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Abstract

In this paper we review the authors’ recent work [4] which gives a complete description of the for-
mation and development of singularities for the compressible Euler equations in two space dimensions,
under azimuthal symmetry. This solves an open problem posed by Landau and Lifshitz, which was pre-
viously open even in one space dimension. Our proof applies mutatis mutandis in the drastically simpler
situations of one-dimensional flows, or multi-dimensional flows with radial symmetry. We prove that for
smooth and generic initial data with azimuthal symmetry, the 2D compressible Euler equations yield a
local in time smooth solution, which in finite time forms a first gradient singularity, the so-called C1{3

pre-shock. We then show that a discontinuous entropy producing shock wave instantaneously develops
from the pre-shock. Simultaneous to the development of the shock, two other characteristic surfaces of
higher-order cusp-type singularities emerge from the pre-shock. These surfaces have been termed weak
discontinuities by Landau and Lifshitz [17, Chapter IX, §96], who conjectured their existence. We prove
that along the characteristic surface moving with the fluid, a weak contact discontinuity is formed, while
along the slowest surface in the problem, a weak rarefaction wave emerges. The constructed solution is
the unique solution of the Euler equations in a certain class of entropy-producing weak solutions with
azimuthal symmetry and with regularity determined by the fact that it arises from a generic pre-shock.
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1 Introduction

The compressible Euler equations are the fundamental mathematical model of fluid dynamics. Their mathe-
matical analysis has a very rich history, see for instance, the classical books of Courant and Friedrichs [10],
or Landau and Lifshitz [17]. The unknowns of the model are the velocity u : Rd ˆ R Ñ Rd, the mass
density ρ : Rd ˆ R Ñ R`, the total energy E : Rd ˆ R Ñ R`, where d ě 1 is the spatial dimension. The
quasilinear system of conservation laws describing their evolution is given by

Btpρuq ` div pρub u` pIq “ 0, (1.1a)

Btρ` div pρuq “ 0, (1.1b)

BtE ` div ppp` Equq “ 0, (1.1c)

and represent the conservation of momentum, mass, and energy. Here p : Rd ˆ R Ñ R` is the pressure
which may be computed in terms of pu, ρ,Eq as

p “ pγ ´ 1q `

E ´ 1
2ρ|u|2˘

, (1.1d)

where γ ą 1 denotes the adiabatic exponent. The pressure may alternatively be computed in terms of the
(specific) entropy S : Rd ˆ R Ñ R via

ppρ, Sq “ 1
γρ

γeS . (1.2)

Note that in regions of spacetime where the fields pu, ρ,Eq are smooth, one may replace (1.1c) by the
transport of specific entropy

BtS ` u ¨ ∇S “ 0. (1.3)

The system (1.1) is supplemented with smooth Cauchy data pu0, ρ0, E0q.
At least since the middle of the 19th century and the work of Riemann [21], it is known that the com-

pressible Euler equations exhibit solutions which have smooth initial data and develop a finite time singu-
larity. The nonlinear interactions in (1.1) cause a gradual steepening of the density and velocity profiles,
eventually leading to a first spacetime point at which their slope becomes infinite (the pre-shock). A shock
wave then forms and propagates through the fluid according to the so-called Rankine-Hugoniot jump con-
ditions, which ensure that the evolution gives an entropy-producing weak solution of (1.1).

A rigorous mathematical understanding of the above described process of shock formation and shock
development, from smooth initial data, is partially available only in one space dimension [10, 11, 17], or
equivalently, in the presence of radial symmetry for d ě 2. We emphasize however that even for d “ 1 a
complete understanding of these phenomena was not available as of 2019. Indeed, regarding the 1D shock
formation process, a rigorous proof of the expectation (see Eggers and Fontelos [13]) that the first singu-
larity is asymptotically self-similar, and a stability analysis of the associated self-similar profiles within the
Euler evolution (1.1), was unavailable. This issue was settled in our work [1]. Regarding the shock devel-
opment process, Landau and Lifshitz note in [17, Chapter IX, §96] that simultaneously to the development
of the discontinuous shock wave, other surfaces of higher-order singularities are expected to form. Landau
and Lifschitz termed these surfaces weak discontinuities, but stop short of describing their nature: “The
irregularity may be of various kinds. For example, the first spatial derivatives of ρ, p, u etc. may be discon-
tinuous on a surface, or these derivatives may become infinite or higher derivatives may behave in the same
manner.” In spite of the huge literature on compressible flows, we are not aware of any analysis of these
weak discontinuities for the Euler system (1.1). Providing a resolution to the problem raised by Landau and
Lifschitz is the purpose of our work [4].
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We emphasize that the arguments in our works [1] and [4] are able to treat not just the case d “ 1, or
d ě 2 with radial symmetry, but a more general situation: d “ 2 for flows with azimuthal symmetry and
nonzero vorticity. We view the analysis of solutions with azimuthal symmetry as a key step in our program of
understanding shock formation and development for the full Euler system (1.1) in multiple space dimensions
(d ě 2), from smooth initial data, in the absence of any symmetry assumptions, which is considered to be
the outstanding open problem in the field.

2 Prior results for Euler shock formation and development

The mathematical literature on the compressible Euler equations is too vast to review here. The majority of
results have been focused on either the one-dimensional problem, or on the theory of weak solutions, or on
the Riemann problem. See for instance the book of Dafermos [11] for an extensive modern review. In spite
of this, there are very few results devoted to the mathematical analysis of shock formation for smooth initial
data, and even less so to the shock development problem.

For the one-dimensional p-system (which models 1D isentropic Euler), Lebaud [18] was the first to prove
shock formation and development. Chen and Dong [5], and also Kong [16], revisited the proof of Lebaud
and established the formation and development of shocks for the 1D p-system with slightly more general
initial data. However, as explained in Remark 3.3 below, the use an isentropic system cannot produce weak
solutions to the Euler equations, even for d “ 1. The first work to address the formation and development
problem for the non-isentropic Euler equations was Yin [22], who considered the 3ˆ3 system under spher-
ical symmetry (which makes the problem one-dimensional). Independently of Yin, shock development for
the barotropic Euler equations under spherical symmetry was established by Christodoulou and Lisbach [8].
Since isentropic dynamics cannot yield weak solutions to the Euler equations (see Remark 3.3), the analysis
in [8] has been termed the restricted shock development. Christodoulou [7] has established restricted shock
development for irrotational and isentropic 3D Euler equations, outside of symmetry assumptions. We note
however that besides the inability of the isentropic model to capture the correct shock jump conditions, out-
side of radial symmetry the usage of an irrotational model can also not be justified; regular shock solutions
produce entropy and generically create vorticity (see Remark 4.1 below).

As noted above, Landau and Lifshitz conjectured in [17, Chapter IX, §96] that at the same time that
the discontinuous shock wave develops, other surfaces of weak singularities are expected to simultaneously
form. For the full Euler system (1.1), with or without symmetry, even in one space dimension, the analysis
of these surfaces of weak singularities has been heretofore nonexistent. In [4] we have proven that for the
Euler equations in azimuthal symmetry, two such surfaces emerge from the pre-shock and move with the
slower sound-speed characteristic (s1), and respectively with the fluid velocity (s2). We shall refer to these
the s2 surface as a weak contact because it moves with the fluid velocity, and both the normal velocity and
the pressure are one degree smoother than the density and entropy across this surface. The shall also refer
to s1 as a weak rarefaction because the normal velocity to this curve is decreasing in the direction of its
motion.

The precise analysis of the shock development problem in [4] is made possible by a very detailed under-
standing of the pre-shock which arises from smooth generic initial data. In multiple space dimensions and in
the absence of symmetries, such a comprehensive description of the first singularity is currently unavailable.
The constructive proofs of shock formation by Christodoulou [6], Christodoulou and Miao [9], and by Luk
and Speck [19, 20] yield the existence of at least one point in spacetime where a shock must form, and a
bound is given for this blow up time; however, since the construction of the shock solution is a perturbation
of a simple plane wave, there are numerous possibilities for the type of singularities that actually form; the
blow up could potentially occur at one point, at multiple points, on a curve, or along a surface. The first
step towards the precise characterization of the pre-shock in three space dimensions, without symmetries
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and for the full Euler equations, has been obtained recently by the first and last two authors [2,3]. We prove
in [2, 3] that the first singularity which arises from smooth and non-degenerate initial data develops at a
single point in spacetime, it forms in an asymptotically self-similar way, and the corresponding similarity
profiles are stable. This first singularity has been termed a point-shock, and it is given by the intersection of
the pre-shock surface with the time slice tt “ T1u, where T1 is the first time a gradient blowup occurs.

