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Abstract. We consider the inhomogeneous Landau equation with γ ∈ (
√
3, 2] and construct

smooth, strictly positive initial data that develop a finite time singularity. The Cα-norm of the dis-
tribution function blows up for every α > 0, whereas its L∞-norm remains uniformly bounded. In
self-similar variables, the solution becomes asymptotically hydrodynamic—the distribution func-
tion converges to a local Maxwellian, while the hydrodynamic fields develop an asymptotically
self-similar implosion whose profile coincides with a smooth imploding profile of the compressible
Euler equations. To our knowledge, this provides the first example of a collisional kinetic model
which is globally well-posed in the homogeneous setting, but admits finite time singularities for
inhomogeneous data.
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1. Introduction

We consider the three-dimensional inhomogeneous Landau equation

∂tf + v · ∇xf =
1

ε0
Q(f, f), (1.1)

where f(t, x, v) ≥ 0 is the distribution function, x, v ∈ R3 denote the spatial and velocity variables,
and Q is the collision operator defined as1

Q(f, g)(v) = divv

ˆ
R3

Φ(v − w)
(
f(w)∇vg(v)− g(v)∇wf(w)

)
dw,

= divv(A[f ]∇vg − divv A[f ]g)(v),

(1.2a)

where Φ and A are given by

Φ(v) :=
1

8π
|v|γ+2(Id−Πv), A[f ](v) := Φ ∗ f(v). (1.2b)

Here Πv = v
|v| ⊗

v
|v| is the projection along the v direction whenever v ̸= 0 and Πv = O if v = 0.

The constant ε0 denotes the Knudsen number.
The physically relevant case is γ = −3, typically called the Landau–Coulomb model. Nonetheless,

a range of other values of γ has been explored in the mathematical literature. In this work,
we consider the inhomogeneous Landau equation for γ ∈ (

√
3, 2], and construct smooth, strictly

positive initial data that develop a finite time singularity. To our knowledge, this provides the
first example of a collisional kinetic model that is globally well-posed for homogeneous data [28]
yet admits finite time singularities in the inhomogeneous setting. See Section 1.2.1 below for more
discussion on the well-posedness problem for these equations.

Our construction of the singular solutions is inspired by the hydrodynamic limit of kinetic equa-
tions to the compressible Euler equations and by the known smooth imploding solutions in the
compressible Euler equations. In [9,67,74], the authors constructed families of smooth, self-similar
imploding profiles for the 3D compressible (isentropic) Euler equations with various adiabatic ex-
ponents and blowup rates, denoted by r > 1. Specifically, they construct blowup solutions on
t ∈ [0, 1) with the following leading order structures

ρ(t, x) ∼ (1− t)−
3(r−1)

r ρ̄

(
x

(1− t)1/r

)
,

(ρU)(t, x) ∼ (1− t)−
4(r−1)

r (ρ̄Ū)

(
x

(1− t)1/r

)
,

where (ρ,U) is the density and velocity of the compressible Euler equations and (ρ̄, Ū) denotes a
smooth self-similar imploding profile for the density and velocity.

The blowup we construct for the Landau equation is asymptotically hydrodynamic in self-similar
variables. That is, in self-similar variables, the hydrodynamic fields converge to an imploding profile
for Euler and the distribution function converges to the corresponding local Maxwellian. Hence,
informally the distribution looks like the following to leading order near the blowup

f(t, x, v) ∼ Mρ̄,Ū,Θ̄

(
x

(1− t)1/r
, (1− t)1−1/rv

)
, (1.3)

where Mρ̄,Ū,Θ̄ defined in (2.4) denotes the local Maxwellian with the hydrodynamic fields given by

the self-similar imploding profile, and Θ̄ = 3
5 ρ̄

2/3.

1For simplicity of notation, we omit the (t, x)-dependence of f in (1.2).
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1.1. Main result. We define the mass ϱ, momentum m, and energy density e associated to f by

(ϱ,m, e)(t, x) :=

ˆ
f(t, x, v)(1, v, |v|2)dv. (1.4)

Our main result is the following.

