(8) For all k,m < 3Ning,v,

Hwiquk e Rq+1H 1—‘q+1 q+16q+2>‘q+1M (m Nind,t, 7, q 11—‘q+117~q_11—‘q+1) (7'13)

Furthermore, we have that )
supp,5]~22_~_1 C supp ;Wq+1,0 - (7.14)
(4) For allk+m < Ngpn and 1 <n < npax, 1 <p < Pmax,
[o+oz,

k
5 §q+1”ﬂap)‘q,n,p

M(m7Nind,t7 B T )- (7.15)

q, P q+1:7q q+1

L (supp vi,q)

Furthermore, we have that
supp th n,p = Supp twq+1 0- (716)

The second proposition assumes that perturbations wq41 . have been added for n’ < n—1 while satisfying
four criteria. First, vgs-1 = vg, + > Wq+1,n solves an Euler-Reynolds system with stresses RZ;ll and

n'<n—1
H ;Ln »- Secondly, the perturbations wg1 - satisfy the inductive assumptions required of wq_H in (7.3) for
n’ <n — 1. Thirdly, R” o+1 satisfies the inductive assumption (7 5) at level ¢ 4 1. Finally, H ;Ln p satisfies the

assumption (6.118) in the parameter regime 7 < n < Ny, 7’ <N —1, 1 < p < prax. The conclusion of the
proposition replaces each m — 1 in the assumptions with 7.

30This is checked in Remark 8.3.
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Proposition 7.4 (Induction on n: From 77— 1 to 7 for 1 <1 < npax — 1). Let 1 < < nppax — 1 be
given, and let

n—1 n—1 Pmax
Vgm—1 = Vg, + E Wot1,n = Ve, + E E Wq+1,n/,p’>
n’/=0 n/=0p'=1

]Q%?_;ll, and Iflgf/n’p be given forn' <n—1, 17 <n < npax and 1 < p,p’ < pmax such that the following are
satisfied.

(1) vg7-1 solves:

atvqﬁ—l + div (Uq,ﬁ—l & Uq,?i—l) + qu,ﬁ—l
Nmax Pmax N—1
= div (1%{;;11) +div (Z SN 151;;7,)) + div Reem™ (7.17a)
n=n p=1 n'=0

divog 1 =0. (7.17b)

(2) For all k +m S Nﬁn,n’ - Ncut,t - Ncut,x - 2Ndcc - 97 TL/ § n— 17 and 1 S P/ S Pmax;

3 3+2 k —1pi—cy+4 ~—1p1—1
2 2 n
<5 TTEALM (m,de,t,Tq I rqﬂ). (7.18)

P’ ||L2(suppwi,q) ~ “q+1,n',p’

HDkDZlqw‘Hl»"’ r

Furthermore, we have that

o

supp (Rgn' ) C [Tinrpr, Ton pr]
= $UDD (Wt 1,007) C [T = a0y Tar1) ™ Torr + (A8 Tqs1) ] . (7.19)

(8) For all k,m < 3Ning,v,

k pii—1 —Crp—1 k i+1_—1 p—1 ~—1
|[vaD D Rt | | S ToST oA M (1, Ninae Ty 7 S DL 7 ) (7.20)
Furthermore, we have that
supp,fl’?,f;;l1 - U SUpp ;Wq+1,n’ - (7.21)
n'<n-1

(4) Fora”k‘i’mgNﬁn,n;ﬁgngnmax; nlgﬁfly andlgpgpmax;

k 7’ k —1pi—cn ~—1p—1
|D* Dy < Sgrtmp A M (m, Nipa e, 7 TS 70 T2 L) (7.22)

q,1,p

L (supp vi,q)

Furthermore, we have that )
supp . Hy,, , C SUpp jWg+1,n - (7.23)

Then there exists wyt1,7 such that (1)-(4) are satisfied with n — 1 replaced with n.

The final proposition considers the case n = nyax and shows that, under assumptions analogous to those
in Proposition 7.4, there exists wg41,n,,.. such that all remaining errors after the addition of wgy1 p,.. can

be absorbed into foEqH, thus verifying the conclusions of Proposition 7.1.

Proposition 7.5 (Induction on n: The Final Case 1 = nyay). Let

Nmax —1 Nmax —1 Pmax
Vg, nmax—1 -= Vg, + E Wot1,m = Ve, + E § , Wq+1,n/,p’
n’=0 n’'=0 p'=1
© . — ©. ’ . . .
gj:i“ 1, and Hgnmx » be given for n' < npax —1 and 1 < p,p’ < pmax such that the following are satisfied.
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(1) Vgmpae—1 SOlVES:

6tv(]7nmax_1 + le (UQ7nmax_1 ® UQ7nmax_1) + VZ)q/nmax_l

Nmax —1 Pmax

= div (}?gﬁfl) +div ( Z > HP, p> + div Reom (7.24a)

=0 p=1
div vg . -1 =0. (7.24D)
(2) For all k +m S Nﬁn,n’ - Ncut,t - Ncut,x - 2Ndcc - 97 TL/ é Nmax — ]-; and 1 S p/ S Pmax;

m 3 71— C 7 ~_ —
| D" DI w1 ¥k M (m Nina i, 75 T o+ 1rq+1) (7.25)

’p/HLZ(suppwi,q) < 5q§+1,n’ 't g+l 1 o Tq
Furthermore, we have that
supp t(éq,nﬂp’) C [T o ]
= supp (Wyt1,np) C {Tl’n,’p, - ()\q5;/2fq+1)_17T2,n',p’ + ()\qéé/zl"qﬂ)—l} . (7.26)
(8) For all k,m < 3Ning,v,
00D D, R?ﬁi‘x_lHLl TSR 6y Me M (1, Nia g, T 7 T T (7.27)

Furthermore, we have that

supptRZ_T_"‘f" C U SUPD ; Wqt1,n/ - (7.28)

n/ <nmax—1
(4) For allk+m < Ngpn,.., ¥ < Nmax — 1, and 1 < p < pax

HDkDm

Cnmax —1 1
©nmaxP || L1 (supp ;) S 041 M pAG M pM (m, Nind,t, T4 Fq+1 ) T Fq+1) (7.29)
Furthermore, we have that
supp HY", , C SUpp ;Wqs 1,m - (7.30)
Then there exists Wey1 np,. and ]O%qﬂ such that vgy1 = g, —1 + Wgt1,npmae ONd éq+1 satisfy conclusions
(7.2), (7.3), (7.4), and (7.5) from Proposition 7.1.

Mmax

8 Proving the main inductive estimates

Because the proofs of Propositions 7.3, 7.4, and 7.5 will be comprised of multiple arguments with many
similarities, we divide up the proofs of the Propositions into sections corresponding to these arguments.3!
First, we define R, 5 and w41 7 5 in Section 8.1 for each 0 <71 < nypax and 1 < p < prax. Then, Section 8.2
collects estimates on wy1 7,5, thus verifying (7.11) and (7.12), (7.18) and (7.19), and (7.25) and (7.26) at
levelsn = 0,1 <n < npax — 1, and n = npyay, respectively. Next, in Section 8.3 we separate out the different
types of error terms and write down the Euler-Reynolds system satisfied by v, 5, which verifies (7.10), (7.17),
and (7.24), again at the respective values of 7.

The error estimates are then divided into five sections. The first section estimates the Type 1 oscillation
errors (notated with H ;Ln p) which are obtained via Littlewood-Paley projectors P, , ;. In the parameter
regime 1 < n < npax and 1 < p < prax, Type 1 oscillation errors will satisfy the estimates (7.15), (7.22),

31This organization of proof avoids having to alternate between the definitions of Wy t1,7,5 and éq’57§ forall 1 <7 < nmax and
1 <P < pmax. We judge that it is wiser to define all the perturbations simultaneously under the assumptions of Propositions 7.3,
7.4, and 7.5. Namely, we assume that each R, 7 5 exists and satisfies the enumerated properties, some of which may not be
verified until later.
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and (7.29) at respective parameter values 7 = 0, 1 < 7 < Nypax — 1, and T = Npmax. The transport and
Nash errors are estimated in Sections 8.4 and 8.5. Type 1 oscillation errors obtained from Pjg . . » 11
have a sufficiently high minimum frequency (from (7.6) specifically g n,...+1,0, which by a large choice of
Nmax 18 very close to A\g+1) to be absorbed into éq+1. The next section uses Proposition 4.8 to show that
on the support of a checkerboard cutoff function, Type 2 oscillation errors vanish. The divergence corrector
errors are estimated in Sections 8.8. The divergence corrector, Nash, and transport errors will always be
absorbed into }D%qH and thus must again satisfy one of (7.13), (7.20), or (7.27). Finally, the conclusions
(7.12), (7.14), (7.16), (7.19), (7.21), (7.23), (7.26), (7.28), and (7.30), concerning the time support will be
verified in Section 8.9.

8.1 Definition of }O%qﬁﬁ and wgi1 55

In this section we construct the perturbations wgy1 7. Before doing so, we recall the significance of each
parameter used to define the perturbations.

(a

(b) i quantifies the amplitude of the velocity field v,, along which the pipe will be flowed

) €
)
()
)
)
)

is the vector direction of the axis of the pipe

j quantifies the amplitude of the Reynolds stress
d) k describes which time cut-off x; x.q is active
.q

(e) g+ 1 is the stage of the overall convex integration scheme
(f) m and p signify which higher order stress Rq 7.7 1s being corrected, and 7 also denotes the intermittency
parameter 74115

(2) = (I,w, h) is used to index the checkerboard cutoff functions. Recall that the admissible values of I, w,
and h range from 0 to Ay 50 — 1 and thus depend on 7.

8.1.1 The case n =0
Pmax
To define wy41,0 = E Wq11,0,p = Wgt1,0,1, We Tecall the notation Ry, = R, o and set

p=1
Ry = V) (0g11,0aT 2 1d = Ry ) VO . (8.1)

For p > 2, we set Ry o5,k = 0. Fix values of 4, j, and k. Let £ € = be a vector from Proposition 4.1. For

all ¢ € =, we define the coefficient function Qg i i kg 0f T by

i+2 Ro05.5..k
Qe ijk,q,05,0 "= H60.5k,0,0.p -= A(€) = 5q+1 05L a+1"i,,k,0,05.076 5 2+ ) (8.2)
q+1,0,p* g+1

From Lemma 6.31, we see that on the support of 7 ;) we have |Ry05 < F,QIﬁQcSqJFLO,,;, and thus by

estimate (6.108) from Corollary 6.27, for p = 1 we have that

RQaQﬁjﬂJ“ —1d 1—\ < Z 1
s 2t q+1 2
q+1,0,p+ g+1

once )\ is sufficiently large. Thus we may apply Proposition 4.1.
The coefficient function a(g) is then multiplied by an intermittent pipe flow

V(I)(: Ky Weg+1,0 © Py
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where we have used the objects defined in Proposition 4.4 and the shorthand notation
(i,5,k,0,0) _ _
W&,q+1,0 W£ q+1,0 2,q+1,0 - W27Aq+177"q+1‘0' (8'3)

The superscript s = (4,4, k,0, l) indicates the placement of the intermittent pipe flow Wg’{q’i’lo ’gl (cf. (2)

from Proposition 4.4), which depends on i, j, k, n = 0, and [ and is only relevant in Section 8.7.32 To ease
notation, we will suppress the superscript except in Section 8.7. Furthermore, item 1 from Proposition 4.4
gives that

VO We 100 Dy = curl (vqf;’k)tug,qﬂ,o o (I)(z',k)) .
We can now write the principal part of the first term of the perturbation as
wi) o = > Zza(acuﬂ (V‘P(Z 1 Ut,q+1,0 © Pik ) =) ZZw@ (8.4)
i.4kp T i.j,kp T

The notation we) implicitly encodes all indices and thus will be a useful shorthand for the principal part of
the perturbation. To make the perturbation divergence free, we add

welio= Y ZZV%) x (VOf 1y Ueas100 ®n) = 3 Zzw(@ (&)

i,g.kp T i.g.kp [

so that

w10 = Wi o +wiio= D D Z curl ( a(e) Ve (; 1) Ug.gr1.0 © 2, k)) (8.6)
i5,kD T

is divergence-free and mean-zero.

8.1.2 The case 1 <7 < Npax

Pmax

With wg41,0 constructed, we construct wyy17 = Z Wot1,7,5 for 1 <N < Npax. For 1 < p < prax, we define

p=1
Rysp= Z Hi's 5 (8.7)
n/'<n—1
With this definition in hand, we set
Rowsiin=V®un (0 r244d — R vor (8.8)
q,n,P,J,1,k (4,k) q+1,7,51 q+1 q,7,D (i,k)> :
and define the coefficient function U i i kaipil by
4,3,k,a,7,D,
_ _ 12yt Ry pgik
Qe iikgmpl — %idkanp = g = 0, q+1,7,p Lo, i3k, q.7,5,0 1€ (5 N ~F2j+4> : (8.9)
q+1,n,pt g+1

By Lemma 6.31 and Corollary 6.27 as before, Rq 7 5,i.k/(0g+1, n,pI‘qfi ) lies in the domain of ~¢, as soon
as \g is sufficiently large (similarly to the display below (8.2)). The coefficient function is multiplied by an
intermittent pipe flow

VO W0 Big = curl (VT Ue a0 P
where we have used the shorthand notation

1,4,k 1 n7p7 ]
va‘ﬁ‘lv" WE q+1,n W§ q+1,n WZ’AquqH,ﬁ : (8'10)

32Note that for p > 2, dg+1,0,5 = 0, so there is no need for the placement to depend on p in this case, as wqy1,0,5 Will
uniformly vanish.
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As before, the superscript s = (i, j, k, ﬁ,ﬁ,l_j refers to the placement of the pipe, depends on ¢, j, k, n, p, and
I, and will be chosen in Section 8.7. Thus the principal part of the perturbation is defined by

Wl 5= D0 S Y agen (VL ) Ue im0 B ) = 30 0 D wie. (8.11)
i,5,k Law,h € 3,5,k Lw,h €
As before, we add a corrector
((121 P Z Z Z Va(g) X (V(I)(l k)U£ q+1,7 e} (I)(z k)) = Z Z ngg, (812)

igklwh € ijkLwh €

producing the divergence-free perturbation

Pmax Pmax

Wo+1,m = Z We+1,7,5 Z ( wo il mpt é‘i)lﬁ)ﬁ)
=1
- Z Z Zcuﬂ ( V(I)(z k) Ut g+1,7 © (i,k)) . (8.13)
1,5,k

Jksplawh &
8.2 Estimates for wy 155

In this section, we verify (7.11), (7.18), and (7.25). We first estimate the L" norms of the coefficient functions
a(e). We have consolidated the proofs for each value of 7 into the following lemma.

Lemma 8.1. For N+ M < Ngy 5 — Neus,t — Newsx —4, 7> 1, and 1,72 € [1, 0] wzth —l———l we have
N M
HD qu fzykqn,pl‘
1 2 N imcat3 ~— 1
S 1supp (1, D) 701 T2 (Dgai Ay ) M (M N 7 TG 5T ) L (819)

Proof of Lemma 8.1. We begin by considering the case r = co. The general case r > 1 will then follow from
the size of the support of a(¢). Recalling estimate (6.125), we have that for all N + M < Ng, 5 — 4,

HDNDMR7

2542 _ N i—Cit2 ~—1
<5q+1 n,prq+1 (Fq+1>‘q,n7p) M(M7N1ndt, Tq Fq+1 » Tq Fq+1)

Lo (supp n(i,j,x))

From Corollary 6.27, we have that for all N + M < 3N&n /2,

HDND%JDq)(ivk)HL‘X’(Supp (wi,qX'i,k,q)) S X(JZVM (M’ NinJ’ +1 T_l ~_1Fq_+1)

Thus from the Leibniz rule and the definitions (8.8), (8.1), for N + M < Ng, 5 — 4,

|DNYDM R, 5

q,70,D,J,1, kHLw(suppn(z 3.k))
2 n 2 ~—
S 5q+17ﬁ,5Fq+J§ (Fq+1>\q,ﬁ,5) M (Mv Nind,t, 7, Fq+cl i Tq IF‘?“) ’ (8.15)
The above estimates allow us to apply Lemma A.5 with N = N’, M = M’ so that N+M < Ng,5—4, ¥ = 7,

(which is allowable since by Proposition 4.1 we have that D e is bounded uniformly with respect to ¢, and we
have checked in Section 8.1 that the argument of ¢ remains strictly within a ball of radius € of the identity),

Ty =1, v = vy, Dy = Dyg, h(@,t) = Ryagjin(@:t), Ch = dgnrmplont’ = T3 A = X = Aapls,
w= 7*1F2+°1“+2, ,E = ?Jlf‘;jh and Ny = Nijnq¢. We obtain that for all N + M < Ng, 5 — 4,

S Cridgmz) M (M, N7y TS 27T )

’ q

R ~~ ..

N 4,7,p,5,8,k

DY D% et 5 . - puta
q+1,m,p" g+1

Le° (supp (i, j,k))
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From the above bound, definitions (8.2) and (8.9), the Leibniz rule, estimates (6.84), (6.97), (6.131), and
Lemma 6.40, we obtain that for N + M < Ngn 5 — Neutt — New x — 4,3

||DNDt]%{1a(£) ||L°°(supp N(i,5,k))

/2 J+2 N’ M’ N HM" Ry 55,4,k
S 5q+1,ﬁ,;‘5rq+1 Z HD Dy 1eij.k) HLw D™ Dy e 5 2+
g+1,7,pt g+1

N'HNT=N, Lo (supp n(s,5,k))
M +M"=M
1/2 J+2 N’ ’ —1yi—cg+3 ~—1p—1
Soaslin Y, Tardgas) M (M Niga, 7y T2 70T
N'+N"=N,
M +M" =M
N” " 1pi—ca+2 ~—1p—1
X (Pg12q,7.5) M(M sNind,t» 7y Tor 57 Toga
/2 J+2 N —1pi—cat+3 ~—1p-1
S 011,758 g1 L1 Ae75) M(MaNind,t;Tq et

This concludes the proof of (8.14) when r = oco. For general r > 1, we just note that supp (ag)) C
supp (1, . ). O
1,5,K54,m,p,

An immediate consequence of Lemma 8.1 is that we have estimates for the velocity increments themselves.
These are summarized in the following corollary.

Corollary 8.2. For N + M < Ngu 5 — Neut,t — News,x — 2Ndec — 8 we have the following estimate

1 1/2 .
v J+2 _
e A (rg+1,7

x AN M (M, Nind,t, 7y T 5+, ’f;lrgjl) (8.16)

| DY Diwie)|

)2/’7‘_1

e S [supD (0, 4 0 550

For N + M < Ngin 5 — Neut,t — News,x — 2Ndec — 9 and (r,71,72) € {(1,2,2),(2,00,1)}, we have the following
estimates

N M, (c) r +1)\ D Ly i+2 21
HD Dl S =5 15WPP (g0 | Sr1apT o (Fa )
q+1

i3 ~—1p—

X AN M (M, Niga 7 T, 7,0 ) (8.17)
—2i4Gy 2
N M 1/2 LT +2+; 2/r—1
HD Dt,qwqﬂﬁﬁHL'r»(suppq/,i,q) S o175t g4l (Tq+1.7)
X )\51V+1M (Mu Nind,tvTq_lréjrclﬁ—i_‘lv?q_lrgil) (818)
Finally, we have that

supp, (1) C [T1, T3] = suppy(wginmp) © [Ti = (A0 T+ (67! . (819)

Remark 8.3. By choosing r = 2, 7, = 1, and m = oo in (8.18) and recalling that (9.56) and (9.60b) give
that ) )
561{1?1,%,1'5 S Fq__zléq{ip Nﬁn,ﬁ - Ncut,t - Ncut,x - 2Ndec -9 Z 14Nind,va
we may sum over i and p in (8.18) and use the extra negative factor of I'y41 to absorb any implicit constants.
Finally, from (9.42), we have that the cost of a sharp material derivative in (8.18) is sufficient to meet the
bounds in (7.3). Then we have verified (7.11), (7.18), and (7.25) at levels m = 0, 1 < 7 < Npax, and

N = Nmax, respectively, and (7.3).

33The limit on the number of derivatives comes from (6.131) and (8.15). The sharp cost of a material derivative comes from
(6.131).
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Proof of Corollary 8.2. Recalling the definition of w) from (8.4) and (8.13), we aim to prove the first

: . . _ 1, o

estimate by applying Remark A.9, with f = a(é)VCI)(i}k), Cy = |supp (ni,j,k,q,ﬁ,ﬁ,f)| Téqflﬁﬁfflil, O =1,
~ 2/p—1 R R IP

v =0, A =Tordgmp ¢ = C= Agr1, Cp = rq{s-lﬁ’ 1= Agi = Aqr1Tqr1m, V =T, 1F;+cl r= Tq 1Fqi17

9 =We 15, Nt = Ninay, and No = Nn s — Newt,t — Neue,x — 4. From (8.14) and Corollary 6.27, we have
that for N + M < Ngn g — Neut,s — Neut,x — 4

)

N M 751/ j+2 N Clpi—cat3 ~—1p—1
DY DM, S s (1 a0) | 70,71 5000 (Casadgim) M (M, Niga o7, T, 7T ) (3.20)
N M -1 N i—co,—1 ~—1p—1
||D Dt’q(D(I)(i’k)) HLC”(SUPP (¥i,qXi,k,q)) < )\q M (M’ Nindvt’rfﬂrclo’rq »Tq Fq+1) ) (8.21)
N —1 YN-1
D™ @i,k || o supp (150 0.0 < Pat1 A (8.22)
DNG-1 H <ol N-1 8.23
H R Lo (supp (9,0 %i0) I (8.23)
showing that (A.30), (A.31), and (A.32) are satisfied. Recall that W¢ .1, 5 is periodic to scale
. Aty —1
_ 1 % n+1 1— % n+1
Aqﬂ% = ()\q+17’q+1’ﬁ) = (Ag ) )\q+$ ) )
By (9.48) and (9.60a), we have that for all ¢, 7, and p,
)\ Ndec
LTI [ L — . 2Ngee +4 < Ngn s — Newt.t — Newt.x — 5 8.24
g1 = <2W\/§Fq+1)\q,ﬁ7ﬁ> d = Nfin, tt t, (8.24)

and so the assumptions (A.34) and (A.35) from Lemma A.5 are satisfied. From the estimates in Proposi-

tion 4.4, we have that (A.33) is satisfied with ( = ( = Ag+1. We may thus apply Lemma A.7, Remark A.9
to obtain that for both choices of (r,71,72) and N + M < Ngp 5 — Neust — Neut,x — 2Ndec — 8,

[ (025 (0995 Wearnnocn)|
N

S Z ‘Supp (n(i,j,k))
m=0

N
N Z ‘Supp (U(z‘,j,k))
m=0

LT

L1/ i — i—Cx ~
p j+2 _ \N-m . —1lpi—cg+3 ~—1p—1 m _
5q+1,ﬁ,5Fq+1 (Fq+1/\q’n,p) M (M, Nlnd7t’Tq Fq+1 ) Tq Fq+1> D W&qﬂ,n”y

T J+2 N-m —lpi—cg+3 ~—1p—1 m 2/p—1
6q+1,ﬁ,5Fq+1 (Fq-i-l/\qﬁ,ﬁ) M (M7 Nind,ta Tq Fq+1 ,Tq Fq+1> /\q-i—l (Tq-i-l,n)

¥ 5l J+2 —1pi—cg+3 ~—1p—1 N 2/r—1
/S |Supp (n(i,j,k))’ 6q+17ﬁ7grq+1M (M, Nind,ta Tq F:H—l ,Tq Fq+1> >\q+1 (Tq-l-l,n) .

Here we have used that A\g11 > T'gp1Agm 5 for all 0 <n < npax and 1 < p < pmax, and thus we have proven
(8.16).