3 Classical vs Regular shock solutions

Given a sufficiently smooth initial datum pu0, ρ0, E0q defined on Rd ˆ tT0u, the existence of a unique local
in time smooth solution to the Euler system (1.1) defined Rd ˆ rT0, T0 ` δq for some δ ą 0, is classical.
For a proof, see for instance the Hs energy estimates of Kato [14]. This solution may be continued uniquely
on a maximal time interval rT0, T1q, characterized by the fact that T1 is the first time at which the solution
has an infinite gradient. Thus, there is no ambiguity in the notion of solution to (1.1) on Rd ˆ rT0, T1q since
all the fields are differentiable in space and time, and so the solution is classical. The evolution on the time
interval rT0, T1q is called shock formation, leading to a first singularity at time T1, the so-called pre-shock,1

which we shall prove is generically of cusp-type, with the solution retaining Hölder 1{3 regularity.
The evolution (1.1) may be continued past the time of the first singularity, say on an interval pT1, T2s,

in what is known as shock development. The pre-shock instantaneously evolves into a discontinuous en-
tropy producing shock wave, and we shall prove that in addition two other families of weak characteristic
singularities simultaneously emerge from the pre-shock. In order to discuss shock development, we first
need a suitable notion of solution to (1.1) on Rd ˆ pT1, T2s, which in turn requires the introduction of the
Rankine-Hugoniot jump conditions and of the entropy condition.

The Rankine-Hugoniot jump conditions are a manifestation of the fact pu, ρ,Eq is a weak solution
of (1.1), and thus the shock speed is related to the jumps of various quantities across the shock surface.
More precisely, suppose that the shock front S Ă Rd ˆ pT1, T2s is an orientable spacetime hypersurface
across which the velocity, density, and energy jump. For t P pT1, T2s the shock front at time t locally
separates space into two sets Ω˘ptq, and we denote the values of the fields in these sets by pu˘, ρ˘, E˘q.
We consider the case where this surface is parametrized as S :“ tspx, tq “ 0u, and denote the spacetime
normal to this surface as ´p∇xs, Btsq|S “: pn,´9sq. We let np¨, tq point from Ω´ptq to Ω`ptq, which is the
direction of propagation of the shock front. We denote by 9s the shock speed, while the jump of a quantity
f across the shock is written as rrf ss “ f´ ´ f`, where f˘ are the traces of f along S in the regions
Ω˘. Let un “ u ¨ n|n|´1 be the projection of the velocity field in the direction of the normal vector n.
The tangential components of the velocity are continuous across the shock, i.e. rru´ unn|n|´1ss “ 0. The
Rankine-Hugoniot jump conditions state that

9s|n|´1rrρunss “ rrρu2n ` pIss, (3.1a)

9s|n|´1rrρss “ rrρunss, (3.1b)

9s|n|´1rrEss “ rrpp` Equnss. (3.1c)

Note that only one of the equations in (3.1) are used to compute the shock speed, while the remaining
equations yield two constraints for the variables pu`

n , ρ
`, E`q|S and pu´

n , ρ
´, E´q|S .

The entropy condition is nothing but the second law of thermodynamics, and states that the entropy ρS,
which in view of (1.3) satisfies the conservation law BtpρSq ` ∇ ¨ pρuSq “ 0 as long as the solution is
smooth, must increase in the presence of a shock singularity. With the above choice of orientation of the

1To be precise, this first singularity is called a pre-shock only for one-dimensional problems, or in the presence of azimuthal
symmetry, discussed here. For d ě 2 in the absence of any symmetry, this first singularity occurs at a single point in space-time,
the point-shock. The point-shock is the intersection of the pre-shock with the time slice tt “ T1u.
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normal vector n the mass flux j “ ρpun ´ 9s|n|´1q is negative, mass is passing across the shock from Ω`ptq
into Ω´ptq, and so the physical entropy condition becomes

rrSss ą 0 . (3.2)

Remark 3.1 (The physical entropy condition and the geometric Lax entropy conditions). The negativ-
ity of the mass flux j “ ρpun ´ 9s|n|´1q immediately gives

u´ ¨ n ă 9s, u` ¨ n ă 9s. (3.3)

The Lax geometric entropy conditions are given by (3.3) along with

u` ¨ n ` c` ă 9s ă u´ ¨ n ` c´ , (3.4)

where c´ and c` are the sound speeds behind and in front of the shock. Condition (3.4) states that the shock
discontinuity is supersonic relative to the state in front (the ‘`’ phase) and subsonic relative to the state
behind (the ‘´’ phase) the shock. It turns out that for an ideal gas, and under the assumption that pu, ρ,Eq
has a weak shock, i.e.

sup
tPrT1,T2s

|rruptqss| ` |rrρptqss| ` |rrEptqss| ! 1 ,

the physical entropy condition (3.2) is equivalent to the Lax geometric entropy conditions. Moreover, in this
setting one may show that the Rankine-Hugoniot jump conditions imply

rrSss “ Oprrpss3q, (3.5)

with a positive pre-factor; it follows that the entropy production postulated in (3.2) implies the positivity of
the jumps rrpss ą 0, rrρss ą 0 and rrunss ą 0. See Landau and Lifshitz [17, Chapter IX] or [4, Section 2] for
details.

Having defined the Rankine-Hugoniot conditions (3.1) and the entropy condition (3.2) we are now ready
to define the physically relevant notion of solution to the development problem for (1.1), evolving from the
pre-shock data.

Definition 3.2 (Regular shock solution). We say that pu, ρ,Eq and a shock front S is a regular shock
solution on Rd ˆ rT1, T2s if the following conditions hold:

• pu, ρ,Eq is a weak solution of (1.1) and ρ ě ρmin ą 0;

• the shock front S Ă Rd ˆ rT1, T2s is an orientable co-dimension 1 hypersurface;

• pu, ρ,Eq are Lipschitz continuous in space and time on the complement of the shock surface pRd ˆ
rT1, T2sqzS;

• pu, ρ,Eq have discontinuities across the shock which satisfy the Rankine-Hugoniot jump conditions
(3.1);

• entropy is produced at the shock, so that (3.2) holds.

Remark 3.3 (Regular shock solutions cannot be isentropic). Definition 3.2 shows that one cannot study
the physical shock development problem within the isentropic Euler model (S ” 0). Indeed, while the
isentropic Euler system is perfectly justifiable prior to the first singularity since S|t“T0 “ 0 implies by (1.3)
that Sp¨, tq “ 0 for all t P rT0, T1s, as soon as a shock front develops entropy must be generated according
to (3.5). That is, the flow becomes non-isentropic in order to satisfy the Rankine-Hugoniot jump conditions,
or equivalently, in order for pu, ρ,Eq to be a weak solution of the Euler system (1.1). Consistency with
the production of entropy (3.2) is a secondary condition, which is meant to rule out the physically incorrect
weak solutions.
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4 Azimuthal symmetry

It regions of spacetime where the fields pu, ρ,Eq are differentiable, the divergence form of the Euler equa-
tions (1.1) is equivalent to a more symmetric version, in which the conservation of the energy is replaced by
the transport of specific entropy S, and the conservation of mass is replaced by the evolution of the rescaled
sound speed σ, defined as

σ “ 1
α

a

Bp{Bρ “ 1
αe

S
2 ρα, where α “ γ´1

2 . (4.1)

With this notation, the ideal gas equation of state (1.2) becomes p “ α2

γ ρσ
2, while the Euler equations (1.1),

as a system for pu, σ, Sq, are given by

Btu` pu ¨ ∇qu` ασ∇σ “ α
2γσ

2∇S, (4.2a)

Btσ ` pu ¨ ∇qσ ` ασ div u “ 0, (4.2b)

BtS ` pu ¨ ∇qS “ 0. (4.2c)

Note that the system (4.2) is valid away from the shock surface, and that the Rankine-Hugoniot conditions
need to be determined from the conservation law form of the Euler equations (1.1). Additionally, we note
that the Rankine-Hugoniot jump conditions defined in terms of the jumps of normal velocity, density, and
energy (3.1), may be translated into jump conditions for the variables pu, σ,Eq, by appealing to (4.1) and
E “ 1

2ρ|u|2 ` α
2γρσ

2.
A fundamental quantity to the analysis of (4.2) is the vorticity, defined as ω “ ∇K ¨ u for d “ 2 and

ω “ ∇ ˆ u for d “ 3. Then, the specific vorticity ζ “ ω
ρ solves

Btζ ` pu ¨ ∇qζ “
#

α
γ
σ
ρ∇

Kσ ¨ ∇S, d “ 2,

pζ ¨ ∇uq ` α
γ
σ
ρ∇σ ˆ ∇S, d “ 3,

(4.3)

and the analysis of (4.3) is of fundamental importance to our works [1–4].