Theorem 1.1. Fix γ ∈ (
√
3, 2] in (1.1). Let (ρ̄, Ū, Θ̄, r) denote the imploding profile for the 3

dimensional compressible Euler equations constructed in [74], with a blowup speed r > (γ+3)/(γ+2).
There exists a small ε∗ > 0, such that for any 0 < ε0 ≤ ε∗, the following statement holds: there

exists a positive initial data fin ∈ C∞ with Gaussian decay fin(x, v) ≤ c exp(−C|v|2) and uniformly
bounded momentum min(x) and energy ein(x) that decay to 0 as |x| → ∞, and with a mass density
0 < c1 ≤ ϱin(x) ≤ c2 for some constants c1, c2 > 0 2 , such that the corresponding positive solution
f to (1.1) develops a finite time singularity at a time T = 1 in the following sense:

(a) Regularity: as t → 1−, the Cα-norm of f(t, ·, v = 0) blows up for any α > 0, while ∥f(t)∥L∞
x,v

remains uniformly bounded. Moreover, for any v, the spatial gradient ∇xf blows up at (0, v)
in the following sense: sup|x|≤(1−t)1/r |∇xf(t, x, v)| → ∞ as t→ 1−. Furthermore, the solution

remains smooth away from x = 0: for any x ̸= 0, v ∈ R3, and multi-indices α, β with |α|+ |β| ≤
16,3 we have

sup
t∈[0,1)

|∂αx ∂βv f(t, x, v)| ≤ C(ε0, x, v) <∞. (1.5)

(b) Hydrodynamic limit in self-similar variables: in self-similar variables, f converges to the local
Maxwellian associated with the Euler profile :

lim
t→1−

f(t, (1− t)
1
rX, (1− t)−

r−1
r V ) = Mρ̄,Ū,Θ̄(X,V ), (1.6)

for any fixed X,V ∈ R3, where Mρ̄,Ū,Θ̄(X,V ) = ρ̄(X) 1
(2πΘ̄(X))3/2

exp
(
− |V−Ū(X)|2

2Θ̄(X)

)
.

(c) Implosion in hydrodynamic fields: as t → 1−, the hydrodynamic fields (ϱ,m, e) (1.4) all blow
up at x = 0. The blowup is asymptotically self-similar in the sense that

lim
t→1−

(1− t)
3(r−1)

r ϱ(t, (1− t)
1
rX) = ρ̄(X), (1.7a)

lim
t→1−

(1− t)
4(r−1)

r m(t, (1− t)
1
rX) = (ρ̄Ū)(X), (1.7b)

lim
t→1−

(1− t)
5(r−1)

r e(t, (1− t)
1
rX) = (3ρ̄Θ̄ + ρ̄|Ū|2)(X), (1.7c)

for any fixed X ∈ R3, where r > 1.

We establish Theorem 1.1 by exploiting the connection between the Landau equation and the
compressible Euler equations. Instead of performing a Hilbert expansion similar to [12, 52], we
develop a framework to establish nonlinear (finite codimension) stability of the local Maxwellian in
self-similar variables and justify the connection between the two equations up to the blowup time
T = 1 for a small, fixed ε0. See Section 2.5 for more discussions. To simplify notation, we may use
the scaling symmetries of the Landau equation to fix the initial time at t = 0 and the blowup time
at t = T = 1. Below, we list a few remarks on the results in Theorem 1.1.

2The initial mass density ϱin may be chosen to equal a constant outside a compact set in R3. See Section 9.3.
3Given any n ≥ 0, we can construct a blowup solution f that satisfies all the properties in Theorem 1.1 and estimate
(1.5) with |α|+ |β| ≤ n. One only needs to modify k in (4.36) with k ≥ 2d+ n in the proof. In (1.5), we fix n = 16.
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Remark 1.2 (Range of γ). In this work, we provide a proof of concept4 in kinetic equations,
showing how one can “lift” compressible Euler singularities to the Landau equation via the hydro-
dynamic limit in self-similar variables. This confirms a scenario vaguely alluded to in [79, Section
8.1], albeit only for γ >

√
3. We expect that the admissible range of γ may be extended if a broader

class of implosion profiles for compressible Euler equations is shown to exist. See further discussion
at the end of Section 1.2.2.

The condition γ >
√
3 arises solely from the existing class of smooth imploding profiles for the

3D compressible Euler equations with monatomic gas used to lift singularities to the kinetic level.
Since smooth imploding profiles in this class are known to exist for r < 3 −

√
3, this restriction

combined with the condition r > (γ + 3)/(γ + 2) yields γ >
√
3.

