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Abstract. We prove that given any β < 1/3, a time interval [0, T ], and given any smooth energy
profile e : [0, T ] → (0,∞), there exists a weak solution v of the three-dimensional Euler equations
such that v ∈ Cβ([0, T ] × T3), with e(t) =

´
T3 |v(x, t)|2dx for all t ∈ [0, T ]. Moreover, we show

that a suitable h-principle holds in the regularity class Cβt,x, for any β < 1/3. The implication of
this is that the dissipative solutions we construct are in a sense typical in the appropriate space of
subsolutions as opposed to just isolated examples.

1. Introduction

In this paper we consider the incompressible Euler equations ∂tv + v · ∇v +∇p = 0

div v = 0,
(1.1)

in the periodic setting x ∈ T3 = R3 \ Z3, where v is a vector field representing the velocity of the
fluid and p is the pressure. We study weak (distributional) solutions v which are Hölder continuous
in space, i.e. such that1

|v(x, t)− v(y, t)| ≤ C|x− y|β for all t ∈ [0, T ] (1.2)

for some constant C which is independent of time t.

In his famous 1949 note on statistical hydrodynamics Lars Onsager [Ons49] conjectured that the
threshold regularity for the validity of the energy conservation of weak solutions of (1.1) is the
exponent 1/3: in particular he asserted that for larger Hölder exponents any weak solution would
conserve the energy, whereas for any smaller exponent there are solutions which do not. The first
assertion was fully proved by Constantin, E and Titi in [CET94], after a partial result of Eyink
in [Eyi94] (see also [CCFS08] for a sharper criterion in L3-based spaces). Concerning the second
assertion, the first proof of the existence of a square summable weak solution which does not preserve
the energy is due to Scheffer in his pioneering paper [Sch93]. A different proof has been later given
by Shnirelman in [Shn97]. In [DLS09] the second and third author realized that techniques from the
theory of differential inclusions could be applied very efficiently to produce bounded weak solutions
which violate the energy conservation in several forms (see also [DL10, Chi14, LXX16], [CFG11,
Shv11, Szé12, CCF16], and [CS14] for related work on the compressible Euler equations, non-
odd active scalar equations, and the stationary Euler equations, respectively). Pushed by the
analogy of these constructions with the famous C1 solutions of Nash and Kuiper for the isometric
embedding problem (cf. [Nas54] and [Kui55]), the second and third authors proposed to approach
the remaining statement of the Onsager’s conjecture in a similar way (cf. [DLS12]). Indeed in
[DLS13] and [DLS14] they were able to give the first examples of, respectively, continuous and
Hölder continuous solutions which dissipate the energy, reaching the threshold exponent 1/10 (see
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1The smallest constant C satisfying (1.2) will be denoted by [v]β , cf. Appendix A. We will write v ∈ Cβ(T3×[0, T ])

when v is Hölder continuous in the whole space-time.
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also [IV15, BSV16] for constructions of Hölder continuous weak solutions for other hydrodynamic
models such as the IPM and SQG equations). After a series of important partial results improving
the threshold and the techniques from several points of view, cf. [Ise13a, BDLS13, Buc14, BDLISJ15,
IO16, Buc15, BDLS16], in his recent paper Isett [Ise16] has been able to finally reach the Onsager
exponent 1/3. The proof of Isett combines previous ideas with two new important ingredients,
one developed by Daneri and the third author in [DS17] (the introduction of Mikado flows, see
Section 2.6) and one introduced by Isett himself the aforementioned paper (the gluing technique,
see Section 2.5).

However, the solutions produced in [Ise16] are only shown to be nonconservative and in fact for
those solutions the total kinetic energy fails to be monotonic on any interval of time. Thus Isett’s
theorem left open the question whether it is possible or not to construct solutions which dissipate the
kinetic energy (i.e. with strictly monotonic decreasing energy). In fact the latter is a relevant point
for at least two reasons: dissipative solutions satisfy the weak-strong uniqueness property [Lio96,
BDLS11], and Onsager, in his work, conjectures the existence of dissipative solutions. Indeed, in
[Ons49] Onsager states:

It is of some interest to note that in principle, turbulent dissipation as described could take place
just as readily without the final assistance by viscosity.

In this note we suitably modify the approach of Isett in order to show the following theorem.

Theorem 1.1. Assume e : [0, T ] → R is a strictly positive smooth function. Then for any
0 < β < 1/3 there exists a weak solution v ∈ Cβ(T3 × [0, T ]) to (1.1) such thatˆ

T3

|v(x, t)|2 dx = e(t) .

We are indeed able to prove a stronger statement than Theorem 1.1, namely an h-principle in
the sense of [DS17]. Following [DS17] we introduce smooth strict subsolutions of the Euler equa-
tions.

Definition 1.2. A smooth strict subsolution of (1.1) on T3× [0, T ] is a smooth triple (v̄, p̄, R̄) with
R̄ a symmetric 2-tensor, such that ∂tv̄ + div(v̄ ⊗ v̄) +∇p̄ = −div R̄

div v̄ = 0,
(1.3)

and R̄(x, t) is positive definite for all (x, t).

We then can prove that any smooth strict subsolution can be suitably approximated by Cβ solutions
for any β < 1/3. More precisely:

Theorem 1.3. Let (v̄, p̄, R̄) be a smooth strict subsolution of the Euler equations on T3 × [0, T ]
and let β < 1/3. Then there exists a sequence (vk, pk) of weak solutions of (1.1) such that vk ∈
Cβ(T3 × [0, T ]),

vk
∗
⇀ v̄ and vk ⊗ vk

∗
⇀ v̄ ⊗ v̄ + R̄ in L∞

uniformly in time, and furthermore for all t ∈ [0, T ]ˆ
T3

|vk|2 dx =

ˆ
T3

(
|v̄|2 + tr R̄

)
dx. (1.4)

Theorem 1.1 can be concluded as a simple corollary of Theorem 1.3. However, we give an alternative,
simpler and self-contained argument for Theorem 1.1. Indeed the proof of Theorem 1.3 invokes
some results of [DS17], whereas the argument for Theorem 1.1 is entirely contained in our note,
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aside from technical propositions which are classical statements in the literature, all collected in
the Appendix.

The most important differences in our proof compared to that of [Ise16] rely on the estimates for
the “gluing step” of Isett’s proof (we refer to Section 2.5 for more details) and in a simple remark
concerning the regions where the perturbation is added (see Section 2.6). We note that, even
without the extra benefit of imposing the energy profile and achieving the more general h-principle
statement, the proof proposed here is considerably shorter than that of [Ise16].

Acknowledgments. The work of T.B. has been partially supported by the National Science Foun-
dation grant DMS-1600868. The research of C.D.L. has been supported by the grant 200021 159403
of the Swiss National Foundation. L.Sz. gratefully acknowledges the support of the ERC Grant
Agreement No. 277993. V.V. was partially supported by the National Science Foundation grant
DMS-1514771 and by an Alfred P. Sloan Research Fellowship.

2. Outline of the proof

As already mentioned, although Theorem 1.1 can be recovered as a corollary of Theorem 1.3, in this
section we outline an independent proof, reducing it to a suitable iterative procedure, summarized
in Proposition 2.1 below. The same iteration procedure can be used to prove Theorem 1.3, as
shown in Section 7 at the end of the note, but the corresponding argument will need some results
from [DS17], which we state without proof. In contrast, the proof of Theorem 1.1 is completely
self-contained.

2.1. Inductive proposition. First of all, we impose for the moment that

sup
t∈[0,T ]

∣∣ d
dte(t)

∣∣ ≤ 1 (2.1)

(we will see later that this can be done without loosing generality).

Let then q ≥ 0 be a natural number. At a given step q we assume to have a triple (vq, pq, R̊q) to
the Euler-Reynolds system (1.3), namely such that ∂tvq + div(vq ⊗ vq) +∇pq = div R̊q

div vq = 0 ,
(2.2)

to which we add the constraints that

tr R̊q = 0 (2.3)

and that ˆ
T3

pq(x, t) dx = 0 (2.4)

(which uniquely determines the pressure).

The size of the approximate solution vq and the error R̊q will be measured by a frequency λq and
an amplitude δq, which are given by

λq = 2πda(bq)e (2.5)

δq = λ−2β
q (2.6)

where dxe denotes the smallest integer n ≥ x, a > 1 is a large parameter, b > 1 is close to 1 and
0 < β < 1/3 is the exponent of Theorem 1.1. The parameters a and b are then related to β.
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We proceed by induction, assuming the estimates∥∥∥R̊q∥∥∥
0
≤ δq+1λ

−3α
q (2.7)

‖vq‖1 ≤Mδ
1/2
q λq (2.8)

‖vq‖0 ≤ 1− δ1/2q (2.9)

δq+1λ
−α
q ≤ e(t)−

ˆ
T3

|vq|2 dx ≤ δq+1 (2.10)

where 0 < α < 1 is a small parameter to be chosen suitably (which will depend upon β), and M is
a universal constant (which is fixed throughout the iteration and whose choice depends on certain
geometric properties of the space of symmetric matrices and on the “squiggling” regions of the
perturbation step, cf. Remark 5.2, Lemma 5.5 and Definition 5.6). We refer to Appendix A for the
definitions of the Hölder norms used above, where we take into account only space regularity.

Proposition 2.1. There is a universal constant M with the following property. Assume 0 < β < 1/3
and

1 < b <
1− β

2β
. (2.11)

Then there exists an α0 depending on β and b, such that for any 0 < α < α0 there exists an a0

depending on β, b, α and M , such that for any a ≥ a0 the following holds: Given a strictly positive
energy function e : [0, T ] → R satisfying (2.1), and a triple (vq, R̊q, pq) solving (2.2)-(2.4) and

satisfying the estimates (2.7)–(2.10), then there exists a solution (vq+1, R̊q+1, pq+1) to (2.2)-(2.4)
satisfying (2.7)–(2.10) with q replaced by q + 1. Moreover, we have

‖vq+1 − vq‖0 +
1

λq+1
‖vq+1 − vq‖1 ≤Mδ

1/2
q+1. (2.12)

The proof of Proposition 2.1 is summarized in the Sections 2.3, 2.4, 2.5 and 2.6, but its details
will occupy most of the paper and will be completed in Section 6 below. We show next that this
proposition immediately implies Theorem 1.1.

2.2. Proof of Theorem 1.1. First of all, we fix any Hölder exponent β < 1/3 and also the
parameters b and α, the first satisfying (2.11) and the second smaller than the threshold given in
Proposition 2.1. Next we show that, without loss of generality, we may further assume the energy
profile satisfies

inf
t
e(t) ≥ δ1λ

−α
0 , sup

t
e(t) ≤ δ1, and sup

t
e′(t) ≤ 1 , (2.13)

provided the parameter a is chosen sufficiently large.

To see this, we first note that the Euler equations are invariant under the transformation

v(x, t) 7→ Γv(x,Γt) and p(x, t) 7→ Γ2p(x,Γt) .

Thus if we choose

Γ =

(
δ1

supt e(t)

)1/2

,

then using the scaling invariance, the stated problem reduces to finding a solution with the energy
profile given by

ẽ(t) = Γ2e(Γt) ,

for which we have

inf
t
ẽ(t) ≥ δ1 inft e(t)

supt e(t)
, sup

t
ẽ(t) ≤ δ1, and sup

t
ẽ′(t) ≤

(
δ1

supt e(t)

)3/2

sup
t
e′(t).
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If a is chosen sufficiently large then we can ensure

sup
t
ẽ′(t) ≤

(
δ1

supt e(t)

)3/2

sup
t
e′(t) ≤ 1, and

inft e(t)

supt e(t)
≥ λ−α0 .

Now we apply Proposition 2.1 iteratively with (v0, R0, p0) = (0, 0, 0). Indeed the pair (v0, R0)
trivially satisfies (2.7)–(2.9), whereas the estimate (2.10) and (2.1) follows as a consequence of
(2.13). Notice that by (2.12) vq converges uniformly to some continuous v. Moreover, we recall
that the pressure is determined by

∆pq = div div(−vq ⊗ vq + R̊q) (2.14)

and (2.4) and thus pq is also converging to some pressure p (for the moment only in Lr for every

r <∞). Since R̊q → 0 uniformly, the pair (v, p) solves the Euler equations.

