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Abstract

For any positive regularity parameter β < 1/2, we construct non-conservative weak solutions of the 3D
incompressible Euler equations which lie in Hβ uniformly in time. In particular, we construct solutions
which have an L2-based regularity index strictly larger than 1/3, thus deviating from the H

1/3-regularity
corresponding to the Kolmogorov-Obhukov 5/3 power spectrum in the inertial range.
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1 Introduction

We consider the homogeneous incompressible Euler equations

∂tv + div (v ⊗ v) +∇p = 0 (1.1a)

div v = 0 (1.1b)

for the unknown velocity vector field v and scalar pressure field p, posed on the the three dimensional box
T3 = [−π, π]3 with periodic boundary conditions. We consider weak solutions of (1.1), which may be defined
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in the usual way for v ∈ L2
tL

2
x.

We show that within the class of weak solutions of regularity C0
tH

1/2−
x , the 3D Euler system (1.1) is

flexible.1 An example of this flexibility is provided by:

Theorem 1.1 (Main result). Fix β ∈ (0, 1/2). For any divergence-free vstart, vend ∈ L2(T3) which have the
same mean, any T > 0, and any ϵ > 0, there exists a weak solution v ∈ C([0, T ];Hβ(T3)) to the 3D Euler
equations (1.1) such that ∥v(·, 0)− vstart∥L2(T3) ≤ ϵ and ∥v(·, T )− vend∥L2(T3) ≤ ϵ.

Since the vector field vend may be chosen to have a much higher (or much lower) kinetic energy than the
vector field vstart, the above result shows the existence of infinitely many non-conservative weak solutions of

3D Euler in the regularity class C0
tH

1/2−
x . Theorem 1.1 further shows that the set of so-called wild initial

data is dense in the space of L2 periodic functions of given mean. The novelty of this result is that these
weak solutions have more than 1/3 regularity, when measured on a L2

x-based Banach scale.

Remark 1.2 (Corollaries of the proof). We have chosen to state the flexibility of the 3D Euler equations
as in Theorem 1.1 because it is a simple way to exhibit weak solutions which are non-conservative, leaving the
entire emphasis of the proof on the regularity class in which the weak solutions lie. Using by now standard
approaches encountered in convex integration constructions for the Euler equations, we may alternatively

establish the following variants of flexibility for (1.1) within the class of C0
tH

1/2−
x weak solutions:

(a) The proof of Theorem 1.1 also shows that: given any β < 1/2, T > 0, and E > 0, there exists a weak
solution v ∈ C(R, Hβ(T 3)) of the 3D Euler equations such that: supp tv ⊂ [−T, T ], and ∥v(·, 0)∥L2 ≥
E. Such weak solutions are nontrivial and have compact support in time, thereby implying the non-

uniqueness of weak solutions to (1.1) in the regularity class C0
tH

1/2−
x . The argument is sketched in

Remark 3.7 below.

(b) The proof of Theorem 1.1 may be modified to show that: given any β ∈ (0, 1/2), and any C∞ smooth
function e : [0, T ] → (0,∞), there exists a weak solution v ∈ C0([0, T ];Hβ(T3)) of the 3D Euler equations,
such that v(·, t) has kinetic energy e(t), for all t ∈ [0, T ]. In particular, the flexibility of 3D Euler in

C0
tH

1/2−
x may be shown to also hold within the class of dissipative weak solutions, by choosing e to be a

non-increasing function of time. This is further discussed in Remark 3.8 below.

1.1 Context and motivation

Classical solutions of the Cauchy problem for the 3D Euler equations (1.1) are known to exist, locally in
time, for initial velocities which lie in C1,α for some α > 0 (see e.g. Lichtenstein [48]). These solutions are
unique, and they conserve (in time) the kinetic energy E(t) = 1

2

´
T3 |v(x, t)|2dx, giving two manifestations of

rigidity of the Euler equations within the class of smooth solutions.
Motivated by hydrodynamic turbulence, it is natural to consider a much broader class of solutions to the

3D Euler system; these are the distributional or weak solutions of (1.1), which may be defined in the natural
way as soon as v ∈ L2

tL
2
x, since (1.1) is in divergence form. Indeed, one of the fundamental assumptions of

Kolmogorov’s ’41 theory of turbulence [46] is that in the infinite Reynolds number limit, turbulent solutions
of the 3D Navier-Stokes equations exhibit anomalous dissipation of kinetic energy; by now, this is considered
to be an experimental fact, see e.g. the book of Frisch [39] for a detailed account. In particular, this
anomalous dissipation of energy necessitates that the family of Navier-Stokes solutions does not remain
uniformly bounded in the topology of L3

tB
α
3,∞,x for any α > 1/3, as the Reynolds number diverges, as was

alluded to in the work of Onsager [57].2 Thus, in the infinite Reynolds number limit for turbulent solutions
of 3D Navier-Stokes, one expects the convergence to weak solutions of 3D Euler, not classical ones.

1Loosely speaking, we consider a system of partial differential equations of physical origin to be flexible in a certain regularity
class, if at this regularity level the PDEs are not anymore predictive: there exist infinitely many solutions, which behave in
a non-physical way, in stark contrast to the behavior of the PDE in the smooth category. We refer the interested reader to
the discussion in the surveys of De Lellis and Székelyhidi Jr. [30, 32] which draw the analogy with the flexibility in Gromov’s
h-principle [40].

2Onsager did not use the Besov norm ∥v∥Bα
p,∞

= ∥v∥Lp+sup|z|>0 |z|−α ∥v(·+ z)− v(·)∥Lp ; here we use this modern notation

and the sharp version of this conclusion, cf. Constantin, E, and Titi [22], Duchon and Robert [35], Drivas and Eyink [34].
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It turns out that even in the context of weak solutions, the 3D Euler equations enjoy some conditional
variants of rigidity. An example is the classical weak-strong uniqueness property.3 Another example is the
question of whether weak solutions of the 3D Euler equation conserve kinetic energy. This is the subject of
the Onsager conjecture [57], one of the most celebrated connections between phenomenological theories in
turbulence and the rigorous mathematical analysis of the PDEs of fluid dynamics. For a detailed account we
refer the reader to the reviews [37, 21, 60, 30, 63, 32, 33, 12, 14] and mention here only a few of the results
in the Onsager program for 3D Euler.

Constantin, E, and Titi [22] established the rigid side of the Onsager conjecture, which states that if a

weak solution v of (1.1) lies in L3
tB

β
3,∞,x for some β > 1/3, then v conserves its kinetic energy. The endpoint

case β = 1/3 was addressed by Cheskidov, Constantin, Friedlander, and Shvydkoy [16], who established a
criterion which is known to be sharp in the context of 1D Burgers. By using the Bernstein inequality to
transfer information from L2

x into L3
x , the authors of [16] also prove energy-rigidity for weak solutions based

on a regularity condition for an L2
x based scale: if v ∈ L3

tH
β
x with β > 5/6, then v conserves kinetic energy

(see also the work of Sulem and Frisch [62]). We emphasize the discrepancy between the energy-rigidity
threshold exponents 5/6 for the L2-based Sobolev scale, and 1/3 for Lp-based regularity scales with p ≥ 3.

The first flexibility results were obtained by Scheffer [58], who constructed non-trivial weak solutions of
the 2D Euler system, which lie in L2

tL
2
x and have compact support in space and time. The existence of

infinitely many dissipative weak solutions to the Euler equations was first proven by Shnirelman in [59], in
the regularity class L∞

t L
2
x. Inspired by the work [53] of Müller and Šverak for Lipschitz differential inclusions,

in [29] De Lellis and Székelyhidi Jr. have constructed infinitely many dissipative weak solutions of (1.1) in the
regularity class L∞

t L
∞
x and have developed a systematic program towards the resolution of the flexible of the

Onsager conjecture, using the technique of convex integration. Inspired by Nash’s paradoxical constructions
for the isometric embedding problem [54], the first proof of flexibility of the 3D Euler system in a Hölder
space was given by De Lellis and Székelyhidi Jr. in the work [31]. This breakthrough or crossing of the L∞

x

to C0
x barrier in convex integration for 3D Euler [31] has in turn spurred a number of results [8, 6, 9, 27]

which have used finer properties of the Euler equations to increase the regularity of the wild weak solutions
being constructed. The flexible part of the Onsager conjecture was finally resolved by Isett [43, 42] in the
context of weak solutions with compact support in time (see also the subsequent work by the first and
last authors with De Lellis and Székelyhidi Jr. [11] for dissipative weak solutions), by showing that for any

regularity parameter β < 1/3, the 3D Euler system (1.1) is flexible in the class of Cβt,x weak solutions. We
refer the reader to the review papers [30, 63, 32, 33, 12, 14] for more details concerning convex integration
constructions in fluid dynamics, and for open problems in this area.

Since the aforementioned convex integration constructions are spatially homogenous, they yield weak
solutions whose Hölder regularity index cannot be taken to be larger than 1/3 (recall that weak solutions in
L3
tC

β
x with β > 1/3 must conserve kinetic energy). However, the exponent 1/3 is not expected to be a sharp

threshold for energy-rigidity/flexibility if the weak solutions’ regularity is measured on an Lpx-based Banach
scale with p < 3. This expectation stems from the measured intermittent nature of turbulent flows, see
e.g. Frisch [39, Figure 8.8, page 132]. In broad terms, intermittency is characterized as a deviation from
the Kolmogorov ’41 scaling laws, which were derived under the assumptions of homogeneity and isotropy
(for a rigorous way to measure this deviation, see Cheskidov and Shvydkoy [20]). A common signature of
intermittency is that for p ̸= 3, the pth order structure function4 exponents ζp deviate from the Kolmogorov-
predicted values of p/3. We note that the regularity statement v ∈ C0

tB
s
p,∞ corresponds to a structure

function exponent ζp = sp; that is, Kolmogorov ’41 predicts that s = 1/3 for all p. The exponent p = 2 plays
a special role, as it allows one to measure the intermittent nature of turbulent flows on the Fourier side as
a power-law decay of the energy spectrum. Throughout the last five decades, the experimentally measured
values of ζ2 (in the inertial range, for viscous flows at very high Reynolds numbers) have been consistently

3If v is a strong solution of the Cauchy problem for (1.1) with initial datum v0 ∈ L2, and w ∈ L∞
t L2

x is merely a weak
solution of the Cauchy problem for (1.1), which has the additional property that it its kinetic energy E(t) is less than the kinetic
energy of v0, for a.e. t > 0, then in fact v ≡ w. See e.g. the review [65] for a detailed account.

4In analogy with Lp-based Besov spaces, absolute pth order structure functions are typically defined as Sp(ℓ) =ffl T
0

ffl
T3

ffl
S2 |v(x + ℓz, t) − v(x, t)|pdzdxdt. The structure function exponents in Kolmogorov’s ’41 theory are then given by

ζp = lim supℓ→0+
log Sp(ℓ)

log(ϵℓ)
, where ϵ > 0 is the postulated anomalous dissipation rate in the infinite Reynolds number limit.

Of course, for any non-conservative weak solution we may define a positive number ϵ =
ffl T
0 | d

dt
E(t)|dt as a substitute for

Kolmogorov’s ϵ, which allows one to define ζp accordingly.
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observed to exceed the Kolmogorov-predicted value of 2/3 [1, 50, 61, 45, 15, 44, 55], thus showing a steeper
decay rate in the inertial range power spectrum than the one predicted by the Kolmogorov-Obhukov 5/3
law. Moreover, in the mathematical literature, Constantin and Fefferman [23] and Constantin, Nie, and
Tanveer [24] have used the 3D Navier-Stokes equations to show that the Kolmogorov ’41 prediction ζ2 = 2/3
is only consistent with a lower bound for ζ2, instead of an exact equality.

Prior to this work, it was not known whether the 3D Euler equation can sustain weak solutions which
have kinetic energy that is uniformly bounded in time but not conserved, and which have spatial regularity

equal to or exceeding H
1/3
x , corresponding to ζ2 ≥ 2/3; see [12, Open Problem 5] and [14, Conjecture 2.6].

Theorem 1.1 gives the first such existence result. The solutions in Theorem 1.1 may be constructed to have
second order structure function exponent ζ2 an arbitrary number in (0, 1), showing that (1.1) exhibits weak
solutions which severely deviate from the Kolmogorov-Obhukov 5/3 power spectrum.

We note that in a recent work [18], Cheskidov and Luo established the sharpness of the L2
tL

∞
x endpoint

of the Prodi-Serrin criteria for the 3D Navier-Stokes equations, by constructing non-unique weak (mild)
solutions of these equations in LptL

∞
x , for any p < 2.5 As noted in [18, Theorem 1.10], their approach also

applies to the 3D Euler equations, yielding weak solutions that lie in L1
tC

β
x for any β < 1, and thus these

weak solutions also have more than 1/3 regularity. The drawback is that the solutions constructed in [18]
do not have bounded (in time) kinetic energy, in contrast to Theorem 1.1, which yields weak solutions with
kinetic energy that is continuous in time.

Theorem 1.1 is proven by using an intermittent convex integration scheme, which is necessary in order to
reach beyond the 1/3 regularity exponent, uniformly in time. Intermittent convex integration schemes have
been introduced by the first and last authors in [13] in order to prove the non-uniqueness of weak (mild)
solutions of the 3D Navier-Stokes equations with bounded kinetic energy, and then refined in collaboration
with Colombo [7] to construct solutions which have partial regularity in time. Recently, intermittent convex
integration techniques have been used successfully to construct non-unique weak solutions for the transport
equation (cf. Modena and Székelyhidi Jr. [52, 51], Brué, Colombo, and De Lellis [5], and Cheskidov and
Luo [17]), the 2D Euler equations with vorticity in a Lorentz space (cf. [4]), the stationary 4D Navier-Stokes
equations (cf. Luo [49]), the α-Euler equations (cf. [3]), in the context of the MHD equations (cf. Dai [26],
the first and last authors with Beekie [2]), and the effect of temporal intermittency has recently been studied
by Cheskidov and Luo [18]. We refer the reader to the reviews [12, 14] for further references, and for a
comparison between intermittent and homogenous convex integration.

When applied to three-dimensional nonlinear problems, intermittent convex integration has insofar only
been successful at producing weak solutions with negligible spatial regularity indices, uniformly in time. As
we explain in Section 1.2, there is a fundamental obstruction to achieving high regularity: in physical space,
intermittency causes concentrations that results in the formation of intermittent peaks, and to handle these
peaks the existing techniques have used an extremely large separation between the frequencies in consecutive
steps of the convex integration scheme.6 This paper is the first to successfully implement a high-regularity (in
L2), spatially-intermittent, temporally-homogenous, convex integration scheme in three space dimensions,
and shows that for the 3D Euler system any regularity exponent β < 1/2 may be achieved.7 In fact, the
techniques developed in this paper are the backbone for the recent work [56] of the last two authors, which
gives an alternative, intermittent, proof of the Onsager conjecture.

1.2 Ideas and difficulties

As alluded to in the previous paragraph, the main difficulty in reaching a high regularity exponent for weak
solutions of (1.1) is that the existing intermittent convex integration schemes do not allow for consecutive
frequency parameters λq and λq+1 to be close to each other. In essence, this is because intermittency smears
out the set of active frequencies in the approximate solutions to the Euler system (instead of concentric
spheres, they are more akin to thick concentric annuli), and several of the key estimates in the scheme
require frequency separation to achieve Lp-decoupling (see Section 2.4.1). Indeed, high regularity exponents
necessitate an almost geometric growth of frequencies (λq = λq0), or at least a barely super-exponential growth

5See also [19] for a proof that the space C0
t L

p
x is critical for uniqueness at p = 2, in two space dimensions.

6This becomes less of an issue when one considers the equations of fluid dynamics in very high space dimensions, cf. Tao [64].
7It was known within the community (see Section 2.4.1 for a detailed explanation) that there is a key obstruction to reaching

a regularity index in L2 for a solution to the Euler equations larger than 1/2 via convex integration.
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rate λq+1 = λbq with 0 < b − 1 ≪ 1 (in comparison, the schemes in [13, 7] require b ≈ 103). Essentially
every new idea in this paper is aimed either directly or indirectly at rectifying this issue: how does one take
advantage of intermittency, and at the same time keep the frequency separation to be nearly geometric?

The building blocks used in the convex integration scheme are intermittent pipe flows,8 which we describe
in Section 2.3. Due to their spatial concentration and their periodization rate, quadratic interactions of these
building blocks produce both the helpful low frequency term which is used to cancel the previous Reynolds
stress R̊q, and also a number of other errors which live at intermediate frequencies. These errors are spread
throughout the frequency annulus with inner radius λq and outer radius λq+1, and may have size only slightly

less than that of R̊q. If left untreated, these errors only allow for a very small regularity parameter β. In
order to increase the regularity index of our weak solutions, we need to take full advantage of the frequency
separation between the slow frequency λq and the fast frequency λq+1. As such, the intermediate-frequency
errors need to be further corrected via velocity increments designed to push these residual stresses towards the
frequency sphere of radius λq+1. The quadratic interactions among these higher-order velocity corrections
themselves, and in principle also with the old velocity increments, in turn create higher order Reynolds
stresses, which live again at intermediate frequencies (slightly higher than before), but whose amplitude is
slightly smaller than before. This process of adding higher order velocity perturbations designed to cancel
intermediate-frequency higher order stresses has to be repeated many times until all the resulting errors are
either small, or they live at frequency ≈ λq+1, and thus are also small upon inverting the divergence. See
Sections 2.4 and 2.6 for a more thorough account of this iteration.

Throughout the process described in the above paragraph, we need to keep adding velocity increments,
while at the same time keeping the high-high-high frequency interactions under control. The fundamental
obstacle here is that when composing the intermittent pipe flows with the Lagrangian flow of the slow velocity
field, the resulting deformations are not spatiotemporally homogenous. In essence, the intermittent nature
of the approximate velocity fields implies that a sharp global control on their Lipschitz norm is unavailable,
thus precluding us from implementing a gluing technique as in [42, 11]. Additionally, we are faced with the
issue that pipe flows which were added at different stages of the higher order correction process have different
periodization rates and different spatial concentration rates, and may a-priori overlap. Our main idea here is
to implement a placement technique which uses the relative intermittency of pipe flows from previous or same
generations, in conjunction with a sharp bound on their local Lagrangian deformation rate, to determine
suitable spatial shifts for the placement of new pipe flows so that they dodge all other bent pipes which live
in a restricted space-time region. This geometric placement technique is discussed in Section 2.5.2.

A rigorous mathematical implementation of the heuristic ideas described in the previous two paragraphs,
which crucially allows us to slow down the frequency growth to be almost geometric, requires extremely sharp
information on all higher order errors and their associated velocity increments. For instance, in order to take
advantage of the transport nature of the linearized Euler system while mitigating the loss of derivatives issue
which is characteristic of convex integration schemes, we need to keep track of essentially infinitely many
sharp material derivative estimates for all velocity increments and stresses. Such estimates are naturally
only attainable on a local inverse Lipschitz timescale, which in turn necessitates keeping track of the precise
location in space of the peaks in the densities of the pipe flows, and performing a frequency localization with
respect to both the Eulerian and the Lagrangian coordinates. In order to achieve this, we introduce carefully
designed cutoff functions, which are defined recursively for the velocity increments (in order to keep track
of overlapping pipe flows from different stages of the iteration), and iteratively for the Reynolds stresses (in
order to keep track of the correct amplitude of the perturbation which needs to be added to correct these
stresses); see Section 2.5. The cutoff functions we construct effectively play the role of a joint Eulerian-and-
Lagrangian Littlewood-Paley frequency decomposition, which in addition keeps track of both the position
in space and the amplitude of various objects (more akin to a wavelet decomposition). The analysis of
these cutoff functions requires estimating very high order commutators between Lagrangian and Eulerian
derivatives which in great part are responsible for the length of this paper (see Section 6 and Appendix A).
Lastly, we mention an additional technical complication: since the sharp control of the Lipschitz norm of the
approximate velocities in our scheme is local in space and time, we need to work with an inverse divergence
operator (e.g. for computing higher order stresses) which, up to much lower order error terms, maintains

8The moniker used in [27] and the rest of the literature for these stationary solutions has been “Mikado flows”. However,
we rely rather heavily on the geometric properties of these solutions, such as orientation and concentration around axes, and
so to emphasize the tube-like nature of these objects, we will frequently use the name “pipe flows”.
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the spatial support of the vector fields that it is applied to. Additionally, we need to be able to estimate an
essentially infinite number of material derivatives applied to the output of this inverse divergence operator.
This issue is addressed in Section A.8.

The rest of the paper is organized as follows. Section 2 contains an outline of the convex integration
scheme, in which we replace some of the actual estimates and definitions appearing in the proof with heuristic
ones in order to highlight the new ideas at an intuitive level. The proof of Theorem 1.1 is given in Section 3,
assuming that a number of estimates hold true inductively for the solutions of the Euler-Reynolds system
at every step of the convex integration iteration. The remainder of the paper is dedicated to showing that
the inductive bounds stated in Section 3.2 may indeed be propagated from step q to step q + 1. Section 4
contains the construction of the intermittent pipe flows used in this paper and describes the careful placement
required to show that these pipe flows do not overlap on a suitable space-time set. The mollification step
of the proof is performed in Section 5. Section 6 contains the definitions of the cutoff functions used in the
proof and establishes their properties. Section 7 breaks down the the main inductive bounds from Section 3.2
into components which take into account the higher order stresses and perturbations. Section 8 then proves
the constituent parts of the inductive bounds outlined in the previous section. Section 9 carefully defines
the many parameters in the scheme, states the precise order in which they are chosen, and lists a few
consequences of their definitions. Finally, Appendix A contains the analytical toolshed to which we appeal
throughout the paper.
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2 Outline of the convex integration scheme

2.1 A guide to the parameters

In order to make sharp estimates throughout the scheme, we will require numerous parameters. For the
reader’s convenience, we have collected in this section the heuristic definitions of all the parameters introduced
in the following sections of the outline. The parameters are listed in Section 2.1.1 in the order corresponding
to their first appearance in the outline. We give as well brief descriptions of the significance of each parameter.

2.1.1 Definitions

Definition 2.1 (Parameters Introduced in Section 1).

(1) β - The regularity exponent corresponding to a final solution v ∈ C
(
R;Hβ(T3)

)
.

Definition 2.2 (Parameters Introduced in Section 2.2).

(1) q - The integer which represents the primary stages of the iterative convex integration scheme.

(2) λq = a(b
q) - The primary parameter used to quantify frequencies. a and b will be chosen later, with

a ∈ R+ being a sufficiently large positive number and b ∈ R a real number slightly larger than 1.

(3) δq = λ−2β
q - The primary parameter used to quantify amplitudes of stresses and perturbations.

(4) τq = (δ
1/2
q λq)

−1 - The primary parameter used to quantify the cost of a material derivative ∂t + vq · ∇.9

Definition 2.3 (Parameters Introduced in Section 2.3).

9For technical reasons, τ−1
q will be chosen to be slightly shorter than δ

1
2
q λq . For the heuristic calculations, one may ignore

this modification and simply use τ−1
q = δ

1
2
q λq .
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(1) n - The primary parameter which will be used to divide up the frequencies between λq and λq+1 and
which will take non-negative integer values. The divisions will be used both for the frequencies of the
higher order stresses in Section 2.4 as well as the thickness of the intermittent pipe flows used to correct
the higher order stresses.

(2) nmax - A large integer which is fixed independently of q and which sets the largest allowable value of n.

(3) rq+1,n =
(
λqλ

−1
q+1

)( 4
5 )

n+1

- The parameter quantifying intermittency, or the thickness of a tube periodized

at unit scale for values of n such that 0 ≤ n ≤ nmax.
10

(4) λq,n = λq+1rq+1,n = λ
( 4

5 )
n+1

q λ
1−( 4

5 )
n+1

q+1 - The minimum frequency present in an intermittent pipe flow

Wq+1,n. Equivalently, (λq+1rq+1,n)
−1

is the scale to which Wq+1,n is periodized.

λq
λq,0,0

λq+1

λq,0

λq,1,0 λq,2,0

λq,1 λq,nmax

λq,nmax+1,0

. . . . . .

. . . . . .

λq,n,0 λq,n+2,0λq,n+1,0

λq,n−1 λq,n

λq,n+1,p λq,n+1,p+1λq,n,p λq,n,p+1

1

Figure 1: Schematic of the frequency parameters appearing in Definitions 2.2 and 2.4.

Definition 2.4 (Parameters Introduced in Section 2.4).

(1) For 2 ≤ n ≤ nmax, λq,n,0 = λ
( 4

5 )
n−1· 56

q λ
1−( 4

5 )
n−1· 56

q+1 is the minimum frequency present in the higher

order stress R̊q,n. Conversely, λq,n+1,0 is the maximum frequency present in R̊q,n. When n = 0, we set

λq,0,0 = λq to be the maximum frequency present in R̊q,0 = R̊q, and when n = 1, λq,1,0 = λq,0 is the

minimum frequency present in R̊q,1, while λq,2,0 is the maximum frequency.

(2) p - A secondary parameter which takes positive integer values and which will be used to divide up the
frequencies in between λq,n,0 and λq,n+1,0, as well as the higher order stresses.

(3) pmax - A large integer, fixed independently of q, which is the largest allowable value of p.

(4) λq,n,p = λ
1− p

pmax
q,n,0 λ

p
pmax
q,n+1,0 - The maximum frequency present in the higher order stress R̊q,n,p for 1 ≤ n ≤

nmax and 1 ≤ p ≤ pmax. Conversely, λq,n,p−1 is the minimum frequency in R̊q,n,p. When n = 0 and p
takes any value, we adopt the convention that λq,0,p = λq.

(5) fq,n = λ
1

pmax
q,n+1,0λ

− 1
pmax

q,n,0 - The increment between frequencies λq,n,p−1 and λq,n,p for n ≥ 1. We have the
equalities

λq,n,p = λq,n,0f
p
q,n, λq,n+1,0 = λq,n,0f

pmax
q,n .

For ease of notation, when n = 0 we set fq,n = 1.

10In particular, this choice gives rq+1,n+1 = r
4
5
q+1,n. In our proof, the inequality r3q+1,n ≪ r4q+1,n+1 plays a crucial role. In

order to absorb q independent constants, as well as to ensure that there is a sufficient gap between these parameters to ensure
decoupling, we have chosen to work with the 4

5
instead of the 3

4
geometric scale.
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(6) For n = 0 and p = 1, δq+1,0,1 := δq+1 is the amplitude of R̊q := R̊q,0. For n = 0 and p ≥ 2, δq+1,0,p = 0,

since there are no higher order stresses at n = 0. For n ≥ 1 and any value of p, the amplitude of R̊q,n,p
is given by

δq+1,n,p :=
δq+1λq
λq,n,p−1

·
∏
n′<n

fq,n′ .

One should view the product of fq,n′ terms as a negligible error, which is justified by calculating

∏
0≤n′≤nmax

fq,n′ =

(
λq,nmax+1,0

λq,1,0

) 1
pmax

≤
(
λq+1

λq

) 1
pmax

(2.1)

and assuming that pmax is large.

Definition 2.5 (Parameters Introduced in Section 2.5).

(1) εΓ - A very small positive number.

(2) Γq+1 =
(
λq+1λ

−1
q

)εΓ
- A parameter which will be used to quantify deviations in amplitude. In particular,

Γq will be used to quantify amplitudes of both velocity fields and (higher-order) stresses.

2.2 Inductive assumptions

For every non-negative integer q we will construct a solution (vq, pq, R̊q) to the Euler-Reynolds system

∂tvq + div (vq ⊗ vq) +∇pq = div R̊q (2.2a)

div vq = 0 . (2.2b)

Here R̊q is assumed to be a trace-free symmetric matrix. The relative size of the approximate solution vq
and the Reynolds stress error R̊q will be measured in terms of the frequency parameter λq and the amplitude
parameter δq, which are defined in Definition 2.2. We will propagate the following basic inductive estimates

on (vq, R̊q):
11

∥vq∥H1 ≤ δ
1
2
q λq (2.3)

∥R̊q∥L1 ≤ δq+1. (2.4)

We shall see later that in order to build solutions belonging to Ḣβ for β approaching 1
2 , we must propagate

additional estimates on higher order material and spatial derivatives of both vq and R̊q in L2 and L1,

respectively. Roughly speaking, every spatial derivative on either vq or R̊q costs a factor of λq. Additional
material derivatives are more delicate and will be discussed further in Section 2.5, but for the time being,
one may imagine that each material derivative Dt,q := ∂t + vq · ∇ on vq or R̊q costs a factor of τ−1

q .

2.3 Intermittent pipe flows

Pipe flows, both homogeneous and intermittent, have proven to be one of the most useful components of
many convex integration schemes. Homogeneous pipe flows were introduced first by Daneri and Székelyhidi
Jr. [27]. The prototypical pipe flow in the e⃗3 direction is constructed using a smooth function ρ : R2 → R
which is compactly supported, for example in a ball of radius 1 centered at the origin, and has zero mean.
Letting ϱ : T2 → R be the T2-periodized version of ρ, the T3-periodic pipe flow W : T3 → R3 is defined as

W(x1, x2, x3) = ϱ(x1, x3)e2 . (2.5)

It is immediate that W is divergence-free and a stationary solution to the Euler equations. Pipe flows such as
W have been used in convex integration schemes which produce solutions in L∞-based spaces [27, 43, 11]. At

the qth stage of the iteration, the T3

λq+1
-periodized pipe flow W (λq+1·) is used to construct the perturbation.

11By ∥vq∥H1 , we actually mean ∥vq∥C0
t H

1
x
. Similarly, ∥R̊q∥L1 stands for ∥R̊q∥C0

t L
1
x
. Unless stated explicitly otherwise, all

the norms used in this paper represent analogous uniform in time estimates and will be abbreviated as such.
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By contrast, intermittent pipe flows are not spatially homogeneous. Intermittency in the context of
convex integration schemes was introduced by the first and last authors in [13] via intermittent Beltrami
flows, which are defined via their Fourier support and may be likened to modified and renormalized Dirichlet
kernels. Intermittent pipe flows were introduced by Modena and Székelyhidi Jr. in the context of the
transport and transport-diffusion equation [52] and have also been utilized for the higher dimensional (at
least four dimensional12) Navier-Stokes equations [49, 64]. The precise objects we use are defined in (4.10) in
Proposition 4.4, but let us briefly describe some of their important attributes. The intermittency is quantified

by the parameter rq+1,n ≪ 1. Let ρrq+1,n
: R2 → R be defined by ρrq+1,n

(·) = ρ
(

·
rq+1,n

)
, and let ϱrq+1,n

be

the T2-periodized version of ρrq+1,n
. Thus one can see that rq+1,n describes the thickness of the pipes at unit

scale. In order to make the intermittent pipe flows of unit size in L2(T3), one must multiply by a factor of
r−1
q+1,n, meaning that the Lebesgue norms of the resulting object Wrq+1,n

scale like

∥∥Wrq+1,n

∥∥
Lp(T3)

∼ r
2
p−1

q+1,n. (2.6)

Let Wq+1,n be the T3

(rq+1,nλq+1)
-periodic version of Wrq+1,n . Notice that this implies that the thickness of the

pipes comprising Wq+1,n is of order λ−1
q+1 for all n, and that the Lebesgue norms of the periodized object

Wq+1,n depend only on rq+1,n. Per Definition 2.3, the thickness of the pipes used in the perturbation at
stage q + 1 will be quantified by

rq+1,n =

(
λq
λq+1

)( 4
5 )

n+1

.

This choice will be jusified upon calculation of the heuristic bounds.

Figure 2: A pipe flow Wq+1,n which is periodized to scale (λq+1rq+1,n)
−1 = λ−1

q,n is placed in a direction parallel to
the e2 axis. Upon taking into account periodic shifts, we note that there are r−2

q+1,n many options to place this pipe.
This degree of freedom will be used later, see e.g. Figure 7.

2.3.1 Lagrangian coordinates, intermittency, and placements

In order to achieve the optimum regularity β, we will define the pipe flows which comprise the perturbation
at stage q+1 in Lagrangian coordinates corresponding to the velocity field vq. Due to the inherent instability
of Lagrangian coordinates over timescales longer than that dictated by the Lipschitz norm of the velocity
field, there will be many sets of coordinates used in different time intervals which are then patched together
using a partition of unity. This technique has been used frequently in recent convex integration schemes,
beginning with work of Isett [41], the first author, De Lellis, and Székelyhidi Jr. [10], and Isett, the first

12In three dimensions, intermittent pipe flows are not sufficiently sparse to handle the error term arising from the Laplacian.
This issue was addressed by Colombo and the first and last authors in [7] through the usage of intermittent jets, and similar
objects have been used in subsequent papers as well (see work of Brue, Colombo, and De Lellis [5], Cheskidov and Luo [17, 18]).
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author, De Lellis, and Székelyhidi Jr. [8], but perhaps most notably in the proof of the Onsager conjecture
by Isett [43] and the subsequent strengthening to dissipative solutions by the first and last authors, De Lellis,
and Székelyhidi Jr. [11].

The proof of Onsager’s conjecture employs the gluing technique to prevent pipe flows defined using
different Lagrangian coordinate systems from overlapping. The intermittent quality of our building blocks,
and thus the approximate solution vq, appears to obstruct the successful implementation of the gluing
technique, since gluing requires a sharp control on the global Lipschitz norm of the velocity field which will
be unavailable. Thus, we cannot use the gluing technique and must control in a different fashion the possible
interactions between two intermittent pipe flows defined using different Lagrangian coordinate systems.

To control these interactions, we have introduced a placement technique (cf. Proposition 4.8) which is used
to completely prevent all such interactions. This placement technique is predicated on a simple observation
about intermittent pipe flows, which to our knowledge has not yet been used in any convex integration
schemes to date. When the diameter of the pipe at unit scale is of size rq+1,n, there are (rq+1,n)

−2 disjoint
choices for the support of pipe. These choices simply correspond to shifting the intersection of the axis of the
pipe in the plane which is perpendicular to the axis, cf. Proposition 4.3. This degree of freedom is unaffected

by periodization and is depicted in Figure 2 for a T3

λq+1rq+1,n
-periodic intermittent pipe flow Wq+1,n. We will

exploit this degree of freedom to choose placements for each set of pipes which entirely avoid other sets of
pipes on small discretized regions of space-time. The space-time discretization is made possible through the
usage of cutoff functions which will be discussed in more detail later in Section 2.5. We remark that De Lellis
and Kwon [28] have introduced a placement technique in the context of Cα, globally dissipative solutions to
the 3D Euler equations which is predicated on restricting the timescale of the Lagrangian coordinate systems
to be significantly shorter than the Lipschitz timescale. This restriction significantly limits the regularity of
the final solution and is thus not suited for a intermittent scheme aimed at H

1
2− regularity.

2.4 Higher order stresses

2.4.1 Regularity beyond 1/3

The resolution of the flexible side of the Onsager conjecture in [43] and [11] mentioned previously shows
that given some prescribed regularity index β ∈ (0, 13 ), one can construct dissipative weak solutions u in
Cβ . Conversely, following on partial work by Eyink [36], Constantin, E, and Titi [22] have proven that
conservation of energy in the Euler equations requires only that u ∈ L3

t

(
Bα3,∞

)
for α > 1/3. This leaves

open the possibility of building dissipative weak solutions with more than 1
3 -many derivatives in Lp

(
T3
)

(uniformly in time in our case) for p < 3.

Let us present a heuristic estimate which indicates a regularity limit of H
1
2 for solutions produced via

convex integration schemes. For this purpose, let us focus on one of the principal parts of the stress in an
intermittent convex integration schemes (for the familiar reader, this is part of the oscillation error). The
perturbations include a coefficient function a which depends on R̊q and thus for which derivatives cost λq

and which has amplitude δ
1/2
q+1 (the square root of the amplitude of the stress). These coefficient functions

are multiplied by intermittent pipe flows Wq+1,0 for which derivatives cost λq+1 and which have unit size

in L2, but are only periodized to scale (λq+1rq+1,0)
−1

. When the divergence lands on the square of the
coefficient function a2 in the nonlinear term, the resulting error term satisfies the estimate∥∥div−1

(
∇(a2)P̸=0(Wq+1,0 ⊗Wq+1,0)

)∥∥
L1 ≤ δq+1λq

λq+1rq+1,0
. (2.7)

The numerator is the size of ∇(a2) in L1, while the denominator is the gain induced by inverting the
divergence at λq+1rq+1,0, which is the minimum frequency of P ̸=0(Wq+1,0 ⊗Wq+1,0) = Wq+1,0 ⊗Wq+1,0 −ffl
T3 Wq+1,0⊗Wq+1,0. Note that we have used implicitly thatWq+1,0 has unit L

2 norm, and that by periodicity
P̸=0(Wq+1,0⊗Wq+1,0) decouples from ∇(a2). This error would be minimized when rq+1,0 = 1, in which case

δq+1λq
λq+1

< δq+2 ⇐⇒ λ
−2β+ 1

b
q+1 < λ−2βb+1

q+1

⇐⇒ 2βb2 − 2βb < b− 1
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⇐⇒ 2βb(b− 1) < b− 1

⇐⇒ β <
1

2b
. (2.8)

Any intermittency parameter rq+1,0 ≪ 1 would weaken this estimate since the gain induced from inverting
the divergence will only be λq+1rq+1,0 ≪ λq+1. On the other hand, we will see that a small choice of
rq+1,0 strengthens all other error terms, and because of this, in our construction we will choose rq+1,0 as in
Definition 2.3, item (3). One may refer to the blog post of Tao [64] for a slightly different argument which
reaches the same apparent regularity limit. This apparent regularity limit is independent of dimension, and
we believe that the method in this paper can not be modified to yield weak solutions with regularity L∞

t W
s,p
x

with s > 1/2, for any p ∈ [1, 2].
The higher order stresses mentioned in Section 1.2 will compensate for the losses incurred in this nonlinear

error term when rq+1,0 ≪ 1. As we shall describe in the next section, we use the phrase “higher order stresses”

to describe errors which are higher in frequency and smaller in amplitude than R̊q, but not sufficiently small

enough or at high enough frequency to belong to R̊q+1. Similarly, “higher order perturbations” are used to
correct the higher order stresses and thus increase the extent to which an approximate solution solves the
Euler equations.

2.4.2 Specifics of the higher order stresses

In convex integration schemes which measure regularity in L∞ (i.e. using Hölder spaces Cα), pipe flows
interact through the nonlinearity to produce low (≈ λq) and high (≈ λq+1) frequencies. We denote by

wq+1,0 the perturbation designed to correct R̊q. In the absence of intermittency, the low frequencies from

the self-interaction of wq+1,0 cancel the Reynolds stress error R̊q, and the high frequencies are absorbed by

the pressure up to an error small enough to be placed in R̊q+1. In an intermittent scheme, the self-interaction
of the intermittent pipe flows comprising wq+1,0 produces low, intermediate, and high frequencies. The low
and high frequencies play a similar role as before. However, the intermediate frequencies cannot be written
as a gradient, nor are small enough to be absorbed in R̊q+1. This issue has limited the available regularity on
the final solution in many previous intermittent convex integration schemes. In order to reach the threshold
H

1
2 , we address this issue using higher order Reynolds stress errors R̊q,n for n = 1, 2, . . . , nmax, cf. Figure 3.

After the addition of wq+1,0 to correct R̊q, which is labeled in Figure 4 as R̊q,0, low frequency error terms
are produced, which we divide into higher order stresses. To correct the error term of this type at the lowest
frequency, which is labeled R̊q,1 in Figure 4, we add a sub-perturbation wq+1,1. The subsequent bins are
lighter in color to emphasize that they are not yet full; that is, there are more error terms which have yet
to be constructed but will be sorted into such bins. The emptying of the bins then proceeds inductively on
n, as we add higher order perturbations wq+1,n, which are designed to correct R̊q,n. For 1 ≤ n ≤ nmax, the

frequency support of R̊q,n is13 {
k ∈ Z3 : λq,n,0 ≤ |k| < λq,n+1,0

}
. (2.9)

This division will be justified upon calculation of the heuristic bounds in Section 2.7.
Let us now explain the motivation for the division of R̊q,n into the further subcomponents R̊q,n,p. Suppose

that we add a perturbation wq+1,n to correct R̊q,n for n ≥ 1. The amplitude of wq+1,n would depend on the

amplitude of R̊q,n, which in turn depends on the gain induced by inverting the divergence to produce R̊q,n,
which depends then on the minimum frequency λq,n,0. However, derivatives on the low frequency coefficient

function used to define wq+1,n would depend on the maximum frequency of R̊q,n, which is λq,n+1,0. The
(sharp-eyed) reader may at this point object that the first derivative on the low-frequency coefficient function
∇(a(R̊q,n)) should be cheaper, since R̊q,n is obtained from inverting the divergence, and taking the gradient
of the cutoff function written above should thus morally involve bounding a zero-order operator. However,
constructing the low-frequency coefficient function presents technical difficulties which prevent us from taking
advantage of this intuition. In fact, the failure of this intuition is the sole reason for the introduction of
the parameter p, as one may see from the heuristic estimates later. In any case, increasing the regularity

13In reality, the higher order stresses are not compactly supported in frequency. However, they will satisfy derivative estimates
to very high order which are characteristic of functions with compact frequency support.
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R̊q,0 R̊q,1 R̊q,2 R̊q,n R̊q+1

R̊q,0 R̊q,1 R̊q,2 R̊q,n

. . . . . .

. . . . . .

Adding wq+1,0

R̊q+1

1

Figure 3: Adding the increment wq+1,0 corrects the stress R̊q,0 = R̊q, but produces error terms which live at
frequencies that are intermediate between λq and λq+1, due to the intermittency of wq+1,0. These new errors are
sorted into higher order stresses R̊q,n for 1 ≤ n ≤ nmax, as depicted above. The heights of the boxes corresponds to
the amplitude of the errors that will fall into them, while the frequency support of each box increases from λq for
R̊q,0 = R̊q, to λq+1 for R̊q+1.

β of the final solution requires minimizing this gap between the gain in amplitude provided by inverting
the divergence and the cost of a derivative, and so we subdivide R̊q,n into further components R̊q,n,p for

1 ≤ p ≤ pmax.
14 Both nmax and pmax are fixed independently of q. Each component R̊q,n,p then will have

frequency support in the set{
k ∈ Z3 : λq,n,p−1 ≤ |k| < λq,n,p

}
=
{
k ∈ Z3 : λq,n,0f

p−1
q,n ≤ |k| < λq,n,0f

p
q,n

}
. (2.10)

Notice that by the definition of fq,n in Definition 2.4, 2.10 defines a partition of the frequencies in between
λq,n,0 and λq,n+1,0 for 1 ≤ p ≤ pmax. Figure 5 depicts this division, and we shall describe in the heuristic

estimates how each subcomponent R̊q,n,p is corrected by wq+1,n,p, with all resulting errors absorbed into

either R̊q+1 or R̊q,n′ for n′ > n.
Thus, the net effect of the higher order stresses is that one may take errors for which the inverse divergence

provides a weak estimate due to the presence of relatively low frequencies and push them to higher frequencies
for which the inverse divergence estimate is stronger. We will repeat this process until all errors are moved
(almost) all the way to frequency λq+1, at which point they are absorbed into R̊q+1. Heuristically, this
means that in constructing the perturbation wq+1 at stage q, we have eliminated all the higher order error
terms which arise from self-interactions of intermittent pipe flows, thus producing a solution vq+1 to the
Euler-Reynolds system at level q + 1 which is as close as possible to a solution of the Euler equations. We
point out that one side effect of the higher order perturbations is that the total perturbation wq+1 has spatial
support which is not particularly sparse, since as n increases the perturbations wq+1,n become successively
less intermittent and thus more homogeneous. At the same time, the frequency support of our solution is

also not too sparse, since b is close to 1 and rq+1,0 =
(
λqλ

−1
q+1

) 4
5 , so that many of the frequencies between

λq and λq+1 are active.

14There are certainly a multitude of ways to manage the bookkeeping for amplitudes and frequencies. Using both n and p is
convenient because then n is the only index which quantifies the rate of periodization.
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R̊q,0 R̊q,1 R̊q,n R̊q,n+1 R̊q+1
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. . . . . .
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Figure 4: Adding wq+1,n to correct R̊q,n produces error terms which are distributed among the Reynolds stresses
R̊q,n′ for n+ 1 ≤ n′ ≤ nmax.

2.5 Cut-off functions

2.5.1 Velocity and stress cut-offs

The concept of a turnover time, which is proportional to the inverse of the gradient of the mean flow vq, is
crucial to the previous convex integration schemes mentioned earlier which utilized Lagrangian coordinates.
Since the perturbation is expected to be roughly flowed by the mean flow vq, the turnover time determines a
timescale on which the perturbation is expected to undergo significant deformations. An important property
of pipe flows, first noted by Daneri and Székelyhidi Jr. in [27] and utilized crucially by Isett [43] towards
the proof of Onsager’s conjecture, is that the length of time for which pipe flows written in Lagrangian
coordinates remain approximately stationary solutions to Euler depends only on the Lipschitz norm of the
transport velocity vq and not the Lipschitz norms of the original (undeformed) pipe flow. However, the
timescale under which pipe flows transported by an intermittent velocity field remain coherent is space-time
dependent, in contrast to previous convex integration schemes in which the timescale was uniform across
R× T3. As such, we will need to introduce space-time cut-offs ψi,q in order to determine the local turnover
time. In particular, the cut-off ψi,q will be defined such that

∥∇vq∥L∞(suppψi,q)
≲ δ

1/2
q λqΓ

i
q+1 := τ−1

q Γiq+1 . (2.11)

With such cut-offs defined, we then define in addition a family of temporal cut-offs χi,k,q which will be used
to restrict the timespan of the intermittent pipe flows in terms of the local turnover. Each cut-off function
χi,k,q will have temporal support contained in an interval of length

τqΓ
−i
q+1. (2.12)

It should be noted that we will design the cut-offs so that we can deduce much more on its support than
(2.11). Since the material derivative Dt,q := ∂t+ vq ·∇ will play an important role, we will require estimates
involving material derivatives DN

t,q of very high order.15 We expect the cost of a material derivative to be
related to the turnover time, which itself is local in nature. As such, high order material derivative estimates
will be done on the support of the cut-off functions and will be of the form∥∥∥ψi,qDN

t,qR̊q,n,p

∥∥∥
Lr

.

15The loss of material derivative in the transport error means that to produce solutions with regularity approaching Ḣ
1
2 , we

have to propagate material derivative estimates of arbitrarily high order on the stress.

14



Figure 5: The higher order stress R̊q,n is decomposed into components R̊q,n,p, which increase in frequency and
decrease in amplitude as p increases. We use the base of the red boxes to indicate support in frequency, where
frequency is increasing from left to right, and the height to indicate amplitudes. Each subcomponent R̊q,n,p is
corrected by its own corresponding sub-perturbation wq+1,n,p, which has a commensurate frequency and amplitude.

In addition to the family of cut-offs ψi,q and χi,k,q, we will also require stress cut-offs ωi,j,q,n,p which

determine the local size of the Reynolds stress errors R̊q,n,p; in particular ωi,j,q,n,p will be defined such that∥∥∥∇M R̊q,n,p

∥∥∥
L∞(suppωi,j,q,n,p)

≤ δq+1,n,pΓ
2j
q+1λ

M
q,n,p . (2.13)

Previous intermittent convex integration schemes have managed to successfully cancel intermittent stress
terms with much simpler stress cutoff functions than the ones we use. However, mitigating the loss of spatial
derivative in the oscillation error means that we have to propagate sharp spatial derivative estimates of
arbitrarily high order on the stress in order to produce solutions with regularity approaching Ḣ

1
2 . Due to

this requirement, we then have to estimate the second derivative (and higher) of the stress cutoff function∥∥∥∇2
(
ω2
(
R̊q,n,p

))∥∥∥
L1

,

which in turn necessitates bounding the local L2 norm of ∇R̊q,n,p due to the term∥∥∥∥(∇2(ω2)
) (
R̊q,n,p

) ∣∣∣∇R̊q,n,p∣∣∣2∥∥∥∥
L1

.

Given inductive estimates about the derivatives of R̊q only in L1 which have not been upgraded to Lp for

p > 1, this term will obey a fatally weak estimate, which is why we must estimate R̊q,n,p in L∞ as in (2.13).

2.5.2 Checkerboard cut-offs

As mentioned in the discussion of intermittent pipe flows, we must prevent pipes originating from different
Lagrangian coordinate systems from intersecting. The first step is to reduce the complexity of this problem
by restricting the size of the spatial domain on which intersections must be prevented. Towards this end,
consider the maximum frequency of the original stress R̊q = R̊q,0, or any of the higher order stresses R̊q,n
for n ≥ 1. We may write these frequencies as λq+1r1 for λqλ

−1
q+1 ≤ r1 < 1. We then decompose R̊q,n using a

checkerboard partition of unity comprised of bump functions which follow the flow of vq and have support

of diameter (λq+1r1)
−1

. These two properties ensure that we have preserved the derivative bounds on R̊q,n.
Thus, we fix the set Ω to be the support of an individual checkerboard cutoff function in this partition of
unity at a fixed time, cf. (4.28).
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Suppose furthermore that Ω is inhabited by disjoint sets of deformed intermittent pipe flows which are
periodized to spatial scales no finer than (λq+1r2)

−1
for 0 < r1 < r2 < 1. In practice, r2 will be rq+1,n, where

rq+1,n is the amount of intermittency used in the pipes which comprise the perturbation wq+1,n which is used

to correct R̊q,n. The pipes which already inhabit Ω may first be from previous generations of perturbations

wq+1,n′ for n′ < n, in which case they are periodized to spatial scales much broader than (λq+1r2)
−1

, or

from an overlapping checkerboard cutoff function used to decompose R̊q,n on which a placement of pipes

periodized to spatial scale (λq+1r2)
−1

has already been chosen. In either case, these pipes will have been
deformed by the velocity field vq on the time-scale given by the inverse of the local Lipschitz norm. We
represent the support of these deformed pipe flows in terms of axes {Ai}i∈I around which the pipes {Pi}i∈I
are concentrated to thickness λ−1

q+1 (recall from Section 2.3 that all intermittent pipe flows used in our scheme
have this thickness).

We will now explain that one may choose a new set of (straight, i.e. not deformed) intermittent pipe

flows Wr2,λq+1
periodized to scale (λq+1r2)

−1
which are disjoint from each deformed pipe Pi and on the

support of Ω and under appropriate restrictions on r1 and r2. Heuristically, this task becomes easier when
r2 is smaller, since this means both that we have more choices of placement for the new set, and there are
less pipes Pi inhabiting Ω. Conversely, this task becomes more difficult when r1 is smaller, since then Ω is
larger and will contain more pipes Pi. We assume throughout that the deformations of the Pi’s are mild
enough to preserve the expected length, curvature, and spacing bounds between neighboring pipes that arise
from writing pipes in Lagrangian coordinates and flowing for a length of time which is strictly less than the
inverse of the Lipschitz norm of the velocity field.

First, we can estimate the cardinality of the set I (which indexes the axes Ai and pipes Pi) from above by

r22r
−2
1 . To understand this bound, first note that if we had straight pipes Pi periodized to scale (λq+1r2)

−1

inhabiting a cube of side length (λq+1r1)
−1

, this bound would hold. Using the fact that our deformed pipes
obey similar length, curvature, and spacing bounds as straight pipes and that our set Ω can be considered as
a subset of a cube with side length proportional to (λq+1r1)

−1
, the same bound will hold up to dimensional

constants. Secondly, by the intermittency of the desired set of new pipes, we have r−2
2 choices for the

placement of the new set, as indicated in Figure 2.
To finish the argument, we must estimate how many of these r−2

2 choices would lead to non-empty
intersections between the new pipes and any Pi. To calculate this bound, we will imagine the placement of
the new set of straight pipes as occurring on a two-dimensional plane which is perpendicular to the axes of
the pipes. After projecting each Pi onto this two-dimensional plane, our task is to choose the intersection
points of the new pipes with the plane so that the new pipes do not intersect the shadows of the Pi’s.

Given one of the deformed pipes Pi, since its thickness is λ−1
q+1 and its length inside Ω is proportional to

the diameter of Ω, specifically (λq+1r1)
−1

, we may cover the shadow of Pi on the plane with ≈ r−1
1 many

balls of diameter λ−1
q+1. Covering all the Pi’s thus requires ≈ r22r

−2
1 ·r−1

1 balls of diameter λ−1
q+1. Now, imagine

the intersection of the new set of pipes with the plane. Each choice of placement defines this intersection
as essentially a set of balls of diameter ≈ λ−1

q+1 equally spaced at distance (λq+1r2)
−1

. The intermittency

ensures that there are r−2
2 disjoint choices of placement, i.e. r−2

2 disjoint sets of balls which represent the
intersection of a particularly placed new set of pipes with the plane. As long as

r22r
−2
1 · r−1

1 ≪ r−2
2 ⇐⇒ r42 ≪ r31

there must exist at least one choice of placement which does not produce any intersections between Wr2,λq+1

and the Pi’s. Notice that if r1 is too small or if r2 is too large, this inequality will not be satisfied, thus
validating our previous heuristics about r1 and r2.

To obey the relative intermittency inequality between r1 and r2 derived above for placements of new
intermittent pipes on sets of a certain diameter, we will utilize cutoff functions

ζq,i,k,n,⃗l

which are defined using a variety of parameters. The index q describes the stage of the convex integration
scheme, while i and k refer to the velocity and temporal cutoffs defined above. The parameter n corresponds
to a higher order stress R̊q,n and refers to its minimum frequency λq,n,0, quantifying the value of (λq+1r1)

−1

and the diameter of the support as described earlier. The parameter l⃗ = (l, w, h) depends on q and n and
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Figure 6: In the figure on the left we display T3, in which we have: in green, a set of pipe flows (old generation, very
sparse) that were deformed by vq; in blue, the support of a cutoff function ζq,i,k,n,⃗l, whose diameter is ≈ (λq+1r1)

−1.
Due to the sparseness, very few (if any!) of these green pipes intersect the blue region. The figure on the right
further zooms into the blue region, to emphasize its contents. On the support of ζq,i,k,n,⃗l we have displayed two sets
of deformed pipe flows, in pink and orange. These pipes flows were deformed also by vq, from a nearby time at which
they were straight and periodic at scale (λq+1r2)

−1. At the current time, at which the above figure is considered,
these pipe flows aren’t quite periodic anymore, but they are close. The question now is: can we place a straight pipe
flow, periodic at scale (λq+1r2)

−1, whose axis is orthogonal to the front face of the blue box (pictured in black), and
which does not intersect any of the existing pipes in this region? To see that this is possible, in Figure 7 we estimate
the area of shadows on this face of the cube.

provides an enumeration of the (three-dimensional) checkerboard covering T3 at scale (λq,n,0)
−1

. On the
support of one of these checkerboard cutoff functions, we can inductively place pipes periodized to scale
(λq+1r2)

−1
= λ−1

q,n which are disjoint. The checkerboard cutoff functions and the pipes themselves all follow
the same velocity field, and so ensuring the disjointness at a single time slice is sufficient.

2.5.3 Cumulative cut-off function

Finally, the variety of cut-offs described above will be combined into the family of cut-offs

ηi,j,k,q,n,p,⃗l := ηi,j,k,q,n,p := χi,k,qψi,qωi,j,q,n,pζq,i,k,n,⃗l,

which have timespans of τqΓ
−i
q+1 and L2 norms∥∥∥ηi,j,k,q,n,p,⃗l∥∥∥

L2
≲ Γ

− i
2

q+1 · Γ
− j

2
q+1 (2.14)

We will also require a cut-off ηi±,j±,k±,q,n,p,⃗l which is defined to be 1 on the support of ηi,j,k,q,n,⃗l and satisfies
the estimate ∥∥∥ηi±,j±,k±,q,n,⃗l∥∥∥

L2
≲ Γ

− i
2

q+1 · Γ
− j

2
q+1. (2.15)

We remark that (2.14) and (2.15) are only heuristics (see Lemma 6.41 for the precise estimate). Designing
the cut-offs turned out to be for the authors perhaps the most significant technical challenge of the paper.
Their definition will be inductive and estimates involving them will involve several layers of induction.
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Figure 7: As mentioned in the caption of Figure 6, we consider the image on the right and take the projection of
all pipes present in the blue box (green, pink, orange), onto the front face of the cube (parallel to the e3 − e1 plane).
Because these existing pipes were bent by vq, the shadow does not consist of straight lines, and in fact the projections
can overlap. By estimating the area of this projection, we see that if r42 ≪ r31 then there is enough room left to insert
a new pipe flow with orientation axis e2 (represented by the black disks in the above figure), which will not intersect
any of the projections of the existing pipes, and thus not intersect the existing pipes themselves.

2.6 The perturbation

The intermittent pipe flows of Section 2.3, the higher order stresses of Section 2.4, and the cut-off functions
of Section 2.5 provide the key ingredients in the construction of the perturbation

wq+1 :=

nmax∑
n=0

pmax∑
p=1

wq+1,n,p :=

nmax∑
n=0

wq+1,n.

In the above double sum, we will adopt the convention that wq+1,0,p = 0 unless p = 1 to streamline
notation. Let us emphasize that wq+1 is constructed inductively on n for the following reason. Each

perturbation wq+1,n =
∑pmax

p=1 wq+1,n,p will contribute error terms to all higher order stresses R̊q,ñ,p for

ñ > n and 1 ≤ p ≤ pmax, and so R̊q,ñ =
∑pmax

p=1 R̊q,ñ,p is not a well-defined object until each wq+1,n′ has
been constructed for all n′ < n. For the purposes of the following heuristics, we will abbreviate the cutoff
functions by an,p, and ignore summation over many of the indexes which parametrize the cutoff functions,
as they are not necessary to understand the heuristic estimates. We will freely use the heuristic that the
cutoff functions allow us to use the L∞

t H
1
x norm of vq to control terms (usually related to the turnover time)

which previously required global Lipschitz bounds on vq.
Let Φq,k : R× T3 → T3 be the solution to the transport equation

∂tΦq,k + vq · ∇Φq,k = 0

with initial data given to be the identity at time tk = kτq. We mention that this definition is purely
heuristic, since as mentioned previously, the Lagrangian coordinate systems will have to be indexed by
another parameter which encodes the fact that ∇vq is spatially inhomogeneous.16 For the time being let us

ignore this issue. Each map Φq,k has an effective timespan τq = (δ
1
2
q λq)

−1, at which point one resets the
coordinates and defines a new transport map Φq,k+1 starting from the identity. Let Wq+1,n denote the pipe

flow with intermittency rq+1,n periodized to scale (λq+1rq+1,n)
−1

. The perturbation wq+1,n,p is then defined

16The actual transport maps used in the proof are defined in Definition 6.26.
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heuristically by

wq+1,n,p(x, t) =
∑
k

an,p

(
R̊q,n,p(x, t)

)
(∇Φq,k(x, t))

−1
(x, t)Wq+1,n(Φq,k(x, t)).

We have adopted the convention that R̊q = R̊q,0 = R̊q,0,1 and R̊q,0,p = 0 if p ≥ 2. Composing with Φq,k
adapts the pipe flows to the Lagrangian coordinate system associated to vq so that (∇Φq,k)

−1Wq+1,n(Φq,k)
is Lie-advected and remains divergence-free to leading order. The perturbation wq+1,n,p has the following
properties:

(1) The thickness (at unit scale) of the pipes on which wq+1,n,p is supported depends only on q and n and
is quantified by

rq+1,n =

(
λq
λq+1

)( 4
5 )

n+1

. (2.16)

Thus, the perturbations become less intermittent as n increases, since the thickness of the pipes (pe-
riodized at unit scale) becomes larger as n increases. Notice that the maximum frequency of R̊q,n,p is
λq,n,p for n ≥ 1 per (2.10), and λq for n = 0, while the minimum frequency of the intermittent pipe flow
Wq+1,n used to construct wq+1,n,p is λq,n. Referring back to Definition 2.3 and Definition 2.4, we have
that for 1 ≤ n ≤ nmax and 1 ≤ p ≤ pmax,

λq,n,p = λ
1− p

pmax
q,n,0 λ

p
pmax
q,n+1,0 ≤ λq,n+1,0 = λ

( 4
5 )

n· 56
q λ

1−( 4
5 )

n· 56
q+1 ≪ λ

( 4
5 )

n+1

q λ
1−( 4

5 )
n+1

q+1 = λq,n,

which ensures that the low frequency portion of wq+1,n,p decouples from the high frequency intermittent

pipe flow Wq+1,n. For n = 0, the maximum frequency of R̊q,0 = R̊q is λq, which is much less than λq,0
per Definition 2.3.

(2) The L2 size of wq+1,n,p is equal to the square root of the L1 norm of R̊q,n,p, which in turn depends on

the minimum frequency of R̊q,n,p and will be δq+1,n,p, where we define δq+1,0,p = δq+1. For n ≥ 1 and
1 ≤ p ≤ pmax, we have from Definition 2.5 that

δq+1,n,p =
δq+1λq
λq,n,p−1

∏
n′<n

fq,n′ .

(3) For n ≥ 1, derivatives on the low frequency coefficient function of wq+1,n,p cost the maximum frequency

of R̊q,n,p, which is λq,n,p. For n = 0, R̊q,0 = R̊q, so that each spatial derivative on the coefficient function
of wq+1,0 costs λq.

(4) The transport error and Nash error created by the addition of wq+1,n,p are small enough to be absorbed

into R̊q+1 for every n .

(5) Per Definition 2.3, the oscillation error which results from wq+1,n,p interacting with itself has minimum
frequency

λq,n = λq+1rq+1,n = λ
( 4

5 )
n+1

q λ
1−( 4

5 )
n+1

q+1 .

2.7 The Reynolds stress error and heuristic estimates

Note that since the relation (2.2) is linear in the Reynolds stress, replacing q with q+1, the right hand side
can be split into three components:

div (wq+1 ⊗ wq+1 + R̊q)

∂twq+1 + vq · ∇wq+1

wq+1 · ∇vq ,
(2.17)

which we call the oscillation error, transport error and Nash error respectively.
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2.7.1 Type 1 oscillation error

In this section, we sketch the heuristic estimates which justify the following principle: the low frequency,
high amplitude errors arising from the self interaction of an intermittent pipe flow can be transferred to
higher frequencies and smaller amplitudes through the higher order stresses and perturbations. We shall
show that the following estimates are self-consistent and allow for the constructions of solutions approaching
the regularity threshold Ḣ

1
2 : ∥∥∥∇M R̊q

∥∥∥
L1

≤ δq+1λ
M
q (2.18)∥∥∥∇M R̊q,n,p

∥∥∥
L1

≤ δq+1λq
λq,n,p−1

∏
n′<n

fq,n′λMq,n,p = δq+1,n,pλ
M
q,n,p . (2.19)

The higher order stress R̊q,n,p is defined using the spatial Littlewood-Paley projection operator

P[q,n,p] := P[λq,n,p−1,λq,n,p) = P≥λq,n,p−1P<λq,n,p ,

which projects onto the frequencies from (2.10). We define R̊q,n,p as follows:

R̊q,n,p :=
∑
n′<n

pmax∑
p′=1

div−1
(
∇
(
a2n′,p′(R̊q,n′,p′)∇Φ−1

q,k ⊗∇Φ−T
q,k

)
:
(
P[q,n,p] (Wq+1,n′ ⊗Wq+1,n′)

)
(Φq,k)

)
.

(2.20)
We pause here to point out an important consequence of this definition. Let n′ be fixed, and consider the

right side of the above equality. Then, due to the periodicity of Wq+1,n′ at scale (λq+1rq+1,n′)−1 we have17

Wq+1,n′ ⊗Wq+1,n′ = P=0 (Wq+1,n′ ⊗Wq+1,n′) + P̸=0 (Wq+1,n′ ⊗Wq+1,n′)

= P=0 (Wq+1,n′ ⊗Wq+1,n′) + P≥λq+1rq+1,n′ (Wq+1,n′ ⊗Wq+1,n′) .

For n′ ≥ 1, we have that

λq+1rq+1,n′ = λ
( 4

5 )
n′+1

q λ
1−( 4

5 )
n′+1

q+1 ≫ λ
( 4

5 )
n′

· 56
q λ

1−( 4
5 )

n′
· 56

q+1 = λq,n′+1,0 = λq,n′,pmax
,

where λq,n′+1,0 is the minimum frequency of R̊q,n′+1 =
∑pmax

p′=0 R̊q,n′+1,p′ , while for n′ = 0 we have that

λq+1rq+1,0 = λq,1 = λ
( 4

5 )
q λ

1−( 4
5 )

q+1 = λq,1,0,

which is the minimum frequency of R̊q,1. Therefore, we have shown that the error terms arising from all

non-zero modes of Wq+1,n′ ⊗Wq+1,n′ are accounted for in the higher order stresses R̊q,ñ for ñ > n′. Thus,
the higher order stresses created by the interaction of wq+1,n′ will be absorbed into higher order stresses
with strictly larger values of n.

Now assuming that R̊q,n′,p′ and wq+1,n′,p′ are well-defined for all n′ < n and 1 ≤ p′ ≤ pmax and using the

heuristic estimates from the previous section for wq+1,n′,p′ , we can estimate the component of R̊q,n,p coming
from wq+1,n′,p′ by recalling (2.20) and writing∥∥∥R̊q,n,p∥∥∥

L1
≤
∑
n′<n

δq+1,n′,p′λq,n′,p′

λq,n,p−1

=
∑
n′<n

δq+1λq

λq,n′,p′−1

∏
n′′<n′ fq,n′′λq,n′,p′

λq,n,p−1

≤
∑
n′<n

δq+1λq
λq,n,p−1

∏
n′′≤n′

fq,n′′

17We denote by P̸=0 the operator which subtracts from a function its mean in space.
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≲
δq+1λq
λq,n,p−1

∏
n′′<n

fq,n′′ = δq+1,n,p .

The denominator comes from the gain induced by the combination of the inverse divergence and the
Littlewood-Paley projector P[q,n,p]. The numerator is the amplitude of ∇|an′,p′(R̊q,n′,p′)|2, computed us-

ing the chain rule and the assumption (2.19) on ∇R̊q,n′,p′ . We have used that the L2 norm of Wq+1,n′ is

normalized to unit size. Any derivatives on R̊q,n,p will cost λq,n,p, which is the maximum frequency in the

Littlewood-Paley projector P[q,n,p]. Thus, all terms which will land in R̊q,n,p will satisfy the correct estimates

given that R̊q,n′,p′ satisfies the correct estimates for n′ < n and 1 ≤ p′ ≤ pmax. Since R̊q =: R̊q,0 satisfies the
inductive assumptions, we can initiate this iteration at level n = 0 while satisfying (2.18).

Now that R̊q,n,p satisfies the appropriate estimates, we can correct it with a perturbation wq+1,n,p as
described in the previous section. As before, since Wq+1,n has minimum frequency

λq,n = λq+1rq+1,n = λ
( 4

5 )
n+1

q λ
1−( 4

5 )
n+1

q+1 ≫ λ
( 4

5 )
n· 56

q λ
1−( 4

5 )
n· 56

q+1 = λq,n+1,0 ,

and the minimum frequency in R̊q,n+1 is λq,n+1,0, every error term resulting from the self interaction of

wq+1,n,p will be absorbed into higher order stresses R̊q,ñ for ñ > n. Therefore, we can induct on n to add
a sequence of perturbations wq+1,n =

∑pmax

p=1 wq+1,n,p such that all nonlinear error terms are canceled by
subsequent perturbations. Upon reaching nmax and recalling (2.1), we can estimate the final nonlinear error
term by

δq+1λq
λq+1rq+1,nmax

∏
n′<nmax

fq,n′ ≤ δq+2 ⇐= δq+1

(
λq
λq+1

)1−( 4
5 )

nmax+1− 1
pmax

≤ δq+2

⇐⇒ λ−2β
q+1λ

( 1
b−1)

(
1−( 4

5 )
nmax+1− 1

pmax

)
q+1 ≤ λ−2βb

q+1

⇐⇒ 2βb(b− 1) ≤ (b− 1)

(
1−

(
4

5

)nmax+1

− 1

pmax

)

⇐⇒ β ≤ 1

2b

(
1−

(
4

5

)nmax+1

− 1

pmax

)
.

Choosing b to be close to 1 and nmax and pmax sufficiently large shows that these error terms are commen-
surate with Ḣ

1
2− regularity.

2.7.2 Type 2 oscillation error

We now consider the second type of oscillation error, which would arise as a result of two distinct pipes
intersecting and thus serves no purpose in the cancellation of stresses. Beginning with R̊q = R̊q,0, we have

that every derivative on R̊q,0 costs λq. Therefore, we may decompose R̊q,0 using a checkerboard partition
of unity at scale λ−1

q . Referring back to the discussion of the checkerboard cutoff functions, this sets the

value of r1 to be λqλ
−1
q+1. Now, suppose that on a single square of this checkerboard, we have placed a set

of intermittent pipe flows Wq+1,0 which are periodized to scale (λq+1rq+1,0)
−1

. After flowing the pipes and
the checkerboard square by vq for a short length of time18, we must place a new set of pipes W′

q+1,0 which
are disjoint from the flowed pipes Wq+1,0. Given the choice of r1, this will be possible provided that

rq+1,0 = r2 ≪ r
3
4
1 . (2.21)

Thus, the minimum amount of intermittency needed to successfully place disjoint sets of intermittent pipes

is
(
λqλ

−1
q+1

) 3
4 . Per Definition 2.3, our choice of rq+1,0 is

(
λqλ

−1
q+1

) 4
5 , which is then sufficiently small.

18The length of time is equal to the local Lipschitz norm of vq on the support of the cutoff ψi,q , given by the time-cutoff
hidden in an,p.
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Let us now assume that we have successfully corrected R̊q,n′ for n′ < n, and that we wish to correct

R̊q,n =
∑pmax

p=1 R̊q,n,p with a perturbation wq+1,n =
∑pmax

p=1 wq+1,n,p. First, we recall that∥∥∥∇M R̊q,n,p

∥∥∥
L1

≲ δq+1,n,pλ
M
q,n,p.

Therefore, we can multiply R̊q,n,p by a checkerboard partition of unity at scale λ−1
q,n,0 ≫ λ−1

q,n,p while preserving
these bounds. We must choose values of r1 and r2, as in Section 2.5.2. Since for n ≥ 2

λq+1r1 = λq,n,0 = λ
( 4

5 )
n−1· 56

q λ
1−( 4

5 )
n−1· 56

q+1 = λq+1 ·
(

λq
λq+1

)( 4
5 )

n−1· 56
,

and for n = 1

λq,1,0 = λ
4
5
q λ

1
5
q+1 ≫ λq+1 ·

(
λq
λq+1

)( 4
5 )

1−1· 56
,

we have that for all n ≥ 1

r1 ≥
(

λq
λq+1

)( 4
5 )

n−1· 56
.

Recall that R̊q,n,p will be corrected by wq+1,n,p, which is constructed using intermittent pipe flows Wq+1,n

with intermittency

rq+1,n =

(
λq
λq+1

)( 4
5 )

n+1

= r2.

Thus in order to succeed in placing pipes Wq+1,n which avoid both previous generations of pipes, which
are periodized to scales rougher than Wq+1,n, and pipes from the same generation on overlapping cutoff
functions, we must ensure that

r2 ≪ r
3
4
1

⇐⇒
(

λq
λq+1

)( 4
5 )

n+1

≪
(

λq
λq+1

)( 4
5 )

n−1· 56 · 34

⇐⇒
(
4

5

)n−1

· 5
6
· 3
4
<

(
4

5

)n+1

⇐⇒ 1

2
<

(
4

5

)3

=
64

125
.

So our choice of rq+1,n is sufficient to ensure that we can successfully place intermittent pipe flows when
constructing wq+1,n,p which are disjoint from all other pipe flows from either previous generations (n′ < n)
or the same generation (the same value of n).

2.7.3 Nash and transport errors

The heuristic for the Nash and transport errors is that our choice of rq+1,n provides much more intermittency

than is needed to ensure that linear errors arising from wq+1,n,p can be absorbed into R̊q+1.
19 In other words,

the Type 2 oscillation errors required much more intermittency than the Nash and transport errors will.