Remark 4.1 (Regular shock solutions generically create vorticity). The baroclinic torque term on the
right side of (4.3) shows that a misalignment of density and entropy gradients creates vorticity. Combining
this observation with Remark 3.3, it is thus expected that even when one starts the shock formation process
with isentropic irrotational flow, as soon as the shock surface is formed, generically not just entropy is
created, but vorticity is created as well. Thus, for generic smooth initial data the shock development problem
cannot be studied in the class of irrotational flows. The only two exceptions we are aware of are d “ 1 or the
conceptually equivalent sittuation d ě 2 under the reduction of radial symmetry, when there is no vorticity
to speak of in the first place.

The above remark motivates our introduction of the class of solutions to the Euler equations with az-
imuthal symmetry. This class of solutions may be defined for d “ 2 by the requirement that the velocity
and sound speed are linear functions of r with nonlinear dependence of pθ, tq, while the entropy is only a
function of pθ, tq. Here pr, θq are the polar coordinates on R2. This class of solutions is formally main-
tained under the Euler evolution (1.1). These solutions have nonzero vorticity, both velocity components
are nontrivial and strongly affect the shock formation and development, and the system has three distinct
wave-speed families. As such, we view azimuthal symmetry as a multi-dimensional intermediary case be-
tween one-dimensional problems, and multi-dimensional problems without any symmetry. More precisely,
by introducing the unknowns pa, b, c, kq via

pur, uθ, σ, Sq pr, θ, tq “: prapθ, tq, rbpθ, tq, rcpθ, tq, kpθ, tqq , (4.4)
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and cancelling all powers of r, the Euler system (4.2) becomes

pBt ` bBθq a` a2 ´ b2 ` αc2 “ 0, (4.5a)

pBt ` bBθq b` αcBθc` 2ab “ α
2γ c

2Bθk, (4.5b)

pBt ` bBθq c` αcBθb` γac “ 0, (4.5c)

pBt ` bBθq k “ 0. (4.5d)

For smooth initial data pu0, ρ0, E0q or pu0, σ0, S0q at t “ T0 which has azimuthal symmetry, one may define
via (4.4) suitable initial data pa0, b0, c0, k0q for the system (4.5). Then, solving (4.5) gives a unique solution
pa, b, c, kq on a maximal time interval rT0, T1q on which the solution remains smooth. On this time interval,
the unique solution pu, σ, Sq to (4.2) is then given by the identification (4.4). That is, as long as solutions
remain smooth, the azimuthal symmetry of the data is preserved, and systems (1.1), (4.4), and (4.5) are all
equivalent. As we shall see below, we may in fact continue the solution pa, b, c, kq of (4.5) past t “ T1 in
a unique way as a physical shock solution by translating the Rankine-Hugoniot jump conditions (3.1) and
the entropy condition (3.2) into corresponding azimuthal jump/entropy conditions. The resulting solution
pu, σ, Sq (or equivalently pu, ρ,Eq) obtained via the identification (4.4) can be shown to be a regular weak
solution of the full Euler system (4.4) (equivalently (1.1)) in the sense of Definition 3.2. The uniqueness
of this regular weak solution to (1.1) is only known to hold if we assume that the solution has azimuthal
symmetry.

4.1 Riemann-like variables in azimuthal symmetry

For simplicity of presentation, for the remainder of this review, as was done in [4], we shall work with the
adiabatic exponent

γ “ 2, or equivalently α “ 1
2 . (4.6)

We also note that it is convenient to rescale time, letting

t “ 3
4
rt, so that Bt ÞÑ 4

3B
rt, (4.7)

and for notational simplicity, we continue to write t for rt. More importantly, it is convenient for the subse-
quent analysis to work with Riemann-like variables w and z which symmetrize (in a certain sense) the b and
c evolutions (4.5). These Riemann variables are defined by

w “ b` c, z “ b´ c, (4.8)

so that b “ 1
2pw ` zq and c “ 1

2pw ´ zq. We shall refer to w as the dominant Riemann variable, and to z as
the subdominant Riemann variable.

With the adiabatic exponent from (4.6), the temporal rescaling (4.7), and using the Riemann variables
from (4.8), the system (4.5) can be equivalently written as

Btw ` λ3Bθw “ ´8
3aw ` 1

24pw ´ zq2Bθk, (4.9a)

Btz ` λ1Bθz “ ´8
3az ` 1

24pw ´ zq2Bθk, (4.9b)

Btk ` λ2Bθk “ 0, (4.9c)

Bta` λ2Bθa “ ´4
3a

2 ` 1
3pw ` zq2 ´ 1

6pw ´ zq2. (4.9d)

where the three distinct wave speeds are given by

λ1 “ 1
3w ` z , λ2 “ 2

3w ` 2
3z , λ3 “ w ` 1

3z . (4.10)
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The Cauchy problem for (4.9) is considered with initial conditions given by

pw0, z0, a0, k0qpθq “ pw, z, a, kqpθ, T0q.
We shall henceforth refer to (4.9)–(4.10) as the azimuthal Euler system.

Remark 4.2 (Specific vorticity in azimuthal symmetry). Using the azimuthal symmetry ansatz (4.4), the
specific vorticity ζ may be written as

ζpr, θ, tq “ ϖpθ, tq “
´

4pw ` z ´ Bθaqc´2ek
¯

pθ, tq , (4.11)

and we may show that it solves the evolution equation

Btϖ ` λ2Bθϖ “ 8
3aϖ ` 4

3e
kBθk . (4.12)

Remark 4.3 (Motivation for the choice of γ in (4.6)). The choice of adiabatic exponent γ “ 2 was made
in order to emphasize that the shock wave produces not just entropy, but it also generates the subdominant
Riemann variable z. In order to clearly emphasize this, for the shock formation process we choose initial
data at time t “ T0 which satisfies

kpθ, T0q “ 0, and zpθ, T0q “ 0. (4.13)

The entropy transport (4.9c) ensures that for any t P rT0, T1s, where T1 is the time of the first singularity,
we have kp¨, tq “ 0. The Rankine-Hugoniot conditions (cf. (4.16) below) guarantee that entropy must be
produced at the shock, resulting in kpθ, tq ą 0 in a certain region of points pθ, tq P Tˆ pT1, T2s. The choice
of k0 “ 0 in (4.13) emphasizes the production of entropy in the clearest possible way. The choice γ “ 2
(α “ 1

2 ) is related to the evolution of the subdominant Riemann variable z. Since we have that k ” 0, the
right side of (4.9b) simplifies to ´8

3az, but we note that for general values of γ, this term would simplify to
´3`2α

1`α az ´ 1´2α
1`α aw. As such, even if z0 “ 0, the term ´1´2α

1`α aw would ensure that z ı 0 for t ą T0. For
α “ 1

2 this term however does not exist, and so the choice of k0 “ 0 in (4.13) ensures that zp¨, tq “ 0 for
all t P rT0, T1s. The remarkable fact is that the Rankine-Hugoniot conditions (cf. (4.16) below) imply that
we must have z ă 0 for a certain region of points pθ, tq P T ˆ pT1, T2s. Thus, the choice z0 “ 0 is made in
order to most clearly emphasize the breaking of the symmetry b “ c at the shock.

As noted in Remark 4.3, the choice of initial datum in (4.13) implies that during the shock formation
process, we have that k ” 0 and z ” 0, so that the system (4.9) becomes

Btw ` wBθw “ ´8
3aw, (4.14a)

Bta` 2
3wBθa “ ´4

3a
2 ` 1

6w
2. (4.14b)

The pre-shock, which will be shown to be smooth away from a unique blowup point θ˚ P T, inherits the
property that kpθ, T1q and zpθ, T1q vanish on T, but these symmetries are broken instantaneously during the
shock development process. The presence of a shock necessitates that we supplement the system (4.9) with
Rankine-Hugoniot jump and entropy conditions.