Observe that using (2.12) we also infer2

∞∑
q=0

‖vq+1 − vq‖β′ .
∞∑
q=0

‖vq+1 − vq‖1−β
′

0 ‖vq+1 − vq‖β
′

1 .
∞∑
q=0

δ
1−β′

2
q+1

(
δ
1/2
q+1λq

)β′
.
∞∑
q=0

λβ
′−β
q

and hence that vq is uniformly bounded in C0
t C

β′
x for all β′ < β. To recover the time regularity, we

could use the Euler equations and the general result in [Ise13b]. Nevertheless, we believe that the
following short and self-contained proof of the time-regularity may be of independent interest:

Fix a smooth standard mollifier ψ in space, let q ∈ N, and consider ṽq := v ∗ ψ2−q , where ψ`(x) =
`−3ψ(x`−1). From standard mollification estimates we have

‖ṽq − v‖0 . ‖v‖β′ 2
−qβ′ , (2.15)

and thus ṽq − v → 0 uniformly as q →∞. Moreover, ṽq obeys the following equation

∂tṽq + div (v ⊗ v) ∗ ψ2−q +∇p ∗ ψ2−q = 0.

Next, since

−∆p ∗ ψ2−q = div div(v ⊗ v) ∗ ψ2−q ,

using Schauder’s estimates, for any fixed ε > 0 we get

‖∇p ∗ ψ2−q‖0 ≤ ‖∇p ∗ ψ2−q‖ε . ‖v ⊗ v‖β′2q(1+ε−β′) . ‖v‖2β′2q(1+ε−β′) ,

(where the constant in the estimate depends on ε but not on q). Similarly,

‖(v ⊗ v) ∗ ψ2−q‖1 . ‖v ⊗ v‖β′ 2
q(1−β′) . ‖v‖2β′ 2

q(1−β′) .

Thus the above estimates yield

‖∂tṽq‖0 . ‖v‖
2
β′2

q(1+ε−β′) . (2.16)

Next, for β′′ < β′ we conclude from (2.15) and (2.16) that

‖ṽq − ṽq+1‖C0
xC

β′′
t

.
(
‖ṽq − v‖0 + ‖ṽq+1 − v‖0

)1−β′′ (‖∂tṽq‖0 + ‖∂tṽq+1‖0
)β′′

. ‖v‖1+β′′

β′ 2−qβ
′(1−β′′)2qβ

′′(1+ε−β′) = ‖v‖1+β′′

β′ 2−q(β
′−(1+ε)β′′)

. ‖v‖1+β′′

β′ 2−qε

2Throughout the manuscript we use the the notation x . y to denote x ≤ Cy, for a sufficiently large constant
C > 0, which is independent of a, b, and q, but may change from line to line.
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Here we have chosen ε > 0 sufficiently small (in terms of β′ and β′′) so that that β′− (1 + ε)β′′ ≥ ε.
Thus, the series

v = ṽ0 +
∑
q≥0

(ṽq+1 − ṽq)

converges in C0
xC

β′′

t . Since we already know v ∈ C0
t C

β′
x , we obtain that v ∈ Cβ′′([0, T ] × T3) as

desired, with β′′ < β′ < β < 1/3 arbitrary.

Finally, since δq+1 → 0 as q →∞, from (2.10) we haveˆ
T3

|v|2 dx = e(t) ,

which completes the proof of the theorem.

2.3. Stages. Except for Section 7, the rest of the paper is devoted to the proof of Proposition 2.1.
It will be useful to make the assumption that α is small enough so to have

λ3α
q ≤

(
δq
δq+1

)3/2

≤ λq+1

λq
, (2.17)

which also require that a is large enough to absorb any constant appearing from the ratio λq/a
(bq),

for which we have the elementary bounds

2π ≤ λq
abq
≤ 4π . (2.18)

The proof consists of three stages, in each of which we modify vq. Roughly speaking, the stages
are as follows:

• Mollification: (vq, R̊q) 7→ (v`, R̊`);

• Gluing: (v`, R̊`) 7→ (v̄q, R̊q);

• Perturbation: (v̄q, R̊q) 7→ (vq+1, R̊q+1).

2.4. Mollification step. The first stage is mollification: we mollify vq at length scale ` in order
to handle the loss of derivative problem, typical of convex integration schemes. To this aim, we fix
a standard mollification kernel ψ in space and introduce the mollification parameter

` :=
δ
1/2
q+1

δ
1/2
q λ

1+3α/2
q

, (2.19)

and define

v` :=vq ∗ ψ`
R̊` :=R̊q ∗ ψ` − (vq⊗̊vq) ∗ ψ` + v`⊗̊v`

where f⊗̊g is the traceless part of the tensor f ⊗ g. These functions obey the equation ∂tv` + div(v` ⊗ v`) +∇p` = div R̊`

div v` = 0 ,
(2.20)

in view of (2.2).

Observe, again choosing α sufficiently small and a sufficiently large we can assume

λ−3/2
q ≤ ` ≤ λ−1

q , (2.21)
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which will be applied repeatedly in order to simplify the statements of several estimates.

From (2.21), standard mollification estimates and Proposition A.2, we obtain the following bounds3

Proposition 2.2.

‖v` − vq‖0 . δ
1/2
q+1λ

−α
q , (2.22)

‖v`‖N+1 . δ
1/2
q λq`

−N ∀N ≥ 0 , (2.23)∥∥∥R̊`∥∥∥
N+α

. δq+1`
−N+α ∀N ≥ 0 . (2.24)∣∣∣∣ˆ

T3

|vq|2 − |v`|2 dx
∣∣∣∣ . δq+1`

α . (2.25)

Proof of Proposition 2.2. The bounds (2.22) and (2.23) follow from the obvious estimates

‖v` − vq‖0 ≤ ‖vq‖1` . δ
1/2
q λq` . δ

1/2
q+1λ

−α
q

and
‖v`‖N+1 ≤ ‖vq‖1`−N . δ

1/2
q λq`

−N .

Next, applying Proposition A.2,∥∥∥R̊`∥∥∥
N+α

.‖R̊q‖0`−N−α + ‖vq‖21`2−N−α . δq+1λ
−3α
q `−N−α + δqλ

2
q`

2`−N−α . δq+1λ
−3α
q `−N−α ,

on the other hand, by (2.21) λ−3α
q ≤ `2α, from which (2.24) follows. Similarly, by Proposition A.2,∣∣∣∣ˆ

T3

|vq|2 − |v`|2 dx
∣∣∣∣ =

∣∣∣∣ˆ
T3

(|vq|2)` − |v`|2 dx
∣∣∣∣ . ∥∥∥(|vq|2)` − |v`|2

∥∥∥
0
. ‖vq‖21 `

2 ,

which implies (2.25). �

2.5. Gluing step. In the second stage we encounter the new crucial ingredient introduced by Isett
in [Ise16]: we glue together exact solutions to the Euler equations in order to produce a new vq,
close to vq, whose associated Reynolds stress error has support in pairwise disjoint temporal regions
of length τq in time, where

τq =
`2α

δ
1/2
q λq

. (2.26)

The parameter τq should be compared to the parameter µ−1 used in the paper [BDLISJ15]. Indeed,
τ−1
q satisfies precisely the same parameter inequalities that µ satisfies in Section 2 of [BDLISJ15].

We note in particular that like in [BDLISJ15] we have the CFL-like condition

τq ‖v`‖1+α

(2.23)

. τqδ
1/2
q λq`

−α . `α � 1 (2.27)

as long as a is sufficiently large.

More precisely, we aim to construct a new triple (vq, R̊q, pq) solving the Euler Reynolds equation

(2.2) such that the temporal support of R̊q is contained in pairwise disjoint intervals Ii of length
∼ τq and such that the gaps between neighbouring intervals is also of length ∼ τq. More precisely,
for any n ∈ Z let

tn = nτq, In = [tn + 1
3τq, tn + 2

3τq] ∩ [0, T ], Jn = (tn − 1
3τq, tn + 1

3τq) ∩ [0, T ] .

3In the following, when considering higher order norms ‖·‖N or ‖·‖N+1, the symbol . will imply that the constant
in the inequality might also depend on N .
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We require

supp R̊q ⊂
⋃
n∈N

In × T3. (2.28)

Moreover, (vq, R̊q) will satisfy the following estimates for any N ≥ 0

‖vq − v`‖0 . δ
1/2
q+1`

α (2.29)

‖vq‖1+N . δ
1/2
q λq`

−N (2.30)∥∥∥R̊q∥∥∥
N+α

. δq+1`
−N+α (2.31)∥∥∥∂tR̊q + (vq · ∇)R̊q

∥∥∥
N+α

. δq+1δ
1/2
q λq`

−N−α (2.32)∣∣∣∣ˆ
T3

|v̄q|2 − |v`|2dx
∣∣∣∣ . δq+1`

α (2.33)

where the implicit constants depend only on M,α, and N , cf. Propositions 4.3, 4.4 and 4.5.

The gluing procedure will be broken up into two parts: first, we construct a sequence of exact
solutions to the Euler equations with appropriate stability estimates in Section 3 and then we glue
the solutions together in Section 4 with a partition of unity in order to construct vq satisfying the
properties mentioned above. This is indeed the key idea of Isett in [Ise16]. The main difference

with [Ise16] is in the construction of the tensor R̊q: in this paper we use the usual elliptic operators
introduced in [DLS13]. This has the advantage that our Reynolds stress remains trace free, in
contrast to the one of [Ise16], and in turn this is crucial to control the energy in the perturbation
step below. Our main technical improvement is that this difficulty can be overcome employing
suitable commutator estimates on the advective derivative of differential operators of negative
order, cf. the proof of Proposition 3.4 and Proposition D.1. This remark allows us not only to keep
a better control on the energy and a trace-free Reynolds stress with the desired estimate, but it
also shortens the arguments considerably compared to [Ise16].

2.6. Perturbation and proof of Proposition 2.1. The gluing procedure can be used to localize

the Reynolds stress error R̊q to small disjoint temporal regions, but it cannot be used to completely
eliminate the error.

First of all note that as a corollary of (2.10), (2.25) and (2.33), by choosing a sufficiently large we
can ensure that

δq+1

2λαq
≤ e(t)−

ˆ
T3

|vq|2 dx ≤ 2δq+1 . (2.34)

Starting with the solution (vq, pq, R̊q) satisfying (2.28) and the estimates (2.29)-(2.34), we then

produce a new solution (vq+1, pq+1, R̊q+1) of the Euler-Reynolds system (2.2) with estimates

‖vq+1 − vq‖0 + λ−1
q+1‖vq+1 − vq‖1 ≤

M

2
δ
1/2
q+1 (2.35)

‖R̊q+1‖α .
δ
1/2
q+1δ

1/2
q λq

λ1−4α
q+1

. (2.36)

∣∣∣∣e(t)− ˆ
T3

|vq+1|2 dx−
δq+2

2

∣∣∣∣ . δ
1/2
q δ

1/2
q+1λ

1+2α
q

λq+1
, (2.37)

cf. Corollary 5.8 and Propositions 6.1 and 6.2.
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As in previous papers [DLS14, Ise13a, BDLS13, Buc14, BDLISJ15, Buc15, BDLS16] the key idea,
introduced in [DLS13], for reducing the size of the error is to add a highly oscillatory perturbation
wq+1 to vq. Previous schemes heavily relied on Beltrami flows, but these seemed insufficient to
push the method beyond Hölder exponent 1/5. A new set of flows, called Mikado flows, with much
better properties were introduced in [DS17] and indeed, a key element in the proof of Isett [Ise16]
is the observation, already used in [DS17], that Mikado flows behave better under advection by a
mean flow.

An important point is that the Mikado flows will not only be used to “cancel” the error R̊q,
but also to “improve the energy” in areas where the error vanishes identically. In particular, the
perturbation will be added in spacetime regions which are disjoint and contained in time-slabs of
thickness 2τq, but with the property that their projections on the time axis is a covering of the
interval [0, T ].