19One may verify that in three dimensions, the minimum amount of intermittency needed to absorb the Nash and transport

errors arising from wq+1,0 into R̊q+1 at regularity approaching Ḣ
1
2 is rq+1,0 = λ

1
2
q λ

− 1
2

q+1. In general, one can further verify that

given errors supported at frequency λαq λ
1−α
q+1 , one could correct them using intermittent pipe flows with minimum frequency

λ
α
2
q λ

1−α
2

q+1 while absorbing the resulting Nash and transport errors into R̊q+1. One should compare this with (2.21), which shows

that the placement technique requires more intermittency, which at level n = 0 corresponds to λ
3
4
q λ

− 3
4

q+1.
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Let us start with the Nash error arising from the addition of wq+1,0,1, which is designed to correct R̊q.
Using decoupling, the cost of a derivative on Wq+1,0 being λq+1 (so that inverting the divergence gains a
factor of λq+1), the size of ∇vq in L2, and the L1 size of Wq+1,n being rq+1,0, the size of this error is

1

λq+1
δ
1/2
q+1δ

1/2
q λqrq+1,0 =

1

λq+1
δ
1/2
q+1δ

1/2
q λq

(
λq
λq+1

)( 4
5 )
.

This is (much) less than δq+2 since

δ
1/2
q+1δ

1/2
q λ

3/2
q

λ
3/2
q+1

≤ δq+2 ⇐⇒ λ−βq+1λ
− β

b
q+1λ

1
b · 32
q+1λ

− 3
2

q+1 ≤ λ−2βb
q+1

⇐⇒ 2βb2 − βb− β ≤ (b− 1) · 3
2

⇐⇒ β(2b+ 1)(b− 1) ≤ (b− 1) · 3
2
. (2.22)

Choosing b close to 1 will make this error commensurate with Ḣ
1
2− regularity.

Let us now estimate the Nash error arising from the addition of wq+1,n,p for n ≥ 2, given by∥∥∥div−1
((
an,p∇Φ−1

q,kWq+1,n(Φq,k)
)
· ∇vq

)∥∥∥
L1
.

Using again decoupling, the cost of a derivative on Wq+1,n being λq+1 (so that inverting the divergence gains
a factor of λq+1), the size of ∇vq in L2, the L1 size of Wq+1,n being rq+1,n, and (2.1), we have that for n ≥ 2,
the size of this error is

1

λq+1
· δ

1
2
q+1,n,prq+1,n · δ

1
2
q λq ≤

1

λq+1
· δ

1
2
q+1,n,1rq+1,n · δ

1
2
q λq

=
1

λq+1

(
δq+1λq
λq,n,0

) 1
2

(∏
n′<n

fq,n′

) 1
2 (

λq
λq+1

)( 4
5 )

n+1

δ
1
2
q λq

≤ 1

λq+1

 δq+1λq

λ
( 4

5 )
n−1· 56

q λ
1−( 4

5 )
n−1· 56

q+1

 1
2 (

λq
λq+1

)( 4
5 )

n+1− 1
2pmax

δ
1
2
q λq .

Since
1

2pmax
+

1

2
· 5
6
·
(
4

5

)n−1

<

(
4

5

)n+1

independently of n ≥ 2 if pmax is sufficiently large, the Nash error will be smaller than δq+2 based on the

preceding estimates. Furthermore, one may check that δ
1
2
q+1,1,1rq+1,1 < δ

1
2
q+1,2,1rq+1,2, so that the Nash error

arising from the addition of wq+1,1,p is also satisfactorily small for all p.
Now let us consider the transport error. The size of the transport error arising from the addition of

wq+1,n,p is ∥∥∥div−1
(
(Dt,qan,p)∇Φ−1

q,lWq+1,n

)∥∥∥
L1

≤ 1

λq+1
τ−1
q δ

1
2
q+1,n,prq+1,n

=
1

λq+1
· δ

1
2
q+1,n,prq+1,n · δ

1
2
q λq. (2.23)

Thus, the transport error is the same size as the Nash error and is sufficiently small to be put into R̊q+1.

3 Inductive assumptions

While in Section 2 we have outlined in broad terms the main steps in the proof of Theorem 1.1, along with
the heuristics for some of the choices we have made in our proof, starting with the current section, we work
with precise estimates.
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In Section 3.1 we introduce some of the notation used in the proof, such as the Euler-Reynolds system,
the mollified velocity, velocity increments, material/directional derivatives, our notation for geometric upper
bounds with tho different bases, and our notation for ∥·∥Lp .

In Section 3.2 we introduce the principal amplitude and frequency parameters used in proof (the precise
definitions and the order of choosing these parameters is detailed in Section 9.1). Next, in Sections 3.2.1
and 3.2.2 we state the primary inductive assumptions for the velocity, velocity increments, and Reynolds
stress. These primary estimates hold on the support of previous generation velocity cutoff functions, which
are inductively assumed to satisfy a number of properties, listed in Section 3.2.3. Lastly, in Section 3.2.4
we list a number of bounds for the velocity increments and mollified velocities, which involve all possible
combinations of space and material derivatives, up to a certain order. These bounds are technical in nature,
and should be ignored at a first reading; their sole purpose is to allow us to bound commutators between
Dn and Dm

t,q for very high values of n and m.
In conclusion, in Section 3.4 we show that if we are able to propagate the previously stated inductive

estimates from step q to step q + 1, for every q ≥ 0, then Theorem 1.1 follows. At the end of the section we
discuss the modifications to the proof which would be necessary in order to obtain other types of flexibility
statements.

3.1 General notations

As is standard in convex integration schemes for the Euler system [29], we introduce the Euler-Reynolds
system for the unknowns (vq, R̊q):

∂tvq + div (vq ⊗ vq) +∇pq = div R̊q (3.1a)

div vq = 0. (3.1b)

Here and throughout the paper, the pressure pq is uniquely defined by solving ∆pq = div div (R̊q − vq ⊗ vq),
with

´
T3 pqdx = 0.

In order to avoid the usual derivative-loss issue in convex integration schemes, for q ≥ 0 we use the
space-time mollification operator defined in Section 9.4 – equation (9.64), to smoothen out the velocity field
vq as:

vℓq := Pq,x,tvq . (3.2)

In particular, we note that spatial mollification is performed at scale λ̃−1
q (which is just slightly smaller than

λ−1
q ), while temporal mollification is at scale τ̃q−1 (which is a lot smaller than τq−1).
Next, for all q ≥ 1, define

wq := vq − vℓq−1
, uq := vℓq − vℓq−1

. (3.3)

For consistency of notation, define w0 = v0 and u0 = vℓ0 . Note that

uq = Pq,x,twq + (Pq,x,tvℓq−1
− vℓq−1

) (3.4)

so that we may morally think that uq = wq+ a small error term (the smallness of this error term will be
ensured by choosing a mollifier with a large number of vanishing moments, cf. (9.62)).

We use the following notation for the material derivative corresponding to the vector field vℓq :

Dt,q := ∂t + vℓq · ∇. (3.5)

With this notation, we have that

Dt,q = Dt,q−1 + uq · ∇. (3.6)

We also introduce the directional derivatives

Dq := uq · ∇ (3.7)

which allow us to transfer information between Dt,q−1 and Dt,q via Dt,q = Dt,q−1 +Dq.
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Remark 3.1 (Geometric upper bounds with two bases). If for a sequence of numbers {an}n≥0, and
for two parameters 0 < λ < Λ we have the bounds

an ≤ λn, for all n ≤ N∗

an ≤ λN∗Λn−N∗ for all n > N∗,

for some N∗ ≥ 1, we will abbreviate these bounds as

an ≤ M (n,N∗, λ,Λ) ,

where we define

M (n,N∗, λ,Λ) := λmin{n,N∗}Λmax{n−N∗,0} (3.8)

for all n ≥ 0. The first entry of M (·, ·, λ,Λ) measures the index in the sequence (typically number of
derivatives considered) and the second entry determines the index after which the base of the geometric
bound changes from λ to Λ. This notation has the following consequence, which will be used throughout
the paper: if 1 ≤ λ ≤ Λ, then

M (a,N∗, λ,Λ)M (b,N∗, λ,Λ) ≤ M (a+ b,N∗, λ,Λ) . (3.9)

When either a or b are larger than N∗ the above inequality creates a loss; for a+ b ≤ N∗, it is an equality.

Remark 3.2 (Norms are uniform in time). Throughout this section, and the remainder of the paper, in
order to abbreviate notation we shall use the notation ∥f∥Lp to denote ∥f∥L∞

t (Lp(T3)). That is, all L
p norms

stand for Lp norms in space, uniformly in time. Similarly, when we wish to emphasize a set dependence of
an Lp norm, we write ∥f∥Lp(Ω), for some space-time set Ω ⊂ R× T3, to stand for ∥1Ω f∥L∞

t (Lp(T3)).

3.2 Inductive estimates

The proof is based on propagating estimates for solutions (vq, R̊q) of the Euler-Reynolds system (3.1),
inductively for q ≥ 0. In order to state these bounds, we first need to fix a number of parameters in terms
of which these inductive estimates are stated. We start by picking a regularity exponent β ∈ (1/3, 1/2), and a
super-exponential rate parameter b ∈ (1, 3/2) such that 2βb < 1. In terms of this choice of β and b, a number
of additional parameters (nmax, . . .Nfin) are fixed, whose precise definition is summarized for convenience in
items (iii)–(xii) of Section 9.1. Note that at this point the parameter a∗(β, b) from item (xiii) in Section 9.1
is not yet fixed. With this choice, we then introduce the fundamental q-dependent frequency and amplitude
parameters from Section 9.2. We state here for convenience the main q-dependent parameters defined in
(9.15), (9.17), (9.18), and (9.21):

λq = 2

⌈
(bq) log2 a

⌉
≈ λbq−1 , δq = λ

β(b+1)
1 λ−2β

q , (3.10a)

τ−1
q = δ

1/2
q λqΓ

c0+11
q+1 , Γq+1 =

(
λq+1

λq

)εΓ
≈ λ(b−1)εΓ

q , (3.10b)

where the constant c0 is defined by (9.6). The ≈ symbols in (3.10) mean that the left side of the ≈ symbol
lies between two (universal) constant multiples of the right side (see e.g. (9.16)).

Remark 3.3 (Usage of the symbol ≲ and choice of a∗). Throughout the subsequent sections, we will
make frequent use of the symbol ≲. We emphasize that any implicit constants indicated by ≲ are only
allowed to depend on the parameters defined in Section 9.1, items (i)–(xii). The implicit constants in ≲ are
however always independent of the parameters a and q, which appear in (3.10). This allows us at the end of
the proof, cf. item (xiii) in Section 9.1 to choose a∗(β, b) to be sufficiently large so that for all a ≥ a∗(β, b)
and all q ≥ 0, the parameter Γq+1 appearing in (3.10) is larger than all the implicit constants in ≲ symbols
encountered throughout the paper. That is, upon choosing a∗ sufficiently large, any inequality of the type
A ≲ B which appears in this manuscript, may be rewritten as A ≤ Γq+1B, for any q ≥ 0.
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In order to state the inductive assumptions we use four large integers, defined precisely in Section 9.1.
For the moment it is just important to note that these fixed parameters are independent of q and that they
satisfy the ordering

1 ≪ Ncut,t ≪ Nind,t ≪ Nind,v ≪ Nfin . (3.11)

The precise definitions of these integers, and the meaning of the ≪ symbols in (3.11), are given in (9.9),
(9.10), (9.11), and (9.14). Roughly speaking, the role of these parameters is as follows:

• Ncut,t is the number of sharp material derivatives which are built into the velocity and stress cutoff
functions.

• Nind,t is the number of sharp material derivatives propagated for velocities and stresses.

• Nind,v is used to quantify the number of (lossy) higher order space and time derivatives for velocities
and stresses.

• Nfin is used to quantify the highest order derivatives appearing in the proof.

Next, we state the inductive assumptions for the velocity increments and stresses at various levels q ≥ 0.
Throughout the section we frequently refer to the notation M (n,N∗, λ,Λ) from (3.8).

3.2.1 Primary inductive assumption for velocity increments

We make L2 inductive assumptions for uq′ = vℓq′ − vℓq′−1
at levels q′ strictly below q. For all 0 ≤ q′ ≤ q − 1

we assume that∥∥ψi,q′−1D
nDm

t,q′−1uq′
∥∥
L2 ≤ δ

1/2
q′ M

(
n, 2Nind,v, λq′ , λ̃q′

)
M
(
m,Nind,t,Γ

i
q′τ

−1
q′−1, τ̃

−1
q′−1

)
(3.12)

holds for all n+m ≤ Nfin.
At level q, we assume that the velocity increment wq satisfies∥∥ψi,q−1D

nDm
t,q−1wq

∥∥
L2 ≤ Γ−1

q δ
1/2
q λnqM

(
m,Nind,t,Γ

i−1
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
(3.13)

for n,m ≤ 7Nind,v. Moreover, recalling from (9.67) that supp tf denotes the temporal support of a function
f , we inductively assume that

supp t(R̊q−1) ⊂ [T1, T2] ⇒ supp t(wq) ⊂
[
T1 − (λq−1δ

1/2
q−1)

−1, T2 + (λq−1δ
1/2
q−1)

−1
]
. (3.14)

3.2.2 Inductive assumption for the stress

For the Reynolds stress R̊q, we make L1 inductive assumptions∥∥∥ψi,q−1D
nDm

t,q−1R̊q

∥∥∥
L1

≤ Γ−CR
q δq+1λ

n
qM

(
m,Nind,t,Γ

i+1
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
(3.15)

for all 0 ≤ n,m ≤ 3Nind,v.

3.2.3 Inductive assumption for the previous generation velocity cutoff functions

More assumptions are needed in relation to the previous velocity perturbations and old cutoffs functions.
First, we assume that the velocity cutoff functions form a partition of unity for q′ ≤ q − 1:∑

i≥0

ψ2
i,q′ ≡ 1, and ψi,q′ψi′,q′ = 0 for |i− i′| ≥ 2. (3.16)

Second, we assume that there exists an imax = imax(q) > 0, which is bounded uniformly in q as

b+ 1

b− 1
≤ imax(q) ≤

4

εΓ(b− 1)
, (3.17)
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such that

ψi,q′ ≡ 0 for all i > imax(q
′) , and Γ

imax(q
′)

q′+1 ≤ λ
5/3
q′ , (3.18)

for all q′ ≤ q − 1. For all 0 ≤ q′ ≤ q − 1 and 0 ≤ i ≤ imax we assume the following pointwise derivative
bounds for the cutoff functions ψi,q′ . For mixed space and material derivatives (recall the notation from
(3.5)) we assume that

1suppψi,q′

ψ
1−(K+M)/Nfin

i,q′

∣∣∣∣∣
(

k∏
l=1

DαlDβl

t,q′−1

)
ψi,q′

∣∣∣∣∣
≲ M

(
K,Nind,v,Γq′λq′ ,Γq′ λ̃q′

)
M
(
M,Nind,t − Ncut,t,Γ

i+3
q′+1τ

−1
q′−1,Γ

−1
q′+1τ̃

−1
q′

)
(3.19)

for K,M, k ≥ 0 with 0 ≤ K +M ≤ Nfin, where α, β ∈ Nk are such that |α| = K and |β| = M . Lastly, we
consider mixtures of space, material, and directional derivatives (recall the notation from (3.7)). Then with
K,M,α, β and k as above, and with N ≥ 0, we assume that

1suppψi,q′

ψ
1−(N+K+M)/Nfin

i,q′

∣∣∣∣∣DN

(
k∏
l=1

Dαl

q′ D
βl

t,q′−1

)
ψi,q′

∣∣∣∣∣
≲ M

(
N,Nind,v,Γq′λq′ ,Γq′ λ̃q′

)
(Γi−c0
q′+1τ

−1
q′ )KM

(
M,Nind,t − Ncut,t,Γ

i+3
q′+1τ

−1
q′−1,Γ

−1
q′+1τ̃

−1
q′

)
(3.20)

as long as 0 ≤ N +K +M ≤ Nfin.
In addition to the above pointwise estimates for the cutoff functions ψi,q′ , we also assume that we have

a good L1 control. More precisely, we postulate that

∥ψi,q′∥L1 ≲ Γ−2i+Cb

q′+1 where Cb =
4 + b

b− 1
(3.21)

holds for 0 ≤ q′ ≤ q − 1 and all 0 ≤ i ≤ imax(q
′).

3.2.4 Secondary inductive assumptions for velocities

Next, for 0 ≤ q′ ≤ q − 1, 0 ≤ i ≤ imax, k ≥ 1, K,M ≥ 0, α, β ∈ Nk with |α| = K and |β| = M , we assume
that the following mixed space-and-material derivative bounds hold∥∥∥∥∥(

k∏
i=1

DαiDβi

t,q′−1

)
uq′

∥∥∥∥∥
L∞(suppψi,q′ )

≲ (Γi+1
q′+1δ

1/2
q′ )M

(
K, 2Nind,v,Γq′λq′ , λ̃q′

)
M
(
M,Nind,t,Γ

i+3
q′+1τ

−1
q′−1,Γ

−1
q′+1τ̃

−1
q′

)
(3.22)

for K +M ≤ 3Nfin/2 + 1,∥∥∥∥∥(
k∏
i=1

DαiDβi

t,q′

)
Dvℓq′

∥∥∥∥∥
L∞(suppψi,q′ )

≲ (Γi+1
q′+1δ

1/2
q′ λ̃q′)M

(
K, 2Nind,v,Γq′λq′ , λ̃q′

)
M
(
M,Nind,t,Γ

i−c0
q′+1τ

−1
q′ ,Γ

−1
q′+1τ̃

−1
q′

)
(3.23)

for K +M ≤ 3Nfin/2, and∥∥∥∥∥(
k∏
i=1

DαiDβi

t,q′

)
vℓq′

∥∥∥∥∥
L∞(suppψi,q′ )

≲ (Γi+1
q′+1δ

1/2
q′ λ

2
q′)M

(
K, 2Nind,v,Γq′λq′ , λ̃q′

)
M
(
M,Nind,t,Γ

i−c0
q′+1τ

−1
q′ ,Γ

−1
q′+1τ̃

−1
q′

)
(3.24)
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for K + M ≤ 3Nfin/2 + 1. Additionally, for N ≥ 0 we postulate that mixed space-material-directional
derivatives satisfy∥∥∥∥∥DN

( k∏
i=1

Dαi

q′ D
βi

t,q′−1

)
uq′

∥∥∥∥∥
L∞(suppψi,q′ )

≲ (Γi+1
q′+1δ

1/2
q′ )

K+1M
(
N +K, 2Nind,v,Γq′λq′ , λ̃q′

)
M
(
M,Nind,t,Γ

i+3
q′+1τ

−1
q′−1,Γ

−1
q′+1τ̃

−1
q′

)
(3.25a)

≲ (Γi+1
q′+1δ

1/2
q′ )M

(
N, 2Nind,v,Γq′λq′ , λ̃q′

)
(Γi−c0
q′+1τ

−1
q′ )KM

(
M,Nind,t,Γ

i+3
q′+1τ

−1
q′−1,Γ

−1
q′+1τ̃

−1
q′

)
(3.25b)

whenever N +K +M ≤ 3Nfin/2 + 1.

Remark 3.4. Identity (A.39) shows that (3.25b) automatically implies the bound∥∥DNDM
t,q′uq′

∥∥
L∞(suppψi,q′ )

≲ (Γi+1
q′+1δ

1/2
q′ )M

(
N, 2Nind,v,Γq′λq′ , λ̃q′

)
M
(
M,Nind,t,Γ

i−c0
q′+1τ

−1
q′ ,Γ

−1
q′+1τ̃

−1
q′

)
(3.26)

for all N +M ≤ 3Nfin/2 + 1. To see this, we take B = Dt,q′−1 and A = Dq′ , so that A + B = Dt,q′ . The
estimate (3.26) now is a consequence of identity (A.39) and the parameter inequalities Γc0+3

q′+1τ
−1
q′−1 ≤ τ−1

q′

(which follows from (9.40)) and Γi−c0+1
q′+1 τ−1

q′ ≤ τ̃−1
q′ (which is a consequence of (3.18) and (9.43)). In a similar

fashion, the bound (3.20) and identity (A.39) imply that

1suppψi,q′

ψ
1−(N+M)/Nfin

i,q′

∣∣DNDM
t,q′ψi,q′

∣∣
≲ M

(
N,Nind,v,Γq′λq′ ,Γq′ λ̃q′

)
M
(
M,Nind,t − Ncut,t,Γ

i−c0
q′+1τ

−1
q′ ,Γ

−1
q′+1τ̃

−1
q′

)
(3.27)

for all N +M ≤ Nfin. Indeed, the above estimates follow from the same parameter inequalities mentioned
above, and from identity (A.39) with A = Dq′ and B = Dt,q′−1.

Remark 3.5. The inductive assumptions for the velocities given in Sections 3.2.1 and 3.2.4, with the
definition of the mollifier operator Pq,x,t in Section 9.4, imply that the new velocity field vq = wq + vℓq−1

is
very close to its mollification vℓq , uniformly in space and time. That is, we have∥∥DnDm

t,q−1(vℓq − vq)
∥∥
L∞ ≤ λ−2

q δ
1/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1Γ

i−1
q , τ̃−1

q−1Γ
−1
q

)
(3.28)

for all n,m ≤ 3Nind,v. The proof of the above bound is given in Lemma 5.1, cf. estimate (5.4).

3.3 Main inductive proposition

[Take this subsection as a whole, and copy it in PUP file] The main inductive proposition, which propagates
the inductive estimates in Section 3.2 from step q to step q + 1, is as follows.

Proposition 3.6. Fix β ∈ [1/3, 1/2) and choose b ∈ (1, 1/2β). Solely in terms of β and b, define the parameters
nmax, Cb, CR, c0, εΓ, αR, Ncut,t, Ncut,x, Nind,t, Nind,v, Ndec, d, and Nfin, by the definitions in Section 9.1,
items (i)–(xii). Then, there exists a sufficiently large a∗ = a∗(β, b) ≥ 1, such that for any a ≥ a∗, the
following statement holds for any q ≥ 0. Given a velocity field vq which solves the Euler-Reynolds system

with stress R̊q, define vℓq , wq, and uq via (3.2)–(3.3). Assume that {uq′}q−1
q′=0 satisfies (3.12), wq obeys (3.13)–

(3.14), R̊q satisfies (3.15), and that for every q′ ≤ q− 1 there exists a partition of unity {ψi,q′}i≥0 such that
properties (3.16)–(3.18) and estimates (3.19)–(3.25) hold. Then, there exists a velocity field vq+1, a stress

R̊q+1, and a partition of unity {ψi,q}q≥0, such that vq+1 solves the Euler-Reynolds system with stress R̊q+1,

uq satisfies (3.12) for q′ 7→ q, wq+1 obeys (3.13)–(3.14) for q 7→ q + 1, R̊q+1 satisfies (3.15) for q 7→ q + 1,
and the ψi,q are such that (3.16)–(3.25) hold when q′ 7→ q.
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3.4 Proof of Theorem 1.1

Choose the parameters β, b, . . . , a∗, as described in Section 9.1, and assume that with these parameter choices,
and for any a ≥ a∗, we are able to propagate the inductive bounds claimed in Sections 3.2.1–3.2.4 from step q
to step q+1, for all q ≥ 0; this is achieved in Sections 6–8. We next show that if a ≥ a∗ is chosen sufficiently
large, depending additionally on the vstart, vend, T > 0, and ϵ > 0 from the statement of Theorem 1.1, then
the inductive assumptions imply Theorem 1.1.

Without loss of generality, assume that
´
T3 vstart(x)dx =

´
T3 vend(x)dx = 0. Since these functions lie in

L2(T3), there exists R > 0 such that upon defining

v
(1)
0 := P≤Rvstart , and v

(2)
0 := P≤Rvend ,

where P≤R denotes the Fourier truncation operator to frequencies |ξ| ≤ R, we have that

∥v(1)0 − vstart∥L2(T3) + ∥v(2)0 − vend∥L2(T3) ≤
ϵ

2
. (3.29)

Note that v
(1)
0 , v

(2)
0 ∈ C∞(T3), and thus by the classical local well-posedness theory plus propagation of

regularity (see Foias, Frisch, and Temam [38]), there exists T0 > 0 and unique strong solutions v(1) ∈
C∞((−T0, T0)×T3) and v(2) ∈ C∞((T −T0, T +T0)×T3) of the 3D Euler system (1.1), such that v(1)(x, 0) =

v
(1)
0 (x) and v(2)(x, T ) = v

(2)
0 (x). Without loss of generality, we may take T0 ≤ T/2.

Next, let φ : [0, T ] → [0, 1] be a non-increasing C∞ smooth function such that φ ≡ 1 on [0, T0/2] and φ ≡ 0
on [T0, T ]. Define the C∞-smooth function

v0(x, t) := φ(t)v(1)(x, t) + φ(T − t)v(2)(x, t) . (3.30)

On [0, T ], v0 solves the Euler-Reynolds system (3.1) for a suitable zero mean scalar pressure p0, with the
C∞-smooth stress R̊0 defined by

R̊0(x, t) := (∂tφ)(t)Rv(1)(x, t)− (∂tφ)(T − t)Rv(2)(x, t)
+ φ(t)(φ(t)− 1)(v(1)⊗̊v(1))(x, t) + φ(T − t)(φ(T − t)− 1)(v(2)⊗̊v(2))(x, t) , (3.31)

where R is the classical nonlocal inverse-divergence operator (see (A.100) for the definition). From the above
definition and the fact that φ ≡ 1 on [0, T0/2], we deduce that

supp t(R̊0) ⊂ [T0/2, T − T0/2] . (3.32)

This fact will be needed towards the end of the proof.
For consistency of notation, we also define v−1 = vℓ−1

= u−1 = 0, so that v0 = w0 holds by (3.3). For
the velocity cutoffs, we let ψ0,−1 = 1 and ψi,−1 = 0 for all i ≥ 1. It is then immediate to check that the
{ψi,−1}i≥0 satisfy the inductive assumptions (3.16)–(3.21), for q′ = −1, with the derivative bounds (3.19)
and (3.20) being empty statements for K+M ≥ 1, respectively when N+K+M ≥ 1. Moreover, the bounds
(3.12) and (3.22)–(3.25b) hold for q′ = −1 since the left side of these inequalities vanishes identically. Lastly,
the assumption (3.14) is empty since there is no R̊−1 stress to speak of.

It thus remains to verify that the pair (v0, R̊0) defined in (3.30)–(3.31) satisfies the estimates (3.13) and
(3.15), where by the above choices we have Dt,−1 = ∂t. Note that the parameter Nind,v was already chosen;
thus, we have that

Cdatum := max
0≤n,m≤7Nind,v

∥Dn∂mt v0∥L∞(0,T ;L2(T3)) + max
0≤n,m≤3Nind,v

∥∥∥Dn∂mt R̊0

∥∥∥
L∞(0,T ;L1(T3))

<∞ . (3.33)

Note that Cdatum only depends on vstart, vend, the cutoff frequency R > 0, the choice of the cutoff function
φ, on T > 0, and on the parameter Nind,v. In particular, Cdatum does not depend on the parameter a, which
is the base of the exponential defining λq in (3.10). Defining τ−1 = Γ−1

0 = λ−εΓ0 and τ̃−1 = Γ−3
0 = λ−3εΓ

0

(these parameters are never used again), and that λ0 ≥ a ≥ a∗ ≥ 1, we thus have that (3.13) and (3.15) hold
if we ensure that

Cdatum ≤ Γ−1
0 δ

1/2
0 and Cdatum ≤ Γ−CR

0 δ1 . (3.34)
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Using that εΓ is sufficiently small with respect to β and b, we have that Γ−1
0 δ

1/2
0 = λ−εΓ0 λ

(b+1)β/2
1 λ−β0 ≥

(λ1λ
−1
0 )(b+1)β/2 ≥ (ab−1/2)β . Also, by using that εΓ is chosen to be sufficiently small with respect to β and

b, we have that Γ−CR
0 δ1 = λ

(4b+1)εΓ
0 λ

(b−1)β
1 ≥ (λ1λ

−1
0 )(b−1)β ≥ (ab−1/2)(b−1)β . Thus, if in addition to a ≥ a∗,

as specified by item (xiii) in Section 9.1, if we choose a ≥ a∗ to be sufficiently large in terms of β, b and the
constant Cdatum from (3.33), in order to ensure that

a(b−1)2β ≥ 4Cdatum ,

then the condition (3.34) is satisfied. We make this choice of a, and thus all the estimates claimed in
Sections 3.2.1–3.2.4 hold true for the base step in the induction, the case q = 0.

Proceeding inductively, these estimates thus hold true for all q ≥ 0. This allows us to define a function
v ∈ C0(0, T ;Hβ′

(T3)) for any β′ < β via the absolutely convergent series20

v = lim
q→∞

vq = v0 +
∑
q≥0

(vq+1 − vq) = v0 +
∑
q≥0

(
wq+1 + (vℓq − vq)

)
, (3.35)

where we recall the notation (3.2) and (3.3). Indeed, by (3.13), (3.16), and interpolation, we have that

∥wq∥Hβ′ ≤ 2Γ−1
q δ

1/2
q λβ

′

q = 2Γ−1
q λ

(b + 1)β/2
1 λ

−(β−β′)
q which is summable for q ≥ 0 whenever β′ < β. By appeal-

ing to the bound (3.28), we furthermore obtain that
∥∥vℓq − vq

∥∥
Hβ′ ≲ λ−2

q δ
1/2
q λβ

′

q ≲ λ
(b + 1)β/2
1 λ

−2−(β−β′)
q ,

which is again summable over q ≥ 0. This justifies the definition of v in (3.35), and the fact that
v ∈ C0(0, T ;Hβ′

(T3)) for any β′ < β. Finally, we note that by additionally appealing to (3.15), which
yields ∥R̊q∥L1 ≲ Γ−CR

q δq+1 → 0 as q → ∞, in view of (3.1) the function v defined in (3.35) is a weak solution
of the Euler equations on [0, T ].

In order to complete the proof, we return to (3.35) and note that due to (3.14) (with q = 1), the property

(3.32) of R̊0, and the fact that λ0δ
1/2
0 = λ1−β0 λ

(b + 1)β/2
1 ≥ 4/T0 (which holds upon choosing a sufficiently large

with respect to T0, β, b), we have that w1 ≡ 0 on the set [0, T0/4]×T3 ∪ [T − T0/4, T ]×T3. Thus, from (3.35)
and the previously established bounds for wq (via (3.13), (3.16)) and vℓq − vq (via (3.28)), we have that

∥v − v0∥L∞([0,T0/4]∪[T−T0/4,T ];L2(T3)) ≤
∑
q≥2

∥wq∥L∞([0,T ];L2(T3)) +
∑
q≥0

∥∥vℓq − vq
∥∥
L∞([0,T ];L2(T3))

≤ 2λ
(b + 1)β/2
1

∑
q≥2

Γ−1
q λ−βq + λ

(b+1)β
1

∑
q≥0

λ−2−β
q

≤ 4λ
(b + 1)β/2
1 Γ−1

2 λ−β2 + 2λ
(b+1)β
1 λ−2−β

0

≤ 8Γ−1
2 λ

(b + 1)β/2
1 λ−βb1 + 4λ

(b+1)bβ
0 λ−2−β

0

≤ λ
−(b − 1)β/2
1 + 4λ

−1/2
0

≤ ϵ

2
(3.36)

once a (and thus λ0 and λ1) is taken to be sufficiently large with respect to b, β, and ϵ. Here, in the
second-to-last inequality we have used that β(b2 + b − 1) ≤ 3/2, which holds since β < 1/2 and b < 3/2.
Combining (3.36) with the definition of the functions v(1), v(2), and v0, and the bound (3.29), we deduce
that ∥v(·, 0)− vstart∥L2(T3) ≤ ϵ and ∥v(·, T )− vend∥L2(T3) ≤ ϵ. This concludes the proof of Theorem 1.1, with

β being replaced by an arbitrary β′ ∈ (0, β).

Remark 3.7 (Modifications for achieving compact support in time). The proof outlined above may

be easily modified to show the existence of infinitely many weak solutions in C0
tH

1/2−
x which are nontrivial

and have compact support in time, as mentioned in Remark 1.2. The argument is as follows. Let φ(t) be a
C∞ smooth cutoff function, with φ ≡ 1 on −[T/4, T/4] and φ ≡ 0 on R \ [−T/2, T/2]. Then, instead of (3.30),
we define define v0(x, t) = Eφ(t)(sin(x3), 0, 0). Note that the kinetic energy of v0 at time t = 0 is larger
E(2π)

3/2/2 ≥ 2E, and that v0 has time-support in [−T/2, T/2]. Since (sin(x3), 0, 0) is a shear flow, the zero

20We may equivalently define v = limq→∞ vq = limq→∞ wq +
∑q−1

q′=0
uq′ =

∑
q′≥0 uq′ . We choose to work with (3.35)

because it highlights the dependence on v0.
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order stress R̊0 is given by Eφ′(t) multiplied by a matrix whose entries are zero, except for the (1, 3) and
(3, 1) entries which equal − cos(x3) (see [12, Section 5.2] for details). The point is that R0 is smooth, and
its time-support lies in the interval T/4 ≤ |t| ≤ T/2, which plays the role of (3.32). Using the same argument
used in the proof of Theorem 1.1, we may show that for a sufficiently large, the above defined pair (v0, R̊0)
satisfies the inductive assumptions at level q = 0, and that these inductive assumptions may be propagated to
all q ≥ 0. As in (3.36), we deduce that the limiting weak solution solution v has kinetic energy at time t = 0
which is strictly larger than E. The fact that supp tv0, supp tR̊0 ⊂ [−T/2, T/2], combined with the inductive
assumption (3.14) and the fact that the mollification procedure in Lemma 5.1 expands time-supports by

at most a factor of τ̃q−1 ≪ (λq−1δ
1/2
q−1)

−1, implies that the the weak solution v has time-support in the set

|t| ≤ T/2 + 4
∑
q≥0(λqδ

1/2
q )−1 ≤ T/2 + 8λβ−1

0 . Choosing a sufficiently large shows that supp tv ⊂ [−T, T ].

Remark 3.8 (Modifications for attaining a given energy profile). The intermittent convex integra-

tion scheme described in this paper may be modified to show that within the regularity class C0
tH

1/2−
x ,

weak solutions of 3D Euler may be constructed to attain any given smooth energy profile, as mentioned in
Remark 1.2. The main modifications required to prove this fact are as follows. As in previous schemes (see
e.g. De Lellis and Székelyhidi Jr. [31], equations (7) and (9), or [13], equations (2.5) and (2.6), etc.) we need
to measure the distance between the energy resolved at step q in the iteration, and the desired energy profile
e(t). The energy pumping produced in steps q 7→ q + 1 by the additions of pipe flows which comprise the
velocity increments wq+1, and the error due to mollification, was already understood in detail in Daneri and
Székelyhidi Jr. [27] and in [11]. An additional difficulty in this paper is due to the presence of the higher
order stresses: the energy profile would have to be inductively adjusted also throughout the steps n 7→ n+1
and p 7→ p + 1. The other difficulty is the presence of the cutoff functions. This issue was however already
addressed in [13], cf. Sections 4.5, 4.5, 6; albeit for a simpler version of the cutoff functions, which only
included the stress cutoffs. With some effort, the argument in [13] may be indeed modified to deal with the
cutoff functions present in this work.

4 Building blocks

In Section 4.1, we specify in Propositions 4.1 and Proposition 4.3 the axes and shifts, respectively, that will
characterize our intermittent pipe flows. A sufficiently diverse set of vector directions for the axes ensures
that we can span a neighborhood of the identity in the space of symmetric 3×3 matrices using positive linear
combinations of simple tensors. Proposition 4.3 crucially describes the r−2 choices of placement afforded
by the parameter r, which quantifies the diameter of the pipe. Then in Proposition 4.4, we construct the
intermittent pipe flows used in the rest of the paper and specify the essential properties. Section 4.2 contains
Lemma 4.7, which studies the evolution of the axes of the pipes under flow by an incompressible velocity
field and related properties. Section 4.3 contains Proposition 4.8, which is the placement lemma used to
eliminate the Type 2 oscillation errors. We remark that the results of this section are only used in Section 8
- first to ensure the cancellation of errors in Section 8.3, and second to show that the Type 2 errors vanish
in Section 8.7.

4.1 A careful construction of intermittent pipe flows

We recall from [54, Lemma 1] or [27, Lemma 2.4] a version of the following geometric decomposition:

Proposition 4.1 (Choosing Vectors for the Axes). Let B1/2(Id) denote the ball of symmetric 3 × 3
matrices, centered at Id, of radius 1/2. Then, there exists a finite subset Ξ ⊂ S2 ∩ Q3, for every ξ ∈ Ξ
there exists a smooth positive function γξ : C

∞ (B1/2(Id)
)
→ R, such that for each R ∈ B1/2(Id) we have the

identity

R =
∑
ξ∈Ξ

(γξ(R))
2
ξ ⊗ ξ. (4.1)

Additionally, for every ξ in Ξ, there exist vectors ξ(2), ξ(3) ∈ S2∩Q3 such that {ξ, ξ(2), ξ(3)} is an orthonormal
basis of R3, and there exists a least positive integer n∗ such that n∗ξ, n∗ξ(2), n∗ξ(3) ∈ Z3, for every ξ ∈ Ξ.
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In order to adapt the proof of Proposition 4.8 to pipe flows oriented around axes which are not parallel
to the standard basis vectors e1, e2, or e3, it is helpful to consider functions which are periodic not only with
respect to T3, but also with respect to a torus for which one face is perpendicular to the axis of the pipe
(i.e., that one edge of the torus is parallel to the axis).

e3

e2

e1

e3

e2

e1

ξ(3)
ξ

ξ(2)

ξ(3)

ξ

ξ(2)

1

Figure 8: The torus on the left, T3, has axes parallel to the usual coordinate axes, while the torus on the right,
denoted T3

ξ, has been rotated and has axes parallel to a new set of vectors ξ, ξ(2), and ξ(3).

Definition 4.2 (T3
ξ-periodicity). Let {ξ, ξ(2), ξ(3)} ⊂ S2 ∩ Q3 be an orthonormal basis for R3, and let

f : R3 → Rn. We say that f is T3
ξ-periodic if for all (k1, k2, k3) ∈ Z3 and (x1, x2, x3) ∈ R3,

f
(
(x1, x2, x3) + 2π

(
k1ξ + k2ξ

(2) + k3ξ
(3)
))

= f(x1, x2, x3) (4.2)

and write f : T3
ξ → Rn. If {ξ, ξ(2), ξ(3)} = {e1, e2, e3}, i.e. the standard basis for R3, we drop the subscript

ξ and write T3. For sets S ⊂ R3, we say that S is T3
ξ-periodic if the indicator function of S is T3

ξ-periodic.

Additionally, if L is a positive number, we say that f is
(

T3
ξ

L

)
-periodic if

f

(
(x1, x2, x3) +

2π

L

(
k1ξ + k2ξ

(2) + k3ξ
(3)
))

= f(x1, x2, x3)

for all (k1, k2, k3) ∈ Z3 and (x1, x2, x3) ∈ R3. Note that if L is a positive integer,
T3
ξ

L -periodicity implies
T3
ξ-periodicity.

We can now construct shifted intermittent pipe flows concentrated around axes with a prescribed vector
direction ξ while imposing that each flow is supported in a single member of a large collection of disjoint
sets. For the sake of clarity, we split the construction into two steps. First, in Proposition 4.3 we construct
the shifts and then periodize and rotate the scalar-valued flow profiles and potentials associated to the pipe
flows Wξ,λ,r. The support and placement properties are ensured at the level of the flow profile and potential.
Next, we use the flow profiles to construct the pipe flows themselves in Proposition 4.4.

Proposition 4.3 (Rotating, Shifting, and Periodizing). Fix ξ ∈ Ξ, where Ξ is as in Proposition 4.1.
Let r−1, λ ∈ N be given such that λr ∈ N. Let κ : R2 → R be a smooth function with support contained inside
a ball of radius 1

4 . Then for k ∈ {0, ..., r−1 − 1}2, there exist functions κkλ,r,ξ : R3 → R defined in terms of
κ, satisfying the following additional properties:

(1) We have that κkλ,r,ξ is simultaneously
(

T3

λr

)
-periodic and

(
T3
ξ

λrn∗

)
-periodic.

(2) Let Fξ be one of the two faces of the cube
T3
ξ

λrn∗
which is perpendicular to ξ. Let Gλ,r ⊂ Fξ ∩ 2πQ3 be

the grid consisting of r−2-many points spaced evenly at distance 2π(λn∗)−1 on Fξ and containing the
origin. Then each grid point gk for k ∈ {0, ..., r−1 − 1}2 satisfies(

suppκkλ,r,ξ ∩ Fξ
)
⊂
{
x : |x− gk| ≤ 2π (4λn∗)

−1
}
. (4.3)
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(3) The support of κkλ,r,ξ consists of a pipe (cylinder) centered around a
(

T3

λr

)
-periodic and

(
T3
ξ

λrn∗

)
-periodic

line parallel to ξ, which passes through the point gk. The radius of the cylinder’s cross-section is as given
in (4.3).

(4) For k ̸= k′, suppκkλ,r,ξ ∩ suppκk′λ,r,ξ = ∅.

2

Figure 9: We have pictured above a grid on the front face of T3 in which there are 42 = (λr)2 many periodic cells,
each with 42 = r−2 many subcells of diameter 16−1 = λ−1. The periodized axes of the pipes are the green lines, and
they have been placed in the highlighted red squares on the front face of the torus.

Proof of Proposition 4.3. For r−1 ∈ N, which quantifies the rescaling, and for k = (k1, k2) ∈ {0, ..., r−1− 1}2
which quantifies the shifts, define κkr to be the rescaled and shifted function

κkr (x1, x2) :=
1

2πr
κ
( x1
2πr

− k1,
x2
2πr

− k2

)
. (4.4)

Then (x1, x2) ∈ suppκkr if and only if∣∣∣ x1
2πr

− k1

∣∣∣2 + ∣∣∣ x2
2πr

− k2

∣∣∣2 ≤ 1

16
. (4.5)

This implies that

k1 −
1

4
≤ x1

2πr
≤ k1 +

1

4
, k2 −

1

4
≤ x2

2πr
≤ k2 +

1

4
. (4.6)

Since these inequalities cannot be satisfied by a single pair (x, y) for both k = (k1, k2) and k′ = (k′1, k
′
2)

simultaneously when k ̸= k′, it follows that

suppκkr ∩ suppκk
′

r = ∅ (4.7)

for all k ̸= k′. Also, notice that plugging k1 = 0 and k1 = r−1 − 1 into (4.6) shows that the set of x1 for
which there exists (k1, k2) such that κkr (x) ̸= 0 is contained in{

−rπ
2

≤ x1 ≤ 2π − 3rπ

2

}
,

which is a set with diameter strictly less than 2π. Therefore, periodizing in x1 will not cause overlap in
the supports of the periodized objects. Arguing similarly for x2 and enumerating the pairs (k1, k2) with
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k ∈ {0, ..., r−1− 1}2, we overload notation and denote by κkr , the T2-periodized version of κkr . Thus we have
produced r−2-many functions which are T2-periodic and which have disjoint supports.

Now define Gr ⊂ T2 to be the grid containing r−2-many points evenly spaced at distance 2πr and
containing the origin. Then

Gr =
{
g0k := 2πrk : k ∈ {0, ..., r−1 − 1}2

}
⊂ 2πQ2 .

Thus the support of each function κkr contains g0k as the center of its support but no other grid points.
Let ξ ∈ Ξ be fixed, with the associated orthonormal basis {ξ, ξ(2), ξ(3)}. For x = (x1, x2, x3) ∈ R3 and

λr ∈ N, define
κkλ,r,ξ(x) := κkr

(
n∗λrx · ξ(2), n∗λrx · ξ(3)

)
. (4.8)

Then for (k1, k2, k3) ∈ Z3,

κkλ,r,ξ
(
x+

2π

λr
(k1, k2, k3)

)
= κkr

(
n∗λr

(
x+

2π

λr
(k1, k2, k3)

)
· ξ(2), n∗λr

(
x+

2π

λr
(k1, k2, k3)

)
· ξ(3)

)
= κkr

(
n∗λrx · ξ(2), n∗λrx · ξ(3)

)
= κkλ,r,ξ(x)

since n∗ξ(2), n∗ξ(3) ∈ Z3 and κkr is T2-periodic, and thus κkλ,r,ξ is T3

λr -periodic. Similarly,

κkλ,r,ξ
(
x+

2π

λrn∗
(k1ξ + k2ξ

(2) + k3ξ
(3))

)
= κkr

(
n∗λr

(
x+

2π

λrn∗
(k1ξ + k2ξ

(2) + k3ξ
(3))
)
· ξ(2), n∗λr

(
x+

2π

λrn∗
(k1ξ + k2ξ

(2) + k3ξ
(3))
)
· ξ(3)

)
= κkr

(
n∗λrx · ξ(2), n∗λrx · ξ(3)

)
= κkλ,r,ξ(x)

since
2π(k1ξ + k2ξ

(2) + k3ξ
(3)) · ξ(2) = 2πk2, 2π(k1ξ + k2ξ

(2) + k3ξ
(3)) · ξ(3) = 2πk3

and κkr is T2-periodic. Thus κkλ,r,ξ is
T3
ξ

λrn∗
-periodic, and as a consequence

T3
ξ

λr -periodic as well. Therefore, we
have proved point 1.

To prove point 2, define

Gλ,r =
{
gk := 2πk1 (λn∗)

−1
ξ(2) + 2πk2 (λn∗)

−1
ξ(3) : k1, k2 ∈ {0, ..., r−1 − 1}

}
. (4.9)

We claim that κkλ,r,ξ|Fξ
is supported in a 2π(4λn∗)−1-neighborhood of gk. To prove the claim, let x ∈ Fξ be

such that κkλ,r,ξ(x) ̸= 0. Then since

κkλ,r,ξ(x) = κkr
(
n∗λrx · ξ(2), n∗λrx · ξ(3)

)
,

we can use (4.5) to assert that x ∈ suppκkλ,r,ξ if and only if x = (x1, x2, x3) satisfies∣∣∣∣n∗λrx · ξ(2)
2πr

− k1

∣∣∣∣2 + ∣∣∣∣n∗λrx · ξ(3)
2πr

− k2

∣∣∣∣2 ≤ 1

16

⇐⇒
∣∣∣∣(x1, x2, x3)− ( 2π

n∗λ
k1ξ

(2) +
2π

n∗λ
k2ξ

(3)

)∣∣∣∣2 ≤
(

2π

4n∗λ

)2

,

which proves the claim.
Items 3 and 4 follow immediately after noting that κkλ,r,ξ is constant on every plane parallel to Fξ, and

that the grid points gk ∈ Gλ,r around which the supports of κkλ,r,ξ are centered, are spaced at a distance
which is twice the diameters of the supports.
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Proposition 4.4 (Construction and properties of shifted Intermittent Pipe Flows). Fix a vector
ξ belonging to the set of rational vectors Ξ ⊂ Q3 from Proposition 4.3, r−1, λ ∈ N with λr ∈ N, and large
integers 2Nfin and d. There exist vector fields Wk

ξ,λ,r : T3 → R3 for k ∈ {0, ..., r−1 − 1}2 and implicit
constants depending on Nfin and d but not on λ or r such that:

(1) There exists ϱ : R2 → R given by the iterated Laplacian ∆dϑ =: ϱ of a potential ϑ : R2 → R with
compact support in a ball of radius 1

4 such that the following holds. Let ϱkξ,λ,r and ϑkξ,λ,r be defined as in

Proposition 4.3. Then there exist Ukξ,λ,r : T3 → R3 such that

curlUkξ,λ,r = ξλ−2d∆d
(
ϑkξ,λ,r

)
= ξϱkξ,λ,r =: Wk

ξ,λ,r . (4.10)

(2) Each of the sets of functions {Ukξ,λ,r}k, {ϱkξ,λ,r}k, {ϑkξ,λ,r}k, and {Wk
ξ,λ,r}k satisfy items 1–4. In par-

ticular, when k ̸= k′, we have that the intersection of the supports of Wξ,λ,r
k and Wk′

ξ,λ,r is empty, and
similarly for the other sets of functions.

(3) Wk
ξ,λ,r is a stationary, pressureless solution to the Euler equations, i.e.

divWk
ξ,λ,r = 0, div

(
Wk
ξ,λ,r ⊗Wk

ξ,λ,r

)
= 0.

(4)
1

|T3|

ˆ
T3

Wk
ξ,λ,r ⊗Wk

ξ,λ,r = ξ ⊗ ξ

(5) For all n ≤ 2Nfin, ∥∥∇nϑkξ,λ,r
∥∥
Lp(T3)

≲ λnr(
2
p−1),

∥∥∇nϱkξ,λ,r
∥∥
Lp(T3)

≲ λnr(
2
p−1) (4.11)

and ∥∥∇nUkξ,λ,r
∥∥
Lp(T3)

≲ λn−1r(
2
p−1),

∥∥∇nWk
ξ,λ,r

∥∥
Lp(T3)

≲ λnr(
2
p−1). (4.12)

(6) Let Φ : T3 × [0, T ] → T3 be the periodic solution to the transport equation

∂tΦ+ v · ∇Φ = 0, (4.13a)

Φt=t0 = x , (4.13b)

with a smooth, divergence-free, periodic velocity field v. Then

∇Φ−1 ·
(
Wk
ξ,λ,r ◦ Φ

)
= curl

(
∇ΦT ·

(
Ukξ,λ,r ◦ Φ

))
. (4.14)

(7) For P[λ1,λ2] a Littlewood-Paley projector, Φ as in (4.13), and A = (∇Φ)−1,[
∇ ·
(
AP[λ1,λ2] (Wξ,λ,r ⊗Wξ,λ,r) (Φ)A

T

)]
i

= Ajk P[λ1,λ2]

(
Wk
ξ,λ,rWl

ξ,λ,r

)
(Φ)∂jA

i
l

= Ajkξ
kξl∂jA

i
l P[λ1,λ2]

((
ϱkξ,λ,r

)2)
(4.15)

for i = 1, 2, 3.

Remark 4.5. The identity (4.15) is one of the main advantages of pipe flows over Beltrami flows. The
utility of this identity is that when checking whether a pipe flow Wξ,λ,r which has been deformed by Φ is
still an approximately stationary solution of the pressureless Euler equations, one does not need to estimate
any derivatives of Wξ,λ,r - only derivatives on the flow map Φ, which will cost much less than λ.

Remark 4.6. The formulation of (4.15) is useful for our inversion of the divergence operator, which is
presented in Proposition A.17 and the subsequent remark. We refer to the statement of that proposition
and the subsequent remark for further properties related to (4.15).
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Proof of Proposition 4.4. With the definition Wk
ξ,λ,r := ξϱkξ,λ,r, the equality λ−2d∆d(ϑkξ,λ,r) = ϱkξ,λ,r follows

from the proof of Proposition 4.3, specifically equations (4.4), (4.4), and (4.8). The equality curlUkξ,λ,r =
Wξ,λ,r follows as well using the standard vector calculus identity curl curl = ∇div −∆. Secondly, properties
(1), (2), and (4) from Proposition 4.3 for ϑkξ,λ,r follow from Proposition 4.3 applied to κ = ϑ. The same

properties for ϱkξ,λ,r, Ukξ,λ,r, and Wk
ξ,λ,r follow from differentiating. Next, it is clear that Wk

ξ,λ,r solves the

pressureless Euler equations since ξ · ∇ϱkξ,λ,r = 0. The normalization in (4) follows from imposing that

1

(2π)2

ˆ
R2

(∆dϑ(x1, x2))
2 dx1 dx2 = 1,

recalling that orthogonal transformations, shifts, and scaling do not alter the Lp norms of T3-periodic
functions, and using (4.4). The estimates in (5) follow similarly using (4.4). The proof of (4.14) in (6) can
be found in the paper of Daneri and Székelyhidi Jr. [27].

The proof of (4.15) from (7) is simple and similar in spirit to (6) but perhaps not standard, and so we
will check it explicitly here. We first set P to be the T3-periodic convolution kernel associated with the
projector P[λ1,λ2] and write

∇·
(
(∇Φ)−1P[λ1,λ2] (Wξ,λ,r ⊗Wξ,λ,r) (Φ)(∇Φ)−T

)
(x)

= ∇x ·
(
(∇Φ)−1(x)

(ˆ
T3

P(y)(Wξ,λ,r ⊗Wξ,λ,r)(Φ(x− y)) dy

)
(∇Φ)−T (x)

)
= ∇x ·

(ˆ
T3

(∇Φ)−1(x)P(y)(Wξ,λ,r ⊗Wξ,λ,r)(Φ(x− y))(∇Φ)−T (x) dy

)
= ∇x ·

(ˆ
T3

P(y)
(
(∇Φ)−1(x)Wξ,λ,r(Φ(x− y))

)
⊗
(
(∇Φ)−1(x)Wξ,λ,r(Φ(x− y))

)
dy

)
. (4.16)

Then applying (4.14), we obtain that (4.16) is equal to
ˆ
T3

P(y)
(
(∇Φ)−1(x)Wξ,λ,r(Φ(x− y))

)
· ∇x

(
(∇Φ)−1(x)Wξ,λ,r(Φ(x− y))

)
dy.

Writing out the ith component of this vector and using the notation A = (∇Φ)−1, we obtain[ˆ
T3

P(y) (A(x)Wξ,λ,r(Φ(x− y))) · ∇x (A(x)Wξ,λ,r(Φ(x− y))) dy

]
i

=

ˆ
T3

P(y)Ajk(x)W
k
ξ,λ,r(Φ(x− y))Ail(x)∂nWl

ξ,λ,r(Φ(x− y))∂jΦn(x) dy

+

ˆ
T3

P(y)Ajk(x)W
k
ξ,λ,r(Φ(x− y))∂jA

i
l(x)Wl

ξ,λ,r(Φ(x− y)) dy . (4.17)

Since the second term in (4.17) can be rewritten as
ˆ
T3

P(y)Ajk(x)W
k
ξ,λ,r(Φ(x− y))∂jA

i
l(x)Wl

ξ,λ,r(Φ(x− y)) dy

= Ajk(x)P[λ1,λ2]

(
Wk
ξ,λ,rWl

ξ,λ,r

)
(Φ(x))∂jA

i
l(x),

to conclude the proof, we must show that the first term in (4.17) is equal to 0. Using that

Ajk∂jΦ
n = δnk

and
Wk
ξ,λ,r∂kWl

ξ,λ,r = 0

for all l, we can simplify the first term asˆ
T3

P(y)Ajk(x)W
k
ξ,λ,r(Φ(x− y))Ail(x)∂nWl

ξ,λ,r(Φ(x− y))∂jΦn(x) dy
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=

ˆ
T3

P(y)δnkWk
ξ,λ,r(Φ(x− y))Ail(x)∂nWl

ξ,λ,r(Φ(x− y)) dy

=

ˆ
T3

P(y)Wk
ξ,λ,r(Φ(x− y))Ail(x)∂kWl

ξ,λ,r(Φ(x− y)) dy

= 0,

proving (4.15).

4.2 Deformed pipe flows and curved axes

Lemma 4.7 (Control on Axes, Support, and Spacing). Consider a convex neighborhood of space
Ω ⊂ T3. Let v be an incompressible velocity field, and define the flow X(x, t)

∂tX(x, t) = v (X(x, t), t) (4.18a)

Xt=t0 = x , (4.18b)

and inverse Φ(x, t) = X−1(x, t)

∂tΦ+ v · ∇Φ = 0 (4.19a)

Φt=t0 = x . (4.19b)

Define Ω(t) := {x ∈ T3 : Φ(x, t) ∈ Ω} = X(Ω, t). For an arbitrary C > 0, let τ > 0 be a parameter such that

τ ≤
(
δ
1/2
q λqΓ

C+2
q+1

)−1

. (4.20)

Furthermore, suppose that the vector field v satisfies the Lipschitz bound21

sup
t∈[t0−τ,t0+τ ]

∥∇v(·, t)∥L∞(Ω(t)) ≲ δ
1/2
q λqΓ

C
q+1 . (4.21)

Let Wk
λq+1,r,ξ

: T3 → R3 be a set of straight pipe flows constructed as in Proposition 4.3 and Proposition 4.4

which are T3

λq+1r
-periodic for

λq

λq+1
≤ r ≤ 1 and concentrated around axes {Ai}i∈I oriented in the vector

direction ξ for ξ ∈ Ξ. Then W := Wk
λq+1,r,ξ

(Φ(x, t)) : Ω(t)× [t0 − τ, t0 + τ ] satisfies the following conditions:

(1) We have the inequality
diam(Ω(t)) ≤

(
1 + Γ−1

q+1

)
diam(Ω). (4.22)

(2) If x and y with x ̸= y belong to a particular axis Ai ⊂ Ω, then

X(x, t)−X(y, t)

|X(x, t)−X(y, t)| =
x− y

|x− y| + δi(x, y, t) (4.23)

where |δi(x, y, t)| < Γ−1
q+1.

(3) Let x and y belong to a particular axis Ai ⊂ Ω. Denote the length of the axis Ai(t) := X(Ai ∩ Ω, t) in
between X(x, t) and X(y, t) by L(x, y, t). Then

L(x, y, t) ≤
(
1 + Γ−1

q+1

)
|x− y| . (4.24)

(4) The support of W is contained in a
(
1 + Γ−1

q+1

) 2π

4n∗λq+1
-neighborhood of

⋃
i

Ai(t). (4.25)

21The implicit constant in this inequality is assumed to be independent of q, cf. (6.60).
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(5) W is “approximately periodic” in the sense that for distinct axes Ai, Aj with i ̸= j and dist (Ai ∩Ω, Aj ∩
Ω) = d, (

1− Γ−1
q+1

)
d ≤ dist (Ai(t), Aj(t)) ≤

(
1 + Γ−1

q+1

)
d. (4.26)

Proof of Lemma 4.7. First, we have that for x, y ∈ Ω,

|X(x, t)−X(y, t)| =
∣∣∣∣x− y +

ˆ t

t0

∂sX(x, s)− ∂sX(y, s) ds

∣∣∣∣
≤ |x− y|+

ˆ t

t0

|v (X(x, s), s)− v (X(y, s), s)| ds.

Furthermore,

∣∣vℓ (X(x, s), s)− vℓ (X(y, s), s)
∣∣ = ∣∣∣∣ˆ 1

0

∂jv
ℓ (X(x+ t(y − x), s), s) ∂kX

j(x+ t(y − x), s)(y − x)k dt

∣∣∣∣
≤ ∥∇v∥L∞(Ω(s)) ∥∇X∥L∞(Ω(s)) |x− y|

≤ 3

2
δ

1
2
q λqΓ

C
q+1|x− y| .

Integrating this bound from t0 to t and using a factor of Γq+1 to absorb the constant, we deduce that(
1− Γ−1

q+1

)
|x− y| ≤ |X(x, t)−X(y, t)| ≤

(
1 + Γ−1

q+1

)
|x− y|. (4.27)

The inequality in (4.22) follows immediately.
To prove (4.23), we will show that for x, y ∈ Ω ∩Ai for a chosen axis Ai,∣∣∣∣ x− y

|x− y| −
X(x, t)−X(y, t)

|X(x, t)−X(y, t)|

∣∣∣∣ < Γ−1
q+1.

At time t0, the above quantity vanishes. Differentiating inside the absolute value in time, we have that

d

dt

[
X(x, t)−X(y, t)

|X(x, t)−X(y, t)|

]
=
∂tX(x, t)− ∂tX(y, t)

|X(x, t)−X(y, t)| − X(x, t)−X(y, t)

|X(x, t)−X(y, t)|2
(∂tX(x, t)− ∂tX(y, t)) · (X(x, t)−X(y, t))

|X(x, t)−X(y, t)|

=
v(X(x, t), t)− v(X(y, t), t)

|X(x, t)−X(y, t)| − X(x, t)−X(y, t)

|X(x, t)−X(y, t)|
(v(X(x, t), t)− v(X(y, t), t)) · (X(x, t)−X(y, t))

|X(x, t)−X(y, t)|2 .

Utilizing the mean value theorem and the Lipschitz bound on v and (4.27), we deduce∣∣∣∣v(X(x, t), t)− v(X(y, t), t)

|X(x, t)−X(y, t)| − X(x, t)−X(y, t)

|X(x, t)−X(y, t)|
(v(X(x, t), t)− v(X(y, t), t)) · (X(x, t)−X(y, t))

|X(x, t)−X(y, t)|2
∣∣∣∣

≤ 2 ∥∇v∥L∞

≤ 2δ
1
2
q λqΓ

C
q+1.

Integrating in time from t0 to t for |t − t0| ≤
(
δ

1
2
q λqΓ

C+2
q+1

)−1

and using the extra factors of Γq+1 to again

kill the constants, we obtain (4.23).
To prove (4.24), we parametrize the curve using X to obtain

L(x, y, t) =

ˆ 1

0

|∇X(x+ r(y − x), t) · (x− y)| dr ≤
(
1 + Γ−1

q+1

)
|x− y|.

The claims in (4.25) and (4.26) follow immediately from (4.27) and (4.3).

38



4.3 Placements via relative intermittency

We now state and prove the main proposition regarding the placement of a new set of intermittent pipe flows
which do not intersect with previously placed and possibly deformed pipes within a subset Ω of the full torus
T3. We do not claim that intersections do not occur outside of Ω. In applications, Ω will be the support
of a cutoff function.22 We state the proposition for new pipes periodized to spatial scale (λq+1r2)

−1
with

axes parallel to a direction vector ξ ∈ Ξ. By “relative intermittency,” we mean the inequality (4.31) satisfied
by r1 and r2. The proof proceeds, first in the case ξ = e3, by an elementary but rather tedious counting
argument for the number of cells in a two-dimensional grid which may intersect a set concentrated around
a smooth curve. In applications, these correspond to a piece of a periodic pipe flow concentrated around its
deformed axis and then projected onto a plane. Then using (1) and (2) from Proposition 4.3, we describe the
minor adjustments needed to obtain the same result for new pipes with axes parallel to arbitrary direction
vectors ξ ∈ Ξ.

Proposition 4.8 (Placing straight pipes which avoid bent pipes). Consider a neighborhood of space
Ω ⊂ T3 such that

diam(Ω) ≤ 16(λq+1r1)
−1, (4.28)

where λq/λq+1 ≤ r1 ≤ 1. Assume that there exist smooth T3-periodic curves {An}NΩ
n=1 ⊂ Ω23 and T3-periodic

sets {Sn}NΩ
n=1 ⊂ Ω satisfying the following properties:

(1) There exists a positive constant CA and a parameter r2, with r1 < r2 < 1 such that

NΩ ≤ CAr22r−2
1 . (4.29)

(2) For any x, x′ ∈ An, let the length of the curve An which lies between x and x′ be denoted by Ln,x,x′ .
Then, for every 1 ≤ n ≤ NΩ we have

Ln,x,x′ ≤ 2 |x− x′| . (4.30)

(3) For every 1 ≤ n ≤ NΩ, we have that Sn is contained in a 2π(1+Γ−1
q+1) (4n∗λq+1)

−1
-neighborhood of An.

Then, there exists a geometric constant C∗ ≥ 1 such that if

C∗CAr42 ≤ r31, (4.31)

then, for any ξ ∈ Ξ (recall the set Ξ from Proposition 4.1), we can find a set of pipe flows Wk0
λq+1,r2,ξ

: T3 → R3

which are T3

λq+1r2
-periodic, concentrated to width 2π

4λq+1n∗
around axes with vector direction ξ, satisfy the

properties listed in Proposition 4.4, and for all n ∈ {1, ..., NΩ},

suppWk0
λq+1,r2,ξ

∩ Sn = ∅. (4.32)

Remark 4.9. As mentioned previously, the sets Sn will be supports of previously placed pipes oriented
around deformed axes An. The properties of Sn and An will follow from Lemma 4.7.

Proof of Proposition 4.8. For simplicity, we first give the proof for ξ = e3, and explain how to treat the case
of general ξ ∈ Ξ at the end of the proof.

The proof will proceed by measuring the size of the shadows of the {Sn}NΩ
n=1 when projected onto the

face of the cube T3 which is perpendicular to e3, so it will be helpful to set some notation related to this
projection. Let Fe3 be the face of the torus T3 which is perpendicular to e3. For the sake of concreteness,
we will occasionally identify Fe3 with the set of points x = (x1, x2, x3) ∈ T3 such that x3 = 0, or use that
Fe3 is isomorphic to T2. Let Apn be the projection of An onto Fe3 defined by

Apn := {(x1, x2) ∈ Fe3 : (x1, x2, x3) ∈ An} , (4.33)

22Technically, Ω will be a set slightly larger than the support of a cutoff function. See (8.115), (8.118), and (8.129).
23That is, the range of each curve is contained in Ω; otherwise replace the curves with An ∩ Ω.

39



and let Spn be defined similarly as the projection of Sn onto Fe3 . For x = (x1, x2, x3) ∈ T3 and x′ =
(x′1, x

′
2, x

′
3) ∈ T3 we let P (x) = (x1, x2) ∈ Fe3 and P (x′) = (x′1, x

′
2) ∈ Fe3 be the projection of these points

onto Fe3 . Since projections do not increase distances, we have that

|P (x)− P (x′)| ≤ |x− x′| . (4.34)

Since both An and Apn are smooth curves24 and can be approximated by piecewise linear polygonal paths,
(4.34), (4.28), and (4.30) imply that if Lpn,x,x′ is the length of the projected curve Apn in between the points
P (x) and P (x′), then

Lpn,x,x′ ≤ 2|x− x′| ≤ 32 (λq+1r1)
−1
. (4.35)

In particular, taking x and x′ to be the endpoints of the curve An, we obtain a bound for the total length
of Apn. Additionally, (4.34) and the third assumption of the lemma imply that Spn is contained inside
a 2π(1 + Γ−1

q+1)(4n∗λq+1)
−1-neighborhood of Apn. Finally, since Wk

λq+1,r2,e3
is independent of x3 for all

k ∈ {0, ..., r−1
2 − 1}2, it is clear that the conclusion (4.32) will be achieved if we can show that there exists a

shift k0 such that

Spn ∩
(
suppWk0

λq+1,r2,e3
∩ {x3 = 0}

)
= ∅ , (4.36)

for all 1 ≤ n ≤ NΩ. To prove (4.36), we will apply a covering argument to each Spn.
Let Sλq+1

be the grid of (λq+1n∗)2-many open squares contained in Fe3 , evenly centered around a grid of
(λq+1n∗)2-many points Gλq+1

which contains the origin. By Proposition 4.3, for each choice of k = (k1, k2) ∈
{0, . . . , r−1

2 − 1}2, the support of the shifted pipe Wk
λq+1,r2,e3

intersects Fe3 in a 2π
4λq+1n∗

-neighborhood of a

finite subcollection of grid points from Gλq+1
, which we call Gkλq+1

, and which by construction is T3

λq+1r2n∗
-

periodic. Furthermore, two subcollections for k ̸= k′ contain no grid points in common. Let Skλq+1
be the

set of open squares centered around grid points in Gkλq+1
, so that Skλq+1

and Sk′λq+1
are disjoint if k ̸= k′. To

prove (4.36), we will identify a shift k0 such that the set of squares Sk0λq+1
has empty intersection with Spn for

all n. Then by Proposition 4.3, we have that the pipe flow Wk0
λq+1,r2,e3

intersects Fe3 inside of Sk0λq+1
, and so

we will have verified (4.36).
In order to identify a suitable shift k0 such that Sk0λq+1

has empty intersection with Spn, we first present
a generous cover for Spn; see Figure 10. Let x1 ∈ Apn be arbitrary. Set sx1 ∈ Sλq+1 to be the grid square
of sidelength 2π

λq+1n∗
containing x1,

25 and let Sx1,9 be the 3 × 3 cluster of squares surrounding sx1 . Then

either x1 is within distance 2π
λq+1n∗

of an endpoint of Apn, or the length of Apn ∩ Sx1,9 is at least 2π
n∗λq+1

. If

possible, choose x2 ∈ Apn so that Sx2,9 is disjoint from Sx1,9, and iteratively continue choosing xi ∈ Apn with
Sxi,9 disjoint from Sxj ,9 with 1 ≤ j ≤ i − 1. Due to aforementioned observation about the lower bound on
the length of Apn in each Sxi,9, after a finite number of steps, which we denote by in, one cannot choose
xin+1

∈ Apn so that Sxin+1
,9 is disjoint from previous clusters; see Figure 10. By the length constraint on Apn

and the observations on the length of Apn ∩ Sxi,9 for each i, we obtain the bound

32(λq+1r1)
−1 ≥ |Apn| ≥ (in − 2)2π (n∗λq+1)

−1

which implies that in may be bounded from above as

in ≤ 32r−1
1 n∗
2π

+ 2 ≤ 6n∗r
−1
1 + 2 ≤ 8n∗r

−1
1 (4.37)

since r−1
1 ≥ 1. By the definition of in, any point x ∈ Apn which does not belong to any of the clusters

{Sxi,9}ini=1, must be such that Sx,9 has non-empty intersection with Sxj ,9 for some j ≤ in. Thus, if we denote
by Sxj ,81 be the cluster of 9×9 grid squares centered at xj , it follows that x belongs to Sxj ,81, and thus Apn ⊂
∪i≤inSxi,81. Furthermore, since it was observed earlier that Spn is contained inside a 2π(1+Γ−1

q+1) (4n∗λq+1)
−1

-
neighborhood of Apn, we have in addition that

Spn ⊂
in⋃
i=1

Sxi,81.

24Technically, the proof still applies if Ap
n is self-intersecting, but the conclusions of Lemma 4.7 eliminate this possibility, so

we shall ignore this issue and use the word “smooth”.
25If x1 is on the boundary of more than one square, any choice of sx1 will work.
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The diameter of the projection of ⌦ onto Fe3
is  16(�q+1r1)

�1

2⇡(�q+1n⇤)�1

2⇡(�q+1r2n⇤)�1
Sample point in G�q+1

Sample grid cell in S�q+1

xi sxi Sxi,9Sp
n

Ap
n

2

Figure 10: The boundary of the projection of Ω onto the face Fe3 is represented by the black oval. The blue grid
cells represent the elements of Sλq+1 , while the center points are the elements of Gλq+1 . A projected pipe Sp

n with
axis Ap

n is represented in shades of green. A point xi ∈ Ap
n, its associated grid cell sxi , and its 3× 3 cluster Sxi,9 are

represented in pink. The union of the pink clusters, ∪iSxi,9, generously covers Sp
n.

Thus, we have covered Spn using no more than

81in ≤ 81 · 8n∗r−1
1 = 648n∗r

−1
1

grid squares. Set C∗ = 1300n∗. Repeating this argument for every 1 ≤ n ≤ NΩ and taking the union over
n, we have thus covered ∪n≤NΩ

Spn using no more than

1

2
C∗CA · r22r−2

1 · r−1
1 < r−2

2 (4.38)

grid squares of sidelength 2π
λq+1n∗

; the strict inequality in (4.38) follows from the assumption (4.31).

In order to conclude the proof, we appeal to a pigeonhole argument, made possible by the bound (4.38).
Indeed, the left side of (4.38) represents as an upper bound on the number of grid cells in Sλq+1 which are
deemed “occupied” by ∪n≤NΩ

Spn, while the right side of (4.38) represents the number of possible choices for

the shifts k0 ∈ {0, ..., r−1
2 − 1}2 belonging to the 2π

λq+1r2n∗
-periodic subcollection Sk0λq+1

. See Figure 11 for

details. We conclude by (4.38) and the pigeonhole principle that there exists a “free” shift k0 ∈ {0, ..., r−1
2 −

1}2 such that none of the squares in Sk0λq+1
intersect the covering ∪i≤inSxi,81 of ∪n≤NΩS

p
n. Choosing the pipe

flow Wk0
λq+1,r2,e3

, we have proven (4.36), concluding the proof of the lemma when ξ = e3.