4.2 Rankine-Hugoniot jump and entropy conditions

In azimuthal symmetry, with the adiabatic exponent from (4.6) and the temporal rescaling (4.7), the shock
hypersurface is given as

S “ tpr, θ, tq : sptq ´ θ “ 0u.

8
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The spatial normal to this hypersurface is n “ 1
r e⃗θ. We have that 9s ą 0 and so the shock is moving from left

to right when the angular variable θ is viewed as being defined on r´π, πq. To see this, note that since z “ 0
by (4.8) we have that w “ 2c, and since we wish to stay away from vacuum we must have c ě cmin ą 0 on
T; therefore, w is strictly positive on T, which implies that the three wave speeds defined in (4.10) are all
strictly positive, and ordered as λ1 ă λ2 ă λ3 on Tˆ rT0, T1s (by continuity this also holds on Tˆ pT1, T2s
if T2 ´ T1 ! 1). The negativity of the mass flux in (3.3) then yields 9s ą 0. According to the orientation of
n, we denote by pw`, z`, a`, k`qptq the limiting values on the shock curve sptq from the right (or front) of
the shock, and by pw´, z´, a´, k´qptq the limiting values from the left (or back) of the shock. As discussed
in [4, Remark 2.5], the Lax geometric entropy inequalities (3.3)–(3.4) imply that the characteristics of the
three wave speeds tλiu3i“1 in front of the shock (the ‘`’ phase) impinge on the shock front, carrying with
them the data from the tt “ T1u Cauchy hypersurface. In particular, since kp¨, T1q “ zp¨, T1q “ 0, this
implies that during the development process we have

k`ptq “ z`ptq “ 0, for all t P pT1, T2s, (4.15)

so that rrkss “ k´ and rrzss “ z´. Using (4.15) and the observation that u˘
n “ rb˘psptq, tq the Rankine-

Hugoniot jump conditions (3.1) may be shown to be equivalent to a system of two equations which are used
to determine the values of z´ and k´ in terms of w` and w´

pek´ ´ 1qpw´ ´ z´q4
´

3w2
`e

k´ ´ pw´ ´ z´q2
¯

“
´

pw´ ´ z´q2 ´ ek´w2
`

¯3
, (4.16a)

´

pw´ ´ z´q2pw´ ` z´q2 ` 1
8pw´ ´ z´q4 ´ 9

8e
k´w4

`

¯ ´

pw´ ´ z´q2 ´ ek´w2
`

¯

“
´

pw´ ´ z´q2pw´ ` z´q ´ ek´w3
`

¯2
, (4.16b)

and an evolution equation for 9s given by

9sptq “ 2

3

e´k´pw´ ´ z´q2pw´ ` z´q ´ w3
`

e´k´pw´ ´ z´q2 ´ w2
`

. (4.16c)

To summarize, the values of the dominant Riemann variable, w` in the front and w´ in the back of the
shock, determine the values of z´ and k´ via (4.16a)–(4.16b), which in turn allows one to compute the
location of the evolving shock front. We note that the dominant Riemann variable w travels according to
the fastest wave-speed in the system (4.9), namely λ3. Thus, the values of w` and w´ are carried from the
tt “ T1u Cauchy hypersurface via the characteristics of λ3, which impinge on the shock front from the left
and right.

Remark 4.4 (The entropy condition in azimuthal symmetry). The system of three equations (4.16) is
in one to one correspondence with the Rankine-Hugoniot jump conditions (3.1). So the natural question
is: what is the correspondent of the physical entropy condition (3.2) in azimuthal symmetry? To answer
this question we first note that (4.16a)–(4.16b) are a coupled system of sixth order polynomials in the
variables w`, w´, z´, e

k´ . The second observation is that at the pre-shock we have w`pT1q “ w´pT1q
and z´pT1q “ k´pT1q “ 0, which solves (4.16a)–(4.16b). The natural question then is whether in the weak
shock regime 0 ă rrwss “ w´ ´w` ! 1, with xxwyy “ 1

2pw´ `w`q ą 0, the system (4.16a)–(4.16b) has an
unique solution or not. Being sixth order equations with real coefficients, the presence of one real solution
implies the presence of at least one more solution. Indeed, one may verify that in the weak shock regime the
system (4.16a)–(4.16b) has exactly two real solutions with |z´| ` |k´| ! 1, the other roots being complex.
The remarkable fact is that only one of these two solutions is entropy producing: k´ ą 0. Thus, the role of
the physical entropy condition (3.2), which is equivalent in view of (4.15) to k´ ą 0, is to select the unique
physically relevant root of the system of equations (4.16a)–(4.16b).

9
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We conclude this section by revisiting the notion of a regular shock solution, as defined in Definition 3.2,
in the context of the azimuthal Euler equations. During the formation part of our result, i.e. for t P rT0, T1q,
we have that the solution pw, z, k, aq of (4.9)–(4.10) is smooth, so that the notion of solution is the classical
one: the system (4.9) is satisfied in the sense of C1 functions of space and time. On the time interval
rT1, T2s, which covers the development part of our result, the notion of regular shock solution becomes:

Definition 4.5 (Regular azimuthal shock solution). We say that pw, z, k, aq and a shock front parametrized
as S “ tsptq “ θu is a regular azimuthal shock solution on T ˆ rT1, T2s if

• pw, z, k, aq are C1
θ,t smooth, and ϖ is C0

θ,t smooth, on the complement of S;

• on the complement of the shock curve pw, z, k, aq solve the equations (4.9)–(4.10) pointwise, and ϖ
solves (4.12) pointwise;

• pw, z, kq have jump discontinuities across the shock curve which satisfy the algebraic equations (4.16a)–
(4.16b);

• the shock location s : rT1, T2s Ñ T is C1
t smooth and solves (4.16c);

• entropy is produced at the shock so that rrkssptq ą 0 for t P pT1, T2s.

5 Main results

The the main result of [4] is stated first in terms of the azimuthal variables pw, z, k, aq. The result may be
best visualized by inspecting Figures 1, 2, 3, 4. A condensed statement is as follows; for details, see [4,
Theorems 3.2, 5.5, 6.1].

Initial data at time 

Formation of pre-shock

Development of shocks and cusps 

most negative slope

w

a
k
z

1/3 cusp
1/3 cusp

jump t

jump t

jump t

one sided 
1/2 cusp

jump t

one sided 
1/2 cusp

one sided 
1/2 cusp

one sided 
1/2 cusps

1/2

÷
.

Figure 1: The initial conditions pw, z, k, aq|t“T0 satisfying (4.13) are represented in (red, green, blue, orange) as functions of the
angular variable θ P r´π, πq. The function wp¨, T0q is strictly positive and has has a non-degenerate most negative slope of size
« ´ 1

ε
at a unique point in T. The function ap¨, T0q is Op1q in C4pTq.

Initial data at time 

Formation of pre-shock

Development of shocks and cusps 

most negative slope

w

a
k
z

1/3 cusp
1/3 cusp

jump t

jump t

jump t

one sided 
1/2 cusp

jump t

one sided 
1/2 cusp

one sided 
1/2 cusp

one sided 
1/2 cusps

1/2

÷
.

z
k

w

a

Figure 2: At the time of the first singularity, the functions pw, z, k, aq|t“T1 are sketched in the figure on the left, using the same
color scheme as in Figure 1. In the image on the right we have plotted the function Bθa, which also develops a singularity at t “ T1.
More precisely, the shock formation process for the system (4.14) results in the formation of the pre-shock at time T1, manifested
as a C

1
3 cusp at a unique distinguished angle θ˚ P T for the functions w and Bθa. At T1 we have that z and k remain equal to 0.
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t

θ

sptqs2ptqs1ptq

t “ T1

t “ T2

θ˚

Figure 3: Three distinct families of singularities instantaneously emerge from the the pre-shock located at pθ˚, T1q. Across
the classical shock curve s the fields pw, z, k, Bθaq jump, and the Rankine-Hugoniot conditions are satisfied. A weak rarefaction
singularity develops across the curve s2 which travels along characteristics of λ2. Here the quantities pw, z, kq have regularity
C1,1{2 and no better. A weak contact singularity forms across the curve s1 which travels with the characteristics of λ1. Here the
function z has regularity C1,1{2 and no better. The functions z and k are equal to 0 on the left side of s1 and on the right side of s.