Proof of Proposition 2.1. The estimate (2.12) is a consequence of (2.22), (2.23), (2.29), (2.30) and
(2.35):

‖vq+1 − vq‖0 + λ−1
q+1 ‖vq+1 − vq‖1 ≤

M

2
δ
1/2
q+1 + Cδ

1/2
q+1`

α + Cδ
1/2
q λqλ

−1
q+1 ,

where the constant C depends on α, β,M , but not on a, b and q. In particular, for every fixed b
(2.12) holds if a is large enough. For (2.8), we use the induction assumption to get

‖vq+1‖1 ≤Mδ
1/2
q λq +

M

2
δ
1/2
q+1λq+1 + Cδ

1/2
q+1`

αλq+1 + Cδ
1/2
q λq

and again a sufficiently large choice of a will guarantee ‖vq+1‖1 ≤Mδ
1/2
q+1λq+1. Similarly for (2.9),

which will follow from

‖vq+1‖0 ≤ ‖vq‖0 + ‖vq+1 − vq‖0 ≤ 1− δ1/2q +Mδ
1/2
q+1 .

From (2.36) and (2.37), the inequalities (2.7) and (2.10) follow as a consequence of the parameter
inequality

δ
1/2
q δ

1/2
q+1λq

λq+1
≤ δq+2

λ8α
q+1

. (2.38)

To see this, one divides by the right hand side, takes logarithms and divides by log λq, to obtain

−β − βb+ 1− b+ 2b2β + 8bα+O

(
1

log λq

)
≤ 0,

where the error term O
(

1
log λq

)
is due to the constants in (2.18). From the relation (2.11), if α is

sufficiently small we obtain

− β − βb+ 1− b+ 2b2β + 8bα < 0 . (2.39)

Hence fixing b to satisfy (2.11), choosing subsequently α sufficiently small and then a sufficiently
large, we obtain (2.38).

Finally, an entirely analogous argument shows (2.10) from (2.37). �
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3. Stability estimates for classical exact solutions

3.1. Classical solutions. For each i, let ti = iτq, and consider smooth solutions of the Euler
equations 

∂tvi + div(vi ⊗ vi) +∇pi = 0

div vi = 0

vi(·, ti) = v`(·, ti) .

(3.1)

defined over their own maximal interval of existence. Next, recall the following

Proposition 3.1. For any α > 0 there exists a constant c = c(α) > 0 with the following property.

Given any initial data u0 ∈ C∞, and T ≤ c ‖u0‖−1
1+α, there exists a unique solution u : R3 ×

[−T, T ]→ R3 to the Euler equation
∂tu+ div(u⊗ u) +∇p = 0

div u = 0

u(·, 0) = u0

Moreover, u obeys the bounds

‖u‖N+α . ‖u0‖N+α . (3.2)

for all N ≥ 1, where the implicit constant depends on N and α > 0.

Proof of Proposition 3.1. The proof of the existence of a unique solution is standard (see e.g. [MB02,

Chapter 4]), and follows from the restriction T ≤ c ‖u0‖−1
1+α. The higher-order bounds (3.2) are

also standard, and can be obtained as follows: For any multi-index θ with |θ| = N we have

∂t∂
θv + v · ∇∂θv + [∂θ, v · ∇]v +∇∂θp = 0.

Using the equation for the pressure −∆p = tr (∇v∇v) and Schauder estimates we obtain

‖∇∂θp‖α . ‖tr (∇v∇v)‖N−1+α . ‖v‖1+α‖v‖N+α.

Therefore

‖(∂t + v · ∇)∂θv‖α . ‖v‖1+α‖v‖N+α,

and (3.2) follows by applying (B.3) and Grönwall’s inequality. �

An immediate consequence is:

Corollary 3.2. If a is sufficiently large, for |t− ti| ≤ τq, we have

‖vi‖N+α . δ
1/2
q λq`

1−N−α . τ−1
q `1−N+α for any N ≥ 1. (3.3)

Proof of Corollary 3.2. We apply Proposition 3.1 and use the estimate (2.27) to obtain

‖vi‖N+α . ‖v`(ti)‖N+α

for any N ≥ 1. From (2.23) and (2.26), we then deduce the estimate (3.3). �
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3.2. Stability and estimates on vi− v`. We will now show that for |ti − t| ≤ τq, vi is close to v`
and by the identity

vi − vi+1 = (vi − v`)− (vi+1 − v`),
the vector field vi is also close to vi+1.

Proposition 3.3. For |t− ti| ≤ τq and N ≥ 0 we have

‖vi − v`‖N+α .τqδq+1`
−N−1+α , (3.4)

‖∇(p` − pi)‖N+α . δq+1`
−N−1+α , (3.5)

‖Dt,`(vi − v`)‖N+α . δq+1`
−N−1+α , (3.6)

where we write

Dt,` = ∂t + v` · ∇ (3.7)

for the transport derivative.

Proof of Proposition 3.3. Let us first consider (3.4) with N = 0. From (2.20) and (3.1) we have

∂t(v` − vi) + (v` · ∇)(v` − vi) = (vi − v`) · ∇vi −∇(p` − pi) + div R̊`. (3.8)

In particular, using

∆(p` − pi) = div
(
∇v`(vi − v`)

)
+ div

(
∇vi(vi − v`)

)
+ div div R̊`, (3.9)

estimates (2.24) and (3.3), and Proposition C.1 (recall that ∂i∂j(−∆)−1 is given by 1/3δij + a
Calderón-Zygmund operator), we conclude

‖∇(p` − pi)(·, t)‖α ≤ δ
1/2
q λq`

−α ‖vi − v`‖α + δq+1`
−1+α .

Thus, using (2.24) and the definition of τq, we have

‖Dt,`(v` − vi)‖α . δq+1`
−1+α + τ−1

q ‖v` − vi‖α (3.10)

By applying (B.3) we obtain

‖(v` − vi)(·, t)‖α . |t− ti| δq+1`
−1+α +

ˆ t

ti

τ−1
q ‖(v` − vi)(·, s)‖α ds.

Applying Grönwall’s inequality and using the assumption |t− ti| ≤ τq we obtain

‖vi − v`‖α . τqδq+1`
−1+α , (3.11)

i.e. (3.4) for the case N = 0. Then, as a consequence of (3.10) we obtain (3.6) for the case N = 0.

Next, consider the case N ≥ 1 and let θ be a multiindex with |θ| = N . Commuting the derivative
∂θ with the material derivative ∂t + v` · ∇ we have

‖Dt,`∂
θ(v` − vi)‖α . ‖∂θDt,`(v` − vi)‖α + ‖[v` · ∇, ∂θ](v` − vi)‖α

. ‖∂θDt,`(v` − vi)‖α + ‖v`‖N+α‖v` − vi‖1+α + ‖v`‖1+α‖v` − vi‖N+α

. ‖∂θDt,`(v` − vi)‖α + ‖v`‖N+1+α‖v` − vi‖α + ‖v`‖1+α‖v` − vi‖N+α ,

where in the last inequality we used the standard interpolation inequalities on Hölder norms, cf.
(A.1). On the other hand differentiating (3.8) leads to

‖∂θDt,`(v` − vi)‖α . ‖v` − vi‖N+α‖vi‖1+α + ‖v` − vi‖α‖vi‖N+1+α + ‖p` − pi‖N+1+α + ‖R̊`‖N+1+α

. τ−1
q ‖v` − vi‖N+α + δq+1`

−N−1+α + ‖∇(p` − pi)‖N+α , (3.12)

11



where we have used (3.11). Furthermore, from (3.9) we also obtain, using Corollary 3.2 and (3.11)

‖∇(p` − pi)‖N+α . (‖v`‖N+1+α + ‖vi‖N+1+α)‖v` − vi‖α
+ (‖v`‖1+α + ‖vi‖1+α)‖v` − vi‖N+α + ‖R̊`‖N+1+α

. δq+1`
−N−1+α + τ−1

q ‖v` − vi‖N+α . (3.13)

Summarizing, for any multiindex θ with |θ| = N we obtain

‖Dt,`∂
θ(v` − vi)‖α . δq+1`

−N−1+α + τ−1
q ‖v` − vi‖N+α.

Therefore, invoking once more (B.3) we deduce

‖(v` − vi)(·, t)‖N+α . τqδq+1`
−N−1+α +

ˆ t

ti

τ−1
q ‖(v` − vi)(·, s)‖N+α ds,

and hence, using Grönwall’s inequality and the assumption |t− ti| ≤ τq we obtain (3.4). From
(3.13) and (3.12) we then also conclude (3.5) and (3.6). �

3.3. Estimates on vector potentials. Define the vector potentials to the solutions vi as

zi = Bvi := (−∆)−1 curl vi, (3.14)

where B is the Biot-Savart operator, so that

div zi = 0 and curl zi = vi −
ˆ
T3

vi (3.15)

(recall that, since T3 = R3 \ Z3,
´
T3 vi(x, t)dx is the space average of the solution). Our aim is to

obtain estimates for the differences zi − zi+1. The heuristic is as follows: from Proposition 3.3 we
obtain

‖vi − vi+1‖N+α . τqδq+1`
−N−1+α.

Since the characteristic length-scale of the vectorfields vi is ` (cf. Corollary 3.2), we expect to gain
a factor ` when passing to first order potentials. This is formalized in Proposition 3.4 below.

Proposition 3.4. For |t− ti| ≤ τq, we have that

‖zi − zi+1‖N+α . τqδq+1`
−N+α , (3.16)

‖Dt,`(zi − zi+1)‖N+α . δq+1`
−N+α , (3.17)

where Dt,` is as in (3.7).

Proof of Proposition 3.4. Set z̃i := B(vi − v`) and observe that zi − zi+1 = z̃i − z̃i+1. Hence, it
suffices to estimate z̃i in place of zi − zi+1.

The estimate on ‖∇z̃i‖N−1+α for N ≥ 1 follows directly from (3.4) and the fact that ∇B is a
bounded operator on Hölder spaces:

‖∇z̃i‖N−1+α ≤‖∇B(vi − v`)‖N−1+α ‖vi − v`‖N+α . τqδq+1`
−N+α . (3.18)

Next, observe that

∂t(vi − v`) + v` · ∇(vi − v`) + (vi − v`) · ∇vi +∇(pi − p`) + div R̊` = 0. (3.19)

Since vi − v` = curl z̃i with div z̃i = 0, we have4

v` · ∇(vi − v`) = curl
(
(v` · ∇)z̃i

)
+ div

(
(z̃i ×∇)v`

)
((vi − v`) · ∇)vi = div

(
(z̃i ×∇)vTi

)
,

4Here we use the notation [(z ×∇)v]ij = εiklz
k∂lv

j for vector fields z, v.
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so that we can write (3.19) as

curl(∂tz̃i + (v` · ∇)z̃i) = −div
(
(z̃i ×∇)v` + (z̃i ×∇)vTi

)
−∇(pi − p`)− div R̊`. (3.20)

Taking the curl of (3.20) the pressure term drops out. Using in addition that div z̃i = div(vi−v`) = 0
and the identity curl curl = −∆ +∇ div, we then arrive at

−∆
(
∂tz̃i + (v` · ∇)z̃i

)
= F,

where

F = −∇ div ((z̃i · ∇)v`)− curl div
(
(z̃i ×∇)v` + (z̃i ×∇)vTi

)
− curl div R̊`.

5

Consequently,

‖∂tz̃i + (v` · ∇)z̃i‖N+α . (‖vi‖N+1+α + ‖v`‖N+1+α)‖z̃i‖α
+ (‖vi‖1+α + ‖v`‖1+α)‖z̃i‖N+α + ‖R̊`‖N+α

. τ−1
q ‖z̃i‖N+α + τ−1

q `−N‖z̃i‖α + δq+1`
−N+α. (3.21)

Setting N = 0 and using (B.3) and Grönwall’s inequality we obtain

‖z̃i‖α . τqδq+1`
α ,

which together with (3.18) gives (3.16). Using (3.16) into (3.21) we conclude

‖∂tz̃i + (v` · ∇)z̃i‖N+α . δq+1`
−N+α .

Finally commuting the derivatives in the (N +α)-norm with Dt,` as in the proof of Proposition 3.3
and using again (3.16) we achieve (3.17). �

4. Gluing procedure

Now we proceed to glue the solutions vi together in order to construct vq. The stability esti-
mates above will be used in order to ensure that vq remains an approximate solution to the Euler
equations.

4.1. Partition of unity and definition of vq. Let

ti = iτq, Ii = [ti + 1
3τq, ti + 2

3τi] ∩ [0, T ], Ji = (ti − 1
3τq, ti + 1

3τq) ∩ [0, T ] .