To prove the Proposition when ξ ̸= e3, first consider the portion26 of Ω ⊂ R3 restricted to the cube
[−π, π]3, denoted Ω|[−π,π]3 , and consider similarly Sn|[−π,π]3 and An|[−π,π]3 . Let 3T3

ξ be the 3× 3× 3 cluster

of periodic cells for T3
ξ centered at the origin. Then [−π, π]3 is contained in this cluster, and in particular

[−π, π]3 has empty intersection with the boundary of 3T3
ξ (understood as the boundary of the 3T3

ξ-periodic

cell centered at the origin when simply viewed as a subset of R3). Thus Ω|[0,2π]3 , Sn|[−π,π]3 , and An|[−π,π]3
26Recall that Ω is a T3-periodic set but can be considered as a subset of R3, cf. Definition 4.2.
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Sp
n

 16(�q+1r1)
�1

2⇡(�q+1n⇤)�1

2⇡(�q+1r2n⇤)�1

In this periodic cell of sidelength 2⇡(�q+1r2n⇤)�1, we check which grid cells are still available.
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3
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3

9

9

9
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15
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21
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27

27

33

33

4

4

4

4

10

10

10
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16

16

16

16

22

22

22

28

28

28

34

34

34

5

5

5

11

11

11

17

17

17

17

23

23

23

23

29

29

29

29

35

35

35

6

6

6

12

18

18

24

24

30

30

30

30

36

36

36

3Figure 11: We revisit Figure 10. The union of the pink clusters Sxi,9 covers Sp
n. We would like to determine which

set Sk0
λq+1

of 2π
λq+1r2n∗

-periodic grid cells is free (we index these cells by the shift parameter k0), so that we can place

a 2π
λq+1r2n∗

-periodic pipe flow Wk0
λq+1,r2,e3

at the centers of the cells. This pipe flow then will not intersect the cells

taken up by the union of the pink clusters ∪iSxi,9. Towards this purpose, consider one of the red periodic cells of
sidelength 2π

λq+1r2n∗
; e.g. bottom row, second from left. This cell contains r22-many blue cells of sidelength 2π

λq+1n∗
,

which in the figure we index by an integer k ∈ {1, . . . , 36} (that is, r2 = 6). In order to determine which of these
blue cells are “free,” we verify for every k whether a periodic copy of the k-cell lies in union of the pink clusters
∪iSxi,9; if yes, we label this index k in black, and we also label with the same number the cell in ∪iSxi,9 where this
cell appears. For instance, the cell with label 9 appears three times within the union of the pink cluster; the cell with
label 3 appears twice; while the cell with label 36 appears just once. In the above figure we discover that there are
only three “free” blue cells, corresponding to the red indices 7, 12, and 20. Any of these indices indicates a location
where we may place a new pipe flow Wk0

λq+1,r2,e3
; in the figure we have chosen k0 to correspond to the label 7, and

have represented by a 2π
λq+1r2n∗

-periodic array of purple circles the intersections of the pipes in Wk0
λq+1,r2,e3

with Fe3 .

also have empty intersection with the boundary of 3T3
ξ and may be viewed as 3T3

ξ-periodic sets. Up to a

dilation which replaces 3T3
ξ with T3

ξ , we have exactly satisfied the assumptions of the proposition, but with

T3-periodicity replaced by T3
ξ-periodicity. This dilation will shrink everything by a factor of 3, which we may

compensate for by choosing a pipe flow W3λq+1,r2,ξ, and then undoing the dilation at the end. Any constants
related to this dilation are q-independent and may be absorbed into the geometric constant C∗ at the end
of the proof. At this point we may then redo the proof of the proposition with minimal adjustments. In
particular, we replace the projection of Sn and An onto the face Fe3 of the box T3 with the projection of the
restricted and dilated versions of Sn and An onto the face Fξ of the box T3

ξ . We similarly replace the grids
and squares on Fe3 with grids and squares on Fξ, exactly analogous to (4.3). The covering argument then

proceeds exactly as before. The proof produces pipes belonging to the intermittent pipe flow Wk0
3λq+1,r2,ξ

which are T3

3λq+1n∗r2
-periodic and disjoint from the dilated and restricted versions of the Sn’s. Undoing the

dilation, we find that Wk0
λq+1,r2,ξ

is T3

λq+1r2
-periodic and disjoint from each Sn. Then all the conclusions of

Proposition 4.8 have been achieved, finishing the proof.
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5 Mollification

Because the principal inductive assumptions for the velocity increments (3.13) and the Reynolds stress (3.15)
are only assumed to hold for a limited number of space and material derivatives (≤ 7Nind,v and ≤ 3Nind,v

respectively), and because in our proof we need to appeal to derivative bounds of much higher orders,
it is customary to employ a mollification step prior to adding the convex integration perturbation. This
mollification step is discussed in Lemma 5.1. Note that the mollification step is only employed once (for
every inductive step q 7→ q + 1), and is not repeated for the higher order stresses Rq,n,p. In particular,
Lemma 5.1 already shows that the inductive assumption (3.12) holds for q′ = q.

Lemma 5.1 (Mollifying the Euler-Reynolds system). Let (vq, R̊q) solve the Euler-Reynolds system

(3.1), and assume that ψi,q′ , uq′ for q
′ < q, wq, and R̊q satisfy (3.12)–(3.25b). Then, we mollify (vq, R̊q) at

spatial scale λ̃−1
q and temporal scale τ̃q−1 (cf. the notation in (9.64)), and accordingly define

vℓq := Pq,x,tvq and R̊ℓq := Pq,x,tR̊q . (5.1)

The mollified pair (vℓq , R̊ℓq ) satisfy

∂tvℓq + div (vℓq ⊗ vℓq ) +∇pℓq = div R̊ℓq + div R̊comm
q , (5.2a)

div vℓq = 0 . (5.2b)

The commutator stress R̊comm
q satisfies the estimate (consistent with (3.15) at level q + 1)∥∥∥DnDm
t,qR̊

comm
q

∥∥∥
L∞

≤ Γ−1
q+1Γ

−CR
q+1 δq+2λ

n
q+1M

(
m,Nind,t, τ

−1
q ,Γ−1

q τ̃−1
q

)
(5.3)

for all n,m ≤ 3Nind,v, and the we have that∥∥DnDm
t,q−1(vℓq − vq)

∥∥
L∞ ≤ λ−2

q δ
1/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1Γ

i−1
q , τ̃−1

q−1Γ
−1
q

)
(5.4)

for all n,m ≤ 3Nind,v. Furthermore,
uq = vℓq − vℓq−1

satisfies the bound (3.12) with q′ replaced by q, namely∥∥ψi,q−1D
nDm

t,q−1uq
∥∥
L2 ≤ δ

1/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t,Γ

i
qτ

−1
q−1, τ̃

−1
q−1

)
. (5.5)

for all n+m ≤ 2Nfin. In fact, when either n ≥ 3Nind,v or m ≥ 3Nind,v are such that n+m ≤ 2Nfin, then the
above estimate holds uniformly∥∥DnDm

t,q−1uq
∥∥
L∞ ≤ Γ−1

q δ
1/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1, τ̃

−1
q−1

)
. (5.6)

Finally, R̊ℓq satisfies bounds which extend (3.15) to∥∥∥ψi,q−1D
nDm

t,q−1R̊ℓq

∥∥∥
L1

≲ Γ−CR
q δq+1M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t,Γ

i+2
q τ−1

q−1, τ̃
−1
q−1

)
(5.7)

for all n+m ≤ 2Nfin. In fact, the above estimate holds uniformly∥∥∥DnDm
t,q−1R̊ℓq

∥∥∥
L∞

≲ Γ−1
q Γ−CR

q δq+1M
(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1, τ̃

−1
q−1

)
(5.8)

whenever either n ≥ 3Nind,v or m ≥ 3Nind,v are such that n+m ≤ 2Nfin.

Remark 5.2 (L∞ estimates on the support of ψi,q−1). The bounds (5.6) and (5.8) provide L∞ estimates

for DnDm
t,q−1 applied to uq and respectively R̊ℓq , but only when either n or m are sufficiently large. In the
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remaining cases, we note that (5.5), combined with the partition of unity property (3.16), and the inductive
assumption (3.19) (with M = 0, and K = 4), implies the bound∥∥DnDm

t,q−1uq
∥∥
L∞(suppψi,q−1)

≲ δ
1/2
q λ̃

3/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1Γ

i+1
q , τ̃−1

q−1

)
(5.9)

for all n,m ≤ 3Nind,v. Indeed, we may apply Lemma A.3 (estimate (A.18b)) with ψi = ψi,q−1, f = uq,

Cf = δ
1/2
q , ρ = λq−1Γq−1 ≤ λq (cf. (9.38)), λ = λq, λ̃ = λ̃q, µi = τ−1

q Γiq, µ̃i = τ̃−1
q−1, Nx = 2Nind,v,

Nt = Nind,t, and N◦ = 2Nfin, to conclude that (5.9) holds for all n +m ≤ 2Nfin − 2, and in particular for
n,m ≤ 3Nind,v.

A similar argument, shows that estimate (5.7) and Lemma A.3 imply∥∥∥DnDm
t,q−1R̊ℓq

∥∥∥
L∞(suppψi,q−1)

≲ Γ−CR
q δq+1λ̃

3
qM

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t,Γ

i+3
q τ−1

q−1, τ̃
−1
q−1

)
(5.10)

for n+m ≤ 2Nfin − 4, and in particular for n,m ≤ 3Nind,v.

Proof of Lemma 5.1. The bound (5.3) requires a different proof than (5.5) and (5.7), so that we start with
the former.

Proof of (5.3). Recall that

R̊comm
q = Pq,x,tvq⊗̊Pq,x,tvq − Pq,x,t(vq⊗̊vq) . (5.11)

We note cf. (9.64) that Pq,x,t mollifies in space at length scale λ̃q, and in time at time scale τ̃−1
q−1. Let

us denote by Kq the space-time mollification kernel for Pq,x,t, which thus equals the product of the bump

functions ϕ
(x)

λ̃q
ϕ
(t)

τ̃−1
q−1

. For brevity of notation, (locally in this proof) it is convenient to denote space-time

points as (x, t), (y, s), (z, r) ∈ T3 × R

(x, t) = θ, (y, s) = κ, (z, r) = ζ. (5.12)

Using this notation we may write out the commutator stress R̊comm
q explicitly, and symmetrizing the resulting

expression leads to the formula

R̊comm
q (θ) =

−1

2

ˆˆ
(T3×R)2

(vq(θ − κ)− vq(θ − ζ)) ⊗̊ (vq(θ − κ)− vq(θ − ζ))Kq(κ)Kq(ζ) dκ dζ . (5.13)

Expanding vq in a Taylor series in space and time around θ yields the formula

vq(θ − κ) = vq(θ) +

Nc−1∑
|α|+m=1

1

α!m!
Dα∂mt vq(θ)(−κ)(α,m) +RNc

(θ, κ) (5.14)

where the remainder term with Nc derivatives is given by

RNc
(θ, κ) =

∑
|α|+m=Nc

Nc

α!m!
(−κ)(α,m)

ˆ 1

0

(1− η)Nc−1Dα∂mt vq(θ − ηκ) dη. (5.15)

The value of Nc will be chosen later so that Nind,t ≪ Nc = Nind,v − 2, more precisely, such that conditions
(5.24) and (9.50a) hold.

Using that by (9.62) all moments of Kq vanish up to order Nc, we rewrite (5.13) as

R̊comm
q (θ) =

ˆ
T3×R

Nc−1∑
|α|+m=1

(−κ)(α,m)

α!m!
Dα∂mt vq(θ) ⊗̊sRNc

(θ, κ)Kq(κ) dκ

−
ˆ
T3×R

RNc(θ, κ)⊗̊RNc(θ, κ)Kq(κ) dκ
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−
ˆˆ

(T3×R)2
RNc

(θ, κ)⊗̊symRNc
(θ, ζ)Kq(κ)Kq(ζ) dκ dζ

=: R̊comm
q,1 (θ) + R̊comm

q,2 (θ) + R̊comm
q,3 (θ) , (5.16)

where we have used the notation (9.66).
In order to prove (5.3), we first show that every term in DnDm

t,qR̊
comm
q can be decomposed into products

of pure space and time differential operators applied to products of vℓq and vq. More generally, for any
sufficiently smooth function F = F (x, t) and for any n,m ≥ 0, the Leibniz rule implies that

DnDm
t,qF = Dn(∂t + vℓq · ∇x)

mF =
∑
m′≤m

n′+m′≤n+m

dn,m,n′,m′(x, t)Dn′
∂m

′

t F (5.17a)

dn,m,n′,m′(x, t) =

m−m′∑
k=0

∑
{γ∈Nk : |γ|=n−n′+k,

β∈Nk : |β|=m−m′−k}

c(m,n, k, γ, β)

k∏
ℓ=1

(
Dγℓ∂βℓ

t vℓq (x, t)
)

(5.17b)

where c(m,n, k, γ, β) denotes an explicitly computable combinatorial coefficient which depends only on the
factors inside the parenthesis, and are in particular independent of q (which is why we do not carefully
track these coefficients). Identity (5.17a)–(5.17b) holds because D and ∂t commute; the proof is based on
induction on n and m. Clearly, if Dt,q in (5.17a) is replaced by Dt,q−1, then the same formula holds, with
the vℓq factors in (5.17b) being replaced by vℓq−1

.

In order to prove (5.3) we consider (5.17a)–(5.17b) for n,m ≤ 3Nind,v and with F = R̊comm
q . In order

to estimate the factors dn,m,n′,m′ in (5.17b), we need to bound Dn∂mt vq for n ≤ 6Nind,v + Nc and m ≤
3Nind,v + Nc, with n +m ≤ 6Nind,v + Nc. Recall that vq = wq + vℓq−1 and thus we will obtain the needed
estimate from bounds on Dn∂mt wq and Dn∂mt vℓq−1

. We start with the latter.
We recall that vℓq−1

= wq−1 + vℓq−2
. Using (3.16) with q′ = q − 2 and the inductive assumption (3.13)

with q replaced with q−1, we obtain from Sobolev interpolation that ∥wq−1∥L∞ ≲ ∥wq−1∥
1/4
L2

∥∥D2wq−1

∥∥3/4

L2 ≲

δ
1/2
q−1λ

3/2
q−1. Additionally, combining (3.24) with q′ = q− 2 and (3.18) with q′ = q− 2, we obtain

∥∥vℓq−2

∥∥
L∞ ≲

λ2q−2Γ
imax+1
q−1 δ

1/2
q−1 ≲ λ4q−2δ

1/2
q−1. Jointly, these two estimate imply

∥vq−1∥L∞ ≲ ∥wq−1∥L∞ +
∥∥vℓq−2

∥∥
L∞ ≲ δ

1/2
q−1λ

4
q−1 .

Now, using that vℓq−1 = Pq−1,x,tvq−1, and that the mollifier operator Pq−1,x,t localizes at scale λ̃q−1 in space

and τ̃−1
q−2 in time, we deduce the global estimate∥∥Dn∂mt vℓq−1

∥∥
L∞ ≲ (λ4q−1δ

1/2
q−1)λ̃

n
q−1τ̃

−m
q−2 (5.18)

for n+m ≤ 2Nfin. Note that from the definitions (9.19) and (9.20), it is immediate that τ̃−1
q−2 ≪ Γ−1

q τ̃−1
q−1.

As mentioned earlier, the bound for the space-time derivatives of vℓq−1
needs to be combined with similar

estimates for wq in order to yield a control of vq. For this purpose, we appeal to the Sobolev embedding
H2 ⊂ L∞ and the bound (3.13) (in which we take a supremum over 0 ≤ i ≤ imax and use (9.43)) to deduce∥∥DnDm

t,q−1wq
∥∥
L∞ ≲

∥∥DnDm
t,q−1wq

∥∥
H2 ≲ (δ

1/2
q λ2q)λ

n
q (τ̃

−1
q−1Γ

−1
q )m (5.19)

for all n ≤ 7Nind,v − 2 and m ≤ 7Nind,v. Using the above estimate we may apply Lemma A.10 with the
decomposition ∂t = −vℓq−1 · ∇ + Dt,q−1 = A + B, v = −vℓq−1 and f = wq. The conditions (A.40) in
Lemma A.10 holds in view of the inductive estimate (3.24) at level q − 1, with the following choice of

parameters: p = ∞, Ω = T3, Cv = λ4q−1δ
1/2
q−1, Nx = Nind,v − 2, λv = Γq−1λq−1, λ̃v = λ̃q−1, Nt = Nind,t,

µv = λ2q−1τ
−1
q−1, µ̃v = Γ−1

q τ̃−1
q−1, and N∗ = 3Nfin/2. On the other hand, using (5.19) we have that condition

(A.41) holds with the parameters: p = ∞, Ω = T3, Cf = δ
1/2
q λ2q, λf = λ̃f = λq, µf = µ̃f = Γ−1

q τ̃−1
q−1,

and N∗ = 7Nind,v − 2. We deduce from (A.44) and the inequalities λ̃q−1 ≤ λq and λ4q−1δ
1/2
q−1λq ≤ Γ−1

q τ̃−1
q−1

(cf. (9.39), (9.43), and (9.20)), that

∥Dn∂mt wq∥L∞ ≲ (δ
1/2
q λ2q)λ

n
q (τ̃

−1
q−1Γ

−1
q )m (5.20)
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holds for n+m ≤ 7Nind,v − 2.
By combining (5.18) and (5.20) with the definition (3.3) we thus deduce

∥Dn∂mt vq∥L∞ ≲ (λ4q−1δ
1/2
q−1)λ

n
q (τ̃

−1
q−1Γ

−1
q )m (5.21)

for all n +m ≤ 7Nind,v − 2, where we have used that λ4q−1δ
1/2
q−1 ≥ δ

1/2
q λ2q and that τ̃−1

q−2 ≤ Γ−1
q τ̃−1

q−1. By the
definition of vℓq in (5.1) we thus also deduce that∥∥Dn∂mt vℓq

∥∥
L∞ ≲ (λ4q−1δ

1/2
q−1)λ

n
q (τ̃

−1
q−1Γ

−1
q )m (5.22)

for all n +m ≤ 7Nind,v − 2. Note that by the definition of the mollifier operator Pq,x,t, any further space

derivative on vℓq costs a factor of λ̃q, while additional temporal derivatives cost τ̃q−1, up to a 2Nfin total
number of derivatives.

With (5.22) in hand, we may return to (5.17b) and deduce that for n,m ≤ 3Nind,v, we have

∥dn,m,n′,m′∥L∞ ≲
m−m′∑
k=0

λn−n
′+k

q (τ̃−1
q−1Γ

−1
q )m−m′−k(λ4q−1Γqδ

1/2
q−1)

k

≲ λn−n
′

q (τ̃−1
q−1Γ

−1
q )m−m′

. (5.23)

In the last inequality above we have used that λqλ
4
q−1Γqδ

1/2
q−1 ≤ τ̃−1

q−1Γ
−1
q , which is a consequence of

(9.39), (9.43), and (9.20).
Returning to (5.17a) with F = R̊comm

q , we use the expansion in (5.16), the definition (5.15), and the

bound (5.21) to estimate Dn′
∂m

′

t R̊comm
q when n′,m′ ≤ 3Nind,v. Using (5.21) and the choice

Nc = Nind,v − 2 , (5.24)

which is required in order to ensure that n′ +m′ +Nc ≤ 7Nind,v − 2, we first obtain the pointwise estimate∣∣∣Dn′′
∂m

′′

t RNc(θ, κ)
∣∣∣ ≲ (λ4q−1δ

1/2
q−1)

∑
|α|+m1=Nc

∣∣∣κ(α,m1)
∣∣∣λn′′+|α|

q (τ̃−1
q−1Γ

−1
q )m

′′+m1 , (5.25)

where we recall the notation in (5.12). Using (5.25), the Leibniz rule, and the fact that λqΓq ≤ λ̃q, we may
estimate∥∥∥Dn′

∂m
′

t R̊comm
q,2

∥∥∥
L∞

≲ (λ4q−1δ
1/2
q−1)

2
∑
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∑
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q (τ̃−1
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q )m
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2
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∑
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λn
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q (τ̃−1

q−1Γ
−1
q )m

′+m1+m2 λ̃−|α|−|α′|
q τ̃m1+m2

q−1

≲ (λ4q−1δ
1/2
q−1)

2λn
′

q (τ̃−1
q−1Γ

−1
q )m

′
Γ−2Nc
q

whenever n′,m′ ≤ 3Nind,v. It is clear that a very similar argument also gives the bound∥∥∥Dn′
∂m

′

t R̊comm
q,3

∥∥∥
L∞

≲ (λ4q−1δ
1/2
q−1)

2λn
′

q (τ̃−1
q−1Γ

−1
q )m

′
Γ−2Nc
q

for the same range of n′ and m′. Lastly, by combining (5.25), (5.21), and the Leibniz rule, we similarly
deduce∥∥∥Dn′

∂m
′

t R̊comm
q,1

∥∥∥
L∞

≲ (λ4q−1δ
1/2
q−1)

2
Nc−1∑
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∑
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λn
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q (τ̃−1

q−1Γ
−1
q )m
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∣∣∣κ(α+α′,m1+m2)
∣∣∣ |Kq(κ)|dκ
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≲ (λ4q−1δ
1/2
q−1)

2
Nc−1∑

|α|+m1=1

∑
|α′|+m2=Nc

λn
′+|α|+|α′|
q (τ̃−1

q−1Γ
−1
q )m
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≲ (λ4q−1δ
1/2
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2λn
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q (τ̃−1
q−1Γ

−1
q )m

′
Γ−Nc−1
q .

Combining the above three bounds, identity (5.16) yields∥∥∥Dn′
∂m

′

t R̊comm
q

∥∥∥
L∞

≲ (λ4q−1δ
1/2
q−1)

2λn
′

q (τ̃−1
q−1Γ

−1
q )m

′
Γ−Nc−1
q (5.26)

whenever n′,m′ ≤ 3Nind,v.
Lastly, by combining (5.17a) with (5.23) and (5.26) we obtain∥∥∥DnDm

t,qR̊
comm
q

∥∥∥
L∞

≲ (λ4q−1δ
1/2
q−1)

2λnq (τ̃
−1
q−1Γ

−1
q )mΓ−Nc−1

q

for all n,m ≤ 3Nind,v. Therefore, in order to verify (5.3), we need to verify that

(λ4q−1δ
1/2
q−1)

2λnq (τ̃
−1
q−1Γ

−1
q )mΓ−Nc

q ≤ Γ−1
q+1Γ

−CR
q+1 δq+2λ

n
q+1M

(
m,Nind,t, τ

−1
q , τ̃−1

q Γ−1
q

)
for all 0 ≤ n,m ≤ 3Nind,v. Since λq ≤ λq+1, τ̃

−1
q−1 ≤ τ̃−1

q , and τ̃−1
q−1Γ

−1
q ≥ τ−1

q ≥ τ−1
q−1, the above condition is

ensured by the more restrictive condition

λ8q−1Γ
1+CR
q+1

δq−1

δq+2

(
τ̃−1
q−1Γ

−1
q

τ−1
q

)Nind,t

≤ λ8q−1Γ
1+CR
q+1

δq−1

δq+2

(
τ̃−1
q−1

τ−1
q−1

)Nind,t

≤ ΓNc
q = Γ

Nind,v−2
q (5.27)

which holds as soon as Nind,v is chosen sufficiently large with respect to Nind,t; see (9.50a) below. This
completes the proof of (5.3).

Proof of (5.5) and (5.6). Using Hölder’s inequality and the extra factor of Γ−1
q present in (5.6), it is

clear than for all n,m such that (5.6) holds, the estimate (5.5) is also true. The proof is thus split in three
parts: first we consider n,m ≤ 3Nind,v, then we consider m > 3Nind,v, and lastly n > 3Nind,v.

We start with the proof of (5.5). In view of (3.4), we first bound the main term, Pq,x,twq, which we
claim may be estimated as∥∥ψi,q−1D

nDm
t,q−1Pq,x,twq

∥∥
L2 ≤ 1

2
δ
1/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1Γ

i
q, τ̃

−1
q−1

)
. (5.28)

for all n,m ≤ 3Nind,v, and as∥∥DnDm
t,q−1Pq,x,twq

∥∥
L∞ ≤ Γ−2

q δ
1/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1, τ̃

−1
q−1

)
. (5.29)

when n+m ≤ 2Nfin, and either n > 3Nind,v or m > 3Nind,v. By the definition of Pq,x,t in (9.64), in view of
the moment condition (9.62) for the associated mollifier kernel, we have that

Pq,x,twq(θ)− wq(θ)

=
∑

|α|+m′′=Nc

Nc

α!m′′!

ˆˆ
T3×R

Kq(κ)(−κ)(α,m
′′)

ˆ 1

0

(1− η)Nc−1Dα∂m
′′

t wq(θ − ηκ) dηdκ (5.30)

where we have appealed to the notation in (5.12), and Nc = Nind,v− 2. For n,m ≤ 3Nind,v, we appeal to the
identity (5.17a) with F = Pq,x,twq − wq, and with Dt,q replaced by Dt,q−1, to obtain∥∥DnDm

t,q−1(Pq,x,twq − wq)
∥∥
L∞ ≲

∑
m′≤m

n′+m′≤n+m

∥dn,m,n′,m′∥L∞

∥∥∥Dn′
∂m

′
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∥∥∥
L∞

(5.31)
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where

dn,m,n′,m′ =

m−m′∑
k=0

∑
{γ∈Nk : |γ|=n−n′+k,

β∈Nk : |β|=m−m′−k}

c(m,n, k, γ, β)

k∏
ℓ=1

(
Dγℓ∂βℓ

t vℓq−1
(x, t)

)
.

From (5.18), and the parameter inequality λ4q−1δ
1/2
q−1λ̃q−1 ≤ Γ−1

q τ̃−1
q−1 we deduce the bound∥∥∥Dn′′

∂m
′′

t vℓq−1

∥∥∥
L∞

≲ λ̃n
′′−1
q−1 (Γ−1

q τ̃−1
q−1)

m′′+1

for n′′ +m′′ ≤ 2Nfin, and therefore

∥dn,m,n′,m′∥L∞ ≲ λn−n
′

q (τ̃−1
q−1Γ

−1
q )m−m′

. (5.32)

Combining this estimate with the bound (5.20), we deduce that∥∥DnDm
t,q−1(Pq,x,twq − wq)

∥∥
L∞ ≲

∑
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n′+m′≤n+m
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≲
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q )m
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ˆ
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∣∣∣κ(α,m′′)
∣∣∣ |Kq(κ)|dκ

≲ (δ
1/2
q λ2q)
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|α|+m′′=Nc

λn+|α|
q (τ̃−1

q−1Γ
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λ̃−|α|
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q−1

≲ (δ
1/2
q λ2q)λ

n
q (τ̃
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−1
q )mΓ−Nc

q . (5.33)

Next, we claim that the above estimate is consistent with (5.28): for n,m ≤ 3Nind,v we have

(δ
1/2
q λ2q)λ

n
q (τ̃

−1
q−1Γ

−1
q )mΓ−Nc

q ≲ Γ−1
q δ

1/2
q λnqM

(
m,Nind,t, τ

−1
q−1Γ

i−1
q , τ̃−1

q−1Γ
−1
q

)
. (5.34)

Recalling the definition of Nc in (5.24), the above bound is in turn implied by the estimate

Γ3
qλ

2
q

(
τ̃−1
q−1

τ−1
q−1

)Nind,t

≤ Γ
Nind,v
q

which holds since Nind,v ≫ Nind,t; in fact, it is easy to see that the above condition is less stringent than
(5.27). Summarizing (5.33)–(5.34), and appealing to the inductive assumption (3.13), we deduce that∥∥ψi,q−1D

nDm
t,q−1Pq,x,twq

∥∥
L2 ≲

∥∥ψi,q−1D
nDm

t,q−1wq
∥∥
L2 +

∥∥DnDm
t,q−1(Pq,x,twq − wq)

∥∥
L∞

≲ Γ−1
q δ

1/2
q λnqM

(
m,Nind,t, τ
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q−1Γ

i−1
q , τ̃−1

q−1Γ
−1
q

)
(5.35)

for all 0 ≤ n,m ≤ 3Nind,v. The above estimate verifies (5.28).
We next turn to the proof of (5.29). The key observation is that when establishing (5.35), the two

main properties of the mollification kernel Kq(κ) which we have used are: the vanishing of the moments´́
T3×RKq(κ)(−κ)(α,m

′′)dκ = 0 for 1 ≤ |α| + m′′ ≤ Nind,v and the fact that ∥Kq(κ)(−κ)(α,m
′′)∥L1(dκ) ≲

λ̃
−|α|
q τ̃m

′′

q−1 for all |α|+m′′ ≤ Nind,v. We claim that, for any ñ+ m̃ ≤ 2Nfin, the kernel

K(ñ,m̃)
q (y, s) := Dñ

y ∂
m̃
s Kq(y, s)λ̃

−ñ
q τ̃ m̃q−1

satisfies exactly the same two properties. The second property, about the L1 norm, is immediate by scaling
and the above definition, from the properties of the Friedrichs mollifier densities ϕ and ϕ̃ from (9.62).
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Concerning the vanishing moment condition, we note that K
(n,m)
q has in fact more vanishing moments than

Kq, as is easily seen from integration by parts in κ. The upshot of this observation is that in precisely the
same way that (5.35) was proven, we may show that

∥∥∥DnDm
t,q−1D

ñ∂m̃t Pq,x,twq
∥∥∥
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≲
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∥∥∥DnDm
t,q−1(D
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q λnq λ̃

ñ
q (τ̃
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q )m(τ̃−1

q−1)
m̃ (5.36)

for all 0 ≤ n,m ≤ 3Nind,v, and for all 0 ≤ ñ+m̃ ≤ 2Nfin. Here we have used (3.16) and (3.18) with q′ = q−1,
and the parameter inequality τ−1

q−1Γ
imax−1
q ≤ τ−1

q−1λ
2
q−1 ≤ τ̃−1

q−1Γ
−1
q .

Next, consider n+m ≤ 2Nfin such that n ≤ 3Nind,v and m > 3Nind,v. Define m̄ = m−3Nind,v > 0, which
are the number of excess material derivatives not covered by the bound (5.35). We rewrite the term which
we need to estimate in (5.29) as∥∥DnDm

t,q−1Pq,x,twq
∥∥
L∞ =

∥∥∥DnD
3Nind,v

t,q−1 Dm̄
t,q−1Pq,x,twq

∥∥∥
L∞

. (5.37)

Using (5.17a)–(5.17b) we expand Dm̄
t,q−1 into space and time derivatives and apply the Leibniz rule to deduce

Dm̄
t,q−1Pq,x,twq =

∑
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t vℓq−1
(x, t)

)
. (5.38b)

Using the Leibniz rule, the previously established bound (5.36), and the Sobolev embedding H2 ⊂ L∞, we
deduce that∥∥∥DnD

3Nind,v
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. (5.39)

Thus, in order to obtain the desired bound on (5.37), we need to estimate space and material derivatives

DaDb
t,q−1 of the term defined in (5.38b), and in particular for Dγℓ∂βℓ

t vℓq−1
. We may however appeal to

(5.31)–(5.32) with (Pq,x,twq − wq) replaced by Dγℓ∂βℓ
t vℓq−1

, and to the bound (5.18) to deduce that∥∥∥Da′Db′
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where in the last estimate we have used the parameter inequality λ4q−1δ
1/2
q−1λ̃q−1 ≤ Γ−1

q τ̃−1
q−1. Using the above

bound and the definition (5.38b) we deduce that∥∥DaDb
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The above display may be combined with (5.39) and yields∥∥∥DnD
3Nind,v
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where we have recalled that 3Nind,v + m̄ = m. The above estimate has to be compared with the right side
of (5.29), and for this purpose we note that for m̄′ ≤ m̄ = m− 3Nind,v we have

λnq (Γ
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)
where we have used the fact that m− m̄′ ≥ m− m̄ = 3Nind,v. Taking Nind,v ≫ Nind,t such that

λ̃2q(τ̃
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Nind,t ≤ Γ
3Nind,v−2
q , (5.42)

a condition which is satisfied due to (9.50c), it follows from (5.41) that (5.29) holds whenever m > 3Nind,v,
n ≤ 3Nind,v, and m+ n ≤ 2Nfin.

It remains to consider the case n > 3Nind,v, and n+m ≤ 2Nfin. In this case we still use (5.38a)–(5.38b),
but with m̄ replaced by m, and similarly to (5.39), but by appealing to the bounds (5.18) and (5.32) instead
of (5.40), we obtain∥∥DnDm
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To conclude the proof of (5.29) in this case, we note that for n ≥ 3Nind,v the definition (9.19) implies
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)
and this factor is sufficiently small to absorb losses due to bad material derivative estimates. Indeed, we
have that
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by appealing to the condition Nind,v ≫ Nind,t given in (9.50b). This concludes the proof of (5.29) for all
n+m ≤ 2Nfin, if either n or m are larger than 3Nind,v.
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The bounds (5.28)–(5.29) estimate the leading order contribution to uq. According to the decomposi-
tion (3.4), the proofs of (5.5) and (5.6) are completed if we are able to verify that∥∥DnDm

t,q−1(Pq,x,t − Id)vℓq−1

∥∥
L∞ ≤ Γ−2

q δ
1/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1, τ̃

−1
q−1

)
(5.43)

holds for all n+m ≤ 2Nfin.
In order to establish this bound, we appeal to (5.31)–(5.32) and obtain∥∥DnDm

t,q−1(Pq,x,t − Id)vℓq−1

∥∥
L∞ ≲

∑
m′≤m

n′+m′≤n+m

λn−n
′

q (τ̃−1
q−1Γ

−1
q )m−m′

∥∥∥Dn′
∂m

′

t (Pq,x,t − Id)vℓq−1

∥∥∥
L∞

(5.44)

for n,m ≥ 0 such that n+m ≤ 2Nfin. Here we distinguish two cases. If either n > 3Nind,v or m > 3Nind,v,
then we simply appeal to (5.18), use that Pq,x,t commutes with D and ∂t, and obtain from the above display
that∥∥DnDm

t,q−1(Pq,x,t − Id)vℓq−1

∥∥
L∞

≲
∑
m′≤m

n′+m′≤n+m

λn−n
′

q (τ̃−1
q−1Γ

−1
q )m−m′

(λ4q−1δ
1/2
q−1)λ̃

n′

q−1τ̃
−m′

q−2

≲ (λ4q−1δ
1/2
q−1)λ

n
q (τ̃

−1
q−1Γ

−1
q )m

≲ (λ4q−1δ
1/2
q−1)(τq−1τ̃

−1
q−1)

Nind,tΓ
−3Nind,v
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1, τ̃

−1
q−1

)
≲
(
λ4q−1δ

1/2
q−1Γ

2
qδ

−1/2
q (τq−1τ̃

−1
q−1)

Nind,tΓ
−3Nind,v
q

)
Γ−2
q δ

1/2
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1, τ̃

−1
q−1

)
Using that Nind,v ≫ Nind,t, as described in (9.50c), the above estimate then readily implies (5.43).

We are thus left to consider (5.44) for n,m ≤ 3Nind,v. In this case, the bound for the term ∥Dn′
∂m

′

t (Pq,x,t−
Id)vℓq−1∥L∞ present in (5.44) is different. Similarly to (5.30) we use that the kernelKq has vanishing moments
of orders between 1 and Nind,v, and thus we have

Pq,x,tvℓq−1(θ)− vℓq−1(θ)

=
∑

|α|+m′′=Nind,v

Nind,v

α!m′′!

ˆˆ
T3×R

Kq(κ)(−κ)(α,m
′′)

ˆ 1

0

(1− η)Nind,v−1Dα∂m
′′

t vℓq−1
(θ − ηκ) dηdκ . (5.45)

Using (5.18) and (5.45), we may then estimate∥∥∥Dn′
∂m

′

t (Pq,x,t − Id)vℓq−1

∥∥∥
L∞

≲ (λ4q−1δ
1/2
q−1)

∑
|α|+m′′=Nind,v

λ̃−|α|
q τ̃m

′′

q−1λ̃
n′+|α|
q−1 (Γ−1

q τ̃−1
q )m

′+m′′

≲ (λ4q−1δ
1/2
q−1)Γ

−Nind,v
q λn

′

q (Γ−1
q τ̃−1

q )m
′
.

Combining the above display with (5.44) we arrive at∥∥DnDm
t,q−1(Pq,x,t − Id)vℓq−1

∥∥
L∞

≲ (λ4q−1δ
1/2
q−1)Γ

−Nind,v
q λnq (Γ

−1
q τ̃−1

q−1)
m

≲ (λ4q−1δ
1/2
q−1)(τ̃

−1
q−1τq−1)

Nind,tΓ
−Nind,v
q M

(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1, τ̃

−1
q−1

)
. (5.46)

Using that Nind,v ≫ Nind,t, see condition (9.50c), the above estimate concludes the proof of (5.43).
Combining the bounds (5.28), (5.29), and (5.43) concludes the proofs of (5.5) and (5.6).
Proof of (5.4). By (3.3) we have that

vℓq − vq = (Pq,x,t − Id)vq = (Pq,x,t − Id)wq + (Pq,x,t − Id)vℓq−1
.
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From (5.33) and (5.34) we deduce that the first term on the right side of the above display is bounded as∥∥DnDm
t,q−1(Pq,x,t − Id)wq

∥∥
L∞

≲
(
δ
1/2
q Γ2

qλ
2
q(τ̃

−1
q−1τq−1)

Nind,tΓ
−Nind,v
q

)
λnqM

(
m,Nind,t, τ

−1
q−1Γ

i−1
q , τ̃−1

q−1Γ
−1
q

)
,

while the second term is estimated from (5.46) as∥∥DnDm
t,q−1(Pq,x,t − Id)vℓq−1

∥∥
L∞

≲
(
δ
1/2
q−1λ

4
q−1(τ̃

−1
q−1τq−1)

Nind,tΓ
−Nind,v
q

)
M
(
n, 2Nind,v, λq, λ̃q

)
M
(
m,Nind,t, τ

−1
q−1, τ̃

−1
q−1

)
,

for n,m ≤ 3Nind,v. Since Nind,v ≫ Nind,t, see e.g. the parameter inequality (9.50a), the above two displays
directly imply (5.4).

Proof of (5.7) and (5.8). The argument is nearly identical to how the inductive bounds on wq in (3.13)
were shown earlier to imply bounds for Pq,x,twq as in (5.28). The crucial ingredients in this proof were: that
for each material derivative the bound on the mollified function Pq,x,twq is relaxed by a factor of Γq, that

the cost of space derivatives is relaxed from λq to λ̃q when n ≥ Nind,v, and that the available number of
estimates on the un-mollified function wq was much larger than Nind,v (more precisely 7Nind,v). But the same

ingredients are available for the transfer of estimates from R̊q to R̊ℓq = Pq,x,tR̊q. Indeed, the derivatives
available in (3.15) extend significantly past Nind,v (this time up to 3Nind,v), when comparing the desired

bound on R̊ℓq in (5.7) with the available inductive bound in (3.15) we note that the cost of each material
derivative is relaxed by a factor of Γq, and that the cost of each additional space derivative is relaxed from

λq to λ̃q when n is sufficiently large. To avoid redundancy, we omit these details.

6 Cutoffs

This section is dedicated to the construction of the cutoff functions described in Section 2.5, which play the
role of a joint Eulerian-and-Lagrangian Littlewood-Paley frequency decompositon, which in addition keeps
track of the size of objects in physical space. During a first pass at the paper, the reader may skip this
technical section — if the Lemmas 6.8, 6.14, 6.18, 6.21, 6.35, 6.36, 6.38, 6.40, 6.41, and Corollaries 6.27
and 6.33 are taken for granted.

This section is organized as follows. In Section 6.1 we define the velocity cutoff functions ψi,q, recursively
in terms of the previous level (meaning q−1) velocity cutoff functions ψi′,q−1 which are assumed to satisfy the
inductive bounds and properties mentioned in Section 3.2.3. In Section 6.2 we then verify that the velocity
cutoff functions at level q, and the velocity fields uq and vℓq satisfy all the inductive estimates claimed in
Sections 3.2.3 and 3.2.4, for q′ = q. This section is the bulk of Section 6; and it is here that the various
commutators between Eulerian (space and time) derivatives and Lagrangian derivatives cause a plethora of
difficulties.

Remark 6.1 (Inductive assumptions which involve cutoffs and commutators). We note that by
the conclusion of Section 6.2 we have verified all the inductive assumptions from Section 3.2, except for
(3.13)–(3.14) for the new velocity increment wq+1, and (3.15) for the new stress R̊q+1. These three inductive
assumptions will be revisited, broken down, and restated in Section 7 and proven in Section 8.

Next, in Section 6.3 we introduce the temporal cutoffs χi,k,q, indexed by k which are meant to subdivide
the support of the velocity cutoff ψi,q into time slices of width inversely to the local Lipschitz norm of
vℓq . This allows us in Section 6.4 to properly define and estimate the Lagrangian flow maps induced by
the incompressible vector field vℓq , on the support of ψi,qχi,k,q. We next turn to defining the stress cutoff

functions ωi,j,q,n,p, indexed by j, for the stress R̊q,n,p, on the support of ψi,q. Coupling the stress and
velocity cutoffs in this way allows us in Section 6.7 to sharply estimate spatial and material derivatives of
these higher order stresses, but also to estimate the derivatives of the stress cutoffs themselves. At last, we
define in Section 6.8 the checkerboard cutoffs ζq,i,k,n,⃗l, indexed by an address l⃗ = (l, w, h) which identifies a

specific cube of side-length 2π/λq,n,0 within T3. This specific size of the support of ζq,i,k,n,⃗l is important for

ensuring that Oscillation Type 2 errors vanish (see Lemmas 8.11 and 8.12). These cutoff functions are flowed

52



by the backwards Lagrangian flows Φi,k,q defined earlier, explaining their dependence on the indices q, i, k.
Lastly, the cumulative cutoff function ηi,j,k,q,n,p,⃗l is defined in Section 6.9, along with some of its principal
properties. We emphasize that this cumulative cutoff has embedded into it information about the local size
and cost of space/Lagrangian derivatives of both the velocity, the stress, and the Lagrangian maps.

6.1 Definition of the velocity cutoff functions

For all q ≥ 1 and 0 ≤ m ≤ Ncut,t, we construct the following cutoff functions. The proof is contained in
Appendix A.2.

Lemma 6.2. For all q ≥ 1 and 0 ≤ m ≤ Ncut,t, there exist smooth cutoff functions ψ̃m,q, ψm,q : [0,∞) →
[0, 1] which satisfy the following.

(1) The support of ψ̃m,q is precisely the set
[
0,Γ

2(m+1)
q

]
, and furthermore

(a) On the interval
[
0, 14Γ

2(m+1)
q

]
, ψ̃m,q ≡ 1.

(b) On the interval
[
1
4Γ

2(m+1)
q ,Γ

2(m+1)
q

]
, ψ̃m,q decreases from 1 to 0.

(2) The support of ψm,q is precisely the set
[
1
4 ,Γ

2(m+1)
q

]
, and furthermore

(a) On the interval
[
1
4 , 1
]
, ψm,q increases from 0 to 1.

(b) On the interval
[
1, 14Γ

2(m+1)
q

]
, ψm,q ≡ 1.

(c) On the interval
[
1
4Γ

2(m+1)
q ,Γ

2(m+1)
q

]
, ψm,q decreases from 1 to 0.

(3) For all y ≥ 0, a partition of unity is formed as

ψ̃2
m,q(y) +

∑
i≥1

ψ2
m,q

(
Γ−2i(m+1)
q y

)
= 1 (6.1)

(4) ψ̃m,q and ψm,q

(
Γ
−2i(m+1)
q ·

)
satisfy

supp ψ̃m,q(·) ∩ suppψm,q

(
Γ−2i(m+1)
q ·

)
= ∅ if i ≥ 2,

suppψm,q

(
Γ−2i(m+1)
q ·

)
∩ suppψm,q

(
Γ−2i′(m+1)
q ·

)
= ∅ if |i− i′| ≥ 2. (6.2)

(5) For 0 ≤ N ≤ Nfin, when 0 ≤ y < Γ
2(m+1)
q we have

|DN ψ̃m,q(y)|
(ψ̃m,q(y))1−N/Nfin

≲ Γ−2N(m+1)
q . (6.3)

For 1
4 < y < 1 we have

|DNψm,q(y)|
(ψm,q(y))1−N/Nfin

≲ 1, (6.4)

while for 1
4Γ

2(m+1)
q < y < Γ

2(m+1)
q we have

|DNψm,q(y)|
(ψm,q(y))1−N/Nfin

≲ Γ−2N(m+1)
q . (6.5)

In each of the above inequalities, the implicit constants depend on N but not m or q.
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Definition 6.3. Given i, j, q ≥ 0, we define

i∗ = i∗(j, q) = i∗(j) = min{i ≥ 0: Γiq+1 ≥ Γjq}.

In view of the definition (3.10), we see that

i∗(j) =

⌈
j
log(λq)− log(λq−1)

log(λq+1)− log(λq)

⌉
=

j
log
(⌈
ab

q⌉)− log
(⌈
ab

q−1
⌉)

log
(⌈
abq+1

⌉)
− log (⌈abq⌉)

 .
One may check that as q → ∞ or a → ∞, i∗(j) converges to

⌈
j
b

⌉
for any j, and so if a is sufficiently large,

i∗(j) is bounded from above and below independently of q for each j. Note that in particular, for j = 0 we
have that i∗(j) = 0.

At stage q ≥ 1 of the iteration (by convention w0 = u0 = 0) and for m ≤ Ncut,t and jm ≥ 0, we can now
define

h2m,jm,q(x, t) :=

Ncut,x∑
n=0

Γ
−2i∗(jm)
q+1 δ−1

q (λqΓq)
−2n

(
τ−1
q−1Γ

i∗(jm)+2
q+1

)−2m

|DnDm
t,q−1uq(x, t)|2. (6.6)

Definition 6.4 (Intermediate Cutoff Functions). Given q ≥ 1, m ≤ Ncut,t, and jm ≥ 0 we define
ψm,im,jm,q by

ψm,im,jm,q(x, t) = ψm,q+1

(
Γ
−2(im−i∗(jm))(m+1)
q+1 h2m,jm,q(x, t)

)
(6.7)

for im > i∗(jm), while for im = i∗(jm),

ψm,i∗(jm),jm,q(x, t) = ψ̃m,q+1

(
h2m,jm,q(x, t)

)
. (6.8)

The intermediate cutoff functions ψm,im,jm,q are equal to zero for im < i∗(jm).

The indices im and jm will be shown to run up to some maximal values imax and ĩmax to be determined
in the proof (see Lemma 6.14 and (6.27)). With this notation and in view of (6.1) and (6.2), it immediately
follows that ∑

im≥0

ψ2
m,im,jm,q =

∑
im≥i∗(jm)

ψ2
m,im,jm,q =

∑
{im : Γim

q+1≥Γjm
q }

ψ2
m,im,jm,q ≡ 1 (6.9)

for any m and for |im − i′m| ≥ 2,
ψm,im,jm,qψm,i′m,jm,q = 0. (6.10)

Definition 6.5 (mth Velocity Cutoff Function). For q ≥ 1 and im ≥ 027, we inductively define the mth

velocity cutoff function

ψ2
m,im,q =

∑
{jm : im≥i∗(jm)}

ψ2
jm,q−1ψ

2
m,im,jm,q. (6.11)

In order to define the full velocity cutoff function, we use the notation

i⃗ = {im}Ncut,t

m=0 =
(
i0, ..., iNcut,t

)
∈ NNcut,t+1

0 (6.12)

to denote a tuple of non-negative integers of length Ncut,t + 1.

Definition 6.6 (Velocity cutoff function). For 0 ≤ i ≤ imax(q) and q ≥ 0, we inductively define the
velocity cutoff function ψi,q as follows. When q = 0, we let

ψi,0 =

{
1 if i = 0

0 otherwise.
(6.13)

27Later we will show that ψm,im,q ≡ 0 if i ≥ imax
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Then, we inductively on q define

ψ2
i,q =

∑
{⃗
i : max

0≤m≤Ncut,t
im=i

}
Ncut,t∏
m=0

ψ2
m,im,q. (6.14)

for all q ≥ 1.

The sum used to define ψi,q for q ≥ 1 is over all tuples with a maximum entry of i. The number of such
tuples is clearly q-independent once it is demonstrated in Lemma 6.14 that im ≤ imax(q) (which implies
i ≤ imax(q)), and imax(q) is bounded above independently of q.

For notational convenience, given an i⃗ as in the sum of (6.14), we shall denote

supp

Ncut,t∏
m=0

ψm,im,q

 =

Ncut,t⋂
m=0

supp (ψm,im,q) =: supp (ψ⃗i,q) . (6.15)

In particular, we will frequently use that (x, t) ∈ supp (ψi,q) if and only if there exists i⃗ ∈ NNcut,t+1
0 such that

max0≤m≤Ncut,t
im = i, and (x, t) ∈ supp (ψ⃗i,q).

6.2 Properties of the velocity cutoff functions

6.2.1 Partitions of unity

Lemma 6.7 (ψm,im,q - Partition of unity). For all m, we have that∑
im≥0

ψ2
m,im,q ≡ 1 , ψm,im,qψm,i′m,q = 0 for |im − i′m| ≥ 2. (6.16)

Proof of Lemma 6.7. The proof proceeds inductively. When q = 0 there is nothing to prove as ψm,im,q is not
defined. Thus we assume q ≥ 1. From (6.13) for q = 0 and (3.16) for q ≥ 1, we assume that the functions
{ψ2

j,q−1}j≥0 form a partition of unity. To show the first part of (6.16), we may use (6.9) and (6.11) and
reorder the summation to obtain∑

im≥0

ψ2
m,im,q =

∑
im≥0

∑
{jm : i∗(jm)≤im}

ψ2
jm,q−1ψ

2
m,im,jm,q(x, t)

=
∑
jm≥0

ψ2
jm,q−1

∑
{im : im≥i∗(jm)}

ψ2
m,im,jm,q︸ ︷︷ ︸

≡1 by (6.9)

=
∑
jm≥0

ψ2
jm,q−1 ≡ 1.

The last equality follows from the inductive assumption (3.16).
The proof of the second claim is more involved and will be split into cases. Using the definition in (6.11),

we have that

ψm,im,qψm,i′m,q =
∑

{jm:im≥i∗(jm)}

∑
{j′m:i′m≥i∗(j′m)}

ψ2
jm,q−1ψ

2
j′m,q−1ψ

2
m,im,jm,qψ

2
m,i′m,j

′
m,q

.

Recalling the inductive assumption (3.16), we have that the above sum only includes pairs of indices jm and
j′m such that |jm − j′m| ≤ 1. So we may assume that

(x, t) ∈ suppψm,im,jm,q ∩ suppψm,i′m,j′m,q, (6.17)

where |jm − j′m| ≤ 1. The first and simplest case is the case jm = j′m. We then appeal to (6.10) to deduce
that it must be the case that |im − i′m| ≤ 1 in order for (6.17) to be true.

Before moving to the second and third cases, we first show that by symmetry it will suffice to prove
that ψm,im,qψm,i′m,q = 0 when i′m ≤ im − 2. Assuming this has been proven, let im1

, im2
be given with
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|im1 − im2 | ≥ 2. Without loss of generality we may assume that im1 ≥ im2 , which implies that im1 ≥ im2 +2.
Using the assumption and setting im2 = i′m and im1 = im, we deduce that ψm,im1

,qψm,im2
,q = 0. Thus, we

have reduced the proof to showing that ψm,im,qψm,i′m,q = 0 when i′m ≤ im − 2, which we will show next by
contradiction.

Let us consider the second case, j′m = jm + 1. When im = i∗(jm), using that i∗(jm) ≤ i∗(jm + 1), we
obtain

i′m ≤ im − 2 = i∗(jm)− 2 < i∗(jm + 1) = i∗(j
′
m),

and so by Definition 6.4, we have that ψm,i′m,j′m,q = 0. Thus, in this case there is nothing to prove, and we
need to only consider the case im > i∗(jm). From (6.17), points 1 and 2 from Lemma 6.2, and Definition 6.4,
we have that

hm,jm,q(x, t) ∈
[
1

2
Γ
(m+1)(im−i∗(jm))
q+1 ,Γ

(m+1)(im+1−i∗(jm))
q+1

]
, (6.18a)

hm,jm+1,q(x, t) ≤ Γ
(m+1)(i′m+1−i∗(jm+1))
q+1 . (6.18b)

Note that from the definition of hm,jm,q in (6.6), we have that

Γ
(m+1)(i∗(jm+1)−i∗(jm))
q+1 hm,jm+1,q = hm,jm,q.

Then, since i′m ≤ im − 2, from (6.18b) we have that

Γ
−(m+1)(im−i∗(jm))
q+1 hm,jm,q = Γ

−(m+1)(im−i∗(jm))
q+1 hm,jm+1,qΓ

(m+1)(i∗(jm+1)−i∗(jm))
q+1

≤ Γ
−(m+1)(im−i∗(jm))
q+1 Γ

(m+1)(i′m+1−i∗(jm+1))
q+1 Γ

(m+1)(i∗(jm+1)−i∗(jm))
q+1

= Γ
(m+1)(i′m+1−im)
q+1

≤ Γ
−(m+1)
q+1 .

Since m ≥ 0, the above estimate contradicts the lower bound on hm,jm,q in (6.18a) because Γ−1
q+1 ≪ 1/2 for

a sufficiently large.
We move to the third and final case, j′m = jm − 1. As before, if im = i∗(jm), then since i∗(jm) ≤

i∗(jm − 1) + 1, we have that

i′m ≤ im − 2 = i∗(jm)− 2 ≤ i∗(jm − 1)− 1 < i∗(jm − 1) = i∗(j
′
m) ,

which by Definition 6.4 implies that ψm,i′m,j′m,q = 0, and there is nothing to prove. Thus, we only must
consider the case im > i∗(jm). Using the definition (6.6) we have that

hm,jm,q = Γ
(m+1)(i∗(jm−1)−i∗(jm))
q+1 hm,jm−1,q .

On the other hand, for i′m ≤ im − 2 we have from (6.18b) that

hm,jm−1,q ≤ Γ
(m+1)(i′m+1−i∗(jm−1))
q+1 ≤ Γ

(m+1)(im−1−i∗(jm−1))
q+1 .

Therefore, combining the above two displays and the inequality −i∗(jm) ≥ −i∗(jm − 1) − 1, we obtain the
bound

Γ
−(m+1)(im−i∗(jm))
q+1 hm,jm,q ≤ Γ

−(m+1)(im−i∗(jm))
q+1 Γ

(m+1)(i∗(jm−1)−i∗(jm))
q+1 Γ

(m+1)(im−1−i∗(jm−1))
q+1

= Γ
−(m+1)
q+1 ,

As before, since m ≥ 0 this produces a contradiction with the lower bound on hm,jm,q given in (6.18a), since
Γ−1
q+1 ≪ 1/2.

With Lemma 6.7 in hand, we can now verify the inductive assumption (3.16) at level q.
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Lemma 6.8 (ψi,q is a partition of unity). We have that for q ≥ 0,∑
i≥0

ψ2
i,q ≡ 1 , ψi,qψi′,q = 0 for |i− i′| ≥ 2. (6.19)

Proof of Lemma 6.8. When q = 0, both statements are immediate from (6.13). To prove the first claim for
q ≥ 1, let us introduce the notation

Λi =

{⃗
i = (i0, ..., iNcut,t

) : max
0≤m≤Ncut,t

im = i.

}
(6.20)

Then

ψ2
i,q =

∑
i⃗∈Λi

Ncut,t∏
m=0

ψ2
m,im,q,

and thus

∑
i≥0

ψ2
i,q =

∑
i≥0

∑
i⃗∈Λi

Ncut,t∏
m=0

ψ2
m,im,q =

∑
i⃗∈NNcut,t+1

0

Ncut,t∏
m=0

ψ2
m,im,q


=

Ncut,t∏
m=0

∑
im≥0

ψ2
m,im,q

 =

Ncut,t∏
m=0

1 = 1

after using (6.16).
To prove the second claim, assume towards a contradiction that there exists |i − i′| ≥ 2 such that

ψi,qψi′,q ≥ 0. Then

0 ̸= ψ2
i,qψ

2
i′,q =

∑
i⃗∈Λi

∑
i⃗′∈Λi′

Ncut,t∏
m=0

ψ2
m,im,qψ

2
m,i′m,q

. (6.21)

In order for (6.21) to be non-vanishing, by (6.16), there must exist i⃗ = (i0, ..., iNcut,t) ∈ Λi and i⃗′ =
(i′0, ..., i

′
Ncut,t

) ∈ Λi′ such that |im − i′m| ≤ 1 for all 0 ≤ m ≤ Ncut,t. By the definition of i and i′, there
exist m∗ and m′

∗ such that
im∗ = max

m
im = i, i′m′

∗
= max

m
i′m = i′.

But then

i = im∗ ≤ i′m∗
+ 1 ≤ i′m′

∗
+ 1 = i′ + 1

i′ = i′m′
∗
≤ im′

∗
+ 1 ≤ im∗ + 1 = i+ 1,

implying that |i− i′| ≤ 1, a contradiction.

In view of the preceding two lemmas and (6.10), and for convenience of notation, we define

ψi±,q(x, t) =
(
ψ2
i−1,q(x, t) + ψ2

i,q(x, t) + ψ2
i+1,q(x, t)

)1/2
, (6.22)

which are cutoffs with the property that

ψi±,q ≡ 1 on supp (ψi,q). (6.23)

Remark 6.9 (Rewriting ψi,q). The definition (6.14) is not convenient to use directly for estimating ma-
terial derivatives of the ψi,q cutoffs, because differentiating the terms ψm,im,q individually ignores certain
cancellations which arise due to the fact that {ψm,im,q}im≥0 is a partition of unity (as was shown above
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in Lemma 6.7). For this purpose, we re-sum the terms in the definition (6.14) as follows. For any given
0 ≤ m ≤ Ncut,t, we introduce the summed cutoff function

Ψ2
m,i,q =

i∑
im=0

ψ2
m,im,q (6.24)

and note via Lemma 6.7 its chief property:

D(Ψ2
m,i,q) = D(ψ2

m,i,q)1supp (ψm,i+1,q) = D(ψ2
m,i,q)1supp (ψm,i+1,q) . (6.25)

The above inclusion holds because on the support of ψm,im,q with im < i, we have that Ψm,i,q ≡ 1. With
the notation (6.24) we return to the definition (6.14) and note that

ψ2
i,q =

Ncut,t∑
m=0

ψ2
m,i,q

m−1∏
m′=0

Ψ2
m′,i,q

Ncut,t∏
m′′=m+1

(Ψ2
m′′,i,q − ψ2

m′′,i,q)

=

Ncut,t∑
m=0

ψ2
m,i,q

m−1∏
m′=0

Ψ2
m′,i,q

Ncut,t∏
m′′=m+1

Ψ2
m′′,i−1,q . (6.26)

Remark 6.10 (Size of maximal jm in (6.11)). Define j∗(i, q) = max{j : i∗(j) ≤ i} to be the largest index
of jm appearing in the sum in (6.11). We note here that

Γi−1
q+1 < Γj∗(i,q)q ≤ Γiq+1 (6.27)

holds. This fact will be used later on in the proof in conjunction with Lemma 6.14 to bound the maximal
values of jm.

The following lemma is a direct consequence of the definitions of the cutoffs.

Lemma 6.11. If (x, t) ∈ supp (ψm,im,jm,q) then

hm,jm,q ≤ Γ
(m+1)(im+1−i∗(jm))
q+1 . (6.28)

Moreover, if im > i∗(jm) we have

hm,jm,q ≥ (1/2)Γ
(m+1)(im−i∗(jm))
q+1 (6.29)

on the support of ψm,im,jm,q. As a consequence, we have∥∥DNDm
t,q−1uq

∥∥
L∞(suppψm,im,q)

≤ δ
1/2
q Γim+1

q+1 (λqΓq)
N (τ−1

q−1Γ
im+3
q+1 )m (6.30)∥∥DNDM

t,q−1uq
∥∥
L∞(suppψi,q)

≤ δ
1/2
q Γi+1

q+1(λqΓq)
N (τ−1

q−1Γ
i+3
q+1)

M (6.31)

for all 0 ≤ m,M ≤ Ncut,t and 0 ≤ N ≤ Ncut,x.

Proof of Lemma 6.11. Estimates (6.28) and (6.29) follow directly from the definitions of ψ̃m,q+1 and ψm,q+1.
In order to prove (6.30), we note that for (x, t) ∈ supp (ψm,im,q), by (6.11) there must exist a jm with
i∗(jm) ≤ im such that (x, t) ∈ supp (ψm,im,jm,q). Using (6.28), we conclude that∥∥DNDm

t,q−1uq
∥∥
L∞(suppψm,im,jm,q)

≤ Γ
(m+1)(im+1−i∗(jm))
q+1 Γ

i∗(jm)
q+1 (Γqλq)

N (Γ
i∗(jm)+2
q+1 τ−1

q−1)
mδ

1/2
q

= δ
1/2
q Γim+1

q+1 (λqΓq)
N (

τ−1
q−1Γ

im+3
q+1

)m
(6.32)

which completes the proof of (6.30). The proof of (6.31) follows from the fact that we have employed the
maximum over m of im to define ψi,q in (6.6).

An immediate corollary of the bound (5.9) and of the previous Lemma is that estimates for the derivatives
of uq are also available on the support of ψi,q, instead of ψi,q−1.
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Corollary 6.12. For N,M ≤ 3Nind,v, and i ≥ 0, we have the bound∥∥DNDM
t,q−1uq

∥∥
L∞(suppψi,q)

≲ Γi+1
q+1δ

1/2
q M

(
N, 2Nind,v,Γqλq, λ̃q

)
M
(
M,Nind,t,Γ

i+3
q+1τ

−1
q−1, τ̃

−1
q−1

)
. (6.33)

Recall that if either N > 3Nind,v or M > 3Nind,v are such that N + M ≤ 2Nfin, suitable estimates for
DNDM

t,q−1uq are already provided by (5.6).

Proof of Corollary 6.12. When 0 ≤ N ≤ Ncut,x and 0 ≤M ≤ Ncut,t ≤ Nind,t, the desired bound was already
established in (6.31).

For the remaining cases, note that if 0 ≤ m ≤ Ncut,t and (x, t) ∈ suppψm,im,q, there exists jm ≥ 0 with
i∗(jm) ≤ im, such that (x, t) ∈ suppψjm,q−1. Thus, we may appeal to (5.9) and deduce that∣∣DNDM

t,q−1uq
∣∣ ≲ δ

1/2
q λ̃

3/2
q M

(
N, 2Nind,v, λq, λ̃q

)
M
(
M,Nind,t,Γ

jm+1
q τ−1

q−1, τ̃
−1
q−1

)
.

Since i∗(jm) ≤ im implies Γjmq ≤ Γimq+1, we deduce that∥∥DNDM
t,q−1uq

∥∥
L∞(suppψm,im,q)

≲ δ
1/2
q λ̃

3/2
q M

(
N, 2Nind,v, λq, λ̃q

)
M
(
M,Nind,t,Γ

im+1
q+1 τ−1

q−1, τ̃
−1
q−1

)
.

Note that the above estimate does not have a factor of Γim+1
q+1 next to the δ

1/2
q at the amplitude.

We now consider two cases. If Ncut,x < N ≤ 3Nind,v, then

M
(
N, 2Nind,v, λq, λ̃q

)
≲ Γ−Ncut,x

q M
(
N, 2Nind,v,Γqλq, λ̃q

)
.

On the other hand, if Ncut,t < M ≤ 3Nind,v, then

M
(
M,Nind,t,Γ

im+1
q+1 τ−1

q−1, τ̃
−1
q−1

)
≲ Γ

−2Ncut,t

q+1 M
(
M,Nind,t,Γ

im+3
q+1 τ−1

q−1, τ̃
−1
q−1

)
.

Combining the above three displays, and recalling the definition of ψi,q in (6.14), we deduce that if either
N > Ncut,x or M > Ncut,t, we have∥∥DNDM

t,q−1uq
∥∥
L∞(suppψi,q)

≲ δ
1/2
q λ̃

3/2
q max{Γ−Ncut,x

q ,Γ
−2Ncut,t

q+1 }M
(
N, 2Nind,v,Γqλq, λ̃q

)
M
(
M,Nind,t,Γ

i+1
q+1Γ

2
qτ

−1
q−1, τ̃

−1
q−1

)
,

and the proof of (6.33) is completed by taking Ncut,x and Ncut,t sufficiently large to ensure that

λ̃
3/2
q max{Γ−Ncut,x

q ,Γ
−2Ncut,t

q+1 } ≤ 1 . (6.34)

This condition holds by (9.51).

6.2.2 Pure spatial derivatives

In this section we prove that the cutoff functions ψi,q satisfy sharp spatial derivative estimates, which are
consistent with (3.19) for q′ = q.

Lemma 6.13 (Spatial derivatives for the cutoffs). Fix q ≥ 1, 0 ≤ m ≤ Ncut,t, and im ≥ 0. For all
jm ≥ 0 such that im ≥ i∗(jm) and all N ≤ Nfin, we have

1supp (ψjm,q−1)
|DNψm,im,jm,q|
ψ
1−N/Nfin

m,im,jm,q

≲ M
(
N,Nind,v, λqΓq, λ̃qΓq

)
, (6.35)

which in turn implies

|DNψi,q|
ψ
1−N/Nfin

i,q

≲ M
(
N,Nind,v, λqΓq, λ̃qΓq

)
(6.36)

for all i ≥ 0, all N ≤ Nfin.
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Proof of Lemma 6.13. We first show that (5.9) implies (6.35). We distinguish two cases. The first case is

when ψ = ψ̃m,q+1, or ψ = ψm,q+1 and we have the lower bound

h2m,jm,qΓ
−2(im−i∗(jm))(m+1)
q+1 ≥ 1

4
Γ
2(m+1)
q+1 (6.37)

so that (6.5) applies. The goal is then to apply Lemma A.4 to the function ψ = ψ̃m,q+1 or ψ = ψm,q+1

as described above in conjunction with Γψ = Γm+1
q+1 , Γ = Γ

(m+1)(im−i∗(jm))
q+1 , and h(x, t) = (hm,jm,q(x, t))

2.
The assumption (A.21) holds by (6.3) or (6.5) for all N ≤ Nfin, and so we need to obtain bounds on the
derivatives of h2m,jm,q, which are consistent with assumption (A.22) of Lemma A.4. For B ≤ Nfin, the Leibniz
rule gives

∣∣DBh2m,jm,q
∣∣ ≲ (λqΓq)

B
B∑

B′=0

Ncut,x∑
n=0

Γ
−i∗(jm)
q+1 (τ−1

q−1Γ
i∗(jm)+2
q+1 )−m(λqΓq)

−n−B′
δ−

1/2
q |Dn+B′

Dm
t,q−1uq|

× Γ
−i∗(jm)
q+1 (τ−1

q−1Γ
i∗(jm)+2
q+1 )−m(λqΓq)

−n−B+B′
δ−

1/2
q |Dn+B−B′

Dm
t,q−1uq| . (6.38)

For the terms with L ∈ {n + B′, n + B − B′} ≤ Ncut,x we may appeal to appeal to estimate (6.28), which
gives

Γ
−i∗(jm)
q+1 (τ−1

q−1Γ
i∗(jm)+2
q+1 )−m(λqΓq)

−Lδ−
1/2

q

∥∥DLDm
t,q−1uq

∥∥
L∞(suppψm,im,jm,q)

≤ Γ
(m+1)(im+1−i∗(jm))
q+1 . (6.39)

On the other hand, for Ncut,x < L ∈ {n+ B′, n+ B − B′} ≤ Ncut,x + B ≤ 2Nfin − Nind,t, we may appeal to
appeal to estimates (5.6) and (5.9), and since m ≤ Ncut,t < Nind,t, we deduce that

Γ
−i∗(jm)
q+1 (τ−1

q−1Γ
i∗(jm)+2
q+1 )−m(λqΓq)

−Lδ−
1/2

q

∥∥DLDm
t,q−1uq

∥∥
L∞(suppψjm,q−1)

≲ (Γjm+1
q Γ

−i∗(jm)−2
q+1 )m(Γ−L

q λ̃
3/2
q )λ−Lq M

(
L, 2Nind,v, λq, λ̃q

)
≲ M

(
L, 2Nind,v, 1, λ

−1
q λ̃q

)
≤ Γ

(m+1)(im+1−i∗(jm))
q+1 M

(
L, 2Nind,v, 1, λ

−1
q λ̃q

)
. (6.40)

In the last inequality we have used that im ≥ i∗(jm), while in the second to last inequality we have used

that if L ≥ Ncut,x then ΓLq ≥ λ̃
3/2
q , which follows once Ncut,x is chosen to be sufficiently large, as in (9.51).

Summarizing the bounds (6.38)–(6.40), since n ≤ Ncut,x, we arrive at

1supp (ψjm,q−1ψm,im,jm,q)

∣∣DBh2m,jm,q
∣∣

≲ (λqΓq)
BM

(
2Ncut,x +B, 2Nind,v, 1, λ

−1
q λ̃q

)
Γ
2(m+1)(im+1−i∗(jm))
q+1

≲ M
(
B,Nind,v, λqΓq, λ̃qΓq

)
Γ
2(m+1)(im+1−i∗(jm))
q+1 .

whenever B ≤ Nfin. Here we have used that 2Ncut,x ≤ Nind,v. Thus, assumption (A.22) holds with Ch =

Γ
2(m+1)(im+1−i∗(jm))
q+1 , λ = Γqλq, Λ = λ̃qΓq, N∗ = Nind,v. Note that with these choices of parameters, we

have ChΓ
−2
ψ Γ−2 = 1. We may thus apply Lemma A.4 and conclude that

1supp (ψjm,q−1)

∣∣DNψm,im,jm,q
∣∣

ψ
1−N/Nfin

m,im,jm,q

≲ M
(
N,Nind,v, λqΓq, λ̃qΓq

)
for all N ≤ Nfin, proving (6.35) in the first case.

Recalling the inequality (6.37), the second case is when ψ = ψm,q+1 and

h2m,jm,qΓ
−2(im−i∗(jm))(m+1)
q+1 ≤ 1

4
Γ
2(m+1)
q+1 . (6.41)
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However, since ψm,q+1 is uniformly equal to 1 when the left hand side of the above display takes values in[
1, 14Γ

2(m+1)
q+1

]
, (6.35) is trivially satisfied. Thus we may reduce to the case that

h2m,jm,qΓ
−2(im−i∗(jm))(m+1)
q+1 ≤ 1. (6.42)

As in the first case, we aim to apply Lemma A.4 with h = h2m,jm,q, but now with Γψ = 1 and Γ =

Γ
(m+1)(im−i∗(jm))
q+1 . From (6.4), the assumption (A.21) holds. Towards estimating derivatives of h, for the

terms with L ∈ {n+B′, n+B −B′} ≤ Ncut,x, (6.42) gives immediately that

Γ
−i∗(jm)
q+1 (τ−1

q−1Γ
i∗(jm)+2
q+1 )−m(λqΓq)

−Lδ−
1/2

q

∥∥DLDm
t,q−1uq

∥∥
L∞(suppψm,im,jm,q)

≤ Γ
(m+1)(im−i∗(jm))
q+1 . (6.43)

Conversely, when Ncut,x > L, we may argue as in the estimates which gave (6.40), only this time using that
since im ≥ i∗(jm), we can achieve the slightly improved bound28

Γ
(m+1)(im−i∗(jm))
q+1 M

(
L, 2Nind,v, 1, λ

−1
q λ̃q

)
. (6.44)

We then arrive at

1supp (ψjm,q−1ψm,im,jm,q)

∣∣DBh2m,jm,q
∣∣

≲ (λqΓq)
BM

(
2Ncut,x +B, 2Nind,v, 1, λ

−1
q λ̃q

)
Γ
2(m+1)(im−i∗(jm))
q+1

≲ M
(
B,Nind,v, λqΓq, λ̃qΓq

)
Γ
2(m+1)(im−i∗(jm))
q+1 .

whenever B ≤ Nfin, again using that 2Ncut,x ≤ Nind,v. Thus, assumption (A.22) now holds with Ch =

Γ
2(m+1)(im−i∗(jm))
q+1 , λ = Γqλq, Λ = λ̃qΓq, N∗ = Nind,v. Note that with these new choices of parameters, we

still have ChΓ−2
ψ Γ−2 = 1. We may thus apply Lemma A.4 and conclude that

1supp (ψjm,q−1)

∣∣DNψm,im,jm,q
∣∣

ψ
1−N/Nfin

m,im,jm,q

≲ M
(
N,Nind,v, λqΓq, λ̃qΓq

)
for all N ≤ Nfin, proving (6.35) in the second case.