Initial data at time 

Formation of pre-shock

Development of shocks and cusps 

most negative slope

w

a
k
z

1/3 cusp
1/3 cusp

jump t

jump t

jump t

one sided 
1/2 cusp

jump t

one sided 
1/2 cusp

one sided 
1/2 cusp

one sided 
1/2 cusps

1/2

÷
.

z
k

w

a

Figure 4: On the left side, we have a schematic representation of the functions pw, z, k, aq|t“T2 using the color scheme from
Figure 1. On the right side, a schematic represetation of the functions pBθw, Bθz, Bθk, Bθaq|t“T2 is given. In both images, the
vertical lines represent the location of s1pT2q ă s2pT2q ă spT2q using the color scheme from Figure 3. The image on the left
emphasizes that all quantities except for a jump across the shock, and that z and k remain equal to 0 on Tzrs1pT2q, spT2qs. The
image on the right emphasizes the one sided cusps form at the weak contact and weak rarefaction, and that Bθa jumps across the
shock.

Theorem 5.1 (Main result in azimuthal symmetry). From smooth isentropic initial data at time T0 with
vanishing subdominant Riemann variable, as described in the first paragraph of Section 6, there exist smooth
solutions to the azimuthal Euler system (4.9) that form a pre-shock singularity, at a time T1 ą T0. The first
singularity occurs at a single point in space, θ˚, and this first singularity is shown to have an asymptotically
self-similar shock profile exhibiting a C1{3 cusp in the dominant Riemann variable and a C1,1{3 cusp in the
radial velocity. A series expansion for wp¨, T1q in terms of pθ ´ θ˚q1{3 may be computed explicitly.

After the pre-shock is formed, the solution to (4.9)–(4.10) is continued uniquely for a short time pT1, T2s
as a regular azimuthal shock solution (cf. Definition 4.5) with the following properties:

• Across the shock curve s, for all t P pT1, T2s the state variables jump

rrwss „ pt´ T1q 1
2 , rrBθass „ pt´ T1q 1

2 , rrzss „ pt´ T1q 3
2 , rrkss „ pt´ T1q 3

2 .

• Across the characteristic s2 emanating from the pre-shock and moving with the fluid velocity, the Rie-
mann variables and the entropy make C1,1{2 cusps approaching from the right side. Limiting from the
left side, these variables are C2 smooth.

• Across the characteristic s1 emanating from the pre-shock and moving with the sound speed minus the
fluid velocity, the entropy is zero while the subdominant Riemann variable makes a C1,1{2 cusp from the
right. Limiting from left, all fields are C2 smooth.

11
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We note that the proof of Theorem 5.1, which is the bulk of our paper [4] applies with minor modifi-
cations to the case of the Euler equations for d “ 1, or in the case of radial symmetry d ě 2. In fact, as
mentioned already in Remark 4.1, these two cases are simpler than the azimuthal symmetry considered here,
since the vorticity vanishes identically.

Via the identification (4.4), Theorem 5.1 implies the following result for the Euler system in terms
of hydrodynamic variables. We only state a condensed result here, and refer the interested reader to [4,
Theorems 1.2, 7.1, 7.2] for details. The pictorial representation of this result is given in Figure 5 below.

the interested reader to [5, Theorems 1.2, 7.1, 7.2] for details. The pictorial representation
of this result is given in Figure 5 below.
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thm:main:soft Theorem 1.2 (Main result for 2D Euler – abbreviated version). From smooth isentropic initial data with
azimuthal symmetry, at time T0, there exist smooth solutions to the 2d Euler equations (1.1) that form a pre-
shock singularity at a time T1 � T0. The first singularity occurs along a half-infinite ray and the blowup is
asymptotically self-similar, exhibiting a C

1
3 cusp in the angular velocity and mass density, and a C1, 1

3 cusp
in the radial velocity. Moreover, the blowup is given by a series expansion whose coefficients are computed
as a function of the initial data.

Past the pre-shock, the solution is continued on pT1, T2s, as an entropy–producing regular shock solution
of the full 2d non-isentropic Euler equations (1.1). The solution is unique in the class of entropy producing
weak solutions with azimuthal symmetry, with a certain weak shock structure and suitable regularity off the
shock (see Definition 5.3 below). The following properties are established:

• Across the shock curve, all the state variables jump:

rru�ss „ pt ´ T1q 1
2 , rr�ss „ pt ´ T1q 1

2 , rrB�urss „ pt ´ T1q 1
2 , rrSss „ pt ´ T1q 3

2 .

• Across the characteristic emanating from the pre-shock and moving with the fluid velocity, the entropy,
density and radial velocity all have a C1, 1

2 one-sided cusp from the right, while from the left, they are
all C2 smooth. The second derivative of the angular velocity and of the pressure is bounded across
this curve for t P pT1, T2s.

• Across the characteristic emanating from the pre-shock and moving with sound speed minus the fluid
velocity, the entropy is zero while the angular velocity and density have C1, 1

2 one-sided cusps from
the right, while from the left, they are all C2 smooth. The second derivative of the radial velocity is
bounded across this curve for t P pT1, T2s.

We thereby obtain a full propagation of singularities result for regular shock solutions, capturing both the
jump discontinuity and the weak singularities emanating from the initial cusp in the pre-shock.

Figure 1: The images represent values of the density written in polar coordinates �pr, �, tq, and plotted for r P r1, 2s. The image
on the left represents the smooth data at time T0. The center image shows the pre-shock formed at time T1, at one specific value of
the angular coordinate; we marked the corresponding line in red. The image on the right represents the density at time T2, where
we have represented in red the line along which the shock discontinuity occurs, in blue the line containing the weak contact, and in
green the line corresponding to the weak rarefaction. fig:headache

5

Figure 5 Values of the density written in polar coordinates d(A , \ , C) , and plotted for A 2 [1, 2]. The
image on the left represents the smooth data at time )0. The center image shows the
pre-shock formed at time )1, at one specific value of the angular coordinate; we marked the
corresponding line in red. The image on the right represents the density at time )2, where we
have represented in red the line along which the shock discontinuity occurs, in blue the line
containing the weak contact, and in green the line corresponding to the weak rarefaction.

Theorem 5.2 (Main result for 2D Euler – abbreviated version). From smooth isentropic
initial data with azimuthal symmetry, at time )0, there exist smooth solutions to the 2D
Euler equations (1.1) that form a pre-shock singularity at a time)1 > )0. The first singularity
occurs along a half-infinite ray and the blowup is asymptotically self-similar, exhibiting a
⇠1/3 cusp in the angular velocity and mass density, and a ⇠1,1/3 cusp in the radial velocity.
Moreover, the blowup is given by a series expansion whose coe�cients are computed as a
function of the initial data.

Past the pre-shock, the solution is continued on ()1,)2], as an entropy–producing
regular shock solution (cf. Definition 3.2) of the full 2D Euler equations (1.1). The solution
is unique in the class of entropy producing weak solutions with azimuthal symmetry, with a
certain weak shock structure and suitable regularity o� the shock (see Definition ?? below).
The following properties are established for C 2 ()1,)2]:

• Across the classical shock hypersurface, all the state variables jump:

[[D\ ]] ⇠ (C � )1)
1
2 , [[d]] ⇠ (C � )1)

1
2 , [[m\DA ]] ⇠ (C � )1)

1
2 , [[(]] ⇠ (C � )1)

3
2 .

• Across the characteristic emanating from the pre-shock and moving with the fluid
velocity, the entropy, density and radial velocity all have a ⇠1,1/2 one-sided cusp
from the right, while from the left, they are all ⇠2 smooth. The second derivative
of the angular velocity and of the pressure is bounded across this curve, justifying
the name weak rarefaction.

14 ICM 2022

Figure 5: Values of the density written in polar coordinates ρpr, θ, tq, and plotted for r P r1, 2s. The image on the left represents
the smooth data at time T0. The center image shows the pre-shock formed at time T1, at one specific value of the angular coordinate;
we marked the corresponding line in red. The image on the right represents the density at time T2, where we have represented in red
the line along which the shock discontinuity occurs, in blue the line containing the weak contact, and in green the line corresponding
to the weak rarefaction.