The argument for the corrector is similar, save for the fact that D, , will land on Va(g), and so we require
an extra commutator estimate from Lemma A.14, specifically Remark A.15. Note that Dy ,®(; ») = 0 gives

DMuw(g) = DY (Vae x (VT 4y Ueqiiio @)

= Z C(M/,M) (D%I Va(g)) X ((D%] V(I)(T;k)) Ug,q+1’ﬁ o (I)(i,k)) .
M/ +M""=M

Using (6.60) and (8.20) shows that (A.50) and (A.51) are satisfied with f = Va ),

1 1/2 .
r J+2 .
6q+1,ﬁ,§rq+1 P} Aq,nma

Cy = |supp ;5.1 q.72,5,0)

1 . ~ ~ i— _ ~ ~_ — Y
Cy :}5;F;++11, Ao = Ao = Mgy fo = DiiP7 Y, Ny = Ninaws fiw = 75 Ty, Ap = Ap = Do, tf =
T(;lF;:_ClﬁJFS, and jiy = 7, 'T ). Applying Lemma A.14 (estimate (A.54)) as before, we obtain that for
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N+M < Nﬁn,ﬁ - Ncut,t - Ncut,x - 57

| DYDY Vae |

1 1/2 . . . _
Jj+2 _ \N+1 . —1pi—cz+3 ~—1p—1
76t T g ) M (M Nina 7 T, 77T )

(8.25)

Lo S supp (ngi k)

In view of (8.21) and (8.24), we may apply Lemma A.7, Remark A.9, and the estimates from Proposition 4.4
to obtain that for N + M < Ngp 5 — Neus,t — Neut,x — 2Ndec — 9

HDNDt,Mq (V%) x (V‘I’E,ng,qH,ﬁ ° ‘I’u,k)))‘

LT

N
l 1 N _ _ ~_ _
N Z ‘Supp (77(2'71',76)) "o ” ~FJ+2Fq+1)‘qﬁﬁ)‘N~ 5 M (M’ Ni“d7t’7—q 1FZJ+C1U+3’Tq 1Fq—&l) ||DmU§7q+1,ﬁ||LT
m=0

q+1,m,p" q+1 q,n,p

7 51/2 42 N— —lpi—ci+3 ~—1p—1 21
"0 I Fq+1)‘qﬁyﬁ)‘ o (M’Nind,t’Tq Fq-i—l » Tq Fq+1) (7"q+1,n)7

N
m—1
S A Z‘SUPP(WM)) q+1,7,5" ¢+1 a7,p
m=0

Lov1)rgmp 1. i+2 i3 ~—1p— 2/p—1

S %)\é\;ﬂsupp (n(i,j7k))| 5(1&1,%75%“/\4 (M7 Nind,taTq 1Fq+cf‘+ )y Tq 1Fq-&1) (Tq+1,n) / , (8.26)
proving (8.17).

The final estimate (8.18) follows from the first two after recalling that v; , may overlap with ;i1 g,

a +1,q

so that on the support of ¥; ,, we will have to appeal to (8.14) at level ¢ + 1. Then, we sum over [ and
appeal to the bound (6.147). Next, we may sum on j, index which we recall from Lemma 6.35 is bounded
independently of ¢, and p, k. The powers of Ff] 41 cancel out since 77y = 1. Next, we sum over p, which
is bounded independently of ¢, and recall that the parameter k, although not bounded independently of ¢,
corresponds to a partition of unity, so that the number of cutoff functions which may overlap at any fixed
point is finite and bounded independently of g. O

8.3 Identification of error terms

In this section, we identify the error terms arising from the addition of wg41 7 = pikf Wqt1,7,5- After doing
so, we can write down the Euler-Reynolds system satisfied by v, 7, in turn Verifyingﬁz;cllevel n the conclusions
(7.10), (7.17), and (7.24) of Propositions 7.3, 7.4, and 7.5, respectively.

8.3.1 The case n =0

By the inductive assumption of Proposition 7.3, we have that divv,, = 0, and
Opvg, +div (vy, ® vy, ) + Vpy, = div éeq + div égomm.
Adding wqy1,0 as defined in (8.6), we obtain that v, := ve, + wg41,0 solves
Orvg,0 + div (vg,0 ® vg,0) + Ve,
= (0 +ve, - VIwgg1,0 + we1,0 - Vog, +div (wgi1,0 ® weq1,0) + div Réq + div égomm
i=To + Ny + Og + div Ry, + div Ro™™. (8.27)

For a fixed n, throughout this section we will consider sums over indices

—

(£7i7j7k7§7l)

where the direction vector £ takes on one of the finitely many values in Proposition 4.4, 0 < i < ipax(q)
indexes the velocity cutoffs (there are finitely many such values, cf. (6.50)), 0 < j < jmax(g, 7, p) indexes
the stress cutoffs (there are finitely many such values, cf. (6.129)), the parameter k indexes the time cutoffs
defined in (6.96) (the number of values of k is ¢-dependent, but this is irrelevant because they form a
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partition of unity cf. (6.94)), the parameter 1 < p < ppax indexes which component of I%qﬂﬁﬁ we are

working with (there are finitely many such values, cf. (9.3)), and lastly, [ indexes the checkerboard cutoffs
from Definition 6.39 (again, the number of such indexes is g-dependent, but this is acceptable because they
form a partition of unity cf. (6.139)). For brevity of notation, we denote sums over such indexes as

2.

ISUVRLB N

> (8.28)

#{€,4,5,k,5.0}

Moreover, we shall denote as

—

the double-summation over indexes (&, 4, j, k,p,1) and (£*,4*, 5%, k*, p*, f") which belong to the set
{13k BLE), @5 k0" F) s € £EVIATV AT VAR VEAP VAT, (3:29)

although we remind the reader that at the current stage n = 0, the sum over p is superfluous since wgy1,0 =
Wq41,0,1- For the sake of consistency between wgi1,0 and wgy15 for 1 < 7 < npax, we shall include the
index p throughout this section. Expanding out the oscillation error Oy, we have that

Oy = Z div (Curl (a(g)V(I)g;k)Ug,q_‘.Lo o ‘b(i7k)) ® curl (a(g)v(bak)[[}f,q_i_l,o o ¢(i7k)>)

&,1,5,k,p,l

+ Y div (curl (a(g)vq>57k)wg,q+1,o o <1>(1,k)) ® curl (a(g*)v%*‘k*)wg*,qﬂ’o o q>(i*?k*)))
#{&,i,3,k.P1}

= div 00’1 + div 00’2. (830)

In Section 8.7, we will show that Og 2 is a Type 2 oscillation error so that
00’2 =0.

Recalling identity (4.14) and the notation (9.65), we further split Op ;1 as

divOor = ) div ((%)V%fk)waqﬂ,o ° ‘P(i,k)) ® (%)V‘b&}k)waqﬂo ° ‘I’u,k)))

§:%,4,k,pl
+2 Z div ((a@)V@&}k)Wg,ﬁw o (I)(v,k)) R (Va(g) X (Véa,k)UE=q+1,0 o q)(hk)))>
&gk Bl
+ Z div ((Va(g) X <V©57k)Ug,q+1,o o ‘b(i,k)» ® (Va(g) X (v¢£7k)U£,q+l,0 ° ‘I’(i,k)»)
&g kPl
= le (00’1,1 + 00’172 + 00,173) . (831)

Aside from O 1,1, each of these terms is a divergence corrector error and will therefore be estimated in
Section 8.8.

Recall by Propositions 4.3, 4.4, and by (8.3) that We .41 0 is periodized to scale (Ag17q11.0) " = /\;(1).
Using the definition of P, ,, ;) and (7.8), we have that3

We g+1,0 @ We g41,0 2][ We g+1,0 ® We g41,0
’]TS

NMmax Pmax
+ IPZ}\q,o (Z Z IP)[q,wﬂ] + IEJ>[q,nmax,prr.aerl]) (Wﬁ,qul,O ® Wﬁ,qul,O) .

n=1 p=1

34The case m = 0 is exceptional in the sense that the minimum frequency of P> Xq.0 and the minimum frequency of P, 1 g

4 1
are in fact both equal to Aq,0 = Ag,1,0 = Ag A, from (9.27) and (9.22). For the sake of consistency with the 1 > 1 cases, we
will include the superfluous Pqu o in the calculations in this section.
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Combining this observation with identity (4.15) from Proposition 4.4, and with the definition of the a() in
(8.2), we further split Op 1,1 as

div (Op1,1) = Z div (afg)V(I)&}k) < - We g+1,0 ®W§,q+1,0(¢(i7k))> V(I)(_z k)>

€5,k Bl

&ig.k, 0
Mmax Pmax
X P>y, 0 (Z > Plang + P[q,nm,pmaxﬂ]) (W® W)s,q+1,o(‘1’<i,k))v‘1>@£))
n=1 p=1

; R
. 2544 2 2 0, ik 1 T
=div D Y S0ty nh <6qplizj+4> VO @8 Ve,

g kpl € q+1,0,p% g+1

+ Z Va? )V%k)

€15k,
Tmax Pmax
X P>x,0 (Z Z Prg,n.pl +P[q,nmx,pmx+1]> (W®W)£,q+1,0(¢(i»k))vq)(;,€)
n=1 p=1
D At (Ve )as
&ig. k.l
Mmax Pmax
X Pxx0 (Z > Pl +P[q,nmx,pmax+u> (WOW)e 41,0 (803,10 (VRG 4y ) - (8.32)
n=1 p=1

By Proposition 4.1, equation (4.1), and the definition (8.1), we may rewrite the first term on the right side
of the above display as

; R
. 2j+4 2 2 ,0,0,7,1,k -1 T
div Z Z5q+1,0,§rqj+1 Nei,j.k) Ve ((quFJ2H_4> V(I)(i,k) (E®¢) Vq)(l 5

kBl € a+1,0.p% g+1

= div Z T](z,] k) (5q+1 0 1Fq+1 Id — Rg )
ikl

= —di 2 : 2 2j+4
= —div Z 77(m',k)qu +V E n(i,j,k)5q+l,0,1rq+1
ig.kd ik, T

= _div (Jf’z@q) +Vn (8.33)
In the last equality of the above display we have used the fact that by (6.142) we have

Re, =Yt B, - (8.34)

i,5.k, 0

We apply Proposition A.18 to the remaining two terms from (8.32) to define for 1 <n < nyax and 1 < p <

pmax

1, ::’H( D Vaig Ve Pox, o Plomp (Weg1,0 © We g41,0)(D(i.0)) VO R
I ZRRN A

35Recall that H is the local portion of the inverse divergence operator. The pressure and the nonlocal portion will be accounted
for shortly. We will check in Section 8.6 that these errors are of the form required by the inverse divergence operator as well as
check the associated estimates.
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+ ) afg)(V@(—i}k))aepzxqmq,n,m(ngowg’qﬂ,o)(q><i’k))aa(v¢>(—i}k))@). (8.35)

€,i,5.k,5,0

The last terms from (8.32) with Pr,,, . 14 will be absorbed into Rg:1, whereas the terms in (8.35)
correspond to the error terms in (7.15).

Before amalgamating the preceding calculations, we pause to calculate the means of various terms to
which the inverse divergence operator from Proposition A.18 will be applied. Examining the equality

Brvg,0 + div (vg,0 ® vg0) + Ve, = To + Ny + Op + div Ry, + div RE™™ (8.36)

and recalling the definitions of 7g, Ny, and Oy, we see immediately that every term can be written as the
divergence of a tensor except for d;vg,0 and To. Note however that v, o = v, + wgy1,0, that f’I[‘3 Ove, = 0
(by integrating in space (5.2)), and that wgy1,0 is the curl of a vector field (cf. (8.13)). This shows that
Jps Drvg0 =0, and thus [ 7o = 0 as well. Therefore, we may use (A.72) and (A.78) write

To = div ((H +R*) To) + VP.

We can now combine the calculations of (8.27), (8.30), (8.31), (8.32), (8.33) (8.34), and (8.35) and let the
notation V7 change from line to line to incorporate all the pressure terms to write that

Orvg,0 + div (vg,0 ® vg,0) + Ve,

=To + Ny + Og + div Ry, + div RZo™™

= To +No + div (Op,1) + div (Op2) + div Ry, + div R™

=To + No + div (éeq + 00,1,1) +div (Op,1,2 + Op,1,3 + Op2) + div ég"mm

=To+No+Vr
+div(H+RY)| D Vaiy Vel
&0.,k.B,
Mmax Pmax
X P>xg0 (Z Z Plgnp + P[q,nmax,pmaxﬂ]) (Weg41.0® WE-,qH,O)((I’(i,k))V(I)(_ k)
n=1 p=1
D At (VG )ao
&gk pl
Mmax Pmax
X P>x0 (Z Z Plgnp) + P[qmmx,pmxﬂ]) (Wewv)i,qul,O((I)(i,k))aa(V‘I)(;,lk))m (8.37)
n=1 p=1

+div (Op 15 + Op 15+ O 2) + div R™™

= Vr + div [ (H+R*)(To) + (H+R") (No) +}°zg°“”“ (8.38)
transport Nash
+(H+R") Z va%g)V(I)a,lk)ﬂb[q,nmax,pmax-&-l] (We g41,0® W§7q+170)(¢(i7k))v<1>(_i?];) (8.39)
&gk Bl

0
Type 1 - part of Rq_*_1

+ Z vq)(zlk))QOP[q’nmx,pmxH] (Wg,q-i-l,owg,quLo)(q)(i,k))aa(v(p(_i,lk))gry) (8.40)

£,i,5.k,B,0

210]
Type 1 - part of Rqul

Mmax Pmax
Z va%f)vq’&}k)PZMO (Z Z Phbmp]) (We 11,0 @ We g41,0) (P k))V(I’(_z k) (8.41)
&,iyj kBl n=1 p=1

Type 1 - part of é2+1
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Mmax Pmax

+ Y a o (Vo k) QP»QO(

9 —_
]P[q nm]) Ws,q+1,oW§,q+1,o)(‘I’(i,k>)‘9a(V‘I’<¢,1k))<v) (8.42)
€,4.5.k.5,0

n=1 p=1

°0
Type 1 - part of Rq_*_1

+ Oo12+ 00,13 + Oo2 } (8.43)
— T <~

divergence corrector  Type 2

NMmax Pm.
+diVH( > Vaiey Ve 1o Por, o ( P[f;mm]) (We 41,0 ®W£,q+1,0)(@(i,k))vq’@,€) (8.44)
1

€5,k 5,0 n=1l p=

Type 1 - HO

q,n,p

x

Mmax Pma:
+ Y Al (VO ) )aoPon, (Z >

£,i,5.k,B,0 n=1 p=1

Plgn m]) Wf,q-i-l 0W£q+10)((1>( ))0a (V‘I’(_k)) ) (8.45)

Typel—Hq"p

Mmax Pmax

=div (R2+1) + div (Z Z qnp) +V7T+djvfggomm’

n=1 p=1

thus verifying (7. 10) from Proposition 7.3 after condensing the labeled terms into Rg +1 and using (8.35) on

the pieces labeled HY , .

8.3.2 Thecase 1 <7 <npax — 1
From (7.17), we assume that v, 5_; is divergence-free and is a solution to

atvq,ﬁ—1+div (vq,ﬁ—l & vq,ﬁ—l) + quﬁ—l

Nmax Pmax 1—1

= div (R;LHl) + div (Z Z Z qnp> —|—div}°%g°mm.

n=n p=1n'=

Now using the definition of éq,ﬁ’ﬁ’ from (8.7) and adding w415 as defined in (8.13), we have that v, 5 =

Vg,i—1 T Wot1,m = Ve, + Zogn/gﬁ—l Wq1,n' + Wqt1,5 solves

atvq7ﬁ+div (v%ﬁ 0y vq,ﬁ) + qu,ﬁ—l

Nmax Pmax n—1

= div <RZ+11) + div ( Z Z Z q n p) + div R;omm

n=n+1 p=1 n'=
+ (0 +ve, - V)wgi1,i + Wot - VWq

+ E div (wq+1ﬁ & Wat1,n + Wat1,n @ wq+1,ﬁ)

n'<n—1
Pmax
+div | wey1,7 @ Wep1,5 + E Ryzmp |- (8.46)
=1

The first term on the rlght hand side is R", +1 , which satisfies the same estimates as Rq 11 by (7.20) and will

thus be absorbed into R” u+1 (these estimates do not change in n save for implicit constants). The second
term, save for the fact that the sum is over n’ <7 — 1 rather than n’ < n and is therefore missing the terms
HP  matches (7.17) at level 71 (i.c. replacing every instance of 77 — 1 with 71). As before, we apply the

a,n,p
inverse divergence operators from Proposition A.18 to the transport and Nash errors to obtain

(O +ve, - VIWgi1,7 + Weg1,5 - Vg, = div ((H +R") ((5} + g, - V)Wap1m + Wag1,7 - vaq)) + V,
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and these errors are absorbed into Rq 1 or the new pressure. We will show in Section 8.7 that the interaction
of wgy1,7 with previous terms wg41,,/ is a Type 2 oscillation error so that

Y (Wer1a ® Wort + Worr © Worr,z) = 0. (8.47)
n/ <m—1

So to verify (7.17) at level 7, only the analysis of

Pmax
div | wg41,7 ® we1,7 + E Rymp

p=1

remains. Reusing the notations from (8.28)%¢ and writing out the self-interaction of w,1 7 yields

div (wgt+1,7 ® Wet1,5) = Z div (curl (a(g)Véak)U&qHﬁ) ® curl (a(g)Véku&qHﬁ))

&gk Bl

+ ) div (C“ﬂ (W&)V‘I’(Ti,k)Us,qHﬁ) ® curl (a(E’)VCI)(Ti’,k’)Ui’,qul,ﬁ))
#{&,1,5,k,5,0}

= div Oz,1 + div Oz 2. (8.48)

As before, we will show that Of 2 is a Type 2 oscillation error so that
Oz2=0.

Splitting O 1 gives

divO5;1 = Z div ((a(f)vq)&}k)WE,qulﬁ o @(@]@) ® (a(f)v@&}k)wg’qJ’,l’ﬁ o (b(i,k)>)

&gk, Bl
+2 > div (( iy Wear1.7 (i,k)) ®s (VG(E) x (V‘Da,k)Us,qHﬁ ° q)(i,k))))
5’7’7J’k)pil
+ Z div ((Va(g) X (V@£7k)wg,q+1,ﬁ o (I)(i,k))> (24 (V&(g) X (V(I)g;,k)Uﬁ,qulﬁ o (P(i,k))))
€,k Bl
= div (057171 + 057172 + 057173) . (849)

The last two of these terms are again divergence corrector errors and will therefore be absorbed into R; 1

and estimated in Section 8.8. So the only terms remaining from (8.46) are Oy 11 and Zp mes qu 5, which
are analyzed in a fashion similar to the n = 0 case, save for the fact that summation over p is now crucial.
Recall cf. (8.10) that W 41 5 is periodized to scale (Aq+1rq+17n) )\q’:l. Using (7.8), we have that

We g+1,7 @ We g1, :][3 We,g+1,7 @ We g11,m
T

Mmax Pmax
+ P>, ( SN Pl + P[q,nmax,pmax+1]> (We g+1,5 @ We g1,7) -

n=n+1 p=1

Combining this division with identity (4.15) from Proposition 4.4, we further split Oy 11 as

div (Oza1) = Y div <a’(2§)vq)(_i,1k) < - We g1, ®W£,q+1,ﬁ(‘b(i7k))) Ve k))
€1inik, Byl

36In a slight abuse of notation, notice that the admissible values of I have changed, since these parameters describe the
checkerboard cutoff functions at scale )\;1% , and thus depend on 7.
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—1
+ Z dlv<a(6 <I>(lk)

&,1,5,k,p;l

Mmax Pmax
X P>y, 5 ( Z Z Plgnp + P[qanmaxvpmax"rl]) (We W)quﬂﬁ(@(i,k))vq’(i?}c))

n=n+1 p=1

R
j+4 2 Bodvisk _
= div Z Z Og+1, n,qu+1 ( k) Ve (q - p;‘;j+4> (i, k) (E®¢) V(I’(z %)

ikl € 4 +1,7,p+ g+1

2 -1
+ Z Vaig ) Ve

&k Bl
Mmax Pmax
X PZAq,ﬁ < Z Z IP[Cbnvp] + P[q,'”maxypmax"l‘l]) (W ® W)€7q+l7ﬁ(®(17k))v®a?];)
n=n+1 p=1
+ D (YOG as
£,1,5.k,5,0
Mmax Pmax
X P, n ( > D Puns +P[q,nmax,pm+1}> (WOW)e 41,7 (P(i,))0a (VO ey - (8:50)
n=n+1 p=1

By Proposition 4.1, equation (4.1), and identity (8.8), we obtain that
R
i 2t 2 q,7,D,5,i,k - _
div Z Zéqul,ﬁ,p qz‘rl "7(1,], YVe (5~~F2j+4> V@(z %) (E®E) V(I)(z %)
ijkpl & +1,7,p0 g+1

Pmax

; 2 [2i+4
= div Z "(,5,k) Og+1,7,p1 qil Id — ZR% 7,0

RN
pmax o
= —div Z Z 77(2i,j,k)RQ7ﬁaﬁ +V Z (z 7 k)6q+1 n7prqiﬁ4
i,k P=1 4.k,
Pmax
i=—div ¥  Rymz+Vr, (8.51)
p=1

where in the last equality we have appealed to (6.142). We can finally apply Proposition A.18 to the
remaining terms in (8.50) for 1+ 1 <1 < Nypax and 1 < p < pax to define

H,,=H Z Vaie) V0 Pox, aPlans (Wegr1s © Wf,q+1ﬁ)(®(i7k))vq’@Tk)
&,1.,k,p

+ > ate) (VO h)a0P2 0, 2Pl p) (WE gs1 WL oi17) (P(ik))0a (VO ) ) (8.52)
&1.5,k.p
As before, the terms from (8.50) with P, . .4y will be absorbed into égﬂ. We will show shortly that
the terms H;Ln p in (8.52) are precisely the terms needed to make (8.46) match (7.17) at level n. As before,
any nonlocal inverse divergence terms will be absorbed into Ry, .
Recall from (7.9) that Rq 1 will include RZ;ll in addition to error terms arising from the addition of
Wq41,7 which are small enough to be absorbed in Rq11. Then to check (7.17), we return to (8.46) and use
(8.48), (8.49), (8.50), (8.51), and (8.52) to write

Ovgm + div (vg7 ® vg7) + Vg1

NMmax Pmax n—1
— div ( > ¥ Z W) +div (R ) + div fegem

n=n+1 p=1 n'=
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+ (O + ve, - VIwgy1m + way1m - Vg,
+ Z div (wg41,7 ® W1, + Wet1,n @ Wyt1,7)

n'<n—1
Pmax
+div | w1 ®wera+ Y Ry
=1

Nmax Pmax n—1

= div égomm + div ( Z Z Z s p> + div (Rqﬂ + (H+R*) (ewgi1,5 + ve, - Vwgir7)

n=n+1 p=1 n’=0
+ (H+RY) (wgrrm - Vor,) + ) (wq+1ﬁ®wq+1,n’+wq+17n/®wq+1ﬁ))
' <m—1

Pmax

+div (Orn2+ Onas+ Onp) + Vr+div | Onna+ Y Resgp

Nmax Pmax n—1

= div R®™™ + div ( >y Z n n,,) + div (Rqﬂ + (H+R) (Orwgi15 + ve, - Vogy1 )

n=n+1 p=1 n'=

+ (7‘[ + R*) (wq_‘_lﬁ . V’U@q) + Z (wq+1,7~1 @ Wet1,n T Wet1n & wq+1,ﬁ)>
n/<m—1

+div (On12 +Oz,13+ Or2) + V7

+ div [(H+R* Y Vaiy Ve,

&g, kBl
Mmax Pmax
X P>,z ( S Pl + IED[qmmx,pmx+1]) (W& W)e,qr1,5(P(ik) VR
n=n+1 p=1
+ > a?&)(v‘b@}k))a@
&gk Bl
Mmax Pmax
X PZAq,ﬁ < Z Z P[q,n,p] + P[‘IvnIUAX»pnlax+l]> (WQW’Y)&Q"‘Lﬁ(¢(ivk))aa(v(b(i,1k))c‘/):|
n=n+1 p=1

(8.53)

Nmax Pmax n—1

= div R&™™ + div ( >N Z ar, p> + div (Rq T+ (H+RY) (ywgs1,m + v, - Vwgrrm)  (8.54)

n=n+1 p=1 n'=

transport
+ (H+RY) (wgr17 - Vog,) + Z (Wt @ Wat1,m + War1m @ wq+1ﬁ>> (8.55)
Nash n'<n—1
Type 2
+ div < O512+0513 + Oz > + V7 (8.56)
— — ——

divergence corrector Type 2

+div { H+RI D Vaie Ve Plymmapmaet 1] (Wegr1,5 © We g41,) (Pap) VR (8:57)

&.isd kBl

Type 1 - part of R;‘Jrl
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—1 0 —1
+ Z a?&)(V‘I)(i,k))aep[qmnmx,Prnaerl](Wﬁ,qul,ﬁqu-q-LE)(q)(i,k:))aa(v(b(lk)) ) (8.58)