From the definition (6.11), and the bound (6.35) we next estimate derivatives of the mth velocity cutoff
function ψm,im,q, and claim that

|DNψm,im,q|
ψ
1−N/Nfin

m,im,q

≲ M
(
N,Nind,v, λqΓq, λ̃qΓq

)
(6.45)

for all im ≥ 0, all N ≤ Nfin. We prove (6.45) by induction on N . When N = 0 the bound trivially holds,
which gives the induction base. For the induction step, assume that (6.45) holds for all N ′ ≤ N − 1. By the
Leibniz rule we obtain

DN (ψ2
m,im,q) = 2ψm,im,qD

Nψm,im,q +

N−1∑
N ′=1

(
N

N ′

)
DN ′

ψm,im,qD
N−N ′

ψm,im,q (6.46)

and thus

DNψm,im,q

ψ
1−N/Nfin

m,im,q

=
DN (ψ2

m,im,q
)

2ψ
2−N/Nfin

m,im,q

− 1

2

N−1∑
N ′=1

(
N

N ′

)
DN ′

ψm,im,q

ψ
1−N ′/Nfin

m,im,q

DN−N ′
ψm,im,q

ψ
1−(N−N ′)/Nfin

m,im,q

.

Since N ′, N −N ′ ≤ N − 1 by the induction assumption (6.45) we obtain∣∣DNψm,im,q
∣∣

ψ
1−N/Nfin

m,im,q

≲
|DN (ψ2

m,im,q
)|

ψ
2−N/Nfin

m,im,q

+M
(
N,Nind,v, λqΓq, λ̃qΓq

)
. (6.47)

28This bound was also available in (6.40), but we wrote the worse bound there to match the chosen value of Ch.
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Thus, establishing (6.45) for the Nth derivative, reduces to bounding the first term on the right side of the
above. For this purpose we recall (6.11) and compute∣∣DN (ψ2

m,im,q
)
∣∣

ψ
2−N/Nfin

m,im,q

=
1

ψ
2−N/Nfin

m,im,q

∑
{jm : i∗(jm)≤im}

N∑
K=0

(
N

K

)
DK(ψ2

jm,q−1)D
N−K(ψ2

m,im,jm,q)

=
∑

{jm : i∗(jm)≤im}

N∑
K=0

K∑
L1=0

N−K∑
L2=0

(
N

K

)(
K

L1

)(
N −K

L2

)
ψ
2−K/Nfin

jm,q−1 ψ
2−(N−K)/Nfin

m,im,jm,q

ψ
2−N/Nfin

m,im,q

× DL1ψjm,q−1

ψ
1−L1/Nfin

jm,q−1

DK−L1ψjm,q−1

ψ
1−(K−L1)/Nfin

jm,q−1

DL2ψm,im,jm,q

ψ
1−L2/Nfin

m,im,jm,q

DN−K−L2ψm,im,jm,q

ψ
1−(N−K−L2)/Nfin

m,im,jm,q

.

Since K,N −K ≤ N , and ψjm,q−1, ψm,im,j,q ≤ 1 we have by (6.14) that

ψ
2−K/Nfin

jm,q−1 ψ
2−(N−K)/Nfin

m,im,jm,q

ψ
2−N/Nfin

m,im,q

≤
ψ
2−N/Nfin

jm,q−1 ψ
2−N/Nfin

m,im,jm,q

ψ
2−N/Nfin

m,im,q

≤ 1.

Furthermore, the estimate (6.35), the inductive assumption (3.19), combined with the parameter estimate

Γq−1λ̃q−1 ≤ Γqλq (see (9.38)) and the previous three displays, conclude the proof of (6.45). In particular,
note that this upper bound is independent of the value of im.

In order to conclude the proof of the Lemma, we argue that (6.45) implies (6.36). Recalling (6.14), we
have that ψ2

i,q is given as a sum of products of ψ2
m,im,q

, for which suitable derivative bounds are available
(due to (6.45)). Thus, the proof of (6.36) is again done by induction on N , mutatis mutandi to the proof
of (6.45): indeed, we note that ψ2

m,im,q
was also given as a sum of squares of cutoff functions, for which

derivative bounds were available. The proof of the induction step is thus again based on the application of
the Leibniz rule for ψ2

i,q; in order to avoid redundancy we omit these details.

6.2.3 Maximal indices appearing in the cutoff

A consequence of the inductive assumptions, Lemma 6.11, and of Lemma 6.13 above, is that we may a priori
estimate the maximal i appearing in ψi,q, labeled as imax(q).

Lemma 6.14 (Maximal i index in the definition of the cutoff). There exists imax = imax(q) ≥ 0,
determined by the formula (6.53) below, such that

ψi,q ≡ 0 for all i > imax (6.48)

and

Γimax
q+1 ≤ λ

5/3
q (6.49)

holds for all q ≥ 0, where the implicit constant is independent of q. Moreover imax(q) is bounded uniformly
in q as

imax(q) ≤
4

εΓ(b− 1)
, (6.50)

assuming λ0 is sufficiently large.

[Take the below proof as a whole, and copy it]

Proof of Lemma 6.14. Assume i ≥ 0 is such that supp (ψi,q) ̸= ∅. Our goal is to prove that Γiq+1 ≤ λ
5/3
q .

From (6.14) it follows that for any (x, t) ∈ supp (ψi,q), there must exist at least one i⃗ = (i0, . . . , iNcut,t
) such

that max
0≤m≤Ncut,t

im = i, and with ψm,im,q(x, t) ̸= 0 for all 0 ≤ m ≤ Ncut,t. Therefore, in light of (6.11), for each

such m there exists a maximal jm such that i∗(jm) ≤ im, with (x, t) ∈ supp (ψjm,q−1) ∩ supp (ψm,im,jm,q).
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In particular, this holds for any of the indices m such that im = i. For the remainder of the proof, we fix
such an index 0 ≤ m ≤ Ncut,t.

If we have i = im = i∗(jm) = i∗(jm, q), since (x, t) ∈ supp (ψjm,q−1), then by the inductive assumption

(3.18), we have that jm ≤ imax(q − 1). Then, due to (6.27), we have Γi−1
q+1 < Γjmq ≤ Γ

imax(q−1)
q , and thus

Γiq+1 ≤ Γq+1Γ
imax(q−1)
q ≤ Γq+1λ

5/3
q−1 < λ

5/3
q . (6.51)

The last inequality above uses the fact that λ
(b + 1)/2
q ≤ λq+1 since b > 1 and a is taken sufficiently large.

On the other hand, if i = im ≥ i∗(jm) + 1, from (6.29) we have |hm,jm,q(x, t)| ≥ (1/2)Γ
(m+1)(im−i∗(jm))
q+1 ,

and by the pigeonhole principle, there exists 0 ≤ n ≤ Ncut,x with

|DnDm
t,q−1uq(x, t)| ≥

1

2Ncut,x
Γ
(m+1)(im−i∗(jm))
q+1 Γ

i∗(jm)
q+1 δ

1/2
q (λqΓq)

n(τ−1
q−1Γ

i∗(jm)+2
q+1 )m

≥ 1

2Ncut,x
Γimq+1δ

1/2
q λnq (τ

−1
q−1Γ

im+2
q+1 )m,

and we also know that (x, t) ∈ supp (ψjm,q−1). By (5.9), the fact that Ncut,x ≤ 2Nind,v−2, and Ncut,t ≤ Nind,t,
we know that

|DnDm
t,q−1uq(x, t)| ≤Mbδ

1/2
q λnq λ̃

3/2
q (τ−1

q−1Γ
jm+1
q )m

≤Mbδ
1/2
q λnq λ̃

3/2
q (τ−1

q−1Γ
i∗(jm)+1
q+1 )m

≤Mbδ
1/2
q λnq λ̃

3/2
q (τ−1

q−1Γ
im
q+1)

m

for some constant Mb which is the maximal constant appearing in the ≲ symbol of (5.9) with n+m ≤ Nfin.
In particular, Mb is independent of q. The proof is now completed, since the previous two inequalities and
the assumption that im = i ≥ imax(q) + 1 imply that

Γiq+1 ≤ 2Ncut,xMbλ̃
3/2
q ≤ λ

5/3
q . (6.52)

In view of (6.51) and (6.52), the value of imax is chosen as

imax(q) = sup
{
i′ : Γi

′

q+1 ≤ λ
5/3
q

}
. (6.53)

To show that imax(q) <∞, and in particular that it is bounded independently of q, note that

log(λ
5/3
q )

log(Γq+1)
→

5/3

εΓ(b− 1)
,

as q → ∞. This, assuming λ0 is sufficiently large, since (b− 1)εΓ ≤ 1/5, the bound (6.50) holds.

6.2.4 Mixed derivative estimates

Recall from (3.7) the notation Dq = uq · ∇ for the directional derivative in the direction of uq. With this
notation, cf. (3.6) we have Dt,q = Dt,q−1 +Dq. Thus, Dq derivatives are useful for transferring bounds on
Dt,q−1 derivatives to bounds for Dt,q derivatives.

From the Leibniz rule we have that

DK
q =

K∑
j=1

fj,KD
j (6.54)

where

fj,K =
∑

{γ∈NK : |γ|=K−j}
cj,K,γ

K∏
ℓ=1

Dγℓuq (6.55)
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where cj,K,γ are explicitly computable coefficients that depend only on K, j, and γ. Similarly to the co-
efficients in (A.49), the precise value of these constants is not important, since all the indices appearing
throughout the proof are taken to be less than 2Nfin. The decomposition (6.54)–(6.55) will be used fre-
quently in this section.

Remark 6.15. Since throughout the paper the maximal number of spatial or material derivatives is bounded
from above by 2Nfin, which is a number that is independent of q, we have not explicitly stated the formula
for the coefficients ca,k,β in (A.49), as all these constants will be absorbed in a ≲ symbol. We note however
that the proof of Lemma A.13 does yield a recursion relation for the ca,k,β , which may be used if desired to
compute the ca,k,β explicitly.

With the notation in (6.55) we have the following bounds.

Lemma 6.16. For q ≥ 1 and 1 ≤ K ≤ 2Nfin, the functions {fj,K}Kj=1 defined in (6.55) obey the estimate

∥Dafj,K∥L∞(suppψi,q)
≲ (Γi+1

q+1δ
1/2
q )KM

(
a+K − j, 2Nind,v,Γqλq, λ̃q

)
. (6.56)

for any a ≤ 2Nfin −K + j, and any 0 ≤ i ≤ imax(q).

Proof of Lemma 6.16. Note that no material derivative appears in (6.55), and thus to establish (6.56) we
appeal to Corollary 6.12 with M = 0, and to the bound (5.6) with m = 0. From the product rule we obtain
that

∥Dafj∥L∞(suppψi,q)
≲

∑
{γ∈NK : |γ|=K−j}

∑
{α∈Nk : |α|=a}

K∏
ℓ=1

∥∥Dαℓ+γℓuq
∥∥
L∞(suppψi,q)

≲
∑

{γ∈NK : |γ|=K−j}

∑
{α∈Nk : |α|=a}

K∏
ℓ=1

Γi+1
q+1δ

1/2
q M

(
αℓ + γℓ, 2Nind,v,Γqλq, λ̃q

)
≲ (Γi+1

q+1δ
1/2
q )KM

(
a+K − j, 2Nind,v,Γqλq, λ̃q

)
since |γ| = K − j.

Next, we supplement the space-and-material derivative estimates for uq obtained in (5.6) and (6.33), with
derivatives bounds that combine space, directional, and material derivatives.

Lemma 6.17. For q ≥ 1 and 0 ≤ i ≤ imax, we have that∥∥DNDK
q D

M
t,q−1uq

∥∥
L∞(suppψi,q)

≲ (Γi+1
q+1δ

1/2
q )K+1M

(
N +K, 2Nind,v,Γqλq, λ̃q

)
M
(
M,Nind,t,Γ

i+3
q+1τ

−1
q−1, τ̃q−1

)
≲ (Γi+1

q+1δ
1/2
q )M

(
N, 2Nind,v,Γqλq, λ̃q

)
(Γi−c0
q+1 τ

−1
q )KM

(
M,Nind,t,Γ

i+3
q+1τ

−1
q−1, τ̃

−1
q−1

)
holds for 0 ≤ K +N +M ≤ 2Nfin.

Proof of Lemma 6.17. The second estimate in the Lemma follows from the parameter inequality Γ1+c0
q+1 λ̃qδ

1/2
q ≤

τ−1
q , which is a consequence of (9.39). In order to prove the first statement, we let 0 ≤ a ≤ N and 1 ≤ j ≤ K.
From estimate (6.33) and (5.6) we obtain∥∥DN−a+jDM

t,q−1uq
∥∥
L∞(suppψi,q)

≲ (Γi+1
q+1δ

1/2
q )M

(
N − a+ j, 2Nind,v,Γqλq, λ̃q

)
×M

(
M,Nind,t,Γ

i+3
q+1τ

−1
q−1, τ̃

−1
q−1

)
,

which may be combined with (6.54)–(6.55), and the bound (6.56), to obtain that∥∥DNDK
q D

M
t,q−1uq

∥∥
L∞(suppψi,q)
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≲
N∑
a=0

K∑
j=1

∥Dafj,K∥L∞(suppψi,q)

∥∥DN−a+jDM
t,q−1wq

∥∥
L∞(suppψi,q)

≲ (Γi+1
q+1δ

1/2
q )K+1M

(
N +K, 2Nind,v,Γqλq, λ̃q

)
M
(
M,Nind,t,Γ

i+3
q+1τ

−1
q−1, τ̃

−1
q−1

)
holds, concluding the proof of the lemma.

The next Lemma shows that the inductive assumptions (3.22)–(3.25b) hold also for q′ = q.

Lemma 6.18. For q ≥ 1, k ≥ 1, α, β ∈ Nk with |α| = K and |β| =M , we have∥∥∥∥∥(
k∏
i=1

DαiDβi

t,q−1

)
uq

∥∥∥∥∥
L∞(suppψi,q)

≲ (Γi+1
q+1δ

1/2
q )M

(
K, 2Nind,v,Γqλq, λ̃q

)
M
(
M,Nind,t,Γ

i+3
q+1τ

−1
q−1,Γ

−1
q+1τ̃

−1
q

)
(6.57)

for all K +M ≤ 3Nfin/2 + 1. Additionally, for N ≥ 0, the bound∥∥∥∥∥DN
( k∏
i=1

Dαi
q D

βi

t,q−1

)
uq

∥∥∥∥∥
L∞(suppψi,q)

≲ (Γi+1
q+1δ

1/2
q )K+1M

(
N +K, 2Nind,v,Γqλq, λ̃q

)
M
(
M,Nind,t,Γ

i+3
q+1τ

−1
q−1,Γ

−1
q+1τ̃

−1
q

)
(6.58)

≲ (Γi+1
q+1δ

1/2
q )M

(
N, 2Nind,v,Γqλq, λ̃q

)
(Γi−c0
q+1 τ

−1
q )KM

(
M,Nind,t,Γ

i+3
q+1τ

−1
q−1,Γ

−1
q+1τ̃

−1
q

)
(6.59)

holds for all 0 ≤ K +M +N ≤ 3Nfin/2 + 1. Lastly, we have the estimate∥∥∥∥∥(
k∏
i=1

DαiDβi

t,q

)
Dvℓq

∥∥∥∥∥
L∞(suppψi,q)

≲ (Γi+1
q+1δ

1/2
q λ̃q)M

(
K, 2Nind,v,Γqλq, λ̃q

)
M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(6.60)

for all K +M ≤ 3Nfin/2, and∥∥∥∥∥(
k∏
i=1

DαiDβi

t,q

)
vℓq

∥∥∥∥∥
L∞(suppψi,q)

≲ (Γi+1
q+1δ

1/2
q λ2q)M

(
K, 2Nind,v,Γqλq, λ̃q

)
M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(6.61)

for all K +M ≤ 3Nfin/2 + 1.

Remark 6.19. As shown in Remark 3.4, the bound (6.59) and identity (A.39) imply that estimate (3.26)
also holds with q′ = q.

Proof of Lemma 6.18. We note that (6.59) follows directly from (6.58), by appealing to the parameter in-

equality Γ1+c0
q+1 δ

1/2
q λ̃q ≤ τ−1

q , which is a consequence of (9.39). We first show that (6.57) holds, then establish
(6.58), and lastly, prove the bounds (6.60)–(6.61).

Proof of (6.57). The statement is proven by induction on k. For k = 1 the estimate is given by
Corollary 6.12 and the bound (5.6); in fact, for k = 1 we have derivatives estimates up to level 2Nfin, and
not just 3Nfin/2 + 1. For the induction step, assume that (6.57) holds for any k′ ≤ k − 1. We denote

Pk′ =
( k′∏
i=1

DαiDβi

t,q−1

)
uq (6.62)
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and write( k∏
i=1

DαiDβi

t,q−1

)
uq = (DαkDβk

t,q−1)(D
αk−1D

βk−1

t,q−1)Pk−2

= (Dαk+αk−1D
βk+βk−1

t,q−1 )Pk−2 +Dαk

[
Dβk

t,q−1, D
αk−1

]
D
βk−1

t,q−1Pk−2. (6.63)

The first term in (6.63) already obeys the correct bound, since we know that (6.57) holds for k′ = k − 1. In
order to treat the second term on the right side of (6.63), we use Lemma A.12 to write the commutator as

Dαk

[
Dβk

t,q−1, D
αk−1

]
D
βk−1

t,q−1Pk−2

= Dαk

∑
1≤|γ|≤βk

βk!

γ!(βk − |γ|)!

(
αk−1∏
ℓ=1

(adDt,q−1)
γℓ(D)

)
D
βk+βk−1−|γ|
t,q−1 Pk−2. (6.64)

From Lemma A.13 and the Leibniz rule we claim that one may expand

αk−1∏
ℓ=1

(adDt,q−1)
γℓ(D) =

αk−1∑
j=1

gjD
j (6.65)

for some explicit functions gj which obey the estimate

∥Dagj∥L∞(suppψi,q)
≲ λ̃

a+αk−1−j
q−1 M

(
|γ|,Nind,t,Γ

i
q+1Γ

−c0
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
(6.66)

for all a such that a + αk−1 − j + |γ| ≤ 3Nfin/2. The claim (6.66) requires a proof, which we sketch next.
Using the definition (6.11), the inductive estimate (3.23) at level q′ = q − 1 and with k = 1, the parameter
inequality (9.39) at level q − 1, for any 0 ≤ m ≤ Ncut,t we have that∥∥DaDb

t,q−1Dvℓq−1

∥∥
L∞(suppψm,im,q)

≲
∑

{jm : Γjm
q ≤Γim

q+1}

∥∥DaDb
t,q−1Dvℓq−1

∥∥
L∞(suppψjm,q−1)

≲
∑

{jm : Γjm
q ≤Γim

q+1}

(Γjm+1
q δ

1/2
q−1)λ̃

a+1
q−1M

(
b,Nind,t,Γ

jm−c0
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
≲ (Γimq+1Γqδ

1/2
q−1)λ̃

a+1
q−1M

(
b,Nind,t,Γ

im
q+1Γ

−c0
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
≲ λ̃aq−1M

(
b+ 1,Nind,t,Γ

im
q+1Γ

−c0
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
for all a+ b ≤ 3Nfin/2. Thus, from the definition (6.14) we deduce that∥∥DaDb

t,q−1Dvℓq−1

∥∥
L∞(suppψi,q)

≲ λ̃aq−1M
(
b+ 1,Nind,t,Γ

i
q+1Γ

−c0
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
(6.67)

for all a+ b ≤ 3Nfin/2. When combined with the formula (A.49), which allows us to write

(adDt,q−1)
γ(D) = fγ,q−1 · ∇ (6.68)

for an explicit function fγ,q−1 which is defined in terms of vℓq−1
, estimate (6.67) and the Leibniz rule gives

the estimate

∥Dafγ,q−1∥L∞(suppψi,q)
≲ λ̃aq−1M

(
γ,Nind,t,Γ

i
q+1Γ

−c0
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
(6.69)

for all a+ γ ≤ 3Nfin/2. In order to conclude the proof of (6.65)–(6.66), we use (6.68) to write

αk−1∏
ℓ=1

(adDt,q−1)
γℓ(D) =

αk−1∏
ℓ=1

(fγℓ,q−1 · ∇) =

αk−1∑
j=1

gjD
j

66



and now the claimed estimate for gj follows from the previously established bound (6.69) for the fγℓ,q−1’s
and their derivatives, and the Leibniz rule.

With (6.65)–(6.66) in hand, and using estimate (6.57) with k′ = k − 1, we return to (6.64) and obtain∥∥∥Dαk

[
Dβk

t,q−1, D
αk−1

]
D
βk−1

t,q−1Pk−2

∥∥∥
L∞(suppψi,q)

≲
αk−1∑
j=1

∑
1≤|γ|≤βk

∥∥∥Dαk

(
gj D

jD
βk+βk−1−|γ|
t,q−1 Pk−2
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L∞(suppψi,q)

≲
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j=1

∑
1≤|γ|≤βk

αk∑
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L∞(suppψi,q)

∥∥∥Da′+jD
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L∞(suppψi,q)

≲
αk−1∑
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βk∑
|γ|=1

αk∑
a′=0

λαk+αk−1−j−a′
q M

(
|γ|,Nind,t,Γ

i
q+1Γ

−c0
q τ−1

q−1,Γ
−1
q τ̃−1

q−1

)
(Γi+1
q+1δ

1/2
q )

×M
(
K − αk − αk−1 + j + a′, 2Nind,v,Γqλq, λ̃q

)
M
(
M − |γ|,Nind,t,Γ

i+1
q+3τ

−1
q−1,Γ

−1
q+1τ̃

−1
q

)
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q+1δ
1/2
q )M

(
K, 2Nind,v,Γqλq, λ̃q
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M
(
M,Nind,t,Γ
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−1
q+1τ̃
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)
(6.70)

for M ≤ Nind,t and K +M ≤ 3Nfin/2 + 1. The +1 in the range of derivatives is simply a consequence that
the summand in the third line of the above display starts with j ≥ 1 and with |γ| ≥ 1. This concludes the
proof of the inductive step for (6.57).

Proof of (6.58). This estimate follows from Lemma A.10. Indeed, letting v = f = uq, B = Dt,q−1,
Ω = suppψi,q, p = ∞, the previously established bound (6.57) allows us to verify conditions (A.40)–(A.41)

of Lemma A.10 with N∗ = 3Nfin/2+1, Cv = Cf = Γi+1
q+1δ

1/2
q , λv = λf = Γqλq, λ̃v = λ̃f = λ̃q, Nx = 2Nind,v, µv =

µf = Γi+3
q+1τ

−1
q−1, µ̃v = µ̃f = Γ−1

q+1τ̃
−1
q , Nt = Nind,t. As |α| = K and |β| =M , the bound (6.58) now is a direct

consequence of (A.42).
Proof of (6.60) and (6.61). First we consider the bound (6.60), inductively on k. For the case k = 1

the main idea is to appeal to estimate (A.44) in Lemma A.10 with the operators A = Dq, B = Dt,q−1 and
the functions v = uq and f = Dvℓq , so that Dn(A + B)mf = DnDm

t,qDvℓq . As before, the assumption

(A.40) holds due to (6.57) with Ω = suppψi,q, N∗ = 3Nfin/2 + 1, Cv = Γi+1
q+1δ

1/2
q , λv = Γqλq, λ̃v = λ̃q, Nx =

2Nind,v, µv = Γi+3
q+1τ

−1
q−1, µ̃v = Γ−1

q+1τ̃
−1
q , and Nt = Nind,t. Verifying condition (A.41) is this time more

involved, and follows by rewriting f = Dvℓq = Duq +Dvℓq−1 . By using (6.57), and the parameter inequality

Γ3
q+1τ

−1
q−1 ≤ Γ−c0

q+1τ
−1
q (cf. (9.40)), we conveniently obtain∥∥∥∥∥(
k∏
i=1

DαiDβi

t,q−1

)
Duq

∥∥∥∥∥
L∞(suppψi,q)

≲ (Γi+1
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1/2
q λ̃q)M
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q+1 τ
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q ,Γ−1

q+1τ̃
−1
q

)
(6.71)

for all |α|+ |β| = K +M ≤ 3Nfin/2 (note that the maximal number of derivatives is not 3Nfin/2 + 1 anymore,
but instead it is just 3Nfin/2; the reason is that we are estimating Duq and not uq). On the other hand, from
the inductive assumption (3.23) with q′ = q − 1 we obtain that∥∥∥∥∥(

k∏
i=1

DαiDβi

t,q−1

)
Dvℓq−1
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L∞(suppψj,q−1)
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q δ
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M,Nind,t,Γ
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q τ−1

q−1, τ̃
−1
q−1

)
for K +M ≤ 3Nfin/2. Recalling the definitions (6.11)–(6.14) and the notation (6.15), we have that (x, t) ∈
supp (ψi,q) if and only if (x, t) ∈ supp (ψ⃗i,q), and thus for every m ∈ {0, . . . ,Ncut,t}, there exists jm with

Γjmq ≤ Γimq+1 ≤ Γiq+1 and (x, t) ∈ supp (ψjm,q−1). Thus, the above stated estimate and our usual parameter
inequalities imply that∥∥∥∥∥(

k∏
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DαiDβi
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Dvℓq−1

∥∥∥∥∥
L∞(suppψi,q)

≲ (Γi+1
q+1δ

1/2
q−1λ̃q−1)(λ̃q−1)

KM
(
M,Nind,t,Γ

i
q+1Γ

−c0
q τ−1

q−1, τ̃
−1
q−1

)
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≲ (Γi+1
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q λ̃q)(Γqλq)
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)
(6.72)

whenever K +M ≤ 3Nfin/2. Here we have used that δ
1/2
q−1λ̃q−1 ≤ δ

1/2
q λ̃q and that Γiq+1Γ

−c0
q τ−1

q−1 ≤ Γi−c0
q+1 τ

−1
q ≤

Γ−1
q+1τ̃

−1
q , for all i ≤ imax. In the last inequality, we have used (9.20) and (6.49). Combining (6.71) and

(6.72) we may now verify condition (A.41) for f = Dvℓq , with p = ∞, Ω = supp (ψi,q), Cf = Γi+1
q+1δ

1/2
q λ̃q,

λf = Γqλq, λ̃f = λ̃q, Nx = 2Nind,v, µf = Γi−c0
q+1 τ

−1
q , µ̃f = Γ−1

q+1τ̃
−1
q , Nt = Nind,t, and N∗ = 3Nfin/2. We may

thus appeal to (A.44) and obtain that∥∥DKDM
t,qDvℓq

∥∥
L∞(suppψi,q)

≲ (Γi+1
q+1δ

1/2
q λ̃q)M

(
K, 2Nind,v,Γqλq, λ̃q

)
×M

(
M,Nind,t,max{Γi−c0

q+1 τ
−1
q ,Γi+1

q+1δ
1/2
q λ̃q},max{Γ−1

q+1τ̃
−1
q ,Γi+1

q+1δ
1/2
q λ̃q}

)
whenever K+M ≤ 3Nfin/2. The parameter inequalities Γc0+1

q+1 δ
1/2
q λ̃q ≤ τ−1

q from (9.39) and Γi+2
q+1δ

1/2
q λ̃q ≤ τ̃−1

q ,
which follows from (9.43) and (6.49), conclude the proof of (6.60) for k = 1.

In order to prove (6.60) for a general k, we proceed by induction. Assume the estimate holds for every
k′ ≤ k − 1. Proving (6.60) at level k is done in the same way as we have established the induction step (in
k) for (6.57). We let

P̃k′ =

 k′∏
i=1

DαiDβi

t,q

Dvℓq

and decompose(
k∏
i=1

DαiDβi

t,q

)
Dvℓq = (Dαk+αk−1D

βk+βk−1

t,q )P̃k−2 +Dαk

[
Dβk
t,q, D

αk−1

]
D
βk−1

t,q P̃k−2

and note that the first term is directly bounded using the induction assumption (at level k − 1). To bound
the commutator term, similarly to (6.64)–(6.66), we obtain from Lemmas A.12 and A.13 that

Dαk

[
Dβk
t,q, D

αk−1

]
D
βk−1

t,q P̃k−2 = Dαk

∑
1≤|γ|≤βk

βk!

γ!(βk − |γ|)!

αk−1∑
j=1

g̃jD
j

D
βk+βk−1−|γ|
t,q P̃k−2 ,

where one may use the previously established bound (6.60) with k = 1 (instead of (6.67)) to estimate

∥Dag̃j∥L∞(suppψi,q)
≲ M

(
a+ αk−1 − j, 2Nind,v,Γqλq, λ̃q

)
M
(
|γ|,Nind,t,Γ

i−c0
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
. (6.73)

Note that the above estimate is not merely (6.66) with q increased by 1. Rather, the above estimate is
proven in the same way that (6.66) was proven, by first showing that the analogous version of (6.69) is

∥Dafγ,q∥L∞(suppψi,q)
≲ M

(
a, 2Nind,v,Γqλq, λ̃q

)
M
(
γ,Nind,t,Γ

i−c0
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
,

from which the claimed estimate (6.73) on Dag̃j follows. The estimate∥∥∥Dαk

[
Dβk
t,q, D

αk−1

]
D
βk−1

t,q P̃k−2

∥∥∥
L∞(suppψi,q)

≲ (Γi+1
q+1δ

1/2
q )M

(
K + 1, 2Nind,v,Γqλq, λ̃q

)
M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(6.74)

follows similarly to (6.70), from the estimate (6.73) for g̃j , and the bound (6.60) with k − 1 terms in the
product. This concludes the proof of estimate (6.60).

To conclude the proof of the Lemma, we also need to establish the estimates for vℓq claimed in (6.61).
The proof of this bound is nearly identical to that of (6.60), as is readily seen for k = 1: we just need to
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replace Duq estimates with uq estimates, and Dvℓq−1 bounds with vℓq−1 bounds. For instance, instead of

(6.71), we appeal to (6.59) and obtain a bound for DKDM
t,quq which is better than (6.71) by a factor of λ̃q,

and which holds for K +M ≤ 3Nfin/2+1. This estimate is sharper than required by (6.61). The estimate for
DKDM

t,qvℓq−1 is obtained similarly to (6.72), except that instead of appealing to the induction assumption
(3.23) at level q′ = q− 1, we use (3.24) with q′ = q− 1. The Sobolev loss λ2q−1 is then apparent from (3.24),
and the estimates hold for K +M ≤ 3Nfin/2 + 1. These arguments establish (6.61) with k = 1. The case of
general k ≥ 2 is treated inductively exactly as before, because the commutator term is bounded in the same
way as (6.74), except that K + 1 is replaced by K. To avoid redundancy, we omit these details.

6.2.5 Material derivatives

The estimates in the previous sections, which have led up to Lemma 6.18, allow us to estimate mixed space,
directional, and material derivatives of the velocity cutoff functions ψi,q, which in turn allow us to establish
the inductive bounds (3.19) and (3.20) with q′ = q.

In order to achieve this we crucially recall Remark 6.9. Note that if we were to directly differentiate

(6.14), then we would need to consider all vectors i⃗ ∈ NNcut,t+1
0 such that max0≤m≤Ncut,t

im = i, and then

for each one of these i⃗ consider the term 1supp (ψ⃗i,q)
Dt,q−1(ψ

2
m,im,q

) for each 0 ≤ m ≤ Ncut,t; however in this

situation we encounter for instance a term with i0 = 0 and im′ = i for all 1 ≤ m′ ≤ Ncut,t; the bounds
available on this term would be catastrophic due to the mismatch i0 < im′ for all m′ > 0. Identity (6.26)

precisely permits us to avoid this situation, because it has essentially ordered the indices {im}Ncut,t

m=0 to be
non-increasing in m. Indeed inspecting (6.26) and using identity (6.25) and the definitions (6.15), (6.24), we
see that

(x, t) ∈ supp (Dt,q−1ψ
2
i,q) ⇔ ∃⃗i ∈ NNcut,t+1

0 and ∃0 ≤ m ≤ Ncut,t

with im ∈ {i− 1, i} and max
0≤m′≤Ncut,t

im′ = i

such that (x, t) ∈ supp (ψ⃗i,q) ∩ supp (Dt,q−1ψm,im,q)

and im′ ≤ im whenever m < m′ ≤ Ncut,t . (6.75)

The generalization of characterization (6.75) to higher order material derivatives DM
t,q−1 is direct: (x, t) ∈

supp (DM
t,q−1ψ

2
i,q) if and only if there exists i⃗ ∈ NNcut,t+1

0 with maximal index equal to i, such that for every
0 ≤ m ≤ Ncut,t for which (x, t) ∈ supp (ψ⃗i,q) ∩ supp (Dt,q−1ψm,im,q) (there are potentially more than one

such m if M ≥ 2 due to the Leibniz rule), we have im′ ≤ im ∈ {i− 1, i} whenever m < m′. In light of this
characterization, we have the following bounds:

Lemma 6.20. Let q ≥ 1, 0 ≤ i ≤ imax(q), and fix i⃗ ∈ NNcut,t+1
0 such that max0≤m≤Ncut,t

im = i, as in
the right side of (6.75). Fix 0 ≤ m ≤ Ncut,t such that im ∈ {i − 1, i} and such that im′ ≤ im for all
m ≤ m′ ≤ Ncut,t. Lastly, fix jm such that i∗(jm) ≤ im. For N,K,M, k ≥ 0, α, β ∈ Nk such that |α| = K
and |β| =M , we have

1supp (ψ⃗i,q)
1supp (ψjm,q−1)

ψ
1−(K+M)/Nfin

m,im,jm,q

∣∣∣∣∣
(

k∏
l=1

DαlDβl

t,q−1

)
ψm,im,jm,q

∣∣∣∣∣
≲ M

(
K,Nind,v,Γqλq, λ̃qΓq

)
M
(
M,Nind,t − Ncut,x,Γ

i+3
q+1τ

−1
q−1,Γ

−1
q+1τ̃

−1
q

)
(6.76)

for all K such that 0 ≤ K +M ≤ Nfin. Moreover,

1supp (ψ⃗i,q)
1supp (ψjm,q−1)

ψ
1−(N+K+M)/Nfin

m,im,jm,q

∣∣∣∣∣DN

(
k∏
l=1

Dαl
q D

βl

t,q−1

)
ψm,im,jm,q

∣∣∣∣∣
≲ M

(
N,Nind,v,Γqλq, λ̃qΓq

)
(Γi−c0
q+1 τ

−1
q )KM

(
M,Nind,t − Ncut,x,Γ

3
q+1τ

−1
q−1,Γ

−1
q+1τ̃

−1
q

)
(6.77)

holds whenever 0 ≤ N +K +M ≤ Nfin.
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Proof of Lemma 6.20. Note that for M = 0 estimate (6.76) was already established in (6.35). The bound
(6.77) with M = 0, i.e., an estimate for the DNDK

q ψm,im,jm,q, holds by appealing to the expansion (6.54)–
(6.55), the bound (6.56) (which is applicable since in the context of estimate (6.77) we work on the support

of ψi,q), to the bound (6.76) with M = 0, and to the parameter inequality Γ2+c0
q+1 δ

1/2
q λ̃q ≤ τ−1

q (which follows
from (9.39)). The rest of the proof is dedicated to the case M ≥ 1. The proofs are very similar to the proof
of Lemma 6.13, but we additionally need to appeal to bounds and arguments from the proof of Lemma 6.18.

Proof of (6.76). As in the proof of Lemma 6.13, we start with the case k = 1, and estimate
DKDM

t,q−1ψm,im,jm,q for K +M ≤ Nfin, with M ≥ 1. We note that just as D, the operator Dt,q−1 is a
scalar differential operator, and thus the Faá di Bruno argument which was used to bound (6.35) may be re-
peated. As was done there, we recall the definitions (6.7)–(6.8) and split the analysis in two cases, according
to whether (6.37) or (6.42) holds.

Let us first consider the case (6.37). Our goal is to apply Lemma A.5 to the function ψ = ψm,q+1 or ψ =

ψ̃m,q+1, with Γψ = Γm+1
q+1 , Γ = Γ

(m+1)(im−i∗(jm))
q+1 , h(x, t) = h2m,jm,q(x, t), and Dt = Dt,q−1. Estimate (A.24)

holds by (6.3) and (6.5), so that it remains to obtain a bound on the material derivatives of (hm,jm,q(x, t))
2

and establish a bound which corresponds to (A.25) on the set supp (ψ⃗i,q)∩supp (ψjm,q−1ψm,im,jm,q). Similarly

to (6.38), for K ′ +M ′ ≤ Nfin the Leibniz rule and definition (6.6) gives∣∣∣DK′
DM ′

t,q−1h
2
m,jm,q

∣∣∣ ≲ (λqΓq)
K′

(τ−1
q−1Γ

2
q+1)

M ′
Γ
−2(m+1)i∗(jm)
q+1

×
K′∑

K′′=0

M ′∑
M ′′=0

Ncut,x∑
n=0

(τ−1
q−1Γ

2
q+1)

−m−M ′′
(λqΓq)

−n−K′′
δ−

1/2
q |Dn+K′′

Dm+M ′′

t,q−1 uq|

× (τ−1
q−1Γ

2
q+1)

−m−M ′+M ′′
(λqΓq)

−n−K′+K′′
δ−

1/2
q |Dn+K′−K′′

Dm+M ′−M ′′

t,q−1 uq| . (6.78)

By the characterization (6.75), for every (x, t) in the support described on the left side of (6.76) we
have that for every m ≤ R ≤ Ncut,t, there exists iR ≤ im and jR with i∗(jR) ≤ iR, such that (x, t) ∈
suppψjR,q−1ψR,iR,jR,q. As a consequence, for the terms in the sum (6.78) with L ∈ {n+K ′′, n+K ′−K ′′} ≤
Ncut,x and R ∈ {m +M ′′,m +M ′ −M ′′} ≤ Ncut,t, we may appeal to estimate (6.28) which gives a bound
on hR,jR,q, and thus obtain

(τ−1
q−1Γ

2
q+1)

−R(λqΓq)
−Lδ−

1/2
q

∥∥DLDR
t,q−1uq

∥∥
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q+1 Γ
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q+1

≤ Γ
(R+1)(im+1)
q+1 .

On the other hand, if L > Ncut,x, or if R > Ncut,t, then by (5.6) and (5.9) we have that
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q−1Γ

2
q+1)

−R(λqΓq)
−Lδ−

1/2
q

∥∥DLDR
t,q−1uq

∥∥
L∞(suppψjm,q−1)

≤ λ̃
3/2
q Γ−L

q Γ−2R
q+1 M

(
L, 2Nind,v, 1, λ

−1
q λ̃q

)
M
(
R,Nind,t,Γ

jm+1
q , τq−1τ̃

−1
q−1

)
≤ M

(
L, 2Nind,v, 1, λ

−1
q λ̃q

)
M
(
R,Nind,t,Γ

im+1
q+1 , τq−1τ̃

−1
q−1

)
. (6.79)

since Ncut,x and Ncut,t were taken sufficiently large to obey (9.51). Combining (6.78)–(6.79), we may derive
that

1supp (ψ⃗i,q)
1supp (ψjm,q−1)

∣∣∣DK′
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2
m,jm,q
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M ′M
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M
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)
M
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)
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im+3
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′M
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q λ̃q

)
×M

(
M ′,Nind,t − Ncut,t, 1, τq−1Γ

−(im+1)
q+1 τ̃−1

q−1

)
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≲ Γ
2(m+1)(im−i∗(jm)+1)
q+1 M

(
K ′,Nind,v,Γqλq,Γqλ̃q

)
M
(
M ′,Nind,t − Ncut,t, τ

−1
q−1Γ

i+3
q+1,Γ

2
q+1τ̃

−1
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)
≲ Γ

2(m+1)(im−i∗(jm)+1)
q+1 M

(
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M
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M ′,Nind,t − Ncut,t, τ
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−1
q+1τ̃

−1
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)
(6.80)

for all K ′ +M ′ ≤ Nfin. Here we have used that Nind,v ≥ 2Nind,t, that m ≤ Ncut,t, and that im ≤ i. The

upshot of (6.80) is that condition (A.25) in Lemma A.5 is now verified, with Ch = Γ
2(m+1)(im−i∗(jm)+1)
q+1 , and

λ = Γqλq, λ̃ = Γqλ̃q, µ = τ−1
q−1Γ

im+3
q+1 , µ̃ = Γ2

q+1τ̃
−1
q−1, Nx = Nind,v, and Nt = Nind,t − Ncut,t. We obtain from

(A.26) and the fact that (ΓψΓ)
−2Ch = 1 that (6.76) holds when k = 1 for those (x, t) such that hm,jm,q(x, t)

satisfies (6.37). The case when hm,jm,q(x, t) satisfies the bound (6.42) is nearly identical, as was the case in
the proof of Lemma 6.13. The only changes are that now Γψ = 1 (according to (6.4)), and that the constant

Ch which we read from the right side of (6.80) is now improved to Γ
2(m+1)(im−i∗(jm))
q+1 . These two changes

offset each other, resulting in the same exact bound. Thus, we have shown that (6.76) holds when k = 1.
The general case k ≥ 1 in (6.76) is obtained via induction on k, in precisely the same fashion as the proof

of estimate (6.57) in Lemma 6.18. At the heart of the matter lies a commutator bound similar to (6.70),
which is proven in precisely the same way by appealing to the fact that we work on supp (ψ⃗i,q) ⊂ supp (ψi,q),

and thus bound (6.66) is available; in turn, this bound provides sharper space and material estimates than
required in (6.76), completing the proof. In order to avoid redundancy we omit further details.

Proof of (6.77). This estimate follows from Lemma A.10 with v = uq, B = Dt,q−1, f = ψm,im,jm,q, Ω =

supp (ψ⃗i,q)∩supp (ψjm,q−1)∩supp (ψm,im,jm,q), and p = ∞. Technically, the presence of the ψ
−1+(N+K+M)/Nfin

m,im,jm,q

factor on the left side of (6.77) means that the bound doesn’t follow from the statement of Lemma A.10,
but instead, it follows from its proof; the changes to the argument are minor and we ignore this distinction.
First, we note that since Ω ⊂ supp (ψi,q), estimate (6.57) allows us to verify condition (A.40) of Lemma A.10

with N∗ = 3Nfin/2 + 1, Cv = Γi+1
q+1δ

1/2
q , λv = Γqλq, λ̃v = λ̃q, Nx = 2Nind,v ≥ Nind,v, µv = Γi+3

q+1τ
−1
q−1, µ̃v =

Γ−1
q+1τ̃

−1
q , Nt = Nind,t ≥ Nind,t −Ncut,t. On the other hand, condition (A.41) of Lemma A.10 holds in view of

(6.76) with Cf = 1, λf = Γqλq, λ̃f = Γqλ̃q, Nx = Nind,v, µf = Γi+3
q+1τ

−1
q−1, µ̃f = Γ−1

q+1τ̃
−1
q , Nt = Nind,t − Ncut,t.

As |α| = K and |β| = M , the bound (6.77) is now a direct consequence of (A.42) and the parameter

inequality Γi+1
q+1δ

1/2
q Γqλ̃q ≤ Γi−c0

q+1 τ
−1
q ⇐ Γc0+2

q+1 δ
1/2
q λ̃q ≤ τ−1

q , cf. (9.39).

A direct consequence of Lemma 6.20 and identity (6.75) is that the inductive bounds (3.19) and (3.20)
hold for q′ = q, as is shown by the following Lemma.

Lemma 6.21 (Mixed spatial and material derivatives for velocity cutoffs). Let q ≥ 1, 0 ≤ i ≤ imax(q),
N,K,M, k ≥ 0, and let α, β ∈ Nk be such that |α| = K and |β| =M . Then we have

1

ψ
1−(K+M)/Nfin

i,q

∣∣∣∣∣
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)
M
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)
(6.81)

for K +M ≤ Nfin, and

1

ψ
1−(N+K+M)/Nfin
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)
(6.82)

holds for N +K +M ≤ Nfin.

Remark 6.22. As shown in Remark 3.4, the bound (6.82) and identity (A.39) imply that estimate (3.27)
also holds with q′ = q, namely that

1

ψ
1−(N+M)/Nfin

i,q

∣∣DNDM
t,qψi,q

∣∣ ≲ M
(
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)
(6.83)
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for N +M ≤ Nfin. Note that for all M ≥ 0 we have

M
(
M,Nind,t − Ncut,t,Γ
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q ,Γ−1

q+1τ̃
−1
q

)
≤ Γ

−(Nind,t−Ncut,t)
q+1

(
τqΓ

−1
q+1τ̃

−1
q

)Ncut M
(
M,Nind,t,Γ

i−c0+1
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
≤ M

(
M,Nind,t,Γ

i−c0+1
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
once Nind,t is taken to be sufficiently large when compared to Ncut,t to ensure that(

τq τ̃
−1
q

)Ncut ≤ Γ
Nind,t

q+1

for all q ≥ 1. This condition holds in view of (9.52). In summary, we have thus obtained

1

ψ
1−(N+M)/Nfin
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)
(6.84)

for N +M ≤ Nfin.

Proof of Lemma 6.21. Note that for M = 0 estimate (6.81) holds by (6.36). The bound (6.82) holds for
M = 0, due to the expansion (6.54)–(6.55), the bound (6.56) on the support of ψi,q, to the bound (6.82)

with M = 0, and to the parameter inequality Γ2+c0
q+1 δ

1/2
q λ̃q ≤ τ−1

q (cf. (9.39)). The rest of the proof is
dedicated to the case M ≥ 1.

The argument is very similar to the proof of Lemma 6.13 and so we only emphasize the main differences.
We start with the proof of (6.81). We claim that in a the same way that (6.35) was shown to imply (6.45),
one may show that estimate (6.76) implies that for any i⃗ and 0 ≤ m ≤ Ncut,t as on the right side of (6.75)
(in particular, as in Lemma 6.18), we have that

1supp (ψ⃗i,q)

ψ
1−(K+M)/Nfin

m,im,q

∣∣∣∣∣
(

k∏
l=1

DαlDβl

t,q−1

)
ψm,im,q

∣∣∣∣∣
≲ M

(
K,Nind,v,Γqλq, λ̃qΓq

)
M
(
M,Nind,t − Ncut,x,Γ

i+3
q+1τ

−1
q−1,Γ

−1
q+1τ̃

−1
q

)
. (6.85)

The proof of the above estimate is done by induction on k. For k = 1, the first step in establishing (6.85)
is to use the Leibniz rule and induction on the number of material derivatives to reduce the problem to an

estimate for ψ
−2+(K+M)/Nfin

m,im,q
DKDM

t,q−1(ψ
2
m,im,q

); this is achieved in precisely the same way that (6.47) was

proven. The derivatives of ψ2
m,im,q

are now bounded via the Leibniz rule and the definition (6.11). Indeed,

when DK′
DM ′

t,q−1 derivatives fall on ψ2
m,im,jm,q

the required bound is obtained from (6.76), which gives the

same upper bound as the one required by (6.85). On the other hand, if DK−K′
DM−M ′

t,q−1 derivatives fall

on ψ2
jm,q−1, the required estimate is provided by (3.27) with q′ = q − 1 and i replaced by jm; the resulting

estimates are strictly better than what is required by (6.85). This shows that estimate (6.85) holds for k = 1.
We then proceed inductively in k ≥ 1, in the same fashion as the proof of estimate (6.57) in Lemma 6.18; the
corresponding commutator bound is applicable because we work on supp (ψm,im,q)∩ supp (ψi,q). In order to
avoid redundancy we omit these details, and conclude the proof of (6.85).

As in the proof of Lemma 6.13, we are now able to show that (6.81) is a consequence of (6.85). As
before, by induction on the number of material derivatives and the Leibniz rule we reduce the problem to an

estimate for ψ
−2+(K+M)/Nfin

i,q

∏k
l=1D

αlDβl

t,q−1(ψ
2
i,q); see the proof of (6.47) for details. In order to estimate

derivatives of ψ2
i,q, we use identities (6.25) and (6.26), which imply upon applying a differential operator,

say Dt,q−1, that

Dt,q−1(ψ
2
i,q) = Dt,q−1

Ncut,t∑
m=0

m−1∏
m′=0

Ψ2
m′,i,q · ψ2

m,i,q ·
Ncut,t∏

m′′=m+1

Ψ2
m′′,i−1,q
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=

Ncut,t∑
m=0

m−1∑
m̄′=0

Dt,q−1(ψ
2
m̄′,i,q)

∏
0≤m′≤m−1
m′ ̸=m̄′

Ψ2
m′,i,q · ψ2

m,i,q ·
Ncut,t∏

m′′=m+1

Ψ2
m′′,i−1,q

+

Ncut,t∑
m=0

Ncut,t∑
m̄′′=m+1

m−1∏
m′=0

Ψ2
m′,i,q · ψ2

m,i,q ·Dt,q−1(Ψ
2
m̄′′,i−1,q)

∏
m+1≤m′′≤Ncut,t

m′′ ̸=m̄′′

Ψ2
m′′,i−1,q

+

Ncut,t∑
m=0

m−1∏
m′=0

Ψ2
m′,i,q ·Dt,q−1(ψ

2
m,i,q) ·

Ncut,t∏
m′′=m+1

Ψ2
m′′,i−1,q . (6.86)

Higher order material derivatives of ψ2
i,q, and mixtures of space and material derivatives are obtained simi-

larly, by an application of the Leibniz rule. Equality (6.86) in particular justifies why we have only proven
(6.85) for i⃗ and 0 ≤ m ≤ Ncut,t as on the right side of (6.75)! With (6.85) and (6.86) in hand, we now repeat
the argument from the proof of Lemma 6.13 (see the two displays below (6.47)) and conclude that (6.81)
holds.

In order to conclude the proof of the Lemma, it remains to establish (6.82). This bound follows now
directly from (6.81) and an application of Lemma A.10 (to be more precise, we need to use the proof of this
Lemma), in precisely the same way that (6.76) was shown earlier to imply (6.77). As there are no changes
to be made to this argument, we omit these details.

6.2.6 L1 size of the velocity cutoffs

The purpose of this section is to show that the inductive estimate (3.21) holds with q′ = q.

Lemma 6.23 (Support estimate). For all 0 ≤ i ≤ imax(q) we have that

∥ψi,q∥L1 ≲ Γ−2i+Cb
q+1 (6.87)

where Cb is defined in (3.21) and thus depends only on b.

Proof of Lemma 6.23. If i ≤ (Cb − 1)/2 then (6.87) trivially holds because 0 ≤ ψi,q ≤ 1, and |T3| ≤ Γq+1

for all q ≥ 1, once a is chosen to be sufficiently large. Thus, we only need to be concerned with i such that
(Cb + 1)/2 ≤ i ≤ imax(q).

First, we note that Lemma 6.7 imply that the functions Ψm,i′,q defined in (6.24) satisfy 0 ≤ Ψ2
m,i′,q ≤ 1,

and thus (6.26) implies that

∥ψi,q∥L1 ≤
Ncut,t∑
m=0

∥ψm,i,q∥L1 . (6.88)

Next, we let j∗(i) = j∗(i, q) be the maximal index of jm appearing in (6.11). In particular, recalling also
(6.27), we have that

Γi−1
q+1 < Γj∗(i)q ≤ Γiq+1 < Γj∗(i)+1

q . (6.89)

Using (6.11), in which we simply write j instead of jm, the fact that 0 ≤ ψ2
j,q−1, ψ

2
m,i,j,q ≤ 1, and the

inductive assumption (3.21) at level q − 1, we may deduce that

∥ψm,i,q∥L1 ≤
∥∥ψj∗(i),q−1

∥∥
L1 +

∥∥ψj∗(i)−1,q−1

∥∥
L1 +

j∗(i)−2∑
j=0

∥ψj,q−1ψm,i,j,q∥L1

≤ Γ−2j∗(i)+Cb
q + Γ−2j∗(i)+2+Cb

q +

j∗(i)−2∑
j=0

|supp (ψj,q−1ψm,i,j,q)| . (6.90)
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The second term on the right side of (6.90) is estimated using the last inequality in (6.89) as

Γ−2j∗(i)+2+Cb
q ≤ Γ−2i

q+1Γ
4+Cb
q ≤ Γ−2i+Cb−1

q+1 Γ4+Cb−b(Cb−1)
q = Γ−2i+Cb−1

q+1 (6.91)

where in the last equality we have used the definition of Cb in (3.21). Clearly, the first term on the right
side of (6.90) is also bounded by the right side of (6.91). We are left to estimate the terms appearing in the
sum on the right side of (6.90). The key fact is that for any j ≤ j∗(i) − 2 we have that i ≥ i∗(j) + 1; this
can be seen to hold because b < 2. Recalling the definition (6.7) and item 2 of Lemma 6.2, we obtain that
for j ≤ j∗(i)− 2 we have

supp (ψj,q−1ψm,i,j,q) ⊆
{
(x, t) ∈ supp (ψj,q−1) : h

2
m,j,q ≥

1

4
Γ
2(m+1)(i−i∗(j))
q+1

}
⊆
{
(x, t) : ψ2

j±,q−1h
2
m,j,q ≥

1

4
Γ
2(m+1)(i−i∗(j))
q+1

}
. (6.92)

In the second inclusion of (6.92) we have appealed to (6.23) at level q − 1. By Chebyshev’s inequality and
the definition of hm,j,q in (6.6) we deduce that

|supp (ψj,q−1ψm,i,j,q)|

≤ 4Γ
−2(m+1)(i−i∗(j))
q+1

Ncut,x∑
n=0

Γ
−2i∗(j)
q+1 δ−1

q (λqΓq)
−2n

(
τ−1
q−1Γ

i∗(j)+2
q+1

)−2m ∥∥ψj±,q−1D
nDm

t,q−1uq
∥∥2
L2 .

Since in the above display we have that n ≤ Ncut,x ≤ 2Nind,v and m ≤ Ncut,t ≤ Nind,t, we may combine the
above estimate with (5.5) and deduce that

|supp (ψj,q−1ψm,i,j,q)| ≤ 4Γ
−2(m+1)(i−i∗(j))
q+1 Γ

−2i∗(j)
q+1

(
Γj+1
q Γ

−i∗(j)−2
q+1

)2m Ncut,x∑
n=0

Γ−2n
q

≤ 8Γ−2i
q+1

(
Γj+1
q Γ−i−2

q+1

)2m
≤ Γ−2i+Cb−1

q+1 . (6.93)

In the last inequality we have used that Γjq ≤ Γiq+1, that m ≥ 0, and that Cb ≥ 2 (since b ≤ 6).
Combining (6.88), (6.90), (6.91), and (6.93) we deduce that

∥ψi,q∥L1 ≤ Ncut,t j∗(i) Γ
−2i+Cb−1
q+1 .

In order to conclude the proof of the Lemma, we use that Ncut,t is a constant independent of q, and that by
(6.90) and (3.17) we have

j∗(i) ≤ i
log Γq+1

log Γq
≤ imax(q)b ≤

4b

εΓ(b− 1)
.

Thus j∗(i) is also bounded from above by a constant independent of q and upon taking a sufficiently large
we have

Ncut,t j∗(i) Γ
−1
q+1 ≤ 4Ncut,tb

εΓ(b− 1)
Γ−1
q+1 ≤ 1

which concludes the proof.

6.3 Definition of the temporal cutoff functions

Let χ : (−1, 1) → [0, 1] be a C∞ function which induces a partition of unity according to∑
k∈Z

χ2(· − k) ≡ 1. (6.94)
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Consider the translated and rescaled function

χ
(
tτ−1
q Γi−c0+2

q+1 − k
)
,

which is supported in the set of times t satisfying∣∣t− τqΓ
−i+c0−2
q+1 k

∣∣ ≤ τqΓ
−i+c0−2
q+1 ⇐⇒ t ∈

[
(k − 1)τqΓ

−i+c0−2
q+1 , (k + 1)τqΓ

−i+c0−2
q+1

]
. (6.95)

We then define temporal cut-off functions

χi,k,q(t) = χ(i)(t) = χ
(
tτ−1
q Γi−c0+2

q+1 − k
)
. (6.96)

It is then clear that

|∂mt χi,k,q| ≲ (Γi−c0+2
q+1 τ−1

q )m (6.97)

for m ≥ 0 and
χi,k1,q(t)χi,k2,q(t) = 0 (6.98)

for all t ∈ R unless |k1 − k2| ≤ 1. In analogy to ψi±,q, we define

χ(i,k±,q)(t) :=
(
χ2
(i,k−1,q)(t) + χ2

(i,k,q)(t) + χ2
(i,k+1,q)(t)

) 1
2

, (6.99)

which are cutoffs with the property that

χ(i,k±,q) ≡ 1 on supp (χ(i,k,q)). (6.100)

Next, we define the cutoffs χ̃i,k,q by

χ̃i,k,q(t) = χ̃(i)(t) = χ
(
tτ−1
q Γi−c0

q+1 − Γ−c0
q+1k

)
. (6.101)

For comparison with (6.95), we have that χ̃i,k,q is supported in the set of times t satisfying∣∣t− τqΓ
−i+c0
q+1 k

∣∣ ≤ τqΓ
−i+c0
q+1 . (6.102)

As a consequence of these definitions and a sufficiently large choice of λ0, let (i, k) and (i∗, k∗) be such that
suppχi,k,q ∩ suppχi∗,k∗,q ̸= ∅ and i∗ ∈ {i− 1, i, i+ 1}, then

suppχi,k,q ⊂ supp χ̃i∗,k∗,q. (6.103)

Finally, we shall require cutoffs χq,n,p which satisfy the following three properties:

(1) χq,n,p(t) ≡ 1 on supp tR̊q,n,p

(2) χq,n,p(t) = 0 if
∥∥∥R̊q,n,p(·, t′)∥∥∥

L∞(T3)
= 0 for all |t− t′| ≤

(
δ
1/2
q λqΓ

2
q+1

)−1

(3) ∂mt χq,n,p ≲
(
δ
1/2
q λqΓ

2
q+1

)m
For the sake of specificity, recalling (9.63), we may set

χq,n,p = ϕ
(t)(
δ
1/2
q λqΓ2

q+1

) ∗ 1t:∥R̊q,n,p∥
L∞

([
t−(δ1/2q λqΓ2

q+1)
−1

,t+(δ1/2q λqΓ2
q+1)

−1
]
×T3

)>0


. (6.104)

It is then clear that χq,n,p slightly expands and then mollifies the characteristic function of the time support

of R̊q,n,p so that the inductive assumptions (7.12), (7.19), and (7.26) regarding the time support of wq+1,n,p

may be verified.
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6.4 Estimates on flow maps

We can now make estimates regarding the flows of the vector field vℓq on the support of a cutoff function.

Lemma 6.24 (Lagrangian paths don’t jump many supports). Let q ≥ 0 and (x0, t0) be given. Assume
that the index i is such that ψ2

i,q(x0, t0) ≥ κ2, where κ ∈
[

1
16 , 1

]
. Then the forward flow (X(t), t) :=

(X(x0, t0; t), t) of the velocity field vℓq originating at (x0, t0) has the property that ψ2
i,q(X(t), t) ≥ κ2/2 for all

t be such that |t− t0| ≤
(
δ
1/2
q λqΓ

i+3
q+1

)−1

, which by (9.39) and (9.19) is satisfied for |t− t0| ≤ τqΓ
−i+5+c0
q+1 .

Proof of Lemma 6.24. By the mean value theorem in time along the Lagrangian flow (X(t), t) and (6.83),
we have that

|ψi,q(X(t), t)− ψi,q(x0, t0)| ≤ |t− t0| ∥Dt,qψi,q∥L∞

≤ |t− t0| ∥Dt,q−1ψi,q∥L∞ + |t− t0| ∥uq · ∇ψi,q∥L∞ .

From Lemma 6.21, Lemma 6.13, Lemma 6.11, and (9.41), we have that

∥Dt,q−1ψi,q∥L∞ + ∥uq · ∇ψi,q∥L∞ ≲ Γi+3
q+1τ

−1
q−1 + δ

1/2
q Γi+1

q+1λqΓq

≲ δ
1/2
q λqΓ

i+2
q+1,

and hence, under the working assumption on |t− t0| we obtain

|ψi,q(X(x0, t0; t), t)− ψi,q(x0, t0)| ≲ Γ−1
q+1, (6.105)

for some implicit constant C > 0 which is independent of q ≥ 0. From the assumption of the lemma and
(6.105) it follows that

ψi,q(X(t), t) ≥ κ− CΓ−1
q+1 ≥ κ/

√
2

for all q ≥ 0, since we have that κ ≥ 1/16 and CΓ−1
q+1 ≤ 1/100, which holds independently of q once λ0 is

chosen sufficiently large.

Corollary 6.25. Suppose (x, t) is such that ψ2
i,q(x, t) ≥ κ2, where κ ∈ [1/16, 1]. For t0 such that |t− t0| ≤(

δ
1/2
q λqΓ

i+4
q+1

)−1

, which is in particular satisfied for |t− t0| ≤ τqΓ
−i+4+c0
q+1 , define x0 to satisfy

x = X(x0, t0; t).

That is, the forward flow X of the velocity field vℓq , originating at x0 at time t0, reaches the point x at time
t. Then we have

ψi,q(x0, t0) ̸= 0 .

Proof of Corollary 6.25. We proceed by contradiction and suppose that ψi,q(x0, t0) = 0. Without loss of
generality we can assume t < t0. By continuity, there exists a minimal time t′ ∈ (t, t0] such that for
x′ = x′(t′) defined by

x = X(x′, t′; t),

we have
ψi,q(x

′, t′) = 0 .

By minimality and (6.19), there exists an i′ ∈ {i− 1, i+ 1} such that

ψi′,q(x
′, t′) = 1 .

Applying Lemma 6.24, estimate (6.105), we obtain

|ψi′,q (X(x′, t′; t), t)− ψi′,q(x
′, t′)| = |ψi′,q(x, t)− ψi′,q(x

′, t′)| ≲ Γ−1
q+1 . (6.106)
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Here we have used that |t′ − t| ≤ |t0 − t| ≤
(
δ
1/2
q λqΓ

i+4
q+1

)−1

≤
(
δ
1/2
q λqΓ

i′+3
q+1

)−1

, so that Lemma 6.24 is

applicable. Since ψi′,q(x
′, t′) = 1, from (6.106) we see that ψi′,q(x, t) > 0, and so ψ2

i,q(x, t) = 1− ψ2
i′,q(x, t).

Then we obtain

ψ2
i,q(x, t) = 1− ψ2

i′,q(x, t)

= (1 + ψi′,q(x, t)) (1− ψi′,q(x, t))

= (1 + ψi′,q(x, t)) (ψi′,q(x
′, t′)− ψi′,q(x, t))

≲ Γ−1
q+1

which is a contradiction once λ0 is chosen sufficiently large, since we assumed that ψ2
i,q(x, t) ≥ κ2 and

κ ≥ 1/16.

Definition 6.26. We define Φi,k,q(x, t) := Φ(i,k)(x, t) to be the flows induced by vℓq with initial datum at

time kτqΓ
−i
q+1 given by the identity, i.e. {

(∂t + vℓq · ∇)Φi,k,q = 0

Φi,k,q(x, kτqΓ
−i
q+1) = x .

(6.107)

We will use DΦ(i,k) to denote the gradient of Φ(i,k) (which is a thus matrix-valued function). The inverse

of the matrix DΦ(i,k) is denoted by
(
DΦ(i,k)

)−1
, in contrast to DΦ−1

(i,k), which is the gradient of the inverse

map Φ−1
(i,k).

Corollary 6.27 (Deformation bounds). For k ∈ Z, 0 ≤ i ≤ imax, q ≥ 0, and 2 ≤ N ≤ 3Nfin/2 + 1, we
have the following bounds on the support of ψi,q(x, t)χ̃i,k,q(t).∥∥DΦ(i,k) − Id

∥∥
L∞(supp (ψi,qχ̃i,k,q))

≲ Γ−1
q+1 (6.108)∥∥DNΦ(i,k)

∥∥
L∞(supp (ψi,qχ̃i,k,q))

≲ Γ−1
q+1M

(
N − 1, 2Nind,v,Γqλq, λ̃q

)
(6.109)∥∥(DΦ(i,k))

−1 − Id
∥∥
L∞(supp (ψi,qχ̃i,k,q))

≲ Γ−1
q+1 (6.110)∥∥DN−1

(
(DΦ(i,k))

−1
)∥∥
L∞(supp (ψi,qχ̃i,k,q))

≲ Γ−1
q+1M

(
N − 1, 2Nind,v,Γqλq, λ̃q

)
(6.111)∥∥∥DNΦ−1

(i,k)

∥∥∥
L∞(supp (ψi,qχ̃i,k,q))

≲ Γ−1
q+1M

(
N − 1, 2Nind,v,Γqλq, λ̃q

)
(6.112)

Furthermore, we have the following bounds for 1 ≤ N +M ≤ 3Nfin/2:∥∥∥DN−N ′
DM
t,qD

N ′+1Φ(i,k)

∥∥∥
L∞(supp (ψi,qχ̃i,k,q))

≤ λ̃Nq M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q , τ̃−1

q Γ−1
q+1

)
(6.113)∥∥∥DN−N ′

DM
t,qD

N ′
(DΦ(i,k))

−1
∥∥∥
L∞(supp (ψi,qχ̃i,k,q))

≤ λ̃Nq M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q , τ̃−1

q Γ−1
q+1

)
(6.114)

for all 0 ≤ N ′ ≤ N .

Proof of Corollary 6.27. Let tk := τqΓ
−i
q+1k. For t is on the support of χ̃i,k,q, we may assume from (6.102)

that |t− tk| ≤ τqΓ
−i+c0
q+1 . Moreover, since the {ψi′,q}i′≥0 form a partition of unity, we know that there

exists i′ such that ψ2
i′,q(x, t) ≥ 1/2 and i′ ∈ {i − 1, i, i + 1}. Thus, we have that |t− tk| ≤ τqΓ

−i′+1+c0
q+1 ,

and Corollary 6.25 is applicable. For this purpose, let x0 be defined by X(x0, tk; t) = x, where X is the
forward flow of the velocity field vℓq , which equals the identity at time tk. Corollary 6.25 guarantees that
(x0, tk) ∈ supp (ψi′,q).

The above argument shows that the flow (X(x0, tk; t), t) remains in the support of ψi′,q for all t such that
|t− tk| ≤ τqΓ

−i+c0
q+1 , where i′ ∈ {i− 1, i, i+ 1}. In turn, using estimate (6.60), this shows that

sup
|t−tk|≤τqΓ−i+c0

q+1

|Dvℓq (X(x0, tk; t), t)| ≲
∥∥Dvℓq∥∥L∞(supp (ψi±,q))

≲ Γi+2
q+1δ

1/2
q λ̃q.
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To conclude, using (4) from Lemma A.1 and (9.39), we obtain∥∥DΦ(i,k) − Id
∥∥
L∞(supp (ψi,q χ̃i,k,q))

≲ τqΓ
−i+c0
q+1 Γi+2

q+1δ
1/2
q λ̃q ≲ Γ−1

q+1

which implies the desired estimate in (6.108). Similarly, since the flow (X(x0, tk; t), t) remains in the support
of ψi′,q for all t such that |t− tk| ≤ τqΓ

−i+c0
q+1 , for N ≥ 2 the estimates in (3) from Lemma A.1 give that∥∥DNΦ(i,k)

∥∥
L∞(supp (ψi,q χ̃i,k,q))

≲ τqΓ
−i+c0
q+1

∥∥DNvℓq
∥∥
L∞(supp (ψi±,q))

≲ τqΓ
−i+c0
q+1 (Γi+2

q+1δ
1/2
q )λ̃qM

(
N − 1, 2Nind,v,Γqλq, λ̃q

)
≲ Γ−1

q+1M
(
N − 1, 2Nind,v,Γqλq, λ̃q

)
.

Here we have used the bound (6.60) with M = 0 and K = N − 1 up to N = 3Nfin/2 + 1.
The first bound on the inverse matrix follows from the fact that matrix inversion is a smooth function in

a neighborhood of the identity and fixes the identity. The second bound on the inverse matrix follows from
the fact that detDΦ(i,k) = 1, so that we have the formula

cof DΦT(i,k) = (DΦ(i,k))
−1.

Then since the cofactor matrix is a C∞ function of the entries of DΦ, we can apply Lemma A.4 and the
bound on DNΦ(i,k). Note that in the application of Lemma A.4, we set h = DΦ(i,k) − Id, Γ = Γψ = 1,

Ch = Γ−1
q+1, and the cost of the spatial derivatives to be that given in (6.109). The final bound on the inverse

flow Φ−1
(i,k) follows from the identity

DN
(
Φ−1

(i,k)

)
(x) = DN−1

((
DΦ(i,k)

)−1 (
Φ−1(x)

))
, (6.115)

the Faa di Bruno formula in Lemma A.4, induction on N , and the previously demonstrated bounds.
The bound in (6.113) will be achieved by bounding

DN−N ′
[
DM
t,q, D

N ′+1
]
Φ(i,k) ,

which after using that Dt,qΦ(i,k) = 0 will conclude the proof. Towards this end, we apply Lemma A.14,
specifically Remark A.16 and Remark A.15, with v = vℓq and f = Φ(i,k). The assumption (A.50) (adjusted

to fit Remark A.15) follows from (6.60) with N0 = 3Nfin/2, Cv = Γi+1
q+1δ

1/2
q , λv = λ̃v = λ̃q, µv = Γi−c0

q+1 τ
−1
q ,

µ̃v = Γ−1
q+1τ̃

−1
q , and Nt = Nind,t. The assumption (A.51) follows with Cf = Γ−1

q+1 from (6.109) and the fact
that Dt,qΦ(i,k) = 0. The desired bound then follows from the conclusion (A.56) from Remark A.16 after

using Γ−1
q+1 to absorb implicit constants. The bound in (6.114) will follow again from Lemma A.5 after using

that
(
DΦ(i,k)

)−1
is a smooth function of DΦ(i,k) in a neighborhood of the identity, which is guaranteed from

(6.108). As before, we set Γ = Γψ = 1 and Ch = Γ−1
q+1 in the application of Lemma A.5. The derivative costs

are precisely those in (6.113).