Note that {Ii, Ji}i is a decomposition of [0, T ] into pairwise disjoint intervals. We define a partition
of unity {χi}i in time with the following properties:

• The cut-offs form a partition of unity∑
i

χi ≡ 1 (4.1)

• suppχi ∩ suppχi+2 = ∅ and moreover

suppχi ⊂ (ti − 2
3τq, ti + 2

3τq)

χi(t) = 1 for t ∈ Ji
(4.2)

• For any i and N we have ∥∥∂Nt χi∥∥0
. τ−Nq . (4.3)

5In deriving the latter equality we have used the identity ∇ div((v` ·∇)z̃i) = ∇ div((z̃i ·∇)v`), which follows easily
from the fact that both v` and z̃i are divergence free.
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We define

vq =
∑
i

χivi

p(1)
q =

∑
i

χipi

Observe that div vq = 0. Furthermore, if t ∈ Ii, then χi + χi+1 = 1 and χj = 0 for j 6= i, i + 1,
therefore on Ii:

vq = χivi + (1− χi)vi+1

p(1)
q = χipi + (1− χi)pi+1

and

∂tvq + div(vq ⊗ vq) +∇p(1)
q = χi∂tvi + (1− χi)∂tvi+1 + ∂tχi(vi − vi+1)

+ div
(
χ2
i vi ⊗ vi + (1− χi)2vi+1 ⊗ vi+1

)
+ χi(1− χi) div(vi ⊗ vi+1 + vi+1 ⊗ vi))
+ χi∇pi + (1− χi)∇pi+1

= ∂tχi(vi − vi+1)− χi(1− χi) div ((vi − vi+1)⊗ (vi − vi+1)) .

On the other hand, if t ∈ Ji then χi = 1 and χj(t̃) = 0 for all j 6= i for all t̃ sufficiently close to t
(since Ji is open). Then for all t ∈ Ji we have

vq = vi, p(1)
q = pi,

and, from (3.1),

∂tvq + div(vq ⊗ vq) +∇p(1)
q = 0.

4.2. The new Reynolds tensor. In order to define the new Reynolds tensor, we recall the oper-
ator R from [DLS13], which can be thought of as an “inverse divergence” operator for symmetric
tracefree 2-tensors. The operator is defined as

(Rf)ij = Rijkfk

Rijk = −1

2
∆−2∂i∂j∂k −

1

2
∆−1∂kδij + ∆−1∂iδjk + ∆−1∂jδik.

(4.4)

when acting on vectors f with zero mean on T3. The following statement, taken from [DLS13], can
be proved by direct calculation.

Proposition 4.1. The tensor R defined in (4.4) is symmetric, and we have

div(Rf) = f

for any f with zero mean on T3.

We define

R̊q = ∂tχiR(vi − vi+1)− χi(1− χi)(vi − vi+1)⊗̊(vi − vi+1)

p(2)
q = −χi(1− χi)

(
|vi − vi+1|2 −

ˆ
T3

|vi − vi+1|2 dx
)
,

for t ∈ Ii and R̊q = 0, p
(2)
q = 0 for t /∈

⋃
i Ii.
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Remark 4.2. We must however check that vi − vi+1 has zero mean. Recall that vi solves Euler,
so its mean is constant:

d

dt

ˆ
T3

vi = −
ˆ
T3

(div(vi ⊗ vi)−∇pi) = 0 .

For the same reason, the mean of v` is also constant. Since vi and v` coincide at the time ti, we
conclude that vi−v` has zero mean at every time. But then the same applies to vi+1−v` and hence
to vi+1 − vi = (vi+1 − v`)− (vi − v`).

Furthermore, we set

pq = p(1)
q + p(2)

q

It follows from the preceding discussion and Proposition 4.1 that

• R̊q is a smooth symmetric and traceless 2-tensor;

• For all (x, t) ∈ T3 × [0, T ] ∂tvq + div(vq ⊗ vq) +∇pq = div R̊q,

div vq = 0;

• supp R̊q ⊂ T3 ×
⋃
i Ii.

4.3. Estimates on vq. Next, we estimate the various Hölder norms of vq and R̊q in order to obtain
(2.29)-(2.32).

Proposition 4.3. The velocity field vq satisfies the following estimates

‖v̄q − v`‖α . δ
1/2
q+1`

α (4.5)

‖vq − v`‖N+α . τqδq+1`
−1−N+α (4.6)

‖v̄q‖1+N . δ
1/2
q λq`

−N (4.7)

for all N ≥ 0.

In particular, this lemma shows that the claimed estimates (2.29)–(2.30) indeed hold.

Proof of Proposition 4.3. By definition

vq − v` =
∑
i

χi(vi − v`).

Therefore Proposition 3.3 implies

‖vq − v`‖N+α . τqδq+1`
−1−N+α. (4.8)

Note that using the definition of ` in (2.19) and τq in (2.26) and the comparison (2.21)

δ
1/2
q+1τq`

−1 = `2αλ
3α/2
q ≤ λ−α/2q ≤ 1 . (4.9)

Therefore we obtain (4.5), and furthermore, for any N ≥ 0

‖vq − v`‖1+N+α . δq+1τq`
−N−2+α = δ

1/2
q λq(`λq)

3α`−N ≤ δ1/2q λq`
−N .

Then it also follows using (2.23) that

‖vq‖1+N .‖v`‖1+N + ‖v` − vq‖1+N+α . δ
1/2
q λq`

−N . �
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4.4. Estimates on the stress tensor. We are now in a position to estimate the glued stress

tensor R̊q:

Proposition 4.4. The stress tensor R̊q satisfies the following bounds for any N ≥ 0:∥∥∥R̊q∥∥∥
N+α

. δq+1`
−N+α (4.10)∥∥∥(∂t + vq · ∇)R̊q

∥∥∥
N+α

. δq+1δ
1/2
q λq`

−N−α. (4.11)

This shows that the claimed estimates (2.31)–(2.32) are indeed obeyed by R̊q.

Proof of Proposition 4.4. Recall that vi−
´
T3 vi = curl zi. Since vi+1−vi has zero mean (cf. Remark

4.2, for t ∈ Ii we have curl(zi+1 − zi) = vi+1 − vi and we may write:

R̊q = ∂tχi(R curl)(zi − zi+1)− χi(1− χi)(vi − vi+1)⊗̊(vi − vi+1).

Note that R curl is a zero-order operator. Therefore we obtain from Propositions 3.3 and 3.4 for
any N ≥ 0 with t ∈ Ii

‖R̊q‖N+α . τ
−1
q ‖zi − zi+1‖N+α + ‖vi − vi+1‖N+α‖vi − vi+1‖α

. δq+1`
−N+α + τ2

q δ
2
q+1`

−2−N+2α . δq+1`
−N+α.

Here we used again (4.9). Next, we calculate

Dt,`R̊q = ∂2
t χi(R curl)(zi − zi+1)

+ ∂tχi(R curl)Dt,`(zi − zi+1) + ∂tχi[v` · ∇,R curl](zi − zi+1)

− ∂t(χi(1− χi))(vi − vi+1)⊗̊(vi − vi+1)

− χi(1− χi))
(

(Dt,`(vi − vi+1))⊗̊(vi − vi+1)− (vi − vi+1)⊗̊(Dt,`(vi − vi+1))
)
,

where [v` · ∇,R curl] denotes the commutator. Hence, using Proposition D.1 and Propositions 3.3
and 3.4 we deduce

‖Dt,`R̊q‖N+α . τ
−2
q ‖zi − zi+1‖N+α + τ−1

q ‖Dt,`(zi − zi+1)‖N+α

+ τ−1
q ‖v`‖α‖zi − zi+1‖N+α + τ−1

q ‖v`‖N+α‖zi − zi+1‖α
+ τ−1

q ‖vi − vi+1‖N+α‖vi − vi+1‖α
+ ‖Dt,`(vi − vi+1)‖N+α‖vi − vi+1‖α + ‖vi − vi+1‖N+α‖Dt,`(vi − vi+1)‖α
. τ−1

q δq+1`
−N+α + (τ2

q δq+1`
−2)τ−1

q δq+1`
−N+2α

. τ−1
q δq+1`

−N+α .

Finally, we deduce using (4.6):∥∥∥(∂t + vq · ∇)R̊q

∥∥∥
N+α

. ‖(v` − vq) · ∇R̊q‖N+α + ‖Dt,`R̊q‖N+α

. ‖v` − vq‖N+α‖R̊q‖1+α + ‖v` − vq‖α‖R̊q‖N+1+α + ‖Dt,`R̊q‖N+α

. τqδ
2
q+1`

−N−2+2α + τ−1
q δq+1`

−N+α

. τ−1
q δq+1`

−N+α = δq+1δ
1/2
q λq`

−N−α

again using (4.9). �

To finish this section we show that vq has approximately the same energy as v`:
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Proposition 4.5. The difference of the energies of vq and v` satisfies∣∣∣∣ˆ
T3

|v̄q|2 − |v`|2dx
∣∣∣∣ . δq+1`

α (4.12)

Proof of Proposition 4.5. Observe that for t ∈ Ii
vq ⊗ vq = (χivi + (1− χi)vi+1)⊗ (χivi + (1− χi)vi+1)

= χivi ⊗ vi + (1− χi)vi+1 ⊗ vi+1 − χi(1− χi)(vi − vi+1)⊗ (vi − vi+1),

so that, taking the trace:

|vq|2 − |v`|2 = χi(|vi|2 − |v`|2) + (1− χi)(|vi+1|2 − |v`|2)− χi(1− χi)|vi − vi+1|2

Next, recall that vi and v` are smooth solutions of (3.1) and (2.20) respectively, therefore∣∣∣∣ ddt
ˆ
T3

|vi|2 − |v`|2 dx
∣∣∣∣ = 2

∣∣∣∣ˆ
T3

∇v` : R̊` dx

∣∣∣∣ . ‖∇v`‖0‖R̊`‖0
. δ1/2q λqδq+1 . τ

−1
q δq+1`

α,

where we have used (2.24) and (3.3). Moreover, vi = v` for t = ti. Therefore, after integrating in
time we deduce ∣∣∣∣ˆ

T3

|vi|2 − |v`|2 dx
∣∣∣∣ . δq+1`

α.

Furthermore, using (3.4) and (4.9)
ˆ
T3

|vi − vi+1|2 dx . ‖vi − vi+1‖2α . τ2
q δ

2
q+1`

−2+2α
(4.9)

. δq+1`
2α,

Therefore ∣∣∣∣ˆ |v̄q|2 − |v`|2dx∣∣∣∣ . δq+1`
α,

which concludes the proof. �

5. Perturbation step

In this section, we will outline the construction of the perturbation wq+1, where

vq+1 := wq+1 + vq ,

As already explained in the outline of the proof, the perturbation wq+1 is highly oscillatory and will
be based on the Mikado flows introduced in [DS17], which are designed to cancel the low frequency
error Rq and are Lie-advected by the mean flow of vq.

5.1. Mikado flows. We begin by recalling the construction of Mikado flows given in [DS17].

Lemma 5.1. For any compact subset N ⊂⊂ S3×3
+ there exists a smooth vector field

W : N × T3 → R3,

such that, for every R ∈ N 
divξ(W (R, ξ)⊗W (R, ξ)) = 0

divξW (R, ξ) = 0,

(5.1)
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and  
T3

W (R, ξ) dξ = 0, (5.2)

 
T3

W (R, ξ)⊗W (R, ξ) dξ = R. (5.3)

Using the fact that W (R, ξ) is T3-periodic and has zero mean in ξ, we write

W (R, ξ) =
∑

k∈Z3\{0}

ak(R)eik·ξ (5.4)

for some smooth functions R→ ak(R) ∈ C3, satisfying ak(R) · k = 0. From the smoothness of W ,
we further infer

sup
R∈N

∣∣DN
R ak(R)

∣∣ ≤ C(N , N,m)

|k|m
(5.5)

for some constant C, which depends, as highlighted in the statement, on N , N and m.

Remark 5.2. Later in the proof the estimates (5.5) will be used with a specific choice of the compact
set N and of the integers N and m: this specific choice will then determine the universal constant
M appearing in Proposition 2.1.