Theorem 5.2 (Main result for 2D Euler). From smooth isentropic initial data at time T0 with azimuthal
symmetry, there exist smooth solutions to the 2D Euler equations (1.1) that form a pre-shock singularity
at a time T1 ą T0. The first singularity occurs along a half-infinite ray and the blowup is asymptotically
self-similar, exhibiting a C1{3 cusp in the angular velocity and mass density, and a C1,1{3 cusp in the radial
velocity. Moreover, the blowup is given by a series expansion whose coefficients are computed as a function
of the initial data.

Past the pre-shock, the solution is continued on pT1, T2s, as an entropy–producing regular shock solu-
tion (cf. Definition 3.2) of the full 2D Euler equations (1.1). The solution is unique in the class of entropy
producing weak solutions with azimuthal symmetry, with a certain weak shock structure and suitable regu-
larity off the shock (see the space Xε defined in (7.8) below). The following properties are established for
t P pT1, T2s:

• Across the classical shock hypersurface, all the state variables jump:

rruθss „ pt´ T1q 1
2 , rrρss „ pt´ T1q 1

2 , rrBθurss „ pt´ T1q 1
2 , rrSss „ pt´ T1q 3

2 .

• Across the characteristic emanating from the pre-shock and moving with the fluid velocity, the entropy,
density and radial velocity all have a C1,1{2 one-sided cusp from the right, while from the left, they are
all C2 smooth. The second derivative of the angular velocity and of the pressure is bounded across this
curve, justifying the name weak rarefaction.

• Across the characteristic emanating from the pre-shock and moving with sound speed minus the fluid
velocity, the entropy is zero while the angular velocity and density have C1,1{2 one-sided cusps from the
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right, while from the left, they are C2 smooth. The second derivative of the radial velocity is bounded
across this curve, justifying the name weak contact singularity.

Theorem 5.2 yields a full propagation of singularities result for regular shock solutions of the Euler
equations, capturing both the jump discontinuity and the weak singularities emanating from the initial cusp
in the pre-shock. This gives an answer to the problem raised by Landau and Lifschitz in [17, Chapter IX,
§96], at least in the context of flows with azimuthal symmetry (or one-dimensional flows).

Remark 5.3 (Anomalous entropy production). Theorem 5.2 provides an example of an entropy producing
weak solution pu, ρ,Eq P L8

t pBV X L8qloc Ă L8
t pB1{p

p,8qloc, for all p ě 1. This regularity class encodes
the emergence of a regular shock, obtained by continuing the past the first singularity. This proves that the
Onsager-criterion proven by the second author and Eyink in [12, Theorem 3], which states that if pu, ρ,Eq P
L8
t pB1{3`

3,8 X L8qloc then there is no entropy production, is in fact sharp.

Remark 5.4 (Uniqueness and entropy). Theorem 5.2 establishes the uniqueness of solutions in a class of
weak solutions with azimuthal symmetry, with weak shock structure, and which have regularity consistent
with the fact that they emanate from a C1{3 pre-shock (cf. (7.8) below), which in turn is the generic regu-
larity that should be expected to arise at the first singularity from a smooth initial datum. The role of the
entropy condition in establishing this uniqueness was explained in Remark 4.4. We contrast our uniqueness
statement to the ill-posedness of the Euler system within the class of bounded, entropy-producing weak
solutions emanating from 1D Riemann data, cf. Klingenberg et al. [15] and references therein.

6 Outline: the formation of the pre-shock

Fix a constant κ0 ą 1 sufficiently large and let ε ą 0 be sufficiently small. Consider the azimuthal Euler
system (4.9)–(4.10) with initial data given at time T0 “ ´ε, satisfying (4.13), and with wp¨, T0q and ap¨, T0q
which lie in a certain open subset of C4pTq described roughly as follows. The initial data for the radial
velocity is taken to satisfy }ap¨,´εq}L8 ď ε, }Bθap¨,´εq}L8 À 1

20κ0, and }Bn
θ ap¨,´εq}L8 À 1 for 2 ď

n ď 4. The initial data for the dominant Riemann variable is described in detail in [4, Equations (4.17)–
(4.25)]. The most important property is that wp¨,´εq P C4pTq has a non-degenerate global minimum at a
single point of T, labeled for convenience by 0, where it holds that

wp0,´εq “ κ0, Bθwp0,´εq “ ´ε´1, B2
θwp0,´εq “ 0, B3

θwp0,´εq “ 6ε´4. (6.1)

Other conditions are that 7
8κ0 ď wp¨,´εq ď 9

8κ0 which ensures that the density is bounded away from vac-
uum, thatwp¨,´εq´κ0 is compactly supportedBε1{2p0q, and that the functionW pyq :“ ε´1{2pwpyε3{2,´εq´
κ0q lies in a certain ε-dependent open ball in the C4 topology centered at the stable global self-similar solu-
tion of the 1D Burgers equation, W , which is defined implicitly as the analytic solution ofW pyq`W pyq3 `
y “ 0.

For such datum, the formation of the first gradient singularity for (4.9)–(4.10) was previously estab-
lished in [1]. This singularity is characterized as a stable asymptotically self-similar C1{3

θ cusp for the
dominant Riemann variable w, the so-called pre-shock, which occurs at a precisely computable space-
time location pθ˚, T1q, with θ˚ « κ0ε and T1 “ Opε3q. The subdominant Riemann variable z and en-
tropy κ remain identically equal to 0 on T ˆ r´ε, T1s, while radial velocity and specific vorticity satisfy
a P L8p´ε, T1;C1,1{3pTqq and ϖ P L8p´ε, T1;C0,1pTqq. From here, one may show that asymptotically
as θ Ñ θ˚:

wpθ, T1q “ κ´ bpθ ´ θ˚q 1
3 ` oppθ ´ θ˚q 1

3 q, (6.2a)

apθ, T1q “ a0 ` a1pθ ´ θ˚q ` a2pθ ´ θ˚q 4
3 ` oppθ ´ θ˚q 4

3 q, (6.2b)
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for suitable constants computable constants b « 1, ai, and κ such that |κ´ κ0| À ε2.
While the description of the pre-shock given by (6.2) would be likely sufficient to describe the classical

shock singularity s emerging from the pre-shock, in order to rigorously capture the formation of higher order
characteristic singularities emerging along the curves s1 and s2 in Figure 3, a much finer understanding of
the dominant Riemann variable w at the pre-shock is required. This information is not available in [1], and
it is the subject of the analysis in [4, Section 4]. In particular, [4, Theorem 4.1] proves that

wpθ, T1q “ κ´ bpθ ´ θ˚q 1
3 ` c1pθ ´ θ˚q 2

3 ` c2pθ ´ θ˚q ` Oppθ ´ θ˚q 4
3 q, (6.3)

holds for all θ in an ε-dependent ball around θ˚, for explicitly computable constants ci. More importantly, we
prove that the fractional series expansion (6.3) holds in a C3 sense, meaning that the first three derivatives
of the left side in (6.3) equal the first three derivatives of the expansion on the right side, with error bounds
stable under differentiation.

The proof of (6.3) is based on a fully-Lagrangian characterization of the pre-shock, and a subtle interplay
between the characteristics of the speeds λ3 “ w and λ2 “ 2

3w present in (4.14), and which are defined by

Btη “ λ3pηpx, tq, tq “ wpηpx, tq, tq, ηpx,´εq “ x,

Btϕ “ λ2pϕpx, tq, tq “ 2
3wpϕpx, tq, tq, ϕpx,´εq “ x.

By (4.14a) it is clear that η is the natural flow of the w evolution, while (4.14b) and (4.12), which simplifies
here to Btϖ ` 2

3wBθϖ “ 8
3aϖ, show that ϕ is the natural flow for a and ϖ.

The first and most important observation is that the spacetime location of the first singularity pθ˚, T1q is
characterized by θ˚ “ ηpx˚, T1q, where px˚, T1q are the unique Lagrangian label, respectively the first time,
which simultaneously solve the system

Bxηpx˚, T1q “ Bxxηpx˚, T1q “ 0. (6.4)

In fact, as part of the proof it is crucial that we establish that

Bxηpx, tq “
´

1 ` Opε 1
2 q

¯

ε´1pT˚ ´ tq `
´

3 ` Opε 1
8 q

¯

ε´3px´ x˚q2,
Bxxηpx, tq “ pT˚ ´ tqOpε´2q `

´

6 ` Opε 1
8 q

¯

ε´3px´ x˚q,
Bxxxηpx, tq “

´

6 ` Opε 1
8 q

¯

ε´3,

for all labels |x´ x˚| ď ε2 and all t P r´ε, T1s. This asymptotic description of the Lagrangian flow may be
traced back to the initial datum assumption (6.1).