6.5 Stress estimates on the support of the new velocity cutoff functions

Before giving the definition of the stress cutoffs, we first note that the can upgrade the L1 bounds for
ψi,q−1D

nDm
t,q−1R̊ℓq available in (5.7), to L1 bounds for ψi,qD

nDm
t,qR̊ℓq . We claim that:

Lemma 6.28 (L1 estimates for zeroth order stress). Let R̊ℓq be as defined in (5.1). For q ≥ 1 and
0 ≤ i ≤ imax(q) we have the estimate∥∥∥DkDm

t,qR̊ℓq

∥∥∥
L1(supp (ψi,q))

≲ Γ−CR
q δq+1M

(
k, 2Nind,v, λqΓq, λ̃q

)
M
(
m,Nind,t,Γ

i−c0
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(6.116)

for all k +m ≤ 3Nfin/2.
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Proof of Lemma 6.28. The first step is to apply Lemma A.14, in fact Remark A.15, to the functions v = vℓq−1 ,

f = R̊ℓq , with p = 1, and on the domain Ω = supp (ψi,q−1). The bound (A.50) holds in view of the inductive

assumption (3.23) with q′ = q − 1, for the parameters Cv = Γi+1
q δ

1/2
q−1, λv = λ̃v = λ̃q−1, µv = Γi−c0

q τ−1
q−1,

µ̃v = Γ−1
q τ̃−1

q−1, Nx = 2Nind,v, Nt = Nind,t, and for N◦ = 3Nfin/2. On the other hand, the assumption (A.51)

holds due to (5.7) and the fact that ψi±,q−1 ≡ 1 on supp (ψi,q−1), with the parameters Cf = Γ−CR
q δq+1,

λf = λq, λ̃f = λ̃q, Nx = 2Nind,v, µf = Γi+3
q τ−1

q−1, µ̃f = τ̃−1
q−1, Nt = Nind,t, and N◦ = 2Nfin. We thus conclude

from (A.54) that∥∥∥∥∥
(

k∏
i=1

DαiDβi

t,q−1

)
R̊ℓq

∥∥∥∥∥
L1(supp (ψi,q−1))

≲ Γ−CR
q δq+1M

(
|α|, 2Nind,v, λq, λ̃q

)
M
(
|β|,Nind,t,Γ

i+3
q τ−1

q−1, τ̃
−1
q−1

)
whenever |α| + |β| ≤ 3Nfin/2. Here we have used that λ̃q−1 ≤ λq and that Γi+1

q δ
1/2
q−1λ̃q−1 ≤ Γi+3

q τ−1
q−1 ≤ τ̃−1

q−1

(in view of (9.39), (9.43), and (3.18)). In particular, the definitions of ψi,q in (6.14) and of ψm,im,q in (6.11)
imply that ∥∥∥∥∥

(
k∏
i=1

DαiDβi

t,q−1

)
R̊ℓq

∥∥∥∥∥
L1(supp (ψi,q))

≲ Γ−CR
q δq+1M

(
|α|, 2Nind,v, λq, λ̃q

)
M
(
|β|,Nind,t,Γ

i+3
q+1τ

−1
q−1, τ̃

−1
q−1

)
(6.117)

for all |α|+ |β| ≤ 3Nfin/2.
The second step is to apply Lemma A.10 with B = Dt,q−1, A = uq · ∇, v = uq, f = R̊ℓq , p = 1, and

Ω = supp (ψi,q). In this caseDk(A+B)mf = DkDm
t,qR̊ℓq , which is exactly the object that we need to estimate

in (6.116). The assumption (A.40) holds due to (6.57) with Cv = Γi+1
q+1δ

1/2
q , λv = Γqλq, λ̃v = λ̃q, Nx = 2Nind,v,

µv = Γi+3
q+1τ

−1
q−1, µ̃v = Γ−1

q+1τ̃
−1
q , Nt = Nind,t, and N∗ = 3Nfin/2+1. The assumption (A.41) holds due to (6.117)

with the parameters Cf = Γ−CR
q δq+1, λf = λq, λ̃f = λ̃q, Nx = 2Nind,v, µf = Γi+3

q+1τ
−1
q−1, µ̃f = τ̃−1

q−1, Nt = Nind,t,

and N∗ = 3Nfin/2. The bound (A.44) and the parameter inequalities Γi+1
q+1δ

1/2
q λ̃q ≤ Γi−c0−2

q+1 τ−1
q ≤ Γ−1

q+1τ̃
−1
q

and Γi+3
q+1τ

−1
q−1 ≤ Γi−c0

q+1 τ
−1
q (which hold due to (9.40), (9.39), (9.43), and (3.18)) then directly imply (6.116),

concluding the proof.

Remark 6.29 (L1 estimates for higher order stresses). As discussed in Sections 2.4 and 2.7, in order
to verify at level q + 1 the inductive assumptions in (3.13) for the new stress R̊q+1, it will be necessary

to consider a sequence of intermediate (in terms of the cost of a spatial derivative) objects R̊q,n,p indexed
by n for 1 ≤ n ≤ nmax and 1 ≤ p ≤ pmax. For notational convenience, when n = 0 and p = 1, we define
R̊q,0,1 := R̊ℓq , and estimates on R̊q,0 are already provided by Lemma 6.28. When n = 0 and p ≥ 2, R̊q,0,p = 0.

For 1 ≤ n ≤ nmax and 1 ≤ p ≤ pmax, the higher order stresses R̊q,n,p are defined in Section 8.1, specifically in

(8.7). Note that the definition of R̊q,n,p is given as a finite sum of sub-objects H̊n′

q,n,p for n′ ≤ n− 1 and thus

requires induction on n. The definition of H̊n′

q,n,p is contained in Section 8.3, specifically in (8.35) and (8.52).

Estimates on H̊n′

q,n,p on the support of ψi,q are stated in (7.15), (7.22), and (7.29) and proven in Section 8.6.

For the time being, we assume that R̊q,n,p is well-defined and satisfies L1 estimates similar to those alluded
to in (2.19); more precisely, we assume that∥∥∥DkDm

t,qR̊q,n,p

∥∥∥
L1(suppψi,q)

≲ δq+1,n,pλ
k
q,n,pM

(
m,Nind,t,Γ

i−cn
q+1 τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(6.118)

for all 0 ≤ k +m ≤ Nfin,n. For the purpose of defining the stress cutoff functions, the precise definitions of
the n and p-dependent parameters δq+1,n,p, λq,n,p, Nfin,n, and cn present in (6.118) are not relevant. Note
however that definitions for λq,n,p for n = 0 are given in (9.26), while for 1 ≤ n ≤ nmax and 1 ≤ p ≤ pmax, the
definitions are given in (9.29). Similarly, when n = 0, we let δq+1,0,p = Γ−CR

q δq+1 as is consistent with (9.32),
and when 1 ≤ n ≤ nmax and 1 ≤ p ≤ pmax, δq+1,n,p is defined in (9.34). Finally, note that there are losses
in the sharpness and order of the available derivative estimates in (6.118) relative to (6.116). Specifically,
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the higher order estimates will only be proven up to Nfin,n, which is a parameter that is decreasing with
respect to n and defined in (9.37). For the moment it is only important to note that Nfin,n ≫ 14Nind,v for
all 0 ≤ n ≤ nmax, which is necessary in order to establish of (3.13) and (3.15) at level q+1. Similarly, there
is a loss in the cost of sharp material derivatives in (6.118), as cn will be a parameter which is decreasing
with respect to n. When n = 0, we set cn = c0 so that (6.116) is consistent with (6.118). For 1 ≤ n ≤ nmax,
cn is defined in (9.35).

6.6 Definition of the stress cutoff functions

For q ≥ 1, 0 ≤ i ≤ imax, 0 ≤ n ≤ nmax, and 1 ≤ p ≤ pmax, in analogy to the functions hm,jm,q in (6.6), and
keeping in mind the bound (6.118), we define

g2i,q,n,p(x, t) = 1 +

Ncut,x∑
k=0

Ncut,t∑
m=0

δ−2
q+1,n,p(Γq+1λq,n,p)

−2k(Γi−cn+2
q+1 τ−1

q )−2m|DkDm
t,qR̊q,n,p(x, t)|2. (6.119)

With this notation, for j ≥ 1 the stress cut-off functions are defined by

ωi,j,q,n,p(x, t) = ψ0,q+1

(
Γ−2j
q+1 gi,q,n,p(x, t)

)
, (6.120)

while for j = 0 we let

ωi,0,q,n,p(x, t) = ψ̃0,q+1

(
gi,q,n,p(x, t)

)
, (6.121)

where ψ0,q+1 and ψ̃0,q+1 are as in Lemma 6.2. The above defined cutoff functions ωi,j,q,n,p will be shown to
obey good estimates on the support of the velocity cutoffs ψi,q defined earlier.

6.7 Properties of the stress cutoff functions

6.7.1 Partition of unity

An immediate consequence of (6.1) with m = 0 is that for every fixed i, n, we have∑
j≥0

ω2
i,j,q,n,p = 1 (6.122)

on T3 × R. Thus, {ω2
i,j,q,n,p}j≥0 is a partition of unity.

6.7.2 L∞ estimates for the higher order stresses

We recall cf. (6.4) and (6.5) that the cutoff function ψ0,q+1 appearing in the definition (6.120) satisfies
different derivative bounds according to the size of its argument. Accordingly, we introduce the following
notation.

Definition 6.30 (Left side of the cutoff function ωi,j,q,n,p). For j ≥ 1 we say that

(x, t) ∈ supp (ωL
i,j,q,n,p) if 1/4 ≤ Γ−2j

q+1gi,q,n,p(x, t) ≤ 1 . (6.123)

When j = 0 we do not define the left side of the cutoff function ωi,0,q,n,p.

Directly from the definition (6.119)–(6.121), the support properties of the functions ψ0,q+1 and ψ̃0,q+1

stated in Lemma 6.2, and using Definition 6.30, it follows that:

Lemma 6.31. For all 0 ≤ m ≤ Ncut,t, 0 ≤ k ≤ Ncut,x, and j ≥ 0, we have that

1supp (ωi,j,q,n,p)|DkDm
t,qR̊q,n,p(x, t)| ≤ Γ

2(j+1)
q+1 δq+1,n,p(Γq+1λq,n,p)

k(Γi−cn+2
q+1 τ−1

q )m .

In the above estimate, if we replace 1supp (ωi,j,q,n,p) with 1supp (ωL
i,j,q,n,p)

(cf. Definition 6.30), then the factor

Γ
2(j+1)
q+1 may be sharpened to Γ2j

q+1. Moreover, if j ≥ 1, then gi,q,n,p(x, t) ≥ (1/4)Γ2j
q+1.
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Lemma 6.31 provides sharp L∞ bounds for the space and material derivatives of R̊q,n,p, at least when
the number of space derivatives is less than Ncut,x, and the number of material derivatives is less than Ncut,t.
If we are willing to pay a Sobolev-embedding loss, then (6.118) implies lossy L∞ bounds for large numbers
of space and material derivatives.

Lemma 6.32 (Derivative bounds with Sobolev loss). For q ≥ 1, n ≥ 0, and 0 ≤ i ≤ imax, we have
that: ∥∥∥DkDm

t,qR̊q,n,p

∥∥∥
L∞(suppψi,q)

≲ δq+1,n,pλ
k+3
q,n,pM

(
m,Nind,t,Γ

i−cn+1
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
(6.124)

for all k +m ≤ Nfin,n − 4.

Proof of Lemma 6.32. We apply Lemma A.3 to f = R̊q,n,p, with ψi = ψi,q, and with p = 1. Assumption

(A.16) holds in view of (6.36), with the parameter choice ρ = Γqλ̃q < Γq+1λ̃q = λq,0,1 ≤ λq,n,p, where the
inequalities follow immediately from (9.26)-(9.29). The assumption (A.17) holds due to (6.118), with the

parameter choices Cf = δq+1,n,p, λ = λ̃ = λq,n,p, µi = Γi−cn
q+1 τ

−1
q , µ̃i = Γ−1

q+1τ̃
−1
q , Nt = Nind,t, and N◦ = Nfin,n.

The Lemma now directly follows from (A.18b) with p = 1.

We note that Lemmas 6.31 and 6.32 imply the following estimate:

Corollary 6.33 (L∞ bounds for the stress). For q ≥ 0, 0 ≤ i ≤ imax, 0 ≤ n ≤ nmax, and 1 ≤ p ≤ pmax

we have ∥∥∥DkDm
t,qR̊q,n,p

∥∥∥
L∞(suppψi,q∩suppωi,j,q,n,p)

≲ Γ
2(j+1)
q+1 δq+1,n,p(Γq+1λq,n,p)

kM
(
m,Nind,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
(6.125)

for all k+m ≤ Nfin,n − 4. In the above estimate, if we replace supp (ωi,j,q,n,p) with supp (ωL
i,j,q,n,p) (cf. Def-

inition 6.30), then the factor Γ
2(j+1)
q+1 may be sharpened to Γ2j

q+1.

Proof of Corollary 6.33. Form ≤ Ncut,t and k ≤ Ncut,x, the bound (6.125) is already contained in Lemma 6.31
(both for supp (ωi,j,q,n,p), and the improved bound for supp (ωL

i,j,q,n,p)). When either k > Ncut,x or m >
Ncut,t, we appeal to estimate (6.124) and the parameter bound

δq+1,n,pλ
k+3
q,n,pM

(
m,Nind,t,Γ

i−cn+1
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
≤
(
Γ
−k−min{m,Nind,t}
q+1 λ3q,n,p

)
δq+1,n,p(Γq+1λq,n,p)

kM
(
m,Nind,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
≤ δq+1,n,p(Γq+1λq,n,p)

kM
(
m,Nind,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
.

The second estimate in the above display is a consequence of the fact that when either k > Ncut,x or
m > Ncut,t, since Ncut,x ≥ Ncut,t, we have

Γ
−k−min{m,Nind,t}
q+1 λ3q,n,p ≤ Γ

−Ncut,t

q+1 λ3q+1 ≤ 1 , (6.126)

once Ncut,t (and hence Ncut,x) are chosen large enough, as in (9.51).

In the proof of Lemma 6.36 below, we shall require one more L∞ bound for R̊q,n,p, which is for iterates
of space and material derivatives. It is convenient to record this bound now, as it follows directly from
Corollary 6.33.

Corollary 6.34. For q ≥ 0, 0 ≤ i ≤ imax, 0 ≤ n ≤ nmax, 1 ≤ p ≤ pmax, and α, β ∈ Nk0 we have∥∥∥∥∥
(

k∏
ℓ=1

DαℓDβℓ
t,q

)
R̊q,n,p

∥∥∥∥∥
L∞(suppψi,q∩suppωi,j,q,n,p)

≲ Γ
2(j+1)
q+1 δq+1,n,p(Γq+1λq,n,p)

|α|M
(
|β|,Nind,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
(6.127)

for all |α| + |β| ≤ Nfin,n − 4. In the above estimate, if we replace supp (ωi,j,q,n,p) with supp (ωL
i,j,q,n,p)

(cf. Definition 6.30), then the factor Γ
2(j+1)
q+1 may be sharpened to Γ2j

q+1.
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Proof of Corollary 6.34. The proof follows from Corollary 6.33 and Lemma A.14. The bounds corresponding

to suppωi,j,q,n,p and suppωL
i,j,q,n,p are identical (except for the improvement Γ

2(j+1)
q+1 7→ Γ2j

q+1 in the later
case), so we only give details for the former. Since Dt,q = ∂t + vℓq · ∇, Lemma A.14 is applied with v = vℓq ,

f = R̊q,n,p, Ω = suppψi,q ∩ suppωi,j,q,n,p, and p = ∞. In view of estimate (6.60) and the fact that 3Nfin/2 ≥
Nfin,n, the assumption (A.50) holds with Cv = Γi+1

q+1δ
1/2
q , λv = Γqλq, λ̃v = λ̃q, Nx = 2Nind,v, µv = Γi−cn

q+1 τ
−1
q ,

µ̃v = Γ−1
q+1τ̃

−1
q , and Nt = Nind,t. On the other hand, the bound (6.127) implies assumption (A.51) with

Cf = Γ
2(j+1)
q+1 δq+1,n,p, λf = λ̃f = Γq+1λq,n,p, µf = Γi−cn+2

q+1 τ−1
q , µ̃f = Γ−1

q+1τ̃
−1
q , and Nt = Nind,t. Since

λv ≤ λf , λ̃v ≤ λ̃f , µv ≤ µf , and µ̃v = µ̃f , we deduce from the bound (A.54) (in fact, its version mentioned
in Remark A.15) that (6.127) holds, thereby concluding the proof. Here we are also implicitly using the

parameter estimate Cvλ̃v ≤ µf , which holds due to (9.39).

6.7.3 Maximal j index in the stress cutoffs

[Take this sub-sub-section as a whole, and copy it]

Lemma 6.35 (Maximal j index in the stress cutoffs). Fix q ≥ 0, 0 ≤ n ≤ nmax, and 1 ≤ p ≤ pmax.
There exists a jmax = jmax(q, n, p) ≥ 1, determined by (6.128) below, which is bounded independently of q,
n, and p as in (6.129), such that for any 0 ≤ i ≤ imax(q), we have

ψi,q ωi,j,q,n,p ≡ 0 for all j > jmax.

Moreover, the bound

Γ
2(jmax−1)
q+1 ≲ λ3q,n,p

holds, with an implicit constant that independent of q and n.

Proof of Lemma 6.35. We define jmax by

jmax = jmax(q, n, p) =
1

2

⌈
log(Mb

√
8Ncut,xNcut,tλ

3
q,n,p)

log(Γq+1)

⌉
(6.128)

where Mb is the implicit q, n, p, and i-independent constant in (6.124); that is we take the largest such
constant among all values of k andm with k+m ≤ Nfin,n−4. To see that jmax may be bounded independently
of q, n, and p, we note that λq,n,p ≤ λq+1, and thus

2jmax ≤ 1 +
log(Mb

√
8Ncut,xNcut,t) + 3 log(λq+1)

log(Γq+1)
→ 1 +

3b

εΓ(b− 1)
as q → ∞.

Thus, assuming that a = λ0 is sufficiently large, we obtain that

2jmax(q, n, p) ≤
4b

εΓ(b− 1)
(6.129)

for all q ≥ 0, 0 ≤ n ≤ nmax, and 1 ≤ p ≤ pmax.
To conclude the proof of the Lemma, let j > jmax, as defined in (6.128), and assume by contradiction

that there exists a point (x, t) ∈ supp (ψi,qωi,j,q,n,p) ̸= ∅. In particular, j ≥ 1. Then, by (6.119)–(6.120) and
the pigeonhole principle, we see that there exists 0 ≤ k ≤ Ncut,x and 0 ≤ m ≤ Ncut,t such that

|DkDm
t,qR̊q,n,p(x, t)| ≥

Γ2j
q+1√

8Ncut,xNcut,t

δq+1,n,p(Γq+1λq,n,p)
k(Γi−cn+2

q+1 τ−1
q )m.

On the other hand, from (6.124), we have that

|DkDm
t,qR̊q,n,p(x, t)| ≤Mbλ

3
q,n,pδq+1,n,pλ

k
q,n,p(Γ

i−cn+1
q+1 τ−1

q )m.

The above two estimates imply that

Γ
2(jmax+1)
q+1 ≤ Γ2j

q+1 ≤Mb

√
8Ncut,xNcut,tΓ

−k−m
q+1 λ3q,n,p,≤Mb

√
8Ncut,xNcut,tλ

3
q,n,p,

which contradicts the fact that j > jmax, as defined in (6.128).
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6.7.4 Bounds for space and material derivatives of the stress cutoffs

Lemma 6.36 (Derivative bounds for the stress cutoffs). For q ≥ 0, 0 ≤ n ≤ nmax, 1 ≤ p ≤ pmax,
0 ≤ i ≤ imax, and 0 ≤ j ≤ jmax, we have that

1suppψi,q |DNDM
t,qωi,j,q,n,p|

ω
1−(N+M)/Nfin

i,j,q,n,p

≲ (Γq+1λq,n,p)
NM

(
M,Nind,t − Ncut,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
(6.130)

for all N +M ≤ Nfin,n − Ncut,x − Ncut,t − 4.

Remark 6.37. Notice that the sharp derivative bounds in (6.130) are only up to Nind,t − Ncut,t. In order
to obtain bounds up to Nind,t, we may argue exactly as in the string of inequalities which converted (6.83)
into (6.84), resulting in the bound

1suppψi,q
|DNDM

t,qωi,j,q,n,p|
ω
1−(N+M)/Nfin

i,j,q,n,p

≲ (Γq+1λq,n,p)
NM

(
M,Nind,t,Γ

i−cn+3
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
. (6.131)

Proof of Lemma 6.36. For simplicity, we only treat here the case j ≥ 1. Indeed, for j = 0 we simply replace
ψ0,q+1 with ψ̃0,q+1, which by Lemma 6.2 has similar properties to ψ0,q+1.

The goal is to apply the Faa di Bruno Lemma A.5 with ψ = ψ0,q+1, Γ = Γ−j
q+1, Dt = Dt,q, and

h(x, t) = gi,q,n,p(x, t), so that g = ωi,j,q,n,p.
Because the cutoff function ψ = ψ0,q+1 satisfies slightly different estimates depending on whether we are

in the case (6.4) or (6.5), assumption (A.24) holds with Γψ = 1, and respectively Γψ = Γ−1
q+1, depending on

whether we work on the set supp (ωL
i,j,q,n,p) or on the set supp (ωi,j,q,n,p)\supp (ωL

i,j,q,n,p) (cf. Definition 6.30).
We have in fact encountered this same issue in the proof of Lemmas 6.13 and 6.20. The slightly worse value
of Γψ for (x, t) ∈ supp (ωL

i,j,q,n,p) is however precisely balanced out by the fact that in Corollary 6.34 the

bound (6.127) is improved by a factor for Γ2
q+1 on supp (ωL

i,j,q,n,p). Since in the end these two factors of Γ2
q+1

cancel out, as they did in Lemmas 6.13 and 6.20, we only give the proof of the bound (6.130) for (x, t) ∈
supp (ωi,j,q,n,p) \ supp (ωL

i,j,q,n,p), which is equivalent to the condition that 1 < Γ−2j
q+1gi,q,n,p(x, t) ≤ Γ2

q+1.

Note moreover that we do not perform any estimates for (x, t) such that 1 < Γ−2j
q+1gi,q,n,p(x, t) < (1/4)Γ2

q+1

since in this region ψ0,q+1 ≡ 1 (see item 2(b) in Lemma 6.2) and so its derivatives equal to 0. Therefore, for
the remainder of the proof we work with the subset of suppωi,j,q,n,p on which we have

(1/4)Γ2
q+1 ≤ Γ−2j

q+1gi,q,n,p(x, t) ≤ Γ2
q+1 . (6.132)

This ensures that assumption (A.24) of Lemma A.5 holds with Γψ = Γ−1
q+1.

In order to verify condition (A.25), the main requirement is a supremum bound for DNDM
t,qgi,q,n,p in L∞

on the support of ψi,qωi,j,q,n,p. In this direction, we claim that for all (x, t) as in (6.132), we have

1suppψi,q

∣∣DNDM
t,qgi,q,n,p(x, t)

∣∣ ≲ Γ2j+2
q+1 (Γq+1λq,n,p)

NM
(
M,Nind,t − Ncut,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
(6.133)

for all N +M ≤ Nfin,n −Ncut,x −Ncut,t − 4. Thus, assumption (A.25) of Lemma A.5 holds with Ch = Γ2j+2
q+1 ,

λ = λ̃ = Γq+1λq,n,p, µ = Γi−cn+2
q+1 τ−1

q , µ̃ = Γ−1
q+1τ̃

−1
q , and Nt = Nind,t − Ncut,t. In particular, we note that

(ΓψΓ)
−2Ch = 1, and estimate (A.26) of Lemma A.5 directly implies (6.130).

Thus, in order to complete the proof of the lemma it remains to establish estimate (6.133). As in the proof
of Lemma 6.13, it is more convenient to first estimate DNDM

t,q(gi,q,n,p(x, t)
2), as its definition (cf. (6.119))

makes it more amenable to the use of the Leibniz rule. Indeed, for all N +M ≤ Nfin,n − Ncut,x − Ncut,t − 4
we have that

DNDM
t,qg

2
i,q,n,p =

N∑
N ′=0

M∑
M ′=0

(
N

N ′

)(
M

M ′

)

×
Ncut,x∑
k=0

Ncut,t∑
m=0

DN ′
DM ′

t,q D
kDm

t,qR̊q,n,pD
N−N ′

DM−M ′
DkDm

t,qR̊q,n,p

δ2q+1,n,p(Γq+1λq,n,p)2k(Γ
i−cn+2
q+1 τ−1

q )2m
.
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Combining the above display with estimate (6.127) and the fact that k+m+N +M ≤ Nfin,n−4, we deduce

1suppψi,q∩suppωi,j,q,n,p

∣∣DNDM
t,qg

2
i,q,n,p

∣∣
≲

N∑
N ′=0

M∑
M ′=0

Ncut,x∑
k=0

Ncut,t∑
m=0

1

δ2q+1,n,p(Γq+1λq,n,p)2k(Γ
i−cn+2
q+1 τ−1

q )2m

× Γ
2(j+1)
q+1 δq+1,n,p(Γq+1λq,n,p)

N ′+kM
(
M ′ +m,Nind,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
× Γ

2(j+1)
q+1 δq+1,n,p(Γq+1λq,n,p)

N−N ′+kM
(
M −M ′ +m,Nind,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
≲ Γ

4(j+1)
q+1 (Γq+1λq,n,p)

NM
(
M,Nind,t − Ncut,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
. (6.134)

Lastly, we show that the bound (6.134) and the fact that we work with (x, t) such that (6.132) holds, implies
(6.133). This argument is the same as the one found earlier in (6.45)–(6.47). We establish (6.133) inductively
in K for N +M ≤ K. We know from (6.132) that (6.133) holds for K = 0, i.e., for N = M = 0. So let us
assume by induction that (6.133) was previously established for any pair N ′ +M ′ ≤ K − 1, and fix a new
pair with N +M = K. Similarly to (6.46), the Leibniz rule gives

DNDM
t,q(g

2
i,q,n,p)− 2gi,q,n,pD

NDM
t,qgi,q,n,p

=
∑

0≤N ′≤N
0≤M ′≤M

0<N ′+M ′<N+M

(
N

N ′

)(
M

M ′

)
DN ′

DM ′

t,q gi,q,n,pD
N−N ′

DM−M ′

t,q gi,q,n,p .

Since every term in the sum on the right side of the above display satisfies 1 ≤ N ′ +M ′ ≤ K − 1, these
terms are bounded by our inductive assumption, and we deduce that

1suppψi,q

∣∣DNDM
t,qgi,q,n,p

∣∣ ≲ ∣∣DNDM
t,q(g

2
i,q,n,p)

∣∣
gi,q,n,p

+
Γ
2(2j+2)
q+1 (Γq+1λq,n,p)

NM
(
M,Nind,t − Ncut,t,Γ

i−cn+2
q+1 τ−1

q ,Γ−1
q+1τ̃

−1
q

)
gi,q,n,p

.

Thus, (6.133) also holds for N + M = K by combining the above display with (6.132) (which implies
gi,q,n,p ≥ Γ2j+2

q+1 ), and with estimate (6.134) (which gives the bounds for the derivatives of g2i,q,n,p). This
concludes the proof of (6.133) and thus of the Lemma.

6.7.5 Lr norm of the stress cutoffs

Lemma 6.38. Let q ≥ 0. For r ≥ 1 we have that

∥ωi,j,q,n,p∥Lr(suppψi±,q)
≲ Γ

−2j/r
q+1 (6.135)

holds for all 0 ≤ i ≤ imax, 0 ≤ j ≤ jmax, 0 ≤ n ≤ nmax, and 1 ≤ p ≤ pmax. The implicit constant is
independent of i, j, q, n and p.

Proof of Lemma 6.38. The argument is similar to the proof of (6.87). We begin with the case r = 1. The
other cases r ∈ (1,∞] follow from the fact that ωi,j,q,n,p ≤ 1 and Lebesgue interpolation.

For j = 0 we are done since by definition 0 ≤ ωi,j,q,n,p ≤ 1, thus we consider only j ≥ 1. Since, ψi±2,q ≡ 1
on supp (ψi±,q), and using Lemma 6.31, we see that for any (x, t) ∈ supp (ψi±,qωi,j,q,n,p) we have

ψ2
i±2,qg

2
i,q,n,p = ψ2

i±2,q +

Ncut,x∑
k=0

Ncut,t∑
m=0

|ψi±2,qD
kDm

t,qR̊q,n,p(x, t)|2
δ2q+1,n,p(Γq+1λq,n,p)2k(Γ

i−cn+2
q+1 τ−1

q )2m
≥ 1

16
Γ4j
q+1.

Using that a+ b ≥
√
a2 + b2 for a, b ≥ 0, and using Γ4j

q+1 ≥ 64 for j ≥ 1, we conclude that

Ncut,x∑
k=0

Ncut,t∑
m=0

|ψi±2,qD
kDm

t,qR̊q,n,p(x, t)|
δq+1,n,p(Γq+1λq,n,p)k(Γ

i−cn+2
q+1 τ−1

q )m
≥ 1

16
Γ2j
q+1.
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Therefore, using Chebyshev’s inequality and the inductive assumption (6.118), we obtain

|supp (ψi±,qωi,j,q,n,p)|
≤
∣∣∣{(x, t) : ψi±2,qgi,q,n,p ≥ (1/16)Γ2j

q+1

}∣∣∣
≤

∣∣∣∣∣∣
(x, t) :

Ncut,x∑
k=0

Ncut,t∑
m=0

|ψi±2,qD
kDm

t,qR̊q,n,p(x, t)|
δq+1,n,p(Γq+1λq,n,p)k(Γ

i−cn+2
q+1 τ−1

q )m
≥ (1/16)Γ2j

q+1


∣∣∣∣∣∣

≤ 16Γ−2j
q+1

Ncut,x∑
k=0

Ncut,t∑
m=0

δ−1
q+1,n,p(Γq+1λq,n,p)

−k(Γi−cn+2
q+1 τ−1

q )−m
∥∥∥ψi±2,qD

kDm
t,qR̊q,n,p

∥∥∥
L1

≲ 16Γ−2j
q+1

Ncut,x∑
k=0

Ncut,t∑
m=0

Γ−k
q+1

≲ Γ−2j
q+1

where the implicit constant only depends on Ncut,t. The proof is concluded since the L1 norm of a function
with range in [0, 1] is bounded by the measure of its support.

6.8 Definition and properties of the checkerboard cutoff functions

For 0 ≤ n ≤ nmax, consider all the
T3

λq,n,0
-periodic cells contained in T3, of which there are λ3q,n,0. Index these

cells by integer triples l⃗ = (l, w, h) for l, w, h ∈ {0, ..., λq,n,0 − 1}. Let Xq,n,⃗l be a partition of unity adapted
to this checkerboard of periodic cells which satisfies∑

l⃗=(l,w,h)

(
Xq,n,⃗l

)2
= 1 (6.136)

for any q and n. Furthermore, for l⃗ = (l, w, h), l⃗∗ = (l∗, w∗, h∗) ∈ {0, ..., λq,n,0 − 1}3 such that

|l − l∗| ≥ 2, |w − w∗| ≥ 2, |h− h∗| ≥ 2,

we impose that
Xq,n,⃗lXq,n,⃗l∗ = 0. (6.137)

Definition 6.39 (Checkerboard Cutoff Function). Given q, 0 ≤ n ≤ nmax, i ≤ imax, and k ∈ Z, we
define

ζq,i,k,n,⃗l(x, t) = Xq,n,⃗l (Φi,k,q(x, t)) . (6.138)

Lemma 6.40. The cutoff functions
{
ζq,i,k,n,⃗l

}
l⃗
satisfy the following properties:

(1) The material derivative Dt,q

(
ζq,i,k,n,⃗l

)
vanishes.

(2) For each t ∈ R and all x ∈ T3, ∑
l⃗=(l,w,h)

(
ζq,i,k,n,⃗l(x, t)

)2
= 1. (6.139)

(3) We have the spatial derivative estimate for all m ≤ 3Nfin/2 + 1∥∥∥Dmζq,i,k,n,⃗l

∥∥∥
L∞(suppψi,qχ̃i,k,q)

≲ λmq,n,0. (6.140)

(4) There exists an implicit dimensional constant independent of q, n, k, i, and l⃗ such that for all (x, t) ∈
suppψi,qχ̃i,k,q,

diam
(
supp

(
ζq,i,k,n,⃗l(·, t)

))
≲ (λq,n,0)

−1
. (6.141)
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Proof of Lemma 6.40. The proof of (1) is immediate given that ζq,i,k,n,⃗l is precomposed with the flow map

Φi,k,q. (6.139) follows from (1), (6.136), and the fact that for each t ∈ R, Φi,k,q(t, ·) is a diffeomorphism of T3.
The spatial derivative estimate in (6.140) follows from Lemma A.4, (6.109), and the parameter definitions
in (9.19), (9.26), and (9.29). The property in (6.141) follows from the construction of the Xq,n,⃗l functions
(which can be taken simply as a dilation by a factor of λq,n,1 of a q-independent partition of unity on R3)
and (6.108).

6.9 Definition of the cumulative cutoff function

Finally, combining the cutoff functions defined in Definition 6.6, (6.120)–(6.121), and (6.96), we define the
cumulative cutoff function by

ηi,j,k,q,n,p,⃗l(x, t) = ψi,q(x, t)ωi,j,q,n,p(x, t)χi,k,q(t)χq,n,p(t)ζq,i,k,n,⃗l(x, t).

Since the values of q and n are clear from the context, the values in l⃗ are irrelevant in many arguments, and
the time cutoffs χq,n,p are only used in Section 8.9, we may abbreviate the above using any of

ηi,j,k,q,n,p,⃗l (x, t) = ηi,j,k,q,n,p(x, t) = η(i,j,k)(x, t) = ψ(i)(x, t)ω(i,j)(x, t)χ(i,k)(t)ζ(i,k)(x, t).

It follows from Lemma 6.8, (6.122), (6.94), and (6.139) that for every (q, n, p) fixed, we have a partition of
unity ∑

i,j≥0

∑
k∈Z

∑
l⃗

η2
i,j,k,q,n,p,⃗l

(x, t) = 1. (6.142)

The sum in i goes up to imax (defined in (6.53)), while the sum in j goes up to jmax (defined in (6.128)). In
analogy with ψi±,q, we define

ω(i,j±)(x, t) :=
(
ω2
(i,j−1)(x, t) + ω2

(i,j)(x, t) + ω2
(i,j+1)(x, t)

) 1
2

, (6.143)

which are cutoffs with the property that

ω(i,j±) ≡ 1 on supp (ω(i,j)). (6.144)

We then define
η(i±,j±,k,±)(x, t) := ψi±,q(x, t)ω(i,j±)(x, t)χ̃i,k,q(t)ζq,i,k,n,⃗l(x, t), (6.145)

which are cutoffs with the property that

η(i,±,j±,k±) ≡ ζq,i,k,n,⃗l on supp
(
ψ(i)ω(i,j)χ(i,k)

)
. (6.146)

We conclude this section with estimates on the Lp norms of the cumulative cutoff function η(i,j,k).

Lemma 6.41. For r1, r2 ∈ [1,∞] with 1
r1

+ 1
r2

= 1 we have

∑
l⃗

∣∣∣supp (ηi,j,k,q,n,p,⃗l)∣∣∣ ≲ Γ
−2

(
i
r1

+ j
r2

)
+

Cb
r1

+2

q+1 (6.147)

Proof of Lemma 6.41. Applying Lemma 6.23, Lemma 6.38, Hölder’s inequality, and interpolating yields

|supp (ψi,q) ∩ supp (ωi,j,q,n,p)| ≤
∥∥ψi±,qω(i,j±)

∥∥
L1

≤ ∥ψi±,q∥Lr1

∥∥ω(i,j±)

∥∥
Lr2

≲ Γ
− 2(i−1)−Cb

r1
− 2(j−1)

r2
q+1 .

Using 1
r1

+ 1
r2

= 1 and that the ζq,i,k,n,⃗l form a partition of unity (6.142), gives (6.147).
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7 From q to q + 1: breaking down the main inductive estimates

The overarching goal of this section is to state several propositions which decompose the verification of the
main inductive assumptions (3.13) and (3.14) for the perturbation wq+1 and (3.15) for the stress R̊q+1 into
digestible components. We remind the reader, cf. Remark 6.1, that the rest of the inductive estimates
stated in Section 3.2.3 are proven in Section 6. We begin in Section 7.1 with Proposition 7.1, which simply
translates the main inductive assumptions into statements phrased at level q + 1. At this point, we then
introduce in Section 7.2 a handful of notations which will be necessary in order to state the propositions
which form the constituent parts of the proof of Proposition 7.1. The next three propositions (7.3, 7.4, and
7.5) are described and presented in Section 7.3. They are significantly more detailed than Proposition 7.1,
as they contain the precise estimates that will be propagated throughout the construction and cancellation
of the higher order stresses R̊q,ñ. These three propositions will be verified in Section 8.

7.1 Induction on q

The main claim of this section is an induction on q.

Proposition 7.1 (Inductive Step on q). Given vℓq , R̊ℓq , and R̊
comm
q satisfying the Euler-Reynolds system

∂tvℓq + div (vℓq ⊗ vℓq ) +∇pℓq = div R̊ℓq + div R̊comm
q (7.1a)

div vℓq = 0 (7.1b)

with vℓq , R̊ℓq , and R̊
comm
q satisfying the conclusions of Lemma 5.1 in addition to (3.12)-(3.25b), there exist

vq+1 = vℓq + wq+1 and R̊q+1 which satisfy the following:

(1) vq+1 and R̊q+1 solve the Euler-Reynolds system

∂tvq+1 + div (vq+1 ⊗ vq+1) +∇pq+1 = R̊q+1 (7.2a)

div vq+1 = 0. (7.2b)

(2) For all k,m ≤ 7Nind,v,∥∥ψi,qDkDm
t,qwq+1

∥∥
L2 ≤ Γ−1

q+1δ
1
2
q+1λ

k
q+1M

(
m,Nind,t, τ

−1
q Γi−1

q+1, τ̃
−1
q Γ−1

q+1

)
. (7.3)

Furthermore, we have that

supp t(R̊q) ⊂ [T1, T2] ⇒ supp t(wq+1) ⊂
[
T1 − (λqδ

1/2
q )−1, T2 + (λqδ

1/2
q )−1

]
. (7.4)

(3) For all k,m ≤ 3Nind,v,∥∥∥ψi,qDkDm
t,qR̊q+1

∥∥∥
L1

≤ Γ−CR
q+1 δq+2λ

k
q+1M

(
m,Nind,t,Γ

i+1
q+1τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
(7.5)

Remark 7.2. In achieving the conclusions (7.2), (7.3), and (7.5), we have verified the inductive assumptions
(3.13)-(3.15) at level q + 1. The inductive assumption (3.12) at levels q′ < q + 1 follows from Lemma (5.1).
The proof of Proposition 7.1 will entail many estimates which are much more detailed than (7.3) and (7.5),
but for the time being we record only the basic estimates which are direct translations of (3.13)-(3.15) at
level q + 1.

7.2 Notations

The proof of Proposition 7.1 will be achieved through an induction with respect to ñ, where 0 ≤ ñ ≤ nmax

corresponds to the addition of the perturbation wq+1,ñ =

pmax∑
p̃=1

wq+1,ñ,p̃. The addition of each perturbation
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wq+1,ñ will move the minimum effective frequency present in the stress terms to λq,ñ+1,0. This induction on
ñ requires three sub-propositions; the base case ñ = 0, the inductive step from ñ− 1 to ñ for ñ ≤ nmax − 1,
and the final step from nmax − 1 to nmax. Throughout these propositions, we shall employ the following
notations.

(1) ñ - An integer taking values 0 ≤ ñ ≤ nmax over which induction is performed. At every step in the
induction, we add another component wq+1,ñ of the final perturbation

wq+1 =

nmax∑
ñ=0

pmax∑
p̃=1

wq+1,ñ,p̃.

We emphasize that the use of ñ at various points in statements and estimates means that we are currently
working on the inductive step at level ñ.

(2) n - An integer taking values 1 ≤ n ≤ nmax which correspond to the higher order stresses R̊q,n. Occa-

sionally, we shall use the notation R̊q,0 = R̊ℓq to streamline an argument. We emphasize that n will be
used at various points in statements and estimates to reference higher order objects in addition to those
at level ñ, and so will satisfy the inequality ñ ≤ n.

(3) H̊n′

q,n,p - The component of R̊q,n,p originating from an error term produced by the addition of wq+1,n′ .
The parameter n′ will always be a subsidiary parameter used to reference objects created at or below
the level ñ that we are currently working on, and so will satisfy n′ ≤ ñ.

(4) P[q,n,p] - We use the spatial Littlewood-Paley projectors P[q,n,p] defined by

P[q,n,p] =

{
P≥λq,nmax,pmax

if n = nmax, p = pmax + 1

P[λq,n,p−1,λq,n,p) if 1 ≤ n ≤ nmax, 1 ≤ p ≤ pmax

(7.6)

where P[λ1,λ2) is defined in Section 9.4 as P≥λ1
P<λ2

. Note that for n = nmax and p = pmax + 1,
P[q,nmax,pmax+1] projects onto all frequencies larger than λq,nmax,pmax

= λq,nmax+1,0. Errors which include

the frequency projector P[q,nmax,pmax+1] will be small enough to be absorbed into R̊q+1.

We shall frequently utilize sums of Littlewood-Paley projectors P[q,n,p] to decompose products of inter-

mittent pipe flows periodized to scale λ−1
q,ñ. These sums will be written in terms of three parameters

- n, p, and ñ. As a consequence of (7.6), (9.29), (9.23), and (9.22), we have that λq,ñ+1,0 ≤ λq,ñ for
0 ≤ ñ ≤ nmax, so that(

nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
P≥λq,ñ

= P≥λq,ñ+1,0
P≥λq,ñ

= P≥λq,ñ
. (7.7)

A consequence of (7.7) is that for T3

λq,ñ
-periodic functions29 where 0 ≤ ñ ≤ nmax,

f = −
ˆ
T3

f + P≥λq,ñ
f

= −
ˆ
T3

f + P≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
f. (7.8)

These equalities will be useful in the calculations in Section 8.3, and we will recall their significance when
we estimate the Type 1 errors in Section 8.6.

(5) R̊ñ
q+1 - Any stress term which satisfies the estimates required of R̊q+1 and which has already been

estimated at the ñth stage of the induction; that is, error terms arising from the addition of wq+1,n′ for

n′ ≤ ñ. We exclude R̊comm
q from R̊ñq+1, only absorbing it at the very end when we define R̊q+1. Thus

R̊ñ+1
q+1 = R̊ñq+1 +

(
errors coming from wq+1,ñ+1 that also go into R̊q+1

)
. (7.9)

29We note that in the second equality in (7.8), such functions do not have active frequencies in between λq,ñ+1,0 and λq,ñ.
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7.3 Induction on ñ

The first proposition asserts that there exists a perturbation wq+1,0 which we add to vℓq so that vq,0 :=
vℓq + wq+1,0 satisfies the following. First, vq,0 solves the Euler-Reynolds system with a righthand side

consisting of stresses R̊0
q+1 and H̊0

q,n,p which belong respectively to R̊q+1 and R̊q,n,p for 1 ≤ n ≤ nmax and
1 ≤ p ≤ pmax. Secondly, wq+1,0 satisfies estimates which in particular imply the inductive assumptions

required of the velocity perturbation wq+1 in (7.3).30 Thirdly, R̊0
q+1 satisfies the estimates required of R̊q+1

in the inductive assumption (6.118) (with an extra factor of smallness). Finally, each H̊0
q,n,p satisfies the

inductive assumptions required of R̊q,n,p in (6.118).

Proposition 7.3 (Induction on ñ: The Base Case ñ = 0). Under the assumptions of Proposition 7.1

(equivalently the conclusions of Lemma 5.1), there exist wq+1,0 =

pmax∑
p̃=1

wq+1,0,p = wq+1,0,1, R̊
0
q+1, and H̊

0
q,n,p

for 1 ≤ n ≤ nmax and 1 ≤ p ≤ pmax such that the following hold.

(1) vq,0 := vℓq + wq+1,0 solves

∂tvq,0 + div (vq,0 ⊗ vq,0) +∇pq,0 = div
(
R̊0
q+1

)
+ div

(
nmax∑
n=1

pmax∑
p=1

H̊0
q,n,p

)
+ div R̊comm

q (7.10a)

div vq,0 = 0. (7.10b)

(2) For all k+m ≤ Nfin,0−Ncut,t−Ncut,x−2Ndec−9 and 1 ≤ p̃ ≤ pmax (although only wq+1,0,1 is non-zero)

∥∥DkDm
t,qwq+1,0,p̃

∥∥
L2(suppψi,q)

≲ δ
1
2

q+1,0,p̃Γ
3+

Cb
2

q+1 λkq+1M
(
m,Nind,t, τ

−1
q Γi−c0+4

q+1 , τ̃−1
q Γ−1

q+1

)
. (7.11)

Furthermore, we have that

supp t(R̊q) ⊂ [T1, T2] ⇒ supp t(wq+1,0,p̃) ⊂
[
T1 − (λqδ

1/2
q Γq+1)

−1, T2 + (λqδ
1/2
q Γq+1)

−1
]
. (7.12)

(3) For all k,m ≤ 3Nind,v,∥∥∥ψi,qDkDm
t,qR̊

0
q+1

∥∥∥
L1

≲ Γ−CR
q+1Γ

−1
q+1δq+2λ

k
q+1M

(
m,Nind,t, τ

−1
q Γi+1

q+1, τ̃
−1
q Γ−1

q+1

)
. (7.13)

Furthermore, we have that
supp tR̊

0
q+1 ⊆ supp twq+1,0 . (7.14)

(4) For all k +m ≤ Nfin,n and 1 ≤ n ≤ nmax, 1 ≤ p ≤ pmax,∥∥∥DkDm
t,qH̊

0
q,n,p

∥∥∥
L1(suppψi,q)

≲ δq+1,n,pλ
k
q,n,pM

(
m,Nind,t, τ

−1
q Γi−cn

q+1 , τ̃
−1
q Γ−1

q+1

)
. (7.15)

Furthermore, we have that
supp tH̊

0
q,n,p ⊆ supp twq+1,0 . (7.16)

The second proposition assumes that perturbations wq+1,n′ have been added for n′ ≤ ñ−1 while satisfying

four criteria. First, vq,ñ−1 = vℓq +
∑

n′≤ñ−1

wq+1,n′ solves an Euler-Reynolds system with stresses R̊ñ−1
q+1 and

H̊n′

q,n,p. Secondly, the perturbations wq+1,n′ satisfy the inductive assumptions required of wq+1 in (7.3) for

n′ ≤ ñ− 1. Thirdly, R̊ñ−1
q+1 satisfies the inductive assumption (7.5) at level q+ 1. Finally, H̊n′

q,n,p satisfies the
assumption (6.118) in the parameter regime ñ ≤ n ≤ nmax, n

′ ≤ ñ− 1, 1 ≤ p ≤ pmax. The conclusion of the
proposition replaces each ñ− 1 in the assumptions with ñ.

30This is checked in Remark 8.3.
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Proposition 7.4 (Induction on ñ: From ñ − 1 to ñ for 1 ≤ ñ ≤ nmax − 1). Let 1 ≤ ñ ≤ nmax − 1 be
given, and let

vq,ñ−1 := vℓq +

ñ−1∑
n′=0

wq+1,n′ = vℓq +

ñ−1∑
n′=0

pmax∑
p′=1

wq+1,n′,p′ ,

R̊ñ−1
q+1 , and H̊

n′

q,n,p be given for n′ ≤ ñ − 1, ñ ≤ n ≤ nmax and 1 ≤ p, p′ ≤ pmax such that the following are
satisfied.

(1) vq,ñ−1 solves:

∂tvq,ñ−1 + div (vq,ñ−1 ⊗ vq,ñ−1) +∇pq,ñ−1

= div
(
R̊ñ−1
q+1

)
+ div

(
nmax∑
n=ñ

pmax∑
p=1

ñ−1∑
n′=0

H̊n′

q,n,p

)
+ div R̊comm

q (7.17a)

div vq,ñ−1 = 0 . (7.17b)

(2) For all k +m ≤ Nfin,n′ − Ncut,t − Ncut,x − 2Ndec − 9, n′ ≤ ñ− 1, and 1 ≤ p′ ≤ pmax,∥∥DkDm
t,qwq+1,n′,p′

∥∥
L2(suppψi,q)

≲ δ
1
2

q+1,n′,p′Γ
3+

Cb
2

q+1 λkq+1M
(
m,Nind,t, τ

−1
q Γ

i−cn′+4
q+1 , τ̃−1

q Γ−1
q+1

)
. (7.18)

Furthermore, we have that

supp t(R̊q,n′,p′) ⊂ [T1,n′,p′ , T2,n′,p′ ]

⇒ supp t(wq+1,n′,p′) ⊂
[
T1,n′,p′ − (λqδ

1/2
q Γq+1)

−1, T2,n′,p′ + (λqδ
1/2
q Γq+1)

−1
]
. (7.19)

(3) For all k,m ≤ 3Nind,v,∥∥∥ψi,qDkDm
t,qR̊

ñ−1
q+1

∥∥∥
L1

≲ Γ−CR
q+1Γ

−1
q+1δq+2λ

k
q+1M

(
m,Nind,t,Γ

i+1
q+1τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
. (7.20)

Furthermore, we have that

supp tR̊
ñ−1
q+1 ⊆

⋃
n′≤ñ−1

supp twq+1,n′ . (7.21)

(4) For all k +m ≤ Nfin,n, ñ ≤ n ≤ nmax, n
′ ≤ ñ− 1, and 1 ≤ p ≤ pmax,∥∥∥DkDm

t,qH̊
n′

q,n,p

∥∥∥
L1(suppψi,q)

≲ δq+1,n,pλ
k
q,n,pM

(
m,Nind,t, τ

−1
q Γi−cn

q+1 , τ̃
−1
q Γ−1

q+1

)
. (7.22)

Furthermore, we have that
supp tH̊

n′

q,n,p ⊆ supp twq+1,n′ . (7.23)

Then there exists wq+1,ñ such that (1)-(4) are satisfied with ñ− 1 replaced with ñ.

The final proposition considers the case ñ = nmax and shows that, under assumptions analogous to those
in Proposition 7.4, there exists wq+1,nmax such that all remaining errors after the addition of wq+1,nmax can

be absorbed into R̊q+1, thus verifying the conclusions of Proposition 7.1.

Proposition 7.5 (Induction on ñ: The Final Case ñ = nmax). Let

vq,nmax−1 := vℓq +

nmax−1∑
n′=0

wq+1,n′ = vℓq +

nmax−1∑
n′=0

pmax∑
p′=1

wq+1,n′,p′

R̊nmax−1
q+1 , and H̊n′

q,nmax,p be given for n′ ≤ nmax − 1 and 1 ≤ p, p′ ≤ pmax such that the following are satisfied.
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(1) vq,nmax−1 solves:

∂tvq,nmax−1 + div (vq,nmax−1 ⊗ vq,nmax−1) +∇pq,nmax−1

= div
(
R̊nmax−1
q+1

)
+ div

(
nmax−1∑
n′=0

pmax∑
p=1

H̊n′

q,nmax,p

)
+ div R̊comm

q (7.24a)

div vq,nmax−1 = 0 . (7.24b)

(2) For all k +m ≤ Nfin,n′ − Ncut,t − Ncut,x − 2Ndec − 9, n′ ≤ nmax − 1, and 1 ≤ p′ ≤ pmax,∥∥DkDm
t,qwq+1,n′,p′

∥∥
L2(suppψi,q)

≲ δ
1
2

q+1,n′,p′Γ
3+

Cb
2

q+1 λkq+1M
(
m,Nind,t, τ

−1
q Γ

i−cn′+4
q+1 , τ̃−1

q Γ−1
q+1

)
. (7.25)

Furthermore, we have that

supp t(R̊q,n′,p′) ⊂ [T1,n′,p′ , T2,n′,p′ ]

⇒ supp t(wq+1,n′,p′) ⊂
[
T1,n′,p′ − (λqδ

1/2
q Γq+1)

−1, T2,n′,p′ + (λqδ
1/2
q Γq+1)

−1
]
. (7.26)

(3) For all k,m ≤ 3Nind,v,∥∥∥ψi,qDkDm
t,qR̊

nmax−1
q+1

∥∥∥
L1

≲ Γ−CR
q+1Γ

−1
q+1δq+2λ

k
q+1M

(
m,Nind,t,Γ

i+1
q+1τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
. (7.27)

Furthermore, we have that

supp tR̊
nmax−1
q+1 ⊆

⋃
n′≤nmax−1

supp twq+1,n′ . (7.28)

(4) For all k +m ≤ Nfin,nmax
, n′ ≤ nmax − 1, and 1 ≤ p ≤ pmax∥∥∥DkDm

t,qH̊
n′

q,nmax,p

∥∥∥
L1(suppψi,q)

≲ δq+1,nmax,pλq,nmax,pM
(
m,Nind,t, τ

−1
q Γ

i−cnmax
q+1 , τ̃−1

q Γ−1
q+1

)
. (7.29)

Furthermore, we have that
supp tH̊

n′

q,n,p ⊆ supp twq+1,n′ . (7.30)

Then there exists wq+1,nmax
and R̊q+1 such that vq+1 := vq,nmax−1 +wq+1,nmax

and R̊q+1 satisfy conclusions
(7.2), (7.3), (7.4), and (7.5) from Proposition 7.1.

8 Proving the main inductive estimates

Because the proofs of Propositions 7.3, 7.4, and 7.5 will be comprised of multiple arguments with many
similarities, we divide up the proofs of the Propositions into sections corresponding to these arguments.31

First, we define R̊q,ñ,p̃ and wq+1,ñ,p̃ in Section 8.1 for each 0 ≤ ñ ≤ nmax and 1 ≤ p̃ ≤ pmax. Then, Section 8.2
collects estimates on wq+1,ñ,p̃, thus verifying (7.11) and (7.12), (7.18) and (7.19), and (7.25) and (7.26) at
levels ñ = 0, 1 ≤ ñ ≤ nmax−1, and ñ = nmax, respectively. Next, in Section 8.3 we separate out the different
types of error terms and write down the Euler-Reynolds system satisfied by vq,ñ, which verifies (7.10), (7.17),
and (7.24), again at the respective values of ñ.

The error estimates are then divided into five sections. The first section estimates the Type 1 oscillation
errors (notated with H̊ ñ

q,n,p), which are obtained via Littlewood-Paley projectors P[q,n,p]. In the parameter
regime 1 ≤ n ≤ nmax and 1 ≤ p ≤ pmax, Type 1 oscillation errors will satisfy the estimates (7.15), (7.22),

31This organization of proof avoids having to alternate between the definitions of wq+1,ñ,p̃ and R̊q,ñ,p̃ for all 1 ≤ ñ ≤ nmax and
1 ≤ p̃ ≤ pmax. We judge that it is wiser to define all the perturbations simultaneously under the assumptions of Propositions 7.3,
7.4, and 7.5. Namely, we assume that each R̊q,ñ,p̃ exists and satisfies the enumerated properties, some of which may not be
verified until later.
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and (7.29) at respective parameter values ñ = 0, 1 ≤ ñ ≤ nmax − 1, and ñ = nmax. The transport and
Nash errors are estimated in Sections 8.4 and 8.5. Type 1 oscillation errors obtained from P[q,nmax,pmax+1]

have a sufficiently high minimum frequency (from (7.6) specifically λq,nmax+1,0, which by a large choice of

nmax is very close to λq+1) to be absorbed into R̊q+1. The next section uses Proposition 4.8 to show that
on the support of a checkerboard cutoff function, Type 2 oscillation errors vanish. The divergence corrector
errors are estimated in Sections 8.8. The divergence corrector, Nash, and transport errors will always be
absorbed into R̊q+1 and thus must again satisfy one of (7.13), (7.20), or (7.27). Finally, the conclusions
(7.12), (7.14), (7.16), (7.19), (7.21), (7.23), (7.26), (7.28), and (7.30), concerning the time support will be
verified in Section 8.9.

8.1 Definition of R̊q,ñ,p̃ and wq+1,ñ,p̃

In this section we construct the perturbations wq+1,ñ. Before doing so, we recall the significance of each
parameter used to define the perturbations.

(a) ξ is the vector direction of the axis of the pipe

(b) i quantifies the amplitude of the velocity field vℓq along which the pipe will be flowed

(c) j quantifies the amplitude of the Reynolds stress

(d) k describes which time cut-off χi,k,q is active

(e) q + 1 is the stage of the overall convex integration scheme

(f) ñ and p̃ signify which higher order stress R̊q,ñ,p̃ is being corrected, and ñ also denotes the intermittency
parameter rq+1,ñ

(g) l⃗ = (l, w, h) is used to index the checkerboard cutoff functions. Recall that the admissible values of l, w,
and h range from 0 to λq,ñ,0 − 1 and thus depend on ñ.

8.1.1 The case ñ = 0

To define wq+1,0 =

pmax∑
p̃=1

wq+1,0,p = wq+1,0,1, we recall the notation R̊ℓq = R̊q,0 and set

Rq,0,1,j,i,k = ∇Φ(i,k)

(
δq+1,0,1Γ

2j+4
q+1 Id− R̊q,0

)
∇ΦT(i,k). (8.1)

For p̃ ≥ 2, we set Rq,0,p̃,j,i,k = 0. Fix values of i, j, and k. Let ξ ∈ Ξ be a vector from Proposition 4.1. For
all ξ ∈ Ξ, we define the coefficient function aξ,i,j,k,q,0,p̃,⃗l by

aξ,i,j,k,q,0,p̃,⃗l := aξ,i,j,k,q,0,p̃ := a(ξ) = δ
1/2
q+1,0,p̃Γ

j+2
q+1ηi,j,k,q,0,p̃,⃗lγξ

(
Rq,0,p̃,j,i,k

δq+1,0,p̃Γ
2j+4
q+1

)
. (8.2)

From Lemma 6.31, we see that on the support of η(i,j,k) we have |R̊q,0,p̃| ≤ Γ2j+2
q+1 δq+1,0,p̃, and thus by

estimate (6.108) from Corollary 6.27, for p̃ = 1 we have that∣∣∣∣∣ Rq,0,p̃,j,i,k

δq+1,0,p̃Γ
2j+4
q+1

− Id

∣∣∣∣∣ ≤ Γ−1
q+1 <

1

2

once λ0 is sufficiently large. Thus we may apply Proposition 4.1.
The coefficient function a(ξ) is then multiplied by an intermittent pipe flow

∇Φ−1
(i,k)Wξ,q+1,0 ◦ Φ(i,k),
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where we have used the objects defined in Proposition 4.4 and the shorthand notation

Wξ,q+1,0 = W(i,j,k,0,⃗l)
ξ,q+1,0 = Ws

ξ,q+1,0 = Ws
ξ,λq+1,rq+1,0

. (8.3)

The superscript s = (i, j, k, 0, l⃗) indicates the placement of the intermittent pipe flow Wi,j,k,0,p,⃗l
ξ,q+1,0 (cf. (2)

from Proposition 4.4), which depends on i, j, k, ñ = 0, and l⃗ and is only relevant in Section 8.7.32 To ease
notation, we will suppress the superscript except in Section 8.7. Furthermore, item 1 from Proposition 4.4
gives that

∇Φ−1
(i,k)Wξ,q+1,0 ◦ Φ(i,k) = curl

(
∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

)
.

We can now write the principal part of the first term of the perturbation as

w
(p)
q+1,0 =

∑
i,j,k,p̃

∑
l⃗

∑
ξ

a(ξ)curl
(
∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

)
:=

∑
i,j,k,p̃

∑
l⃗

∑
ξ

w(ξ). (8.4)

The notation w(ξ) implicitly encodes all indices and thus will be a useful shorthand for the principal part of
the perturbation. To make the perturbation divergence free, we add

w
(c)
q+1,0 =

∑
i,j,k,p̃

∑
l⃗

∑
ξ

∇a(ξ) ×
(
∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

)
=
∑
i,j,k,p̃

∑
l⃗

∑
ξ

w
(c)
(ξ) (8.5)

so that
wq+1,0 = w

(p)
q+1,0 + w

(c)
q+1,0 =

∑
i,j,k,p̃

∑
l⃗

∑
ξ

curl
(
a(ξ)∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

)
(8.6)

is divergence-free and mean-zero.

8.1.2 The case 1 ≤ ñ ≤ nmax

With wq+1,0 constructed, we construct wq+1,ñ =

pmax∑
p̃=1

wq+1,ñ,p̃ for 1 ≤ ñ ≤ nmax. For 1 ≤ p̃ ≤ pmax, we define

R̊q,ñ,p̃ =
∑

n′≤ñ−1

H̊n′

q,ñ,p̃. (8.7)

With this definition in hand, we set

Rq,ñ,p̃,j,i,k = ∇Φ(i,k)

(
δq+1,ñ,p̃Γ

2j+4
q+1 Id− R̊q,ñ,p̃

)
∇ΦT(i,k), (8.8)

and define the coefficient function aξ,i,j,k,q,ñ,p̃,⃗l by

aξ,i,j,k,q,ñ,p̃,⃗l = aξ,i,j,k,q,ñ,p̃ = a(ξ) = δ
1/2
q+1,ñ,p̃Γ

j+2
q+1ηi,j,k,q,ñ,p̃,⃗lγξ

(
Rq,ñ,p̃,j,i,k

δq+1,ñ,p̃Γ
2j+4
q+1

)
. (8.9)

By Lemma 6.31 and Corollary 6.27 as before, Rq,ñ,p̃,j,i,k/(δq+1,ñ,p̃Γ
2j+4
q+1 ) lies in the domain of γξ, as soon

as λ0 is sufficiently large (similarly to the display below (8.2)). The coefficient function is multiplied by an
intermittent pipe flow

∇Φ−1
(i,k)Wξ,q+1,ñ ◦ Φ(i,k) = curl

(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
,

where we have used the shorthand notation

Wξ,q+1,ñ = Wi,j,k,ñ,p̃,⃗l
ξ,q+1,ñ = Ws

ξ,q+1,ñ = Ws
ξ,λq+1,rq+1,ñ

. (8.10)

32Note that for p̃ ≥ 2, δq+1,0,p̃ = 0, so there is no need for the placement to depend on p̃ in this case, as wq+1,0,p̃ will
uniformly vanish.
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As before, the superscript s = (i, j, k, ñ, p̃, l⃗) refers to the placement of the pipe, depends on i, j, k, ñ, p̃, and

l⃗, and will be chosen in Section 8.7. Thus the principal part of the perturbation is defined by

w
(p)
q+1,ñ,p̃ =

∑
i,j,k

∑
l,w,h

∑
ξ

a(ξ)curl
(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
=
∑
i,j,k

∑
l,w,h

∑
ξ

w(ξ). (8.11)

As before, we add a corrector

w
(c)
q+1,ñ,p̃ =

∑
i,j,k

∑
l,w,h

∑
ξ

∇a(ξ) ×
(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
=
∑
i,j,k

∑
l,w,h

∑
ξ

w
(c)
(ξ), (8.12)

producing the divergence-free perturbation

wq+1,ñ =

pmax∑
p̃=1

wq+1,ñ,p̃ =

pmax∑
p̃=1

(
w

(p)
q+1,ñ,p̃ + w

(c)
q+1,ñ,p̃

)
=
∑
i,j,k,p̃

∑
l,w,h

∑
ξ

curl
(
a(ξ)∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
. (8.13)

8.2 Estimates for wq+1,ñ,p̃

In this section, we verify (7.11), (7.18), and (7.25). We first estimate the Lr norms of the coefficient functions
a(ξ). We have consolidated the proofs for each value of ñ into the following lemma.

Lemma 8.1. For N +M ≤ Nfin,ñ −Ncut,t −Ncut,x − 4, r ≥ 1, and r1, r2 ∈ [1,∞] with 1
r1

+ 1
r2

= 1, we have∥∥∥DNDM
t,qaξ,i,j,k,q,ñ,p̃,⃗l

∥∥∥
Lr

≲
∣∣supp (ηi,j,k,q,ñ,p̃,⃗l)∣∣ 1r δ1/2

q+1,ñ,p̃Γ
j+2
q+1 (Γq+1λq,ñ,p̃)

N M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
. (8.14)

Proof of Lemma 8.1. We begin by considering the case r = ∞. The general case r ≥ 1 will then follow from
the size of the support of a(ξ). Recalling estimate (6.125), we have that for all N +M ≤ Nfin,ñ − 4,∥∥∥DNDM

t,qR̊q,ñ,p̃

∥∥∥
L∞(supp η(i,j,k))

≲ δq+1,ñ,p̃Γ
2j+2
q+1 (Γq+1λq,ñ,p̃)

N M
(
M,Nind,t, τ

−1
q Γi−cñ+2

q+1 , τ̃−1
q Γ−1

q+1

)
.

From Corollary 6.27, we have that for all N +M ≤ 3Nfin/2,∥∥DNDM
t,qDΦ(i,k)

∥∥
L∞(supp (ψi,qχi,k,q))

≤ λ̃Nq M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q , τ̃−1

q Γ−1
q+1

)
.

Thus from the Leibniz rule and the definitions (8.8), (8.1), for N +M ≤ Nfin,ñ − 4,∥∥DNDM
t,qRq,ñ,p̃,j,i,k

∥∥
L∞(supp η(i,j,k))

≲ δq+1,ñ,p̃Γ
2j+4
q+1 (Γq+1λq,ñ,p̃)

N M
(
M,Nind,t, τ

−1
q Γi−cñ+2

q+1 , τ̃−1
q Γ−1

q+1

)
. (8.15)

The above estimates allow us to apply Lemma A.5 with N = N ′,M =M ′ so that N+M ≤ Nfin,ñ−4, ψ = γξ,
(which is allowable since by Proposition 4.1 we have thatDBγξ is bounded uniformly with respect to q, and we
have checked in Section 8.1 that the argument of γξ remains strictly within a ball of radius ε of the identity),

Γψ = 1, v = vℓq , Dt = Dt,q, h(x, t) = Rq,ñ,p̃,j,i,k(x, t), Ch = δq+1,ñ,p̃Γ
2j+4
q+1 = Γ2, λ = λ̃ = λq,ñ,p̃Γq+1,

µ = τ−1
q Γi−cñ+2

q+1 , µ̃ = τ̃−1
q Γ−1

q+1, and Nt = Nind,t. We obtain that for all N +M ≤ Nfin,ñ − 4,∥∥∥∥∥DNDM
t,qγξ

(
Rq,ñ,p̃,j,i,k

δq+1,ñ,p̃Γ
2j+4
q+1

)∥∥∥∥∥
L∞(supp η(i,j,k))

≲ (Γq+1λq,ñ,p̃)
N M

(
M,Nind,t, τ

−1
q Γi−cñ+2

q+1 , τ̃−1
q Γ−1

q+1

)
.
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From the above bound, definitions (8.2) and (8.9), the Leibniz rule, estimates (6.84), (6.97), (6.131), and
Lemma 6.40, we obtain that for N +M ≤ Nfin,ñ − Ncut,t − Ncut,x − 4,33∥∥DNDM

t,qa(ξ)
∥∥
L∞(supp η(i,j,k))

≲ δ
1/2
q+1,ñ,p̃Γ

j+2
q+1

∑
N ′+N ′′=N,
M ′+M ′′=M

∥∥∥DN ′
DM ′

t,q η(i,j,k)

∥∥∥
L∞

∥∥∥∥∥DN ′′
DM ′′

t,q γξ

(
Rq,ñ,p̃,j,i,k

δq+1,ñ,p̃Γ
2j+4
q+1

)∥∥∥∥∥
L∞(supp η(i,j,k))

≲ δ
1/2
q+1,ñ,p̃Γ

j+2
q+1

∑
N ′+N ′′=N,
M ′+M ′′=M

(Γq+1λq,ñ,p̃)
N ′

M
(
M ′,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)

× (Γq+1λq,ñ,p̃)
N ′′

M
(
M ′′,Nind,t, τ

−1
q Γi−cñ+2

q+1 , τ̃−1
q Γ−1

q+1

)
≲ δ

1/2
q+1,ñ,p̃Γ

j+2
q+1 (Γq+1λq,ñ,p̃)

N M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
.

This concludes the proof of (8.14) when r = ∞. For general r ≥ 1, we just note that supp (a(ξ)) ⊆
supp (ηi,j,k,q,n,p,⃗l).

An immediate consequence of Lemma 8.1 is that we have estimates for the velocity increments themselves.
These are summarized in the following corollary.

Corollary 8.2. For N +M ≤ Nfin,ñ − Ncut,t − Ncut,x − 2Ndec − 8 we have the following estimate∥∥DNDM
t,qw(ξ)

∥∥
Lr ≲

∣∣supp (ηi,j,k,q,ñ,p̃,⃗l)∣∣ 1r δ1/2
q+1,ñ,p̃Γ

j+2
q+1(rq+1,ñ)

2/r−1

× λNq+1M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
(8.16)

For N +M ≤ Nfin,ñ −Ncut,t −Ncut,x − 2Ndec − 9 and (r, r1, r2) ∈ {(1, 2, 2), (2,∞, 1)}, we have the following
estimates ∥∥∥DNDM

t,qw
(c)
(ξ)

∥∥∥
Lr

≲
Γq+1λq,ñ,p̃
λq+1

∣∣supp (ηi,j,k,q,ñ,p̃,⃗l)∣∣ 1r δ1/2
q+1,ñ,p̃Γ

j+2
q+1(rq+1,ñ)

2/r−1

× λNq+1M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
(8.17)∥∥DNDM

t,qwq+1,ñ,p̃

∥∥
Lr(suppψi,q)

≲ δ
1/2
q+1,ñ,p̃Γ

−2i+Cb
r1r +2+ 2

r

q+1 (rq+1,ñ)
2/r−1

× λNq+1M
(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
(8.18)

Finally, we have that

supp t(R̊q) ⊂ [T1, T2] ⇒ supp t(wq+1,ñ,p̃) ⊂
[
T1 − (λqδ

1/2
q )−1, T2 + (λqδ

1/2
q )−1

]
. (8.19)

Remark 8.3. By choosing r = 2, r2 = 1, and r1 = ∞ in (8.18) and recalling that (9.56) and (9.60b) give
that

δ
1/2
q+1,ñ,p̃ ≤ Γ−2

q+1δ
1/2
q+1, Nfin,ñ − Ncut,t − Ncut,x − 2Ndec − 9 ≥ 14Nind,v,

we may sum over ñ and p̃ in (8.18) and use the extra negative factor of Γq+1 to absorb any implicit constants.
Finally, from (9.42), we have that the cost of a sharp material derivative in (8.18) is sufficient to meet the
bounds in (7.3). Then we have verified (7.11), (7.18), and (7.25) at levels ñ = 0, 1 ≤ ñ < nmax, and
ñ = nmax, respectively, and (7.3).

33The limit on the number of derivatives comes from (6.131) and (8.15). The sharp cost of a material derivative comes from
(6.131).
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Proof of Corollary 8.2. Recalling the definition of w(ξ) from (8.4) and (8.13), we aim to prove the first

estimate by applying Remark A.9, with f = a(ξ)∇Φ−1
(i,k), Cf =

∣∣supp (ηi,j,k,q,ñ,p̃,⃗l)∣∣ 1r δ1/2
q+1,ñ,p̃Γ

j+2
q+1, Φ = Φ(i,k),

v = vℓq , λ = Γq+1λq,ñ,p̃, ζ = ζ̃ = λq+1, Cφ = r
2/r−1
q+1,ñ, µ = λq,ñ = λq+1rq+1,ñ, ν = τ−1

q Γi−cñ+3
q+1 , ν̃ = τ̃−1

q Γ−1
q+1,

g = Wξ,q+1,ñ, Nt = Nind,t, and N◦ = Nfin,ñ − Ncut,t − Ncut,x − 4. From (8.14) and Corollary 6.27, we have
that for N +M ≤ Nfin,ñ − Ncut,t − Ncut,x − 4,∥∥DNDM

t,qa(ξ)
∥∥
Lr ≲

∣∣supp (η(i,j,k))∣∣ 1r δ1/2
q+1,ñ,p̃Γ

j+2
q+1 (Γq+1λq,ñ,p̃)

N M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
(8.20)∥∥DNDM

t,q(DΦ(i,k))
−1
∥∥
L∞(supp (ψi,qχ̃i,k,q))

≤ λ̃Nq M
(
M,Nind,t,Γ

i−c0
q+1 τ

−1
q , τ̃−1

q Γ−1
q+1

)
, (8.21)∥∥DNΦ(i,k)

∥∥
L∞(supp (ψi,qχ̃i,k,q))

≲ Γ−1
q+1λ̃

N−1
q (8.22)∥∥∥DNΦ−1

(i,k)

∥∥∥
L∞(supp (ψi,qχ̃i,k,q))

≲ Γ−1
q+1λ̃

N−1
q (8.23)

showing that (A.30), (A.31), and (A.32) are satisfied. Recall that Wξ,q+1,ñ is periodic to scale

λ−1
q,ñ = (λq+1rq+1,ñ)

−1
=

(
λ
( 4

5 )
ñ+1

q λ
1−( 4

5 )
ñ+1

q+1

)−1

.