Remark 1.3 (Set of initial data). To simplify the analysis, we consider solution with radial
symmetry: f(t, Qx,Qv) = f(t, x, v) for any orthogonal matrix Q ∈ SO(3), which is preserved by
equation (1.1). The associated hydrodynamic fields (ϱ,m, e) (1.4) are radially symmetric in x.

Within the radially symmetric class, as to be explained in Remark 9.4, the initial data can be

decomposed into Fin = M + M1/2
1 (FM (W̃) + F̃m), where M is the modified local Maxwellian

defined in (2.17), FM (W̃) is a perturbation associated with the hydrodynamic fields W̃ (similar to

ϱ,m, e (1.4)), and F̃m is the micro-perturbation. There exists an open set X2 (a ball in a weighted
Sobolev space) and a finite codimension set X1 such that the positive initial data in Theorem 1.1

may be taken such that W̃ ∈ X1 and F̃m ∈ X2. We can localize the unstable directions of the
blowup profile to ensure that the initial mass density ϱin admits a uniform positive lower bound. In
addition, we can construct a blowup solution whose initial hydrodynamic fields (ϱ,m, e)(x) decay
to 0 as |x| → ∞.

Extending the blowup construction to non-radial perturbations of M would follow the framework
developed here, combined with the global weighted Hk stability estimates of implosion with non-
radial perturbations made in [22].

Remark 1.4 (Tail fattening at x = 0). Let C̄ be the sound speed profile defined in (2.12) and
µ(·) be the Gaussian defined in (2.16). Recall that the initial data satisfies f(0, x, v) ≲ exp(−C|v|2).
In the proof of Theorem 1.1 in Section 9.3, at x = 0, for any t ∈ [0, 1) and v ∈ R3, we establish∣∣∣∣∣f(t, 0, v)− µ

(
v

C̄(0) · (1− t)−
r−1
r

)∣∣∣∣∣ ≲ εℓ0µ 1
2

(
v

C̄(0) · (1− t)−
r−1
r

)
, r > 1, ℓ = 10−4.

In particular, by choosing ε0 small, f(t, 0, ·) is close to a constant as t→ 1−:

lim sup
t→1−

∣∣f(t, 0, v)− µ(0)
∣∣ ≲ εℓ0µ(0) 1

2 , ∀v ∈ R3. (1.8)

Here εℓ0µ(0)
1
2 ≪ µ(0) when ε0 is small.

Remark 1.5 (Smoothness away from x = 0). We establish a more quantitative version of (1.5)
in the proof of Theorem 1.1 in Section 9.3. There exists a large parameter R0 = R0(ε0), a function

cR0(x) ≍ min{|x|, R0}−(r−1) (defined in (9.29)) and an absolute constant CŪ such that, for

v̊ :=
v − CŪ|x|−rx

cR0(x)
(1.9)

4Our contribution may be phrased as follows: if you only use certain properties of the collision kernel Q appearing
in (1.1), then finite time blowup cannot be ruled out. In some sense, this is akin to Tao’s result for “averaged
Navier–Stokes” [84]; while there is no hydrodynamic meaning to the model in [84], Tao’s paper shows that if you
only use certain properties of the bilinear nonlinear term, then you cannot rule out finite time blowup.
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(see also (9.31)), and for any multi-indices α, β with |α|+ |β| ≤ 16, and any x ̸= 0, v ∈ R3, we have

sup
t∈[0,1)

|∂αx ∂βv f(t, x, v)| ≲ε0 |x|−|α| exp(−C |̊v|2),

where C is some absolute constant independent of α, β, ε0.

Remark 1.6 (Limiting solution). Let µ(·) be the Gaussian defined in (2.16). For any fixed
x ̸= 0, v ∈ R3, in the proof of Theorem 1.1 in Section 9.3, we establish that the blowup solution f
is close to µ(̊v) (see Figures 1 and 2 below) in the following sense:

lim sup
t→1−

|f(t, x, v)− µ(̊v)| ≲ εℓ0µ(̊v)
1
2 . (1.10)