€,i,5.k, 5,0

Type 1 - part of RZI"+1

+R( Y Vaiy Ve

] (ik)
§,4,5,k,p,1
Mmax Pmax
X ]P)ZAqﬁ < Z Z ]P)[‘anp] + ]P)[q;nmaxapmax"l‘l]) (W ® W)gﬁq+17ﬁ(®(l,k))V@(_z:1];) (8'59)
n=n+1 p=1

Type 1 - part of R;+1

Y AtV )ao

&gk pl
Mmax Pmax
e ( 2 2 Pana+ %w»pmm) (W) g1 ()0 VB ) )| (5.00)
n=n+1 p=1
Type 1 - part of Rq_*_1
Mmax Pmax
+ div H[ SV, Ve Pey, ( >y P[q,n,p]> (W & W)e g1 D)) VO L) (8.61)
i kBl n=n+1 p=1
Type 1 - I—OIZ’;”.VP
Mmax Pmax
6 _
+ D (VP aP2x, ( > > Pun ,p]> (WO )e g1, P00 (VO ey | (8:62)
£, kBl n=n+1 p=1
Type 1 - ﬁ(in,p

Mmax Pmax

= div Rcomm + div Rq+1 + div Z Z Z anp T VT,

n=n+1 p=1 n'=

which concludes the proof after identifying the first seven lines (save for the double sum of H n’ ,, terms) of the
second to last equality as ]f%ﬁ 1 and using (8.52) to incorporate the eighth and ninth lines into the new double
sum of H n’ » terms. Note that we have implicitly used in the above equahtles that (8t + v, V) Wq41,7 has

Zero mean Wthh can be deduced in the same fashion as for the case n = 0.
8.3.3 The case 1T = nyax

From (7.24), we assume that vy, —1 is divergence-free and is a solution to

6tUQ7nmax_1+dlv (’Ufb"max_l ® UQ7”max_1) + qu,'”max_l

Nmax —1 Pmax
— di Mmax — 4 : comin
=div (Rq+1 ) + div E g g, | T AV .

n’=0 p=1

Now using the definition of Ry, , from (8.7) and adding wgi1.n,,.. as defined in (8.13), we have that
Vg1 1= Vg, mpmax—1 T Wt 1,npa, SOLVES
atv‘]"!‘l_'_div (Uq+1 ® Uq+1) + va>ntx)ax_1
=div f%;omm +div (R;fo_l) + (0 + Ve, - V)quanmax + Wgt 1 may © VU2

q

+ § AV (Wgt1,nmax @ Wat1,n/ + Wot 1,0/ @ Wat1 mpmas)

n'<nmax—1
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Pmax
+ div <wq+1,nmax ® Wit + D qunmx,p> . (8.63)
p=1

We absorb the term div (RZI{" ) into Rq+1 immediately. We will then show that up to a pressure term,

(H+R*) ((8: + ve, - V) Wat1,mmar ) (H+R*) (Wat1,nmar - Vr,)

can be absorbed into }O%QH in Sections 8.4 and 8.5, respectively. We will be show in 8.7 that the interaction
of Wqt1,nma. With previous perturbations wgy1,,, will satisfy

E (Wgt1,mmax @ Wa 1,00 + Wat 10 @ W1 mpnar) = 0. (8.64)
n/ <nmax—1
Thus it remains to analyze
Pmax
div | Wa+1,mmax ® Wa1,mmax T § R
p=1

from (8.63). Reusing the notations from (8.28)—(8.29), we can write out the self-interaction of wyy1.n,,,, as

div (wq+1,nmax ® wq+1,nmax)

= > div (cwrl (o VL U gttnmn ) @ cttl (a0 VO Ugq11,m,00) )

€,i.5.k,p,0

+ Z div (curl (a(S)V@a,k)U57q+1’nmax) ® curl (a(f,)V@{i,,k,)Ug/’qH,nmx))
#{&.4,5.k.p,0}

=divO,, .1 +divO,, . 2. (8.65)
As before, we will show in Section 8.7 that O, 2 is a Type 2 oscillation error and so
Onper,2 = 0.
Splitting O, 1 gives
div Onn;ax; Z div <( (z k)Wf q+1,nmax © q)(z k)) (9 ( VCI)(; k)Wf,q‘H Nmax (I)(z,k)))
5%%10,17,1
+2 Z div ((a(g)V@&}k)Wg,qH,nmax o (I)(i,k)) s (Va(g) X (V(P,(Z;IC)UE,q—&-l,nmax o @(i,k))))
&igikpl
+ Y div ((Vag x (VoL Ueatimm © Pan) ) © (Vae x (VOF 1)Uttt © i) )))
Eigkpd
= div (Onma)mlal + OnmaX7l 2+ Onmmm ) . (866)

The last two of these three terms are again divergence corrector errors and will therefore be absorbed into
Ry41 and estimated in Section 8.8.

Recall cf. (8.3) that W¢ gy1.n,.. is periodized to scale ()\qul'r'qu]’nmax) = A 2. Combining this
observation with (4.15) from Proposition 4.4 and (7.8), we further split O 1 as?3

Nmax,1,

div (Onpp1,1) = Z div (a%&vq)&lk) ( s We,q+1,mmax © We g41,mmax ((I)(i,k))> V(I)@%)
&,1,5.k,p.0

+ Y div (a’(ﬁ)vq)(z 1P 220 e Pl nma pmax+ 11 (We g1 mmax © We g4 1m0 (R0, k))V‘I’@?;;))
&isd k.l

37In this case, Py has a greater minimum frequency than Py, ,, 111, cf. (9.28), (9.22), and (7.6). For the sake
ZAg, nmax [4,7max,Pmax+1]

of consistency, we write HDE)\q,nmax P nmax,pmax+1] throughout this section.
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T 2j+4 2 2 9, Nmax;P:J,0K -1 _T
= div Z quJrl’"mx’quZH Mi,j5,k) Ve <52j+4> VCI)(“C) (E®¢E) V(I)(i’k)
iwjykan 3 g+1,"max,p q+1

2 —1 -T
+ Z va(i)v(p(i,k)lpz)\q,nmax ]P)[q7nmax7pmax+1] (W£7(I+17nmax ® ngqJ"anax)(é(i,k))VQ(i’k)

§,4,,k,p,l

—1 0 -1
+ Z a%&) (v¢(’i,k))OCOPZ)‘CL”maxP[q7nmax’pm‘dx+1] (WfanFl;nmaxwg,qul,’nmax)(¢(i,k)))8a(v(b(i7k))cr\/' (8'67)

ISUNELH N

By (4.1) from Proposition 4.1 and (8.8), we obtain that

. 2j+4, 2 2 Mmax,PyJ%,k -1 -T
div E 5 Oqnma L g1 Wi k) Ve (5 : p112j+4) VO 1) (@8 VO,

ivjvkapaf 3 q+1,"max,p q+1
=di 2 2j+4 .
B dlv Z T](Z’J7k) (6q+17nmax’pFQ+1 Id - RQynmax7p>
isgikop,l
Pmax
= —di 2 ; 2 2j+4
= —div Z Z n(i,j,k)Rq,nmax,p +V E 77(i,j7k)5q+1,nmamprq+1
i,4,k, I P=1 il
Pmax
= _dIV : : RQ7nxx\ax7P + Vﬂ-7 (868)
p=1

where in the last line we have used (6.142). We can apply Proposition A.18 to the remaining two terms in
(8.67) to produce the terms

(H+7R") < Z Va%g)VQ)&)lk)PZAqmmw Pl nmax pmax+1] (W& W)e,g+1,mmax (¢(i7k))v(b&?;)

§:4.9,k,pl

+ > aé)(Vq)&}k))aepz/\qv"maxP[q’”max@max+1](WQW’Y)E,qﬂ-lmmax(q)(i,k))aa(vq)(_i}k))(y>’ (8.69)

§:0,9,k,p,l

which will be absorbed into Rq+1 and estimated in Section 8.6.
Before combining the previous steps, we remind the reader that at this point, R441 will be fully defined,

and will include ]%Z_‘(_"i“‘*l, all the error terms arising from the addition of wgt1,n,,,,, and ]%gomm. Then from
(8.63), (8.64), (8.65), (8.66), (8.67), (8.68), and (8.69), we can finally write that

Orvg41 + div (Vg1 @ Vg11) + VPgnpan—1
= div R 4 div (Rp31") + (00 + 0, * V)Wt + Wt 1 - V0

q

+ E div (Wet1,mmax @ Wat1,n/ + Wat1,n' @ Was1,mmax)

n/ <nmax—1

Pmax
+ le wq"l‘l;nmax ® wq+1;nmax + : R‘L”mava

p=1

= diV égomm + diV <RZrTXI + (H + R*) (8twq+1777/max + ,Ulq ' qu+17nmax)

+ (H + R*) (wq+17nxnax ’ V’qu) + Z (wq+1,nmax @ Wo41,n' + Wat1,n @ qurl,Thnax))

n/<nmax—1

Pmax
+ div (Onmax,l,l +O0nma12+ 0013+ 0n, 2+ g Rq,nmax,p> + Vm

p=1
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= div R;omm + div <jo_‘f" + (H 4+ R*) (0Wat1,mmae + Ve, - VWat1,mmar) (8.70)

transport

+ (H +R") (Wgrtnmar - Ve, ) + Z (W1 mmax © Wot1,n/ + Wa1r @ wq+1,nmax)> (8.71)

n' <nmax—1

Nash
Type 2
+ div (Onmx,l,z + Onan 1,35+ Onpy 2 ) + Vm (8.72)
N——
divergence corrector Type 2

+div (H+RY) (Y Vaj Ve, P

q Mmax

Pg s P11 (W @ W) 041 (Pa 1)) VR (8.73)

£ig.k,p,l
Type 1
+ > o (VR )a0P2s i Plammaetman 1V W e g L (2000 )0 (V) ) )
&,1,5,k.p
Type 1

(8.74)
= div (éq-&-l) + Vm,

concluding the proof after again noting that (8; + vy, - V) wgy1,5 has zero mean.

8.4 Transport errors

Lemma 8.4. For all 0 < n < nyax, the transport errors satisfy

Dt,qwq+17ﬁ = 8twq+1ﬁ + Vg, - qu+1,ﬁ = div (H + R*) (8twq+1ﬁ + Vg, - V’LUqulﬁ) + Vs

with the estimates

H/l/}i,qDND]W ((H + R*) (6‘twq+1ﬁ —+ /Uéq . quJrl ﬁ))

Cr—1 it+1 1 ~—1
S Og+2lgt )‘q+1M (M’ ind,t> Tq F11-1-17Fq+1 q )

Iz

for all N, M < 3Nipq v.

Proof of Lemma 8.4. The transport errors are given in (8.38), (8.54), and (8.70). Writing out the transport
error, we have that

(875 + v, - V) We+1,m = (@ + vy, - V) Z curl (ag,i,j,k,q,ﬁ7ﬁfv¢6,k)Uf,q-i'lﬁ o ‘I)(zx,k))
i3,k B.LE
= Y (@t V) (VO ) Wegiia o P
i,k BLE

+ > (O 4w, - V) Vag) x (VikUegriio Pn)
i3,k BLE

+ > Vagy x (((0r +ve, - V) VO 1)) Ug g1 © Pigy) (8.75)
i3k, B0E

Due to the fact that the second two terms arise from the addition of the corrector defined in (8.5) and
(8.12), and the fact that the bounds for the corrector in (8.17) are stronger than that of the principal part
of the perturbation, we shall completely estimate only the first term and simply indicate the set-up for the
second and third. Before applying Proposition A.18, recall that the inverse divergence of (8.75) needs to be
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estimated on the support of a cutoff ¢; , in order to verify (7.13), and (7.20), and (7.27). Recall from the
identification of the error terms (cf. (8.36) and the subsequent argument) that for all 7, (875 + vy, - V) Wqt1,7
has zero mean. Thus, although each individual term in the final equality in (8.75) may not have zero mean,
we can safely apply H and R* to each term and estimate the outputs while ignoring the last term in (A.78).

We will apply Proposition A.18, specifically Remark A.19, to each summand in the first term on the right
side of (8.75), with the following choices. We set v = vy, and Dy = Dy 4 = 0y + vy, - V as usual. We set
N, =M, = [1/2(Ngin5 — Neut,t — Neut,x — 5)], with Ngec and d satisfying (9.60a). We define

G = (@ + e, - V)ag VL) E,

i = —1pi—cat3 = 5 =—1p-1
with A =T 1A mp v =", P My = Ninga,t, ¥ =T, L and

. NI i—ca+ji+5_—1
CG—}S“pp(”i,j,k,q,ﬁ,ﬁ,l)|5q+1ﬁ,1rq+1 Tq

which is the correct amplitude in view of (8.14) with » = 1 and r = ry = 2, and (6.114). Thus, we have
that

IDXDMG|,, S Co MgiiTas)¥ M (M, Nina, — 1,7, TS+ 70 1r;+1) (8.76)

for all N, M < [1/2(Ngn 5 — Neut,t — Neut,x — 5)] after using (9.42) and (9.52), and so (A.66) is satisfied. We
set @ =P, and N = Xq. Appealing as usual to Corollary 6.27 and (6.60), we have that (A.67) and (A.68)
are satisfied.

Referring to (1) from Proposition 4.4, we set 0 = 0¢ A, 1,12 a0d U = Ve x oy rpy - Setting ¢ = Agp1,
we have that (i) is satisfied. Setting g = Ag417g+1,53 = Aqn and referring to (2) from Proposition 4.4,
we have that (ii) is satisfied. Setting A = ( = A1 and Cy = 14415 and referring to (4.11) and (4.12)
from Proposition 4.4, we have that (A.69) is satisfied. (A.70) is immediate from the definitions. Referring
0 (9.48), we have that (A.71) is satisfied. Thus, we conclude from (A.73) with ar as in (9.53), that for
Nv M < L1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,x - 5)J - d7

| DY D (1 (@1 + ve, - D)ag VR 6) )| | = DYDY (Geo @),

1/2 i—ci+j+6 _—1 y—1 N . - ~—1p—
< [supp ( Y| LA WA T ot idgri Nt M (M, Nina,e, 7 Toy, 7 Tty )

after appealing to (9.42). From (9.60c), these bounds are valid for all N, M < 3Njuq. The bound obtained

above is next summed over (4, j, k, p, 1, l_j First, we treat the sum over L. By noting that (6.147) with r; = 2
and ro = 2, and (9.42) imply

j Sp . . Sy
i—cx+j+6 (§+%)+7+2 i—citj+6 _ T 2+3
Z’SUpp (s j kg D) | D1 <Tyy Lo =T
T
we conclude that

IDN DY (R (wqir i+ ve, - Vwgir )

+1

b 13 1/2 ~_ 11—

2

DY rq+1 T e A AN M (M Nind,ts 7y T4 1, 7 rqH)
V'=i—1j,k,p,§

HLI(Suppwi,q)

4+2 2 —17pi+1 "'—1 1
<Fq+1 6q+1n1 q Tq+1 n)‘q+1/\q+1M (M de s Tq Fq+1’ q Fq-i-l)

ST 0oy M (M, Ninaye, 7y T 71T L) (8.77)

after also using (9.57).

To finish the proof for the first term in (8.75), we must provide a matching estimate for the R* portion.
Following again the parameter choices in Remark A.19, we set No = M, = 3Njnqv. As in the argument from
Lemma 8.6, we have that (A.75), (A.76), and (A.77) are satisfied, this time with { = Ag41. Thus we achieve
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the estimate in (A.79). Summing over ['loses a factor less than )\2 11, while summing over the other indices
costs a constant independent of g. This completes the estimate for the first term from (8.75).

For the second and third terms, we explain how to identify G and ¢ in order to give an idea of how to
obtain similar estimates. Using 1 from Proposition 4.4 and the vector calculus identity curl curl = Vdiv — A,
we obtain that

U g1, = curl (gA;ftledil (7957>\q+1,rq+1,ﬁ)) = )‘quilg xV (Adi1 (1957%+1ﬂ“q+1,ﬁ)) : (8.78)

With a little massaging, one can now rewrite the second and third terms in (8.75) in the form Goo ®(; 1.
Since both terms have traded a spatial derivative on Ug 4117 for a spatial derivative on a(), inducing a gain,
one can easily show that the estimates for these terms will be even stronger than those for the first term.
Notice that we have set N, = M, = |1/2 (Ngn5 — Neut,t — Neus,x — 7) | since we have lost a spatial derivative
on a(e). We omit the rest of the details. O

8.5 Nash errors
Lemma 8.5. For all 0 <7 < npyax, the Nash errors satisfy
Wet1,7 - Vg, = div ((’H, +R*) wgs1, - vaq) + Vps
with
[s.a DD (- AR wgim - Voe,) [ S 82l Afa M (M Nina e, 73 T8 D7)
for all N, M < 3Nina,v.

Proof of Lemma 8.5. The estimates are similar to those in Lemma 8.4. Writing out the Nash error, we have
that

T
Woprs Vo, = Y ), cul (%i,j,k,q,ﬁV‘I’(i,mU&,qH,ﬁ O‘I’(z;k))
imlsisitl ik pile

Z Vag x ((I’g;,k)Ué,qul,ﬁ 0@(“@)) - Vg,

i,k BLE
+ D aVe i WegriaoPun | - Vo, (8.79)
i3,k BLE

Due to the fact that the first term arises from the addition of the corrector defined in (8.5) and (8.12),
and the fact that the bounds for the corrector in (8.17) are stronger than that of the principal part of the
perturbation, we shall completely estimate only the second term and simply indicate the set-up for the first.
Before applying Proposition A.18, recall that the inverse divergence of (8.75) needs to be estimated on the
support of a cutoff ¢; 4 in order to verify (7.5), (7.13), and (7.20). Note that the Nash error can be written
as div (wq+1,’ﬁ . qu) and so has zero mean. Thus, although each individual term in the final equality in
(8.79) may not have zero mean, we can safely apply H and R* to each term and estimate the outputs while
ignoring the last term in (A.78).

We will apply Proposition A.18 to the second term with the following choices. We set v = vy, and
Dy = Dty = 0y + vy, - V as usual. We set N, = M, = [1/2(Ngn 5 — News,x — Neut,t —4)], with Ngee and d
satisfying (9.60a). We define

G =a@) Ve L& Vo,
and set

— /2 i—ci+j+5_—1
Ca = |supp (ni,mk,qﬁ,ﬁ,l)‘6q+1ﬁ,1 a+1 Tq -

A=TgriNgmp V= Tq_lI‘zflﬁ+37 M = Nipq, and v = ?q_ll—‘jil. From (8.14) with r =1 and r; =79 = 2,

(6.114), and (6.60), we have that for N, M < |1/2(Ngp 5 — Neut,x — Neut,t — 4)]

IDNDMG| ., S Co (Tarirgms)™ M (M, Nina,i 75 TS, ?;11“(;31> : (8.80)
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and so (A.66) is satisfied. Note that we have used (9.39) when converting the 5;/2Xq to a 7,'. Setting

O =& 5y and X = Xq, we have that (A.67) and (A.68) are satisfied as usual. The choices of g, ¥, ¢, u, A,
and C, are identical to those of the transport error (both terms contain We 41157 o ®(; 1)), and so we have
that (i)-(ii), (A.69), (A.70), and (A.71) are satisfied as well. Since the bound (8.80) is identical to that of
(8.76), we obtain an estimate identical to (8.77). The argument for the R* portion follows analogously to
that for the first term from the transport error. Finally, after using (8.78) again, one may obtain similar
estimates for the first term in (8.79), concluding the proof. O

8.6 Type 1 oscillation errors

The Type 1 oscillation errors are defined in the three parameter regimes n = 0, 1 < n < nya — 1, and
N = Nmax. In the case m = 0, Type 1 oscillation errors stem from the term identified in (8.37), which we
recall is

Mmax Pmax

* -1
(H+R )( > Vet VO Poro (D Y Pl + Plomme et
&gk pl n=1 p—1

X (Weg1,0 © We g41,0)(P(i,i) ) VR

Mmax Pmax

+ Z a(f Vcb‘z k))OL@]PZ)\q,o (Z Z Plgn.p + P[qvnmax7pmax+1])

571737k7p7l n=1 p=1
X (Wg,q+1,0wg,q+1,o)((I)(i,k))aa (V‘P(i}k))@) . (8.81)

This sum is divided into the terms identified in (8.39), (8.40), (8.41), (8.42), (8.44), and (8.45). The errors

defined in (8.44) and (8.45) are H o n.p €rrors and will be corrected by later perturbations wqy 1, while the

others will be immediately absorbed into ég 11
In the case 1 <7 < npax — 1, Type 1 oscillation errors stem from the term identified in (8.53)

Mmax Pmax

(H+R") < > v, vq>(—k)IP>>w( > Pl +P[q,nm,pm+u)

€35,k B0 n=n+1 p=1

X (We g1, © Weg11,5) (k) VO

Mmax Pmax

+ Z a(&) Z k))a9P>)\‘1 n < Z Z ]P)[q)n:p] + P[‘]7nxnax7pmax+1])

&iv3 .k, n=n+1 p=1
X (quJrlﬁWz,qul,ﬁ)(q)(i,k))aa(vq)(i}k))@) . (8.82)

This sum is divided into the terms identified in (8.57), (8.58), (8.59), (8.60), (8.61), and (8.62). As before, the

last two terms are H. gn p errors and will be corrected by later perturbations, while the others are absorbed

into Rq 1
In the case T = nmax, Type 1 oscillation errors are identified in (8.73) and (8.74) as

(H+R") ( Z Va(g)vq)( k) A, nmax [q Mmax,Pmax+1] (W§7q+1 Tmax @ We g1, nmax)( )V(I)(Z k)
&ig.kopl

— 0
+ Z a%f)(vé(i,lk‘))aa]PZ)‘qy"maxP[Qvnmavamax"rl} (Wg,qul,nmang,q-i-l,nmax)(q)(i,k))a (VQ(Zlk)) >
&5kl

(8.83)

These errors are completely absorbed into ID%,I_H.
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To prove the desired estimates on these error terms, we will first analyze a single term of the form

(H+R") < D Vai VO Pox, Planpn(We gi1. © We g 1) (D(ir) VO L,
&gkl

+ Z a%&)(V(I)&,lk))aOPE/\q,ﬁP[q,n,p] (WE g4 1,5WE 4117 (2(0.k)) 0 (Ve k)) )
€.ingik, Bl
= (H+R") Oz 5np - (8.84)

The estimates in Lemma 8.6 for this term on the support of a cutoff function ; , will depend on 7 and
p, which range from 0 < n < ngae and 1 < p < puax, respectively, and n and p, which range from
n+1<n<npax and 1 < p < prax, with the additional endpoint case n = nyax, P = Pmax + 1. We then
use this general estimate to specify in Remark 8.7 how the terms corresponding to various values of n, n, p,

and p are absorbed into either higher order stresses H ;n p OF R? "1, and eventually éq+1.

Lemma 8.6. The terms Oz 5., , defined in (8.84) satisfy the following.

(1) For the special case n = Nmax, P = Pmax + 1 and all 0 <1 < npax, 1 <P < Prmax, as well as for all cases
0<n<n<Nmax; 1 <p,0 < Pmax, the nonlocal portion of the inverse divergence satisfies

< a2 AN ~M (8.85)

||DND£\,/([1 (R*O n,p,n,p HL] (T3) = )\ +1 q

for all N, M < 3Nipq.v.

(2) For n = Nmax, P = Pmax + 1, all 0 <1 < npax and 1 < P < pmax, the high frequency, local portion of the
inverse divergence satisfies

HDNDM O 5, ina+1) ||L1 (supp i q)

ST T Sga A M (Mvad T Tt qufq‘l) (8.86)
for all N, M < 3Njna,v.

(3) For0 <n <n < Nmax and 1 < p, D < pmax, the medium frequency, local portion of the inverse divergence

satisfies

DY DI (MO 5in0) | Lrgupp () S Sa+1impAgin pM (M, Nind,e, 7, ' To 5+, pq—+11~q—1) (8.87)
for all N + M < Ngp n.

Remark 8.7. Note that after appealing to n <n —1, (9.35), and (9.42), (8.87) matches (7.15), (7.22), and
(7.29), or equivalently (6.118). In addition, after appealing again to 7 < n—1, (9.35), and (9.42), (8.85) and
(8.86) are sufficient to meet (7.13), (7.20), and (7.27).