Using the Fourier representation we see that from (5.3)

W (R, ξ)⊗W (R, ξ) = R+
∑
k 6=0

Ck(R)eik·ξ (5.6)

where

Ckk = 0 and sup
R∈N

∣∣DN
RCk(R)

∣∣ ≤ C(N , N,m)

|k|m
(5.7)

for any m,N ∈ N.

It will also be useful to write the Mikado flows in terms of a potential. We note

curlξ

((
ik × ak
|k|2

)
eik·ξ

)
= −i

(
ik × ak
|k|2

)
× keik·ξ = −k × (k × ak)

|k|2
eik·ξ = ake

ik·ξ (5.8)

5.2. Squiggling stripes and the stress tensor R̃q,i. Recall that R̊q is supported in the set
T3 ×

⋃
i Ii, whereas, from (4.2) it follows that [0, T ] \

⋃
i Ii =

⋃
i Ji, where the open intervals Ji

have length |Ji| = 2
3τq each, except for the first and last one, which might be shortened by the

intersection with [0, T ], more precisely

Ji = (ti − 1
3τq, ti + 1

3τq) ∩ [0, T ] .

We start by defining smooth non-negative cut-off functions ηi = ηi(x, t) with the following proper-
ties

(i) ηi ∈ C∞(T3 × [0, T ]) with 0 ≤ ηi(x, t) ≤ 1 for all (x, t);

(ii) supp ηi ∩ supp ηj = ∅ for i 6= j;

(iii) T3 × Ii ⊂ {(x, t) : ηi(x, t) = 1};

(iv) supp ηi ⊂ T3 × Ii ∪ Ji ∪ Ji+1 = T3 × (ti − 1
3τq, ti+1 + 1

3τq) ∩ [0, T ];
18



Figure 1. The support of R̊q is given by the blue regions. The support of the
cut-off functions ηi are encapsulated in the red region.

(v) There exists a positive geometric constant c0 > 0 such that for any t ∈ [0, T ]∑
i

ˆ
T3

η2
i (x, t) dx ≥ c0.

In view of (iv) we set

Ĩi = (ti − 1
3τq, ti+1 + 1

3τq) ∩ [0, T ] .

Lemma 5.3. There exists cut-off functions {ηi}i with the properties (i)-(v) above and such that
for any i and n,m ≥ 0

‖∂nt ηi‖m ≤ C(n,m)τ−nq

where C(n,m) are geometric constants depending only upon m and n.

Proof of Lemma 5.3. First of all we consider the sharp cutoffs η̃i defined by

η̃i = 1Ω̃i

Ω̃i =
{

(x, t) : ti +
τq
6 (sin(2πx1) + 1

2) ≤ t ≤ ti+1 +
τq
6 (sin(2πx1)− 1

2)
}

Next we fix a standard mollifier κ in time and the standard mollifier ψ in space already used so
far. Hence we define ηi by mollifying η̃i in space and time as follows:

ηi(x, t) =

ˆ
η̃i(y, s)ψ

(
x− y
c1

)
κ
(
t− s
c2τq

)
dy ds ,

where c1 and c2 are positive geometric constants. One may check that a suitable choice of c1 and
c2 yields the desired conclusions (see Figure 1). �

Define

ρq(t) :=
1

3

(
e(t)− δq+2

2
−
ˆ
T3

|vq|2 dx
)

and

ρq,i(x, t) :=
η2
i (x, t)∑

j

´
T3 η2

j (y, t) dy
ρq(t)

19



Define the backward flows Φi for the velocity field vq as the solution of the transport equation
(∂t + vq · ∇)Φi = 0

Φi (x, ti) = x.

Define

Rq,i := ρq,iId− η2
i R̊q

and

R̃q,i =
∇ΦiRq,i(∇Φi)

T

ρq,i
. (5.9)

We note that, because of properties (ii)-(iv) of ηi,

• suppRq,i ⊂ supp ηi;

• on supp ˚̄Rq we have
∑

i η
2
i = 1;

• supp R̃q,i ⊂ T3 × (ti − 1
3τq, ti+1 + 1

3τq);

• supp R̃q,i ∩ supp R̃q,j = ∅ for all i 6= j.

Lemma 5.4. For a� 1 sufficiently large we have

‖∇Φi − Id‖0 ≤
1

2
for t ∈ supp(ηi). (5.10)

Furthermore, for any N ≥ 0

δq+1

8λαq
≤ |ρq(t)| ≤ δq+1 for all t , (5.11)

‖ρq,i‖0 ≤
δq+1

c0
, (5.12)

‖ρq,i‖N . δq+1 , (5.13)

‖∂tρq‖0 . δq+1δ
1/2
q λq , (5.14)

‖∂tρq,i‖N . δq+1τ
−1
q . (5.15)

Moreover, for all (x, t)

R̃q,i(x, t) ∈ B1/2(Id) ⊂ S3×3
+ ,

where B1/2(Id) denotes the metric ball of radius 1/2 around the identity Id in the space S3×3.

Proof of Lemma 5.4. Note that (5.11) is a trivial consequence of estimate (2.34) and the inequality
4δq+2 ≤ δq+1. Note that by the definition of the cut-off functions ηi

c0 ≤
∑
i

ˆ
T3

η2
i (y, t) dy ≤ 2 (5.16)

and hence we obtain (5.12). Since
∣∣∇Nηj∣∣ . 1, the bound (5.13) also follows.

Next, note that by applying (2.30) and (B.5) we obtain

‖∇Φi − Id‖0 . τqδ
1/2
q λq = `2α.
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Furthermore, by definition we have

R̃q,i − Id = ∇Φi

(
Rq,i
ρq,i
− Id

)
∇ΦT

i +∇Φi∇ΦT
i − Id

= −∇Φi
η2
i R̊q
ρq,i
∇ΦT

i +∇Φi∇ΦT
i − Id

Using (2.31) we see that ∣∣∣∣∣η2
i R̊q
ρq,i

∣∣∣∣∣ . 1

δq+1

∣∣∣R̊q∣∣∣ . `α.
Consequently we obtain

|R̃q,i − Id| . `α

so that, choosing a sufficiently large, we ensure that R̃q,i(x, t) is contained in the ball of symmetric
matrices B1/2(Id).

Finally, to prove (5.15) we first note that∣∣∣∣ ddt
ˆ
|vq(x, t)|2 dx

∣∣∣∣ =

∣∣∣∣2 ˆ ∇vq · R̊q dx∣∣∣∣ . δq+1δ
1/2
q λq

Thus6

‖∂tρq‖0 . δq+1δ
1/2
q λq

Then, since ‖∂tηj‖N . τ−1
q and δ

1/2
q λq ≤ τ−1

q , using (5.16), the estimate (5.15) follows. �

5.3. The perturbation and the constant M . The principal term of the perturbation can be
written as

wo :=
∑
i

(ρq,i(x, t))
1/2 (∇Φi)

−1W (R̃q,i, λq+1Φi) =
∑
i

wo,i , (5.17)

where Lemma 5.1 is applied with N = B1/2(Id), namely the closed ball (in the space of symmetric
3× 3 matrices) of radius 1/2 centered at the identity matrix.

From Lemma 5.4 it follows that W (R̃q,i, λq+1Φi) is well defined. Using the Fourier series represen-
tation of the Mikado flows (5.4) we obtain

wo,i :=
∑
k 6=0

(ρq,i(x, t))
1/2 (∇Φi)

−1ak(R̃q,i)e
iλq+1k·Φi .

The choice of wo is motivated by the fact that the vector fields

Ui,k := (∇Φi)
−1ak(R̃q,i)e

iλq+1k·Φi

are Lie-advected by the flow up to a “lower order term” in λq+1:

(∂t + vq · ∇)Ui,k = DvqUi,k + (∇Φi)
−1[(∂t + vq · ∇)ak(R̃q,i)]e

iλq+1k·Φ . (5.18)

Hence (again up to lower order term in λq+1), the vector fields Ui,k remain divergence free. For
notational convenience we set

bi,k(x, t) := (ρq,i(x, t))
1/2 ak(R̃q,i(x, t))Ak

so that we may write

wo,i :=
∑
k 6=0

(∇Φi)
−1bi,ke

iλq+1k·Φi .

6Note that ‖∂te‖0 ≤ C ≤ δq+1δ
1
2
q λq since δq+1δ

1/2
q λq = λ−2β

q+1λ
1−β
q ≥ Cab

q

(1− β − 2βb) ≥ C (recall that b < 1−β
2β

).
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The following is a crucial point of our construction, which ensures that the constant M of Proposi-
tion 2.1 is geometric and in particular independent of all the parameters of the construction.

Lemma 5.5. There is a geometric constant M̄ such that

‖bi,k‖0 ≤
M̄

|k|4
δ
1/2
q+1 . (5.19)

Proof of Lemma 5.5. First of all, applying (5.5) with N = 0,m = 4 and N = B1/2(Id), we achieve

‖ak(R̃q,i)‖0 ≤
C̄

|k|4
,

where C̄ is a geometric constant (cf. Remark 5.2). Hence, considering the bound (5.12), the

constant M̄ is given by C̄c
−1/2
0 . �

We are finally ready to define the constant M of Proposition 2.1: from Lemma 5.5 it follows trivially
that the constant is indeed geometric and hence independent of all the parameters entering in the
statement of Proposition 2.1.

Definition 5.6. The constant M is defined as

M = 64M̄
∑

k∈Z3\{0}

1

|k|4
,

where M̄ is the constant of Lemma 5.5.

In order to ensure wq+1 is divergence free, we correct our principal perturbation wo by wc, i.e.
wq+1 = wo +wc so that wq+1 is the curl of a vector field. In particular, in view of the identity (5.8)
we define

wc :=
−i
λq+1

∑
i,k 6=0

[
curl

(
(ρq,i)

1/2 ∇ΦT
i (k × ak(R̃q,i))
|k|2

)]
eiλq+1k·Φi =:

∑
i,k 6=0

ci,ke
iλq+1k·Φi .

Then from (5.8) and the identity (see for instance [DS17])

curl
(
∇ΦTU(Φi)

)
= cof∇ΦT

i (curlU)(Φi) = ∇Φ−1(curlU)(Φi)

one can check that

wq+1 = wo + wc =
−1

λq+1
curl

∑
i,k 6=0

(∇Φi)
T

(
ik × bk,i
|k|2

)
eiλq+1k·Φi

 . (5.20)

5.4. The final Reynolds stress. Upon letting

Rq =
∑
i

Rq,i ,

the new Reynolds stress is thus defined as

R̊q+1 = R (wq+1 · ∇vq)︸ ︷︷ ︸
Nash error

+R (∂twq+1 + vq · ∇wq+1)︸ ︷︷ ︸
Transport error

+R div
(
−Rq + (wq+1 ⊗ wq+1)

)︸ ︷︷ ︸
Oscillation error

. (5.21)
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Notice that all three terms in (5.21) are of the form Rf , where f is either a divergence or a curl,
and thus has zero mean. With this definition and Proposition 4.1, one may verify that ∂tvq+1 + div(vq+1 ⊗ vq+1) +∇pq+1 = div(R̊q+1) ,

div vq+1 = 0 ,

where the new pressure is defined by

pq+1(x, t) = p̄q(x, t)−
∑
i

ρq,i(x, t) + ρq(t). (5.22)

5.5. Estimates on the perturbation.

Proposition 5.7. For t ∈ Ĩi and any N ≥ 0∥∥(∇Φi)
−1
∥∥
N

+ ‖∇Φi‖N . `
−N , (5.23)∥∥∥R̃q,i∥∥∥

N
. `−N , (5.24)

‖bi,k‖N . δ
1/2
q+1|k|

−6`−N , (5.25)

‖ci,k‖N . δ
1/2
q+1λ

−1
q+1|k|

−6`−N−1 . (5.26)

It is important to notice that the symbol . denotes a dependence of the constants in the estimates
from N , α, β and M , but not upon k or a.

Proof of Proposition 5.7. From (2.30), (B.5) and (B.6) we obtain

‖∇Φi‖N . 1 + τq ‖Dvq‖N . 1 + τqδ
1/2
q λq`

−N .

Using the fact that ‖∇Φi − Id‖0 ≤ 1/2 (see (5.10)), the estimate (5.23) follows (indeed it gives the
slightly better estimate . 1 + `−N+2α, but the other is still enough for our purposes).