For v̊ defined in (1.9), we can obtain |̊v| ≲ |v| · |x|r−1 + 1 with r > 1. If |v| · |x|r−1 ≤ c(log 1
ε0
)1/2

for some small c and ε0 is small, the error term is smaller: εℓ0µ(̊v)
1/2 ≲ ε

ℓ/2
0 µ(̊v) ≪ µ(̊v). Thus,

along the surface {(x, v) : |̊v|2 = C} with C ≪ log ε−1
0 , f is close to a constant. Using the formula

of cR0(x) (9.29), when |x| ≤ R0, we compute v̊, |̊v|2

v̊ = c1v|x|r−1 − c2
x

|x|
, |̊v|2 = c21|v|2|x|2r−2 − 2c1c2(v · x)|x|r−2 + c22,

where c1 = C−1
C̄
, c2 =

CŪ
CC̄

are the constants associated with profile. See (9.29) and (3.4). Note that

when x = 0, as t→ 1−, f(t, 0, v) is close to µ(0) (1.8). For a fixed v, since |̊v|2 → c22 as x→ 0 and
c2 may not be 0, the limiting function of f may not be continuous at x = 0.

Figure 1. A cartoon of the limiting density µ(̊v) with x ̸= 0 when both x and v
are one-dimensional, with v̊ defined in (1.9). We have taken r = 1.26 < 3 −

√
3

and set CC̄ = CŪ = 1, R0 → ∞ in (1.9) and (9.29). The two images represent the
same function µ(̊v) from two different perspectives (rotated by 90◦ in the horizontal
plane).

Remark 1.7 (L∞ bound ̸⇒ smoothness). The singularity formation established here concerns
the macroscopic quantities—namely mass, momentum, and energy. At the blowup time, the dis-
tribution function f remains bounded in L∞, whereas the Cα norm blows up. A De Giorgi second
lemma (boundedness ⇒ Hölder regularity) fails, partly because boundedness of f does not guaran-
tee boundedness of the coefficients A[f ] and divA[f ] in (1.2). Unlike the homogeneous case, in the
inhomogeneous setting, the bounds for A[f ] and its derivative require control on the hydrodynamic
fields, which is lost at the blowup time. A recent work by Golding and Henderson [38] suggests
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Figure 2. A contour plot (top-down view) of the same function µ(̊v) from Figure 1.
The red regions represent higher values of µ(̊v), while the blue regions represent
values close to zero.

that for the Coulomb potential γ = −3 the condition f ∈ L1
tL

∞
x,v is, however, enough to guarantee

global regularity, which would rule out a finite time singularity of this type in that case.

Remark 1.8 (Local well-posedness). A general local well-posedness theory for the Landau
equation (1.1) with γ ∈ (

√
3, 2] is not covered in this manuscript. Our work provides, however, local

well-posedness for (1.1) with any ε0 > 0 and γ ∈ (
√
3, 2] for initial data near the local Maxwellian

associated with our profile. See Proposition 10.2. The argument used to prove Proposition 10.2 is
inspired by the method used in [55]. We also prove that a Gaussian lower bound for f propagates
in time via a barrier argument.

1.2. Related work. We review related work on well-posedness results for kinetic equations, sin-
gularities in the compressible Euler equations, and hydrodynamic limits.

1.2.1. Well-posedness results for the Landau and Boltzmann equations. The Landau equation is
one of the most important mathematical models in collisional plasmas. It was derived from the
Boltzmann equation by Landau [63] in 1936 to model the grazing collisions that dominate in the
charged particle collisions present in plasma physics (in the case γ = −3). In this regime, the
classical Boltzmann collisional operator becomes singular and reduces to (1.2).

The mathematical investigation of these equations began with the work of DiPerna and Lions
in [30] for the inhomogeneous Boltzmann equation. The case of the inhomogeneous Landau equation
was discussed in [64] by Lions later. In these works, the authors provided the first complete Cauchy
theory for very weak solutions, the so-called renormalized solutions. Further progress was made in
the late 1990s by Villani [86], who introduced the notion of (very) weak solutions for the spatially
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homogeneous case which satisfy the Boltzmann H-theorem and relative bounds on the entropy´
f log f dv. These are hence referred to as H-solutions.
Since then, significant effort has been devoted to the understanding of the spatially homogeneous

Landau equation. In 1998, Villani [85] proved the global well-posedness of the space-homogeneous
Landau equation for Maxwellian molecules (γ = 0), and shortly after, with Desvillettes, he extended
the global well-posedness to the case of hard potentials (γ > 0) in [28] and [29]. The global existence
of smooth solutions of the spatially homogeneous Landau equation for the case of moderately soft
potentials (γ ∈ [−2, 0)) was established later by Wu [88] and Silvestre [78]. While our understanding
for the cases of moderately soft potentials and hard potentials was satisfactory, the cases of the
Coulomb potential (γ = −3) and very soft potentials γ ∈ (−3,−2) remained elusive. The main
question was to understand whether for γ < −2 the drift term would be controlled by the diffusion,
implying existence of smooth solutions for arbitrarily large times.