Proof of Lemma 8.6. The first step is to use item (1) and (4.15) from Proposition 4.4 to rewrite (8.84) as
(H+R) ( Z va%ﬁ)vq)(_i,lk)PZ}\q,ﬁP[qm,pl (We g1 ® Wﬁ,q+1,ﬁ)(@(i,k))vq)(_z k)
&g kBl

—1 0 -1
+ Z a%&) (V(I)(i,k))BaPE/\q,aP[q,nm] (Wf,qul,ﬁWZ,qul,ﬁ)(q)(ivk))aa(vq)(i,k))WN>
I ZRRN A

=M +RY) ( Z P>, Plan.p) ((Qi,kq+1vrq+1,ﬁ)2> (P k)

&gkl
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x (%aé) (Vo) €€ (Vorlk),, + oo (T2n) eat’e 00 (V%}m)%)). (8.88)

Next, we must identify the functions and the values of the parameters which will be used in the application
of Proposition A.18, specifically Remark A.19. We first address the bounds required in (A.66), (A.67), and
(A.68), which we can treat simultaneously for items (1), (2), and (3). Afterwards, we split the proof into
two parts. First, we set n = Nmax, P = Pmax + 1 and prove (8.85) for only these specific values of n and p,
as we simultaneously prove (8.86). Next, we consider n < npya.x and prove (8.85) in the remaining cases, as
we simultaneously prove (8.87).

Returning to (A.66), we will verify that this inequality holds with v = vy, , Dy = Dy ¢ = 0; +vg, - V, and
N, = M, = |N*/2], where N* = Nfin 5—Ncut,t —Neut,x—5. In order to verify the assumption N, —d > 2Ngec+4,
we use that Nge. and d satisfy (9.60a), which gives that

2Ndec + 4 S |_1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,x - 5) - dJ . (889)
Denoting the ' component of the below vector field G' by G, we fiz a value of (€, 1, j, k7;5,l_') and set
2 -1 0 -T 2 -1 0 -1
G = Dod?, (V@(M))%g & (Voik))  +al (VeGk) Nass’e 00 (vq>(i7k))m . (8.90)
We now establish (A.66)—(A.68) with the parameter choices
Cg = |supp (ni’j’k’qﬁ’ﬁ)\Fzﬂg?’*CbF;CquHXq H (fq,n/f‘gif") , (8.91)
n'<n

MLt My = Ninay, v = 7, T 5, 5= 77101, and X' = \,. Applying Lemma 8.1 and estimate

(8.25) with r =2, ro = 1, r; = 00, and the bounds (6.113) and (6.114), we see that

o) e ).,

25+5 N —1pi—cg+3 ~—1p—1
S Isupp (0, ;4 550 Tart Aqiidar1,75(Lar1de,mp) M(MNind,t,Tq Lo, Fq+1)

2j—2—-C
S [supp (0, 5 g 550 Tar

X Tty ogiady [T (FanT5E) Cosidgmp) M (M N, 7, T2 7 T0 L ) (8.92)
n’'<n

holds for all N, M < |1/2(Ngns — Neut,t — Newsx — 5)]. To achieve the last inequality, we have used the
definition of 44175 in (9.34) and the definition of f; 7 in (9.31) to rewrite

— L T+Cp _ —1 —Cr Y 8+Cy
Og+1apAaaplqr1” = Taplyg Fgr1dq famwToin") -

n'<n
For the second half of G, we can appeal to (6.113) and (6.114), and use that Xq < Ag,p for all 7 and p to
deduce that for N, M < [1/2 (Ngy 5 — Neut,t — News,x — )] we have

HDND%% (Vo) < (Cgrirgams) T M (M Nipae, 7 TS, 7 1T

~ q q+1°"q q+1)'
L“(Supplﬂi,qm,k,q)

YK
Combining these estimates shows that
DYDY Gyl 0 S Co Carrrgmp) M (M’ Nind»tv751F21c15+37?;1r;l1> (8.93)

for N, M < [1/2(Ngin5 — Neut,e — Neut,x — 5)], showing that (A.66) has been satisfied.

We set the flow in Proposition A.18 as ® = @, ;,, which by definition satisfies D; ;®; » = 0. Appealing to
(6.109) and (6.112), we have that (A.67) is satisfied. From (6.60), the choice of v from earlier, and (9.39),
we have that Dv = Duy, satisfies the bound (A.68).
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Proof of item (2) and of item (1) when n = npax, P = Pmax + 1. We first assume that 7 < nmax.
In this case, we have that the minimum frequency A n,..+1,0 Of Plg nis pmax+1] 18 larger than the minimum
frequency A, 7 of P>, . from (9.28) and (9.22). We therefore can discard P>, from (8.88) and with the
goal of satisfying verifying (i)—(iii) of Proposition A.18, we set

€ = Agntmax+1,05 n= )\q,ﬁa A= Ag11, (8.94)

and
0 = Plgnmax pmax-+1] ((Qs,xw,rw,ﬁ)Q) ) (8.95a)
U= Agfinmaxﬂ,oA_dP[q,nmx,pmx+1] (Qé,\ﬁl,rﬁm) ) (8.95b)

where we recall that ¢ » , is defined via Propositions 4.3 and 4.4. We then have immediately that

2
0= ]P)[q)nmaxypmax"l‘l] ((957>\q+177"q+1‘71,) )

_ y—2d dy2d —d 2
- A‘]vnmax‘f‘LOA )\q:nmax+170A (P[Q$nmax’pmax+1] (95))‘11+177'q+1,ﬁ))

= A 41,087, (8.96)

and so (i) from Proposition A.18 is satisfied. By property (1) of Proposition 4.3, we have that the functions
0 and ¥ defined in (8.95) are both periodic to scale (Aq+1rq+1,5)_1 = A L and so (ii) is satisfied. The

estimates in (A.69) follow with C, = 1 from standard Littlewood-Paley arzuments (see also the discussion
in part (b) of Remark A.21) and item (5) from Proposition 4.4. Note that in the case N = 2d in (A.69),
the inequality is weakened by a factor of AJf,, for an arbitrary agr > 0; thus, (ii) is satisfied. At this stage
let us fix a value for this parameter ag: we choose it to be sufficiently small (with respect to b and er) to
ensure that the loss )\:ﬁl may be absorbed by the spare negative factor of I';11 in the definition of Cg, as is
postulated in (9.53). From (9.19), (9.22), (9.26), and (9.29), we have that

)‘q < )‘qﬁ,if < Aqﬁ < Aqﬁnmax+170 < )‘q+1»

and so (A.70) is satisfied. From (9.48) we have that

N ec
)\4 < )\Qyﬁ ‘
T\ 2nvVBl g1 A s

if Ngec is chosen large enough, and so (A.71) is satisfied. Applying the estimate (A.73) with « as in (9.53),
recalling the value for Cg in (8.91), using (6.19) and (6.147) with 1 = co and ro = 1, we obtain that
| DN DM (HO
i+1
2j—3—Chppr—
S Z Z A%®[supp (ni,j,k,q,ﬁ,ﬁ,fﬂrqzrl Ty o
i'=i—1 E,j,k?,f
x 8geihg ] (JamTEES) CLCTTMUN,1,¢A) M (M, My, v, 7)
n’'<n
< P (DT, “0peidy TT o T35 ) A b oA M (M Nina o7, T 70T )
n'<n

ST ST 5,000 M (M, Ninae, 7y T+ %*1r;+11> , (8.97)

ﬁ7ﬁ7”n}axypmax+1> HLI (supp ¥i.q)

’'q

for N, M < |1/2 (Nfin,i — Neut,t — Neus,x — 5) | —d. In the last inequality, we have used the parameter estimate
(9.54), which directly implies

_ ~ Ie _ —Cro—
T, %8grq [] (fq’n’rgilb) Agmmant10 < Tt Tgi10g 42 (8.98)

n'<n
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Then, after using (9.60c), which gives that for all 7 we have
|_1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,x - 5)J —d 2 3Nind,va (899)

and thus the range of derivatives allowed in (8.97) is exactly as needed in (8.86), thereby proving this bound.

Continuing to follow the parameter choices in Remark A.19, we set No = M, = 3Nipnq,v, and as before
Nt = Nen s — Neut,t — News,x — 5. From (9.60d), we have that the condition N, < N*/1 is satisfied. The
inequalities (A.75) and (A.76) follow from the discussion in Remark A.19. The inequality in (A.77) follows
from (9.43), (9.55), the fact that A = Ty 1055 < Tgr1Ag i pmae> A ¢ = g 41,0 > Agnmar—1 = Agiis
as in the discussion in Remark A.19. Having satisfied these assumptions, we may now appeal to estimate in
(A.79), which gives (8.85) for the case 7 < n = Nmax, P = Pmax + 1, and any value of p.

Recall we began this case by assuming that n < npyax. In the case 1 = nypax and 1 < p < pmax, we have
from (9.22) and (9.29) that Mg ... > Agnmext1,0, and SO

Pl e pmaxt 11222, 5 = Pa

a,Mmax

Then we can set ( = g = Agpn,... The only change is that (8.98) becomes stronger, since g n,.. >
Ag,nmax+1,0, and so the desired estimates follow by arguing as before. We omit further details.

Proof of item (3) and of item (1) when p # pmax + 1 and n < nyax. Note that in both of these
cases we have n < n. We first point that that we may assume that n and p are such that A\; 5 < Agnp. If
not, then P>, P =0, and so the estimate is trivially satisfied. We then set

¢ =max Agi Adgnp-1}s  £=Agm A= Agnp (8.100)

and
0=P>x, 2 Plgnp) ((‘Q57)‘q+1arq+l,ﬁ)2) ) (8.101a)
0= Ao Py (i) (8.101b)

We then have from the discussion part (b) of Remark A.21 that

2
0= ]P)>)‘ ~IP)[‘L 1p] (ggv)\q+1,"'q+l,ﬁ)

= C_QdAdCQdA_d (]P)>)\q E]P)[q,n,p] (Q§7)‘q+lvrq+l,ﬁ)> ’
= (¢ 2A%, (8.102)

and so (i) from Proposition A.18 is satisfied. By property (1) of Proposition 4.3, o and 9 are both periodic
to scale ()\q+1rq+1,7~1)71 = )\;%, and so (ii) is satisfied. The estimates in (A.69) follow with C. = 1 from the
discussion in part (b) of Remark A.21. Note that in the case N = 2d in (A.69), the inequality is weakened
by a factor of A%, and so (ii) is satisfied. Here we again use agr as in (9.53), so this loss will be absorbed
using a factor of Fyt1. From (9.19), (9.26), (9.29) and (9.22), and the assumption that Ay 7 < Agn,p, We
have that _

A S A K Agn Smax{Agm, Agnp-1} < Agnps

and so, since A < A,11, (A.70) is satisfied. From (9.48) we have that

Ngee
TR . T —
e 2W\/§Fq+1/\qﬁ,§

and so (A.71) is satisfied. Applying the estimate (A.73) for the parameter range in Remark A.19, recalling
that (8.90) includes the indicator function of supp (¢; ), recalling the definition of C¢ in (8.91), using (6.19)
and (6.147) with r; = co and ro = 1, and using (! < )\;}l »—1, We have that

|0 D

O5.5,n.p) H L1 (supp v;,q)
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i+1
27—3—C —C
S D D AT (0 g m s T T

=il gkl
X 5‘I+1Xq H (fq’nlrgi§b> C*CilM (Na 1; Cv A) M (Mv Mtv v, ﬁ)
n'<n
S Fq+1F;_i1Fq_CR5q+1Xq H (fq’"'rgigb) )\;}l,p—l)‘é\,’n,pM (M’ Ni“‘“’Tq_lrtizjﬁ-clﬁ—i_{?q_lrf;&l)
n'<n
< SartmpA, M (M, de,t,Tglr;;jﬁ+4,%;1r;jl) : (8.103)
In the last inequality, we have used that since n < 7, by (9.34) we have
_ g C _
Fq CR(Squl)‘q H (fq,n’rgilb> Aq,:z,pfl < 5q+1,n,p (8'104)

n’'<n

for all N, M < [1/2 (Ngin 5 — Neut,t — Neut,x — 5)| —d. Then after using (9.61), which gives that for all m < n
that

|_1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,x - S)J —d Z Nﬁn,n7 (8105)

we have achieved (8.87).

Continuing to follow the parameter choices in Remark A.19, we set No = M, = 3Ninq,v, and as before
Nt = Nfn & — Newt,t — News,x — 5. From (9.60d), we have that the condition N, < N*/4 is satisfied. The
inequalities (A.75) and (A.76) follow from the discussion in Remark A.19. The inequality in (A.77) follows
from (9.55) and the fact that A = Tg110; 55 < Tgr1Ag i pae a0d ¢ = max{Ag 5, A\gnp—1} = Agn. We then
achieve the concluded estimate in (A.79), which gives (8.85) for the case p # Pmax + 1, 7 < Nmax and any
values of n, p with 7 < n. O

8.7 Type 2 oscillation errors

In order to show that the Type 2 errors (previously identified in (8.43), (8.55), (8.56), (8.71), (8.72)) vanish,
we will apply Proposition 4.8 on the support of a specific cutoff function

M= g kgnpd = ViaXik.aXenp®ida.npCq,n,l

Before we may apply the proposition, we first estimate in Lemma 8.8 the number of cutoff functions n* which
may overlap with 7, with an eye towards keeping track of all the pipes that we will have to dodge in order to
successfully place pipes on 7. The next three Lemmas ((8.9)-(8.11)) are technical in nature and are necessary
in order to apply Lemma 4.7. Specifically, we show that given 7, n* and a fixed time ¢*, one may find a
convex set which contains the intersection of the supports of n and n* at ¢*. The time t* will be the time at
which the pipes on n* are straight, and combined with the convexity, Lemma 4.7 may be applied. The upshot
of this is that the pipes belonging to n* only undergo mild deformations on the support of 7. This allows
us to finally apply Proposition 4.8 to place pipes on 1 which dodge all pipes originating from overlapping
cutoff functions n*. We remark that since X, ,, , depends only on n and p, which are indices already encoded
in wj j q,n,p, throughout this section we will suppress the dependence of the cumulative cutoff function n on
Xg.n,p (defined in (6.104)), as it does not affect any of the estimates.

8.7.1 Preliminary estimates

Lemma 8.8 (Keeping Track of Overlap). Given a cutoff function n consider the set of all

i,5,k,q,m,p,l’

tuples (i*,j*, k*,n*, p*, l_:") such that the cutoff function Nie = ke g p= I satisfies:
(1) n* <n
(2) There exists (x,t) such that
i g gL e o o g po 1+ (2:8) # 0. (8.106)

116



Then the cardinality of the set of all such tuples is bounded above by C,I'qy1, where the constant C,, depends
only on Nmax, Pmax; Jmax, and dimensional constants. In particular, due to (9.2), (9.3), and (6.129), C,, is
independent of q and the values of the other parameters indexing the cutoff functions.

Proof of Lemma 8.8. Recall that the cutoff functions are defined by

ni,j,k,q,n,p,f(xa t) = Vi g (T, 1) Xi kg ()X gm.p (Wi, gm,p (T t)(i7q7k7n’f(x, t). (8.107)

As noted in the outline of this section, we will suppress the dependence on Y, , ,,, since the n and p indices
are already accounted for in w; j 4 np. The proof proceeds by first counting the number of combinations
(i*, k*) for which it is possible that there exists (x,t) such that

Vi,g(T5 1) X b,q (£) i g (T, 1) X o g (£) # 0. (8.108)

Next, for a given (i*, k*), we count the number of values of (j*,n*,p*) such that there exists (x,t) such that
Wi j,q,n,p(Z; E)Wis jo g n= pr (2, 1) 7 0. (8.109)

Finally, for a given (i*,k*, j*,n*, p*), we count the number of triples (I*,w*, h*) such that n* < n and there
exists (x,t) such that

Ci,q,k,n,p,l'(x’ t)Ci*,q,k*,n* P (z,8) #0. (8.110)

Recalling the definition of x;,, from (6.96) and (6.98), we see that ; 4X;k*,, Mmay have non-empty
overlap with ¢; ¢X; k¢ if and only if k* € {k — 1,k, k + 1}. Next, from (6.19), we have that only ;_, , and
i1, may overlap with 1; ;. Now, let (z,t) € supp ¥; ¢ k,q be given such that there exists k;_1 such that

wiv‘](x7 t)Xi,k,q (t)wi—1,Q($7 t)Xi—l,kith (t) 7é 0.

From the definition of x;_1,k, ,,q, it is immediate that the diameter of the support of x;—1k, ,,¢ is larger
than the diameter of the support of x; k4. It follows that there can be at most three values of k* (one of
which is k;_1) such that x;_1 - 4 has non-empty overlap with x; . Finally, let (z,t) € supp; qXikq be
given such that there exists k;11 such that

Vi q(2,0) X kg (D) Vit 1,¢(T, 1) Xi4 1,00 41,4(t) # 0.

From the definition of ;i1 k=4, there exists a constant C, depending on x but not ¢, g, or £* such that for
all |k'| > C\T'g41
Xit1,kisr+k,q(E)Xik,q(t) =0

for all ¢ € R. Therefore, the number of £* such that x;i1 +,, may have non-empty overlap with x; 1,4 is no
more than 2C, ;11 + 1. In summary, the number of pairs (i*, k*) such that (8.108) holds for some (z,t) is
bounded above by

3+3+2C,Iy41+1<3C, ¢4 (8.111)

if Ag is sufficiently large, where the implicit constant is independent of ¢ or any other parameters which index
the cutoff functions.

Now let (i*, k*) be given such that ¥;« 4x;+ k¢ has nonempty overlap with v; 4xi k4. Once values of n*,
p*, and j* are chosen, these three parameters along with the value of ¢* uniquely determine a stress cutoff
function wi« j« g.n= p+. Since * was fixed, we may let j*, n*, and p* vary. Using that j* < jmax < 4b/(er(b—1))
from (6.129), n* < Nmax, P* < Pmax Where npax, and ppax are independent of ¢, the number of tuples
(i*, k*, 5%, n*,p*) such that there exists (z,t) with

Vi g (T, 8)Xi kg (%, Wi j.g.n.p (T, 1) ix g (T, ) Xix e g (T, ) Wi jx g pr (2,) # 0 (8.112)

is bounded by a dimensional constant multiplied by I 1nmaxPmax4b/(er(b — 1)).
Finally, fix a tuple (i*,k*, j*,n*,p*) such that (8.112) holds at (z,t). From (6.139), there exists I =
(I*,w*, h*) such that ., = (x,t) #£ 0. From (6.141), (6.108), and the fact that n* < n, there exists a

i*,q,k>,n 0>
dimensional constant C¢ such at most C¢ of the checkerboard cutoffs neighboring ¢ = can intersect the

i*,q,k*,nx 0
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support of (Z.,q’ - Since all Lagrangian trajectories originating at (x,t) follow the same velocity field v, and
the checkerboard cutoffs are precomposed with Lagrangian flows, this property is preserved in time. Thus
we have shown that for each tuple (¢*,k*,5*,n*, p*), the number of associated tuples (I*,w*, h*) such that
Ci*7q, ke [+ CAN have nonempty intersection with C@q’ km’lﬁs bounded by a dimensional constant independent
of q.

Combining the preceding arguments, we obtain that the number of cutoff functions Nie o ke g p= I
which may overlap nontrivially with Mijdegmopil is bounded by at most a dimensional constant multiplied by

Iy+1MmaxPmax4b/(er (b — 1)), finishing the proof. O

Lemma 8.9. Let (z,t), (y,t) € supp ;4 be such that wﬁq(x,t) > 1/ and wzq(y,t) < 1/8. Then there exists
a geometric constant C, > 1 such that

[z —y| > C (Tyhg) . (8.113)
Proof Lemma 8.9. Let L(x,y) be the line segment connecting z and y. From (6.36), we have that for
z € L(x,y) (in fact for all z € T?),

1— g
Vig(2) S iy ™ (2)AT g (8.114)
Thus we can write

<7 (@) — 7 (. 1) < 2[Wig(2) — Yig(y)]

<2 /0 Viig(x+t(y — ) (y—x)dt

<2}z —y|[[Vigll e
S PoAgle =yl
and (8.113) follows. O

Lemma 8.10. Consider cutoff functions

M=, kgl = ViaXikaWiganpSi g i

* L P — . . . . -
M= T o e g e B = Vit g Xt ke qi 50 g 7 G gor g

where n* < n and n and n* overlap as in Lemma 8.8. Let t* € supp X k+,q be given. Then there exists a
convex set ) := Q(n,n*, t*) with diameter /\;}L,orqﬂ such that

(supp Ci7k,q,n7l~ﬂ {t= t*}) C Q C supp Yit q- (8.115)

Proof of Lemma 8.10. Let (z,t9) € supp (nn*). Then there exists i’ € {i —1,4,7+ 1} such that 1/)1-2,7,1(1,150) >

1. Consider the flow X(z,t) originating from (z,ty). Then for any t such that [t — to| < TqF;jT5+c°, we

can apply Lemma 6.24 to deduce that wf,ﬂ(t,X(x,t)) > i. By the definition of x;- - 4, the fact that
i* € {i—1,i,i+ 1}, the existence of (x,t9) € supp (Xi k.qXi.k*.q)» and the fact that t* € supp x;« k= ¢, we in

particular deduce that wf,’q(t*, X(z,t*)) > i. Now, let y be such that
X (@,t%) =yl < Apholann AT <CA?

for C, given in (8.113), where we have used the definitions of A, 0 in (9.26), (9.27), and (9.28). Then from
Lemma 8.9, it cannot be the case that 1/)12,7,1(75*, y) < %, and so

y €supp vy o N{t =t"} Csupp iz N{t =t"}. (8.116)

Since y is arbitrary, we conclude that the ball of radius I'y41 )\;;70 is contained in supp ¥+ ,N{t = t*}. Welet
Q(n,n*,t*) to be precisely this ball (hence a convex set). Since DG jgni=0and (z,t9) € supp Cikgnl
we have that X (x,t*) € supp CLk,q,n’fﬂ {t = t*}. Then, recalling that the support of <i,k,q,n,F must obey
the diameter bound in (6.141) on the support of X; k.4, which contains the support of x;« x+ 4 by (6.103), we
conclude that

supp G,y o p{E =13 C Q. (8.117)
Combining (8.116) and (8.117) concludes the proof of the lemma. O
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Lemma 8.11. As in Lemma 8.8, consider cutoff functions

M= 5 kgl = ViaXik.aWigansS g gnb

* J— . . e e -
= M v kx g p=,0* — Yix qXi* k*,qWix 5 .q,n* p* ik gm T

Let t* € supp Xi= x+,q be such that ®* := @ y«y is the identity at time t*. Using Lemma 8.10, define
Q= Qn,n*,t*). Define Q(t) := Q(n,n*, t*,t) := X(Q,t), where X(-,t*) is the identity.

(1) Fort € supp Xi k.q
supp7(-,t) C Q(t) C supp it q. (8.118)

(2) Let W* o &* := Wé*Jqﬁi*nZl o @« 1y be an intermittent pipe flow supported on n*. Then there exists

a geometric constant Cpipe such that
N
(suppW*o@*N{t=t"}NQ) C U Shs
n=1

where the sets Sy, are cylinders concentrated around line segments Ay, for n € {1,..., N} with

2
N < Cpipe (A‘”‘> ) (8.119)

—1
/\q7n,0rq+1

(8) W* o ®*(-,t) and the associated axes A, (t) and sets Sy (t) satisfy the conclusions of Lemma 4.7 on the
set QU(t) for t € supp Xik,q-

Proof of Lemma 8.11. From the previous lemma, we have that for all y € €, wfiyq (y,t*) > 1/s. Applying
Lemma 6.24, we have that for all ¢t with |t — t*| < TqF;ﬂ'HC", the Lagrangian flow originating from (y, t*)
has the property that

Uit X (y,) > /16, (8.120)

Recalling from (6.102) that the diameter of the support of X;« i+ 4 is TqF_fl“" and that i —1 < ¢* <i+1, we
have that in particular the Lagrangian flow originating at (y, t*) satisfies (8.120) for all ¢ € supp X+ i+, From
(6.103), (8.120) is then satisfied in particular for all ¢ € supp x; k¢, thus proving the second inclusion from
(8.118). To prove the first inclusion, we use (8.115), the definition of (¢), and the equality D, , 0
to deduce that

i,k,qn,l T

supp Ci,k,q,n,f(.’ t) - Q(t)a

finishing the proof of (8.118).

To prove the second claim, recall that W* o ®* at t = t* is periodic to scale A, L

q,n*
the diameter of € is 2/\;;)01"%1 (in fact Q is a ball). Considering the quotient of the respective diameters
squared, the claim then follows after absorbing the geometric constant ng from Proposition 4.3 into Cpipe.