The second ingredient in the proof is that the fields η, w ˝ η, a ˝ η,ϖ ˝ η remain C4 smooth as functions
of the Lagrangian label x, uniformly in time on the interval r´ε, T1s. Roughly speaking, this is achieved by
appealing to the identities

ηpx, tq “ x`
ż t

´ε
w ˝ ηpx, sqds, (6.5a)

w ˝ ηpx, tq “ wpx,´εqe´ 8
3

şt
´ε a˝ηpx,sqds, (6.5b)

which show that the regularity of a ˝ η implies the regularity of η and w ˝ η, and to the one-derivative gains
provided by the relations Bθa “ w ´ 1

16w
2ϖ and

Bxϕpx, tq “
´

wpx,´εq

w˝ϕpx,tq

¯2
e´ 16

3

şt
´ε a˝ϕpx,sqds,
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ϖ ˝ ϕpx, tq “ ϖ0px,´εqe 8
3

şt
´ε a˝ϕpx,sqds,

which in turn allows us to establish the desired higher order regularity of a and ϖ.
The third ingredient in the proof concerns the invertibility of the map x ÞÑ ηpx, T1q. Using (6.4) and a

Taylor series expansion justified by the regularity of η, we have that

θ “ ηpx, T1q “ θ˚ ` 1
6Bxxxηpx˚, T1qpx´ x˚q3 ` 1

24Bxxxxηpx, T1qpx´ x˚q4 ,
where θ˚ “ ηpx˚, T1q, and x is a point between x˚ and x. As such, with Θ “ θ ´ θ˚ and X “ x ´ x˚, we
are left to invert the quartic polynomial Θ “ g1X

3 ` g2X
4, where g1 « ε´3 ą 0 and |g2| “ Opε´4q. This

inversion, via a Newton iteration results in a fractional power series X “ f1Θ
1{3 ` f2Θ

2{3 ` f3Θ`OpΘ4{3q,
with explicitly computable real coefficients fi. This fractional power series is then directly translated into a
power series expansion for the inverse map η´1pθ, T1q in powers of pθ´θ˚q1{3, valid for θ sufficiently close
to θ˚. At last, we insert this expansion into (6.5b), to obtain

wpθ, T1q “ wpη´1pθ, T1q,´εqe´ 8
3

şT1
´ε a˝ηpη´1pθ,T1q,sqds .

Using the known expansion for η´1p¨, T1q and the regularity of a ˝ η, we deduce (6.3).

7 Outline: the development of shocks and weak singularities

We next turn to the development problem, within the class of regular azimuthal shock solutions, cf. Defini-
tion 4.5. The initial datum for this development problem are the functions pw, z, k, aq at which we have ar-
rived in the formation process at time T1. For simplicity of the presentation let us shift the pre-shock location
pθ˚, T1q to p0, 0q, and let us denote the values of the azimuthal fields at the pre-shock by pw0, z0, k0, a0q. By
the analysis in Section 6, we have that z0 ” k0 ” 0 on T, a0 P C1,1{3pTq with }a0}W 1,8 À κ0,ϖ0 P LippTq
with 1 ă κ0ϖ0pθq À 1, and the dominant Riemann variable is given by

w0pθq “ κ´ bθ
1
3 ` c1θ

2
3 ` c2θ ` Opθ 4

3 q, (7.1)

equality which holds in a C3 sense, with κ « κ0 ą 1, b « 1, and c “ Opε1{2q. The shock development
problem from this initial data is solved on the interval r0, εs, i.e. T2 “ T1`ε in the language of Theorem 5.1,
for a ε which is sufficiently small in terms of the data. The detailed analysis is carried out in [4, Sections 5
and 6], and here we only give the main ideas.

Given a smooth shock curve s : r0, εs Ñ T, we shall denote the spacetime complement of the shock as
Dε “ pT ˆ r0, εsqzpsptq, tqtPr0,εs, and for any function f : Dε Ñ R we denote the left and right traces at the
shock by f˘ptq “ limθÑsptq˘ fpθ, tq, and the jump and mean across the shock as rrf ssptq “ f´ptq ´ f`ptq,
respectively xxfyyptq “ 1

2pf´ptq ` f`ptqq. Note that since ε is chosen to be sufficiently small, we have that
t ! 1 is a small parameter.

To leading order in 0 ă t ! 1 and for |θ| ! 1, the intuition behind the shock developement problem
is as follows. First, from the Rankine-Hugoniot jump conditions one has that to leading order the speed of
propagation of weak shock waves (relative to the fluid) is equal to the sound speed, which in the context of
azimuthal symmetry means that

9s « b` c “ w « w0 ` psmall error respect to tq
« κ` psmall error respect to |θ| ! 1q ` psmall error respect to t ! 1q .

Thus, to leading order we may expect that sptq « κt.
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Second, we note that although entropy k and the subdominant Riemann variable z are strictly positive
for t ą 0, for short time they are expected to be small. As such, to leading order one may expect that the
evolution of the dominant Riemann variable w (cf. (4.9a)) may be approximated as

Btw ` pw ` small errorq Bθw “ psmall errors involving entropy gradientsq ,
w0 “ κ´ bθ

1
3 ` psmall error near for |θ| ! 1q .

Thus, we may hope to view the dominant Riemann variable w as being a perturbation of an inviscid Burgers
solution wB with associated Lagrangian ηB, namely

wBpθ, tq “ w0pηB´1pθ, tqq, ηBpx, tq “ x` tw0pxq. (7.2)

Here we denote Eulerian space variable by θ and the Lagrangian label by x. There is an important caveat
in the standard-looking definition (7.2). Since the initial data w0 is a pre-shock (recall (7.1)), the map
ηB

´1pθ, tq is not well-defined for θ which is very close to sptq; indeed, in this region the map is two-valued.
This is natural since these characteristics are expected to impinge upon the shock from either the left or
right sides, which ensures that the Lax entropy conditions (3.4) are satisfied. To overcome this, given any
t P p0, εs, and given a shock curve sptq, we compute two Lagrangian labels x˘ptq “ ηB

´1psptq˘, tq such
that the associated particle trajectories ηBpx˘ptq, sq fall into the shock exactly at time s “ t. This allows
us to define ηB´1p¨, tq : Tztsptqu Ñ Tzrx´ptq, x`ptqs as a bijective map, giving a meaning to (7.2). Note
that to leading order one may compute ηBpx, tq « x ` κt ´ pbtqx1{3, and since to leading order sptq « κt,
we deduce that x˘ptq « pbtq3{2. It follows that we may expect the jump of the dominant Riemann variable
across the shock curve to be given, to leading order in t, by

rrwssptq « rrwBssptq “ w0px´ptqq ´ w0px`ptqq « 2b
3
2 t

1
2 . (7.3)

Third, in analogy to how (3.5) was derived, we may show that in the weak shock regime |rrwss| ! 1
(justified in view of (7.3)) the smallest root (in absolute value) of the system of equations (4.16a)–(4.16b)
(which were derived from the azimuthal form of the Rankine-Hugoniot conditions) is given to leading order
by

rrzssptq « ´ 9rrwssptq3

16xxwyyptq2
« ´9b

9
2

2κ2 t
3
2 , and rrkssptq « 4rrwssptq3

xxwyyptq3
« 32b

9
2

κ3 t
3
2 . (7.4)

Just as (7.3), (7.4) may be shown to hold in a C2
t sense. The jump relations show that positive entropy

and negative subdominant Riemann variable must be produced instantaneously along the shock in order for
mass, momentum, and energy not to be lost.

Fourth, we need to carefully analyze the three characteristic families present in the azimuthal Euler
equations (4.9)–(4.10). These flows are defined naturally as

Btη “ λ3 ˝ η, Btϕ “ λ2 ˝ ϕ, Btψ “ λ1 ˝ ψ, pη, ϕ, ψqpx, 0q “ x.