Partial progress was made on the regularity of the solutions, analogous to the results for the
Navier–Stokes equation of the partial regularity theory of Caffarelli–Kohn–Nirenberg [11]. Golse,
Gualdani, Imbert, and Vasseur [39] proved that the Hausdorff dimension of the singular set in
time is at most 1/2 for the space-homogeneous Landau equation with the Coulomb potential. This
result was later extended by Golse, Imbert, Ji, and Vasseur [40] to partial regularity in velocity-
time space. In parallel, the conditional regularity results for the space-homogeneous case were
obtained by Silvestre [78] and Alonso, Bagland, Desvillettes, and Lods [3], in analogy with the
Prodi–Serrin criteria for the Navier–Stokes equation. Other types of conditional regularity results
were also established by Gualdani and Guillen [43]. Recently, Guillen and Silvestre [45] made a
breakthrough, proving the global well-posedness for initial data with Maxwellian tails, based on the
discovery of a new monotone quantity, the Fisher information. Subsequently, the global existence
of smooth solutions was extended to broader classes of initial data by several authors, and currently
it is known for weighted L1 initial data (see [27,37,53,62]).

For the space-inhomogeneous Landau equation, the well-posedness theory was initiated by Guo
[47], who constructed a unique global solution for γ ≥ −3 for initial data close to the global
Maxwellian in a high-order Sobolev space with a fast decaying velocity tail, namely H8(T3

x ×
R3
v;µ(v)

−1/2dv). For γ ∈ [−3,−2), this result was improved in terms of the decay rate of the
velocity tail in [82], [83], which also include the study of various types of Boltzmann and Landau
equations in the perturbative regime. The key ingredient underlying these stability estimates near
the global Maxwellian is coercivity estimates for the linearized Landau collision operator [47]. 5

Carrapatoso and Mischler [17] substantially improved these results for initial data close to the

global Maxwellian in H2
xL

2
v(T3

x ×R3
v; (1+ |v|2)k/2dv) for γ ∈ [−3,−2). It is worth noting that these

works consider the space-inhomogeneous case, but the main difficulty arises from analyzing the
(weak) dissipation generated by the collision operator, which only acts on the velocity variable v.
We also remark that there is a development of the global well-posedness theory for solutions near
vacuum, which can be understood as another type of singularity, by Luk [65] for γ ∈ (−2, 0) and by
Chaturvedi [18] for γ ∈ [0, 1). See also [19, 46, 48–50] and the references therein for related works
regarding the Vlasov–Poisson–Landau, Vlasov–Poisson–Boltzmann systems, and Vlasov–Maxwell–
Boltzmann, where the kinetic equation is coupled with a self-consistent field.

For large initial data, the conditional regularity results were first established for the inhomoge-
neous Boltzmann equation with moderately soft potentials by Imbert and Silvestre in [57] (and later
improved in [58]). Moving to the inhomogeneous Landau equation, the first conditional regularity
was obtained by Cameron, Snelson and Silvestre [14] for the case of moderately soft potentials (See
also [54]). A similar conditional regularity result for hard potentials was later established by Snelson
in [80]. These results are conditioned on the L∞ boundedness of the hydrodynamic densities (mass,

5The proof of Guo in [47] relies on a compactness argument and therefore yields non-explicit constants in the coercivity
estimates. Constructive proofs of coercivity estimates for the Boltzmann and Landau collision operators, with explicit
and computable constants, are established by Baranger–Mouhot in [5], by Mouhot [70], and by Mouhot–Strain [71].
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energy, and entropy). From this, one can expect that one possible type of singularity formation
for the space-inhomogeneous Landau equation is the implosion of hydrodynamic quantities. In a
series of papers [55], [56], Henderson, Tarfulea, and Snelson relaxed the assumptions on the hy-
drodynamic densities in conditional regularity results for moderately soft potentials. Moreover, for
the Coulomb and very soft potentials, they obtained a continuation criterion under an additional
assumption on the L∞

t,xL
p
v norm of f for p > 3

3+γ (with p = ∞ when γ = −3). In more recent work,

Snelson and Solomon [81] improved this criterion, by lowering the required exponent to p > 3
5+γ .