To see that we may apply Lemma 4.7, first note that = Q(t*) is convex by construction, and so the
first assumption of Lemma 4.7 is met. We choose v = vy, and X and ® to be the associated backwards and
forwards flows originating from t, = t*. From (6.60), (8.118), and (9.19), we have that for ¢ € supp x; x.q
and = € Q(t),

for n* < n, and

Vg, (2,)] S 0,2 XT3 = 6,2 A T3, (8.121)

and so (4.21) is satisfied with C' =i+ 7. Recall again from (6.103) that supp X;« - 4 contains the support of

Xi kg, and that from (6.102) the support of X;» x4 has diameter qu";?c‘). We then use (9.39) and (9.19)
to write that for any t € supp X« i+, we have

* 7i*+C0+1 —1+co+2
it -t < Tol' g1 <7l

~ —1
1/2 co+6 —i4co+2
< (§q/ )‘quOH ) Fq+1 ’
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-1
_ 1/2 co+11 —i4co+2
- (5q ’\qu-H ) Fq+1

< (eam)
so that (4.20) is satisfied since C' +2 =i+ 9. We can now apply Lemma 4.7, concluding the proof of the
Lemma. O
8.7.2 Applying Proposition 4.8
Lemma 8.12. The Type 2 oscillation errors vanish. More specifically,
(1) When n =0, the Type 2 errors identified in (8.43) vanish.
(2) When 1 <1 < npmax — 1, the Type 2 errors identified in (8.55) and (8.56) vanish.
(8) When 1t = nymax, the Type 2 errors identified in (8.71) and (8.72) vanish.

Proof of Lemma 8.12. We first recall what the Type 2 oscillation errors are. When n = 0, the errors identified
in (8.43) can be written using (8.30) as

0072 = Z curl (a(ﬁ)vq)g;,k)U&(H-l,O o (I)(z',k)> ® curl (a(g*)V@a*7k*)U§*,q+170 o (I)(i*,k:*)> , (8122)
#{&i.5.k.5.0}

where the notation # {¢,1i,7,k,p, f} is defined in (8.29) and denotes summation over all pairs of cutoff
function indices for which at least one parameter differs between the two pairs. When 1 < n < npy.y, the
Type 2 errors identified in (8.55) and (8.71) can be written as

2 Z Wyt1,7 s Wet1,n' = 2 Z Z Z curl (a(g)vq)(qék)Ug’qulﬁ o (I)(i,k:)>

n! <m—1 nF<T—1 g i gk BTEr it kI
@y curl () VOh. 1y Uer g1 © Diis 1) ) - (8.123)
When 1 <7 < npax, the Type 2 errors identified in (8.56) and (8.72) can be written as
Z curl (a(E)VCI)a,k)U&qHﬁ) ® curl <a(5*)V¢a*7k*)U5*7q+1ﬁ) , (8.124)
#{&0.0.k.51}

where the notation # {¢,1, j, k, p, l_} has been reused from (8.29). To show that the errors defined in (8.122),

(8.123), and (8.124) vanish, it suffices to show the following. For pairs of cutoff functions n, ., = -7 and
Nie = ke g p= I satisfying the two conditions in Lemma 8.8, and vectors &,&* € =, /
i,k
supp (Ws,qﬂ,% ° ‘I)(W) AYSUPD N, ;4 g.7.5.0
‘*,4*7k}*, *, *,f* o
N supp (Wz_*quJﬁ Pt o ‘I)(i*,k*)> OYSUPD 1y i e g e e 15 = 0. (8.125)

The proof of this claim will proceed by fixing 7, using the preliminary estimates, and applying Proposition 4.8.
Let 7 be fixed and assume that wgi1,/ for n’ < n has been defined (when n = 0, this assumption is
vacuous). In particular, placements have been chosen for all intermittent pipe flows indexed by n’. Now,

consider all the cutoff functions Wi i kil utilized at stage m. Since the parameters indexing the cutoff

functions are countable, we may choose any ordering of the tuples (i, j, k,p, [) at level n. Combined with an
ordering of the direction vectors ¢ € =, we thus have an ordering of the cutoff functions Wi j kg il and the
associated intermittent pipe flows szqiln K o Dy

To ease notation, we will abbreviate the cutoff functions as 7, and the associated intermittent pipe flows
as (Wo ®),, where z € N corresponds to the ordering. We will apply Proposition 4.8 inductively on z such

that the following two conditions hold. Our goal is to place the pipe flow (W o @), such that
supp (W o @), Nsupp (W o @), Nsuppn, =0, (8.126)
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for all 2’ < z, and such that
SUPP Wy+1,n» N supp (Wo @), Nsuppn, =0, (8.127)

for all n’ < n. The first condition shows that all Type 2 errors such as (8.122) and (8.124) which arise from
two sets of pipes both indexed by n vanish, while the second condition shows that the Type 2 errors which
arise from pipes indexed by n’ < 1 interacting with pipes indexed by 7 vanish, such as (8.123).
Throughout the rest of the proof, 2z’ will only ever denote an integer less than z such that n, and 7,
overlap. Although we have suppressed the indices, note that 7., and 7, both correspond to the index 7.
Conversely, let 7.~ denote a generic cutoff function indexed by n’ which overlaps with 7,. By Lemma 8.8,
there exists a geometric constant C,, such that the number of cutoff functions 7,/ or n,~» which overlap with 7,
is bounded above by C,I'g41. Let ¢,/ € supp Xi.s k. ,q D€ the time for which ®D;_, k., ¢ is the identity, and let
Q(nz,m.,t.) be the convex set constructed in Lemma 8.10, where we have set t* =t,,. Let Q (n,,n./,t./,t)
denote the image of Q (n,,n./,t,/) under this flow, as defined in Lemma 8.11. We then have that the set

supp (Wo @), Nsupp Q (0., 1., t ) N{t =t} (8.128)

. . . . ’ ’
is contained in the union of sets S? concentrated around axes AZ for

2
q,n
A2

q,n,0

2
n < Cpipel'g41

and the flowed axes AfL, and pipes of (Wo®),, satisfy the conclusions of Lemma 4.7. Furthermore, substituting
2" for z’ in the preceding discussion, all the analogous definitions and conclusions can be made for cutoff
functions 7.~ and pipe flows (W o ®),.

We will apply Proposition 4.8 with the following choices. Let ¢, be the time at which the flow map ®; . 4
corresponding to 7, is the identity. Set

= <U Q(ﬂz’ﬂzwfzwtz)> U ( U Q(nzanz”ytz”atz)> (8.129)

z2'<z n'<n
and set

5

()

N - o Ag+1 . q+1 if n Z 2
=1 2en0 Ay \ 5 o1 . 8.130
' ot Ag+1 (;\qﬂ) rq+1 ifn=1 ( :
Xq e~
pv ifn=0

We have used here the definitions of \;z ¢ given in (9.27), (9.26), and (9.28). Note that by (8.118),
supp 7. (-, tz) C Q(nz,Mar,tar,t,) for each 2’ < z, with the analogous inclusion holding when z’ is replaced
by z”. In particular, we have that suppn.(-,t,) C Q. Furthermore, we have additionally from Lemma 8.11
that Lemma 4.7 may be applied on Q(t) for all ¢ € x; x,q. Thus, the diameter of Q(n,,n./,t./,t.) satisfies

diam (Q (12, 0z, ter,t2)) < (L+ T )diam ((n2, 0, t2)) = 201+ T )A, % (Tt (8.131)

q,m,0

Using that the diameter of the support of 7,(-,t,) is bounded by a dimensional constant times )\q_;1 o from
(6.141) and recalling that suppn.(-,t.) C Q (1., 1., t.r, t.) with the analogous conclusion holding for z”, we
have that

diam(Q) < 4(1+T, ) DA F Lopr + Do A &

<4 q,n,0 q,n,0
< 6(1 + Fq_-&ﬂrq-i-l (/\qﬁ,O)_l
< 16(Ag1m)

for each value of n from (8.130), and so (4.28) is satisfied.
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Now set

Ag )(‘é)'ﬁ“

Ca = CpipeCpl'g41, T2 =Tg+1,n =
gt

where above we have appealed to (9.23) and (9.25). By (8.119) and Lemma 8.8, the total number of pipes

contained in € is no more than )

A2
3 n
CoipeCyl'gta )\qu'

q,n,1
Then we can write
A2 r2
) 3 qn 2
Cplpecnrqﬂ 22 = CA7T2’
q,n,0 1

and so (4.29) is satisfied. Furthermore, the assumptions on the axes and the neighborhoods of the axes re-
quired by Proposition 4.8 follow from Lemma 8.11, which allows us to appeal to the conclusions of Lemma 4.7.
Finally, from (9.58a), we have that for n > 2,

A\ (%) -%—1_4 A\ (%)ﬁ—l.%.g
C.Card < 16C.CorpeCyT'yin <AL) < <Ail> T8 =, (8.132)
q q

showing that (4.31) is satisfied for n > 2. In the cases n = 0 and n = 1, the desired inequalities follow
from (8.130) and (9.58b) and (9.58c), and so we have checked that (4.31) is satisfied for all 0 < 7 < nypax.
Then from the conclusion (4.32) of Proposition 4.8, we have that on the support of 2, which in particular
contains the support of 7,(+,t,) from (8.118), we can choose the support of (W o @), to be disjoint from the
support of (Wo®),, and (Wo®),~ for all overlapping 2z and 2’. Then since D; o(Wo®), = Dy ((Wo®),, =
Dy o(Wo ®)., =0, (8.126) and (8.127) are satisfied, concluding the proof. O

8.8 Divergence corrector errors

Lemma 8.13. For all 0 <1 < Nmax, 1 < P < Pmax, and j € {2,3}, the divergence corrector errors O 1 ;
satisfy
k —Cr—1 k i+1 _—1 =1 ~—1
”wi»qD ngOﬁJJHLl §Fq+f 5q+2)‘q+1M (kaindvt’rzzr-qu ’Fq+1Tq )

for all k,m < 3Njnq,v.

Proof of Lemma 8.13. The divergence corrector errors are given in (8.31), (8.49), and (8.66). The estimates
for j = {2,3} are each similar, and so we shall only prove the case j = 2. Thus we estimate

Z/Ji,quDZlq Z ((a(ﬁ)vq’@},k)wﬁmﬂﬁ ° q’(%’%)) ® (VG(E) x (V‘I)axk)Us,qH,ﬁ o ‘b(i”k))))

&k ] L
(8.133)
Recall that £ takes only six distinct values and that j < jmax, P < Pmax are bounded independently of ¢.
Furthermore, on the support of ¥; 4, only 1;_1 4, ¥4, and 9,41 4 are non-zero from (6.19). As a result, only
time cutoffs Xi—1,k,95 Xi.k,q» @a0d Xi+1,k,q may be non-zero. Since for each ¢ the x; x,,’s form a partition of
unity in time for which only two cutoff functions are non-zero at any fixed time, for every time, the sum in
(8.133) is a finite sum for which the number of non-zero terms in the summand is bounded independently
of g. Similarly, the sum over [ forms a partition of unity which only finitely many cutoff functions overlap
at any fixed point in space and time. Therefore we may absorb the effects of £, j, k, p, and ['in the implicit
constant in the inequality.
Using Hoélder’s inequality and estimates (8.16) and (8.17) from Corollary 8.2 with r = 2, ro = 1, and
r1 = 00, we have that for N, M < [1/2 (Ngy 5 — Neut,t — Newt,x — 2Ngec — 9) ],

> |

£,i.5,kBT

Wiy D" DY, ((a(f)v¢6},k)ws,q+1ﬁ ° ‘I’(i’,k)) ® (V%) X (V(I)%;’,k)wé,q-f—lﬁ ° ‘I’(z%k))))’

Ll
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8+Cp _ \k i—cy+4 F-1 q,n,p
STSCG, A M (m,det, TS rq+1) e
q

Cr—1 —1pi+1 "'—1 —
ISR 5q+2’\q+1M (m Nina,t, 7q Tgh1, 7q Fq+1)

which proves the desired estimate after recalling that for all n,

L1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,x - 2Ndec - 9)J 2 3Nind WV
8+Cs 5q+1 mp)‘q n,p < 5q+2F Cr—1

q+1 )\qul q+1
—cg+4<1,
which follow from (9.60b), (9.34) and (9.54), and (9.42), respectively. O

8.9 Time support of perturbations and stresses

First, we prove (7.12). Indeed, appealing to (5.1), which defines }Oﬁq in terms of a mollifier applied to ]Q%q,
(9.20), which defines the scale at which lqu is mollified, and (6.104), which ensures that the time support

. -1
of wyy1,0 is only enlarged relative to the time support of Ry, by 2 (51/2)\ Fgﬂ) , we achieve (7.12). To

prove (7.14) and (7.16), first note that application of the i inverse divergence operators H and R* commutes
with multiplication by X, ,, ,-** Then by the definition of Rqul and Hq n.p i Section 8.3, we achieve (7.14)
and (7.16). Proving the inclusions in (7.19), (7.21), (7.23), (7.26), (7.28), and (7.30), follows similarly from
(6.104), the properties of H and R*, and the definitions of R"H and H;, , in Section 8.3. Finally, to see
that (7.4) follows from the inclusions already demonstrated, notice that the threshold in (7.4) is weaker than
any of the previous inclusions by a factor of I'y;1, and so we may allow the time support of R 1 to expand
slightly as n increases from 0 to ny., while still meeting the desired inclusion.

9 Parameters

The purpose of this section is to provide an exhaustive delineation of the many parameters, inequalities,
and notations which arise throughout the bulk of the paper. In Section 9.1, we define the g-independent
parameters in order, beginning with the regularity index 3, and ending with the number a,, which will be
used to absorb every implicit constant throughout the paper. Then in Section 9.2, we define the parameters
which depend on ¢, as well as the parameters which depend in addition on n and p. The definitions of both
the g-independent and g-dependent parameters will appear rather arbitrary, but are justified in Section 9.3.
This section contains, in no particular order, consequences of the definitions made in the previous two sections
which are necessary to close the estimates in the proof. Finally, Sections 9.4 and 9.5 contain the definitions
of a few operators and some notations that are used throughout the paper.

9.1 Definitions and hierarchy of the parameters
The parameters in our construction are chosen as follows:

(i) Choose an arbitrary regularity parameter g € [1/3,1/2). In light of [11, 43], there is no reason to consider
the regime § < 1/3.

(ii) Choose b € (1,3/2) sufficiently small such that
28b < 1. (9.1)

The heuristic reason for (9.1) is given by (2.8). Note that (9.1) and the inequality 5 < 1/2 imply that
B(2b+ 1) < 3/2, which is a required inequality for the heuristic estimate (2.22).

38This is simple to check from the formula given in Proposition A.17 and the formula for the standard nonlocal inverse
divergence operator given in (A.100), both of which involve operations which are purely spatial, such as differentiation and
application of Fourier multipliers.
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(iii) With 8 and b chosen, we may now designate a number of parameters:

(a) The parameter nmax, which per Section 2.4.2 denotes the total number of higher order stresses
R, and thus primary frequency divisions in between )\, and A;yi, is defined as the smallest

integer for which
5 4 Tmax —1
1-28b> | = . 9.2
=2 (3) (9.2

(b) The parameter pyax, which per Section 2.4.2 denotes the total number of subdivided components
Rynp of a higher order stress R, and thus secondary frequency divisions in between A, and
Ag+1, is defined as the smallest integer for which

1 1-28b

’ <75 - (9.3)

(¢) The parameter C; appearing in (3.21) is use to quantify the L' norm of the velocity cutoff functions
Yi,q- 1t is defined as

b+4
_ _ 4
Gy b1 (9.4)

(d) The exponent Cg is used in order to define a small parameter in the estimate for the Reynolds
stress, cf. (3.15). This parameter is then used in the proof to absorb geometric constants in the
construction. It is defined as

CrR=4b+1. (9.5)

(iv) The parameter co, which is first introduced in (3.20) and utilized in Sections 7 and 8 to control small
losses in the sharp material derivative estimates, is defined in terms of nyax as

Co = 4nmax +5. (96)

(v) The parameter er > 0, which is used in (9.18) to quantify the finest frequency scale between A, and
Ag+1 utilized throughout the scheme, is defined as the greatest real number for which the following
inequalities hold

1-2
6F(7+CR+nmax(8+Cb))) < mﬁ

1[4 et
e L () (9.7D)

(9.7a)

100 \ 5
b
er < m (97C)
er(co+7) <1— 5. (9.7d)

(vi) The parameter ag > 0 from the L' loss of the inverse divergence operator is now defined as

- Er(b — 1)
QR = T (9.8)

(vii) The parameters Ncyg ¢ and Neygx are used in Section 6 in order to define the velocity and stress cutoff
functions. Neytx is the number of space derivatives which are embedded into the definitions of these
cutoff functions, while Ny ¢ is the number of material derivatives. See (6.6), (6.14), and (6.119). These
large parameters are chosen solely in terms of b and er as

1 3b 150
7Ncut,x = Ncut,t = ’V “ . (99)

2 1) 2
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(viii) The parameter Niyqt, which is the number of sharp material derivatives propagated on stresses and
velocities in Sections 3 through 8, is chosen as the smallest integer for which we have

4

Ninds = | —-——
.t ’VEF(b—l)

-‘ Ncut,t . (910)

(ix) The parameter Niyq v, whose primary role is to quantify the number of sharp space derivatives prop-
agated on the velocity increments and stresses, cf. (3.12) and (3.15), is chosen as the smallest integer
for which we have the bounds

4bNinas + 8 + b(Cr 4+ 3)ep(b — 1) +23(b* — 1) < er(b— 1)Nipa,v - (9.11)

(x) The value of the decoupling parameter Ngec, which is used in the LP decorrelation Lemma A.2, is
chosen as the smallest integer for which we have

1[4\ 4
Now (= (=) - L 12
d (30 (5) €F> Zho1 (912)

(xi) The value of the parameter d, which in essence is used in the inverse divergence operator of Proposi-
tion A.18 to count the order of a parametrix expansion, is chosen as the smallest integer for which we

have
1[4\ (12Nipa,y + 7)b
D= (= - —_ 1
(d >(30<5) 5F)> iy (9.13)

(xii) The value of Ng,, which is introduced in Section 3 and used to quantify the highest order derivative
estimates utilized throughout the scheme is chosen as the smallest integer such that

3
5Nﬁn > (2Neut,t + News.x + 14Nina v + 2d + 2Ngee + 12)27mextl, (9.14)

(xiii) Having chosen all the previous parameters in items (i)—(xii), there exits a sufficiently large parameter
a, > 1, which depends on all the parameters listed above (which recursively means that a. = a.(8,b)),

and which allows us to choose a an arbitrary number in the interval [a.,c0). While we do not give a

formula for a, explicitly, it is chosen so that afkb_l)er is at least twice larger than all the implicit constants

in the < symbols throughout the paper; note that these constants only depend on the parameters in
items (i)—(xii) — never on ¢ — which justifies the existence of a..

Having made the choices in items (i)—(xiii) above, we are now ready to define the ¢-dependent parameters
which appear in the proof.

9.2 Definitions of the ¢-dependent parameters
9.2.1 Parameters which depend on ¢
For ¢ > 0, we define the fundamental frequency parameter used in this paper as
A = 2l 1om2a] | (9.15)
Definition (9.15) gives that A, is an integer power of 2, and that we have the bounds
1
q q

ol <A <200 and A <A <2 (9.16)
for all ¢ > 0. Throughout the paper the above two inequalities are used by putting the factors of 1/3 and 2
into the implicit constants of < symbols. In terms of Ay, the fundamental amplitude parameter used in the
paper is

b+1 _
§g = ATVPN 2 (9.17)
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In terms of the parameter er from (9.7), we introduce a parameter which is used repeatedly throughout the
paper to mean “a tiny power of the frequency parameter”:

Agr1 )"
Tyr1 = ( ;“) . (9.18)
q

In order to cap off our derivative losses, we need to mollify in space and time using the operators described
in Section 9.4 below. This is done in terms of the following space and time parameters:

A= AT5 (9.19)
Tl =77 N3N - (9.20)

While 7, is used for mollification and thus for rough material derivative bounds, the fundamental time
parameter used in the paper for sharp material derivative bounds is

~ —1
T, = (5q/2Aqr;f;+16) . (9.21)

Note that besides depending on the parameters introduced in (i)—(xiii), the parameters introduced above
only depend on g, but are independent of n and p.
9.2.2 Parameters which depend also on n and p

The rest of the parameters depend on n € {0, ..., %max} and on p € {0,...,pmax}. We start by defining the
frequency parameter A, , and the intermittency parameter rq41,,, by

= 2l ()77 e (1) ] 022
A
Tq+1,n = )\q,n (9'23)
q+1

for 0 < n < nyax. In particular, (9.22) shows that A\j417441, is an integer power of 2, and we have the
bound

4 )n+l

4\l o a\ntl 4
Al /\,11+$5) < Mg < aal?

Al_(é)wrl

ol : (9.24)

while (9.23) implies that r—L is an integer power of 2, and we have the estimates

q+1
(%)n+1 (%)n+1
(=) srens2(2) (9.25)

)\qul q+1

As with (9.16) we absorb the factors of 2 in (9.24) and (9.25) into the implicit constants in < symbols.
We also define the frequency parameters A; , p by

Agop =Tgi1rg n=10,0<p < P (9.26)
4 1

Ag1,0 = Ad Agi1 n=1,p=0 (9.27)
a\n—l s q_(a\y"1ls

Agn0 = Ag‘“) “AM“) ’ 2 <n < Npax + 1 (9.28)

Mgy = A brme \/rmess 1 <7 < Nimaxy 0 < P < Proax. (9.29)

For 0 < n < npax, we define

fao=1 n=0 (9.30)

Agniro) /ome
fq n — L 1 S n S Nmax- (931)
' )\q,n,O
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We define d441.0,p by

0g4+1,01 = 11;CR(5q+1 p=1 (9.32)
6‘1+1’07P = 0 2 S p é Pmax- (933)

When 1 <n < npax and 1 < p < pax, we define 6411,n,p by

_ A
Og+1.np =Ty Rgp - < : ) : H (fq,nffﬁifb) . (9.34)

Agn,p—
q;n,p—1 n'<n

We remark that by the definition of A; 1,0 given in (9.27), and more generally A, ., in (9.29), the fact that
n > 1, and a large choice of pyax which makes f; ,, (defined in (9.31)) small, dq41 . p is significantly smaller
than F(;CRéq_;,_l.

For 1 < n < nyax, we define ¢, in terms of cg by

ch =¢o—4n. (9.35)

For n = 0, we set
Nfin,0 = 5 Nfin, (9.36)

while for 1 <n < numax, we define Ng, » inductively on n by using (9.36) and the formula

1
Nﬁn,n = \‘2 (Nﬁn,n—l - Ncut,t - Ncut,x - 6) - dJ . (937)

9.3 Inequalities and consequences of the parameter definitions

The definitions made in the previous two sections have the following consequences, which will be used
frequently throughout the paper.

Due to (9.15) we have that I'g4q > (1/2)1’”)\5)_1)EF > (1/2)b6F)\(()b_1)5F > (1/2)aib_1)er. As was already
mentioned in item (xiii), we have chosen a, to be sufficiently large so that al’7Ver s at least twice larger
than all the implicit constants appearing in all < symbols throughout the paper. Therefore, for any ¢ > 0,
we may use a single power of I'g1q to absorb any implicit constant in the paper: an inequality of the type
A < B may be rewritten as A < T';y1B.