By (9.48) and (9.60a), we have that for all q, ñ, and p̃,

λ4q+1 ≤
(

λq,ñ

2π
√
3Γq+1λq,ñ,p̃

)Ndec

, 2Ndec + 4 ≤ Nfin,ñ − Ncut,t − Ncut,x − 5 (8.24)

and so the assumptions (A.34) and (A.35) from Lemma A.5 are satisfied. From the estimates in Proposi-

tion 4.4, we have that (A.33) is satisfied with ζ = ζ̃ = λq+1. We may thus apply Lemma A.7, Remark A.9
to obtain that for both choices of (r, r1, r2) and N +M ≤ Nfin,ñ − Ncut,t − Ncut,x − 2Ndec − 8,∥∥∥DN

(
DM
t,q

(
a(ξ)∇Φ−1

(i,k)

)
Wξ,q+1,ñ ◦ Φ(i,k)

)∥∥∥
Lr

≲
N∑
m=0

∣∣supp (η(i,j,k))∣∣ 1r δ1/2
q+1,ñ,p̃Γ

j+2
q+1 (Γq+1λq,ñ,p̃)

N−mM
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
∥DmWξ,q+1,ñ∥Lr

≲
N∑
m=0

∣∣supp (η(i,j,k))∣∣ 1r δ1/2
q+1,ñ,p̃Γ

j+2
q+1 (Γq+1λq,ñ,p̃)

N−mM
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
λmq+1 (rq+1,n)

2/r−1

≲
∣∣supp (η(i,j,k))∣∣ 1r δ1/2

q+1,ñ,p̃Γ
j+2
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
λNq+1 (rq+1,n)

2/r−1
.

Here we have used that λq+1 ≥ Γq+1λq,ñ,p̃ for all 0 ≤ n ≤ nmax and 1 ≤ p̃ ≤ pmax, and thus we have proven
(8.16).

The argument for the corrector is similar, save for the fact that Dt,q will land on ∇a(ξ), and so we require
an extra commutator estimate from Lemma A.14, specifically Remark A.15. Note that Dt,qΦ(i,k) = 0 gives

DM
t,qw

(c)
(ξ) = DM

t,q

(
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

))
=

∑
M ′+M ′′=M

c(M ′,M)
(
DM ′

t,q ∇a(ξ)
)
×
((
DM ′′

t,q ∇ΦT(i,k)

)
Uξ,q+1,ñ ◦ Φ(i,k)

)
.

Using (6.60) and (8.20) shows that (A.50) and (A.51) are satisfied with f = ∇a(ξ),

Cf =
∣∣supp (ηi,j,k,q,ñ,p̃,⃗l)∣∣ 1r δ1/2

q+1,ñ,p̃Γ
j+2
q+1Γq+1λq,ñ,p̃,

Cv = δ
1
2
q Γ

i+1
q+1, λv = λ̃v = λ̃q, µv = Γi−c0

q+1 τ
−1
q , Nt = Nind,t, µ̃v = τ̃−1

q Γ−1
q+1, λf = λ̃f = Γq+1λq,ñ,p̃, µf =

τ−1
q Γi−cñ+3

q+1 , and µ̃f = τ̃−1
q Γ−1

q+1. Applying Lemma A.14 (estimate (A.54)) as before, we obtain that for
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N +M ≤ Nfin,ñ − Ncut,t − Ncut,x − 5,∥∥DNDM
t,q∇a(ξ)

∥∥
Lr ≲

∣∣supp (η(i,j,k))∣∣ 1r δ1/2
q+1,ñ,p̃Γ

j+2
q+1(Γq+1λq,ñ,p̃)

N+1M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
.

(8.25)

In view of (8.21) and (8.24), we may apply Lemma A.7, Remark A.9, and the estimates from Proposition 4.4
to obtain that for N +M ≤ Nfin,ñ − Ncut,t − Ncut,x − 2Ndec − 9∥∥∥DNDM

t,q

(
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

))∥∥∥
Lr

≲
N∑
m=0

∣∣supp (η(i,j,k))∣∣ 1r δ1/2
q+1,ñ,p̃Γ

j+2
q+1Γq+1λq,ñ,p̃λ

N−m
q,ñ,p̃ M

(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
∥DmUξ,q+1,ñ∥Lr

≲ λm−1
q+1

N∑
m=0

∣∣supp (η(i,j,k))∣∣ 1r δ1/2
q+1,ñ,p̃Γ

j+2
q+1Γq+1λq,ñ,p̃λ

N−m
q,ñ,p̃ M

(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
(rq+1,n)

2
r−1

≲
Γq+1λq,ñ,p̃
λq+1

λNq+1

∣∣supp (η(i,j,k))∣∣ 1r δ1/2
q+1,ñ,p̃Γ

j+2
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
(rq+1,n)

2/r−1
, (8.26)

proving (8.17).
The final estimate (8.18) follows from the first two after recalling that ψi,q may overlap with ψi+1,q,

so that on the support of ψi,q, we will have to appeal to (8.14) at level i + 1. Then, we sum over l⃗ and
appeal to the bound (6.147). Next, we may sum on j, index which we recall from Lemma 6.35 is bounded
independently of q, and p̃, k. The powers of Γjq+1 cancel out since rr2 = 1. Next, we sum over p̃, which
is bounded independently of q, and recall that the parameter k, although not bounded independently of q,
corresponds to a partition of unity, so that the number of cutoff functions which may overlap at any fixed
point is finite and bounded independently of q.

8.3 Identification of error terms

In this section, we identify the error terms arising from the addition of wq+1,ñ =

pmax∑
p̃=1

wq+1,ñ,p̃. After doing

so, we can write down the Euler-Reynolds system satisfied by vq,ñ, in turn verifying at level ñ the conclusions
(7.10), (7.17), and (7.24) of Propositions 7.3, 7.4, and 7.5, respectively.

8.3.1 The case ñ = 0

By the inductive assumption of Proposition 7.3, we have that div vℓq = 0, and

∂tvℓq + div (vℓq ⊗ vℓq ) +∇pℓq = div R̊ℓq + div R̊comm
q .

Adding wq+1,0 as defined in (8.6), we obtain that vq,0 := vℓq + wq+1,0 solves

∂tvq,0 + div (vq,0 ⊗ vq,0) +∇pℓq
= (∂t + vℓq · ∇)wq+1,0 + wq+1,0 · ∇vℓq + div (wq+1,0 ⊗ wq+1,0) + div R̊ℓq + div R̊comm

q

:= T0 +N0 +O0 + div R̊ℓq + div R̊comm
q . (8.27)

For a fixed ñ, throughout this section we will consider sums over indices

(ξ, i, j, k, p̃, l⃗)

where the direction vector ξ takes on one of the finitely many values in Proposition 4.4, 0 ≤ i ≤ imax(q)
indexes the velocity cutoffs (there are finitely many such values, cf. (6.50)), 0 ≤ j ≤ jmax(q, ñ, p̃) indexes
the stress cutoffs (there are finitely many such values, cf. (6.129)), the parameter k indexes the time cutoffs
defined in (6.96) (the number of values of k is q-dependent, but this is irrelevant because they form a
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partition of unity cf. (6.94)), the parameter 1 ≤ p̃ ≤ pmax indexes which component of R̊q+1,ñ,p̃ we are

working with (there are finitely many such values, cf. (9.3)), and lastly, l⃗ indexes the checkerboard cutoffs
from Definition 6.39 (again, the number of such indexes is q-dependent, but this is acceptable because they
form a partition of unity cf. (6.139)). For brevity of notation, we denote sums over such indexes as∑

ξ,i,j,k,p̃,⃗l

.

Moreover, we shall denote as ∑
̸={ξ,i,j,k,p̃,⃗l}

(8.28)

the double-summation over indexes (ξ, i, j, k, p̃, l⃗) and (ξ∗, i∗, j∗, k∗, p∗, l⃗∗) which belong to the set{
(ξ, i, j, k, p̃, l⃗, ξ∗), (i∗, j∗, k∗, p∗, l⃗∗) : ξ ̸= ξ∗ ∨ i ̸= i∗ ∨ j ̸= j∗ ∨ k ̸= k∗ ∨ p̃ ̸= p∗ ∨ l⃗ ̸= l⃗∗

}
, (8.29)

although we remind the reader that at the current stage ñ = 0, the sum over p̃ is superfluous since wq+1,0 =
wq+1,0,1. For the sake of consistency between wq+1,0 and wq+1,ñ for 1 ≤ ñ ≤ nmax, we shall include the
index p̃ throughout this section. Expanding out the oscillation error O0, we have that

O0 =
∑

ξ,i,j,k,p̃,⃗l

div
(
curl

(
a(ξ)∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

)
⊗ curl

(
a(ξ)∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

))
+

∑
̸={ξ,i,j,k,p̃,⃗l}

div
(
curl

(
a(ξ)∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

)
⊗ curl

(
a(ξ∗)∇ΦT(i∗,k∗)Uξ∗,q+1,0 ◦ Φ(i∗,k∗)

))
:= divO0,1 + divO0,2. (8.30)

In Section 8.7, we will show that O0,2 is a Type 2 oscillation error so that

O0,2 = 0.

Recalling identity (4.14) and the notation (9.65), we further split O0,1 as

divO0,1 =
∑

ξ,i,j,k,p̃,⃗l

div
((
a(ξ)∇Φ−1

(i,k)Wξ,q+1,0 ◦ Φ(i,k)

)
⊗
(
a(ξ)∇Φ−1

(i,k)Wξ,q+1,0 ◦ Φ(i,k)

))
+ 2

∑
ξ,i,j,k,p̃,⃗l

div
((
a(ξ)∇Φ−1

(i,k)Wξ,q+1,0 ◦ Φ(i,k)

)
⊗s

(
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

)))
+

∑
ξ,i,j,k,p̃,⃗l

div
((

∇a(ξ) ×
(
∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

))
⊗
(
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

)))
:= div (O0,1,1 +O0,1,2 +O0,1,3) . (8.31)

Aside from O0,1,1, each of these terms is a divergence corrector error and will therefore be estimated in
Section 8.8.

Recall by Propositions 4.3, 4.4, and by (8.3) that Wξ,q+1,0 is periodized to scale (λq+1rq+1,0)
−1

= λ−1
q,0.

Using the definition of P[q,n,p] and (7.8), we have that34

Wξ,q+1,0 ⊗Wξ,q+1,0 = −
ˆ
T3

Wξ,q+1,0 ⊗Wξ,q+1,0

+ P≥λq,0

(
nmax∑
n=1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(Wξ,q+1,0 ⊗Wξ,q+1,0) .

34The case ñ = 0 is exceptional in the sense that the minimum frequency of P≥λq,0
and the minimum frequency of P[q,1,0]

are in fact both equal to λq,0 = λq,1,0 = λ
4
5
q λ

1
5
q+1 from (9.27) and (9.22). For the sake of consistency with the ñ ≥ 1 cases, we

will include the superfluous P≥λq,0
in the calculations in this section.
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Combining this observation with identity (4.15) from Proposition 4.4, and with the definition of the a(ξ) in
(8.2), we further split O0,1,1 as

div (O0,1,1) =
∑

ξ,i,j,k,p̃,⃗l

div

(
a2(ξ)∇Φ−1

(i,k)

(
−
ˆ
T3

Wξ,q+1,0 ⊗Wξ,q+1,0(Φ(i,k))

)
∇Φ−T

(i,k)

)

+
∑

ξ,i,j,k,p̃,⃗l

div

(
a2(ξ)∇Φ−1

(i,k)

× P≥λq,0

(
nmax∑
n=1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(W⊗W)ξ,q+1,0(Φ(i,k))∇Φ−T

(i,k)

)

= div
∑

i,j,k,p̃,⃗l

∑
ξ

δq+1,0,p̃Γ
2j+4
q+1 η

2
(i,j,k)γ

2
ξ

(
Rq,0,p̃,j,i,k

δq+1,0,p̃Γ
2j+4
q+1

)
∇Φ−1

(i,k) (ξ ⊗ ξ)∇Φ−T
(i,k)

+
∑

ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)

× P≥λq,0

(
nmax∑
n=1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(W⊗W)ξ,q+1,0(Φ(i,k))∇Φ−T

(i,k)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθ

× P≥λq,0

(
nmax∑
n=1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(WθWγ)ξ,q+1,0(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ . (8.32)

By Proposition 4.1, equation (4.1), and the definition (8.1), we may rewrite the first term on the right side
of the above display as

div
∑

i,j,k,p̃,⃗l

∑
ξ

δq+1,0,p̃Γ
2j+4
q+1 η

2
(i,j,k)γ

2
ξ

(
Rq,0,p̃,j,i,k

δq+1,0,p̃Γ
2j+4
q+1

)
∇Φ−1

(i,k) (ξ ⊗ ξ)∇Φ−T
(i,k)

= div
∑
i,j,k,⃗l

η2(i,j,k)

(
δq+1,0,1Γ

2j+4
q+1 Id− R̊ℓq

)

= −div
∑
i,j,k,⃗l

η2(i,j,k)R̊ℓq +∇

∑
i,j,k,⃗l

η2(i,j,k)δq+1,0,1Γ
2j+4
q+1


:= −div

(
R̊ℓq

)
+∇π (8.33)

In the last equality of the above display we have used the fact that by (6.142) we have

R̊ℓq =
∑
i,j,k,⃗l

η2(i,j,k)R̊ℓq . (8.34)

We apply Proposition A.18 to the remaining two terms from (8.32) to define for 1 ≤ n ≤ nmax and 1 ≤ p ≤
pmax

35

H̊0
q,n,p := H

( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,0

P[q,n,p](Wξ,q+1,0 ⊗Wξ,q+1,0)(Φ(i,k))∇Φ−T
(i,k)

35Recall that H is the local portion of the inverse divergence operator. The pressure and the nonlocal portion will be accounted
for shortly. We will check in Section 8.6 that these errors are of the form required by the inverse divergence operator as well as
check the associated estimates.
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+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,0

P[q,n,p](Wθ
ξ,q+1,0W

γ
ξ,q+1,0)(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

)
. (8.35)

The last terms from (8.32) with P[q,nmax,pmax+1] will be absorbed into R̊q+1, whereas the terms in (8.35)
correspond to the error terms in (7.15).

Before amalgamating the preceding calculations, we pause to calculate the means of various terms to
which the inverse divergence operator from Proposition A.18 will be applied. Examining the equality

∂tvq,0 + div (vq,0 ⊗ vq,0) +∇pℓq = T0 +N0 +O0 + div R̊ℓq + div R̊comm
q (8.36)

and recalling the definitions of T0, N0, and O0, we see immediately that every term can be written as the
divergence of a tensor except for ∂tvq,0 and T0. Note however that vq,0 = vℓq + wq+1,0, that

´
T3 ∂tvℓq = 0

(by integrating in space (5.2)), and that wq+1,0 is the curl of a vector field (cf. (8.13)). This shows that´
T3 ∂tvq,0 = 0, and thus

´
T3 T0 = 0 as well. Therefore, we may use (A.72) and (A.78) write

T0 = div ((H+R∗) T0) +∇P.
We can now combine the calculations of (8.27), (8.30), (8.31), (8.32), (8.33) (8.34), and (8.35) and let the
notation ∇π change from line to line to incorporate all the pressure terms to write that

∂tvq,0 + div (vq,0 ⊗ vq,0) +∇pℓq
= T0 +N0 +O0 + div R̊ℓq + div R̊comm

q

= T0 +N0 + div (O0,1) + div (O0,2) + div R̊ℓq + div R̊comm
q

= T0 +N0 + div
(
R̊ℓq +O0,1,1

)
+ div (O0,1,2 +O0,1,3 +O0,2) + div R̊comm

q

= T0 +N0 +∇π

+ div (H+R∗)

[ ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)

× P≥λq,0

(
nmax∑
n=1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(Wξ,q+1,0 ⊗Wξ,q+1,0)(Φ(i,k))∇Φ−T

(i,k)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθ

× P≥λq,0

(
nmax∑
n=1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(WθWγ)ξ,q+1,0(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

]
(8.37)

+ div (O0,1,2 +O0,1,3 +O0,2) + div R̊comm
q

= ∇π + div

[
(H+R∗) (T0)︸ ︷︷ ︸

transport

+(H+R∗) (N0)︸ ︷︷ ︸
Nash

+R̊comm
q (8.38)

+ (H+R∗)

( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)P[q,nmax,pmax+1](Wξ,q+1,0 ⊗Wξ,q+1,0)(Φ(i,k))∇Φ−T

(i,k)︸ ︷︷ ︸
Type 1 - part of R̊0

q+1

(8.39)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP[q,nmax,pmax+1](Wθ

ξ,q+1,0W
γ
ξ,q+1,0)(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ︸ ︷︷ ︸
Type 1 - part of R̊0

q+1

)
(8.40)

+R∗
( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,0

(
nmax∑
n=1

pmax∑
p=1

P[q,n,p]

)
(Wξ,q+1,0 ⊗Wξ,q+1,0)(Φ(i,k))∇Φ−T

(i,k)︸ ︷︷ ︸
Type 1 - part of R̊0

q+1

(8.41)
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+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,0

(
nmax∑
n=1

pmax∑
p=1

P[q,n,p]

)
(Wθ

ξ,q+1,0W
γ
ξ,q+1,0)(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ︸ ︷︷ ︸
Type 1 - part of R̊0

q+1

)
(8.42)

+ O0,1,2 +O0,1,3︸ ︷︷ ︸
divergence corrector

+ O0,2︸︷︷︸
Type 2

]
(8.43)

+ divH
( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,0

(
nmax∑
n=1

pmax∑
p=1

P[q,n,p]

)
(Wξ,q+1,0 ⊗Wξ,q+1,0)(Φ(i,k))∇Φ−T

(i,k)︸ ︷︷ ︸
Type 1 - H̊0

q,n,p

(8.44)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,0

(
nmax∑
n=1

pmax∑
p=1

P[q,n,p]

)
(Wθ

ξ,q+1,0W
γ
ξ,q+1,0)(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ︸ ︷︷ ︸
Type 1 - H̊0

q,n,p

)
(8.45)

:= div (R̊0
q+1) + div

(
nmax∑
n=1

pmax∑
p=1

H̊0
q,n,p

)
+∇π + div R̊comm

q ,

thus verifying (7.10) from Proposition 7.3 after condensing the labeled terms into R̊0
q+1 and using (8.35) on

the pieces labeled H̊0
q,n,p.

8.3.2 The case 1 ≤ ñ ≤ nmax − 1

From (7.17), we assume that vq,ñ−1 is divergence-free and is a solution to

∂tvq,ñ−1+div (vq,ñ−1 ⊗ vq,ñ−1) +∇pq,ñ−1

= div
(
R̊ñ−1
q+1

)
+ div

(
nmax∑
n=ñ

pmax∑
p=1

ñ−1∑
n′=0

H̊n′

q,n,p

)
+ div R̊comm

q .

Now using the definition of R̊q,ñ,p̃ from (8.7) and adding wq+1,ñ as defined in (8.13), we have that vq,ñ :=
vq,ñ−1 + wq+1,ñ = vℓq +

∑
0≤n′≤ñ−1 wq+1,n′ + wq+1,ñ solves

∂tvq,ñ+div (vq,ñ ⊗ vq,ñ) +∇pq,ñ−1

= div
(
R̊ñ−1
q+1

)
+ div

(
nmax∑
n=ñ+1

pmax∑
p=1

ñ−1∑
n′=0

H̊n′

q,n,p

)
+ div R̊comm

q

+ (∂t + vℓq · ∇)wq+1,ñ + wq+1,ñ · ∇vℓq
+

∑
n′≤ñ−1

div (wq+1,ñ ⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,ñ)

+ div

wq+1,ñ ⊗ wq+1,ñ +

pmax∑
p̃=1

R̊q,ñ,p̃

 . (8.46)

The first term on the right hand side is R̊ñ−1
q+1 , which satisfies the same estimates as R̊ñq+1 by (7.20) and will

thus be absorbed into R̊ñq+1 (these estimates do not change in ñ save for implicit constants). The second
term, save for the fact that the sum is over n′ ≤ ñ− 1 rather than n′ ≤ ñ and is therefore missing the terms
H̊ ñ
q,n,p, matches (7.17) at level ñ (i.e. replacing every instance of ñ − 1 with ñ). As before, we apply the

inverse divergence operators from Proposition A.18 to the transport and Nash errors to obtain

(∂t + vℓq · ∇)wq+1,ñ + wq+1,ñ · ∇vℓq = div
(
(H+R∗)

(
(∂t + vℓq · ∇)wq+1,ñ + wq+1,ñ · ∇vℓq

))
+∇π,
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and these errors are absorbed into R̊ñq+1 or the new pressure. We will show in Section 8.7 that the interaction
of wq+1,ñ with previous terms wq+1,n′ is a Type 2 oscillation error so that∑

n′≤ñ−1

(wq+1,ñ ⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,ñ) = 0. (8.47)

So to verify (7.17) at level ñ, only the analysis of

div

wq+1,ñ ⊗ wq+1,ñ +

pmax∑
p̃=1

R̊q,ñ,p̃


remains. Reusing the notations from (8.28)36 and writing out the self-interaction of wq+1,ñ yields

div (wq+1,ñ ⊗ wq+1,ñ) =
∑

ξ,i,j,k,p̃,⃗l

div
(
curl

(
a(ξ)∇ΦT(i,k)Uξ,q+1,ñ

)
⊗ curl

(
a(ξ)∇ΦTi,kUξ,q+1,ñ

))
+

∑
̸={ξ,i,j,k,p̃,⃗l}

div
(
curl

(
a(ξ)∇ΦT(i,k)Uξ,q+1,ñ

)
⊗ curl

(
a(ξ′)∇ΦT(i′,k′)Uξ′,q+1,ñ

))
:= divOñ,1 + divOñ,2. (8.48)

As before, we will show that Oñ,2 is a Type 2 oscillation error so that

Oñ,2 = 0.

Splitting Oñ,1 gives

divOñ,1 =
∑

ξ,i,j,k,p̃,⃗l

div
((
a(ξ)∇Φ−1

(i,k)Wξ,q+1,ñ ◦ Φ(i,k)

)
⊗
(
a(ξ)∇Φ−1

(i,k)Wξ,q+1,ñ ◦ Φ(i,k)

))
+ 2

∑
ξ,i,j,k,p̃,⃗l

div
((
a(ξ)∇Φ−1

(i,k)Wξ,q+1,ñ ◦ Φ(i,k)

)
⊗s

(
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)))
+

∑
ξ,i,j,k,p̃,⃗l

div
((

∇a(ξ) ×
(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

))
⊗
(
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)))
:= div (Oñ,1,1 +Oñ,1,2 +Oñ,1,3) . (8.49)

The last two of these terms are again divergence corrector errors and will therefore be absorbed into R̊ñq+1

and estimated in Section 8.8. So the only terms remaining from (8.46) are Oñ,1,1 and
∑pmax

p̃=1 R̊q,ñ,p̃, which
are analyzed in a fashion similar to the ñ = 0 case, save for the fact that summation over p̃ is now crucial.

Recall cf. (8.10) that Wξ,q+1,ñ is periodized to scale (λq+1rq+1,ñ)
−1

= λ−1
q,ñ. Using (7.8), we have that

Wξ,q+1,ñ ⊗Wξ,q+1,ñ = −
ˆ
T3

Wξ,q+1,ñ ⊗Wξ,q+1,ñ

+ P≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(Wξ,q+1,ñ ⊗Wξ,q+1,ñ) .

Combining this division with identity (4.15) from Proposition 4.4, we further split Oñ,1,1 as

div (Oñ,1,1) =
∑

ξ,i,j,k,p̃,⃗l

div

(
a2(ξ)∇Φ−1

(i,k)

(
−
ˆ
T3

Wξ,q+1,ñ ⊗Wξ,q+1,ñ(Φ(i,k))

)
∇Φ−T

(i,k)

)
36In a slight abuse of notation, notice that the admissible values of l⃗ have changed, since these parameters describe the

checkerboard cutoff functions at scale λ−1
q,ñ,1

and thus depend on ñ.
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+
∑

ξ,i,j,k,p̃,⃗l

div

(
a2(ξ)∇Φ−1

(i,k)

× P≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(W⊗W)ξ,q+1,ñ(Φ(i,k))∇Φ−T

(i,k)

)

= div
∑

i,j,k,p̃,⃗l

∑
ξ

δq+1,ñ,p̃Γ
2j+4
q+1 η

2
(i,j,k)γ

2
ξ

(
Rq,ñ,p̃,j,i,k

δq+1,ñ,p̃Γ
2j+4
q+1

)
∇Φ−1

(i,k) (ξ ⊗ ξ)∇Φ−T
(i,k)

+
∑

ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)

× P≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(W⊗W)ξ,q+1,ñ(Φ(i,k))∇Φ−T

(i,k)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθ

× P≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(WθWγ)ξ,q+1,ñ(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ . (8.50)

By Proposition 4.1, equation (4.1), and identity (8.8), we obtain that

div
∑

i,j,k,p̃,⃗l

∑
ξ

δq+1,ñ,p̃Γ
2j+4
q+1 η

2
(i,j,k)γ

2
ξ

(
Rq,ñ,p̃,j,i,k

δq+1,ñ,p̃Γ
2j+4
q+1

)
∇Φ−1

(i,k) (ξ ⊗ ξ)∇Φ−T
(i,k)

= div
∑

i,j,k,p̃,⃗l

η2(i,j,k)

δq+1,ñ,p̃Γ
2j+4
q+1 Id−

pmax∑
p̃=1

R̊q,ñ,p̃


= −div

∑
i,j,k,⃗l

pmax∑
p̃=1

η2(i,j,k)R̊q,ñ,p̃ +∇

∑
i,j,k,⃗l

η2(i,j,k)δq+1,ñ,p̃Γ
2j+4
q+1


:= −div

pmax∑
p̃=1

R̊q,ñ,p̃ +∇π , (8.51)

where in the last equality we have appealed to (6.142). We can finally apply Proposition A.18 to the
remaining terms in (8.50) for ñ+ 1 ≤ n ≤ nmax and 1 ≤ p ≤ pmax to define

H̊ ñ
q,n,p := H

( ∑
ξ,i,j,k,p̃

∇a2(ξ)∇Φ−1
(i,k)P≥λq,ñ

P[q,n,p](Wξ,q+1,ñ ⊗Wξ,q+1,ñ)(Φ(i,k))∇Φ−T
(i,k)

+
∑

ξ,i,j,k,p̃

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,ñ

P[q,n,p](Wθ
ξ,q+1,ñW

γ
ξ,q+1,ñ)(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

)
. (8.52)

As before, the terms from (8.50) with P[q,nmax,pmax+1] will be absorbed into R̊ñq+1. We will show shortly that

the terms H̊ ñ
q,n,p in (8.52) are precisely the terms needed to make (8.46) match (7.17) at level ñ. As before,

any nonlocal inverse divergence terms will be absorbed into R̊ñq+1.

Recall from (7.9) that R̊ñq+1 will include R̊ñ−1
q+1 in addition to error terms arising from the addition of

wq+1,ñ which are small enough to be absorbed in R̊q+1. Then to check (7.17), we return to (8.46) and use
(8.48), (8.49), (8.50), (8.51), and (8.52) to write

∂tvq,ñ + div (vq,ñ ⊗ vq,ñ) +∇pq,ñ−1

= div

(
nmax∑
n=ñ+1

pmax∑
p=1

ñ−1∑
n′=0

H̊n′

q,n,p

)
+ div

(
R̊ñ−1
q+1

)
+ div R̊comm

q
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+ (∂t + vℓq · ∇)wq+1,ñ + wq+1,ñ · ∇vℓq
+

∑
n′≤ñ−1

div (wq+1,ñ ⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,ñ)

+ div

wq+1,ñ ⊗ wq+1,ñ +

pmax∑
p̃=1

R̊q,ñ,p̃


= div R̊comm

q + div

(
nmax∑
n=ñ+1

pmax∑
p=1

ñ−1∑
n′=0

H̊n′

q,n,p

)
+ div

(
R̊ñ−1
q+1 + (H+R∗)

(
∂twq+1,ñ + vℓq · ∇wq+1,ñ

)
+ (H+R∗)

(
wq+1,ñ · ∇vℓq

)
+

∑
n′≤ñ−1

(wq+1,ñ ⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,ñ)

)

+ div (Oñ,1,2 +Oñ,1,3 +Oñ,2) +∇π + div

Oñ,1,1 +

pmax∑
p̃=1

R̊q,ñ,p̃


= div R̊comm

q + div

(
nmax∑
n=ñ+1

pmax∑
p=1

ñ−1∑
n′=0

H̊n′

q,n,p

)
+ div

(
R̊ñ−1
q+1 + (H+R∗)

(
∂twq+1,ñ + vℓq · ∇wq+1,ñ

)
+ (H+R∗)

(
wq+1,ñ · ∇vℓq

)
+

∑
n′≤ñ−1

(wq+1,ñ ⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,ñ)

)
+ div (Oñ,1,2 +Oñ,1,3 +Oñ,2) +∇π

+ div

[
(H+R∗)

( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)

× P≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(W⊗W)ξ,q+1,ñ(Φ(i,k))∇Φ−T

(i,k)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθ

× P≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(WθWγ)ξ,q+1,ñ(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

)]
(8.53)

= div R̊comm
q + div

(
nmax∑
n=ñ+1

pmax∑
p=1

ñ−1∑
n′=0

H̊n′

q,n,p

)
+ div

(
R̊ñ−1
q+1 + (H+R∗)

(
∂twq+1,ñ + vℓq · ∇wq+1,ñ

)︸ ︷︷ ︸
transport

(8.54)

+ (H+R∗)
(
wq+1,ñ · ∇vℓq

)︸ ︷︷ ︸
Nash

+
∑

n′≤ñ−1

(wq+1,ñ ⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,ñ)︸ ︷︷ ︸
Type 2

)
(8.55)

+ div

(
Oñ,1,2 +Oñ,1,3︸ ︷︷ ︸
divergence corrector

+ Oñ,2︸︷︷︸
Type 2

)
+∇π (8.56)

+ div

[
(H+R∗)

( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)P[q,nmax,pmax+1](Wξ,q+1,ñ ⊗Wξ,q+1,ñ)(Φ(i,k))∇Φ−T

(i,k)︸ ︷︷ ︸
Type 1 - part of R̊ñ

q+1

(8.57)
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+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP[q,nmax,pmax+1](Wθ

ξ,q+1,ñW
γ
ξ,q+1,ñ)(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

)
︸ ︷︷ ︸

Type 1 - part of R̊ñ
q+1

(8.58)

+R∗
( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)

× P≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(W⊗W)ξ,q+1,ñ(Φ(i,k))∇Φ−T

(i,k)︸ ︷︷ ︸
Type 1 - part of R̊ñ

q+1

(8.59)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθ

× P≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
(WθWγ)ξ,q+1,ñ(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ︸ ︷︷ ︸
Type 1 - part of R̊ñ

q+1

)]
(8.60)

+ div H
[ ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p]

)
(W⊗W)ξ,q+1,ñ(Φ(i,k))∇Φ−T

(i,k)︸ ︷︷ ︸
Type 1 - H̊ñ

q,n,p

(8.61)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,ñ

(
nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p]

)
(WθWγ)ξ,q+1,ñ(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

]
︸ ︷︷ ︸

Type 1 - H̊ñ
q,n,p

(8.62)

= div R̊comm
q + div R̊ñq+1 + div

nmax∑
n=ñ+1

pmax∑
p=1

ñ∑
n′=0

H̊n′

q,n,p +∇π,

which concludes the proof after identifying the first seven lines (save for the double sum of H̊n′

q,n terms) of the

second to last equality as R̊ñq+1 and using (8.52) to incorporate the eighth and ninth lines into the new double

sum of H̊n′

q,n terms. Note that we have implicitly used in the above equalities that
(
∂t + vℓq · ∇

)
wq+1,ñ has

zero mean, which can be deduced in the same fashion as for the case ñ = 0.

8.3.3 The case ñ = nmax

From (7.24), we assume that vq,nmax−1 is divergence-free and is a solution to

∂tvq,nmax−1+div (vq,nmax−1 ⊗ vq,nmax−1) +∇pq,nmax−1

= div
(
R̊nmax−1
q+1

)
+ div

(
nmax−1∑
n′=0

pmax∑
p=1

H̊n′

q,nmax,p

)
+ div R̊comm

q .

Now using the definition of R̊q,nmax,p from (8.7) and adding wq+1,nmax as defined in (8.13), we have that
vq+1 := vq,nmax−1 + wq+1,nmax solves

∂tvq+1+div (vq+1 ⊗ vq+1) +∇pq,nmax−1

= div R̊comm
q + div

(
R̊nmax−1
q+1

)
+ (∂t + vℓq · ∇)wq+1,nmax

+ wq+1,nmax
· ∇vℓq

+
∑

n′≤nmax−1

div (wq+1,nmax
⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,nmax

)
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+ div

(
wq+1,nmax ⊗ wq+1,nmax +

pmax∑
p=1

R̊q,nmax,p

)
. (8.63)

We absorb the term div
(
R̊nmax−1
q+1

)
into R̊q+1 immediately. We will then show that up to a pressure term,

(H+R∗)
((
∂t + vℓq · ∇

)
wq+1,nmax

)
, (H+R∗)

(
wq+1,nmax · ∇vℓq

)
can be absorbed into R̊q+1 in Sections 8.4 and 8.5, respectively. We will be show in 8.7 that the interaction
of wq+1,nmax

with previous perturbations wq+1,n′ will satisfy∑
n′≤nmax−1

(wq+1,nmax
⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,nmax

) = 0. (8.64)

Thus it remains to analyze

div

(
wq+1,nmax

⊗ wq+1,nmax
+

pmax∑
p=1

R̊q,nmax

)
from (8.63). Reusing the notations from (8.28)–(8.29), we can write out the self-interaction of wq+1,nmax

as

div (wq+1,nmax
⊗ wq+1,nmax

)

=
∑

ξ,i,j,k,p,⃗l

div
(
curl

(
a(ξ)∇ΦT(i,k)Uξ,q+1,nmax

)
⊗ curl

(
a(ξ)∇ΦTi,kUξ,q+1,nmax

))
+

∑
̸={ξ,i,j,k,p,⃗l}

div
(
curl

(
a(ξ)∇ΦT(i,k)Uξ,q+1,nmax

)
⊗ curl

(
a(ξ′)∇ΦT(i′,k′)Uξ′,q+1,nmax

))
:= divOnmax,1 + divOnmax,2. (8.65)

As before, we will show in Section 8.7 that Onmax,2 is a Type 2 oscillation error and so

Onmax,2 = 0.

Splitting Onmax,1 gives

divOnmax,1 =
∑

ξ,i,j,k,p,⃗l

div
((
a(ξ)∇Φ−1

(i,k)Wξ,q+1,nmax ◦ Φ(i,k)

)
⊗
(
a(ξ)∇Φ−1

(i,k)Wξ,q+1,nmax ◦ Φ(i,k)

))
+ 2

∑
ξ,i,j,k,p,⃗l

div
((
a(ξ)∇Φ−1

(i,k)Wξ,q+1,nmax ◦ Φ(i,k)

)
⊗s

(
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,nmax ◦ Φ(i,k)

)))
+

∑
ξ,i,j,k,p,⃗l

div
((

∇a(ξ) ×
(
∇ΦT(i,k)Uξ,q+1,nmax ◦ Φ(i,k)

))
⊗
(
∇a(ξ) ×

(
∇ΦT(i,k)Uξ,q+1,nmax ◦ Φ(i,k)

)))
:= div (Onmax,1,1 +Onmax,1,2 +Onmax,1,3) . (8.66)

The last two of these three terms are again divergence corrector errors and will therefore be absorbed into
R̊q+1 and estimated in Section 8.8.

Recall cf. (8.3) that Wξ,q+1,nmax
is periodized to scale (λq+1rq+1,nmax

)
−1

= λ−1
q,nmax

. Combining this
observation with (4.15) from Proposition 4.4 and (7.8), we further split Onmax,1,1 as37

div (Onmax,1,1) =
∑

ξ,i,j,k,p,⃗l

div

(
a2(ξ)∇Φ−1

(i,k)

(
−
ˆ
T3

Wξ,q+1,nmax ⊗Wξ,q+1,nmax(Φ(i,k))

)
∇Φ−T

(i,k)

)
+

∑
ξ,i,j,k,p,⃗l

div
(
a2(ξ)∇Φ−1

(i,k)P≥λq,nmax
P[q,nmax,pmax+1](Wξ,q+1,nmax

⊗Wξ,q+1,nmax
)(Φ(i,k))∇Φ−T

(i,k)

)
37In this case, P≥λq,nmax

has a greater minimum frequency than P[q,nmax,pmax+1], cf. (9.28), (9.22), and (7.6). For the sake
of consistency, we write P≥λq,nmax

P[q,nmax,pmax+1] throughout this section.
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= div
∑

i,j,k,p,⃗l

∑
ξ

δq+1,nmax,pΓ
2j+4
q+1 η

2
(i,j,k)γ

2
ξ

(
Rq,nmax,p,j,i,k

δq+1,nmax,pΓ
2j+4
q+1

)
∇Φ−1

(i,k) (ξ ⊗ ξ)∇Φ−T
(i,k)

+
∑

ξ,i,j,k,p,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,nmax

P[q,nmax,pmax+1](Wξ,q+1,nmax ⊗Wξ,q+1,nmax)(Φ(i,k))∇Φ−T
(i,k)

+
∑

ξ,i,j,k,p,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,nmax

P[q,nmax,pmax+1](Wθ
ξ,q+1,nmax

Wγ
ξ,q+1,nmax

)(Φ(i,k))∂α(∇Φ−1
(i,k))ζγ . (8.67)

By (4.1) from Proposition 4.1 and (8.8), we obtain that

div
∑

i,j,k,p,⃗l

∑
ξ

δq+1,nmax,pΓ
2j+4
q+1 η

2
(i,j,k)γ

2
ξ

(
Rq,nmax,p,j,i,k

δq+1,nmax,pΓ
2j+4
q+1

)
∇Φ−1

(i,k) (ξ ⊗ ξ)∇Φ−T
(i,k)

= div
∑

i,j,k,p,⃗l

η2(i,j,k)

(
δq+1,nmax,pΓ

2j+4
q+1 Id− R̊q,nmax,p

)

= −div
∑
i,j,k,⃗l

pmax∑
p=1

η2(i,j,k)R̊q,nmax,p +∇

 ∑
i,j,k,p,⃗l

η2(i,j,k)δq+1,nmax,pΓ
2j+4
q+1


:= −div

pmax∑
p=1

R̊q,nmax,p +∇π , (8.68)

where in the last line we have used (6.142). We can apply Proposition A.18 to the remaining two terms in
(8.67) to produce the terms

(H+R∗)

( ∑
ξ,i,j,k,p,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,nmax

P[q,nmax,pmax+1](W⊗W)ξ,q+1,nmax
(Φ(i,k))∇Φ−T

(i,k)

+
∑

ξ,i,j,k,p,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,nmax

P[q,nmax,pmax+1](WθWγ)ξ,q+1,nmax
(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

)
, (8.69)

which will be absorbed into R̊q+1 and estimated in Section 8.6.

Before combining the previous steps, we remind the reader that at this point, R̊q+1 will be fully defined,

and will include R̊nmax−1
q+1 , all the error terms arising from the addition of wq+1,nmax , and R̊

comm
q . Then from

(8.63), (8.64), (8.65), (8.66), (8.67), (8.68), and (8.69), we can finally write that

∂tvq+1 + div (vq+1 ⊗ vq+1) +∇pq,nmax−1

= div R̊comm
q + div

(
R̊nmax−1
q+1

)
+ (∂t + vℓq · ∇)wq+1,nmax

+ wq+1,nmax
· ∇vℓq

+
∑

n′≤nmax−1

div (wq+1,nmax
⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,nmax

)

+ div

(
wq+1,nmax

⊗ wq+1,nmax
+

pmax∑
p=1

R̊q,nmax,p

)

= div R̊comm
q + div

(
R̊nmax−1
q+1 + (H+R∗)

(
∂twq+1,nmax

+ vℓq · ∇wq+1,nmax

)
+ (H+R∗)

(
wq+1,nmax

· ∇vℓq
)
+

∑
n′≤nmax−1

(wq+1,nmax
⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,nmax

)

)

+ div

(
Onmax,1,1 +Onmax,1,2 +Onmax,1,3 +Onmax,2 +

pmax∑
p=1

R̊q,nmax,p

)
+∇π
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= div R̊comm
q + div

(
R̊nmax−1
q+1 + (H+R∗)

(
∂twq+1,nmax

+ vℓq · ∇wq+1,nmax

)︸ ︷︷ ︸
transport

(8.70)

+ (H+R∗)
(
wq+1,nmax · ∇vℓq

)︸ ︷︷ ︸
Nash

+
∑

n′≤nmax−1

(wq+1,nmax ⊗ wq+1,n′ + wq+1,n′ ⊗ wq+1,nmax)︸ ︷︷ ︸
Type 2

)
(8.71)

+ div

(
Onmax,1,2 +Onmax,1,3s︸ ︷︷ ︸

divergence corrector

+Onmax,2︸ ︷︷ ︸
Type 2

)
+∇π (8.72)

+ div (H+R∗)

( ∑
ξ,i,j,k,p,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,nmax

P[q,nmax,pmax+1](W⊗W)ξ,q+1,nmax
(Φ(i,k))∇Φ−T

(i,k)︸ ︷︷ ︸
Type 1

(8.73)

+
∑

ξ,i,j,k,p

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,nmax

P[q,nmax,pmax+1](WθWγ)ξ,q+1,nmax
(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

)
︸ ︷︷ ︸

Type 1

(8.74)

= div (R̊q+1) +∇π,

concluding the proof after again noting that
(
∂t + vℓq · ∇

)
wq+1,ñ has zero mean.

8.4 Transport errors

Lemma 8.4. For all 0 ≤ ñ ≤ nmax, the transport errors satisfy

Dt,qwq+1,ñ = ∂twq+1,ñ + vℓq · ∇wq+1,ñ = div (H+R∗)
(
∂twq+1,ñ + vℓq · ∇wq+1,ñ

)
+∇pñ

with the estimates ∥∥ψi,qDNDM
t,q

(
(H+R∗)

(
∂twq+1,ñ + vℓq · ∇wq+1,ñ

))∥∥
L1

≲ δq+2Γ
−CR−1
q+1 λNq+1M

(
M,Nind,t, τ

−1
q Γi+1

q+1,Γ
−1
q+1τ̃

−1
q

)
for all N,M ≤ 3Nind,v.

Proof of Lemma 8.4. The transport errors are given in (8.38), (8.54), and (8.70). Writing out the transport
error, we have that

(
∂t + vℓq · ∇

)
wq+1,ñ =

(
∂t + vℓq · ∇

) ∑
i,j,k,p̃,⃗l,ξ

curl
(
aξ,i,j,k,q,ñ,p̃,⃗l∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
=

∑
i,j,k,p̃,⃗l,ξ

(
∂t + vℓq · ∇

) (
a(ξ)∇Φ−1

(i,k)

)
Wξ,q+1,ñ ◦ Φ(i,k)

+
∑

i,j,k,p̃,⃗l,ξ

((
∂t + vℓq · ∇

)
∇a(ξ)

)
×
(
∇Φ(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
+

∑
i,j,k,p̃,⃗l,ξ

∇a(ξ) ×
(((

∂t + vℓq · ∇
)
∇Φ(i,k)

)
Uξ,q+1,ñ ◦ Φ(i,k)

)
(8.75)

Due to the fact that the second two terms arise from the addition of the corrector defined in (8.5) and
(8.12), and the fact that the bounds for the corrector in (8.17) are stronger than that of the principal part
of the perturbation, we shall completely estimate only the first term and simply indicate the set-up for the
second and third. Before applying Proposition A.18, recall that the inverse divergence of (8.75) needs to be
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estimated on the support of a cutoff ψi,q in order to verify (7.13), and (7.20), and (7.27). Recall from the
identification of the error terms (cf. (8.36) and the subsequent argument) that for all ñ,

(
∂t + vℓq · ∇

)
wq+1,ñ

has zero mean. Thus, although each individual term in the final equality in (8.75) may not have zero mean,
we can safely apply H and R∗ to each term and estimate the outputs while ignoring the last term in (A.78).

We will apply Proposition A.18, specifically Remark A.19, to each summand in the first term on the right
side of (8.75), with the following choices. We set v = vℓq , and Dt = Dt,q = ∂t + vℓq · ∇ as usual. We set
N∗ =M∗ = ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)⌋, with Ndec and d satisfying (9.60a). We define

G = (∂t + vℓq · ∇)(a(ξ)∇Φ−1
(i,k))ξ,

with λ = Γq+1λq,ñ,p̃, ν = τ−1
q Γi−cñ+3

q+1 , Mt = Nind,t, ν̃ = τ̃−1
q Γ−1

q+1, and

CG =
∣∣supp (ηi,j,k,q,ñ,p̃,⃗l)∣∣δ1/2

q+1,ñ,1Γ
i−cñ+j+5
q+1 τ−1

q ,

which is the correct amplitude in view of (8.14) with r = 1 and r1 = r2 = 2, and (6.114). Thus, we have
that ∥∥DNDM

t,qG
∥∥
L1 ≲ CG (λq,ñ,p̃Γq+1)

N M
(
M,Nind,t − 1, τ−1

q Γi−cñ+3
q+1 , τ̃−1

q Γ−1
q+1

)
, (8.76)

for all N,M ≤ ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)⌋ after using (9.42) and (9.52), and so (A.66) is satisfied. We

set Φ = Φi,k and λ′ = λ̃q. Appealing as usual to Corollary 6.27 and (6.60), we have that (A.67) and (A.68)
are satisfied.

Referring to (1) from Proposition 4.4, we set ϱ = ϱξ,λq+1,rq+1,ñ
and ϑ = ϑξ,λq+1,rq+1,ñ

. Setting ζ = λq+1,
we have that (i) is satisfied. Setting µ = λq+1rq+1,ñ = λq,ñ and referring to (2) from Proposition 4.4,
we have that (ii) is satisfied. Setting Λ = ζ = λq+1 and C∗ = rq+1,ñ and referring to (4.11) and (4.12)
from Proposition 4.4, we have that (A.69) is satisfied. (A.70) is immediate from the definitions. Referring
to (9.48), we have that (A.71) is satisfied. Thus, we conclude from (A.73) with αR as in (9.53), that for
N,M ≤ ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)⌋ − d,∥∥∥DNDM

t,q

(
H
(
(∂t + vℓq · ∇)(a(ξ)∇Φ−1

(i,k))ξ
))∥∥∥

L1
=
∥∥DNDM

t,q (H (Gϱ ◦ Φ))
∥∥
L1

≲
∣∣supp (ηi,j,k,q,ñ,p̃,⃗l)∣∣δ1/2

q+1,ñ,1Γ
i−cñ+j+6
q+1 τ−1

q rq+1,ñλ
−1
q+1λ

N
q+1M

(
M,Nind,t, τ

−1
q Γiq+1, τ̃

−1
q Γ−1

q+1

)
,

after appealing to (9.42). From (9.60c), these bounds are valid for all N,M ≤ 3Nind,v. The bound obtained

above is next summed over (i, j, k, p̃, ñ, l⃗). First, we treat the sum over l⃗. By noting that (6.147) with r1 = 2
and r2 = 2, and (9.42) imply∑

l⃗

∣∣supp (ηi,j,k,q,ñ,p̃,⃗l)∣∣Γi−cñ+j+6
q+1 ≤ Γ

−2( i
2+

j
2 )+

Cb
2 +2

q+1 Γi−cñ+j+6
q+1 = Γ

Cb
2 +3
q+1 ,

we conclude that∥∥DNDM
t,q

(
H
(
∂twq+1,ñ + vℓq · ∇wq+1,ñ

))∥∥
L1(suppψi,q)

≲
i+1∑

i′=i−1

∑
j,k,p̃,ξ

Γ
Cb
2 +3
q+1 δ

1/2
q+1,ñ,1τ

−1
q rq+1,ñλ

−1
q+1λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi

′

q+1, τ̃
−1
q Γ−1

q+1

)
≲ Γ

4+
Cb
2

q+1 δ
1
2

q+1,ñ,1τ
−1
q rq+1,ñλ

−1
q+1λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi+1

q+1, τ̃
−1
q Γ−1

q+1

)
≲ Γ−CR−1

q+1 δq+2λ
N
q+1M

(
M,Nind,t, τ

−1
q Γi+1

q+1, τ̃
−1
q Γ−1

q+1

)
(8.77)

after also using (9.57).
To finish the proof for the first term in (8.75), we must provide a matching estimate for the R∗ portion.

Following again the parameter choices in Remark A.19, we set N◦ =M◦ = 3Nind,v. As in the argument from
Lemma 8.6, we have that (A.75), (A.76), and (A.77) are satisfied, this time with ζ = λq+1. Thus we achieve
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the estimate in (A.79). Summing over l⃗ loses a factor less than λ3q+1, while summing over the other indices
costs a constant independent of q. This completes the estimate for the first term from (8.75).

For the second and third terms, we explain how to identify G and ϱ in order to give an idea of how to
obtain similar estimates. Using 1 from Proposition 4.4 and the vector calculus identity curl curl = ∇div −∆,
we obtain that

Uξ,q+1,ñ = curl
(
ξλ−2d

q+1∆
d−1

(
ϑξ,λq+1,rq+1,ñ

))
= λ−2d

q+1ξ ×∇
(
∆d−1

(
ϑξ,λq+1,rq+1,ñ

))
. (8.78)

With a little massaging, one can now rewrite the second and third terms in (8.75) in the form Gϱ ◦ Φ(i,k).
Since both terms have traded a spatial derivative on Uξ,q+1,ñ for a spatial derivative on a(ξ), inducing a gain,
one can easily show that the estimates for these terms will be even stronger than those for the first term.
Notice that we have set N∗ =M∗ = ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 7)⌋ since we have lost a spatial derivative
on a(ξ). We omit the rest of the details.

8.5 Nash errors

Lemma 8.5. For all 0 ≤ ñ ≤ nmax, the Nash errors satisfy

wq+1,ñ · ∇vℓq = div
(
(H+R∗)wq+1,ñ · ∇vℓq

)
+∇pñ

with ∥∥ψi,qDkDm
t,q

(
(H+R∗)wq+1,ñ · ∇vℓq

)∥∥
L1 ≲ δq+2Γ

−CR−1
q+1 λNq+1M

(
M,Nind,t, τ

−1
q Γi+1

q+1,Γ
−1
q+1τ̃

−1
q

)
for all N,M ≤ 3Nind,v.

Proof of Lemma 8.5. The estimates are similar to those in Lemma 8.4. Writing out the Nash error, we have
that

wq+1,ñ · ∇vℓq =
∑

i−1≤i′≤i+1

∑
j,k,p̃,⃗l,ξ

curl
(
aξ,i,j,k,q,ñ∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)

=

 ∑
i,j,k,p̃,⃗l,ξ

∇a(ξ) ×
(
ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

) · ∇vℓq

+

 ∑
i,j,k,p̃,⃗l,ξ

a(ξ)∇Φ−1
(i,k)Wξ,q+1,ñ ◦ Φ(i,k)

 · ∇vℓq . (8.79)

Due to the fact that the first term arises from the addition of the corrector defined in (8.5) and (8.12),
and the fact that the bounds for the corrector in (8.17) are stronger than that of the principal part of the
perturbation, we shall completely estimate only the second term and simply indicate the set-up for the first.
Before applying Proposition A.18, recall that the inverse divergence of (8.75) needs to be estimated on the
support of a cutoff ψi,q in order to verify (7.5), (7.13), and (7.20). Note that the Nash error can be written
as div

(
wq+1,ñ · vℓq

)
and so has zero mean. Thus, although each individual term in the final equality in

(8.79) may not have zero mean, we can safely apply H and R∗ to each term and estimate the outputs while
ignoring the last term in (A.78).

We will apply Proposition A.18 to the second term with the following choices. We set v = vℓq , and
Dt = Dt,q = ∂t + vℓq · ∇ as usual. We set N∗ = M∗ = ⌊1/2 (Nfin,ñ − Ncut,x − Ncut,t − 4)⌋, with Ndec and d
satisfying (9.60a). We define

G = a(ξ)∇Φ−1
(i,k)ξ · ∇vℓq

and set
CG =

∣∣supp (ηi,j,k,q,ñ,p̃,⃗l)∣∣δ1/2
q+1,ñ,1Γ

i−cñ+j+5
q+1 τ−1

q ,

λ = Γq+1λq,ñ,p̃, ν = τ−1
q Γi−cñ+3

q+1 , Mt = Nind,t, and ν̃ = τ̃−1
q Γ−1

q+1. From (8.14) with r = 1 and r1 = r2 = 2,
(6.114), and (6.60), we have that for N,M ≤ ⌊1/2 (Nfin,ñ − Ncut,x − Ncut,t − 4)⌋∥∥DNDM

t,qG
∥∥
L1 ≲ CG (Γq+1λq,ñ,p̃)

N M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
, (8.80)
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and so (A.66) is satisfied. Note that we have used (9.39) when converting the δ
1/2
q λ̃q to a τ−1

q . Setting

Φ = Φ(i,k) and λ
′ = λ̃q, we have that (A.67) and (A.68) are satisfied as usual. The choices of ϱ, ϑ, ζ, µ, Λ,

and C∗ are identical to those of the transport error (both terms contain Wξ,q+1,ñ ◦ Φ(i,k)), and so we have
that (i)-(ii), (A.69), (A.70), and (A.71) are satisfied as well. Since the bound (8.80) is identical to that of
(8.76), we obtain an estimate identical to (8.77). The argument for the R∗ portion follows analogously to
that for the first term from the transport error. Finally, after using (8.78) again, one may obtain similar
estimates for the first term in (8.79), concluding the proof.

8.6 Type 1 oscillation errors

The Type 1 oscillation errors are defined in the three parameter regimes ñ = 0, 1 ≤ ñ ≤ nmax − 1, and
ñ = nmax. In the case ñ = 0, Type 1 oscillation errors stem from the term identified in (8.37), which we
recall is

(H+R∗)

( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,0

(nmax∑
n=1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
× (Wξ,q+1,0 ⊗Wξ,q+1,0)(Φ(i,k))∇Φ−T

(i,k)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,0

(nmax∑
n=1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
× (Wθ

ξ,q+1,0W
γ
ξ,q+1,0)(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

)
. (8.81)

This sum is divided into the terms identified in (8.39), (8.40), (8.41), (8.42), (8.44), and (8.45). The errors
defined in (8.44) and (8.45) are H̊0

q,n,p errors and will be corrected by later perturbations wq+1,n,p, while the

others will be immediately absorbed into R̊0
q+1.

In the case 1 ≤ ñ ≤ nmax − 1, Type 1 oscillation errors stem from the term identified in (8.53)

(H+R∗)

( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,ñ

( nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)
× (Wξ,q+1,ñ ⊗Wξ,q+1,ñ)(Φ(i,k))∇Φ−T

(i,k)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,ñ

( nmax∑
n=ñ+1

pmax∑
p=1

P[q,n,p] + P[q,nmax,pmax+1]

)

× (Wθ
ξ,q+1,ñW

γ
ξ,q+1,ñ)(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

)
. (8.82)

This sum is divided into the terms identified in (8.57), (8.58), (8.59), (8.60), (8.61), and (8.62). As before, the
last two terms are H̊ ñ

q,n,p errors and will be corrected by later perturbations, while the others are absorbed

into R̊ñq+1.
In the case ñ = nmax, Type 1 oscillation errors are identified in (8.73) and (8.74) as

(H+R∗)

( ∑
ξ,i,j,k,p,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,nmax

P[q,nmax,pmax+1](Wξ,q+1,nmax ⊗Wξ,q+1,nmax)(Φ(i,k))∇Φ−T
(i,k)

+
∑

ξ,i,j,k,p,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,nmax

P[q,nmax,pmax+1](Wθ
ξ,q+1,nmax

Wγ
ξ,q+1,nmax

)(Φ(i,k))∂α(∇Φ−1
(i,k))ζγ

)
.

(8.83)

These errors are completely absorbed into R̊q+1.
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To prove the desired estimates on these error terms, we will first analyze a single term of the form

(H+R∗)

( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,ñ

P[q,n,p](Wξ,q+1,ñ ⊗Wξ,q+1,ñ)(Φ(i,k))∇Φ−T
(i,k)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))αθP≥λq,ñ

P[q,n,p](Wθ
ξ,q+1,ñW

γ
ξ,q+1,ñ)(Φ(i,k))∂α(∇Φ−1

(i,k))ζγ

)
=: (H+R∗)Oñ,p̃,n,p . (8.84)

The estimates in Lemma 8.6 for this term on the support of a cutoff function ψi,q will depend on ñ and
p̃, which range from 0 ≤ ñ ≤ nmax and 1 ≤ p̃ ≤ pmax, respectively, and n and p, which range from
ñ + 1 ≤ n ≤ nmax and 1 ≤ p ≤ pmax, with the additional endpoint case n = nmax, p = pmax + 1. We then
use this general estimate to specify in Remark 8.7 how the terms corresponding to various values of n, ñ, p,
and p̃ are absorbed into either higher order stresses H̊ ñ

q,n,p or R̊ñq+1, and eventually R̊q+1.

Lemma 8.6. The terms Oñ,p̃,n,p defined in (8.84) satisfy the following.

(1) For the special case n = nmax, p = pmax +1 and all 0 ≤ ñ ≤ nmax, 1 ≤ p̃ ≤ pmax, as well as for all cases
0 ≤ ñ < n ≤ nmax, 1 ≤ p, p̃ ≤ pmax, the nonlocal portion of the inverse divergence satisfies∥∥DNDM

t,q (R∗Oñ,p̃,n,p)
∥∥
L1(T3)

≤ δq+2

λq+1
λNq+1τ

−M
q (8.85)

for all N,M ≤ 3Nind,v.

(2) For n = nmax, p = pmax +1, all 0 ≤ ñ ≤ nmax and 1 ≤ p̃ ≤ pmax, the high frequency, local portion of the
inverse divergence satisfies∥∥DNDM

t,q (HOñ,p̃,nmax,pmax+1)
∥∥
L1(suppψi,q)

≲ Γ−CR
q+1Γ

−1
q+1δq+2λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 ,Γ−1
q+1τ̃

−1
q

)
(8.86)

for all N,M ≤ 3Nind,v.

(3) For 0 ≤ ñ < n ≤ nmax and 1 ≤ p, p̃ ≤ pmax, the medium frequency, local portion of the inverse divergence
satisfies∥∥DNDM

t,q (HOñ,p̃,n,p)
∥∥
L1supp (ψi,q)

≲ δq+1,n,pλ
N
q,n,pM

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 ,Γ−1
q+1τ̃

−1
q

)
(8.87)

for all N +M ≤ Nfin,n.

Remark 8.7. Note that after appealing to ñ ≤ n− 1, (9.35), and (9.42), (8.87) matches (7.15), (7.22), and
(7.29), or equivalently (6.118). In addition, after appealing again to ñ ≤ n−1, (9.35), and (9.42), (8.85) and
(8.86) are sufficient to meet (7.13), (7.20), and (7.27).

Proof of Lemma 8.6. The first step is to use item (1) and (4.15) from Proposition 4.4 to rewrite (8.84) as

(H+R∗)

( ∑
ξ,i,j,k,p̃,⃗l

∇a2(ξ)∇Φ−1
(i,k)P≥λq,ñ

P[q,n,p](Wξ,q+1,ñ ⊗Wξ,q+1,ñ)(Φ(i,k))∇Φ−T
(i,k)

+
∑

ξ,i,j,k,p̃,⃗l

a2(ξ)(∇Φ−1
(i,k))θαP≥λq,ñ

P[q,n,p](Wθ
ξ,q+1,ñW

γ
ξ,q+1,ñ)(Φ(i,k))∂α(∇Φ−1

(i,k))γκ

)

= (H+R∗)

( ∑
ξ,i,j,k,p̃,⃗l

P≥λq,ñ
P[q,n,p]

((
ϱξ,λq+1,rq+1,ñ

)2)
(Φ(i,k))
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×
(
∂αa

2
(ξ)

(
∇Φ−1

(i,k)

)
γκ
ξθξγ

(
∇Φ−T

(i,k)

)
θα

+ a2(ξ)
(
∇Φ(i,k)

)−1
)θαξ

θξγ∂α

(
∇Φ−1

(i,k)

)
γκ

))
. (8.88)

Next, we must identify the functions and the values of the parameters which will be used in the application
of Proposition A.18, specifically Remark A.19. We first address the bounds required in (A.66), (A.67), and
(A.68), which we can treat simultaneously for items (1), (2), and (3). Afterwards, we split the proof into
two parts. First, we set n = nmax, p = pmax + 1 and prove (8.85) for only these specific values of n and p,
as we simultaneously prove (8.86). Next, we consider n < nmax and prove (8.85) in the remaining cases, as
we simultaneously prove (8.87).

Returning to (A.66), we will verify that this inequality holds with v = vℓq , Dt = Dt,q = ∂t + vℓq · ∇, and
N∗ =M∗ = ⌊N♯/2⌋, whereN ♯ = Nfin,ñ−Ncut,t−Ncut,x−5. In order to verify the assumptionN∗−d ≥ 2Ndec+4,
we use that Ndec and d satisfy (9.60a), which gives that

2Ndec + 4 ≤ ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)− d⌋ . (8.89)

Denoting the κth component of the below vector field G by Gκ, we fix a value of (ξ, i, j, k, p̃, l⃗) and set

Gκ = ∂αa
2
(ξ)

(
∇Φ−1

(i,k)

)
γκ
ξθξγ

(
∇Φ−T

(i,k)

)
αθ

+ a2(ξ)
(
∇Φ(i,k)

)−1
)αθξ

θξγ∂α

(
∇Φ−1

(i,k)

)
κγ

. (8.90)

We now establish (A.66)–(A.68) with the parameter choices

CG = |supp (ηi,j,k,q,ñ,p̃,⃗l)
∣∣Γ2j−3−Cb

q+1 Γ−CR
q δq+1λ̃q

∏
n′≤ñ

(
fq,n′Γ8+Cb

q+1

)
, (8.91)

λ = λq,ñ,p̃Γq+1, Mt = Nind,t, ν = τ−1
q Γi−cñ+4

q+1 , ν̃ = τ̃−1
q Γ−1

q+1, and λ
′ = λ̃q. Applying Lemma 8.1 and estimate

(8.25) with r = 2, r2 = 1, r1 = ∞, and the bounds (6.113) and (6.114), we see that∥∥∥∥DNDM
t,q

(
∂αa

2
(ξ)

(
∇Φ−1

(i,k)

)
γκ
ξθξγ

(
∇Φ−T

(i,k)

)
αθ

)∥∥∥∥
L1

≲ |supp (ηi,j,k,q,ñ,p̃,⃗l)
∣∣Γ2j+5
q+1 λq,ñ,p̃δq+1,ñ,p̃(Γq+1λq,ñ,p̃)

NM
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
≲ |supp (ηi,j,k,q,ñ,p̃,⃗l)

∣∣Γ2j−2−Cb

q+1

× Γ−1
q+1Γ

−CR
q δq+1λ̃q

∏
n′≤ñ

(
fq,n′Γ8+Cb

q+1

)
(Γq+1λq,ñ,p̃)

N M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
(8.92)

holds for all N,M ≤ ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)⌋. To achieve the last inequality, we have used the
definition of δq+1,ñ,p̃ in (9.34) and the definition of fq,ñ in (9.31) to rewrite

δq+1,ñ,p̃λq,ñ,p̃Γ
7+Cb
q+1 = Γ−1

q+1Γ
−CR
q δq+1λ̃q

∏
n′≤ñ

(
fq,n′Γ8+Cb

q+1

)
.

For the second half of Gκ, we can appeal to (6.113) and (6.114), and use that λ̃q ≤ λq,ñ,p̃ for all ñ and p̃ to
deduce that for N,M ≤ ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)⌋ we have∥∥∥∥DNDM

t,q∂α

(
∇Φ−1

i,k

)
γκ

∥∥∥∥
L∞(suppψi,qχ̃i,k,q)

≤ (Γq+1λq,ñ,p̃)
N+1 M

(
M,Nind,t, τ

−1
q Γi−c0

q+1 , τ̃
−1
q Γ−1

q+1

)
.

Combining these estimates shows that∥∥DNDM
t,qGκ

∥∥
L1 ≲ CG (Γq+1λq,ñ,p̃)

N M
(
M,Nind,t, τ

−1
q Γi−cñ+3

q+1 , τ̃−1
q Γ−1

q+1

)
(8.93)

for N,M ≤ ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)⌋, showing that (A.66) has been satisfied.
We set the flow in Proposition A.18 as Φ = Φi,k, which by definition satisfies Dt,qΦi,k = 0. Appealing to

(6.109) and (6.112), we have that (A.67) is satisfied. From (6.60), the choice of ν from earlier, and (9.39),
we have that Dv = Dvℓq satisfies the bound (A.68).
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Proof of item (2) and of item (1) when n = nmax, p = pmax + 1. We first assume that ñ < nmax.
In this case, we have that the minimum frequency λq,nmax+1,0 of P[q,nmax,pmax+1] is larger than the minimum
frequency λq,ñ of P≥λq,ñ

from (9.28) and (9.22). We therefore can discard P≥λq,ñ
from (8.88) and with the

goal of satisfying verifying (i)–(iii) of Proposition A.18, we set

ζ = λq,nmax+1,0, µ = λq,ñ, Λ = λq+1, (8.94)

and

ϱ = P[q,nmax,pmax+1]

((
ϱξ,λq+1,rq+1,ñ

)2)
, (8.95a)

ϑ = λ2dq,nmax+1,0∆
−dP[q,nmax,pmax+1]

(
ϱ2ξ,λq+1,rq+1,ñ

)
, (8.95b)

where we recall that ϱξ,λ,r is defined via Propositions 4.3 and 4.4. We then have immediately that

ϱ = P[q,nmax,pmax+1]

((
ϱξ,λq+1,rq+1,ñ

)2)
= λ−2d

q,nmax+1,0∆
dλ2dq,nmax+1,0∆

−d
(
P[q,nmax,pmax+1]

(
ϱ2ξ,λq+1,rq+1,ñ

))
= λ−2d

q,nmax+1,0∆
dϑ , (8.96)

and so (i) from Proposition A.18 is satisfied. By property (1) of Proposition 4.3, we have that the functions

ϱ and ϑ defined in (8.95) are both periodic to scale (λq+1rq+1,ñ)
−1

= λ−1
q,ñ, and so (ii) is satisfied. The

estimates in (A.69) follow with C∗ = 1 from standard Littlewood-Paley arguments (see also the discussion
in part (b) of Remark A.21) and item (5) from Proposition 4.4. Note that in the case N = 2d in (A.69),
the inequality is weakened by a factor of λαR

q+1, for an arbitrary αR > 0; thus, (ii) is satisfied. At this stage
let us fix a value for this parameter αR: we choose it to be sufficiently small (with respect to b and εΓ) to
ensure that the loss λαR

q+1 may be absorbed by the spare negative factor of Γq+1 in the definition of CG, as is
postulated in (9.53). From (9.19), (9.22), (9.26), and (9.29), we have that

λ̃q ≤ λq,ñ,p̃ ≪ λq,ñ ≤ λq,nmax+1,0 ≤ λq+1,

and so (A.70) is satisfied. From (9.48) we have that

λ4q+1 ≤
(

λq,ñ

2π
√
3Γq+1λq,ñ,p̃

)Ndec

if Ndec is chosen large enough, and so (A.71) is satisfied. Applying the estimate (A.73) with α as in (9.53),
recalling the value for CG in (8.91), using (6.19) and (6.147) with r1 = ∞ and r2 = 1, we obtain that∥∥DNDM

t,q (HOñ,p̃,nmax,pmax+1)
∥∥
L1(suppψi,q)

≲
i+1∑

i′=i−1

∑
ξ,j,k,⃗l

ΛαR |supp (ηi,j,k,q,ñ,p̃,⃗l)
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q+1 Γ−CR
q

× δq+1λ̃q
∏
n′≤ñ

(
fq,n′Γ8+Cb

q+1

)
C∗ζ−1M (N, 1, ζ,Λ)M (M,Mt, ν, ν̃)

≲ Γq+1

(
Γ−1
q+1Γ

−CR
q δq+1λ̃q

∏
n′≤ñ

(
fq,n′Γ8+Cb

q+1

))
λ−1
q,nmax+1,0λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
≲ Γ−CR

q+1Γ
−1
q+1δq+2λ

N
q+1M

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
, (8.97)

for N,M ≤ ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)⌋−d. In the last inequality, we have used the parameter estimate
(9.54), which directly implies

Γ−CR
q δq+1λ̃q

∏
n′≤ñ

(
fq,n′Γ8+Cb

q+1

)
λ−1
q,nmax+1,0 ≤ Γ−CR

q+1Γ
−1
q+1δq+2 . (8.98)
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Then, after using (9.60c), which gives that for all ñ we have

⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)⌋ − d ≥ 3Nind,v, (8.99)

and thus the range of derivatives allowed in (8.97) is exactly as needed in (8.86), thereby proving this bound.
Continuing to follow the parameter choices in Remark A.19, we set N◦ = M◦ = 3Nind,v, and as before

N ♯ = Nfin,ñ − Ncut,t − Ncut,x − 5. From (9.60d), we have that the condition N◦ ≤ N♯/4 is satisfied. The
inequalities (A.75) and (A.76) follow from the discussion in Remark A.19. The inequality in (A.77) follows
from (9.43), (9.55), the fact that λ = Γq+1λq,ñ,p̃ ≤ Γq+1λq,ñ,pmax

, and ζ = λq,nmax+1,0 > λq,nmax−1 ≥ λq,ñ,
as in the discussion in Remark A.19. Having satisfied these assumptions, we may now appeal to estimate in
(A.79), which gives (8.85) for the case ñ < n = nmax, p = pmax + 1, and any value of p̃.

Recall we began this case by assuming that ñ < nmax. In the case ñ = nmax and 1 ≤ p̃ ≤ pmax, we have
from (9.22) and (9.29) that λq,nmax > λq,nmax+1,0, and so

P[q,nmax,pmax+1]P≥λq,ñ
= P≥λq,nmax

.

Then we can set ζ = µ = λq,nmax
. The only change is that (8.98) becomes stronger, since λq,nmax

>
λq,nmax+1,0, and so the desired estimates follow by arguing as before. We omit further details.