Very interestingly, Golding and Henderson [38] recently established a new continuation criterion
for the Landau equation with a Coulomb potential (γ = −3) based on a fundamentally different
quantity, the L1

tL
∞
x,v norm of f , which does not rely on the hydrodynamic quantities. For γ = −3,

this criterion rules out the same type of singularities constructed in our work, where ∥f∥L∞
x,v

remains

uniformly bounded. However, [38] does not rule out a Type I blowup with rate cf = −1 (see (2.3))
in the case γ = −3, and it would be interesting to explore a Type I blowup with a profile F = M+g
with slow decay in v [7], where M is a local Maxwellian and g is a small perturbation that does
not converge to zero asymptotically, 6 corresponding to the degenerate case of (2.3).

In the literature on the Boltzmann and Landau equations, the parameter γ is often restricted to
the range [−3, 1], corresponding to the power-law interaction potentials from the Coulomb potential
for the Landau equation (γ = −3) to the hard sphere model for the Boltzmann equation (γ = 1).
However, this upper bound γ = 1 is not a fundamental obstruction and can be extended up to 2 in
many settings. For example, Desvillettes and Villani note in the introduction of [28, Section 1] that
their restriction to γ ∈ (0, 1] is made for simplicity, and it can be easily relaxed to γ ∈ (0, 2). A
similar situation arises in [45, Theorem 1.2], where it is stated only for the range γ ∈ [−3, 1], even
though the monotonicity of the Fisher information holds for a substantially larger range that covers
γ ∈ [−3, 2]. More precisely, the restriction γ ≤ 1 was only used in [45, Theorem 2.4], which concerns
the propagation of moments. For γ > 0, however, as noted in the paragraph following [45, Theorem
2.4], one in fact expects the generation of moments, which is even stronger than the propagation
of moments. It was explicitly mentioned in remarks following [28, Lemma 2] that their argument
works for γ ∈ (0, 2]. We also remark that, in the recent lecture notes by Villani [87, Section 4], he
argues that the natural physical restriction for γ is γ ≤ 2, and provides a figure covering this range.

There have been some efforts to study potential singularity formation in collisional kinetic equa-
tions via model problems and self-similar methods. In [4], the authors established finite time blowup
for a model of the Boltzmann equation without the loss term in the collision operator. In [21], Chen
studied the homogeneous Landau equation with 1

ε0
Q(f, f) replaced by a modified collision operator

1
ε0
Q(f, f) + divv(divv A[f ])f (1.1). For any sufficiently small ε0 > 0, by perturbing the global

Maxwellian and adapting a perturbation-of-equilibrium idea from [20], Chen established nearly
self-similar blowup for the model equation with very soft potentials. In [7], the authors ruled out
Type I self-similar blowups for the Landau equation (1.1) for any γ ∈ [−3,−2] over a range of
possible blowup speeds, assuming at least integrability in velocity on the inner profile (along with
certain other structural assumptions).

1.2.2. Finite time singularities for the compressible Euler equations. The compressible Euler equa-
tions are the fundamental macroscopic model governing the motion of inviscid fluids and gases.
A central problem in the analysis of these equations is the formation of finite time singularities
from smooth initial data. While the question of global regularity versus finite time blowup has
been extensively studied, the precise nature of the singularity and the precise mechanism by which
smooth solutions break down, has only been understood in certain regimes, which broadly speaking
fall into two fundamentally different categories.

6Such a scenario is exploited in [21] to construct nearly self-similar blowup for a model problem of the homogeneous
Landau equation with Coulomb potential, in which an additional nonlinear term af2 with 0 < a ≪ 1 is included.
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The classical mechanism is shock formation; in this setting, as the smooth solution evolves, the
density, pressure, and velocity all remain bounded, but their gradients blow up. In one space
dimension, this phenomenon is pretty well understood, ranging from the pioneering work of Rie-
mann [72], up to the modern theory of hyperbolic systems of conservation laws, which provides a
framework for shock formation, propagation, and interaction (see e.g. the book of Dafermos [26]).
The multi-dimensional problem, however, presents formidable difficulties due to the geometry of
the steepening wavefronts. The theory eventually culminated in the recent work of Shkoller and
Vicol [77], who have addressed the problem of maximal globally hyperbolic development of smooth
and non-vacuous initial data, providing a complete description of how smooth solutions form their
first gradient singularity, and then continue beyond, through a succession of gradient catastrophes.
For a detailed account of the literature on multi-D shocks for the Euler equations, we refer the
interested reader to the summary in [77]. Despite this progress, shock development in multiple
space dimensions, remains a fundamental open problem.