From (9.18), (9.19), and (9.7¢), we have that

Td 0 < Mgt - (9.38)

From the definition (9.21) of 7, and (9.35), which gives that c, is decreasing with respect to n, we have that
for all 0 < n < Npax

red0o./2 A <7t (9.39)

Using the definitions (9.17), (9.18), (9.19), and (9.21), writing out everything in terms of A\;_1, and
appealing to (9.7d), we have that

TR <t (9.40)
T T g1 6,72 (9.41)

From the definitions (9.6) of co and (9.35) of c,, we have that for all 0 < n < npax,
R (9.42)
From the definition of 7, it is immediate that

7_(;1X3 <7l< Tq—ngqu_ (9.43)
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From (9.7d), the assumption that 8 > 1/3, and the assumption b < 3/2, we can write everything out in terms
of A\; to deduce that
—179 —1
T T <74 (9.44)

From the definitions (9.22) and (9.26)—(9.29), for all 0 < n < npax and 0 < p < ppax we have

A
P« 1.
>\117"

More precisely, when n = 0 we have that

N _1

PyriAgnp _ Fg.;.l/\q _ FZ-H)“I _ <)\q+1) sHTer (9.45)
Ag.n Aq.0 Ag.0 Aq
while for n > 1 it holds that
4yn(d_5 _ 1 (4yrmax
Cyi1Agnp Cyi1Agniio B Agt1 (5)"(5—8)+ter Agi1 30 (5) +er

< - < (9.46)

Ag.n Ag,n Aq Aq

as it is clear that the quotient on the left hand side is largest when n = ny.x. Note that due to (9.2) we
have 3—10 (%)nmax —er < 173%& —er < é — Ter; here we also used that ep < %, which handily follows from

(9.7b). Combining (9.45) and (9.46) we thus arrive at

_1(4 "max |
Lgr1Agnp < <>\q+1> 3(5) r
)\‘Ln o )\q

L(%)nmax+gr

S (2)\271)730

(9.47)

for all 0 < n < Npax and 0 < p < ppax. Combining the above estimate with our choice of Ngec in (9.12), we

thus arrive at
N ec
AL < e ) . (9.48)
S 27T\/§Fq+1>‘qﬁ,ﬁ

for all 0 <7 < Npax and 1 < p < proax.
Next, we a list a few consequences of the fact that Ningv > Nina, as specified in (9.11). First, we note
from (9.43) that
T a1 SN N < A (9.49)

where in the second inequality we have used that ep < 2%1;' In turn, the above inequality combined with
(9.11) implies the following estimates, all of which are used for the first time in Section 5:

b1 - s Nind

NG5 (Fhma) 0 < T (9.50a)
q

2 (7l mge) et < TN (9.50b)

N 102 D28 A (F gy g )Nmae < T (9.50¢)

Next, as a consequence of our choice of Neyy,¢ and Neyg x in (9.9), we obtain the following bounds, which
are used in Section 6

X‘Z/’A’I‘q—Ncut,c < )\EF;Ncum <1. (9.51)

for all ¢ > 0. The fact that Ninq¢ is taken to be much larger than Ny ¢, as expressed in (9.10), implies when
combined with (9.49) the following bound, which is also used in Section 6:

~—1\Neu 4Ny Nind,
(T(ITq 1) ‘< Agrit < Fq+i“ (9.52)
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for all ¢ > 1.
The parameter ag is chosen in (9.8) in order to ensure the inequality

Xoty < Ty, (9.53)

for all ¢ > 0. This fact is used in Section 8. Several other, much more hideous, parameter inequalities are
used in Section 8, and for the readers’ convenience we list them next. First, we claim that

_ g C _ —Cry—
Pyl %00 [] ( fqmll“gilb) A o ST ST 5. (9.54)

n' <Mmax

In order to verify the above bound, we appeal to to the choices made in (9.1), (9.2), and (9.3), to the
definitions (9.19), (9.27), (9.28), (9.31), and the fact that n < npay, to deduce that the left side of (9.54) is
bounded from above by
1
5, T3+ g </\q,nmax+1,o> P
et A, max+1,0 Ag,1,0

1—(4)max 5 1 %7 % Mmax 5
= 6 +1F6+nmax(8+cb) ( )\q )( (5) 6) <>‘q+l> Pmax (O (O) 6)
q q+1 )\q+1 )\q
_ 4 1-28b 4
< )‘q(;q+1 1—‘6+nmx(8-~-cb) )\q+1 (1=28b)5 )\q+1 105
-\ q+1 /\7 \
q+1 q q

IA

Cppe AgOgt1 74C 8+Cy) [ Ag+1
F CRF 1 6 ) qYq+ F + R+nmax( +Cp q
( q+17 q+1%9+2 Agi10g42 11 Ay

—Crp—1 T+Crtnmax (834Cy) [ Ag+1 ~1=28)zs
< (Fq+?rq+15q+2) Lo M ()
The proof of (9.54) is now completed by appealing to (9.7a), which ensures that Iy represents a sufficiently
small power of Aa+1/x,.
Next, we claim that due to our choice of d, we have

_ ~ CoriAgipme \© 3Ninay _ Ogt2
L, %60 ] (fq,n,rgﬁb)AqH (‘”qu> (A ) < /\? . (9.55)

7/ nax 7

In order to verify the above bound we use the previously established estimate (9.54) in conjunction with
(9.47); after dropping the helpful factor of I‘qffCR, we deduce that the left side of (9.55) is bounded from
above by

1—\ A _ d—1 .
5o\ A 241714, Pmax ()\4 )SNind,v
q+27q,Nmax+1,0Ng+1 N g+1
q,n

(2)\2—1) *(dfl)(;*o(é)nmax *EF) )\12N;nd1‘,

5q+2 )\3
q+1

— )5 q+1
/\q+1

The choice of d in (9.13) shows that the above estimate directly implies (9.55).

The amplitudes of the higher order corrections wg1,n,, must meet the inductive assumptions stated in
(3.13). In order to meet the satisfactory bound in Remark 8.3, from (9.32)—(9.34), we deduce the bound

/2 -2 g1/
5q+1,ﬁ47 < T 51040 (9.56)

Indeed, the case n = 0 follows from the definition of Cg in (9.5), while the case 7 > 1 is a consequence of
the definition (9.34), which implies that 47 5 < 40,1, for any 7 > 1 and any p > 1.

Another parameter inequality which is necessary to estimate the transport and Nash errors in Sections 8.4
and 8.5, is

it g e AL <TG 9.57
q+1 9911,7,17q Te+1,nM+1 S Lo q+2 ( )
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for all 0 <71 < Npax. When 1 = 0, this inequality may be deduced by writing everything out in terms of A4,
appealing to the appropriate definitions, and then using that 8 < 1/2 from item i, (9.1), (9.4), (9.5), (9.6),
(9.7b), after which one arrives at
b—4 1 1 3 9
4+ ——+4+-—-C 12 26+1) < —+ - < .
6{‘( t5t Gt >+ﬁ( +1) 10 t3 <z
It is clear there is quite a bit of room in the above inequality, and similarly, (9.57) becomes most restrictive
when 7 = nmax. In this case, one may again write everything out in terms of A,, move everything to the left
hand side, and appeal to the most of the same referenced inequalities as before to see that

3 1
er (22 + 4nma) + (20 +1) = 5 < er (224 dnuma) + 5 — 5 <0,

where in the last inequality we have instead appealed to (9.7a) rather than (9.7b), proving (9.57) in the
remaining cases 1 <7 < npypax-

Parameter inequalities which play a crucial role in showing that the Oscillation 2 type errors vanish,
see Section 8.7, are:

4\A+1 a\—1 5
A (3)" A (3)" %3 B
16C.CpipeCnlg4+1 ( 4 ) < < q ) Fq‘fl, for n>2, (9.58a)
Ag+1 Ag+1
A )Pl VRN
160*Cpipecnl“q+1( 1 > <] . (9.58b)
Ag+1 Ag+1
4)2 4
A (3)°4 A 53
16C,CpipeCnlyiy <q> < ( 4 ) : (9.58¢)
Agt1 Ag+1

where C, is the geometric constant from Lemma 4.8—estimate (4.31), Cpipe IS a geometric constant which
appears in Lemma 8.11-estimate (8.119), and C, is the constant from Lemma 8.8. In order to verify (9.58),
we first note that C.CpipeCy < I'q41, since a, was chosen to be sufficiently large. Inequality (9.58b) is then
an immediate consequence of the fact that 16/5 > 3. The bound (9.58a) follows from

é)”rﬂax*l ( 64 b

A\ A+1 4\A—1 5
Not1 (3 %-%) Mot 1 (3)"a-(3)" 83
F5 < ( q+ ) < q+ )
q+1 /\q

Aq
The second inequality in the above display is a consequence of n < myax, while the first one follows from
(9.7b). Finally, inequality (9.58¢) is a consequence of the fact that 64/25 — 12/5 > 64/35 — 5/2 and the first
inequality in (9.59), which bounds I'} ;.
We conclude this section by verifying a few inequalities concerning the parameter Ngy n, which counts

(9.59)

the number of available space-plus-material derivative for the residual stress Ry . For all 0 < n < npax we
require that

Nind,ta 2Ngec +4 < LI/Z (Nﬁn,n - Ncut,t - Ncut,x - 5)J —d,
14Nind,v < Nfin,n - Ncut,t - Ncut,x - 2Ndec - 97

6Nind,v S |_1/2 (Nﬁn,n - Ncut,t - Ncut,x - G)J —d ) (96OC
6Nind,v S L1/4 (Nﬁn,n - Ncut,t - Ncut,x - 7)J . (960d

for all 0 < n < npax. Additionally for 0 < n < n < nyax, we require that
L1/2 (Nﬁn,ﬁ - Ncut,t - Ncut,x - G)J —d > Nﬁn,n (961)

holds. The inequality (9.61) is a direct consequence of the recursive formula (9.37) and of the fact that the
sequence Ngy, n is monotone decreasing with respect to n. Using (9.36) and (9.37) one may show that

Nﬁn,n Z 27nNﬁn,0 - (2d + Ncut,t + Ncut,x + 8) .
Noting that the bounds (9.60) are most restrictive for n = nyax, they now readily follow from our choice
(9.14).
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9.4 Mollifiers and Fourier projectors

Let ¢(¢) : R — R be a smooth, C*° function compactly supported in the set {¢ : |¢] < 1} which in addition
satisfies

/¢(g) ac =1, /¢(g)<" =0 VYn=1,2,.,Nindn. (9.62)
Let ¢(z) : R® — R be defined by ¢(z) = ¢(|z|). For A, u € R, define

@) =Xo0a),  ¢Pt) = polut). (9.63)

For g € N, we will define the spatial and temporal convolution operators

Py i= ¢(Xi)*’ Pot =0 %, Puayi=PysPar (9.64)

qul

We will use the notation P<y to denote the standard (Littlewood-Paley) Fourier projection operators
onto spatial frequencies which are less than or equal to A, P> to denote the standard Littlewood-Paley
projection operators onto spatial frequencies which are greater than or equal to A, and the notation

P[>\17>\2)

to denote the Fourier projection operator onto spatial frequencies ¢ such that Ay < [€] < Ag. If Ay = Ay, we
adopt the convention that P|y, x,)f = 0 for any f.

9.5 Notation

M (n, N, X, A) = \min{n N} ymax{n—=nN,0}

a®sb:%(a®b+b®a) (9.65)
a®sb=%(a®b+b®a) (9.66)
supp,f = {t: flrsx sy # 0} (9.67)
We will use repeatedly the notation (noted in the introduction in (2.3) and (2.4) and in Remark 3.2)
1l = 1 e ooy (9.68)

That is, all LP norms stand for LP norms in space, uniformly in time. Similarly, when we wish to emphasize
a set dependence on Q C R x T2 of an LP norm, we write

Hf”Lp(Q) = |1q f”L;?o(Lp(TS)) : (9.69)

A Useful lemmas

This appendix contains a collection of auxiliary lemmas which are used throughout the paper:

e Section A.1 recalls the classical CV estimates for solutions of the transport equation. This is for
instance used in Section 6.4.

e Section A.2 gives the detailed construction of the basic cutoff functions &m,q and ¥y, 4, which are used
in Section 6 to construct the velocity and the stress cutoff functions.

e Section A.3 recalls the fundamental fact that the LP norm of the product of a slowly oscillating function
and a fast periodic function is essentially bounded by the product of their L” norms.

e Section A.4 contains a version of the Sobolev inequality which takes into account the support of the
velocity cutoff functions.
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e Section A.5 contains a number of consequences of the multivariate Faa di Bruno formula. Most of the
results here are used for bounding the space and material derivatives of the cutoff functions in Section 6.
We also present here, cf. Lemma A.7, a version of the LP decorrelation lemma from Section A.3 in
which the fast periodic function is composed with a volume-preserving flow map. Lemma A.7 plays a
crucial role in estimating the L? norms of the velocity increments in Section 8.2.

e Sections A.6 and A.7 contain a number of lemmas which allow us to go back and forth between
information for (arbitrarily) high order derivative bounds in Eulerian and Lagrangian variables. These
lemmas concerning sums of operators and commutators with material derivatives are frequently used
throughout the paper to overcome the fact that material derivatives and spatial/temporal derivatives
do not commute.

e Section A.8 introduces in Proposition A.18 the inverse divergence operator used in this paper. We
call this operator “intermittency friendly” because it is composed of a principal part which precisely
maintains the spatial support of the vector field it is applied to, plus a secondary part which is nonlocal,
but whose amplitude is incredibly small. It is here that the definition (4.10) for the density of our
pipe flows plays an important role, as the high order d of the Laplacian present in (4.10) allows us
to perform a parametric expansion which maintains (to leading order) the support of pipes, and also
takes into account deformations due to the flow map.

A.1 Transport estimates

We shall require the following estimates for smooth solutions of transport equations. For proofs we refer the
reader to [8, Appendix D].

Lemma A.1 (Transport Estimates). Consider the transport equation

Of+u-Vf=g, fleo = fo

where f,g: T" — R and u : T" — R™ are smooth functions. Let X be the flow of u, defined by

d
aX:u(X,t), X(CE,to):Ia

and let ® be the inverse of the flow of X, which is the identity at time tyg. Then the following hold:

(1) £ @)oo < [l folleo + / g(s)lleo ds

t
(2) IDF(®)lco < 1D follgoet—to)1Pulco / e(t=9)1Dullco || Dg(s)]| o ds

to

(8) For any N > 2, there exists a constant C = C(N) such that
IDY f(®)llco < (1D follco + C(t = to) [ D™ ullco|| D fllco ) €I Hlee

t
+ [ e P (IDNg() v + Ot = ) DVulcoll Dyt o) ds

to

(4) 1D2(0) ~ o < =120 1 < (1 — 1) D el =P
(5) For N > 2 and a constant C = C(N),

IDY @ (t)llco < C(t — to)|| DN ul| goe® =t Pullco
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A.2 Proof of Lemma 6.2

We first consider the function

0 ifz<o0
= - A.l
/(@) {6112 if z > 0. (A-1)
We claim that for all 0 < N < Ng, and = > 0,
N
DYI@| (A2)

(f(2))' im

The proof of this is achieved in two steps; first, one can show by induction that for all 0 < N < Ngy, there
exist constants K and ¢ for 0 < k < K such that

1 KN C 1
DN (6_72) =Y S (A.3)
Next, one may also check that for any powers p,q > 0,
. _a 1
lim e” 22 — =0. (A.4)
x—0+ xP

Then for 1 < N < Ng,, we see that 0 < 1 — % < 1, and so using (A.3), we have that the left-hand side of
(A.2) may be split into a finite linear combination of terms of the form in (A.4), showing that (A.2) is valid.
We now glue together two versions of f as follows with the goal of forming a prototypical cutoff function

v. First, let zg = , /ﬁ so that f(z0) = 3. Now consider the function f(z) = f(2x0 — z), and set

F(x){f(m) if v <z (A5)

1—f(2xg—x) ifx > xo.

Then F'(z) is continuous everywhere, and C'™ everywhere except xg, where it is not necessarily differentiable.
Furthermore, one can check that by the definition of F and (A.2), for all 0 < N < Ngj,

N DN 1—(F 2 %
% <1forall 0 <z < xp, | ( ( (1$)) )N | <1 for all zg < z < 2. (A.6)
(F(x)) Mon (1= (F(a))?)} ()
The latter inequality follows from noticing that for z close to 2xg,
(1= (F@)?*)* =((1+F(2)1 - F(x))? = 1+ F(2))? (f(2z0 — 2))* .

Since multiplying by a smooth function strictly larger than 1, rescaling f by a fixed parameter, and raising
f to a positive power preserves the estimate (A.2) up to implicit constants (in fact raising f to a power is
equivalent to rescaling), (A.6) is verified.

Towards the goal of adjusting F' to be differentiable at xg, let F be the set (%, 3%)7 and let ¢ be a
compactly, C* mollifier such that the support of the mollified characteristic function X'z * ¢(x) is contained
in (%, 720). Setting

4074
P(z) = (Xe * ¢(x)) ¢ * F(x) + (1 — X * ¢(z)) F(z), (A7)
one may check that 1 is C'*° and has the following properties:
Y(x) =0forx <0 (A.8)
0<9(z)<lfor0<z<2xg (A.9)
P(x) =1 for x > 2xq (A.10)
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— S1foral0<uwz (A.11)

S1forall 0 <z < 2. (A.12)

We can now build TZmyq. By rescaling and translating ¢ and using (A.8)-(A.10), one can check that

N _ p2(m+1)
wm,q(x):z/;( - Ly ) (A.13)

(i - 1) Fg(erl)

210

satisfies all components of (1). Notice that this rescaling involves a factor proportional to 'y 2m+D)  Then
using (A.11) and the fact that every derivative ¢, 4 introduces another factor of I'y 2mHD) e have that
(6.3) is satisfied.

We now outline how to construct wm,q(l";Q(mH)y), which is the first term in the series in (6.1) and

will define ), 4(y). The basic idea is that the region (irif}*”,riﬁ“’) where {/;m,q decreases from 1
—2(m+1)

to 0 will be the region where 1y, o(I', 1 y) increases from 0 to 1, and furthermore in order to satisfy

(6.1), we have a formula for ¢m7q(f‘;ﬂm+l)y) for these y-values. Specifically, in order to ensure (6.1) for

y € (irii”}*”,rﬁf}“)), we define

—2(m+1 i
wg%,q (Fq-i-i(l )y) =1- 1/17271’q(y)
in this range of y-values. Then by adjusting (A.12) to reflect the rescalings present in the definition of
Ym,q and wmq(I‘q_g(mH)y), we have that for y € (i,l), Ym,q is well-defined and (6.4) holds. To define
wm,q(ng(mH)y) for y € [%F;*(m“),ré(m“)} and thus ¢, 4 (y) for y € [%Fi(mﬂ),lﬁ(mﬂ)], we can use that

fory € [51“;‘(’”“)7 Fg(mH)L the rescaled function wm,q(I‘;ﬂmH)y) (i.e. the term in (6.1) with ¢ = 2) is now

well-defined. Then we can set

—2(m+1 —4(m+1
72n,q (Pqug )y> =1- 72nyq (Fqug )y>

so that ¥y, , is well-defined for y € [if‘g(mﬂ), 120" ) and (6.1) holds in this range of y-values. Appealing
again to (A.11) and (A.12), we have that (6.5) is satisfied in the claimed range of y-values. Finally, in the

missing interval [1, iri("‘“)}, we set ¥y, ¢ = 1. One can now check that (6.1) holds for all y > 0, and that
(6.2) follows from (1), (2), and (6.1), concluding the proof.

A.3 LP? decorrelation

The following lemma may be found in [13, Lemma 3.7].

Lemma A.2 (L? de-correlation estimate). Fiz integers Ngoc > 1, p > X > 1 and assume that these
integers obey

l/’/ Ndec
ANdect4 ( ) . Al14
=23 (A.14)
Let p € {1,2}, and let f be a T3-periodic function such that
~NDNf|[,, < .
e VDNl < ¢ (A.15)

for a constant C¢ > 0.3% Then, for any (T/u)3-periodic function g, we have that

Il fallr S Crliglle ,

where the implicit constant is universal (in particular, independent of p and \).

39For instance, if f has frequency support in the ball of radius A around the origin, we have that Cy = || f| .5
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A.4 Sobolev inequality with cutoffs

Lemma A.3. Let 0 < 1; < 1 be cutoff functions such that V;x = (Y2 | +¥? + wf+1)1/2 =1 on supp (¥;),
and such that for some p > 0 we have

D ()| S ool N () oK (A.16)

for all K < 4. Fiz parameters p € [1,00], 0 < A < X, 0 < p; < g, Nyy Ny > 0, and assume that
the sequences {p;}i>0 and {f;}i>0 are nondecreasing. Assume that there exist N, M, > 0 such that the
function f: T3 — R obeys the estimate

|w:DNDM ||, < CrM (N, N,, A,X) M (M, Ny, i, ) (A.17)

for all N < N, and M < M,. Then, we have that
[w2DN DM f||, . S Cp(max{l, p, A\})"" M (N, N,, A,X) M (M, Ny, i, i) (A.18a)
DY DY ||y S Cr(max{1, p, A1) M (N, Na, A, X) M (M, Ny, piisr, Fiirr) (A.18b)

for all N < N, — [3/p] =1 and M < M,.
Lastly, if the inequality (A.17) holds for all N + M < N, for some N, > 0 (instead of N < N, and
M < M.,), then the bounds (A.18a) and (A.18b) hold for N+ M < N, — [3/p] — 1.

Proof of Lemma A.3. The proof uses that |3/p] +1 > 3/p for all p € [1, 00|, and that W*? C L* for s > 3/p.
Moreover, the proof of (A.18a) is nearly identical to that of (A.18b), and thus we only give the proof of
(A.18b); moreover, for simplicity we only give the proof for p = 2, as all the other Lebesgue exponents are
treated in the same way. By Gagliardo-Nirenberg-Sobolev interpolation we have

IDY D | e aupp ey < 12D DY S| o )
SRDY DM || Loy 162DV DY F sy + 102 DY DY F | oy -
Using (A.16), (A.17), and the monotonicity of the u; and i;, we obtain
|02 DY DY £ 12 s,
wfi)

D2
S ss DYDY o+ Dbl [ DN D 4 |

S i DYDY | o + p [ DYDY | o + 0 [0ie DY DM ]
5 (maX{X7p})2CfM (N7 NI7)‘aX) M (M7 Ntaﬂi+1>/7i+1) )

DD,

for all N < N, — 2 and M < M,. In the second inequality above we have used that |D?(¢2,)| < p?¢ix (),
which follows from (A.16). Combining the above two displays proves (A.18b).

Note that for p = 1 we require that |D*(yZ.)| < p*)ix (x), which also follows from (A.16) since Ng, > 4,
and this is why we have assumed this inequality to hold for all K < 4.

Lastly, assume that (A.17) holds for all N + M < N, and fix any N’, M’ > 0 such that N’ + M’ <
No— [3/p] —1. Let N, = N’ +|3/p| +1 and M, = M’. Then (A.17) gives a bound for ||¢»; DN DM" f| » for
all N < N, and M” < M,. The bounds (A.18a) and (A.18b) thus give an estimate for ||[vo; DN DM f||1»,
which concludes the proof. O

A.5 Consequences of the Faa di Bruno formula

We are using the following version of the multivariable Faa di Bruno formula [25, Theorem 2.1]. Let g =
g(x1,...,2q4) = f(h(z1,...,74)), where f: R™ — R, and h: R? — R™ are C™ smooth functions of their
respective variables. Let o € NZ be s.t. |a| =n, and let 8 € NJ* be such that 1 < |3| < n. We then define

p(a, B) = {(kl,...,kn;ﬁl,...,ﬁn) € (NI x (N$)™: Is with 1 < s <n s.t.
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il 1] >0 1< <s, 0= <... <L, kj=5Y |kl :a}. (A.19)

Then the multivariable Faa di Bruno formula states that we have the equality

n k:g

0%g(z) =a! > (97 f)(h(x)) > H k'w —. (A.20)

[8]=1 p(a,pB) j=1

Note that in (A.19) we have that k; = 0 € NJ* and ¢; = 0 € N§ for j > s + 1. Therefore, we could write
the sums and products with j € {1,...,s} as sums for j € {1,...,n}. Keeping in mind this convention, we
importantly note that in (A.20) we can have |¢;| = 0 only if |k;| = 0, and in this case the entire term in the
product is equal to 1. That is, the product in (A.20) only goes from 1 to s, and in this case |¢;| > 1 for
je€{l,...,s}. This fact will be used frequently.

For applications to cutoff functions we apply this formula for scalar functions h, i.e. m = 1, while for
applications to the perturbation or Reynolds stress sections we apply this formula for vector fields h, i.e.
m=3.

Since throughout this manuscript the number of derivatives that we need to estimate is uniformly bounded
(say by Ngn), we may ignore the factorial terms in (A.20) and include them in the implicit constant of <.
Using this convention, we summarize in the following lemma a useful consequence of the Faid di Bruno
formula above.

Lemma A.4 (Fad di Bruno). Fiz N < Ng,. Let ¢: [0,00) — [0,1] be a smooth function obeying
|DBp| S T2t =B/ (A.21)
for all B< N, and some T'y, > 0. Let T,\,A > 0 and N, < N. Furthermore, let h: T3> x R — R and denote
9(z) = (I~ *h(x)).
Assume the function h obeys

|DPh], .. < ChM (B, N, A A) (A.22)

(suppg) ~

for all B < N, where the implicit constant is independent of \, A,I",Cp, > 0. Then, we have that for all
points (x,t) € supp h, the bound

DN
gl_N/fIL < M (N, Ny, A\, A) max{(TyT)2Cy, (T, T) "2V CNy (A.23)

holds. If the o' ~B/Nin factor on the right side of (A.21) is replaced by 1, then the g'~N/Nin factor on the
left side of (A.23) also has to be replaced by 1.