Recalling property (iv) of ηi we see that ρq,i is a function of t only on supp R̊q, i.e.

ρq,i(x, t) =
ρq(t)∑

j

´
T3 η2

j (y, t) dy
.

Thus,

Rq,i
ρq,i

= Id−
∑

j

´
T3 η

2
j (y, t) dy

ρq(t)
R̊q, (5.27)

so that by (5.11) and (4.10) we obtain∥∥∥∥Rq,iρq,i

∥∥∥∥
N

. 1 +
λαq
δq+1

∥∥∥R̊q∥∥∥
N
. `−N , (5.28)

where we have applied the crude estimate . 1 + ‖R̊q‖N+αλ
α
q δ
−1
q+1 . 1 + `−N+αλαq . `

−N .

Therefore, using Lemma 5.4 and property (v):∥∥∥R̃q,i∥∥∥
N
. ‖∇Φi‖N ‖∇Φi‖0 +

∥∥∥∥Rq,iρq,i

∥∥∥∥
N

. ‖∇Φi‖N ‖∇Φi‖0 + `−N .

The estimate (5.24) then follows from (5.23).

The estimate (5.25) follows as a consequence of (5.5), (5.12) and (5.24). The estimate (5.26) follows
as a consequence of (5.5), (5.12), (5.23) and (5.24). �
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Corollary 5.8. Assuming a is sufficiently large, the perturbations wo, wc and wq satisfy the fol-
lowing estimates

‖wo‖0 +
1

λq+1
‖wo‖1 ≤

M

4
δ
1/2
q+1 (5.29)

‖wc‖0 +
1

λq+1
‖wc‖1 . δ

1/2
q+1`

−1λ−1
q+1 (5.30)

‖wq+1‖0 +
1

λq+1
‖wq+1‖1 ≤

M

2
δ
1/2
q+1 (5.31)

where the constant M depends solely on the constant c0 in (5.16). In particular, we obtain (2.35).

Proof of Corollary 5.8. Taking into account (5.10), we conclude ‖(∇Φi)
−1‖0 ≤ 2 on supp(ηi). Thus,

taking into account that the wo,i have disjoint supports, from Lemma 5.5 we conclude

‖wo‖ ≤ 2δ
1/2
q+1

∑
k 6=0

M̄

|k|4
≤ M

32
δ
1/2
q+1 . (5.32)

To estimate ‖wo‖1 we observe first that∥∥∥∇(eiλq+1k·Φi)
∥∥∥

0
≤ λq+1 |k| ‖∇Φi‖0 ≤ 2λq+1 |k| . (5.33)

Compute now

∇wo,i =
∑
k

(∇Φi)
−1bi,k∇(eiλq+1k·Φi) +

∑
k

∇((∇Φi)
−1bi,k)e

iλq+1k·Φi .

In particular, from (5.33), Lemma 5.5 and Proposition 5.7 (taking into account that the supports
of the wo,i are disjoint), we conclude

‖∇wo‖0 ≤4δ
1/2
q+1λq+1

∑
k 6=0

M̄

|k|4
+ Cδ

1/2
q+1`

−1
∑
k 6=0

1

|k|6
≤ M

16
δ
1/2
q+1λq+1 + C̄δ

1/2
q+1`

−1 , (5.34)

where the constant C̄ depends upon β, α and M , but not upon a. In particular, summing (5.32)
and (5.34) we achieve

‖wo‖0 + λ−1
q+1‖wo‖1 ≤

M

8
δ
1/2
q+1 + C̄(λq+1`)

−1δ
1/2
q+1 . (5.35)

By our definition of the various parameters we get

(`λq+1)−1 =
δ
1/2
q λ

1+3α/2
q

δ
1/2
q+1λq+1

=
λ

1−β+3α/2
q

λ1−β
q+1

≤ C̃abq(1−β+3α/2)−bq+1(1−β)

where the constant C̃ depends on (2.18). Having chosen α small enough so that b > 1− β + 3α/2/1− β,

for a sufficiently large we achieve that the right hand side of (5.35) is smaller than M/4δ
1/2
q+1.

The estimate (5.30) follows as a direct consequence of (5.26) and (5.33).

Combining (5.29) and (5.30) we achieve

‖wq+1‖0 +
1

λq+1
‖wq+1‖1 ≤ δ

1/2
q+1

(
M

4
+ C(`λq+1)−1

)
, (5.36)

where the constant C depends upon β, α and M , but not upon a. Hence, arguing as above, if
b > 1− β + 3α/2/1− β then (5.31) holds for a sufficiently large (depending on β, α and M). �

Let us define Dt,q := ∂t+vq ·∇ to be the material derivative associated with vq. We then have
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Proposition 5.9. For t ∈ Ĩi and N ≥ 0 we have

‖Dt,q∇Φi‖N . δ
1/2
q λq`

−N (5.37)∥∥∥Dt,qR̃q,i

∥∥∥
N
. τ−1

q `−N (5.38)

‖Dt,qci,k‖N . δ
1/2
q+1τ

−1
q `−N−1λ−1

q+1|k|
−6 . (5.39)

Proof of Proposition 5.9. Observe that

Dt,q∇Φi = −∇ΦiDvq

In particular,

‖Dt,q∇Φi‖N . ‖∇Φi‖0‖vq‖N+1 + ‖∇Φi‖N‖vq‖1 .
Thus (5.37) follows from (4.7) and (5.23). Next, we observe that

Dt,qρq,i = ∂tρq,i + v̄q · ∇ρq,i
and thus we can estimate

‖Dt,qρq,i‖N . ‖∂tρq,i‖N + ‖ρq,i‖N+1‖v̄q‖0 + ‖v̄q‖N‖ρq,i‖1.

Recall that ‖v̄q‖0 ≤ ‖v`‖0 + ‖v` − v̄q‖0 . 1 . τ−1
q and so from (4.7) we conclude ‖v̄q‖N ≤ τ−1

q `−N .
Combining the latter estimate with (5.13) and (5.15) we achieve

‖Dt,qρq,i‖N . δq+1τ
−1
q `−N . (5.40)

Differentiating (5.27) we have

Dt,q(ρ
−1
q,iRq,i) = −

(
∂t

∑
j

´
T3 η

2
j (y, t) dy

ρq(t)

)
R̊q −

∑
j

´
T3 η

2
j (y, t) dy

ρq(t)
Dt,qR̊q . (5.41)

Thus we can estimate, using (4.10) and (4.11):

‖Dt,q(ρ
−1
q,iRq,i)‖N . δ

−1
q+1δ

1/2
q λ1+2α

q ‖R̊q‖N + τ−1
q δ−1

q+1λ
α
q ‖R̊q‖N + δ−1

q+1λ
α
q ‖Dt,qR̊q‖N

. δ1/2q λ1+2α
q `−N+α + τ−1

q λαq `
−N+α + λαq δ

1/2
q λq`

−N−α . τ−1
q `−N . (5.42)

Differentiating (5.9) we achieve

Dt,qR̃q,i = Dt,q∇Φi(ρ
−1
q,iRq,i)∇ΦT

i +∇ΦiDt,q(ρ
−1
q,iRq,i)∇ΦT

i +∇Φi(ρ
−1
q,iRq,i)(Dt,q∇Φi)

T .

Thus we can estimate

‖Dt,qR̃q,i‖N .‖Dt,q∇Φi‖N‖(ρ−1
q,iRq,i)‖0 + ‖Dt,q∇Φi‖0‖(ρ−1

q,iRq,i)‖N
+ ‖Dt,q∇Φi‖0‖(ρ−1

q,iRq,i)‖0‖∇Φi‖N + ‖Dt,q(ρ
−1
q,iRq,i)‖N + ‖Dt,q(ρ

−1
q,iRq,i)‖0‖∇Φi‖N .

Using (5.37), (5.42), (5.28) and (5.23), we conclude (5.38).

Finally, the estimate (5.39) follows as a consequence of (5.5), Lemma 5.4, Proposition 5.7, (5.37),
and (5.38). �

6. Proof of Proposition 2.1

In this section we complete the proof of Proposition 2.1 by proving the remaining estimates (2.36)
and (2.37).
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6.1. Estimates of the new Reynolds stress error. In the proposition below we prove the
inductive estimates on R̊q+1:

Proposition 6.1. The Reynolds stress error R̊q+1 defined in (5.21) satisfies the estimate∥∥∥R̊q+1

∥∥∥
0
.
δ
1/2
q+1δ

1/2
q λq

λ1−4α
q+1

. (6.1)

In particular, (2.36) holds.

6.1.1. Nash error. We just write this term as

R (wq+1 · ∇vq) =
∑
i

∑
k 6=0

R
((

(∇Φi)
−1bi,ke

iλq+1k·Φi + ci,ke
iλq+1k·Φi

)
· ∇vq

)
.

Using Proposition C.2 we bound for t ∈ Ĩi∥∥∥R((∇Φi)
−1bi,ke

iλq+1k·Φi · ∇vq
)∥∥∥

α

.

∥∥∇Φ−1
i bi,k · ∇vq

∥∥
0

λ1−α
q+1

+

∥∥∇Φ−1
i bi,k · ∇vq

∥∥
N+α

+
∥∥∇Φ−1

i bi,k · ∇vq
∥∥

0
‖Φi‖N+α

λN−αq+1

.
λqδ

1/2
q+1δ

1/2
q

λ1−α
q+1 |k|6

+
λqδ

1/2
q+1δ

1/2
q

λN−αq+1 `
N+α|k|6

.

Now, provided α is sufficiently small we claim that we can first fix a suitable N and then choose a
large enough, so that

1

λN−αq+1 `
N+α

≤ 1

λ1−α
q+1

.

Such choice is equivalent to λ
(N−1)−(N−α)β
q+1 ≥ λ

(1−β+3α/2)(N+α)
q . Taking the logarithms in base a,

we need the condition

bq+1((N − 1)− (N − α)β) > bq(N + α)

(
1− β +

3α

2

)
,

which would determine the needed N . In order to show that for α sufficiently small we can choose
such an N , we just need to verify the existence of N such that b((N − 1) − Nβ) > N(1 − β).
The latter is equivalent to (b − 1)(N − 1)(1 − β) > (1 − β) + bβ which in turn, since β < 1/3 and
b > 1, can certainly be satisfied for N large enough. Finally, having chosen first α > 0 and then
N according to the above requirement, we can then take a� 1 large enough to beat the eventual
geometric constant due to (2.18). Hence we achieve∥∥∥R((∇Φi)

−1bi,ke
iλq+1k·Φi · ∇vq

)∥∥∥
α
.
λqδ

1/2
q+1δ

1/2
q

λ1−α
q+1 |k|6

. (6.2)

For the second term in the Nash error we again use Corollary C.2 to obtain∥∥∥R(ci,keiλq+1k·Φi · ∇vq
)∥∥∥

α
.
‖ci,k · ∇vq‖0

λ1−α
q+1

+
‖ci,k · ∇vq‖N+α + ‖ci,k · ∇vq‖0 ‖Φi‖N+α

λN−αq+1

.
δ
1/2
q+1δ

1/2
q λq

`λ2−α
q+1 |k|6

+
δ
1/2
q+1δ

1/2
q λq

`N+1−αλN+1−α
q+1 |k|6

.
δ
1/2
q+1δ

1/2
q λq

λ1−α
q+1 |k|6

(6.3)
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where again we assume to have fixed first N and then a large enough. We also implicitly used
that

`λq+1 ≥ 1 , (6.4)

which is equivalent to λ1−β
q+1 ≥ λ

1−β+3α/2
q . The latter inequality follows from (2.11) and (2.18), upon

taking logarithms in base a, choosing first α so that (b − 1)(1 − β) ≥ 3α, and then a sufficiently

large so that (b−1)
10 ≥ loga(4π).

Summing over the frequencies and using that
∑

k∈Z3\{0} |k|−6 <∞, we achieve

R (wq+1 · ∇vq) .
δ
1/2
q+1δ

1/2
q λq

λ1−α
q+1

. (6.5)

6.1.2. Transport error. We split the transport error into two parts

(∂t + vq · ∇)wq+1 = (∂t + vq · ∇)wo + (∂t + vq · ∇)wc.