A qualitatively different blowup mechanism is provided by implosion singularities. Therein,
(some of) the primary flow variables themselves become unbounded at the singularity. Such solu-
tions describe the self-focusing collapse of a fluid/gas onto a point, and represent strong amplitude
singularities, rather than gradient catastrophes. The remainder of this section focuses on this latter
class of singularities, which has seen remarkable progress in recent years.

The study of imploding solutions to the compressible Euler equations dates to the seminal 1942
work of Guderley [44], who constructed self-similar solutions describing a converging spherical shock
wave into a quiescent medium, which collapses at the origin. At the moment of collapse t = 0, the
pressure and velocity diverge at the origin, but the density does not.

A rigorous mathematical construction of Guderley’s converging shock was obtained recently by
Jang, Liu, and Schrecker [59]. In a different direction, Cialdea, Shkoller, and Vicol [25] proved that
Guderley’s imploding shock solution arises dynamically from classical, shock-free initial data.

We wish to emphasize that the Guderley solution suffers from a major drawback, which prevents
us from using it in the construction of this paper: in the quiescent core, namely at radii < (1− t)1/r
for a specific similarity exponent r, the pressure and the speed of sound are assumed to vanish
identically, which is inconsistent with the regularizing effects/positivity gaining effects of the Landau
collision operator (see e.g. [55]).

A fundamentally new type of implosion singularity was discovered by Merle, Raphaël, Rodni-
anski, and Szeftel in [67]. Unlike the Guderley solution, which contains a shock discontinuity, the
implosions in [67] remain C∞ smooth 7 until the singular time, at which point both density and
velocity blow up at a single point; these solutions are also radially symmetric, but as opposed to
Guderley, they are isentropic. The analysis in [67] requires a delicate understanding of the ODE
phase portrait governing self-similar profiles, showing that for special values of r, the solution
curve in the phase portrait passes smoothly through the so-called “sonic point”. The price for
this smooth transition through the sonic point is that the resulting profiles are only stable up to a
finite-dimension instability. It is essential to recognize how unstable these solutions are; while the
unstable manifold of these self-similar profiles is finite-dimensional, the precise number of unstable
directions has not been rigorously determined, and the detailed structure of the unstable mani-
fold remains unknown.8 This extreme instability means that it is essentially impossible to observe
these smooth implosions in physical experiments or direct numerical simulations of compressible
Euler; more pertinent to the present work, these instabilities account for severe technical difficulties
in implementing a finite-codimension stability argument for the macroscopic part of the Landau
distribution function.

7Jenssen and collaborators [60,61] have studied a different class of amplitude blowup solutions without shock discon-
tinuities, which are continuous but not smooth.
8Numerical investigations by Biasi [8] suggest that certain unstable directions lead to shock formation before the
implosion can occur, demonstrating that generic perturbations destroy the smooth implosion mechanism entirely.
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The construction in [67] holds for a generic set of adiabatic exponents (countable complement),
excluding the physically important monatomic gas exponent 5/3, which corresponds to a degenerate
case in the structure of the phase portrait of [67]; the exponent 5/3 is the one relevant for the
analysis in this paper. Recently, Buckmaster, Cao-Labora, and Gómez-Serrano [9] have extended
the construction of smooth isentropic implosion profiles to cover all adiabatic exponents > 1,
and established the profile properties for stability analysis in the diatomic case with an adiabatic
exponent 7/5. Very recently, Shao, Wang, Wei, and Zhang [74] have specifically addressed the
degenerate monatomic case with an adiabatic exponent 5/3, establishing the existence of smooth
isentropic self-similar implosion profiles for a sequence of blowup speeds rn. These values approach
(from the left) the limiting value r∗ = 3 −

√
3 and correspond to the largest possible self-similar

exponent r for smooth isentropic implosion with radially symmetric profiles. See Section 2.2.1
below. The limitation r < r∗ = 3−

√
3 is the only cause for the limitation γ >

√
3 in Theorem 1.1;

see also Remark 1.2. Moreover, the authors [74] established the profile properties for stability
analysis (see Lemma 3.1), which we will use in our stability analysis.