Proof of Lemma A.4. The goal is to apply (A.19)-(A.20) with f(z) = ¢(I'"2z). For (z,t) € supp (g) we
obtain from (3.9), (A.21), and (A.23) that

IDNg\ |DF VI v CTR—
o £ 3 o o S L

p(a,B) j=1

N

<Y @)y H ChM (L, No, A, A)™
B=1 p(a,B) j=1

N

(TyT)2BCEM (N, N, )\ A)
B:l
for any 1 < B < N. The conclusion of the lemma follows upon bounding the geometric sum. O
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Frequently in the paper, we need a version of Lemma A.4 which also deals with mixed spatial and material
derivatives. A convenient statement is:

Lemma A.5 (Mixed derivative Fai di Bruno). Fiz N, M € N such that N+M < Ng,. Let¢: [0,00) —
[0,1] be a smooth function obeying

|DBp| S T2t =B/ (A.24)

for all B < N and a constant I'y, > 0. Let v be a fized vector field, and denote Dy = 0; + v -V, which is

a scalar differential operator. Let I‘,)\,X,,u,ﬁ > 1 and N, N, < N. Furthermore, let h: T3> x R — R and
denote

g(x,t) = (T h(,1)).

Assume the function h obeys

HDN’Dgi’hH <M (N',NM,X) M (M, Ny, 11, i) (A.25)

L2 (supp g)
for all N' < N, and M’ < M, where the implicit constant is independent of )\,X, 1, I, and Cy,. Then, we
have that for all points (x,t) € supp h, the bound
_ID"Digl SM (N, Ny, A\ A) M (M, Ny, u, i) {(TyT)2Cp, (TyT) 2Cp)N M} (A.26)
gl—(N-‘rM)/me ~ sy 4V, Ay » Ve, Wy (b)) NaX P hs P h .
holds. If the ' =B/Nin factor on the right side of (A.24) is replaced by 1, then the g'~N+M)/Nan factor on
the left side of (A.26) also has to be replaced by 1.

Proof of Lemma A.5. Let X (a,t) be the flow induced by the vector field v, with initial condition X (a,t) =
Denote by a = X ~!(z,t) the inverse of the map X. We then note that

Diwg(x,t) = (8,5]‘/[((goX)(a, t))) |a:X—1(w,t)‘

We wish to apply the above with the function g(z,t) = ¥(I'"2h(x,t)). We apply the Faa di Bruno for-
mula (A.19)—(A.20) with the one dimensional differential operator M to the composition g o X, note that
AP (h(X (a,t),t)) = (DY h)(X(a,t),t), and then evaluate the resulting expression at a = X ~1(z, t), to obtain

M M (Dﬁ’h (x t))'“
DMg(x,t) = MY T2PpB(@2ha,t)) > ]

B=1 {k,BeNM . i=1
|k|=B,x-B=M}

We now apply DV to the above expression, use the Leibniz rule, and then appeal again to the Faa di Bruno
formula (A.19)—(A.20), this time for spatial derivatives. We obtain

DNDMg(x,t) = M'N'ZZZF (BB (B+B) (D=2 (1, 1)) ZH

B=1K=0B'= p(K,B’) j=1
M Biy, ]
D (((Dy"h) (, ))™)
x> > 1 PRI . (A.27)
{aeNM: {r,eNM. =1 e

lo|=N—K} |s|=B,x =M}
Upon dividing by g'~(V+M)/Nin and noting that B+ B’ < M + N, from (A.24), identity (A.27), the Leibniz
rule, and assumption (A.25), we obtain

M N K

_ID*DMgl ZZZFF )"2EHENCE M (K, Noy M) CEM (N = K, Ny, A, X) M (M, Ny, o, 1)
glf(]\H’M)/Nfin ~ s 2Vxy 7Y h y VX 7Ny y IV [y 1
B=1K=0B’'=

M
<M (N, Nx,/\,X) M (M, Ny, i, i) Z npr )2B+B) B +B
B=1

||F12

from which (A.26) follows by summing the geometric series. O
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Lemma A.6. Given a smooth function f: R3xR — R, suppose that for X > 1 the vector field ®: R3xR — R?
satisfies the estimate

HDN“@HLoo(suppf) <AV (A.28)

for0 < N < N,. Then for any 1 < N < N, we have

N
DY (fo @) (z,t)] S ) ANT(D™f) 0 O(a, 1)) (A.29)

m=1

and thus trivially we obtain

2

DY (fo @) (z,t)] S D ANTT(D™f) 0 D(x, 1)

m=0

for any 0 < N < N,.

Proof of Lemma A.6. Applying (A.20), noting that |¢;| = 0 implies |k;| = 0, and assumption (A.28), we
have that for any multi index o € N} with |a| = N,

N
0% (fo®) (2. t) S 3 |(9°F) 0 ®)(x,1) \H 3 ‘a%xt
[B]=1 J=1p(a,pB)
N
Z‘a,@f O(I)‘H Z AU =D k5]
|8]=1 i=1p(a,B)
N

SO MDD f) o B

=1
by the definition (A.19). Thus we obtain (A.29). O

In order to estimate the perturbation in LP spaces as well as terms appearing in the Reynolds stress we
will need the following abstract lemma, which follows from Lemmas A.2 and A.6.

Lemma A.7. Let p € {1,2}, and fix integers N, > M, > Ngec > 1. Suppose f: R3 x R — R and let
®: R3 xR — R? be a vector field advected by an incompressible velocity field v, i.e. D;® = (0y+v-V)® =
Denote by @~ the inverse of the flow ®, which is the identity at a time slice which intersects the support of
f. Assume that for some \,v,v > 1 and Cy > 0 the functions f satisfies the estimates

|IDVDYMf|| o S CeANM (M, Ny, v, v) (A.30)

for all N < N, and M < M,, and that ®, and ®~! are bounded as

||DN+1¢||LW(Suppf) < AN (A.31)
||DN+1q>*1||Lw(suppf) <AV (A.32)

for all N < N,. Lastly, suppose that ¢ is (T/u)®-periodic, and that there exist parameters 62 ¢ > uand
Cy > 0 such that

1D |, S CoM (N N, ¢, C) (A.33)

for all0 < N < N,. If the parameters

ASpu<(<(
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satisfy

. g\ Naee
¢ < <2F\/§A> ; (A.34)
and we have
MNgee + 4 < N, (A.35)
then the bound
IDNDM (f po®)|,, S CrCoM (N, N, ¢, Z) M (M, My, v, 7) (A.36)

holds for N < N, and M < M,.

Remark A.8. We emphasize that (A.36) holds for the same range of N and M that (A.30) holds, as soon
as N, is sufficiently large compared to Nge. so that (A.35) holds.

Remark A.9. We note that if estimate (A.30) is known to hold for N + M < N, for some N, > 2Nge. + 4
(instead of, for N < N, and M < M,), and if the bounds (A.31)—(A.32) hold for all N < N, then it follows
from the below proof that the bound (A.36) holds for N + M < N, and M < N, — 2Ngec — 4. The only
modification required to the proof (given below) is that instead of considering the cases N < N, —Nge.—4 and
N’ > N, —Ngec —4, we now have to split according to N’ + M < Ny —Ngec —4 and N/ + M > Ny — Ngec — 4.
In the second case we use that N — N” > N, — M — Ngec — 4 > Ngee, which holds exactly because
M < N — 2Ngec — 4.

Proof of Lemma A.7. Since D;® = 0 we have DM (p o ®) = 0. Using that dive = 0, so that ® and ®~!
preserve volume, and Lemma A.6, which we may apply due to (A.31), we have

Lp ~

N
IDYDYM (f o), < NZ_:O [p¥ Dy DY N (oo w)|

N N-N’

S Z Z )\N—N’—N”

N’'=0 N""=0
N N-N’

< Z Z AN-N'—N"

N’=0 N""=0

DN/Di\/[f (DN//@) o (I)HLP

<DN'Dth) o <1>*1DN"¢HLP : (A.37)

In (A.37) let us first consider the case N’ < N, — Ngec — 4, so that N'+ M < N, + M, — Ngeec — 4. Under
assumption (A.32) we may apply Lemma A.6, and using (A.30) we have

n

| (0¥ Do @) s 30 A

n’/=0

(D" N DM fyo o7 |

Lr

SCp Y AN MM Ny, v, D)

n’/=0

< (cfAN’M (M, Ny, v, ’17)) A" (A.38)

for all n < Ngec + 4. This bound matches (A.15), with C; replaced by Cf)\N/M (M, N¢,v,v). Since like ¢,

the function DN" ¢ is (T/p)3-periodic, due to (A.38), the fact that A < ¢, and assumption (A.34), we may
apply Lemma A.2 to conclude

H (DN’Dng) ° <I)_1DN”<pHLp <CAN M (M, Ny, v, D) HDN”<p‘

7

Inserting this bound back into (A.37) and using (A.33) concludes the proof of (A.36) for the values of N’
considered in this case.
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Next, let us consider the case N’ > N, — Ngec — 4. Since 0 < N’ < N, in particular this means that
N > N, — Ngec — 4, and since N < N — N’ we also obtain that N — N” > N’ > N, — Ngec — 4 > Ngec.
Here we have used (A.35). Then the Hélder inequality, the fact that ®~! is volume preserving, the Sobolev
embedding W*? C L, the ordering 52 ¢ > p > 1 and assumption (A.34), imply that

’ 1" ’ 1"
AN-N'-N ) < AN-N'-N

(DN’Dgwf) o<1>—1DN”¢‘

Yoty [Pl
Lp Lee

Lr

S AN AN M (M, Ny, v, ) CoM (N + 4,1V, ¢, )

R I\ N-N"
SCfC‘PM (N7Nw’C,<) M(MaNhVaD) <4 (C)

Ndec
S—’ CfCLPM (N7 Nx7<7g) M (M, ‘Z\ftﬂ/7 ;) 54 <:)

S C1CoM (N, N2, ¢, C) M (M, Ny, )

Combining the above estimate with (A.37), we deduce that also for N > N, — Ngec — 4, the bound (A.36)
holds, concluding the proof of the lemma. O

A.6 Bounds for sums and iterates of operators

For two differential operators A and B we have the expansion

m k
A+B)m=>" > (H AafB5i> . (A.39)
k=1 ogeNt \i=1
la|+[Bl=m
Clearly (A.39) simplifies if [A, B] = 0. A lot of times we need to apply the above formula with
A=v-V,

for some vector field v. The question we would like to address in this section is the following: Assume that
we have already established estimates on ([[, D% BP)v, for |a| + |B| < m. Can we deduce estimates for the
operator (A+ B)™ = (v-V + B)™? The answer is “yes”, and is summarized in the following lemma:

Lemma A.10. Fiz N, Ny, N, € N, Q € T2 xR a space-time domain, and let v be a vector field. For k > 1
and o, B € N¥ such that |a| + |B| < N., we assume that we have the bounds

k
(i)
i=1

for some C, > 0,1 <\, < Xv, and 1 < p, < 1,. With the same notation and restrictions on |al,|B|, let f
be a function which for some p € [1,00] obeys

k
(f1er)
i=1

for some Cy >0, 1 < Ap < Xf, and 1 < py < piy. Denote

< €M (lal, Nay Aus Mo ) M (18, Nis g, i) (A.40)
L= (Q)

S €M (lal, NasAgi s ) M (181, Nos . i) (A.41)
LP(Q)

A =max{Af, A\, }, X:max{xf,xv}, p=max{ps, iy}, [ =max{fis, [y}

Then, for
A=v-V
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we have the bounds

k
i)
i=1

< CACl M (n+ lal, N, A, X) MU(IB], N, . ) (A.42)
Lr(Q)

<CpM (n,Nm,A,X) €N M (18], No, 1, 70)
< €M (n, No, A X) M (Ja] + 18], Ny max{p, C, X}, max{fi, C,A})  (A.43)
as long as n+ o] + 8] < N.. As a consequence, if k =m then (A.39) and (A.43) imply the bound
ID™(A+ B)™ £l 1oy S Cr M (n Ny, A, X) M (m, N, max{p, Co)}, max{fi, CUX}) (A.44)

forn+m < N,.

Remark A.11. The previous lemma is applied typically with v = v, and B = D; ;1 in order to obtain
estimates for D™(]], Dflyl‘Df;fl)ﬂ and hence for D" D" f. A more non-standard application of this lemma

uses v = —vy_1 and B = Dy ,_1 in order to obtain estimates for time derivatives via D"0" f = D™(—vq4—1 -
V+Dyg1)"f.

Proof of Lemma A.10. We recall (6.54)—(6.55) and note that we may write (ignoring the way in which tensors
are contracted)

A" =(v- V)" = ij,nDj where  f;, = Z Cnjc H(ng) (A.45)
j=1 ¢eN® =1
I¢l=n—j

where the ¢, ;¢ are certain combinatorial coefficients (tensors) with the dependence given in the subindex,
and D® represents 0 for some multi-index o with |a| = a. Inserting (A.45) into the product of operators
in (A.39), we see that

k

k
D" H A% BPi — Z D" H(f'yiyaiD’Yi Bﬁz)

i=1 ~ENF i=1
1"<v<a

k k
Z Z Z H Z E(m) <H D(;i,,(i Bﬁi‘@i) f%,ai
;=1

YENF  0<n/<ntly|  6,keENF =11 5,k eN”
1F<y<a 0<m'<|B| |8|=n+]|y|-n' [6;1=0;
|w|=]B]—m' [ril=r
k
% E E() H Dns BPS (A46)
n,pENF s=1
In|=n"
lo|=m

where the ¢( ),¢...) > 0 are certain combinatorial coefficients (tensors). Combining (A.39)-(A.46), we
obtain that

p(llew )= X % | S a ([l

yENF 0<n'<n+|y|  §reN” n,pENF s=1
1*<y<a 0<m/<IB| [§|=n+|y|-n' | |nl=n’
[k|=]8]=m" \|p|=m'
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k k a;
X Z E() (H Dég’ZiBH(iYZi) Z C(...) H (DCi’T'“U) (A47)
i=1 | §! k!eNF Li=1 CiEN%E ri=1
|67]=5; IGil=ai—i

| =rs

where the c(..),¢(..),¢...) = 0 are certain combinatorial coefficients (tensors) whose dependence is omitted
for simplicity (it may depends on all the parameters in the sums and products). The above expansion
combined with the Leibniz rule, the bound (3.9), and assumptions (A.40)—(A.41), implies

S DD I DY

LP(Q) yeNF  0<n/<n+|y]  §keN” n,pEN®
1*<y<a 0<m'<IBl |§|=n+|y|-n' | |n|=n’
|&|=[B8]=m" \|p|=m'

k g
(H D&i,eiB“i,e,a) (H (D%w)>

Zizl T'rizl

k
ol

i=1

i)

s=1

Lr(Q)

I DY

i=1 (i EN%i ! KkLENF
Gil=ai=7i |57|=6;

| =k

<Y Y Y (M NAR) M N )

~eNF 0<n/<n+|y|  §keNF
1*<y<a 0Sm'<|B] |8]|=n+|y|-n’
|k|=|8]—m'

"
X (HC,‘j”M (ai — i + 6, Na, A,X) M (ki, N, i, ﬁ))
=1

L= (Q)

¢ Y (M (n NoAX) M (! N 7))
0<n/ <n+|af
0<m/<|B|
x (Clem (Jal +n = ', No, A X) M(B] = ', Ny, i 1)
< CCleM (ol + 7, No, A X) MBI, N 0, 1)

which is precisely the bound claimed in (A.42). Estimate (A.43) follows immediately, while the bound (A.44)
is a consequence of the above and (A.39). O

A.7 Commutators with material derivatives

Let D represent a pure spatial derivative and let
Dt = at +v- \V4

denote a material derivative along the smooth (incompressible) vector field v. This vector field v is fixed
throughout this section. The question we would like to address in this section is the following: Assume that
for the vector field v we have D*D?Duv estimates available. Can we then bound the operator norm of D?D®
in terms of the operator norm of D*D??

Following Komatsu [47, Lemma 5.2], a useful ingredient for bounding commutators of Eulerian and
material derivatives is the following lemma. We use the following commutator notation:

(ad D;)°(D) = D
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(ad D))} (D) = [Dy, D] = —Dv -V
(ad Dy)*(D) = (ad Dy)((ad Dy)*~H(D)) = [Dr, (ad Dy)*~(D)]
for all @ > 2. Note that for any a > 0, (ad D;)*(D) is a differential operator of order 1.

Lemma A.12. Let m,n > 0. Then we have that the commutator of D{* and D™ is given by

(D", D7) = 3 W(Hmwt)ww)) Dy, (A.48)

{aeN": 1<|a|<m} /=1

By the product in (A.48) we mean the product/composition of operators

[[(ad D)** (D) = (ad Dy)*" (D)(ad D;)*"~* (D) ... (ad D)™ (D),
=1

so that on the right side of (A.48) we have a sum of differential operators of order at most n.
For the above lemma to be useful, we need to be able to characterize the operator (ad D;)*(D).

Lemma A.13. Let a € N. Then the order 1 differential operator (ad D;)*(D) may be expressed as
k
(ad Dy)" Z > cam | [(DF7 Do) -V (A.49)
F=1{BeNt: [Bl=a—k}  j=1

where the [] in (A.49) denotes the product of matrices, cq k.5 are coefficients which depend only on a,k, 3.

Proof of Lemma A.15. When a = 1 we know that (ad D;)(D) = —Dv -V, so that the lemma trivially holds.
We proceed by induction on a. Using the fact that [Dy, V] = —Dv - V, we obtain

(ad D;)*t1(D Z 3 cmkﬁH (D Dv) V+Z > cakgH (DY Dv) - [Dy, V]

k=1 pen(k,a) k=1gen(k,a)
i Z Cak 5H JDv -V — Z Z CakBH JD’UD’UV
k=1 gen(k,a) k=1 gen(k,a)

where we have denoted by
a)={BeN: |l =a—k}

the set of all partitions of a set of a — k elements into k sets. For the first term we use the Leibniz rule for Dy,
so that for any 3 € m(k,a), we obtain an element 3 +e; € n(k,a + 1), with e; = (0,...,0,1,0,...,0) € N¥,
and the 1 lies in the jth coordinate. For 1 < k < a, this in fact lists all the elements in w(k,a + 1). For the
second sum, we identify 8 € w(k,a) with 8 € w(k + 1,a + 1), upon padding it with a 0 in the k + 1%¢ entry.
Changing variables k + 1 — k, then recovers an element 5 € w(k,a+ 1), including the case k = a + 1, which
was missing from the first sum. O

From Lemma A.12 and Lemma A.13 we deduce the following:

Lemma A.14. Let p € [1,00|. Fiz Ny, Ny, No, M, € N, let v be a vector field, let Dy = 0y +v -V be the
associated material derivative, and let Q2 be a space-time domain. Assume that the vector field v obeys

IDY DY Do), g S CoM (N + 1, Noy Ay Xy ) MM, Niy g, i) (A.50)
for N < N, and M < M,. Moreover, let f be a function which obeys

HDNwafHLp(Q) S M (N, Nm)‘fvxf) M (M, Ny, pug, i) (A.51)
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for all N < N, and M < M,. Denote

A =max{Ar, A\, }, szax{xf,xy}, p=max{ur, fy}, [ =max{fs, Ly}

Let m,n, € > 0 be such that n+ ¢ < N, and m < M,. Then, we have that the commutator [D{*, D"] is
bounded as

1D (D", D" ]| S CrCAM (z o, Ny, X) M (m 1, Ny, max{ps, Codo }, max{fi, cviv}) (A.52)

SCM (E +n, Ny, A, X) M (m, Ny, max{u,CvXU}, max{[, CUXU}) . (A.53)

Moreover, we have that for k > 2, and any a, 8 € N*¥ with |a| < N, and |8| < M., the estimate

k
(i)
i=1

holds.

<CpM (|oz|, N,, A,X) M (|B|,Nt,max{y, Codo}, max{f, cq,XU}) (A.54)
Lr(Q)

Remark A.15. If instead of (A.50) and (A.51) holding for N < N, and M < M,, we know that both
of these inequalities hold for all N + M < N, for some N, > 1, then the conclusions of the Lemma hold
as follows: the bounds (A.52) and (A.53) hold for £ +n +m < N,, while (A.54) holds for |a| + |8] < No.
This fact follows immediately from the proof of the Lemma, but may alternatively also be derived from its
statement (see also Lemma A.3).

Remark A.16. In Lemma A.14, if the assumption (A.51) is replaced by
IDY D ||y S CrM (N =1, Nay A, Ay ) MM, N i) (A.55)

whenever 1 < N < N,, then the conclusion (A.54) changes, and it instead becomes

k
(i)
i=1

whenever |a| > 1. This follows for instance by noting that the sum on the second line of (A.61) only contains
terms with j > 1, so that (A.55) is not required when N = 0.

<CpM (|a\ - l,Nz,)\,X> M (|ﬁ|,Nt,max{u,cviv}7max{ﬁ, c,,X,,}) (A.56)
Lr()

Proof of Lemma A.14. First, we deduce from (A.49) that for any «; > 1 and 1 < i < n, we have
(DY (D) = 3" furms ¥ (A.57)
ri=1
where the functions f., o, are computed as
D SRR | (/%
{BEN"i: |Bl=ai—ri} J=1

for suitable combinatorial coefficients (tensors) ¢y which depend on #;,a;, and . In particular, in view
of assumption (A.50), and the Leibniz rule, we have that

||Dz.fm,oci

LOO(Q) 5 C'L%M (’ﬁ}i + Ea N.’E7 A’UaXU> M (Oéi - H’ia Nt; ,UU7H'U) . (A58)

Next, from (A.57) we deduce that for any o € N with |«| > 1, one may write

n

[I(@d D)™(D) = _gj.aD’ (A.59)

i=1
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where
gj,Ot = Z Z E(...)HD’Yiflii,oci'
{reN": 1"<k<a} {yeN": |y|=n—j} i=1
As a consequence of (A.58) we see that

]
||ngjvaHL°°(Q) S Z CJ)H|M (f +n—j+ "Q|’Nﬂc7)‘va)‘v> M (|| = |&], N, pros fi) - (A.60)
|k|=1

From (A.48), assumption (A.51), identity (A.59), and bound (A.60), we see that

m n

HDZ [DZnaDn] fHLP(Q) 5 Z Z HDK <9j,aDjDZn7‘al) f‘ Lr(Q)
|la]=175=1
m n . m—|al ‘ 45 ~ym—|al
< laz_ljzl HD gJ’O‘HLOO(Q) HDJDt fHLP(Q) + ||gJ>OCHL°°(Q) HD —HDt f‘ LP(Q)

3
3

<3 Y crehm (€+n—j —s—k,Nm)\v,XU) M (j,Nz)\,X) M (m — k, Ny, i, )

k=1j=1
+CrCEM (n — i+ kN, )\U,XU) M (j +e, NmA,X) M (m — k, Ny, i, 1)
<CpM (e o, N, A\, X) 3 (€)M (m — b, Niy 1, ) (A.61)
k=1

from which (A.53) follows directly.
In order to prove (A.54) we proceed by induction on k. For k = 1 the statement holds in view of (A.51).
We assume that (A.54) holds for k' < k — 1, and denote

k/
Py = HD‘“Dfi f.

i=1
With this notation we have
Py = DD} D=1 DJ* ' Py
= pewtes pItAp 4 pox [ D, Dot | DIUP .

Using (A.54) with k — 1 gives the desired estimate for the first term above. For the second term, we appeal
to the commutator bound (A.53), applied to Df"’lPk,g, which obeys condition (A.51) in view of (A.54) at

level k — 1. This concludes the proof of (A.54) at level k. O

A.8 Intermittency-friendly inversion of the divergence

Given a vector field G*, a zero mean periodic function o and an incompressible flow ®, our goal in this section
is to write G*(z)o(®(z)) as the divergence of a symmetric tensor.