Applying (5.18) yields

(∂t + vq · ∇)wo =
∑
i,k

(∇vq)T (∇Φi)
−1bi,ke

iλq+1k·Φi

+
∑
i,k

(∇Φi)
−1(∂t + vq · ∇)

(
ρ
1/2
q,iak(R̃i)

)
eiλq+1k·Φi .

(6.6)

We then apply Corollary C.2 to obtain for the first term in (6.6)∥∥∥R((∇vq)T (∇Φi)
−1bi,ke

iλq+1k·Φi
)∥∥∥

α

.

∥∥(∇vq)T (∇Φi)
−1bi,k

∥∥
0

λ1−α
q+1

+

∥∥(∇vq)T (∇Φi)
−1bi,k

∥∥
N+α

λN−αq+1

+

∥∥(∇vq)T (∇Φi)
−1bi,k

∥∥
0
‖Φi‖N+α

λN−αq+1

. (6.7)

We use Proposition 5.7 and Proposition 4.3 to estimate∥∥(∇vq)T (∇Φi)
−1bi,k

∥∥
N+α

. ‖∇vq‖N+α‖(∇Φi)
−1‖α‖bi,k‖α

+ ‖∇vq‖α‖(∇Φi)
−1‖N+α‖bi,k‖α + ‖∇vq‖α‖(∇Φi)

−1‖α‖bi,k‖N+α

. δ
1/2
q+1k

−6`−N−3α . δ
1/2
q+1δ

1/2
q k−6λq`

−N−1−3α .

Arguing in a similar fashion for the third summand in (6.7), we achieve

∥∥∥R((∇vq)T (∇Φi)
−1bi,ke

iλq+1k·Φi
)∥∥∥

α
.
λqδ

1/2
q+1δ

1/2
q

λ1−α
q+1 |k|6

+
λqδ

1/2
q+1δ

1/2
q

λN−αq+1 `
N+1+3α|k|6

.
λqδ

1/2
q+1δ

1/2
q

λ1−α
q+1 |k|6

,

where in the last inequality, as in the previous section, we have assumed α sufficiently small and
N appropriately chosen.

For the second term in (6.6), let us define

di,k(x, t) := (∇Φi(x, t))
−1Dt,q

(
(ρq+1,i(x, t))

1/2 ak(R̃i(x, t))
)
.
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Using (5.23), (5.13), (5.15) and (5.38) and again assuming N sufficiently large, arguing as above
we conclude∥∥∥R(di,keiλq+1k·Φi

)∥∥∥
α
.
‖di,k‖0
λ1−α
q+1

+
‖di,k‖N+α + ‖di,k‖0 ‖Φi‖N+α

λN−αq+1

.
δ
1/2
q+1

τqλ
1−α
q+1 |k|6

=
δ
1/2
q+1δ

1/2
q λq

λ1−α
q+1

`−2α|k|−6 .
δ
1/2
q+1δ

1/2
q λq

λ1−4α
q+1

|k|−6 ,

where we have used `−2α ≤ λ3α
q ≤ λ3α

q+1 (see (2.21)).

Now we consider the term involving the material derivative of the correction. Observe

(∂t + vq · ∇)wc =
∑
i,k

(Dt,qci,k) e
iλq+1k·Φi

Then applying Corollary C.2 and (5.39) yields∥∥∥R((Dt,qci,k) e
iλq+1k·Φi

)∥∥∥
α
.
‖Dt,qci,k‖0
λ1−α
q+1

+
‖Dt,qci,k‖N+α + ‖Dt,qci,k‖0 ‖Φi‖N+α

λN−αq+1

.
δ
1/2
q+1

τq`λ
2−α
q+1 |k|6

.
δ
1/2
q+1

τqλ
1−α
q+1 |k|6

.
δ
1/2
q+1δ

1/2
q λq

λ1−3α
q+1

|k|−6

where we used (5.23), (5.39) and (6.4).

Again, summing over k 6= 0 we reach the inequality

‖R (∂twq+1 + vq · ∇wq+1) ‖α .
δ
1/2
q+1δ

1/2
q λq

λ1−3α
q+1

. (6.8)

6.1.3. Oscillation error. Recall the oscillation error may be written as

R div
(
−Rq + wq+1 ⊗ wq+1

)
= Rdiv

(
−Rq + wo ⊗ wo

)︸ ︷︷ ︸
=:O1

+R div (wo ⊗ wc + wc ⊗ wo + wc ⊗ wc)︸ ︷︷ ︸
=:O2

.

For the second term we proceed as follows:

‖O2‖α . ‖wo ⊗ wc + wc ⊗ wo + wc ⊗ wc‖α

. ‖w0‖0 ‖wc‖α + ‖w0‖α ‖wc‖0 + ‖wc‖2α .
δq+1

`λ1−α
q+1

.
δ
1/2
q+1δ

1/2
q λq

λ1−α
q+1

. (6.9)

Now consider O1. Due to the supports of the cutoffs ηj being mutually disjoint, we have

O1 = R div

(
−Rq +

∑
i

wo,i ⊗ wo,i

)
.

Using the definition of wo,i and (5.6), the tensor wo,i ⊗ wo,i may be written as

wo,i ⊗ wo,i = ρq,i∇Φ−1
i (W ⊗W )(R̃q,i, λq+1Φi)∇Φ−Ti

= ρq,i∇Φ−1
i R̃q,i∇Φ−Ti +

∑
k 6=0

ρq,i∇Φ−1
i Ck(R̃q,i)∇Φ−Ti eiλq+1k·Φi

= Rq,i +
∑
k 6=0

ρq,i∇Φ−1
i Ck(R̃q,i)∇Φ−Ti eiλq+1k·Φi . (6.10)
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On the other hand, recalling (5.7)

∇Φ−1
i Ck∇Φ−Ti ∇ΦT

i k = 0,

consequently

div

(∑
i

wo,i ⊗ wo,i −Rq,i

)
=
∑
i,k 6=0

div(ρq,i∇Φ−1
i Ck(R̃q,i)∇Φ−Ti )eiλq+1k·Φi

Thus, by Proposition C.2

‖O1‖α .
∑
i

∑
k 6=0

∥∥∥div(ρq,i∇Φ−1
i Ck(R̃q,i)∇Φ−Ti )

∥∥∥
0

λ1−α
q+1

+
∑
i

∑
k 6=0

∥∥∥div(ρq,i∇Φ−1
i Ck(R̃q,i)∇Φ−Ti )

∥∥∥
N+α

+
∥∥∥div(ρq,i∇Φ−1

i Ck(R̃q,i)∇Φ−Ti )
∥∥∥

0
‖Φi‖N+α

λN−αq+1

.
∑
i

∑
k 6=0

δq+1

`λ1−α
q+1 |k|6

.
δ
1/2
q+1δ

1/2
q λq

λ1−α
q+1

, (6.11)

where we have used (5.7) and, as in the previous sections, a large choice of N to absorb the estimates
of the second line in that for the first line. Clearly, (6.9) and (6.11) give

‖Rdiv
(
−Rq + wq+1 ⊗ wq+1

)
‖α .

δ
1/2
q+1δ

1/2
q λq

λ1−α
q+1

. (6.12)

6.1.4. Conclusion. Clearly (6.1) follows from (6.5), (6.8), (6.12) and (5.21).

6.2. Energy iterate. We prove (2.10) for q replaced by q + 1 in the following proposition:

Proposition 6.2. The energy of vq+1 satisfies the following estimate:∣∣∣∣e(t)− ˆ
T3

|vq+1|2 dx−
δq+2

2

∣∣∣∣ . δ
1/2
q δ

1/2
q+1λ

1+2α
q

λq+1
.

In particular, the estimate (2.37) holds.

Proof of Proposition 6.2. By definition we haveˆ
T3

|vq+1|2 dx =

ˆ
T3

|vq|2 dx+ 2

ˆ
T3

wq+1 · vq dx+

ˆ
T3

|wq+1(x, t)|2 dx

We also recall that∑
i

ˆ
T3

trRq,i(x, t) dx = 3
∑
i

ˆ
T3

ρq,i(x, t)dx = 3ρq(t) = e(t)− δq+2

2
−
ˆ
T3

|vq|2 dx.

By integrating by parts once and using the identity (5.20) and the estimates (5.23) and (5.25) we
obtain ∣∣∣∣ˆ

T3

wq+1 · vq dx
∣∣∣∣ =

1

λq+1

∑
i

∑
k 6=0

∥∥∥∥(∇Φi)
T

(
ik × bk
|k|2

)∥∥∥∥
0

‖vq‖1 .
δ
1/2
q δ

1/2
q+1λq

λq+1
.
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Using (5.29) and (5.30) yields∣∣∣∣ˆ
T3

2wo · wc + |wc|2 dx
∣∣∣∣ . δq+1

`λq+1

(2.19)
=

δ
1/2
q δ

1/2
q+1λ

1+2α
q

λq+1
.

Finally, recall from (6.10) thatˆ
T3

|wo(x, t)|2 dx =
∑
i

ˆ
T3

trRq,i(x, t) dx+

ˆ
T3

∑
i,k 6=0

ρq,i∇Φ−1
i trCk(R̃q,i)∇Φ−Ti eiλq+1k·Φi dx

and thus it remains to bound the second term. Set eq,i := ρq,i∇Φ−1
i trCk(R̃i)∇Φ−Ti and use

Proposition 5.7 and Lemma 5.4 to conclude

‖eq,i‖N . δq+1`
−N .

Next observe that at any given time at most two eq,i are nonvanishing. Hence use (C.1) in Propo-
sition C.2 to bound

∣∣∣∣∣∣
ˆ
T3

∑
i

∑
k 6=0

ρi∇Φ−1
i trCk(R̃i)∇Φ−Ti eiλq+1k·Φi dx

∣∣∣∣∣∣ .
∑
k 6=0

δq+1`
−N

λNq+1|k|N
.

As already argued several time, we can choose N such that δq+1`−N/λN
q+1 ≤ δq+1δ1/2q λq/λq+1. Assuming in

addition that N is larger than 4 (so that the series is summable), we obtain the desired estimate. �

7. An h-principle

In order to prove Theorem 1.3, let us first state a variant of Proposition 3.1 from [DS17] that follows
from the estimates in Section 5 used to prove the proposition in [DS17]:

Theorem 7.1. Let (v̄, p̄, R̄) be a smooth strict subsolution of the Euler equations on T3 × [0, T ]
and fix 0 < γ < 1. Then there exists ε0 > 0 such that for any ε < ε0, and for any sufficiently large
λ depending on ε0 and (v̄, p̄, R̄), we have the following: There exists a smooth solution (v, p,R) of
(1.3) satisfying the estimates

‖v − v̄‖H−1 ≤ Cλ−1

‖v‖0 + λ−1‖v‖1 ≤ C∥∥v ⊗ v +R− v̄ ⊗ v̄ − R̄
∥∥
H−1 ≤ Cλγ−1

‖R̊‖0 ≤ Cλγ−1

‖trR‖0 ≤ ε ,

where C depends solely on (v̄, p̄, R̄), and R̊ is the traceless part of R. Moreover setting

e(t) :=

ˆ
T3

|v̄|2 + tr R̄ dx (7.1)

for any t ∈ [0, T ] we have

ε

2
≤ e(t)−

ˆ
T3

|v|2dx ≤ ε .
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Proof of Theorem 1.3. Fix k ≥ 1 and let εk < ε0. We apply Theorem 7.1 with γ = α and λ = λ0,
where here (α, λ0) are given in the statement of Proposition 2.1, and where we take a sufficiently
large such that λ0 is sufficiently large (in terms of εk and (v̄, p̄, R̄)), so that the hypothesis of
Theorem 7.1 is satisfied. We obtain (v, p,R) satisfying

‖v − v‖H−1 ≤Cλ−1
0 (7.2)

‖v‖0 + λ−1
0 ‖v‖1 ≤C (7.3)∥∥v ⊗ v +R− v̄ ⊗ v̄ − R̄
∥∥
H−1 ≤Cλα−1

0 (7.4)

‖R̊‖0 ≤Cλα−1
0 (7.5)

‖trR‖0 ≤εk , (7.6)

and the function e(t) as defined by (7.1) obeys

εk
2
≤ e(t)−

ˆ
T3

|v|2 dx ≤ εk . (7.7)

Analogous to the proof of Theorem 1.1, we set

Γ =
δ
1/2
1

ε
1/2
k

and rescale (v, p,R) to obtain

ṽ0(x, t) := Γv(x,Γt), p̃0(x, t) := Γ2p(x,Γt) and R̃0(x, t) := Γ2R(x,Γt) ,

so that (v0, p0, R0) also solves (1.3). Moreover, we have the estimates

‖ṽ0‖0 + λ−1
0 ‖ṽ0‖1 ≤

Cδ
1/2
1

ε
1/2
k

(7.8)

‖ ˚̃
R0‖0 ≤

Cδ1

εkλ
1−α
0

.