Proof of item (3) and of item (1) when p ̸= pmax + 1 and n ≤ nmax. Note that in both of these
cases we have ñ < n. We first point that that we may assume that n and p are such that λq,ñ < λq,n,p. If
not, then P≥λq,ñ

P[q,n,p] = 0, and so the estimate is trivially satisfied. We then set

ζ = max {λq,ñ, λq,n,p−1} , µ = λq,ñ, Λ = λq,n,p, (8.100)

and

ϱ = P≥λq,ñ
P[q,n,p]

((
ϱξ,λq+1,rq+1,ñ

)2)
, (8.101a)

ϑ = ζ2d∆−dP≥λq,ñ
P[q,n,p]

(
ϱ2ξ,λq+1,rq+1,ñ

)
. (8.101b)

We then have from the discussion part (b) of Remark A.21 that

ϱ = P≥λq,ñ
P[q,n,p]

(
ϱ2ξ,λq+1,rq+1,ñ

)
= ζ−2d∆dζ2d∆−d

(
P≥λq,ñ

P[q,n,p]

(
ϱ2ξ,λq+1,rq+1,ñ

))
,

= ζ−2d∆dϑ , (8.102)

and so (i) from Proposition A.18 is satisfied. By property (1) of Proposition 4.3, ϱ and ϑ are both periodic

to scale (λq+1rq+1,ñ)
−1

= λ−1
q,ñ, and so (ii) is satisfied. The estimates in (A.69) follow with C∗ = 1 from the

discussion in part (b) of Remark A.21. Note that in the case N = 2d in (A.69), the inequality is weakened
by a factor of λαR

q+1, and so (ii) is satisfied. Here we again use αR as in (9.53), so this loss will be absorbed
using a factor of Γq+1. From (9.19), (9.26), (9.29) and (9.22), and the assumption that λq,ñ < λq,n,p, we
have that

λ̃q ≤ λq,ñ,p̃ ≪ λq,ñ ≤ max {λq,ñ, λq,n,p−1} ≤ λq,n,p,

and so, since Λ ≤ λq+1, (A.70) is satisfied. From (9.48) we have that

λ4q+1 ≤
(

λq,ñ

2π
√
3Γq+1λq,ñ,p̃

)Ndec

,

and so (A.71) is satisfied. Applying the estimate (A.73) for the parameter range in Remark A.19, recalling
that (8.90) includes the indicator function of supp (ψi,q), recalling the definition of CG in (8.91), using (6.19)
and (6.147) with r1 = ∞ and r2 = 1, and using ζ−1 ≤ λ−1

q,n,p−1, we have that∥∥DNDM
t,q (HOñ,p̃,n,p)

∥∥
L1(suppψi,q)
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≲
i+1∑

i′=i−1

∑
ξ,j,k,⃗l

ΛαR |supp (ηi,j,k,q,ñ,p̃,⃗l)
∣∣Γ2j−3−Cb

q+1 Γ−CR
q

× δq+1λ̃q
∏
n′≤ñ

(
fq,n′Γ8+Cb

q+1

)
C∗ζ−1M (N, 1, ζ,Λ)M (M,Mt, ν, ν̃)

≲ Γq+1Γ
−1
q+1Γ

−CR
q δq+1λ̃q

∏
n′≤ñ

(
fq,n′Γ8+Cb

q+1

)
λ−1
q,n,p−1λ

N
q,n,pM

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
≲ δq+1,n,pλ

N
q,n,pM

(
M,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

)
. (8.103)

In the last inequality, we have used that since n < ñ, by (9.34) we have

Γ−CR
q δq+1λ̃q

∏
n′≤ñ

(
fq,n′Γ8+Cb

q+1

)
λ−1
q,n,p−1 ≤ δq+1,n,p (8.104)

for all N,M ≤ ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)⌋ − d. Then after using (9.61), which gives that for all ñ < n
that

⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 5)⌋ − d ≥ Nfin,n, (8.105)

we have achieved (8.87).
Continuing to follow the parameter choices in Remark A.19, we set N◦ = M◦ = 3Nind,v, and as before

N ♯ = Nfin,ñ − Ncut,t − Ncut,x − 5. From (9.60d), we have that the condition N◦ ≤ N♯/4 is satisfied. The
inequalities (A.75) and (A.76) follow from the discussion in Remark A.19. The inequality in (A.77) follows
from (9.55) and the fact that λ = Γq+1λq,ñ,p̃ ≤ Γq+1λq,ñ,pmax

and ζ = max{λq,ñ, λq,n,p−1} ≥ λq,ñ. We then
achieve the concluded estimate in (A.79), which gives (8.85) for the case p ̸= pmax + 1, n ≤ nmax and any
values of ñ, p̃ with ñ < n.

8.7 Type 2 oscillation errors

In order to show that the Type 2 errors (previously identified in (8.43), (8.55), (8.56), (8.71), (8.72)) vanish,
we will apply Proposition 4.8 on the support of a specific cutoff function

η = ηi,j,k,q,n,p,⃗l = ψi,qχi,k,qχq,n,pωi,j,q,n,pζi,q,k,n,⃗l .

Before we may apply the proposition, we first estimate in Lemma 8.8 the number of cutoff functions η∗ which
may overlap with η, with an eye towards keeping track of all the pipes that we will have to dodge in order to
successfully place pipes on η. The next three Lemmas ((8.9)-(8.11)) are technical in nature and are necessary
in order to apply Lemma 4.7. Specifically, we show that given η, η∗ and a fixed time t∗, one may find a
convex set which contains the intersection of the supports of η and η∗ at t∗. The time t∗ will be the time at
which the pipes on η∗ are straight, and combined with the convexity, Lemma 4.7 may be applied. The upshot
of this is that the pipes belonging to η∗ only undergo mild deformations on the support of η. This allows
us to finally apply Proposition 4.8 to place pipes on η which dodge all pipes originating from overlapping
cutoff functions η∗. We remark that since χq,n,p depends only on n and p, which are indices already encoded
in ωi,j,q,n,p, throughout this section we will suppress the dependence of the cumulative cutoff function η on
χq,n,p (defined in (6.104)), as it does not affect any of the estimates.

8.7.1 Preliminary estimates

Lemma 8.8 (Keeping Track of Overlap). Given a cutoff function ηi,j,k,q,n,p,⃗l, consider the set of all

tuples
(
i∗, j∗, k∗, n∗, p∗, l⃗∗

)
such that the cutoff function ηi∗,j∗,k∗,q,n∗,p∗ ,⃗l∗ satisfies:

(1) n∗ ≤ n

(2) There exists (x, t) such that

ηi,j,k,q,n,p,⃗l(x, t)ηi∗,j∗,k∗,q,n∗,p∗ ,⃗l∗(x, t) ̸= 0. (8.106)
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Then the cardinality of the set of all such tuples is bounded above by CηΓq+1, where the constant Cη depends
only on nmax, pmax, jmax, and dimensional constants. In particular, due to (9.2), (9.3), and (6.129), Cη is
independent of q and the values of the other parameters indexing the cutoff functions.

Proof of Lemma 8.8. Recall that the cutoff functions are defined by

ηi,j,k,q,n,p,⃗l(x, t) = ψi,q(x, t)χi,k,q(t)χq,n,p(t)ωi,j,q,n,p(x, t)ζi,q,k,n,⃗l(x, t). (8.107)

As noted in the outline of this section, we will suppress the dependence on χq,n,p, since the n and p indices
are already accounted for in ωi,j,q,n,p. The proof proceeds by first counting the number of combinations
(i∗, k∗) for which it is possible that there exists (x, t) such that

ψi,q(x, t)χi,k,q(t)ψi∗,q(x, t)χi∗,k∗,q(t) ̸= 0. (8.108)

Next, for a given (i∗, k∗), we count the number of values of (j∗, n∗, p∗) such that there exists (x, t) such that

ωi,j,q,n,p(x, t)ωi∗,j∗,q,n∗,p∗(x, t) ̸= 0. (8.109)

Finally, for a given (i∗, k∗, j∗, n∗, p∗), we count the number of triples (l∗, w∗, h∗) such that n∗ ≤ n and there
exists (x, t) such that

ζi,q,k,n,p,⃗l(x, t)ζi∗,q,k∗,n∗,p∗ ,⃗l∗(x, t) ̸= 0. (8.110)

Recalling the definition of χi,k,q from (6.96) and (6.98), we see that ψi,qχi,k∗,q may have non-empty
overlap with ψi,qχi,k,q if and only if k∗ ∈ {k − 1, k, k + 1}. Next, from (6.19), we have that only ψi−1,q and
ψi+1,q may overlap with ψi,q. Now, let (x, t) ∈ suppψi,qχi,k,q be given such that there exists ki−1 such that

ψi,q(x, t)χi,k,q(t)ψi−1,q(x, t)χi−1,ki−1,q(t) ̸= 0.

From the definition of χi−1,ki−1,q, it is immediate that the diameter of the support of χi−1,ki−1,q is larger
than the diameter of the support of χi,k,q. It follows that there can be at most three values of k∗ (one of
which is ki−1) such that χi−1,k∗,q has non-empty overlap with χi,k,q. Finally, let (x, t) ∈ suppψi,qχi,k,q be
given such that there exists ki+1 such that

ψi,q(x, t)χi,k,q(t)ψi+1,q(x, t)χi+1,ki+1,q(t) ̸= 0.

From the definition of χi+1,k∗,q, there exists a constant Cχ depending on χ but not i, q, or k∗ such that for
all |k′| ≥ CχΓq+1

χi+1,ki+1+k′,q(t)χi,k,q(t) = 0

for all t ∈ R. Therefore, the number of k∗ such that χi+1,k∗,q may have non-empty overlap with χi,k,q is no
more than 2CχΓq+1 + 1. In summary, the number of pairs (i∗, k∗) such that (8.108) holds for some (x, t) is
bounded above by

3 + 3 + 2CχΓq+1 + 1 ≤ 3CχΓq+1 (8.111)

if λ0 is sufficiently large, where the implicit constant is independent of q or any other parameters which index
the cutoff functions.

Now let (i∗, k∗) be given such that ψi∗,qχi∗,k∗,q has nonempty overlap with ψi,qχi,k,q. Once values of n∗,
p∗, and j∗ are chosen, these three parameters along with the value of i∗ uniquely determine a stress cutoff
function ωi∗,j∗,q,n∗,p∗ . Since i

∗ was fixed, we may let j∗, n∗, and p∗ vary. Using that j∗ ≤ jmax ≤ 4b/(εΓ(b−1))
from (6.129), n∗ ≤ nmax, p

∗ ≤ pmax where nmax, and pmax are independent of q, the number of tuples
(i∗, k∗, j∗, n∗, p∗) such that there exists (x, t) with

ψi,q(x, t)χi,k,q(x, t)ωi,j,q,n,p(x, t)ψi∗,q(x, t)χi∗,k∗,q(x, t)ωi∗,j∗,q,n∗,p∗(x, t) ̸= 0 (8.112)

is bounded by a dimensional constant multiplied by Γq+1nmaxpmax4b/(εΓ(b− 1)).

Finally, fix a tuple (i∗, k∗, j∗, n∗, p∗) such that (8.112) holds at (x, t). From (6.139), there exists l⃗∗ =
(l∗, w∗, h∗) such that ζi∗,q,k∗,n∗ ,⃗l∗(x, t) ̸= 0. From (6.141), (6.108), and the fact that n∗ ≤ n, there exists a
dimensional constant Cζ such at most Cζ of the checkerboard cutoffs neighboring ζi∗,q,k∗,n∗ ,⃗l∗ can intersect the
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support of ζi,q,k,n,⃗l. Since all Lagrangian trajectories originating at (x, t) follow the same velocity field vℓq and
the checkerboard cutoffs are precomposed with Lagrangian flows, this property is preserved in time. Thus
we have shown that for each tuple (i∗, k∗, j∗, n∗, p∗), the number of associated tuples (l∗, w∗, h∗) such that
ζi∗,q,k∗,n∗ ,⃗l∗ can have nonempty intersection with ζi,q,k,n,⃗l is bounded by a dimensional constant independent
of q.

Combining the preceding arguments, we obtain that the number of cutoff functions ηi∗,j∗,k∗,q,n∗,p∗ ,⃗l∗

which may overlap nontrivially with ηi,j,k,q,n,p,⃗l is bounded by at most a dimensional constant multiplied by

Γq+1nmaxpmax4b/(εΓ(b− 1)), finishing the proof.

Lemma 8.9. Let (x, t), (y, t) ∈ suppψi,q be such that ψ2
i,q(x, t) ≥ 1/4 and ψ2

i,q(y, t) ≤ 1/8. Then there exists
a geometric constant C∗ > 1 such that

|x− y| ≥ C∗ (Γqλq)−1
. (8.113)

Proof Lemma 8.9. Let L(x, y) be the line segment connecting x and y. From (6.36), we have that for
z ∈ L(x, y) (in fact for all z ∈ T3),

|∇ψi,q(z)| ≲ ψ
1− 1

Nfin
i,q (z)λqΓq. (8.114)

Thus we can write

1

8
≤
∣∣ψ2
i,q(x, t)− ψ2

i,q(y, t)
∣∣ ≤ 2 |ψi,q(x)− ψi,q(y)|

≤ 2

∣∣∣∣ˆ 1

0

∇ψi,q(x+ t(y − x)) · (y − x) dt

∣∣∣∣
≤ 2|x− y| ∥∇ψi,q∥L∞

≲ Γqλq|x− y|,
and (8.113) follows.

Lemma 8.10. Consider cutoff functions

η := ηi,j,k,q,n,p,⃗l = ψi,qχi,k,qωi,j,q,n,pζi,k,q,n,⃗l,

η∗ := ηi∗,j∗,k∗,q,n∗,p∗ ,⃗l∗ = ψi∗,qχi∗,k∗,qωi∗,j∗,q,n∗,p∗ζi∗,k∗,q,n∗ ,⃗l∗ ,

where n∗ ≤ n and η and η∗ overlap as in Lemma 8.8. Let t∗ ∈ suppχi∗,k∗,q be given. Then there exists a
convex set Ω := Ω(η, η∗, t∗) with diameter λ−1

q,n,0Γq+1 such that(
supp ζi,k,q,n,⃗l ∩ {t = t∗}

)
⊂ Ω ⊂ suppψi±,q. (8.115)

Proof of Lemma 8.10. Let (x, t0) ∈ supp (ηη∗). Then there exists i′ ∈ {i− 1, i, i+1} such that ψ2
i′,q(x, t0) ≥

1
2 . Consider the flow X(x, t) originating from (x, t0). Then for any t such that |t − t0| ≤ τqΓ

−i+5+c0
q+1 , we

can apply Lemma 6.24 to deduce that ψ2
i′,q(t,X(x, t)) ≥ 1

4 . By the definition of χi∗,k∗,q, the fact that
i∗ ∈ {i− 1, i, i+ 1}, the existence of (x, t0) ∈ supp (χi,k,qχi∗,k∗,q), and the fact that t∗ ∈ suppχi∗,k∗,q, we in
particular deduce that ψ2

i′,q(t
∗, X(x, t∗)) ≥ 1

4 . Now, let y be such that

|X(x, t∗)− y| ≤ λ−1
q,n,0Γq+1 ≤ λ̃−1

q < C∗λ̃−1
q

for C∗ given in (8.113), where we have used the definitions of λq,n,0 in (9.26), (9.27), and (9.28). Then from
Lemma 8.9, it cannot be the case that ψ2

i′,q(t
∗, y) ≤ 1

8 , and so

y ∈ suppψi′,q ∩ {t = t∗} ⊂ suppψi±,q ∩ {t = t∗} . (8.116)

Since y is arbitrary, we conclude that the ball of radius Γq+1λ
−1
q,n,0 is contained in suppψi±,q∩{t = t∗}. We let

Ω(η, η∗, t∗) to be precisely this ball (hence a convex set). Since Dt,qζi,k,q,n,⃗l = 0 and (x, t0) ∈ supp ζi,k,q,n,⃗l,

we have that X(x, t∗) ∈ supp ζi,k,q,n,⃗l ∩ {t = t∗}. Then, recalling that the support of ζi,k,q,n,⃗l must obey

the diameter bound in (6.141) on the support of χ̃i,k,q, which contains the support of χi∗,k∗,q by (6.103), we
conclude that

supp ζi,k,q,n,⃗l ∩ {t = t∗} ⊂ Ω . (8.117)

Combining (8.116) and (8.117) concludes the proof of the lemma.
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Lemma 8.11. As in Lemma 8.8, consider cutoff functions

η := ηi,j,k,q,n,p,⃗l = ψi,qχi,k,qωi,j,q,n,pζi,k,q,n,⃗l,

η∗ := ηi∗,j∗,k∗,q,n∗,p∗ ,⃗l∗ = ψi∗,qχi∗,k∗,qωi∗,j∗,q,n∗,p∗ζi∗,k∗,q,n∗ ,⃗l∗ .

Let t∗ ∈ suppχi∗,k∗,q be such that Φ∗ := Φ(i∗,k∗) is the identity at time t∗. Using Lemma 8.10, define
Ω := Ω(η, η∗, t∗). Define Ω(t) := Ω(η, η∗, t∗, t) := X(Ω, t), where X(·, t∗) is the identity.

(1) For t ∈ suppχi,k,q,
supp η(·, t) ⊂ Ω(t) ⊂ suppψi±,q. (8.118)

(2) Let W∗ ◦ Φ∗ := Wi∗,j∗,k∗,n∗ ,⃗l∗

ξ∗,q+1,n∗ ◦ Φ(i∗,k∗) be an intermittent pipe flow supported on η∗. Then there exists
a geometric constant Cpipe such that

(suppW∗ ◦ Φ∗ ∩ {t = t∗} ∩ Ω) ⊂
N⋃
n=1

Sn,

where the sets Sn are cylinders concentrated around line segments An for n ∈ {1, ..., N} with

N ≤ Cpipe
(

λq,n

λq,n,0Γ
−1
q+1

)2

. (8.119)

(3) W∗ ◦ Φ∗(·, t) and the associated axes An(t) and sets Sn(t) satisfy the conclusions of Lemma 4.7 on the
set Ω(t) for t ∈ suppχi,k,q.

Proof of Lemma 8.11. From the previous lemma, we have that for all y ∈ Ω, ψ2
i±,q(y, t

∗) ≥ 1/8. Applying

Lemma 6.24, we have that for all t with |t − t∗| ≤ τqΓ
−i+5+c0
q+1 , the Lagrangian flow originating from (y, t∗)

has the property that
ψ2
i±,q(t,X(y, t)) ≥ 1/16 . (8.120)

Recalling from (6.102) that the diameter of the support of χ̃i∗,k∗,q is τqΓ
−i∗+c0
q+1 and that i−1 ≤ i∗ ≤ i+1, we

have that in particular the Lagrangian flow originating at (y, t∗) satisfies (8.120) for all t ∈ supp χ̃i∗,k∗,q. From
(6.103), (8.120) is then satisfied in particular for all t ∈ suppχi,k,q, thus proving the second inclusion from
(8.118). To prove the first inclusion, we use (8.115), the definition of Ω(t), and the equality Dt,qζi,k,q,n,⃗l = 0
to deduce that

supp ζi,k,q,n,⃗l(·, t) ⊂ Ω(t),

finishing the proof of (8.118).
To prove the second claim, recall that W∗ ◦ Φ∗ at t = t∗ is periodic to scale λ−1

q,n∗ for n∗ ≤ n, and

the diameter of Ω is 2λ−1
q,n,0Γq+1 (in fact Ω is a ball). Considering the quotient of the respective diameters

squared, the claim then follows after absorbing the geometric constant n∗ξ from Proposition 4.3 into Cpipe.
To see that we may apply Lemma 4.7, first note that Ω = Ω(t∗) is convex by construction, and so the

first assumption of Lemma 4.7 is met. We choose v = vℓq and X and Φ to be the associated backwards and
forwards flows originating from t0 = t∗. From (6.60), (8.118), and (9.19), we have that for t ∈ suppχi,k,q
and x ∈ Ω(t), ∣∣∇vℓq (x, t)∣∣ ≲ δ

1/2
q λ̃qΓ

i+2
q+1 = δ

1/2
q λqΓ

i+7
q+1, (8.121)

and so (4.21) is satisfied with C = i+7. Recall again from (6.103) that supp χ̃i∗,k∗,q contains the support of

χi,k,q, and that from (6.102) the support of χ̃i∗,k∗,q has diameter τqΓ
−i∗+c0
q+1 . We then use (9.39) and (9.19)

to write that for any t ∈ supp χ̃i∗,k∗,q we have

|t− t∗| ≤ τqΓ
−i∗+c0+1
q+1 ≤ τqΓ

−i+c0+2
q+1

≤
(
δ
1/2
q λ̃qΓ

c0+6
q+1

)−1

Γ−i+c0+2
q+1
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=
(
δ
1/2
q λqΓ

c0+11
q+1

)−1

Γ−i+c0+2
q+1

≤
(
δ
1/2
q λqΓ

i+9
q+1

)−1

,

so that (4.20) is satisfied since C + 2 = i + 9. We can now apply Lemma 4.7, concluding the proof of the
Lemma.

8.7.2 Applying Proposition 4.8

Lemma 8.12. The Type 2 oscillation errors vanish. More specifically,

(1) When ñ = 0, the Type 2 errors identified in (8.43) vanish.

(2) When 1 ≤ ñ ≤ nmax − 1, the Type 2 errors identified in (8.55) and (8.56) vanish.

(3) When ñ = nmax, the Type 2 errors identified in (8.71) and (8.72) vanish.

Proof of Lemma 8.12. We first recall what the Type 2 oscillation errors are. When ñ = 0, the errors identified
in (8.43) can be written using (8.30) as

O0,2 =
∑

̸={ξ,i,j,k,p̃,⃗l}

curl
(
a(ξ)∇ΦT(i,k)Uξ,q+1,0 ◦ Φ(i,k)

)
⊗ curl

(
a(ξ∗)∇ΦT(i∗,k∗)Uξ∗,q+1,0 ◦ Φ(i∗,k∗)

)
, (8.122)

where the notation ̸= {ξ, i, j, k, p̃, l⃗} is defined in (8.29) and denotes summation over all pairs of cutoff
function indices for which at least one parameter differs between the two pairs. When 1 ≤ ñ ≤ nmax, the
Type 2 errors identified in (8.55) and (8.71) can be written as

2
∑

n′≤ñ−1

wq+1,ñ ⊗s wq+1,n′ = 2
∑

n∗≤ñ−1

∑
ξ,i,j,k,p̃,⃗l

∑
ξ∗,i∗,j∗,k∗,p∗ ,⃗l∗

curl
(
a(ξ)∇ΦT(i,k)Uξ,q+1,ñ ◦ Φ(i,k)

)
⊗s curl

(
a(ξ∗)∇ΦT(i∗,k∗)Uξ∗,q+1,n∗ ◦ Φ(i∗,k∗)

)
. (8.123)

When 1 ≤ ñ ≤ nmax, the Type 2 errors identified in (8.56) and (8.72) can be written as∑
̸={ξ,i,j,k,p̃,⃗l}

curl
(
a(ξ)∇ΦT(i,k)Uξ,q+1,ñ

)
⊗ curl

(
a(ξ∗)∇ΦT(i∗,k∗)Uξ∗,q+1,ñ

)
, (8.124)

where the notation ̸= {ξ, i, j, k, p̃, l⃗} has been reused from (8.29). To show that the errors defined in (8.122),
(8.123), and (8.124) vanish, it suffices to show the following. For pairs of cutoff functions ηi,j,k,q,ñ,p̃,⃗l and
ηi∗,j∗,k∗,q,n∗,p∗ ,⃗l∗ satisfying the two conditions in Lemma 8.8, and vectors ξ, ξ∗ ∈ Ξ,

supp
(
Wi,j,k,ñ,p̃,⃗l
ξ,q+1,ñ ◦ Φ(i,k)

)
∩ supp ηi,j,k,q,ñ,p̃,⃗l

∩ supp
(
Wi∗,j∗,k∗,n∗,p∗ ,⃗l∗

ξ∗,q+1,n∗ ◦ Φ(i∗,k∗)

)
∩ supp ηi∗,j∗,k∗,q,n∗,p∗ ,⃗l∗ = ∅. (8.125)

The proof of this claim will proceed by fixing ñ, using the preliminary estimates, and applying Proposition 4.8.
Let ñ be fixed and assume that wq+1,n′ for n′ < ñ has been defined (when ñ = 0, this assumption is

vacuous). In particular, placements have been chosen for all intermittent pipe flows indexed by n′. Now,
consider all the cutoff functions ηi,j,k,q,ñ,p̃,⃗l utilized at stage ñ. Since the parameters indexing the cutoff

functions are countable, we may choose any ordering of the tuples (i, j, k, p̃, l⃗) at level ñ. Combined with an
ordering of the direction vectors ξ ∈ Ξ, we thus have an ordering of the cutoff functions ηi,j,k,q,ñ,p̃,⃗l and the

associated intermittent pipe flows Wi,j,k,ñ,p̃,⃗l
ξ,q+1,ñ ◦ Φ(i,k).

To ease notation, we will abbreviate the cutoff functions as ηz and the associated intermittent pipe flows
as (W ◦ Φ)z, where z ∈ N corresponds to the ordering. We will apply Proposition 4.8 inductively on z such
that the following two conditions hold. Our goal is to place the pipe flow (W ◦ Φ)z such that

supp (W ◦ Φ)z′ ∩ supp (W ◦ Φ)z ∩ supp ηz = ∅ , (8.126)
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for all z′ < z, and such that

suppwq+1,n′ ∩ supp (W ◦ Φ)z ∩ supp ηz = ∅ , (8.127)

for all n′ < ñ. The first condition shows that all Type 2 errors such as (8.122) and (8.124) which arise from
two sets of pipes both indexed by ñ vanish, while the second condition shows that the Type 2 errors which
arise from pipes indexed by n′ < ñ interacting with pipes indexed by ñ vanish, such as (8.123).

Throughout the rest of the proof, z′ will only ever denote an integer less than z such that ηz and ηz′

overlap. Although we have suppressed the indices, note that ηz′ and ηz both correspond to the index ñ.
Conversely, let ηz′′ denote a generic cutoff function indexed by n′ which overlaps with ηz. By Lemma 8.8,
there exists a geometric constant Cη such that the number of cutoff functions ηz′ or ηz′′ which overlap with ηz
is bounded above by CηΓq+1. Let tz′ ∈ suppχiz′ ,kz′ ,q be the time for which Φiz′ ,kz′ ,q is the identity, and let
Ω (ηz, ηz′ , tz′) be the convex set constructed in Lemma 8.10, where we have set t∗ = tz′ . Let Ω (ηz, ηz′ , tz′ , t)
denote the image of Ω (ηz, ηz′ , tz′) under this flow, as defined in Lemma 8.11. We then have that the set

supp (W ◦ Φ)z′ ∩ suppΩ (ηz, ηz′ , tz′) ∩ {t = tz′} (8.128)

is contained in the union of sets Sz
′

n concentrated around axes Az
′

n for

n ≤ CpipeΓ2
q+1

λ2q,ñ
λ2q,ñ,0

,

and the flowed axes Az
′

n and pipes of (W◦Φ)z′ satisfy the conclusions of Lemma 4.7. Furthermore, substituting
z′′ for z′ in the preceding discussion, all the analogous definitions and conclusions can be made for cutoff
functions ηz′′ and pipe flows (W ◦ Φ)z′′ .

We will apply Proposition 4.8 with the following choices. Let tz be the time at which the flow map Φi,k,q
corresponding to ηz is the identity. Set

Ω =

( ⋃
z′<z

Ω (ηz, ηz′ , tz′ , tz)

)⋃( ⋃
n′<ñ

Ω (ηz, ηz′′ , tz′′ , tz)

)
(8.129)

and set

r1 = Γ−1
q+1

λq,ñ,0
λq+1

=


(

λq

λq+1

)( 4
5 )

ñ−1· 56
Γ−1
q+1 if ñ ≥ 2(

λq

λq+1

) 4
5

Γ−1
q+1 if ñ = 1

λ̃q

λq+1
if ñ = 0.

(8.130)

We have used here the definitions of λq,ñ,0 given in (9.27), (9.26), and (9.28). Note that by (8.118),
supp ηz(·, tz) ⊂ Ω (ηz, ηz′ , tz′ , tz) for each z′ < z, with the analogous inclusion holding when z′ is replaced
by z′′. In particular, we have that supp ηz(·, tz) ⊂ Ω. Furthermore, we have additionally from Lemma 8.11
that Lemma 4.7 may be applied on Ω(t) for all t ∈ χi,k,q. Thus, the diameter of Ω(ηz, ηz′ , tz′ , tz) satisfies

diam (Ω (ηz, ηz′ , tz′ , tz)) ≤ (1 + Γ−1
q+1)diam (Ω(ηz, ηz′ , tz′)) = 2(1 + Γ−1

q+1)λ
−1
q,ñ,0Γq+1 (8.131)

Using that the diameter of the support of ηz(·, tz) is bounded by a dimensional constant times λ−1
q,ñ,0 from

(6.141) and recalling that supp ηz(·, tz) ⊂ Ω (ηz, ηz′ , tz′ , tz) with the analogous conclusion holding for z′′, we
have that

diam(Ω) ≤ 4(1 + Γ−1
q+1)λ

−1
q,ñ,0Γq+1 + Γq+1λ

−1
q,ñ,0

≤ 6(1 + Γ−1
q+1)Γq+1 (λq,ñ,0)

−1

≤ 16(λq+1r1)
−1

for each value of ñ from (8.130), and so (4.28) is satisfied.
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Now set

CA = CpipeCηΓq+1, r2 = rq+1,n ≈
(

λq
λq+1

)( 4
5 )

ñ+1

,

where above we have appealed to (9.23) and (9.25). By (8.119) and Lemma 8.8, the total number of pipes
contained in Ω is no more than

CpipeCηΓ3
q+1

λ2q,ñ
λ2q,ñ,1

.

Then we can write

CpipeCηΓ3
q+1

λ2q,ñ
λ2q,ñ,0

= CA
r22
r21
,

and so (4.29) is satisfied. Furthermore, the assumptions on the axes and the neighborhoods of the axes re-
quired by Proposition 4.8 follow from Lemma 8.11, which allows us to appeal to the conclusions of Lemma 4.7.
Finally, from (9.58a), we have that for ñ ≥ 2,

C∗CAr42 ≤ 16C∗CpipeCηΓq+1

(
λq
λq+1

)( 4
5 )

ñ+1·4
≤
(

λq
λq+1

)( 4
5 )

ñ−1· 56 ·3
Γ−3
q+1 = r31, (8.132)

showing that (4.31) is satisfied for ñ ≥ 2. In the cases ñ = 0 and ñ = 1, the desired inequalities follow
from (8.130) and (9.58b) and (9.58c), and so we have checked that (4.31) is satisfied for all 0 ≤ ñ ≤ nmax.
Then from the conclusion (4.32) of Proposition 4.8, we have that on the support of Ω, which in particular
contains the support of ηz(·, tz) from (8.118), we can choose the support of (W ◦Φ)z to be disjoint from the
support of (W◦Φ)z′ and (W◦Φ)z′′ for all overlapping z′′ and z′. Then since Dt,q(W◦Φ)z = Dt,q(W◦Φ)z′ =
Dt,q(W ◦ Φ)z′′ = 0, (8.126) and (8.127) are satisfied, concluding the proof.

8.8 Divergence corrector errors

Lemma 8.13. For all 0 ≤ ñ ≤ nmax, 1 ≤ p̃ ≤ pmax, and j ∈ {2, 3}, the divergence corrector errors Oñ,1,j

satisfy ∥∥ψi,qDkDm
t,qOñ,1,j

∥∥
L1 ≲ Γ−CR−1

q+1 δq+2λ
k
q+1M

(
k,Nind,t,Γ

i+1
q+1τ

−1
q ,Γ−1

q+1τ̃
−1
q

)
for all k,m ≤ 3Nind,v.

Proof of Lemma 8.13. The divergence corrector errors are given in (8.31), (8.49), and (8.66). The estimates
for j = {2, 3} are each similar, and so we shall only prove the case j = 2. Thus we estimate∥∥∥∥∥∥ψi,qDkDm

t,q

∑
ξ,i′,j,k,p̃,⃗l

((
a(ξ)∇Φ−1

(i′,k)Wξ,q+1,ñ ◦ Φ(i′,k)

)
⊗
(
∇a(ξ) ×

(
∇ΦT(i′,k)Uξ,q+1,ñ ◦ Φ(i′,k)

)))∥∥∥∥∥∥
L1

.

(8.133)
Recall that ξ takes only six distinct values and that j ≤ jmax, p̃ ≤ pmax are bounded independently of q.
Furthermore, on the support of ψi,q, only ψi−1,q, ψi,q, and ψi+1,q are non-zero from (6.19). As a result, only
time cutoffs χi−1,k,q, χi,k,q, and χi+1,k,q may be non-zero. Since for each i the χi,k,q’s form a partition of
unity in time for which only two cutoff functions are non-zero at any fixed time, for every time, the sum in
(8.133) is a finite sum for which the number of non-zero terms in the summand is bounded independently

of q. Similarly, the sum over l⃗ forms a partition of unity which only finitely many cutoff functions overlap
at any fixed point in space and time. Therefore we may absorb the effects of ξ, j, k, p̃, and l⃗ in the implicit
constant in the inequality.

Using Hölder’s inequality and estimates (8.16) and (8.17) from Corollary 8.2 with r = 2, r2 = 1, and
r1 = ∞, we have that for N,M ≤ ⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 2Ndec − 9)⌋,∑

ξ,i′,j,k,p̃,⃗l

∥∥∥ψi,qDkDm
t,q

((
a(ξ)∇Φ−1

(i′,k)Wξ,q+1,ñ ◦ Φ(i′,k)

)
⊗
(
∇a(ξ) ×

(
∇ΦT(i′,k)Uξ,q+1,ñ ◦ Φ(i′,k)

)))∥∥∥
L1
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≲ Γ8+Cb
q+1 δq+1,ñ,p̃λ

k
q+1M

(
m,Nind,t, τ

−1
q Γi−cñ+4

q+1 , τ̃−1
q Γ−1

q+1

) λq,ñ,p̃
λq+1

≲ Γ−CR−1
q+1 δq+2λ

k
q+1M

(
m,Nind,t, τ

−1
q Γi+1

q+1, τ̃
−1
q Γ−1

q+1

)
,

which proves the desired estimate after recalling that for all ñ,

⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 2Ndec − 9)⌋ ≥ 3Nind,v

Γ8+Cb
q+1

δq+1,ñ,p̃λq,ñ,p̃
λq+1

≤ δq+2Γ
−CR−1
q+1

−cñ + 4 ≤ 1 ,

which follow from (9.60b), (9.34) and (9.54), and (9.42), respectively.

8.9 Time support of perturbations and stresses

First, we prove (7.12). Indeed, appealing to (5.1), which defines R̊ℓq in terms of a mollifier applied to R̊q,

(9.20), which defines the scale at which R̊q is mollified, and (6.104), which ensures that the time support

of wq+1,0 is only enlarged relative to the time support of R̊ℓq by 2
(
δ
1/2
q λqΓ

2
q+1

)−1

, we achieve (7.12). To

prove (7.14) and (7.16), first note that application of the inverse divergence operators H and R∗ commutes
with multiplication by χq,n,p.

38 Then by the definition of R̊0
q+1 and H̊0

q,n,p in Section 8.3, we achieve (7.14)
and (7.16). Proving the inclusions in (7.19), (7.21), (7.23), (7.26), (7.28), and (7.30), follows similarly from
(6.104), the properties of H and R∗, and the definitions of R̊ñq+1 and H̊ ñ

q,n,p in Section 8.3. Finally, to see
that (7.4) follows from the inclusions already demonstrated, notice that the threshold in (7.4) is weaker than
any of the previous inclusions by a factor of Γq+1, and so we may allow the time support of R̊ñq+1 to expand
slightly as ñ increases from 0 to nmax while still meeting the desired inclusion.

9 Parameters

The purpose of this section is to provide an exhaustive delineation of the many parameters, inequalities,
and notations which arise throughout the bulk of the paper. In Section 9.1, we define the q-independent
parameters in order, beginning with the regularity index β, and ending with the number a∗, which will be
used to absorb every implicit constant throughout the paper. Then in Section 9.2, we define the parameters
which depend on q, as well as the parameters which depend in addition on n and p. The definitions of both
the q-independent and q-dependent parameters will appear rather arbitrary, but are justified in Section 9.3.
This section contains, in no particular order, consequences of the definitions made in the previous two sections
which are necessary to close the estimates in the proof. Finally, Sections 9.4 and 9.5 contain the definitions
of a few operators and some notations that are used throughout the paper.

9.1 Definitions and hierarchy of the parameters

The parameters in our construction are chosen as follows:

(i) Choose an arbitrary regularity parameter β ∈ [1/3, 1/2). In light of [11, 43], there is no reason to consider
the regime β < 1/3.

(ii) Choose b ∈ (1, 3/2) sufficiently small such that

2βb < 1 . (9.1)

The heuristic reason for (9.1) is given by (2.8). Note that (9.1) and the inequality β < 1/2 imply that
β(2b+ 1) < 3/2, which is a required inequality for the heuristic estimate (2.22).

38This is simple to check from the formula given in Proposition A.17 and the formula for the standard nonlocal inverse
divergence operator given in (A.100), both of which involve operations which are purely spatial, such as differentiation and
application of Fourier multipliers.
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(iii) With β and b chosen, we may now designate a number of parameters:

(a) The parameter nmax, which per Section 2.4.2 denotes the total number of higher order stresses
R̊q,n and thus primary frequency divisions in between λq and λq+1, is defined as the smallest
integer for which

1− 2βb >
5

6

(
4

5

)nmax−1

. (9.2)

(b) The parameter pmax, which per Section 2.4.2 denotes the total number of subdivided components
R̊q,n,p of a higher order stress R̊q,n and thus secondary frequency divisions in between λq and
λq+1, is defined as the smallest integer for which

1

pmax
<

1− 2βb

10
. (9.3)

(c) The parameter Cb appearing in (3.21) is use to quantify the L1 norm of the velocity cutoff functions
ψi,q. It is defined as

Cb =
b+ 4

b− 1
. (9.4)

(d) The exponent CR is used in order to define a small parameter in the estimate for the Reynolds
stress, cf. (3.15). This parameter is then used in the proof to absorb geometric constants in the
construction. It is defined as

CR = 4b+ 1 . (9.5)

(iv) The parameter c0, which is first introduced in (3.20) and utilized in Sections 7 and 8 to control small
losses in the sharp material derivative estimates, is defined in terms of nmax as

c0 = 4nmax + 5 . (9.6)

(v) The parameter εΓ > 0, which is used in (9.18) to quantify the finest frequency scale between λq and
λq+1 utilized throughout the scheme, is defined as the greatest real number for which the following
inequalities hold

εΓ

(
7 + CR + nmax(8 + Cb))

)
<

1− 2β

10
(9.7a)

εΓ <
1

100

(
4

5

)nmax−1

(9.7b)

εΓ <
b

9(b− 1)
(9.7c)

2bεΓ(c0 + 7) < 1− β . (9.7d)

(vi) The parameter αR > 0 from the L1 loss of the inverse divergence operator is now defined as

αR =
εΓ(b− 1)

2b
. (9.8)

(vii) The parameters Ncut,t and Ncut,x are used in Section 6 in order to define the velocity and stress cutoff
functions. Ncut,x is the number of space derivatives which are embedded into the definitions of these
cutoff functions, while Ncut,t is the number of material derivatives. See (6.6), (6.14), and (6.119). These
large parameters are chosen solely in terms of b and εΓ as

1

2
Ncut,x = Ncut,t =

⌈
3b

εΓ(b− 1)
+

15b

2

⌉
. (9.9)
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(viii) The parameter Nind,t, which is the number of sharp material derivatives propagated on stresses and
velocities in Sections 3 through 8, is chosen as the smallest integer for which we have

Nind,t =

⌈
4

εΓ(b− 1)

⌉
Ncut,t . (9.10)

(ix) The parameter Nind,v, whose primary role is to quantify the number of sharp space derivatives prop-
agated on the velocity increments and stresses, cf. (3.12) and (3.15), is chosen as the smallest integer
for which we have the bounds

4bNind,t + 8 + b(CR + 3)εΓ(b− 1) + 2β(b3 − 1) < εΓ(b− 1)Nind,v . (9.11)

(x) The value of the decoupling parameter Ndec, which is used in the Lp decorrelation Lemma A.2, is
chosen as the smallest integer for which we have

Ndec

(
1

30

(
4

5

)nmax

− εΓ

)
>

4b

b− 1
. (9.12)

(xi) The value of the parameter d, which in essence is used in the inverse divergence operator of Proposi-
tion A.18 to count the order of a parametrix expansion, is chosen as the smallest integer for which we
have

(d− 1)

(
1

30

(
4

5

)nmax

− εΓ

)
>

(12Nind,v + 7)b

b− 1
. (9.13)

(xii) The value of Nfin, which is introduced in Section 3 and used to quantify the highest order derivative
estimates utilized throughout the scheme is chosen as the smallest integer such that

3

2
Nfin > (2Ncut,t + Ncut,x + 14Nind,v + 2d+ 2Ndec + 12)2nmax+1 . (9.14)

(xiii) Having chosen all the previous parameters in items (i)–(xii), there exits a sufficiently large parameter
a∗ ≥ 1, which depends on all the parameters listed above (which recursively means that a∗ = a∗(β, b)),
and which allows us to choose a an arbitrary number in the interval [a∗,∞). While we do not give a

formula for a∗ explicitly, it is chosen so that a
(b−1)εΓ
∗ is at least twice larger than all the implicit constants

in the ≲ symbols throughout the paper; note that these constants only depend on the parameters in
items (i)–(xii) — never on q — which justifies the existence of a∗.

Having made the choices in items (i)–(xiii) above, we are now ready to define the q-dependent parameters
which appear in the proof.

9.2 Definitions of the q-dependent parameters

9.2.1 Parameters which depend on q

For q ≥ 0, we define the fundamental frequency parameter used in this paper as

λq = 2

⌈
(bq) log2 a

⌉
. (9.15)

Definition (9.15) gives that λq is an integer power of 2, and that we have the bounds

a(b
q) ≤ λq ≤ 2a(b

q) and
1

3
λbq ≤ λq+1 ≤ 2λbq (9.16)

for all q ≥ 0. Throughout the paper the above two inequalities are used by putting the factors of 1/3 and 2
into the implicit constants of ≲ symbols. In terms of λq, the fundamental amplitude parameter used in the
paper is

δq = λ
(b+1)β
1 λ−2β

q . (9.17)
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In terms of the parameter εΓ from (9.7), we introduce a parameter which is used repeatedly throughout the
paper to mean “a tiny power of the frequency parameter”:

Γq+1 =

(
λq+1

λq

)εΓ
. (9.18)

In order to cap off our derivative losses, we need to mollify in space and time using the operators described
in Section 9.4 below. This is done in terms of the following space and time parameters:

λ̃q = λqΓ
5
q+1 (9.19)

τ̃−1
q = τ−1

q λ̃3qλ̃q+1 . (9.20)

While τ̃q is used for mollification and thus for rough material derivative bounds, the fundamental time
parameter used in the paper for sharp material derivative bounds is

τq =
(
δ
1/2
q λ̃qΓ

c0+6
q+1

)−1

. (9.21)

Note that besides depending on the parameters introduced in (i)–(xiii), the parameters introduced above
only depend on q, but are independent of n and p.

9.2.2 Parameters which depend also on n and p

The rest of the parameters depend on n ∈ {0, . . . , nmax} and on p ∈ {0, . . . , pmax}. We start by defining the
frequency parameter λq,n and the intermittency parameter rq+1,n by

λq,n = 2

⌈
( 4

5 )
n+1

log2 λq+
(
1−( 4

5 )
n+1

)
log2 λq+1

⌉
(9.22)

rq+1,n =
λq,n
λq+1

(9.23)

for 0 ≤ n ≤ nmax. In particular, (9.22) shows that λq+1rq+1,n is an integer power of 2, and we have the
bound

λ
( 4

5 )
n+1

q λ
1−( 4

5 )
n+1

q+1 ≤ λq,n ≤ 2λ
( 4

5 )
n+1

q λ
1−( 4

5 )
n+1

q+1 , (9.24)

while (9.23) implies that r−1
q+1 is an integer power of 2, and we have the estimates

(
λq
λq+1

)( 4
5 )

n+1

≤ rq+1,n ≤ 2

(
λq
λq+1

)( 4
5 )

n+1

. (9.25)

As with (9.16) we absorb the factors of 2 in (9.24) and (9.25) into the implicit constants in ≲ symbols.
We also define the frequency parameters λq,n,p by

λq,0,p = Γq+1λ̃q n = 0, 0 ≤ p ≤ pmax (9.26)

λq,1,0 = λ
4
5
q λ

1
5
q+1 n = 1, p = 0 (9.27)

λq,n,0 = λ
( 4

5 )
n−1· 56

q λ
1−( 4

5 )
n−1· 56

q+1 2 ≤ n ≤ nmax + 1 (9.28)

λq,n,p = λ
1−p/pmax

q,n,0 λ
p/pmax

q,n+1,0 1 ≤ n ≤ nmax, 0 ≤ p ≤ pmax. (9.29)

For 0 ≤ n ≤ nmax, we define

fq,0 = 1 n = 0 (9.30)

fq,n =

(
λq,n+1,0

λq,n,0

)1/pmax

1 ≤ n ≤ nmax. (9.31)
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We define δq+1,0,p by

δq+1,0,1 = Γ−CR
q δq+1 p = 1 (9.32)

δq+1,0,p = 0 2 ≤ p ≤ pmax. (9.33)

When 1 ≤ n ≤ nmax and 1 ≤ p ≤ pmax, we define δq+1,n,p by

δq+1,n,p = Γ−CR
q δq+1 ·

(
λ̃q

λq,n,p−1

)
·
∏
n′<n

(
fq,n′Γ8+Cb

q+1

)
. (9.34)

We remark that by the definition of λq,1,0 given in (9.27), and more generally λq,n,p in (9.29), the fact that
n ≥ 1, and a large choice of pmax which makes fq,n (defined in (9.31)) small, δq+1,n,p is significantly smaller
than Γ−CR

q δq+1.
For 1 ≤ n ≤ nmax, we define cn in terms of c0 by

cn = c0 − 4n . (9.35)

For n = 0, we set

Nfin,0 =
3

2
Nfin, (9.36)

while for 1 ≤ n ≤ nmax, we define Nfin,n inductively on n by using (9.36) and the formula

Nfin,n =

⌊
1

2
(Nfin,n−1 − Ncut,t − Ncut,x − 6)− d

⌋
. (9.37)

9.3 Inequalities and consequences of the parameter definitions

The definitions made in the previous two sections have the following consequences, which will be used
frequently throughout the paper.

Due to (9.15) we have that Γq+1 ≥ (1/2)bεΓλ
(b−1)εΓ
q ≥ (1/2)bεΓλ

(b−1)εΓ
0 ≥ (1/2)a

(b−1)εΓ
∗ . As was already

mentioned in item (xiii), we have chosen a∗ to be sufficiently large so that a
(b−1)εΓ
∗ is at least twice larger

than all the implicit constants appearing in all ≲ symbols throughout the paper. Therefore, for any q ≥ 0,
we may use a single power of Γq+1 to absorb any implicit constant in the paper: an inequality of the type
A ≲ B may be rewritten as A ≤ Γq+1B.

From (9.18), (9.19), and (9.7c), we have that

Γ4
q+1λ̃q ≤ λq+1 . (9.38)

From the definition (9.21) of τq and (9.35), which gives that cn is decreasing with respect to n, we have that
for all 0 ≤ n ≤ nmax

Γcn+6
q+1 δ

1/2
q λ̃q ≤ τ−1

q . (9.39)

Using the definitions (9.17), (9.18), (9.19), and (9.21), writing out everything in terms of λq−1, and
appealing to (9.7d), we have that

τ−1
q−1Γ

3+c0
q+1 ≤ τ−1

q (9.40)

τ−1
q−1Γq+1 ≤ δ

1/2
q λq . (9.41)

From the definitions (9.6) of c0 and (9.35) of cn, we have that for all 0 ≤ n ≤ nmax,

− cn + 4 ≤ −1. (9.42)

From the definition of τ̃q, it is immediate that

τ−1
q λ̃4q ≤ τ̃−1

q ≤ τ−1
q λ̃3qλ̃q+1 . (9.43)
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From (9.7d), the assumption that β ≥ 1/3, and the assumption b ≤ 3/2, we can write everything out in terms
of λq to deduce that

τ−1
q Γ9

q+1 ≤ τ−1
q+1 . (9.44)

From the definitions (9.22) and (9.26)–(9.29), for all 0 ≤ n ≤ nmax and 0 ≤ p ≤ pmax we have

λq,n,p
λq,n

≪ 1 .

More precisely, when n = 0 we have that

Γq+1λq,n,p
λq,n

=
Γ2
q+1λ̃q

λq,0
=

Γ7
q+1λq

λq,0
=

(
λq+1

λq

)− 1
5+7εΓ

(9.45)

while for n ≥ 1 it holds that

Γq+1λq,n,p
λq,n

≤ Γq+1λq,n+1,0

λq,n
=

(
λq+1

λq

)( 4
5 )

n( 4
5− 5

6 )+εΓ

≤
(
λq+1

λq

)− 1
30 (

4
5 )

nmax+εΓ

(9.46)

as it is clear that the quotient on the left hand side is largest when n = nmax. Note that due to (9.2) we
have 1

30

(
4
5

)nmax − εΓ <
1−2βb

30 − εΓ ≤ 1
5 − 7εΓ; here we also used that εΓ ≤ 1

36 , which handily follows from
(9.7b). Combining (9.45) and (9.46) we thus arrive at

Γq+1λq,n,p
λq,n

≤
(
λq+1

λq

)− 1
30 (

4
5 )

nmax+εΓ

≤
(
2λb−1

q

)− 1
30 (

4
5 )

nmax+εΓ
(9.47)

for all 0 ≤ n ≤ nmax and 0 ≤ p ≤ pmax. Combining the above estimate with our choice of Ndec in (9.12), we
thus arrive at

λ4q+1 ≤
(

λq,ñ

2π
√
3Γq+1λq,ñ,p̃

)Ndec

. (9.48)

for all 0 ≤ ñ ≤ nmax and 1 ≤ p̃ ≤ pmax.
Next, we a list a few consequences of the fact that Nind,v ≫ Nind,t, as specified in (9.11). First, we note

from (9.43) that

τ̃−1
q−1τq−1 ≤ λ̃3q−1λ̃q ≤ λ4q (9.49)

where in the second inequality we have used that εΓ ≤ 3
20b . In turn, the above inequality combined with

(9.11) implies the following estimates, all of which are used for the first time in Section 5:

λ8q−1Γ
1+CR
q+1

δq−1

δq+2

(
τ̃−1
q−1τq−1

)Nind,t ≤ Γ
Nind,v−2
q (9.50a)

λ̃2q
(
τ̃−1
q−1τq−1

)Nind,t ≤ Γ
5Nind,v

q+1 (9.50b)

λ4q−1δ
1/2
q−1Γ

2
qδ

−1/2
q (τ̃−1

q−1τq−1)
Nind,t ≤ Γ

Nind,v
q . (9.50c)

Next, as a consequence of our choice of Ncut,t and Ncut,x in (9.9), we obtain the following bounds, which
are used in Section 6

λ̃
3/2
q Γ−Ncut,t

q ≤ λ3qΓ
−Ncut,t
q ≤ 1 . (9.51)

for all q ≥ 0. The fact that Nind,t is taken to be much larger than Ncut,t, as expressed in (9.10), implies when
combined with (9.49) the following bound, which is also used in Section 6:(

τq τ̃
−1
q

)Ncut ≤ λ4Ncut
q+1 ≤ Γ

Nind,t

q+1 (9.52)
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for all q ≥ 1.
The parameter αR is chosen in (9.8) in order to ensure the inequality

λαR
q+1 ≤ Γq+1. (9.53)

for all q ≥ 0. This fact is used in Section 8. Several other, much more hideous, parameter inequalities are
used in Section 8, and for the readers’ convenience we list them next. First, we claim that

Γq+1Γ
−CR
q δq+1λ̃q

∏
n′≤nmax

(
fq,n′Γ8+Cb

q+1

)
λ−1
q,nmax+1,0 ≤ Γ−CR

q+1Γ
−1
q+1δq+2 . (9.54)

In order to verify the above bound, we appeal to to the choices made in (9.1), (9.2), and (9.3), to the
definitions (9.19), (9.27), (9.28), (9.31), and the fact that ñ ≤ nmax, to deduce that the left side of (9.54) is
bounded from above by

δq+1Γ
6+nmax(8+Cb)
q+1

λq
λq,nmax+1,0

(
λq,nmax+1,0

λq,1,0

) 1
pmax

= δq+1Γ
6+nmax(8+Cb)
q+1

(
λq
λq+1

)(1−( 4
5 )

nmax 5
6 )(λq+1

λq

) 1
pmax

( 4
5−( 4

5 )
nmax 5

6 )

≤ λqδq+1

λq+1
Γ
6+nmax(8+Cb)
q+1

(
λq+1

λq

)(1−2βb) 4
5
(
λq+1

λq

) 1−2βb
10

4
5

≤
(
Γ−CR
q+1Γ

−1
q+1δq+2

) λqδq+1

λq+1δq+2
Γ
7+CR+nmax(8+Cb)
q+1

(
λq+1

λq

)(1−2βb) 22
25

≤
(
Γ−CR
q+1Γ

−1
q+1δq+2

)
Γ
7+CR+nmax(8+Cb)
q+1

(
λq+1

λq

)−(1−2βb) 3
25

The proof of (9.54) is now completed by appealing to (9.7a), which ensures that Γq+1 represents a sufficiently
small power of λq+1/λq.

Next, we claim that due to our choice of d, we have

Γ−CR
q δq+1λ̃q

∏
n′≤nmax

(
fq,n′Γ8+Cb

q+1

)
λq+1

(
Γq+1λq,ñ,pmax

λq,ñ

)d−1 (
λ4q+1

)3Nind,v ≤ δq+2

λ5q+1

. (9.55)

In order to verify the above bound we use the previously established estimate (9.54) in conjunction with
(9.47); after dropping the helpful factor of Γ−2−CR

q+1 , we deduce that the left side of (9.55) is bounded from
above by

δq+2λq,nmax+1,0λq+1

(
Γq+1λq,ñ,pmax

λq,ñ

)d−1 (
λ4q+1

)3Nind,v

≤ δq+2

λ5q+1

λ3q+1

(
2λb−1

q

)−(d−1)( 1
30 (

4
5 )

nmax−εΓ)
λ
12Nind,v

q+1

The choice of d in (9.13) shows that the above estimate directly implies (9.55).
The amplitudes of the higher order corrections wq+1,n,p must meet the inductive assumptions stated in

(3.13). In order to meet the satisfactory bound in Remark 8.3, from (9.32)–(9.34), we deduce the bound

δ
1/2
q+1,ñ,p̃ ≤ Γ−2

q+1δ
1/2
q+1. (9.56)

Indeed, the case ñ = 0 follows from the definition of CR in (9.5), while the case ñ ≥ 1 is a consequence of
the definition (9.34), which implies that δq,ñ,p̃ ≤ δq,0,1, for any ñ ≥ 1 and any p̃ ≥ 1.

Another parameter inequality which is necessary to estimate the transport and Nash errors in Sections 8.4
and 8.5, is

Γ
4+

Cb
2

q+1 δ
1
2

q+1,ñ,1τ
−1
q rq+1,ñλ

−1
q+1 ≤ Γ−CR−1

q+1 δq+2 (9.57)
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for all 0 ≤ ñ ≤ nmax. When ñ = 0, this inequality may be deduced by writing everything out in terms of λq,
appealing to the appropriate definitions, and then using that β < 1/2 from item i, (9.1), (9.4), (9.5), (9.6),
(9.7b), after which one arrives at

εΓ

(
4 +

b− 4

2
+

1

2
−CR + c0 + 12

)
+ β(2b+ 1) <

1

100
+

3

2
<

9

5
.

It is clear there is quite a bit of room in the above inequality, and similarly, (9.57) becomes most restrictive
when ñ = nmax. In this case, one may again write everything out in terms of λq, move everything to the left
hand side, and appeal to the most of the same referenced inequalities as before to see that

εΓ (22 + 4nmax) + β(2b+ 1)− 3

2
≤ εΓ (22 + 4nmax) + β − 1

2
< 0 ,

where in the last inequality we have instead appealed to (9.7a) rather than (9.7b), proving (9.57) in the
remaining cases 1 ≤ ñ ≤ nmax.

Parameter inequalities which play a crucial role in showing that the Oscillation 2 type errors vanish,
see Section 8.7, are:

16C∗CpipeCηΓq+1

(
λq
λq+1

)( 4
5 )

ñ+1·4
<

(
λq
λq+1

)( 4
5 )

ñ−1· 56 ·3
Γ−3
q+1 , for ñ ≥ 2 , (9.58a)

16C∗CpipeCηΓq+1

(
λq
λq+1

) 4
5 ·4

<

(
λ̃q
λq+1

)3

, (9.58b)

16C∗CpipeCηΓ4
q+1

(
λq
λq+1

)( 4
5 )

2·4
<

(
λq
λq+1

) 4
5 ·3

. (9.58c)

where C∗ is the geometric constant from Lemma 4.8–estimate (4.31), Cpipe is a geometric constant which
appears in Lemma 8.11–estimate (8.119), and Cη is the constant from Lemma 8.8. In order to verify (9.58),
we first note that C∗CpipeCη ≤ Γq+1, since a∗ was chosen to be sufficiently large. Inequality (9.58b) is then
an immediate consequence of the fact that 16/5 > 3. The bound (9.58a) follows from

Γ5
q+1 <

(
λq+1

λq

)( 4
5 )

nmax−1
( 64

25− 5
2 )

≤
(
λq+1

λq

)( 4
5 )

ñ+1·4−( 4
5 )

ñ−1· 56 ·3
. (9.59)

The second inequality in the above display is a consequence of ñ ≤ nmax, while the first one follows from
(9.7b). Finally, inequality (9.58c) is a consequence of the fact that 64/25 − 12/5 > 64/25 − 5/2 and the first
inequality in (9.59), which bounds Γ5

q+1.
We conclude this section by verifying a few inequalities concerning the parameter Nfin,n, which counts

the number of available space-plus-material derivative for the residual stress R̊q,n. For all 0 ≤ n ≤ nmax we
require that

Nind,t, 2Ndec + 4 ≤ ⌊1/2 (Nfin,n − Ncut,t − Ncut,x − 5)⌋ − d , (9.60a)

14Nind,v ≤ Nfin,n − Ncut,t − Ncut,x − 2Ndec − 9 , (9.60b)

6Nind,v ≤ ⌊1/2 (Nfin,n − Ncut,t − Ncut,x − 6)⌋ − d , (9.60c)

6Nind,v ≤ ⌊1/4 (Nfin,n − Ncut,t − Ncut,x − 7)⌋ . (9.60d)

for all 0 ≤ n ≤ nmax. Additionally for 0 ≤ ñ < n ≤ nmax, we require that

⌊1/2 (Nfin,ñ − Ncut,t − Ncut,x − 6)⌋ − d ≥ Nfin,n (9.61)

holds. The inequality (9.61) is a direct consequence of the recursive formula (9.37) and of the fact that the
sequence Nfin,n is monotone decreasing with respect to n. Using (9.36) and (9.37) one may show that

Nfin,n ≥ 2−nNfin,0 − (2d+ Ncut,t + Ncut,x + 8) .

Noting that the bounds (9.60) are most restrictive for n = nmax, they now readily follow from our choice
(9.14).
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9.4 Mollifiers and Fourier projectors

Let ϕ(ζ) : R → R be a smooth, C∞ function compactly supported in the set {ζ : |ζ| ≤ 1} which in addition
satisfies ˆ

ϕ(ζ) dζ = 1,

ˆ
ϕ(ζ)ζn = 0 ∀n = 1, 2, ...,Nind,v. (9.62)

Let ϕ̃(x) : R3 → R be defined by ϕ̃(x) = ϕ(|x|). For λ, µ ∈ R, define

ϕ
(x)
λ (x) = λ3ϕ̃ (λx) , ϕ(t)µ (t) = µϕ(µt). (9.63)

For q ∈ N, we will define the spatial and temporal convolution operators

Pq,x := ϕ
(x)

λ̃q
∗, Pq,t := ϕ

(t)

τ̃−1
q−1

∗, Pq,x,t := Pq,xPq,t. (9.64)

We will use the notation P≤λ to denote the standard (Littlewood-Paley) Fourier projection operators
onto spatial frequencies which are less than or equal to λ, P≥λ to denote the standard Littlewood-Paley
projection operators onto spatial frequencies which are greater than or equal to λ, and the notation

P[λ1,λ2)

to denote the Fourier projection operator onto spatial frequencies ξ such that λ1 ≤ |ξ| < λ2. If λ1 = λ2, we
adopt the convention that P[λ1,λ2)f = 0 for any f .

9.5 Notation

M (n,N, λ,Λ) = λmin{n,N}Λmax{n−N,0}

a⊗s b =
1

2
(a⊗ b+ b⊗ a) (9.65)

a ⊗̊s b =
1

2
(a ⊗̊ b+ b ⊗̊ a) (9.66)

supp tf = {t : f |T3×{t} ̸≡ 0} (9.67)

We will use repeatedly the notation (noted in the introduction in (2.3) and (2.4) and in Remark 3.2)

∥f∥Lp := ∥f∥L∞
t (Lp(T3)) . (9.68)

That is, all Lp norms stand for Lp norms in space, uniformly in time. Similarly, when we wish to emphasize
a set dependence on Ω ⊂ R× T3 of an Lp norm, we write

∥f∥Lp(Ω) := ∥1Ω f∥L∞
t (Lp(T3)) . (9.69)

A Useful lemmas

This appendix contains a collection of auxiliary lemmas which are used throughout the paper:

• Section A.1 recalls the classical CN estimates for solutions of the transport equation. This is for
instance used in Section 6.4.

• Section A.2 gives the detailed construction of the basic cutoff functions ψ̃m,q and ψm,q, which are used
in Section 6 to construct the velocity and the stress cutoff functions.

• Section A.3 recalls the fundamental fact that the Lp norm of the product of a slowly oscillating function
and a fast periodic function is essentially bounded by the product of their Lp norms.

• Section A.4 contains a version of the Sobolev inequality which takes into account the support of the
velocity cutoff functions.
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• Section A.5 contains a number of consequences of the multivariate Faa di Bruno formula. Most of the
results here are used for bounding the space and material derivatives of the cutoff functions in Section 6.
We also present here, cf. Lemma A.7, a version of the Lp decorrelation lemma from Section A.3 in
which the fast periodic function is composed with a volume-preserving flow map. Lemma A.7 plays a
crucial role in estimating the L2 norms of the velocity increments in Section 8.2.

• Sections A.6 and A.7 contain a number of lemmas which allow us to go back and forth between
information for (arbitrarily) high order derivative bounds in Eulerian and Lagrangian variables. These
lemmas concerning sums of operators and commutators with material derivatives are frequently used
throughout the paper to overcome the fact that material derivatives and spatial/temporal derivatives
do not commute.

• Section A.8 introduces in Proposition A.18 the inverse divergence operator used in this paper. We
call this operator “intermittency friendly” because it is composed of a principal part which precisely
maintains the spatial support of the vector field it is applied to, plus a secondary part which is nonlocal,
but whose amplitude is incredibly small. It is here that the definition (4.10) for the density of our
pipe flows plays an important role, as the high order d of the Laplacian present in (4.10) allows us
to perform a parametric expansion which maintains (to leading order) the support of pipes, and also
takes into account deformations due to the flow map.

A.1 Transport estimates

We shall require the following estimates for smooth solutions of transport equations. For proofs we refer the
reader to [8, Appendix D].

Lemma A.1 (Transport Estimates). Consider the transport equation

∂tf + u · ∇f = g, f |t0 = f0

where f, g : Tn → R and u : Tn → Rn are smooth functions. Let X be the flow of u, defined by

d

dt
X = u(X, t), X(x, t0) = x,

and let Φ be the inverse of the flow of X, which is the identity at time t0. Then the following hold:

(1) ∥f(t)∥C0 ≤ ∥f0∥C0 +

ˆ t

t0

∥g(s)∥C0 ds

(2) ∥Df(t)∥C0 ≤ ∥Df0∥C0e(t−t0)∥Du∥C0 +

ˆ t

t0

e(t−s)∥Du∥C0 ∥Dg(s)∥C0 ds

(3) For any N ≥ 2, there exists a constant C = C(N) such that

∥DNf(t)∥C0 ≤
(
∥DNf0∥C0 + C(t− t0)∥Dnu∥C0∥Df∥C0

)
eC(t−t0)∥Du∥C0

+

ˆ t

t0

eC(t−s)∥Du∥C0
(
∥DNg(s)∥C0 + C(t− s)∥DNu∥C0∥Dg(s)∥C0

)
ds

(4) ∥DΦ(t)− Id∥C0 ≤ e(t−t0)∥Du∥C0 − 1 ≤ (t− t0)∥Du∥C0e(t−t0)∥Du∥C0

(5) For N ≥ 2 and a constant C = C(N),

∥DNΦ(t)∥C0 ≤ C(t− t0)∥DNu∥C0eC(t−t0)∥Du∥C0
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A.2 Proof of Lemma 6.2

We first consider the function

f(x) =

{
0 if x ≤ 0

e−
1
x2 if x > 0.

(A.1)

We claim that for all 0 ≤ N ≤ Nfin and x > 0,

|DNf(x)|
(f(x))

1− N
Nfin

≲ 1. (A.2)

The proof of this is achieved in two steps; first, one can show by induction that for all 0 ≤ N ≤ Nfin, there
exist constants KN and ck for 0 ≤ k ≤ KN such that

DN
(
e−

1
x2

)
=

KN∑
k=0

ck
xk
e−

1
x2 . (A.3)

Next, one may also check that for any powers p, q > 0,

lim
x→0+

e−
q

x2
1

xp
= 0. (A.4)

Then for 1 ≤ N ≤ Nfin, we see that 0 ≤ 1− N
Nfin

< 1, and so using (A.3), we have that the left-hand side of

(A.2) may be split into a finite linear combination of terms of the form in (A.4), showing that (A.2) is valid.
We now glue together two versions of f as follows with the goal of forming a prototypical cutoff function

ψ. First, let x0 =
√

1
ln(2) so that f(x0) =

1
2 . Now consider the function f̃(x) = f(2x0 − x), and set

F (x) =

{
f(x) if x ≤ x0

1− f(2x0 − x) if x > x0.
(A.5)

Then F (x) is continuous everywhere, and C∞ everywhere except x0, where it is not necessarily differentiable.
Furthermore, one can check that by the definition of F and (A.2), for all 0 ≤ N ≤ Nfin,

|DNF (x)|
(F (x))

1− N
Nfin

≲ 1 for all 0 < x < x0,
|DN

(
1− (F (x))2

) 1
2 |

(1− (F (x))2)
1
2

(
1− N

Nfin

) ≲ 1 for all x0 < x < 2x0. (A.6)

The latter inequality follows from noticing that for x close to 2x0,(
1− (F (x))2

) 1
2 = ((1 + F (x))(1− F (x)))

1
2 = (1 + F (x))

1
2 (f(2x0 − x))

1
2 .

Since multiplying by a smooth function strictly larger than 1, rescaling f by a fixed parameter, and raising
f to a positive power preserves the estimate (A.2) up to implicit constants (in fact raising f to a power is
equivalent to rescaling), (A.6) is verified.

Towards the goal of adjusting F to be differentiable at x0, let E be the set
(
x0

2 ,
3x0

2

)
, and let ϕ be a

compactly, C∞ mollifier such that the support of the mollified characteristic function XE ∗ϕ(x) is contained
in
(
x0

4 ,
7x0

4

)
. Setting

ψ(x) = (XE ∗ ϕ(x))ϕ ∗ F (x) + (1−XE ∗ ϕ(x))F (x), (A.7)

one may check that ψ is C∞ and has the following properties:

ψ(x) = 0 for x ≤ 0 (A.8)

0 < ψ(x) < 1 for 0 < x < 2x0 (A.9)

ψ(x) = 1 for x ≥ 2x0 (A.10)
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|DNψ(x)|
(ψ(x))

1− N
Nfin

≲ 1 for all 0 < x (A.11)

|DN
(
1− (ψ(x))2

) 1
2 |

(1− (ψ(x))2)
1
2

(
1− N

Nfin

) ≲ 1 for all 0 < x < 2x0. (A.12)

We can now build ψ̃m,q. By rescaling and translating ψ and using (A.8)-(A.10), one can check that

ψ̃m,q(x) = ψ

(
x− Γ

2(m+1)
q

1
2x0

(
1
4 − 1

)
Γ
2(m+1)
q

)
(A.13)

satisfies all components of (1). Notice that this rescaling involves a factor proportional to Γ
−2(m+1)
q . Then

using (A.11) and the fact that every derivative ψm,q introduces another factor of Γ
−2(m+1)
q , we have that

(6.3) is satisfied.

We now outline how to construct ψm,q(Γ
−2(m+1)
q y), which is the first term in the series in (6.1) and

will define ψm,q(y). The basic idea is that the region ( 14Γ
2(m+1)
q+1 ,Γ

2(m+1)
q+1 ) where ψ̃m,q decreases from 1

to 0 will be the region where ψm,q(Γ
−2(m+1)
q+1 y) increases from 0 to 1, and furthermore in order to satisfy

(6.1), we have a formula for ψm,q(Γ
−2(m+1)
q+1 y) for these y-values. Specifically, in order to ensure (6.1) for

y ∈ ( 14Γ
2(m+1)
q+1 ,Γ

2(m+1)
q+1 ), we define

ψ2
m,q

(
Γ
−2(m+1)
q+1 y

)
= 1− ψ̃2

m,q(y)

in this range of y-values. Then by adjusting (A.12) to reflect the rescalings present in the definition of

ψ̃m,q and ψm,q(Γ
−2(m+1)
q y), we have that for y ∈

(
1
4 , 1
)
, ψm,q is well-defined and (6.4) holds. To define

ψm,q(Γ
−2(m+1)
q y) for y ∈ [ 14Γ

4(m+1)
q ,Γ

4(m+1)
q ] and thus ψm,q (y) for y ∈ [ 14Γ

2(m+1)
q ,Γ

2(m+1)
q ], we can use that

for y ∈ [ 14Γ
4(m+1)
q ,Γ

4(m+1)
q ], the rescaled function ψm,q(Γ

−4(m+1)
q+1 y) (i.e. the term in (6.1) with i = 2) is now

well-defined. Then we can set

ψ2
m,q

(
Γ
−2(m+1)
q+1 y

)
= 1− ψ2

m,q

(
Γ
−4(m+1)
q+1 y

)
so that ψm,q is well-defined for y ∈ [ 14Γ

2(m+1)
q ,Γ

2(m+1)
q ] and (6.1) holds in this range of y-values. Appealing

again to (A.11) and (A.12), we have that (6.5) is satisfied in the claimed range of y-values. Finally, in the

missing interval [1, 14Γ
2(m+1)
q ], we set ψm,q ≡ 1. One can now check that (6.1) holds for all y ≥ 0, and that

(6.2) follows from (1), (2), and (6.1), concluding the proof.

A.3 Lp decorrelation

The following lemma may be found in [13, Lemma 3.7].

Lemma A.2 (Lp de-correlation estimate). Fix integers Ndec ≥ 1, µ ≥ λ ≥ 1 and assume that these
integers obey

λNdec+4 ≤
(

µ

2π
√
3

)Ndec

. (A.14)

Let p ∈ {1, 2}, and let f be a T3-periodic function such that

max
0≤N≤Ndec+4

λ−N∥DNf∥Lp ≤ Cf (A.15)

for a constant Cf > 0.39 Then, for any (T/µ)3-periodic function g, we have that

∥fg∥Lp ≲ Cf∥g∥Lp ,

where the implicit constant is universal (in particular, independent of µ and λ).
39For instance, if f has frequency support in the ball of radius λ around the origin, we have that Cf ≈ ∥f∥Lp .
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A.4 Sobolev inequality with cutoffs

Lemma A.3. Let 0 ≤ ψi ≤ 1 be cutoff functions such that ψi± = (ψ2
i−1 + ψ2

i + ψ2
i+1)

1/2 = 1 on supp (ψi),
and such that for some ρ > 0 we have

|DKψi(x)| ≲ ψ
1−K/Nfin

i (x)ρK (A.16)

for all K ≤ 4. Fix parameters p ∈ [1,∞], 0 < λ ≤ λ̃, 0 < µi ≤ µ̃i, Nx, Nt ≥ 0, and assume that
the sequences {µi}i≥0 and {µ̃i}i≥0 are nondecreasing. Assume that there exist N∗,M∗ ≥ 0 such that the
function f : T3 → R obeys the estimate∥∥ψiDNDM

t f
∥∥
Lp ≲ CfM

(
N,Nx, λ, λ̃

)
M (M,Nt, µi, µ̃i) (A.17)

for all N ≤ N∗ and M ≤M∗. Then, we have that∥∥ψ2
iD

NDM
t f
∥∥
L∞ ≲ Cf (max{1, ρ, λ̃})3/pM

(
N,Nx, λ, λ̃

)
M (M,Nt, µi, µ̃i) (A.18a)∥∥DNDM

t f
∥∥
L∞(suppψi)

≲ Cf (max{1, ρ, λ̃})3/pM
(
N,Nx, λ, λ̃

)
M (M,Nt, µi+1, µ̃i+1) (A.18b)

for all N ≤ N∗ − ⌊3/p⌋ − 1 and M ≤M∗.
Lastly, if the inequality (A.17) holds for all N +M ≤ N◦ for some N◦ ≥ 0 (instead of N ≤ N∗ and

M ≤M∗), then the bounds (A.18a) and (A.18b) hold for N +M ≤ N◦ − ⌊3/p⌋ − 1.