Proposition A.17 (Inverse divergence iteration step). Fiz two zero-mean T3-periodic functions o
and ¥, which are related by o0 = AY. Let ® be a volume preserving transformation of T3, such that
[V® —Id|| o (ps) < Y/2. Define the matriz A = (V®)~L. Given a vector field G*, we have

Glpo® = 0,R™ +8,P + E' (A.62)
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where the traceless symmetric stress R™ is given by
R™ = (G'A} + G" A} — AL ATGPO,®") (0p9) 0 ® — Péjn (A.63)
where the pressure term is given by
P = (2G"AZL — AZAZGP(?Z,(I)Z) (0p) 0 D, (A.64)
and the error term E* is given by
E' = (0, (GPAL A} — GMALAY) 0,8 — 0,GA}) (09) 0 @ (A.65)

Proof of Proposition A.17. Note that by definition we have A’;ajcpf = 0;. Since ¢ is volume preserving,
det(V®) = 1, and so each entry of the matrix A equals the corresponding cofactor of V®, which in three
dimensions is a quadratic function of entries of V& given explicitly by A; = %qusjkgak@pag@q. In two
dimensions A is a linear map in V®. Moreover, since ® is volume preserving, the Piola identity ajA{ =0
holds for every i € {1,2,3}. The main identity that we use in the proof is that for any scalar function ¢ we
have (0;¢) 0 ® = A0, (@ 0 @) = O (AT 0 D).
Starting from ¢ = A, we have
G'oo® =G (Op1) 0 ®
= G'A2D,, (0x0) 0 @
= 87, (G AR (0x9) 0 @) — OnG' AL (O9) o @
O (GT AL (Ok9) 0 @ + G™ A}, (00) 0 @) — 0y, (G" AL (0kV) 0 @) — 9,G A} (OyV) 0 @
Next, we have
O (G™ A}, (010) 0 @) = 0, (G" AL AYD, (9 0 @))
= 0,0 (G”A};Aiﬁ o <I>) — Oy (8p(G”A};A£)19 o <I>)
= 0, (G" AL ALD,(9 0 ®) + 0y (0,(G" AL ALY 0 B) — 0, (0,(G™ ALAL)Y o @)
= 0y, (GPALALO, (0 0 ®)) + 0, (0,(GPALAR)Y 0 @) — 0y, (0,(G"ALAY)Y 0 )

where in the last equality we have just switched the letters of summation n and p. We further massage the
last term in the above equality.

O (0p(G™ALARYY 0 @) = 0, (G A} AY) 0,(9 0 @) + Oy (G"ALAY) D 0 @
=0, (G"ALAY) 0, (0 0 @) + 9,y (0n (G™ALAR) 9 0 @) — 9, (G ALAY) 9,(0 0 @)
Combining the above three equalities, we arrive at
G'oo® =0, ((G'A} + G™A4})(0kV) o ® — ALALGPO, (Y 0 D))
+ 0n (GPALAY — GMALAY) 0,(0 0 @) — 0,G* AL (00) 0 @
=0, ((G'A} + G"A}) (0kV) 0 @ — A} ALGPO, @ (0,0) 0 ®)
+ 0, (GPA A} — G"ALAY) 0,8 (000) 0 @ — 9,G A (00) 0 ®

In the last equality we have exchanged the order of summation. Identities (A.62)—(A.65) follow upon declaring
that the trace part of the symmetric stress is the pressure. O

Proposition A.17 allows us to obtain the following result, which is the main conclusion of this section.

Proposition A.18 (Inverse divergence with error term). Fiz an incompressible vector field v and
denote its material derivative by Dy = 0y + v - V. Fiz integers Ny > M, > 1. Also fiz Ngec,d > 1 such that
N, —d > 2Ngec + 4.
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Let G be a vector field and assume there exists a constant Cg > 0 and parameters A\, v > 1 such that
|DVYDMG|| . S CaAN M (M, My, v,v) (A.66)

for all N < N, and M < M,.
Let ® be a volume preserving transformation of T3, such that

D:® =0 and IV® — IdHLoo(wppG) <1/,

Denote by &~ the inverse of the flow ®, which is the identity at a time slice which intersects the support of
G. Assume that the velocity field v and the flow functions ® and ®~! satisfy the following bounds

||DN+1(I)||L°°(supp G) + HDN+1©71||L°°(supp G) ~ /\IN (A67)
IDVDID gy S XM, M) (A5)

for all N < N,, M < M,, and some X' > 0.
Lastly, let 0,9: T? — R be two zero mean functions with the following properties:

(i) there exists d > 1 and a parameter ¢ > 1 such that o(z) = (T2 A% (x)
(ii) there exists a parameter p > 1 such that o and ¥ are (T/u)3-periodic
(i1i) there exists parameters A > ¢ and C, > 1 such that
[DNoll,, SC.AN  and  ||DN9||,, $C.M(N,2d,(,A) (A.69)

for all 0 < N < Ngy, except for the case N = 2d when the Calderdon-Zygmund inequality fails. In
this exceptional case, the second inequality in (A.69) is allowed to be weaker by a factor of A%, for an
arbitrary a € (0, 1]; that is, we only require that ||D2d19HL1 < C A,

If the above parameters satisfy
N <A< p< (<A, (A.70)

where by the second inequality in (A.70) we mean that

—Ndec
P - ) <1, AT1
(27r\/§)\ - ( )

then, we have that
Goo®=divR+VP+E =:div (H(Goo®))+ VP +E. (A.72)

where the traceless symmetric stress R= H(Goo®) and the scalar pressure P are supported in supp G, and
for any fixred o € (0,1) they satisfy

HD%{%HU +||[DNDMP||,, S ACaC.CT M (N, 1,¢,A) M (M, My, v, 7) (A.73)

for all N < N, —d and M < M,. The implicit constants depend on N, M, a but not G, o, or ®. Lastly, for
N < N, —d and M < M, the error term E in (A.72) satisfies

|DVNDYME||,, S CaCuh* N IAN M (M, My, v, D) (A.74)

We emphasize that the range of M in (A.73) and (A.74) is exactly the same as the one in (A.66), while the
range of permissible values for N shrank from N, to N, —d.

Lastly, let No, M, be integers such that 1 < M, < N, < M, /2. Assume that in addition to the bound
(A.68) we have the following global lossy estimates

DN 00| o sy S Cry Ty ™ (A.75)
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forall M < M, and N+ M < N, + M,, where
Corg 770 and N <A <A< A (A.76)

qn~ 'q

If d is chosen large enough so that

A\ max{71,7,CA\ " 5.1
CaC. A <> 1+ L < 4=, (A.77)
¢ Tq )‘q+1
then we may write
E = div Ryonlocal + ][ Goo ®dr =:div (R*(Gpo ®)) + Goo ®dx, (A.78)
T3 T3

where Rnonlocal =R*(Gpo D) is a traceless symmetric stress which satisfies

Og+2 \N _—M
- )\(é+1)\q+1Tq (A.79)
q

N M p
HD Dt Rnonlocal

for N < N, and M < M,.

Before turning to the proof of Lemma A.18, let us make three remarks. First, we highlight certain
parameter values which will occur commonly in applications of the proposition. Second, we comment on a
technical aspect of the application of the Proposition in Section 8.3. Finally, we comment on the assumptions
(i)—(iii) and (A.71) and (A.77) for the functions p and ¥, which in applications are related to the transversal
densities of the pipe flows.

Remark A.19. Frequently, G will come with derivative bounds which are satisfied for N +M < N¥. In this
case, we set N, = M, = N*/2, so that (A.66) is satisfied. The bounds in (A.67) and (A.68) will be true (due
to Corollary 6.27 and estimate (6.60)) for much higher order derivatives than N*/2, and so we ignore them.
The bounds in (A.69) are given by construction in Proposition 4.4. Then the bounds (A.73) and (A.74) are
satisfied for N < N¥/2 —d and M < N*/2; and in particular for N+ M < N'/2 —d. In (A.75) we will then set
N, = M, < N*/4, which in practice will give Ny = M, = 3Njnq,v. Arguing in the same way used to produce
the bound (5.18) shows that for N + M < Ngj,

IDN 0 e, [ 5 (Naoy?) M7 M (A.80)

and so (A.75) is satisfied with C,, = )\362/2 up to N + M < 2Ng, (which will in fact be far beyond anything
required for the inverse divergence). The inequalities in (A.76) follow from (9.43), (9.39), and the definitions

of N = Xq and A = Ag41. In applications, v = ?Jlfq_il, so that from (9.39) and (9.43), we have that
max{7, 1, 7,CoA} < 7, N1 <AL

which holds as soon as er is taken to be sufficiently small. Then, (A.77) will follow from (9.55). Finally,
(A.79) will hold for all N, M < N*/4; which will be taken larger than 3Nj,q. In summary, if (A.66) is
known to hold for N + M < N*¥ then (A.73) holds for N < N*/2 —d and M < N*/2, while (A.79) is valid for
N, M < N*/s.

Remark A.20. In the identification of the error terms in Section 8.3, we apply Proposition A.18 to write
Goo® =div (H(Geo ®))+ VP +div (R* (Geo ®)) + + Goo Pdx.
T3

The estimates on G, g, and ®, and then the right hand side of the above equality will be checked in later
sections. We emphasize that H is a local operator and is thus well-suited to working with estimates on the
support of a cutoff function. Conversely, R* is non-local but will always produce extremely small errors
which can be absorbed into }D%q+1 and for which the cutoff functions are not relevant.
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Remark A.21. We consider examples of functions 1 and ¢ with which Proposition A.18 is used.

(a)

This is the case corresponding to the density of a pipe flow. Recalling the construction of pipe flows from
Proposition 4.4, we let 90 = ng)\m and ¥ = ﬁ?,k,r' Set ¢ = A = X\ (where the X refers to Proposition 4.4,
not the A from Proposition A.18) and p = Ar. To verify (i), we appeal to item (1) from Proposition 4.4
and our choice of A and p. The periodicity requirement in (ii) follows from item (2) from Proposition 4.4
and referring back to item (1) from Proposition 4.3. Next, (A.69) is satisfied with C, = r using (4.11).
Finally, (A.71) and (A.77) will follow from large choice of Nge. and d and the fact that our choice of A
can always be related to ¢ and u by a power strictly less than 1 (see (9.48) and (9.55)).

This is the case corresponding to the Littlewood-Paley projection for the square of the density of a pipe

flow. Fix 1 < < ¢ < A, and a constant C, > 0. Let n(x) be any (T/u)3-periodic function (which need

not have zero-mean), with ||n]|,, sy < C«. In applications, we shall refer to (4.15) from Proposition 4.4
2

and set n = (g’g,)\’r) and g = Ar. This means that we may write n(z) = 1, (uz) where n,, is T-periodic,

with {7l 11 sy < Cs. Following (4.15) from Proposition 4.4 with A; = ¢, A2 = A, we may define

o) = (Peam) (@) = (Pg apmn) ()
a function which is (T/u)3-periodic and has zero mean (since ¢ > p > 0), and clearly
N N
HD gHLl(TS) <CAT.

We now define the associated function ¥ by first defining the zero mean T3-periodic function

C 2d
D= (u> AT e

where the negative powers of the Laplacian are defined simply as a Fourier multiplier (since the periodic
function we apply it to has zero mean). Then we let

9() = 0, (i)

which has zero mean, is (T/u)3-periodic, and clearly satisfies A%0 = ¢2p, as required. It only remains to
estimate the W™ norms of 9, which up to paying a factor of p is equivalent to estimating the W1
norms of ¥,. When 0 < N < 2d, the operator
DNATP¢ 4
[M ’ u]
is a bounded operator on L', whose operator norm is < (¢/u) ~24. This may be verified via a standard
Littlewood-Paley argument. The exceptional case N = 2d leads to a logarithmic loss since there are
roughly log(A/p)-many Littlewood-Paley shells to estimate; we absorb this loss into a factor of A%, with
a > 0 arbitrarily small. Since [[n,| ;. < Cs, the second estimate in (iii) above clearly follows, at least
when N < 2d. The case N > 2d follows similarly, except that now DV A~¢ is a positive order operator,
and thus the L' operator norm of DNA’dIP’[i A] is bounded by ~ (A/u)N =24, We remark that as in the

previous case, (A.71) and (A.77) will follow from large choices of Ngec and d and the fact that our choice
of A can always be related to ¢ and p by a power strictly less than 1.

Proof of Proposition A.18. Since D;® = 0, we have that DV D"V® = DN[DM V]®. We may now appeal
to Lemma A.14, more precisely, to Remark A.16. Let Q = supp G, and f = ®, so that (A.67) implies that
(A.55) holds with Cy =1, Ay = Xf =X, and py = fiy = 1 (in fact, whenever M > 1 we may replace the right
side of (A.55) by 0). Moreover, (A.68) implies that (A.50) holds with C, = /X, Ay = Ay = X, Ny = M,
ty = v and fi, = 7. We deduce from (A.56) that

HDN”Diw DN’D@H S NNHEN N (M, M, v, D) (A.81)
L (supp G)
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whenever N’ + N < N, and M < M,. Similarly, we use Lemma A.14 with f = G, so that due to (A.66)
we know that (A.51) holds with Cy = Cq, Ay = Xf =\ pur =v, oy =v, and N = M. With Q = suppG,
since A’ < A, as before we have that (A.68) implies that (A.50) holds with C, = v/, A, = XU =\, Ny = M,,
ty = v and fi, = V. Therefore, from (A.54) we obtain that

HDN”DtMDN/G HL < CeAY N M (M, My, v, D) (A.82)

whenever N’ + N” < N, and M < M,. With (A.81) and (A.82), we turn to the proof of (A.73).

Instead of defining R and P separately, we shall simply construct a symmetric stress R with a prescribed
divergence, and use the convention that P = tr(R) and R = R — tr (R)Id. The construction is based
on iterating Proposition A.17, d times. For notational purposes, let o) = o, and for 1 < k < d we let
Ok) = (CizA)dfkﬁ. Then O(k—1) = C72Ag(k), and 0(d) = 1. We also define G(O) =G.

Since p(g) = C*2Ap(1), we deduce from Proposition A.17, identities (A.62)—(A.65) that

Glo)0w) © ® = dR(g) + G(1)(C Do) 0 @ (A.83)

where the symmetric stress R(g) is given by

0 = ¢ (GloyAt + Gloy Al — AL ARG, 0,0 ) (¢ o)) 0 @, (A.84)

—.gint
=50)

the error terms are computed as

Gy = ¢ (0n (GTo)ALAL = Gy A1 AT) 9,0°) — 0,Glo) A, (A.85)
where as before we denote (V®)~! = A. We first show that the symmetric stress R(g) defined in (A.84)
satisfies the estimate (A.73). First, we note that the (~! factor has already been accounted for explicitly in
(A.84). Second, we note that since D;® = 0, material derivatives may only land on the components of the
3-tensor S(gy. Third, the function §_1DQ(1) has zero mean, is (T/u)3 periodic, and satisfies

[DY(¢ Do) ||, S CeM(N,1,¢,A) (A.86)

for 1 # N < Ngy, in view of (A.69). For N = 1, the above estimate incurs a logarithmic loss of A, which we
can absorb with A¢ for any o > 0 to produce the estimate

||D(<71DQ(1))||L1 5 AQC*M (N71a<7A) (A87)

The implicit constants depend on a and degenerate as o — 0. Fourth, the components of the 3-tensor S
are sums of terms of two kinds: G(g) ® A is a linear function of Gy multiplied by a homogeneous quadratic
polynomial in D®, while G® A® A® D® is a linear function of G multiplied by a homogeneous polynomial
of degree 5 in the entries of D®. In particular, due to our assumption (A.66) and the previously established
bound (A.81), upon applying the Leibniz rule and using that A’ < A, we obtain that

DV DM S o) 2 S CaAN M (M, My, v,v) (A.88)

for N < N, and M < M,. Having collected these estimates, the L' norm of the space-material derivatives
of R is obtained from Lemma A.7. As dictated by (A.84) we apply this lemma with f = (715, and
¢ = ("'Vo(). Due to (A.88), the bound (A.30) holds with C; = Cq¢~'. Due to (A.67) and X < X,
the assumptions (A.31) and (A.32) are verified. Next, due to (A.86) and (A.87), the assumption (A.33) is
verified, with N, = 1, { = A, and C, = C,A*. Lastly, assumption (A.71) verifies the condition (A.34) of
Lemma A.7. Thus, applying estimate (A.36) we deduce that

| DYDY Rg)|| ;2 S CaCahA*C M (N, 1,¢, A) M (M, My, v, ) (A.89)
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for all N < N, and M < M,, which is precisely the bound stated in (A.73). Here we have used that
N, > 2Ngec + 4, which was required due to (A.35).

Next we analyze the second term in (A.83). The point is that this term has the same structure as what
we started with; for every fixed £ € {1, 2,3}, we may replace Gfo) by G%), and we replace (o) with ("'dp0(1);
the only difference is that the bounds for this term are better. Indeed, from (A.85) we see that the 2-tensor
G(1) is the sum of entries in (*IDG(O) ®A, CilDG(o) ®ARA®D®, and (*IG(O) ®DA®A® D®. Recalling
that the entries of A are homogeneous quadratic polynomials in the entries of D®, from (A.81), (A.82),
X < ), and the Leibniz rule we deduce that

(DY DYDY G| S e AN N M (M, My, 7) (A.90)

for N+ N” < N, — 1, and M < M,. Compare the above estimate with (A.82), and we notice that since
A~ <« 1, the bounds for G(1) are indeed better than those for G g); the only caveat is the the bounds hold
for one fewer spatial derivatives. In order to iterate Proposition A.17, for simplicity we ignore the ¢ index,
since the argument works in exactly the same way for all values of ¢, we write Gé‘i) simply as Gél), and Opo(1)

as Do(1y. We start by noting that (~*Do(1y = (T?A(("'Dg(2)). Thus, using identities (A.62)-(A.65) we
obtain that the second term in (A.83) may be written as

()¢ Dogy) 0 ® = B R(}) + Gl (20 Do(z)) o (A.91)

where the symmetric stress Ry is given by

i = ¢ (Gl AR + Gy Al — AL ARG 0,0°) ((20 Do) 0 @, (A.92)

—.qint
=50

the error terms are computed as

Gty = ¢ (0 (G 4442 — G,y ALAE) 0,87) 0,6y 47 (4.9

We emphasize that by combining (A.85) with (A.92) and (A.93), we may compute the 3-tensor Sy and
the 2-tensor G2y explicitly in terms of just space derivatives of G and D®. Using a similar argument to
the one which was used to prove (A.88), but by appealing to (A.90) instead of (A.82), we deduce that for
N<N,—1and M < M,,
DV DM Syl 2 S CaATHAN M (M, My, v,v) . (A.94)
Using the bound (A.94) and the estimate
DY (¢720iDo))|| 1 S CM (N2, A)

which is a consequence of (A.69) — in the case N = 2 as before we may weaken the bound by a factor of
A® — we may deduce from Lemma A.7 that

[DVYDM Ry || ,2 S CaCh*(ACT2)IM (N, 2,¢, A) M (M, My, v, ) (A.95)

for N < N, —1 and M < M,, which is an estimate that is even better than (A.89), since A < ¢ < A. This
shows that the first term in (A.91) satisfies the expected bound. The second term in (A.91) may in turn be
shown to satisfy

HDN DMpDN GQQ)HU < CaNRC NN M (M, My, v, D) . (A.96)
for N'+ N”" < N, —2 and M < M,, and it is clear that this procedure may be iterated d times.

Without spelling out these details, the iteration procedure described above produces

d—1
G(O)Q(o) od = Z div R(k) + G(d) & (C_dDdﬁ) od (A.97)
k=0

=F
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where each of the d symmetric stresses satisfies
||DND£V[R(1€) ||L1 S CGC*AQ()‘kcikJrl)M (Na 15 Ca A) M (Mv Mta v, ij) ) (A98)

for N < N, —k, and M < M,. Each component of the the error tensor G in (A.97) is recursively
computable solely in terms of G and D® and their spatial derivatives, and satisfies

DN'DMDN' Gyl < CaMNCHAN N M (M, My, v, D) (A.99)
@] .

for N'+N" < N,—d and M < M,. Lastly, since || DV (¢79D%)|,, S C.A*M (N,d, ¢, A) and D is (T/u)3-
periodic, a final application of Lemma A.7 combined with (A.99) and the assumption that N, —d > 2Nge. 14,
shows that estimate (A.74) holds.

Next, we turn to the proof of (A.78) and (A.79). Recall that E is defined by the second term in (A.97),
and thus f, Goo ®dx = f, Edx. Using the standard nonlocal inverse-divergence operator

Ro=A""(Vu+ (Vo)") — - (Id+ VVA™!) A~ divw. (A.100)

1
2
we may define

o

Rnonlocal =RE.

By the definition of R we have that lo%nonlocal is traceless, symmetric, and satisfies div Rnonlocal =F- f’]l‘3 FEdzx,
i.e. (A.78) holds. In the last equality we have used that by assumption Gp o ® has zero mean, and thus so
does E. The idea here is very simple: because d is very large, the gain of (A(™1)¢ present in the E estimate
(A.74) is so strong, that we may simply convert D and D; bounds on E to (terrible) 9; bounds, which
commute with R, and we can still get away with it.

Using the formulas (5.17a) and (5.17b) and the assumption (A.75), since D and 0; commute with R, we
deduce that for every N < N, and M < M, we have

M—M'
N M £ KYN—N'+K~—(M-M'-K N’ oM’
HD Dt Rnonlocal It 5 Z Z Cv )\q 7—q( )HD at RE‘ I
M'<M K=0
N'+M'<N+M
YN—N'~—(M—-M' N’ oM’
< 3 AR >HD o EHL (A.101)
M'<M

N'+M'<N+M

for any p € (1,3/2), where in the last inequality we have used that by assumption cviq ST 1 and that
R: LP(T3) — L'(T?) is a bounded operator.
Our goal is to appeal to estimate (A.44) in Lemma A.10, with A = —v -V, B = D; and f = E in order
to estimate the L? norm of DN'9M E = DN'(A+ B)M'E.
First, we claim that v satisfies the lossy estimate
IDY Dol o <

~

CANF M (A.102)

for M < M, and N+ M < N, + M,. This estimate does not follow from (A.68), which only provides bounds
for Duv, instead of v. For this purpose, we apply Lemma A.10 with f =v, B=0;,, A=v-V, and p = co.
Using (A.75), and the fact that B = 9; and D commute, we obtain that bounds (A.40) and (A.41) hold with
Csr=0Cy, Ay = XU =Ar = Xf = Xq, and f, = fly = pif = [y = ?q’l. Since A+ B = Dy, we obtain from the
bound (A.44) and our assumption CUXq <7, ! that (A.102) holds.

Second, we claim that for any k£ > 1 we have

k
()
i=1

< CA (max{w, 711! (A.103)
L (supp G)
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whenever |3] < M, and |a| + |8] < Ny + M,. To see this, we use Lemma A.14 with f = v, p = oo, and
Q = supp G. From (A.68) we have that (A.50) holds with C, = v/X, Ay = Ay, = X, yt, = v, and Ji, = 7. On
the other hand, from (A.102) we have that (A.51) holds with Cy = C,, Ay = Xf = Xq, and pip = fip =7, "
Since Xq > X, we deduce from (A.54) that (A.103) holds.

Third, we claim that

(for)

holds whenever |a| < N, —d and |3] < M,. This estimate again follows from Lemma A.14, this time with
f = E, by appealing to the previously established bound (A.74) and the Sobolev embedding W1 (T?) C
LP(T3) for p € (1,3/2).

At last, we are in the position to apply Lemma A.10. The bound (A.103) implies that assumption (A.40)
holds with B = Dy, A\, = Ao = Xq, and fi, = iy, = max{?;l, v}. The bound (A.104) implies that assumption
(A.41) of Lemma A.10 holds with Cy = CC(A(™1)9A, Ap = Xf =A, py =v, and piy = v. We may now use
estimate (A.44), and the assumption that A > Xq to deduce that

< CaC ACTHINIFIN (18], My, v, D) (A.104)
Lr(supp G)

HDN’atM’EHL S CaC.(ACTIAN T (max{C, A, 7,7, 1 )M (A.105)
P
holds whenever M’ < M, and N’ + M’ < N, + M,. Combining (A.101) and (A.105) we deduce that

N M p
HD Dt Rnonlocal I

SCC(ACTHT YT AVNE MEMOAN  (max{C, A, T, 7 )M
M'<M
N'+M'<N+M

< CaC(ACHIAN T (max{C, A, 7, 7, HM (A.106)

whenever N < N, and M < M,. Estimate (A.79) follows by appealing to the assumption (A.77), which
ensures that the gain from (A{~1)97! is already a sufficiently strong amplitude gain, and we use the leftover
factor of A\( ™! to absorb implicit constants. O
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