Our heuristics indicate that to leading order in t ! 1 and |x| ! 1 we have that

ηpx, tq « ηBpx, tq « x` κt´ pbtqx 1
3 , ϕpx, tq « x` 2κ

3 t, ψpx, tq « x` κ
3 t, (7.5)

which confirms our intuition that the λ3 characteristic η impinges on the shock curve sptq « κt only after
we look at the next order term in t and x, and also that the λ2 and λ1 characteristics ϕ and ψ are transversal
to the shock. Note that the two characteristic surfaces of weak singularities are nothing but the images under
these slow flows of the point-shock

s2ptq “ ϕp0, tq « 2κ
3 t, s1ptq “ ψp0, tq « κ

3 t.
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The transversality of characteristic families mentioned above plays a crucial role in our analysis: it may be
combined with the fact that we stay away from the vacuum state in order to interchange a space derivative
with a time derivative in terms which are composed with ϕ or ψ. For example, it allows us to heuristically
replace the statements rrzss „ ´t3{2 and rrkss „ t3{2 from (7.4), with asymptotic descriptions zpθ, tq „
´pθ´ s1ptqq3{2 and kpθ, tq „ pθ´ s2ptqq3{2 asymptotically as θ Ñ s1ptq`, respectively θ Ñ s2ptq`. Thus,
the jump relations (7.4) and transversality imply that the fields z and k form C1,1{2 cusps at s1 and s2, when
approaching from the right.

Besides determining the location of the weak singularities, the flows η, ϕ, ψ, also paint a detailed picture
as to how information is carried from the tt “ 0u initial data surface, respectively how information about
the jumps at the shock are propagated through the fluid in spacetime. A schematic description is provided
by Figure 6 below.

t

θ

s

s2
s1

Figure 6: The three distinct wave families η, ϕ, and ψ are represented in red, blue, and respectively green, for various initial
labels. The most interesting such labels are marked with black dots: these do not lie on the time-slice tt “ 0u, but instead they lie
on the shock curve s at various values of time; at these points the values of k´ and z´ are computed according to (7.4). To leading
order, the entropy k is propagated off the shock curve along the λ2 characteristics ϕ, while the subdominant Riemann variable z is
also propagated off the shock curve s, but along the λ1 characteristics ψ. The λ3 characteristics η initiated at tt “ 0u, represented
in red, impinge on the shock curve from the left side, determining w in terms of w0 on both sides of the shock.

Fifth, we note that according to (4.9d) and (4.12), the fluid velocity λ2 and its associated characteristic
ϕ are the natural ones for carrying information about the radial velocity a and the specific entropy ϖ. In
particular, since ϕ is transversal to s, we are able to use (4.12) in order to show that the specific vorticity is
continuous across the shock curve. As such, the relation (4.11) implies that it is Bθa and not a which has a
jump discontinuity at s, and moreover to leading order we have

rrBθassptq « rrwssptq « 2b
3
2 t

1
2 . (7.6)

Sixth, concerning the characterization of the higher order singularities across the curves s1 and s2, the
intuition regarding the precise regularity of the fields pw, z, k, aq stems from the jump relations (7.3), (7.4),
(7.6), a detailed description of the Lagrangian flows ϕ and ψ similar to (7.5), and the structure of the forcing
terms in (4.9) and (4.12). For instance, we have already mentioned in the paragraph below (7.5) that the
transversality of ϕ and ψ to s, along with the jump relations (7.4) allow us to precisely compute the regularity
of z and k approaching s from the left. This matter is however more subtle near s1 and s2. To see this, we
may inspect Figure 6 and note that an Eulerian point pθ, tq with 0 ă θ´s2ptq ! 1 is traced backwards in time
along the blue characteristics ϕ to a point which lies on the shock curve at some time Tpθ, tq „ θ´s2ptq ! 1
(shock-intersection times are defined precisely in [4, Definitions 5.15 and 5.16]). Thus, singular information
about the derivatives of the jumps of k at a time Tpθ, tq ! t is carried via the ϕ characteristics to the point
pθ, tq, resulting in infinite terms as θ Ñ s2ptq`.
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An additional difficulty in analyzing the higher order singularities is that if one naively considers the
evolution equations for Bθw or Bθz cf. (4.9a) and respectively (4.9b), we note the emergence of the forcing
term 1

24pw ´ zq2Bθθk, resulting in what seems to be a derivative loss. In order to overcome this issue we
introduce the good unknowns

qw :“ Bθw ´ 1
4cBθk, qz :“ Bθz ` 1

4cBθk,
which satisfy the evolution equations

pBt ` λ3Bθqqw ` pBθλ3 ` 8
3aqqw “ ´8

3Bθaw `
´

4
3ac` 1

6cBθλ2
¯

Bθk, (7.7a)

pBt ` λ1Bθqqz ` pBθλ1 ` 8
3aqqz “ ´8

3Bθaz ´
´

4
3ac` 1

6cBθλ2
¯

Bθk. (7.7b)

The remarkable feature of the system (7.7) is that the second derivatives of k do not appear in the equations,
allowing us to close estimates. The unknowns qw and qz are useful because they involve only the first
derivative of the entropy, Bθk, and this term makes a C

1
2 cusp along the curve s2. On the other hand, the

natural flows in the system (7.7) are η and respectively ψ, which are transversal to the flow ϕ along which the
singularities of k are carried through the flow. This geometric structure of (7.7) and of the good unknowns
qw and qz analytically result in a one-derivative regularization effect, which is not apparent if we were to
inspect (4.9)–(4.12) directly. Another outcome of this derivative gain is that qw ` qz “ Bθz` Bθw “ 2

3Bθuθ
is smoother than the naive expectation C

1
2 because the Bθk terms cancel. This translates into at least C2

regularity for the angular velocity uθ along the curve s2; in contrast, the entropy S, the density ρ and the
radial velocity ur are precisely C1,1{2 across s2, which justifies the name weak contact singularity.

In closing, we note that in order to make the six-step heuristic outlined in this section rigorous, requires
a good functional framework and a of number analytical tricks for the analysis of Lagrangian flows. In
broad terms, we proceed as follows. We build an iteration scheme in which we start with a C2 smooth shock
curve s with |sptq ´κt| À t2, use it to construct a Burgers solution wB adapted to this particular shock curve
(as described in Step 2), and then use a contraction mapping principle to build a solution pw, z, k, aq of the
azimuthal Euler equations (4.9)–(4.12) which has jump discontinuities across s that satisfy the algebraic
system (4.16a)–(4.16b) resulting from the Rankine-Hugoniot jump conditions, and such that the regularity
of the solution is consistent with the fact that the solution emanates from a C1{3 pre-shock. More precisely,
there exists ε sufficiently small such that the solution lies in the functional space

Xε “
!

pw, z, k, aq P C1
θ,tpDεq : pw, z, k, aq|t“0 “ pw0, 0, 0, a0q, |||pw ´ wB, z, k, aq|||ε ď 1

)

(7.8)

where the norm |||pv, z, k, aq|||ε is defined by

|||pv, z, k, aq|||ε “ sup
pθ,tqPDε

max
!

m1t
´1 |vpθ, tq| ,m2

`

b3t3 ` pθ ´ sptqq2˘
1
6 |Bθvpθ, tq| ,

m3t
´ 3

2 |zpθ, tq| ,m3t
´ 1

2 |Bθzpθ, tq| ,m4t
´ 3

2 |kpθ, tq| ,
m4t

´ 1
2 |Bθkpθ, tq| ,m5 |apθ, tq| ,m5 |Bθapθ, tq|

)

where mi are sufficiently large constants. In particular, we note that the space Xε encodes precisely how
close w is to the Burgers solution wB.

So far, we have thus defined a map s ÞÑ pw, z, k, aq, but we are missing one key ingredient: the shock
curve was just a given curve with |sptq ´ κt| À t2, it did not satisfy the evolution equation (4.16c) imposed
by the Rankine-Hugoniot jump conditions. This however gives us a natural way of updating the shock curve:
we solve for rs the ODE (4.16c) with data rsp0q “ 0 and fields pw`, w´, z´, k´q given by the restrictions of
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pw, z, k, aq on the old curve s. Then, we prove that rs is C2 smooth and satisfies |rsptq ´ κt| À t2. Lastly,
we prove that above described iteration s ÞÑ rs is in fact a contraction in C2, resulting in a unique fixed
point which is the desired shock curve. Associated to this curve, we also prove that there is a unique regular
azimuthal shock solution pw, z, k, aq P Xε, as soon as ε ą 0 is sufficiently small. This completes the proof
of Theorem 5.1.
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