Proof of Lemma A.3. The proof uses that ⌊3/p⌋+1 > 3/p for all p ∈ [1,∞], and that W s,p ⊂ L∞ for s > 3/p.
Moreover, the proof of (A.18a) is nearly identical to that of (A.18b), and thus we only give the proof of
(A.18b); moreover, for simplicity we only give the proof for p = 2, as all the other Lebesgue exponents are
treated in the same way. By Gagliardo-Nirenberg-Sobolev interpolation we have∥∥DNDM

t f
∥∥
L∞(suppψi)

≤
∥∥ψ2

i±D
NDM

t f
∥∥
L∞(T3)

≲
∥∥ψ2

i±D
NDM

t f
∥∥1/4

L2(T3)

∥∥ψ2
i±D

NDM
t f
∥∥3/4

Ḣ2(T3)
+
∥∥ψ2

i±D
NDM

t f
∥∥
L2(T3)

.

Using (A.16), (A.17), and the monotonicity of the µi and µ̃i, we obtain∥∥ψ2
i±D

NDM
t f
∥∥
Ḣ2(T3)

≲
∥∥ψi±DN+2DM

t f
∥∥
L2 + ∥Dψi±∥L∞

∥∥ψi±DN+1DM
t f
∥∥
L2 +

∥∥∥∥D2(ψ2
i±)

ψi±

∥∥∥∥
L∞

∥∥ψi±DNDM
t f
∥∥
L2

≲
∥∥ψi±DN+2DM

t f
∥∥
L2 + ρ

∥∥ψi±DN+1DM
t f
∥∥
L2 + ρ2

∥∥ψi±DNDM
t f
∥∥
L2

≲ (max{λ̃, ρ})2CfM
(
N,Nx, λ, λ̃

)
M (M,Nt, µi+1, µ̃i+1) ,

for all N ≤ N∗ − 2 and M ≤ M∗. In the second inequality above we have used that |D2(ψ2
i±)| ≲ ρ2ψi±(x),

which follows from (A.16). Combining the above two displays proves (A.18b).
Note that for p = 1 we require that |D4(ψ2

i±)| ≲ ρ4ψi±(x), which also follows from (A.16) since Nfin ≥ 4,
and this is why we have assumed this inequality to hold for all K ≤ 4.

Lastly, assume that (A.17) holds for all N +M ≤ N◦, and fix any N ′,M ′ ≥ 0 such that N ′ +M ′ ≤
N◦ −⌊3/p⌋− 1. Let N∗ = N ′ + ⌊3/p⌋+1 and M∗ =M ′. Then (A.17) gives a bound for ∥ψiDN ′′

DM ′′

t f∥Lp for
all N ′′ ≤ N∗ and M ′′ ≤ M∗. The bounds (A.18a) and (A.18b) thus give an estimate for ∥ψiDN ′

DM ′

t f∥Lp ,
which concludes the proof.

A.5 Consequences of the Faa di Bruno formula

We are using the following version of the multivariable Faa di Bruno formula [25, Theorem 2.1]. Let g =
g(x1, . . . , xd) = f(h(x1, . . . , xd)), where f : Rm → R, and h : Rd → Rm are Cn smooth functions of their
respective variables. Let α ∈ Nd0 be s.t. |α| = n, and let β ∈ Nm0 be such that 1 ≤ |β| ≤ n. We then define

p(α, β) =

{
(k1, . . . , kn; ℓ1, . . . , ℓn) ∈ (Nm0 )n × (Nd0)n : ∃s with 1 ≤ s ≤ n s.t.
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|kj |, |ℓj | > 0 ⇔ 1 ≤ j ≤ s, 0 ≺ ℓ1 ≺ . . . ≺ ℓs,

s∑
j=1

kj = β,

s∑
j=1

|kj |ℓj = α

}
. (A.19)

Then the multivariable Faa di Bruno formula states that we have the equality

∂αg(x) = α!

n∑
|β|=1

(∂βf)(h(x))
∑
p(α,β)

n∏
j=1

(∂ℓjh(x))kj

kj !(ℓj !)kj
. (A.20)

Note that in (A.19) we have that kj = 0 ∈ Nm0 and ℓj = 0 ∈ Nd
0 for j ≥ s + 1. Therefore, we could write

the sums and products with j ∈ {1, . . . , s} as sums for j ∈ {1, . . . , n}. Keeping in mind this convention, we
importantly note that in (A.20) we can have |ℓj | = 0 only if |kj | = 0, and in this case the entire term in the
product is equal to 1. That is, the product in (A.20) only goes from 1 to s, and in this case |ℓj | ≥ 1 for
j ∈ {1, . . . , s}. This fact will be used frequently.

For applications to cutoff functions we apply this formula for scalar functions h, i.e. m = 1, while for
applications to the perturbation or Reynolds stress sections we apply this formula for vector fields h, i.e.
m = 3.

Since throughout this manuscript the number of derivatives that we need to estimate is uniformly bounded
(say by Nfin), we may ignore the factorial terms in (A.20) and include them in the implicit constant of ≲.
Using this convention, we summarize in the following lemma a useful consequence of the Faá di Bruno
formula above.

Lemma A.4 (Faá di Bruno). Fix N ≤ Nfin. Let ψ : [0,∞) → [0, 1] be a smooth function obeying

|DBψ| ≲ Γ−2B
ψ ψ1−B/Nfin (A.21)

for all B ≤ N , and some Γψ > 0. Let Γ, λ,Λ > 0 and N∗ ≤ N . Furthermore, let h : T3 ×R → R and denote

g(x) = ψ(Γ−2h(x)).

Assume the function h obeys ∥∥DBh
∥∥
L∞(supp g)

≲ ChM (B,N∗, λ,Λ) (A.22)

for all B ≤ N , where the implicit constant is independent of λ,Λ,Γ, Ch > 0. Then, we have that for all
points (x, t) ∈ supph, the bound

|DNg|
g1−N/Nfin

≲ M (N,N∗, λ,Λ)max{(ΓψΓ)−2Ch, (ΓψΓ)−2NCNh } (A.23)

holds. If the ψ1−B/Nfin factor on the right side of (A.21) is replaced by 1, then the g1−N/Nfin factor on the
left side of (A.23) also has to be replaced by 1.

Proof of Lemma A.4. The goal is to apply (A.19)–(A.20) with f(x) = ψ(Γ−2x). For (x, t) ∈ supp (g) we
obtain from (3.9), (A.21), and (A.23) that

|DNg|
g1−N/Nfin

≲
N∑
B=1

|DBψ|
ψ1−B/Nfin

ψ(N−B)/NfinΓ−2B
∑
p(α,B)

n∏
j=1

∥∥∂ℓjh∥∥kj
L∞(supp g)

≲
N∑
B=1

(ΓψΓ)
−2B

∑
p(α,B)

n∏
j=1

(ChM (ℓj , N∗, λ,Λ))
kj

≲
N∑
B=1

(ΓψΓ)
−2BCBh M (N,N∗, λ,Λ)

for any 1 ≤ B ≤ N . The conclusion of the lemma follows upon bounding the geometric sum.
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Frequently in the paper, we need a version of Lemma A.4 which also deals with mixed spatial and material
derivatives. A convenient statement is:

Lemma A.5 (Mixed derivative Faá di Bruno). Fix N,M ∈ N such that N+M ≤ Nfin. Let ψ : [0,∞) →
[0, 1] be a smooth function obeying

|DBψ| ≲ Γ−2B
ψ ψ1−B/Nfin (A.24)

for all B ≤ N and a constant Γψ > 0. Let v be a fixed vector field, and denote Dt = ∂t + v · ∇, which is

a scalar differential operator. Let Γ, λ, λ̃, µ, µ̃ ≥ 1 and Nx, Nt ≤ N . Furthermore, let h : T3 × R → R and
denote

g(x, t) = ψ(Γ−2h(x, t)).

Assume the function h obeys∥∥∥DN ′
DM ′

t h
∥∥∥
L∞(supp g)

≲ ChM
(
N ′, Nx, λ, λ̃

)
M (M ′, Nt, µ, µ̃) (A.25)

for all N ′ ≤ N , and M ′ ≤ M , where the implicit constant is independent of λ, λ̃, µ, µ̃,Γ, and Ch. Then, we
have that for all points (x, t) ∈ supph, the bound

|DNDM
t g|

g1−(N+M)/Nfin
≲ M

(
N,Nx, λ, λ̃

)
M (M,Nt, µ, µ̃)max

{
(ΓψΓ)

−2Ch, ((ΓψΓ)−2Ch)N+M
}

(A.26)

holds. If the ψ1−B/Nfin factor on the right side of (A.24) is replaced by 1, then the g1−(N+M)/Nfin factor on
the left side of (A.26) also has to be replaced by 1.

Proof of Lemma A.5. Let X(a, t) be the flow induced by the vector field v, with initial condition X(a, t) = x.
Denote by a = X−1(x, t) the inverse of the map X. We then note that

DM
t g(x, t) =

(
∂Mt ((g ◦X)(a, t))

)
|a=X−1(x,t).

We wish to apply the above with the function g(x, t) = ψ(Γ−2h(x, t)). We apply the Faa di Bruno for-
mula (A.19)–(A.20) with the one dimensional differential operator ∂Mt to the composition g ◦X, note that

∂βi

t (h(X(a, t), t)) = (Dβi

t h)(X(a, t), t), and then evaluate the resulting expression at a = X−1(x, t), to obtain

DM
t g(x, t) =M !

M∑
B=1

Γ−2Bψ(B)(Γ−2h(x, t))
∑

{κ,β∈NM :
|κ|=B,κ·β=M}

M∏
i=1

(
(Dβi

t h)(x, t)
)κi

κi!(βi!)κi
.

We now apply DN to the above expression, use the Leibniz rule, and then appeal again to the Faa di Bruno
formula (A.19)–(A.20), this time for spatial derivatives. We obtain

DNDM
t g(x, t) =M !N !

M∑
B=1

N∑
K=0

K∑
B′=0

Γ−2(B+B′)ψ(B+B′)(Γ−2h(x, t))
∑

p(K,B′)

K∏
j=1

(Dℓjh(x, t))kj

kj !(ℓj !)kj

×
∑

{α∈NM :
|α|=N−K}

∑
{κ,β∈NM :

|κ|=B,κ·β=M}

M∏
i=1

Dαi(((Dβi

t h)(x, t))
κi)

αi!κi!(βi!)κi
. (A.27)

Upon dividing by g1−(N+M)/Nfin and noting that B+B′ ≤M +N , from (A.24), identity (A.27), the Leibniz
rule, and assumption (A.25), we obtain

|DNDM
t g|

g1−(N+M)/Nfin
≲

M∑
B=1

N∑
K=0

K∑
B′=0

(ΓψΓ)
−2(B+B′)CB′

h M
(
K,Nx, λ, λ̃

)
CBh M

(
N −K,Nx, λ, λ̃

)
M (M,Nt, µ, µ̃)

≲ M
(
N,Nx, λ, λ̃

)
M (M,Nt, µ, µ̃)

M∑
B=1

N∑
B′=0

(ΓψΓ)
−2(B+B′)CB′+B

h

from which (A.26) follows by summing the geometric series.
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Lemma A.6. Given a smooth function f : R3×R → R, suppose that for λ ≥ 1 the vector field Φ: R3×R → R3

satisfies the estimate ∥∥DN+1Φ
∥∥
L∞(supp f)

≲ λN (A.28)

for 0 ≤ N ≤ N∗. Then for any 1 ≤ N ≤ N∗ we have

∣∣DN (f ◦ Φ) (x, t)
∣∣ ≲ N∑

m=1

λN−m |(Dmf) ◦ Φ(x, t)| (A.29)

and thus trivially we obtain

∣∣DN (f ◦ Φ) (x, t)
∣∣ ≲ N∑

m=0

λN−m |(Dmf) ◦ Φ(x, t)| .

for any 0 ≤ N ≤ N∗.

Proof of Lemma A.6. Applying (A.20), noting that |ℓj | = 0 implies |kj | = 0, and assumption (A.28), we
have that for any multi index α ∈ N3

0 with |α| = N ,

|∂α (f ◦ Φ) (x, t)| ≲
N∑

|β|=1

∣∣((∂βf) ◦ Φ)(x, t)∣∣ N∏
j=1

∑
p(α,β)

∣∣∣(∂ℓjΦ(x, t))kj ∣∣∣
≲

N∑
|β|=1

∣∣(∂βf) ◦ Φ∣∣ N∏
j=1

∑
p(α,β)

λ(|ℓj |−1)|kj |

≲
N∑
m=1

λN−m |(Dmf) ◦ Φ|

by the definition (A.19). Thus we obtain (A.29).

In order to estimate the perturbation in Lp spaces as well as terms appearing in the Reynolds stress we
will need the following abstract lemma, which follows from Lemmas A.2 and A.6.

Lemma A.7. Let p ∈ {1, 2}, and fix integers N∗ ≥ M∗ ≥ Ndec ≥ 1. Suppose f : R3 × R → R and let
Φ: R3×R → R3 be a vector field advected by an incompressible velocity field v, i.e. DtΦ = (∂t+v ·∇)Φ = 0.
Denote by Φ−1 the inverse of the flow Φ, which is the identity at a time slice which intersects the support of
f . Assume that for some λ, ν, ν̃ ≥ 1 and Cf > 0 the functions f satisfies the estimates∥∥DNDM

t f
∥∥
Lp ≲ CfλNM (M,Nt, ν, ν̃) (A.30)

for all N ≤ N∗ and M ≤M∗, and that Φ, and Φ−1 are bounded as∥∥DN+1Φ
∥∥
L∞(supp f)

≲ λN (A.31)∥∥DN+1Φ−1
∥∥
L∞(supp f)

≲ λN (A.32)

for all N ≤ N∗. Lastly, suppose that φ is (T/µ)3-periodic, and that there exist parameters ζ̃ ≥ ζ ≥ µ and
Cφ > 0 such that ∥∥DNφ

∥∥
Lp ≲ CφM

(
N,Nx, ζ, ζ̃

)
(A.33)

for all 0 ≤ N ≤ N∗. If the parameters
λ ≤ µ ≤ ζ ≤ ζ̃
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satisfy

ζ̃4 ≤
(

µ

2π
√
3λ

)Ndec

, (A.34)

and we have
2Ndec + 4 ≤ N∗ , (A.35)

then the bound ∥∥DNDM
t (f φ ◦ Φ)

∥∥
Lp ≲ CfCφM

(
N,Nx, ζ, ζ̃

)
M (M,Mt, ν, ν̃) (A.36)

holds for N ≤ N∗ and M ≤M∗.

Remark A.8. We emphasize that (A.36) holds for the same range of N and M that (A.30) holds, as soon
as N∗ is sufficiently large compared to Ndec so that (A.35) holds.

Remark A.9. We note that if estimate (A.30) is known to hold for N +M ≤ N◦ for some N◦ ≥ 2Ndec + 4
(instead of, for N ≤ N∗ and M ≤M∗), and if the bounds (A.31)–(A.32) hold for all N ≤ N◦, then it follows
from the below proof that the bound (A.36) holds for N +M ≤ N◦ and M ≤ N◦ − 2Ndec − 4. The only
modification required to the proof (given below) is that instead of considering the casesN ′ ≤ N∗−Ndec−4 and
N ′ > N∗−Ndec−4, we now have to split according to N ′+M ≤ N◦−Ndec−4 and N ′+M > N◦−Ndec−4.
In the second case we use that N − N ′′ ≥ N◦ − M − Ndec − 4 ≥ Ndec, which holds exactly because
M ≤ N◦ − 2Ndec − 4.

Proof of Lemma A.7. Since DtΦ = 0 we have DM
t (φ ◦ Φ) = 0. Using that div v ≡ 0, so that Φ and Φ−1

preserve volume, and Lemma A.6, which we may apply due to (A.31), we have

∥∥DNDM
t (f φ ◦ Φ)

∥∥
Lp ≲

N∑
N ′=0

∥∥∥DN ′
DM
t f D

N−N ′
(φ ◦ Φ)

∥∥∥
Lp

≲
N∑

N ′=0

N−N ′∑
N ′′=0

λN−N ′−N ′′
∥∥∥DN ′

DM
t f (DN ′′

φ) ◦ Φ
∥∥∥
Lp

≲
N∑

N ′=0

N−N ′∑
N ′′=0

λN−N ′−N ′′
∥∥∥(DN ′

DM
t f
)
◦ Φ−1DN ′′

φ
∥∥∥
Lp
. (A.37)

In (A.37) let us first consider the case N ′ ≤ N∗−Ndec− 4, so that N ′+M ≤ N∗+M∗−Ndec− 4. Under
assumption (A.32) we may apply Lemma A.6, and using (A.30) we have∥∥∥Dn

(
(DN ′

DM
t f) ◦ (Φ−1, t)

)∥∥∥
Lp

≲
n∑

n′=0

λn−n
′
∥∥∥(Dn′+N ′

DM
t f) ◦ Φ−1

∥∥∥
Lp

≲ Cf
n∑

n′=0

λn−n
′
λn

′+N ′M (M,Nt, ν, ν̃)

≲
(
CfλN

′M (M,Nt, ν, ν̃)
)
λn , (A.38)

for all n ≤ Ndec + 4. This bound matches (A.15), with Cf replaced by CfλN
′M (M,Nt, ν, ν̃). Since like φ,

the function DN ′′
φ is (T/µ)3-periodic, due to (A.38), the fact that λ ≤ ζ̃, and assumption (A.34), we may

apply Lemma A.2 to conclude∥∥∥(DN ′
DM
t f
)
◦ Φ−1DN ′′

φ
∥∥∥
Lp

≲ CfλN
′M (M,Nt, ν, ν̃)

∥∥∥DN ′′
φ
∥∥∥
Lp
.

Inserting this bound back into (A.37) and using (A.33) concludes the proof of (A.36) for the values of N ′

considered in this case.
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Next, let us consider the case N ′ > N∗ − Ndec − 4. Since 0 ≤ N ′ ≤ N , in particular this means that
N > N∗ − Ndec − 4, and since N ′′ ≤ N − N ′ we also obtain that N − N ′′ ≥ N ′ > N∗ − Ndec − 4 ≥ Ndec.
Here we have used (A.35). Then the Hölder inequality, the fact that Φ−1 is volume preserving, the Sobolev

embedding W 4,p ⊂ L∞, the ordering ζ̃ ≥ ζ ≥ µ ≥ 1 and assumption (A.34), imply that

λN−N ′−N ′′
∥∥∥(DN ′

DM
t f
)
◦ Φ−1DN ′′

φ
∥∥∥
Lp

≲ λN−N ′−N ′′
∥∥∥DN ′

DM
t f
∥∥∥
Lp

∥∥∥DN ′′
φ
∥∥∥
L∞

≲ λN−N ′−N ′′CfλN
′M (M,Nt, ν, ν̃) CφM

(
N ′′ + 4, Nx, ζ, ζ̃

)
≲ CfCφM

(
N,Nx, ζ, ζ̃

)
M (M,Nt, ν, ν̃) ζ̃

4

(
λ

ζ

)N−N ′′

≲ CfCφM
(
N,Nx, ζ, ζ̃

)
M (M,Nt, ν, ν̃) ζ̃

4

(
λ

µ

)Ndec

≲ CfCφM
(
N,Nx, ζ, ζ̃

)
M (M,Nt, ν, ν̃) .

Combining the above estimate with (A.37), we deduce that also for N ′ > N∗ − Ndec − 4, the bound (A.36)
holds, concluding the proof of the lemma.

A.6 Bounds for sums and iterates of operators

For two differential operators A and B we have the expansion

(A+B)m =

m∑
k=1

∑
α,β∈Nk

|α|+|β|=m

(
k∏
i=1

AαiBβi

)
. (A.39)

Clearly (A.39) simplifies if [A,B] = 0. A lot of times we need to apply the above formula with

A = v · ∇,

for some vector field v. The question we would like to address in this section is the following: Assume that
we have already established estimates on (

∏
iD

αiBβi)v, for |α|+ |β| ≤ m. Can we deduce estimates for the
operator (A+B)m = (v · ∇+B)m? The answer is “yes”, and is summarized in the following lemma:

Lemma A.10. Fix Nx, Nt, N∗ ∈ N, Ω ∈ T3 ×R a space-time domain, and let v be a vector field. For k ≥ 1
and α, β ∈ Nk such that |α|+ |β| ≤ N∗, we assume that we have the bounds∥∥∥∥∥

(
k∏
i=1

DαiBβi

)
v

∥∥∥∥∥
L∞(Ω)

≲ CvM
(
|α|, Nx, λv, λ̃v

)
M (|β|, Nt, µv, µ̃v) (A.40)

for some Cv ≥ 0, 1 ≤ λv ≤ λ̃v, and 1 ≤ µv ≤ µ̃v. With the same notation and restrictions on |α|, |β|, let f
be a function which for some p ∈ [1,∞] obeys∥∥∥∥∥

(
k∏
i=1

DαiBβi

)
f

∥∥∥∥∥
Lp(Ω)

≲ CfM
(
|α|, Nx, λf , λ̃f

)
M (|β|, Nt, µf , µ̃f ) (A.41)

for some Cf ≥ 0, 1 ≤ λf ≤ λ̃f , and 1 ≤ µf ≤ µ̃f . Denote

λ = max{λf , λv}, λ̃ = max{λ̃f , λ̃v}, µ = max{µf , µv}, µ̃ = max{µ̃f , µ̃v}.

Then, for
A = v · ∇
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we have the bounds∥∥∥∥∥Dn

(
k∏
i=1

AαiBβi

)
f

∥∥∥∥∥
Lp(Ω)

≲ CfC|α|
v M

(
n+ |α|, Nx, λ, λ̃

)
M (|β|, Nt, µ, µ̃) (A.42)

≲ CfM
(
n,Nx, λ, λ̃

)
(Cvλ̃)|α|M (|β|, Nt, µ, µ̃)

≲ CfM
(
n,Nx, λ, λ̃

)
M
(
|α|+ |β|, Nt,max{µ, Cvλ̃},max{µ̃, Cvλ̃}

)
(A.43)

as long as n+ |α|+ |β| ≤ N∗. As a consequence, if k = m then (A.39) and (A.43) imply the bound

∥Dn(A+B)mf∥Lp(Ω) ≲ CfM
(
n,Nx, λ, λ̃

)
M
(
m,Nt,max{µ, Cvλ̃},max{µ̃, Cvλ̃}

)
(A.44)

for n+m ≤ N∗.

Remark A.11. The previous lemma is applied typically with v = uq and B = Dt,q−1 in order to obtain

estimates for Dn(
∏
iD

αi
q D

βi

t,q−1)f , and hence for DnDm
q f . A more non-standard application of this lemma

uses v = −vq−1 and B = Dt,q−1 in order to obtain estimates for time derivatives via Dn∂mt f = Dn(−vq−1 ·
∇+Dt,q−1)

mf .

Proof of Lemma A.10. We recall (6.54)–(6.55) and note that we may write (ignoring the way in which tensors
are contracted)

An = (v · ∇)n =

n∑
j=1

fj,nD
j where fj,n =

∑
ζ∈Nn

|ζ|=n−j

cn,j,ζ

n∏
ℓ=1

(Dζℓv) (A.45)

where the cn,j,ζ are certain combinatorial coefficients (tensors) with the dependence given in the subindex,
and Da represents ∂α for some multi-index α with |α| = a. Inserting (A.45) into the product of operators
in (A.39), we see that

Dn
k∏
i=1

AαiBβi =
∑
γ∈Nk

1k≤γ≤α

Dn
k∏
i=1

(fγi,αiD
γiBβi)

=
∑
γ∈Nk

1k≤γ≤α

∑
0≤n′≤n+|γ|
0≤m′≤|β|

∑
δ,κ∈Nk

|δ|=n+|γ|−n′

|κ|=|β|−m′


k∏
i=1


∑

δ′i,κ
′
i∈Nk

|δ′i|=δi
|κ′

i|=κi

c̃(...)

(
k∏

ℓi=1

Dδ′i,ℓiBκ
′
i,ℓi

)
fγi,αi





×


∑

η,ρ∈Nk

|η|=n′

|ρ|=m′

c̄(...)

k∏
s=1

DηsBρs

 (A.46)

where the c̃(... ), c̄(... ) ≥ 0 are certain combinatorial coefficients (tensors). Combining (A.39)–(A.46), we
obtain that

Dn

(
k∏
i=1

AαiBβi

)
f =

∑
γ∈Nk

1k≤γ≤α

∑
0≤n′≤n+|γ|
0≤m′≤|β|

∑
δ,κ∈Nk

|δ|=n+|γ|−n′

|κ|=|β|−m′


∑

η,ρ∈Nk

|η|=n′

|ρ|=m′

c̄(... )

(
k∏
s=1

DηsBρs

)
f
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×


k∏
i=1


∑

δ′i,κ
′
i∈Nk

|δ′i|=δi
|κ′

i|=κi

c̃(... )

(
k∏

ℓi=1

Dδ′i,ℓiBκ
′
i,ℓi

) ∑
ζi∈Nαi

|ζi|=αi−γi

c(... )

αi∏
ri=1

(Dζi,ri v)




 (A.47)

where the c(... ), c̃(... ), c̄(... ) ≥ 0 are certain combinatorial coefficients (tensors) whose dependence is omitted
for simplicity (it may depends on all the parameters in the sums and products). The above expansion
combined with the Leibniz rule, the bound (3.9), and assumptions (A.40)–(A.41), implies

∥∥∥∥∥Dn

(
k∏
i=1

AαiBβi

)
f

∥∥∥∥∥
Lp(Ω)

≲
∑
γ∈Nk

1k≤γ≤α

∑
0≤n′≤n+|γ|
0≤m′≤|β|

∑
δ,κ∈Nk

|δ|=n+|γ|−n′

|κ|=|β|−m′


∑

η,ρ∈Nk

|η|=n′

|ρ|=m′

∥∥∥∥∥
(

k∏
s=1

DηsBρs

)
f

∥∥∥∥∥
Lp(Ω)



×


k∏
i=1


∑

ζi∈Nαi

|ζi|=αi−γi

∑
δ′i,κ

′
i∈Nk

|δ′i|=δi
|κ′

i|=κi

∥∥∥∥∥
(

k∏
ℓi=1

Dδ′i,ℓiBκ
′
i,ℓi

)(
αi∏
ri=1

(Dζi,ri v)

)∥∥∥∥∥
L∞(Ω)




≲

∑
γ∈Nk

1k≤γ≤α

∑
0≤n′≤n+|γ|
0≤m′≤|β|

∑
δ,κ∈Nk

|δ|=n+|γ|−n′

|κ|=|β|−m′

(
CfM

(
n′, Nx, λ, λ̃

)
M (m′, Nt, µ, µ̃)

)

×
(

k∏
i=1

Cαi
v M

(
αi − γi + δi, Nx, λ, λ̃

)
M (κi, Nt, µ, µ̃)

)
≲ Cf

∑
0≤n′≤n+|α|
0≤m′≤|β|

(
CfM

(
n′, Nx, λ, λ̃

)
M (m′, Nt, µ, µ̃)

)

×
(
C|α|
v M

(
|α|+ n− n′, Nx, λ, λ̃

)
M (|β| −m′, Nt, µ, µ̃)

)
≲ CfC|α|

v M
(
|α|+ n,Nx, λ, λ̃

)
M (|β|, Nt, µ, µ̃)

which is precisely the bound claimed in (A.42). Estimate (A.43) follows immediately, while the bound (A.44)
is a consequence of the above and (A.39).

A.7 Commutators with material derivatives

Let D represent a pure spatial derivative and let

Dt = ∂t + v · ∇

denote a material derivative along the smooth (incompressible) vector field v. This vector field v is fixed
throughout this section. The question we would like to address in this section is the following: Assume that
for the vector field v we have DaDb

tDv estimates available. Can we then bound the operator norm of Db
tD

a

in terms of the operator norm of DaDb
t?

Following Komatsu [47, Lemma 5.2], a useful ingredient for bounding commutators of Eulerian and
material derivatives is the following lemma. We use the following commutator notation:

(adDt)
0(D) = D
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(adDt)
1(D) = [Dt, D] = −Dv · ∇

(adDt)
a(D) = (adDt)((adDt)

a−1(D)) = [Dt, (adDt)
a−1(D)]

for all a ≥ 2. Note that for any a ≥ 0, (adDt)
a(D) is a differential operator of order 1.

Lemma A.12. Let m,n ≥ 0. Then we have that the commutator of Dm
t and Dn is given by

[Dm
t , D

n] =
∑

{α∈Nn : 1≤|α|≤m}

m!

α!(m− |α|)!

(
n∏
ℓ=1

(adDt)
αℓ(D)

)
D
m−|α|
t . (A.48)

By the product in (A.48) we mean the product/composition of operators

n∏
ℓ=1

(adDt)
αℓ(D) = (adDt)

αn(D)(adDt)
αn−1(D) . . . (adDt)

α1(D) ,

so that on the right side of (A.48) we have a sum of differential operators of order at most n.

For the above lemma to be useful, we need to be able to characterize the operator (adDt)
a(D).

Lemma A.13. Let a ∈ N. Then the order 1 differential operator (adDt)
a(D) may be expressed as

(adDt)
a(D) =

a∑
k=1

∑
{β∈Nk : |β|=a−k}

ca,k,β

k∏
j=1

(D
βj

t Dv) · ∇ (A.49)

where the
∏

in (A.49) denotes the product of matrices, ca,k,β are coefficients which depend only on a, k, β.

Proof of Lemma A.13. When a = 1 we know that (adDt)(D) = −Dv · ∇, so that the lemma trivially holds.
We proceed by induction on a. Using the fact that [Dt,∇] = −Dv · ∇, we obtain

(adDt)
a+1(D) = Dt

 a∑
k=1

∑
β∈π(k,a)

ca,k,β

k∏
j=1

(D
βj

t Dv)

 · ∇+

a∑
k=1

∑
β∈π(k,a)

ca,k,β

k∏
j=1

(D
βj

t Dv) · [Dt,∇]

= Dt

 a∑
k=1

∑
β∈π(k,a)

ca,k,β

k∏
j=1

(D
βj

t Dv)

 · ∇ −
a∑
k=1

∑
β∈π(k,a)

ca,k,β

k∏
j=1

(D
βj

t Dv)Dv · ∇

where we have denoted by

π(k, a) =
{
β ∈ Nk : |β| = a− k

}
the set of all partitions of a set of a−k elements into k sets. For the first term we use the Leibniz rule for Dt,
so that for any β ∈ π(k, a), we obtain an element β + ej ∈ π(k, a+ 1), with ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nk,
and the 1 lies in the jth coordinate. For 1 ≤ k ≤ a, this in fact lists all the elements in π(k, a+ 1). For the
second sum, we identify β ∈ π(k, a) with β ∈ π(k + 1, a+ 1), upon padding it with a 0 in the k + 1st entry.
Changing variables k+1 → k, then recovers an element β ∈ π(k, a+1), including the case k = a+1, which
was missing from the first sum.

From Lemma A.12 and Lemma A.13 we deduce the following:

Lemma A.14. Let p ∈ [1,∞]. Fix Nx, Nt, N∗,M∗ ∈ N, let v be a vector field, let Dt = ∂t + v · ∇ be the
associated material derivative, and let Ω be a space-time domain. Assume that the vector field v obeys∥∥DNDM

t Dv
∥∥
L∞(Ω)

≲ CvM
(
N + 1, Nx, λv, λ̃v

)
M (M,Nt, µv, µ̃v) (A.50)

for N ≤ N∗ and M ≤M∗. Moreover, let f be a function which obeys∥∥DNDM
t f
∥∥
Lp(Ω)

≲ CfM
(
N,Nx, λf , λ̃f

)
M (M,Nt, µf , µ̃f ) (A.51)
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for all N ≤ N∗ and M ≤M∗. Denote

λ = max{λf , λv}, λ̃ = max{λ̃f , λ̃v}, µ = max{µf , µv}, µ̃ = max{µ̃f , µ̃v}.

Let m,n, ℓ ≥ 0 be such that n + ℓ ≤ N∗ and m ≤ M∗. Then, we have that the commutator [Dm
t , D

n] is
bounded as∥∥Dℓ [Dm

t , D
n] f

∥∥
Lp(Ω)

≲ CfCvλ̃vM
(
ℓ+ n,Nx, λ, λ̃

)
M
(
m− 1, Nt,max{µ, Cvλ̃v},max{µ̃, Cvλ̃v}

)
(A.52)

≲ CfM
(
ℓ+ n,Nx, λ, λ̃

)
M
(
m,Nt,max{µ, Cvλ̃v},max{µ̃, Cvλ̃v}

)
. (A.53)

Moreover, we have that for k ≥ 2, and any α, β ∈ Nk with |α| ≤ N∗ and |β| ≤M∗, the estimate∥∥∥∥∥
(

k∏
i=1

DαiDβi

t

)
f

∥∥∥∥∥
Lp(Ω)

≲ CfM
(
|α|, Nx, λ, λ̃

)
M
(
|β|, Nt,max{µ, Cvλ̃v},max{µ̃, Cvλ̃v}

)
(A.54)

holds.

Remark A.15. If instead of (A.50) and (A.51) holding for N ≤ N∗ and M ≤ M∗, we know that both
of these inequalities hold for all N +M ≤ N◦ for some N◦ ≥ 1, then the conclusions of the Lemma hold
as follows: the bounds (A.52) and (A.53) hold for ℓ + n +m ≤ N◦, while (A.54) holds for |α| + |β| ≤ N◦.
This fact follows immediately from the proof of the Lemma, but may alternatively also be derived from its
statement (see also Lemma A.3).

Remark A.16. In Lemma A.14, if the assumption (A.51) is replaced by∥∥DNDM
t f
∥∥
Lp(Ω)

≲ CfM
(
N − 1, Nx, λf , λ̃f

)
M (M,Nt, µf , µ̃f ) , (A.55)

whenever 1 ≤ N ≤ N∗, then the conclusion (A.54) changes, and it instead becomes∥∥∥∥∥
(

k∏
i=1

DαiDβi

t

)
f

∥∥∥∥∥
Lp(Ω)

≲ CfM
(
|α| − 1, Nx, λ, λ̃

)
M
(
|β|, Nt,max{µ, Cvλ̃v},max{µ̃, Cvλ̃v}

)
(A.56)

whenever |α| ≥ 1. This follows for instance by noting that the sum on the second line of (A.61) only contains
terms with j ≥ 1, so that (A.55) is not required when N = 0.

Proof of Lemma A.14. First, we deduce from (A.49) that for any αi ≥ 1 and 1 ≤ i ≤ n, we have

(adDt)
αi(D) =

αi∑
κi=1

fκi,αi
· ∇ (A.57)

where the functions fκi,αi are computed as

fκi,αi
=

∑
{β∈Nκi : |β|=αi−κi}

c(... )

κi∏
j=1

(D
βj

t Dv)

for suitable combinatorial coefficients (tensors) c(... ) which depend on κi, αi, and β. In particular, in view
of assumption (A.50), and the Leibniz rule, we have that∥∥Dℓfκi,αi

∥∥
L∞(Ω)

≲ Cκi
v M

(
κi + ℓ,Nx, λv, λ̃v

)
M (αi − κi, Nt, µv, µ̃v) . (A.58)

Next, from (A.57) we deduce that for any α ∈ Nn with |α| ≥ 1, one may write

n∏
i=1

(adDt)
αi(D) =

n∑
j=1

gj,αD
j (A.59)

144



where

gj,α =
∑

{κ∈Nn : 1n≤κ≤α}

∑
{γ∈Nn : |γ|=n−j}

c̃(... )

n∏
i=1

Dγifκi,αi .

As a consequence of (A.58) we see that

∥∥Dℓgj,α
∥∥
L∞(Ω)

≲
|α|∑

|κ|=1

C|κ|
v M

(
ℓ+ n− j + |κ|, Nx, λv, λ̃v

)
M (|α| − |κ|, Nt, µv, µ̃v) . (A.60)

From (A.48), assumption (A.51), identity (A.59), and bound (A.60), we see that

∥∥Dℓ [Dm
t , D

n] f
∥∥
Lp(Ω)

≲
m∑

|α|=1

n∑
j=1

∥∥∥Dℓ
(
gj,αD

jD
m−|α|
t

)
f
∥∥∥
Lp(Ω)

≲
m∑

|α|=1

n∑
j=1

∥∥Dℓgj,α
∥∥
L∞(Ω)

∥∥∥DjD
m−|α|
t f

∥∥∥
Lp(Ω)

+ ∥gj,α∥L∞(Ω)

∥∥∥Dℓ+jD
m−|α|
t f

∥∥∥
Lp(Ω)

≲
m∑
k=1

n∑
j=1

CfCkvM
(
ℓ+ n− j + k,Nx, λv, λ̃v

)
M
(
j,Nxλ, λ̃

)
M (m− k,Nt, µ, µ̃)

+ CfCkvM
(
n− j + k,Nx, λv, λ̃v

)
M
(
j + ℓ,Nxλ, λ̃

)
M (m− k,Nt, µ, µ̃)

≲ CfM
(
ℓ+ n,Nx, λ, λ̃

) m∑
k=1

(Cvλ̃v)kM (m− k,Nt, µ, µ̃) (A.61)

from which (A.53) follows directly.
In order to prove (A.54) we proceed by induction on k. For k = 1 the statement holds in view of (A.51).

We assume that (A.54) holds for k′ ≤ k − 1, and denote

Pk′ =

 k′∏
i=1

DαiDβi

t

 f.

With this notation we have

Pk = DαkDβk
t Dαk−1D

βk−1

t Pk−2

= Dαk+αk−1D
βk+βk−1

t Pk−2 +Dαk

[
Dβk
t , Dαk−1

]
D
βk−1

t Pk−2.

Using (A.54) with k − 1 gives the desired estimate for the first term above. For the second term, we appeal

to the commutator bound (A.53), applied to D
βk−1

t Pk−2, which obeys condition (A.51) in view of (A.54) at
level k − 1. This concludes the proof of (A.54) at level k.

A.8 Intermittency-friendly inversion of the divergence

Given a vector field Gi, a zero mean periodic function ϱ and an incompressible flow Φ, our goal in this section
is to write Gi(x)ϱ(Φ(x)) as the divergence of a symmetric tensor.

Proposition A.17 (Inverse divergence iteration step). Fix two zero-mean T3-periodic functions ϱ
and ϑ, which are related by ϱ = ∆ϑ. Let Φ be a volume preserving transformation of T3, such that
∥∇Φ− Id∥L∞(T3) ≤ 1/2. Define the matrix A = (∇Φ)−1. Given a vector field Gi, we have

Giϱ ◦ Φ = ∂nR̊
in + ∂iP + Ei (A.62)
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where the traceless symmetric stress Rin is given by

R̊in =
(
GiAnℓ +GnAiℓ −AikA

n
kG

p∂pΦ
ℓ
)
(∂ℓϑ) ◦ Φ− Pδin , (A.63)

where the pressure term is given by

P =
(
2GnAnℓ −AnkA

n
kG

p∂pΦ
ℓ
)
(∂ℓϑ) ◦ Φ , (A.64)

and the error term Ei is given by

Ei =
(
∂n
(
GpAikA

n
k −GnAikA

p
k

)
∂pΦ

ℓ − ∂nG
iAnℓ

)
(∂ℓϑ) ◦ Φ . (A.65)

Proof of Proposition A.17. Note that by definition we have Akℓ∂jΦ
ℓ = δkj . Since Φ is volume preserving,

det(∇Φ) = 1, and so each entry of the matrix A equals the corresponding cofactor of ∇Φ, which in three
dimensions is a quadratic function of entries of ∇Φ given explicitly by Aij = 1

2εipqεjkℓ∂kΦ
p∂ℓΦ

q. In two

dimensions A is a linear map in ∇Φ. Moreover, since Φ is volume preserving, the Piola identity ∂jA
j
i = 0

holds for every i ∈ {1, 2, 3}. The main identity that we use in the proof is that for any scalar function φ we
have (∂iφ) ◦ Φ = Ami ∂m(φ ◦ Φ) = ∂m(Ami φ ◦ Φ).

Starting from ϱ = ∆ϑ, we have

Giϱ ◦ Φ = Gi(∂kkϑ) ◦ Φ
= GiAnk∂n(∂kϑ) ◦ Φ
= ∂n

(
GiAnk (∂kϑ) ◦ Φ

)
− ∂nG

iAnk (∂kϑ) ◦ Φ
= ∂n

(
GiAnk (∂kϑ) ◦ Φ+GnAik(∂kϑ) ◦ Φ

)
− ∂n

(
GnAik(∂kϑ) ◦ Φ

)
− ∂nG

iAnk (∂kϑ) ◦ Φ .

Next, we have

∂n
(
GnAik(∂kϑ) ◦ Φ

)
= ∂n

(
GnAikA

p
k∂p(ϑ ◦ Φ)

)
= ∂p∂n

(
GnAikA

p
kϑ ◦ Φ

)
− ∂n

(
∂p(G

nAikA
p
k)ϑ ◦ Φ

)
= ∂p

(
GnAikA

p
k∂n(ϑ ◦ Φ)

)
+ ∂p

(
∂n(G

nAikA
p
k)ϑ ◦ Φ

)
− ∂n

(
∂p(G

nAikA
p
k)ϑ ◦ Φ

)
= ∂n

(
GpAikA

n
k∂p(ϑ ◦ Φ)

)
+ ∂n

(
∂p(G

pAikA
n
k )ϑ ◦ Φ

)
− ∂n

(
∂p(G

nAikA
p
k)ϑ ◦ Φ

)
where in the last equality we have just switched the letters of summation n and p. We further massage the
last term in the above equality.

∂n
(
∂p(G

nAikA
p
k)ϑ ◦ Φ

)
= ∂p

(
GnAikA

p
k

)
∂n(ϑ ◦ Φ) + ∂np

(
GnAikA

p
k

)
ϑ ◦ Φ

= ∂p
(
GnAikA

p
k

)
∂n(ϑ ◦ Φ) + ∂p

(
∂n
(
GnAikA

p
k

)
ϑ ◦ Φ

)
− ∂n

(
GnAikA

p
k

)
∂p(ϑ ◦ Φ)

Combining the above three equalities, we arrive at

Giϱ ◦ Φ = ∂n
(
(GiAnk +GnAik)(∂kϑ) ◦ Φ−AikA

n
kG

p∂p(ϑ ◦ Φ)
)

+ ∂n
(
GpAikA

n
k −GnAikA

p
k

)
∂p(ϑ ◦ Φ)− ∂nG

iAnk (∂kϑ) ◦ Φ
= ∂n

(
(GiAnk +GnAik)(∂kϑ) ◦ Φ−AikA

n
kG

p∂pΦ
ℓ(∂ℓϑ) ◦ Φ

)
+ ∂n

(
GpAikA

n
k −GnAikA

p
k

)
∂pΦ

ℓ(∂ℓϑ) ◦ Φ− ∂nG
iAnℓ (∂ℓϑ) ◦ Φ

In the last equality we have exchanged the order of summation. Identities (A.62)–(A.65) follow upon declaring
that the trace part of the symmetric stress is the pressure.

Proposition A.17 allows us to obtain the following result, which is the main conclusion of this section.

Proposition A.18 (Inverse divergence with error term). Fix an incompressible vector field v and
denote its material derivative by Dt = ∂t + v · ∇. Fix integers N∗ ≥ M∗ ≥ 1. Also fix Ndec, d ≥ 1 such that
N∗ − d ≥ 2Ndec + 4.
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Let G be a vector field and assume there exists a constant CG > 0 and parameters λ, ν ≥ 1 such that∥∥DNDM
t G

∥∥
L1 ≲ CGλNM (M,Mt, ν, ν̃) (A.66)

for all N ≤ N∗ and M ≤M∗.
Let Φ be a volume preserving transformation of T3, such that

DtΦ = 0 and ∥∇Φ− Id∥L∞(suppG) ≤ 1/2 .

Denote by Φ−1 the inverse of the flow Φ, which is the identity at a time slice which intersects the support of
G. Assume that the velocity field v and the flow functions Φ and Φ−1 satisfy the following bounds∥∥DN+1Φ

∥∥
L∞(suppG)

+
∥∥DN+1Φ−1

∥∥
L∞(suppG)

≲ λ′N (A.67)∥∥DNDM
t Dv

∥∥
L∞(suppG)

≲ νλ′NM (M,Mt, ν, ν̃) , (A.68)

for all N ≤ N∗, M ≤M∗, and some λ′ > 0.
Lastly, let ϱ, ϑ : T3 → R be two zero mean functions with the following properties:

(i) there exists d ≥ 1 and a parameter ζ ≥ 1 such that ϱ(x) = ζ−2d∆dϑ(x)

(ii) there exists a parameter µ ≥ 1 such that ϱ and ϑ are (T/µ)3-periodic

(iii) there exists parameters Λ ≥ ζ and C∗ ≥ 1 such that∥∥DNϱ
∥∥
L1 ≲ C∗ΛN and

∥∥DNϑ
∥∥
L1 ≲ C∗M (N, 2d, ζ,Λ) (A.69)

for all 0 ≤ N ≤ Nfin, except for the case N = 2d when the Calderón-Zygmund inequality fails. In
this exceptional case, the second inequality in (A.69) is allowed to be weaker by a factor of Λα, for an
arbitrary α ∈ (0, 1]; that is, we only require that

∥∥D2dϑ
∥∥
L1 ≲ C∗Λαζ2d.

If the above parameters satisfy

λ′ ≤ λ≪ µ ≤ ζ ≤ Λ , (A.70)

where by the second inequality in (A.70) we mean that

Λ4

(
µ

2π
√
3λ

)−Ndec

≤ 1 , (A.71)

then, we have that

G ϱ ◦ Φ = div R̊+∇P + E =: div (H (Gϱ ◦ Φ)) +∇P + E. (A.72)

where the traceless symmetric stress R̊ = H(Gϱ ◦Φ) and the scalar pressure P are supported in suppG, and
for any fixed α ∈ (0, 1) they satisfy∥∥∥DNDM

t R̊
∥∥∥
L1

+
∥∥DNDM

t P
∥∥
L1 ≲ ΛαCGC∗ζ−1M (N, 1, ζ,Λ)M (M,Mt, ν, ν̃) (A.73)

for all N ≤ N∗ − d and M ≤M∗. The implicit constants depend on N,M,α but not G, ϱ, or Φ. Lastly, for
N ≤ N∗ − d and M ≤M∗ the error term E in (A.72) satisfies∥∥DNDM

t E
∥∥
L1 ≲ CGC∗Λαλdζ−dΛNM (M,Mt, ν, ν̃) . (A.74)

We emphasize that the range of M in (A.73) and (A.74) is exactly the same as the one in (A.66), while the
range of permissible values for N shrank from N∗ to N∗ − d.

Lastly, let N◦,M◦ be integers such that 1 ≤ M◦ ≤ N◦ ≤ M∗/2. Assume that in addition to the bound
(A.68) we have the following global lossy estimates∥∥DN∂Mt v

∥∥
L∞(T3)

≲ Cvλ̃Nq τ̃−Mq (A.75)
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for all M ≤M◦ and N +M ≤ N◦ +M◦, where

Cvλ̃q ≲ τ̃−1
q , and λ′ ≤ λ̃q ≤ Λ ≤ λq+1 . (A.76)

If d is chosen large enough so that

CGC∗Λ
(
λ

ζ

)d−1
(
1 +

max{τ̃−1
q , ν̃, CvΛ}
τ−1
q

)M◦

≤ δq+2

λ5q+1

, (A.77)

then we may write

E = div R̊nonlocal +

 
T3

Gϱ ◦ Φdx =: div (R∗(Gϱ ◦ Φ)) +
 
T3

Gϱ ◦ Φdx , (A.78)

where R̊nonlocal = R∗(Gϱ ◦ Φ) is a traceless symmetric stress which satisfies∥∥∥DNDM
t R̊nonlocal

∥∥∥
L1

≤ δq+2

λ5q+1

λNq+1τ
−M
q (A.79)

for N ≤ N◦ and M ≤M◦.

Before turning to the proof of Lemma A.18, let us make three remarks. First, we highlight certain
parameter values which will occur commonly in applications of the proposition. Second, we comment on a
technical aspect of the application of the Proposition in Section 8.3. Finally, we comment on the assumptions
(i)–(iii) and (A.71) and (A.77) for the functions ϱ and ϑ, which in applications are related to the transversal
densities of the pipe flows.

Remark A.19. Frequently, G will come with derivative bounds which are satisfied for N+M ≤ N ♯. In this
case, we set N∗ =M∗ = N♯/2, so that (A.66) is satisfied. The bounds in (A.67) and (A.68) will be true (due
to Corollary 6.27 and estimate (6.60)) for much higher order derivatives than N♯/2, and so we ignore them.
The bounds in (A.69) are given by construction in Proposition 4.4. Then the bounds (A.73) and (A.74) are
satisfied for N ≤ N♯/2− d and M ≤ N♯/2, and in particular for N +M ≤ N♯/2− d. In (A.75) we will then set
N◦ =M◦ ≤ N♯/4, which in practice will give N◦ =M◦ = 3Nind,v. Arguing in the same way used to produce
the bound (5.18) shows that for N +M ≤ Nfin,∥∥DN∂Mt vℓq

∥∥
L∞ ≲

(
λ4qδ

1/2
q

)
λ̃Nq τ̃

−M
q (A.80)

and so (A.75) is satisfied with Cv = λ4qδ
1/2
q up to N +M ≤ 2Nfin (which will in fact be far beyond anything

required for the inverse divergence). The inequalities in (A.76) follow from (9.43), (9.39), and the definitions

of λ′ = λ̃q and Λ = λq+1. In applications, ν̃ = τ̃−1
q Γ−1

q+1, so that from (9.39) and (9.43), we have that

max{τ̃−1
q , ν̃, CvΛ} ≤ τ−1

q λ̃3qλ̃q+1 ≤ τ−1
q λ4q+1 ,

which holds as soon as εΓ is taken to be sufficiently small. Then, (A.77) will follow from (9.55). Finally,
(A.79) will hold for all N,M ≤ N♯/4, which will be taken larger than 3Nind,v. In summary, if (A.66) is
known to hold for N +M ≤ N ♯, then (A.73) holds for N ≤ N♯/2− d and M ≤ N♯/2, while (A.79) is valid for
N,M ≤ N♯/4.

Remark A.20. In the identification of the error terms in Section 8.3, we apply Proposition A.18 to write

Gϱ ◦ Φ = div (H(Gϱ ◦ Φ)) +∇P + div (R∗ (Gϱ ◦ Φ)) +
 
T3

Gϱ ◦ Φdx.

The estimates on G, ϱ, and Φ, and then the right hand side of the above equality will be checked in later
sections. We emphasize that H is a local operator and is thus well-suited to working with estimates on the
support of a cutoff function. Conversely, R∗ is non-local but will always produce extremely small errors
which can be absorbed into R̊q+1 and for which the cutoff functions are not relevant.
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Remark A.21. We consider examples of functions ϑ and ϱ with which Proposition A.18 is used.

(a) This is the case corresponding to the density of a pipe flow. Recalling the construction of pipe flows from
Proposition 4.4, we let ϱ = ϱkξ,λ,r and ϑ = ϑkξ,λ,r. Set ζ = Λ = λ (where the λ refers to Proposition 4.4,
not the λ from Proposition A.18) and µ = λr. To verify (i), we appeal to item (1) from Proposition 4.4
and our choice of Λ and µ. The periodicity requirement in (ii) follows from item (2) from Proposition 4.4
and referring back to item (1) from Proposition 4.3. Next, (A.69) is satisfied with C∗ = r using (4.11).
Finally, (A.71) and (A.77) will follow from large choice of Ndec and d and the fact that our choice of λ
can always be related to ζ and µ by a power strictly less than 1 (see (9.48) and (9.55)).

(b) This is the case corresponding to the Littlewood-Paley projection for the square of the density of a pipe
flow. Fix 1 ≤ µ ≤ ζ < Λ, and a constant C∗ > 0. Let η(x) be any (T/µ)3-periodic function (which need
not have zero-mean), with ∥η∥Lp(T3) ≤ C∗. In applications, we shall refer to (4.15) from Proposition 4.4

and set η =
(
ϱkξ,λ,r

)2
and µ = λr. This means that we may write η(x) = ηµ(µx) where ηµ is T3-periodic,

with ∥ηµ∥L1(T3) ≤ C∗. Following (4.15) from Proposition 4.4 with λ1 = ζ, λ2 = Λ, we may define

ϱ(x) =
(
P[ζ,Λ]η

)
(x) =

(
P[ ζµ ,Λµ ]ηµ

)
(µx) ,

a function which is (T/µ)3-periodic and has zero mean (since ζ ≥ µ > 0), and clearly∥∥DNϱ
∥∥
L1(T3)

≤ C∗ΛN .

We now define the associated function ϑ by first defining the zero mean T3-periodic function

ϑµ =

(
ζ

µ

)2d

∆−dP[ ζµ ,Λµ ]ηµ ,

where the negative powers of the Laplacian are defined simply as a Fourier multiplier (since the periodic
function we apply it to has zero mean). Then we let

ϑ(x) = ϑµ(µx)

which has zero mean, is (T/µ)3-periodic, and clearly satisfies ∆dϑ = ζ2dϱ, as required. It only remains to
estimate the ẆN,1 norms of ϑ, which up to paying a factor of µN is equivalent to estimating the ẆN,1

norms of ϑµ. When 0 ≤ N < 2d, the operator

DN∆−dP[ ζµ ,Λµ ]

is a bounded operator on L1, whose operator norm is ≲ (ζ/µ)N−2d. This may be verified via a standard
Littlewood-Paley argument. The exceptional case N = 2d leads to a logarithmic loss since there are
roughly log(Λ/µ)-many Littlewood-Paley shells to estimate; we absorb this loss into a factor of Λα, with
α > 0 arbitrarily small. Since ∥ηµ∥L1 ≤ C∗, the second estimate in (iii) above clearly follows, at least
when N ≤ 2d. The case N > 2d follows similarly, except that now DN∆−d is a positive order operator,
and thus the L1 operator norm of DN∆−dP[ ζµ ,Λµ ] is bounded by ≈ (Λ/µ)N−2d. We remark that as in the

previous case, (A.71) and (A.77) will follow from large choices of Ndec and d and the fact that our choice
of λ can always be related to ζ and µ by a power strictly less than 1.

Proof of Proposition A.18. Since DtΦ ≡ 0, we have that DNDm
t ∇Φ = DN [DM

t ,∇]Φ. We may now appeal
to Lemma A.14, more precisely, to Remark A.16. Let Ω = suppG, and f = Φ, so that (A.67) implies that

(A.55) holds with Cf = 1, λf = λ̃f = λ′, and µf = µ̃f = 1 (in fact, wheneverM ≥ 1 we may replace the right

side of (A.55) by 0). Moreover, (A.68) implies that (A.50) holds with Cv = ν/λ′, λv = λ̃v = λ′, Nt = Mt,
µv = ν and µ̃v = ν̃. We deduce from (A.56) that∥∥∥DN ′′

DM
t D

N ′
DΦ
∥∥∥
L∞(suppG)

≲ λ′N
′+N ′′M (M,Mt, ν, ν̃) (A.81)
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whenever N ′ +N ′′ ≤ N∗ and M ≤ M∗. Similarly, we use Lemma A.14 with f = G, so that due to (A.66)

we know that (A.51) holds with Cf = CG, λf = λ̃f = λ, µf = ν, µ̃f = ν̃, and Nt = Mt. With Ω = suppG,

since λ′ ≤ λ, as before we have that (A.68) implies that (A.50) holds with Cv = ν/λ, λv = λ̃v = λ, Nt =Mt,
µv = ν and µ̃v = ν̃. Therefore, from (A.54) we obtain that∥∥∥DN ′′

DM
t D

N ′
G
∥∥∥
L1

≲ CGλN
′+N ′′M (M,Mt, ν, ν̃) (A.82)

whenever N ′ +N ′′ ≤ N∗ and M ≤M∗. With (A.81) and (A.82), we turn to the proof of (A.73).
Instead of defining R̊ and P separately, we shall simply construct a symmetric stress R with a prescribed

divergence, and use the convention that P = tr (R) and R̊ = R − tr (R)Id. The construction is based
on iterating Proposition A.17, d times. For notational purposes, let ϱ(0) = ϱ, and for 1 ≤ k ≤ d we let

ϱ(k) = (ζ−2∆)d−kϑ. Then ϱ(k−1) = ζ−2∆ϱ(k), and ϱ(d) = ϑ. We also define G(0) = G.
Since ρ(0) = ζ−2∆ρ(1), we deduce from Proposition A.17, identities (A.62)–(A.65) that

Gi(0)ϱ(0) ◦ Φ = ∂nR
in
(0) +Giℓ(1)(ζ

−1∂ℓϱ(1)) ◦ Φ (A.83)

where the symmetric stress R(0) is given by

Rin(0) = ζ−1
(
Gi(0)A

n
ℓ +Gn(0)A

i
ℓ −AikA

n
kG

p
(0)∂pΦ

ℓ
)

︸ ︷︷ ︸
=:Sinℓ

(0)

(ζ−1∂ℓϱ(1)) ◦ Φ , (A.84)

the error terms are computed as

Giℓ(1) = ζ−1
(
∂n

(
Gp(0)A

i
kA

n
k −Gn(0)A

i
kA

p
k

)
∂pΦ

ℓ
)
− ∂nG

i
(0)A

n
ℓ , (A.85)

where as before we denote (∇Φ)−1 = A. We first show that the symmetric stress R(0) defined in (A.84)
satisfies the estimate (A.73). First, we note that the ζ−1 factor has already been accounted for explicitly in
(A.84). Second, we note that since DtΦ = 0, material derivatives may only land on the components of the
3-tensor S(0). Third, the function ζ−1Dϱ(1) has zero mean, is (T/µ)3 periodic, and satisfies∥∥DN (ζ−1Dϱ(1))

∥∥
L1 ≲ C∗M (N, 1, ζ,Λ) (A.86)

for 1 ̸= N ≤ Nfin, in view of (A.69). For N = 1, the above estimate incurs a logarithmic loss of Λ, which we
can absorb with Λα for any α > 0 to produce the estimate∥∥D(ζ−1Dϱ(1))

∥∥
L1 ≲ ΛαC∗M (N, 1, ζ,Λ) . (A.87)

The implicit constants depend on α and degenerate as α → 0. Fourth, the components of the 3-tensor S(0)

are sums of terms of two kinds: G(0) ⊗A is a linear function of G(0) multiplied by a homogeneous quadratic
polynomial in DΦ, while G⊗A⊗A⊗DΦ is a linear function of G multiplied by a homogeneous polynomial
of degree 5 in the entries of DΦ. In particular, due to our assumption (A.66) and the previously established
bound (A.81), upon applying the Leibniz rule and using that λ′ ≤ λ, we obtain that∥∥DNDM

t S(0)

∥∥
L1 ≲ CGλNM (M,Mt, ν, ν̃) (A.88)

for N ≤ N∗ and M ≤ M∗. Having collected these estimates, the L1 norm of the space-material derivatives
of R(0) is obtained from Lemma A.7. As dictated by (A.84) we apply this lemma with f = ζ−1S(0), and
φ = ζ−1∇ϱ(1). Due to (A.88), the bound (A.30) holds with Cf = CGζ−1. Due to (A.67) and λ′ ≤ λ,
the assumptions (A.31) and (A.32) are verified. Next, due to (A.86) and (A.87), the assumption (A.33) is

verified, with Nx = 1, ζ̃ = Λ, and Cφ = C∗Λα. Lastly, assumption (A.71) verifies the condition (A.34) of
Lemma A.7. Thus, applying estimate (A.36) we deduce that∥∥DNDM

t R(0)

∥∥
L1 ≲ CGC∗Λαζ−1M (N, 1, ζ,Λ)M (M,Mt, ν, ν̃) (A.89)
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for all N ≤ N∗ and M ≤ M∗, which is precisely the bound stated in (A.73). Here we have used that
N∗ ≥ 2Ndec + 4, which was required due to (A.35).

Next we analyze the second term in (A.83). The point is that this term has the same structure as what
we started with; for every fixed ℓ ∈ {1, 2, 3}, we may replace Gi(0) by G

iℓ
(1), and we replace ϱ(0) with ζ

−1∂ℓϱ(1);

the only difference is that the bounds for this term are better. Indeed, from (A.85) we see that the 2-tensor
G(1) is the sum of entries in ζ−1DG(0)⊗A, ζ−1DG(0)⊗A⊗A⊗DΦ, and ζ−1G(0)⊗DA⊗A⊗DΦ. Recalling
that the entries of A are homogeneous quadratic polynomials in the entries of DΦ, from (A.81), (A.82),
λ′ ≤ λ, and the Leibniz rule we deduce that∥∥∥DN ′′

DM
t D

N ′
Giℓ(1)

∥∥∥
L1

≲ CG(λζ−1)λN
′+N ′′M (M,Mt, ν, ν̃) . (A.90)

for N ′ + N ′′ ≤ N∗ − 1, and M ≤ M∗. Compare the above estimate with (A.82), and we notice that since
λζ−1 ≪ 1, the bounds for G(1) are indeed better than those for G(0); the only caveat is the the bounds hold
for one fewer spatial derivatives. In order to iterate Proposition A.17, for simplicity we ignore the ℓ index,
since the argument works in exactly the same way for all values of ℓ, we write Giℓ(1) simply as Gi(1), and ∂ℓϱ(1)
as Dϱ(1). We start by noting that ζ−1Dϱ(1) = ζ−2∆(ζ−1Dϱ(2)). Thus, using identities (A.62)–(A.65) we
obtain that the second term in (A.83) may be written as

Gi(1)(ζ
−1Dϱ(1)) ◦ Φ = ∂nR

in
(1) +Giℓ(2)(ζ

−2∂ℓDϱ(2)) ◦ Φ (A.91)

where the symmetric stress R(1) is given by

Rin(1) = ζ−1
(
Gi(1)A

n
ℓ +Gn(1)A

i
ℓ −AikA

n
kG

p
(1)∂pΦ

ℓ
)

︸ ︷︷ ︸
=:Sinℓ

(1)

(ζ−2∂ℓDϱ(2)) ◦ Φ , (A.92)

the error terms are computed as

Giℓ(2) = ζ−1
(
∂n

(
Gp(1)A

i
kA

n
k −Gn(1)A

i
kA

p
k

)
∂pΦ

ℓ
)
− ∂nG

i
(1)A

n
ℓ , (A.93)

We emphasize that by combining (A.85) with (A.92) and (A.93), we may compute the 3-tensor S(1) and
the 2-tensor G(2) explicitly in terms of just space derivatives of G and DΦ. Using a similar argument to
the one which was used to prove (A.88), but by appealing to (A.90) instead of (A.82), we deduce that for
N ≤ N∗ − 1 and M ≤M∗, ∥∥DNDM

t S(1)

∥∥
L1 ≲ CG(λζ−1)λNM (M,Mt, ν, ν̃) . (A.94)

Using the bound (A.94) and the estimate∥∥DN (ζ−2∂ℓDϱ(2))
∥∥
L1 ≲ C∗M (N, 2, ζ,Λ) ,

which is a consequence of (A.69) — in the case N = 2 as before we may weaken the bound by a factor of
Λα — we may deduce from Lemma A.7 that∥∥DNDM

t R(1)

∥∥
L1 ≲ CGC∗Λα(λζ−2)M (N, 2, ζ,Λ)M (M,Mt, ν, ν̃) (A.95)

for N ≤ N∗ − 1 and M ≤ M∗, which is an estimate that is even better than (A.89), since λ ≪ ζ ≤ Λ. This
shows that the first term in (A.91) satisfies the expected bound. The second term in (A.91) may in turn be
shown to satisfy ∥∥∥DN ′′

DM
t D

N ′
Giℓ(2)

∥∥∥
L1

≲ CG(λ2ζ−2)λN
′+N ′′M (M,Mt, ν, ν̃) . (A.96)

for N ′ +N ′′ ≤ N∗ − 2 and M ≤M∗, and it is clear that this procedure may be iterated d times.
Without spelling out these details, the iteration procedure described above produces

G(0)ϱ(0) ◦ Φ =

d−1∑
k=0

divR(k) +G(d) ⊗ (ζ−dDdϑ) ◦ Φ︸ ︷︷ ︸
=:E

(A.97)
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where each of the d symmetric stresses satisfies∥∥DNDM
t R(k)

∥∥
L1 ≲ CGC∗Λα(λkζ−k+1)M (N, 1, ζ,Λ)M (M,Mt, ν, ν̃) , (A.98)

for N ≤ N∗ − k, and M ≤ M∗. Each component of the the error tensor G(d) in (A.97) is recursively
computable solely in terms of G and DΦ and their spatial derivatives, and satisfies∥∥∥DN ′′

DM
t D

N ′
G(d)

∥∥∥
L1

≲ CG(λdζ−d)λN
′+N ′′M (M,Mt, ν, ν̃) (A.99)

for N ′+N ′′ ≤ N∗−d andM ≤M∗. Lastly, since
∥∥DN (ζ−dDdϑ)

∥∥
L1 ≲ C∗ΛαM (N, d, ζ,Λ) and Ddϑ is (T/µ)3-

periodic, a final application of Lemma A.7 combined with (A.99) and the assumption that N∗−d ≥ 2Ndec+4,
shows that estimate (A.74) holds.

Next, we turn to the proof of (A.78) and (A.79). Recall that E is defined by the second term in (A.97),
and thus

ffl
T3 Gϱ ◦ Φdx =

ffl
T3 Edx. Using the standard nonlocal inverse-divergence operator

Rv = ∆−1
(
∇v + (∇v)T

)
− 1

2

(
Id +∇∇∆−1

)
∆−1div v . (A.100)

we may define

R̊nonlocal = RE .

By the definition ofR we have that R̊nonlocal is traceless, symmetric, and satisfies div R̊nonlocal = E−
ffl
T3 Edx,

i.e. (A.78) holds. In the last equality we have used that by assumption Gϱ ◦ Φ has zero mean, and thus so
does E. The idea here is very simple: because d is very large, the gain of (λζ−1)d present in the E estimate
(A.74) is so strong, that we may simply convert D and Dt bounds on E to (terrible) ∂t bounds, which
commute with R, and we can still get away with it.

Using the formulas (5.17a) and (5.17b) and the assumption (A.75), since D and ∂t commute with R, we
deduce that for every N ≤ N◦ and M ≤M◦ we have

∥∥∥DNDM
t R̊nonlocal

∥∥∥
L1

≲
∑

M ′≤M
N ′+M ′≤N+M

M−M ′∑
K=0

CKv λ̃N−N ′+K
q τ̃−(M−M ′−K)

q

∥∥∥DN ′
∂M

′

t RE
∥∥∥
L1

≲
∑

M ′≤M
N ′+M ′≤N+M

λ̃N−N ′

q τ̃−(M−M ′)
q

∥∥∥DN ′
∂M

′

t E
∥∥∥
Lp

(A.101)

for any p ∈ (1, 3/2), where in the last inequality we have used that by assumption Cvλ̃q ≲ τ̃−1
q , and that

R : Lp(T3) → L1(T3) is a bounded operator.
Our goal is to appeal to estimate (A.44) in Lemma A.10, with A = −v · ∇, B = Dt and f = E in order

to estimate the Lp norm of DN ′
∂M

′

t E = DN ′
(A+B)M

′
E.

First, we claim that v satisfies the lossy estimate∥∥DNDM
t v
∥∥
L∞ ≲ Cvλ̃Nq τ̃−Mq (A.102)

forM ≤M◦ and N +M ≤ N◦+M◦. This estimate does not follow from (A.68), which only provides bounds
for Dv, instead of v. For this purpose, we apply Lemma A.10 with f = v, B = ∂t, A = v · ∇, and p = ∞.
Using (A.75), and the fact that B = ∂t and D commute, we obtain that bounds (A.40) and (A.41) hold with

Cf = Cv, λv = λ̃v = λf = λ̃f = λ̃q, and µv = µ̃v = µf = µ̃f = τ̃−1
q . Since A + B = Dt, we obtain from the

bound (A.44) and our assumption Cvλ̃q ≲ τ̃−1
q that (A.102) holds.

Second, we claim that for any k ≥ 1 we have∥∥∥∥∥
(

k∏
i=1

DαiDβi

t

)
v

∥∥∥∥∥
L∞(suppG)

≲ Cvλ̃|α|q (max{ν̃, τ̃−1
q })|β| (A.103)
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whenever |β| ≤ M◦ and |α| + |β| ≤ N◦ +M◦. To see this, we use Lemma A.14 with f = v, p = ∞, and

Ω = suppG. From (A.68) we have that (A.50) holds with Cv = ν/λ′, λv = λ̃v = λ′, µv = ν, and µ̃v = ν̃. On

the other hand, from (A.102) we have that (A.51) holds with Cf = Cv, λf = λ̃f = λ̃q, and µf = µ̃f = τ̃−1
q .

Since λ̃q ≥ λ′, we deduce from (A.54) that (A.103) holds.
Third, we claim that∥∥∥∥∥

(
k∏
i=1

DαiDβi

t

)
E

∥∥∥∥∥
Lp(suppG)

≲ CGC∗(λζ−1)dΛ|α|+1M (|β|,Mt, ν, ν̃) (A.104)

holds whenever |α| ≤ N∗ − d and |β| ≤ M∗. This estimate again follows from Lemma A.14, this time with
f = E, by appealing to the previously established bound (A.74) and the Sobolev embedding W 1,1(T3) ⊂
Lp(T3) for p ∈ (1, 3/2).

At last, we are in the position to apply Lemma A.10. The bound (A.103) implies that assumption (A.40)

holds with B = Dt, λv = λ̃v = λ̃q, and µv = µv = max{τ̃−1
q , ν̃}. The bound (A.104) implies that assumption

(A.41) of Lemma A.10 holds with Cf = CGC∗(λζ−1)dΛ, λf = λ̃f = Λ, µf = ν, and µ̃f = ν̃. We may now use

estimate (A.44), and the assumption that Λ ≥ λ̃q to deduce that∥∥∥DN ′
∂M

′

t E
∥∥∥
Lp

≲ CGC∗(λζ−1)dΛN
′+1(max{CvΛ, ν̃, τ̃−1

q })M ′
(A.105)

holds whenever M ′ ≤M◦ and N ′ +M ′ ≤ N◦ +M◦. Combining (A.101) and (A.105) we deduce that∥∥∥DNDM
t R̊nonlocal

∥∥∥
L1

≲ CGC∗(λζ−1)d
∑

M ′≤M
N ′+M ′≤N+M

λ̃N−N ′

q τ̃−(M−M ′)
q ΛN

′+1(max{CvΛ, ν̃, τ̃−1
q })M ′

≲ CGC∗(λζ−1)dΛN+1(max{CvΛ, ν̃, τ̃−1
q })M (A.106)

whenever N ≤ N◦ and M ≤ M◦. Estimate (A.79) follows by appealing to the assumption (A.77), which
ensures that the gain from (λζ−1)d−1 is already a sufficiently strong amplitude gain, and we use the leftover
factor of λζ−1 to absorb implicit constants.
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[41] P. Isett. Hölder continuous Euler flows in three dimensions with compact support in time.
arXiv:1211.4065, 11 2012.

[42] P. Isett. On the endpoint regularity in Onsager’s conjecture. arXiv preprint arXiv:1706.01549, 2017.

[43] P. Isett. A proof of Onsager's conjecture. Annals of Mathematics, 188(3):871, 2018.

[44] T. Ishihara, T. Gotoh, and Y. Kaneda. Study of high–Reynolds number isotropic turbulence by direct
numerical simulation. Annual Review of Fluid Mechanics, 41:165–180, 2009.

[45] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, and A. Uno. Energy dissipation rate and energy
spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Physics of
Fluids, 15(2):L21–L24, 2003.

[46] A. Kolmogorov. Local structure of turbulence in an incompressible fluid at very high reynolds number.
Dokl. Acad. Nauk SSSR, 30(4):299–303, 1941. Translated from the Russian by V. Levin, Turbulence
and stochastic processes: Kolmogorov’s ideas 50 years on.

[47] G. Komatsu. Analyticity up to the boundary of solutions of nonlinear parabolic equations. Comm.
Pure Appl. Math., 32(5):669–720, 1979.
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