Choosing α sufficiently small and choosing a sufficiently large depending on εk, C, and M , we
obtain

Cδ
1/2
1

ε
1/2
k

≤ min(Mδ
1/2
0 , 1− δ0) and

C

εkλ
1−α
0

≤ λ−3α
0 .

from which we obtain (2.7), (2.8), and (2.9).

If in addition we set
ẽ(t) = Γ2e(Γt)

then from (7.7) we obtain
δ1

2
≤ ẽ(t)−

ˆ
T3

|ṽ0|2 dx ≤ δ1 ,

and hence we obtain (2.10) for q = 0. Letting a be sufficiently large, we also obtain (2.1).

Applying Proposition 2.1 and arguing as was done in the proof of Theorem 1.1 we obtain a solution
(ṽ, p̃) to the Euler equations satisfying ˆ

T3

|ṽ|2 dx = ẽ(t) . (7.9)

Moreover, by (2.12) we have the estimate

‖ṽ − ṽ0‖0 . δ
1/2
1 . (7.10)

31



Lastly, we define (vk, pk) by the rescaling

vk := Γ−1ṽ(x,Γ−1t) and pk := Γ−2p̃(x,Γ−1t) .

Then (vk, pk) is a solution to the Euler equations, satisfying (1.4) as a consequence of rescaling
(7.9). The sequence vk is uniformly bounded in C0 since

‖vk‖0 ≤ Γ−1(‖ṽ‖0 + ‖ṽ − ṽ0‖0) . ε
1/2
k δ
−1/2
1 (δ

1/2
1 + Cδ

1/2
1 ε
−1/2
k ) . ε

1/2
0 + C.

Thus (vk ⊗ vk) is also uniformly bounded in C0. By Banach-Alaoglu vk and vk ⊗ vk have weak−∗
convergent subsequences.

Moreover, by rescaling (7.10) and using (7.2) we have

‖vk − v‖H−1 . ‖vk − v‖0 + ‖v − v‖H−1 . Γ−1δ
1/2
1 + Cλ−1

0 . ε
1/2
k + Cλ−1

0 . ε
1/2
k (7.11)

by choosing a (and thus λ0) sufficiently large in terms of εk. Moreover, from (7.4)–(7.6), (7.8), and
(7.10) we obtain∥∥vk ⊗ vk − v ⊗ v − R̄∥∥H−1 . ‖vk ⊗ vk − v ⊗ v‖0 + ‖R‖0 +

∥∥v ⊗ v +R− v̄ ⊗ v̄ − R̄
∥∥
H−1

. Γ−2 ‖ṽ ⊗ ṽ − ṽ0 ⊗ ṽ0‖0 +
∥∥∥R̊∥∥∥

0
+ ‖trR‖0 + Cλα−1

0

. εkδ
−1/2
1 (Cδ

1/2
1 ε
−1/2
k + δ

1/2
1 ) + εk + Cλα−1

0 . Cε
1/2
k . (7.12)

Since the H−1 topology uniquely captures the weak−∗ limit, the theorem is completed upon passing
εk → 0 in (7.11)–(7.12). �

Appendix A. Hölder spaces

In the following m = 0, 1, 2, . . . , α ∈ (0, 1), and θ is a multi-index. We introduce the usual (spatial)
Hölder norms as follows. First of all, the supremum norm is denoted by ‖f‖0 := supT3×[0,T ] |f |. We
define the Hölder seminorms as

[f ]m = max
|θ|=m

‖Dθf‖0 ,

[f ]m+α = max
|θ|=m

sup
x 6=y,t

|Dθf(x, t)−Dθf(y, t)|
|x− y|α

,

where Dθ are space derivatives only. The Hölder norms are then given by

‖f‖m =

m∑
j=0

[f ]j

‖f‖m+α = ‖f‖m + [f ]m+α.

Moreover, we will write [f(t)]α and ‖f(t)‖α when the time t is fixed and the norms are computed
for the restriction of f to the t-time slice.

Recall the following elementary inequalities:

[f ]s ≤ C
(
εr−s[f ]r + ε−s‖f‖0

)
(A.1)

for r ≥ s ≥ 0, ε > 0, and

[fg]r ≤ C
(
[f ]r‖g‖0 + ‖f‖0[g]r

)
(A.2)

for r ≥ 0. From (A.1) with ε = ‖f‖1/r0 [f ]
−1/r
r we obtain the standard interpolation inequalities

[f ]s ≤ C‖f‖1−
s/r

0 [f ]
s/r
r . (A.3)
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Next we collect two classical estimates on the Hölder norms of compositions. These are also
standard, for instance in applications of the Nash-Moser iteration technique (for a detailed proof
the reader might consult [DLS14, Proposition 4.1]).

Proposition A.1. Let Ψ : Ω→ R and u : Rn → Ω be two smooth functions, with Ω ⊂ RN . Then,
for every m ∈ N \ {0} there is a constant C (depending only on m, N and n) such that

[Ψ ◦ u]m ≤ C([Ψ]1‖Du‖m−1 + ‖DΨ‖m−1‖u‖m−1
0 ‖u‖m) (A.4)

[Ψ ◦ u]m ≤ C([Ψ]1‖Du‖m−1 + ‖DΨ‖m−1[u]m1 ) . (A.5)

We also recall the quadratic commutator estimate of [CET94] (cf. also [CDLS12, Lemma 1]):

Proposition A.2. Let f, g ∈ C∞(T3×T) and ψ a standard radial smooth and compactly supported
kernel. For any r ≥ 0 we have the estimate∥∥∥(f ∗ ψ`)(g ∗ ψ`)− (fg) ∗ ψ`

∥∥∥
r
≤ C`2−r‖f‖1‖g‖1 ,

where the constant C depends only on r.

Appendix B. Estimates for transport equations

In this section we recall some well known results regarding smooth solutions of the transport equa-
tion:  ∂tf + v · ∇f = g,

f(·, 0) = f0,
(B.1)

where v = v(t, x) is a given smooth vector field. We will consider solutions on the entire space R3 and
treat solutions on the torus simply as periodic solution in R3. The following proposition contains
standard estimates for such solutions (for a detailed proof, the reader might consult [BDLISJ15,
Appendix D]).

Proposition B.1. Assume |t| ‖v‖1 ≤ 1. Then, any solution f of (B.1) satisfies

‖f(t)‖0 ≤ ‖f0‖0 +

ˆ t

0
‖g(·, τ)‖0 dτ , (B.2)

‖f(t)‖α ≤ e
α

(
‖f0‖α +

ˆ t

0
‖g(·, τ)‖α dτ

)
, (B.3)

for all 0 ≤ α ≤ 1, and, more generally, for any N ≥ 1 and 0 ≤ α < 1

[f(t)]N+α . [f0]N+α + |t| [v]N+α[f0]1 +

ˆ t

0

(
[g(τ)]N+α + (t− τ)[v]N+α[g(τ)]1

)
dτ. (B.4)

Define Φ(·, t) to be the inverse of the flux X of v starting at time 0 as the identity (i.e. d/dtX =
v(X, t) and X(x, 0) = x). Under the same assumptions as above we have:

‖∇Φ(t)− Id‖0 . |t| [v]1 , (B.5)

[Φ(t)]N . |t| [v]N ∀N ≥ 2 . (B.6)
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Appendix C. Potential theory estimates

We recall the definition of the standard class of periodic Calderón-Zygmund operators. Let K be
an R3 kernel which obeys the properties

• K(z) = Ω
(
z
|z|

)
|z|−3, for all z ∈ R3 \ {0}

• Ω ∈ C∞(S2)

•
´
|ẑ|=1 Ω(ẑ)dẑ = 0.

From the R3 kernel K, use Poisson summation to define the periodic kernel

KT3(z) = K(z) +
∑

`∈Z3\{0}

(K(z + `)−K(`)) .

Then the operator

TKf(x) = p.v.

ˆ
T3

KT3(x− y)f(y)dy

is a T3-periodic Calderón-Zygmund operator, acting on T3-periodic functions f with zero mean on
T3. The following proposition, proving the boundedness of periodic Calderón-Zygmund operators
on periodic Hölder spaces is classical (see e.g. [CZ54]):

Proposition C.1. Fix α ∈ (0, 1). Periodic Calderón-Zygmund operators are bounded on the space
of zero mean T3-periodic Cα functions.

The following is a simple consequence of classical stationary phase techniques. For a detailed proof
the reader might consult [DS17, Lemma 2.2].

Proposition C.2. Let α ∈ (0, 1) and N ≥ 1. Let a ∈ C∞(T3), Φ ∈ C∞(T3;R3) be smooth
functions and assume that

Ĉ−1 ≤ |∇Φ| ≤ Ĉ
holds on T3. Then ∣∣∣∣ˆ

T3

a(x)eik·Φ dx

∣∣∣∣ . ‖a‖N + ‖a‖0 ‖Φ‖N
|k|N

, (C.1)

and for the operator R defined in (4.4), we have∥∥∥R(a(x)eik·Φ
)∥∥∥

α
.
‖a‖0
|k|1−α

+
‖a‖N+α + ‖a‖0 ‖Φ‖N+α

|k|N−α
,

where the implicit constant depends on Ĉ, α and N , but not on k.

Appendix D. Commutators involving singular integrals

The following lemma is a variant of Lemma 1 from [Con15]:

Proposition D.1. Let α ∈ (0, 1) and N ≥ 0. Let TK be a Calderón-Zygmund operator with kernel
K. Let b ∈ CN+1,α(T3) a divergence free vectorfield. Then we have

‖[TK , b · ∇]f‖N+α . ‖b‖1+α ‖f‖N+α + ‖b‖N+1+α ‖f‖α
for any f ∈ CN+α(T3), where the implicit constant depends on α,N and K.
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Proof of Proposition D.1. The case N = 0 is precisely Lemma 1 in [Con15], except that in the
former paper, the proof is given for Calderón-Zygmund operators defined on R3, and for functions
in Cα(R3)∩Lp(R3). However, note that if f is the 1-periodic extension to all of R3 of the function
f on T3, and if χ(y) is a smooth cutoff function, which is identically 1 on [−1 − 1/20, 1 + 1/20]3,
and vanishes on the complement of [−1− 1/10, 1 + 1/10]3, we then have that

TKf(x) = p.v.

ˆ
R3

K(x− y)χ(y)f(y)dy + Tsmoothf(x)

where

Tsmooth : C0(T3)→ CN (T3)

is a bounded operator, for any N ≥ 0. Thus, modulo using the smoothing property of Tsmooth, we
may apply directly the proof in [Con15] to the periodic case of this paper.

Let us now consider the case N ≥ 1, and to this end let θ be a multi-index with |θ| = N . Then, by
the Leibniz rule

∂θ[TK , b · ∇]f = TK(∂θ(b · ∇f))− ∂θ(b · ∇TKf)

=
∑
θ′

(
θ

θ′

){
TK(∂θ

′
b · ∇∂θ−θ′f)− ∂θ′b · ∇∂θ−θ′TKf

}
=
∑
θ′

(
θ

θ′

){
[TK , ∂

θ′b · ∇]∂θ−θ
′
f
}
.

Therefore we obtain from the case N = 0:∥∥∥∂θ[TK , b · ∇]f
∥∥∥
α
.

N∑
j=0

‖b‖j+1+α‖f‖N−j+α.

Furthermore, by interpolation

‖b‖j+1+α . ‖b‖1−
j/N

1+α ‖b‖
j/N
N+1+α, and ‖f‖N−j+α . ‖f‖1−

j/N
N+α ‖f‖

j/N
α ,

so that, for any j = 0, . . . , N

‖b‖j+1+α‖f‖N−j+α . ‖b‖1+α ‖f‖N+α + ‖b‖N+1+α ‖f‖α .
This concludes the proof. �
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