The constructions in [9,67,74] are inherently radially symmetric, raising the question of whether
smooth implosions exist without radial symmetry. In [16], Cao-Labora, Gómez-Serrano, Shi, and
Staffilani proved that the existing radial implosion profiles are stable for non-radial perturbation in
a finite codimension set. In a different direction Chen, Cialdea, Shkoller, and Vicol [23] proved that
a radially symmetric (hence irrotational) implosion may be “lifted” as an axisymmetric imploding
solution to the 2D compressible Euler equations, which exhibits vorticity blowup in finite time. A
distinctive feature is that the swirl velocity enjoys full stability, rather than the finite-codimension
stability. This result was subsequently generalized to dimensions d ≥ 3 by Chen [22]. At the
technical level, the analytical framework put forth in [23] and [22] establishes the global weighted
Hk stability estimates of implosion based on the primary flow variables and plays a key role for the
analysis in the current paper. See Section 2.5 below.

We emphasize that the smooth implosion mechanism discovered for the compressible Euler sys-
tem has been shown to have profound implications for singularity formation in related equations.
The works [9,67,74] establish implosion for compressible Navier–Stokes by showing that the Euler
self-similar profile dominates the dynamics in appropriate parameter regimes, with viscosity treated
as a perturbation. Via the Madelung transform, the defocusing NLS maps to a system resembling
compressible Euler with quantum pressure. Merle, Raphaël, Rodnianski, and Szeftel [66] used
their Euler implosion profiles to prove finite time blowup for the energy-supercritical defocusing
NLS, resolving a longstanding open problem. Non-radial extensions were obtained in [15]. Shao,
Wei, and Zhang [75] constructed self-similar imploding solutions for the relativistic Euler equations
and used them to prove blowup for the supercritical defocusing nonlinear wave equation [76] with
complex-valued solution. Subsequent work by Buckmaster and Chen [10] established the blowup
result in dimension d = 4 and for the nonlinearity p = 7, which corresponds to the end-point case of
the blowup mechanism for the wave equation with a radially symmetric, complex-valued solution.

We note that all known smooth implosions [9, 67, 74] share three fundamental limitations: the
blowup profiles are radially symmetric, they apply only to the isentropic Euler equations, and
they are unstable in the sense that only a non-quantitative, finite codimensional manifold of initial
data leads to implosion. It remains a formidable open challenge to discover (1) smooth imploding
solutions with non-radial profiles, and (2) smooth imploding solutions for the full (non-isentropic)
compressible Euler equations that are also stable; that is, attracting an open set of initial data (with
respect to a suitable topology). Such stable, non-isentropic implosions, if they exist, would need
to be fundamentally different. For the physically important case of adiabatic exponent equaling
5/3 (monatomic gas), in three dimensions, the discovery of these solutions would have immediate
consequences, potentially extending the range of possible blowup speeds r, and hence the admissible
values of γ (cf. (2.3)) for which the results established in this paper may be established.



12 J. BEDROSSIAN, J. CHEN, M. GUALDANI, S. JI, V. VICOL, AND J. YANG

1.2.3. Hydrodynamic limits. The classical problem of hydrodynamic limits is generally focused on
studying the limit ϵ→ 0 in equations such as

∂tf + v · ∇xf =
1

ϵ
Q(f, f)

over a fixed time window t ∈ [0, T ], which can be extended to a variety of kinetic models arising
in gas dynamics, plasmas, and a variety of corresponding macroscopic models; see e.g. [6, 12, 33,
34, 41, 51, 52, 73] and the references therein. Traditionally, this limit is performed using a Hilbert
or Chapman–Enskog expansion (the latter providing the next order viscous corrections) and often
work with smooth solutions, though sometimes the limits are only weak solutions. While our
result is inspired by the idea of hydrodynamic limits, our approach differs from previous work. In
particular, we fix a small ε0 in (1.1) rather than taking ε → 0 [6], and obtain estimates for the
Landau equation and its associated compressible Euler equations up to the blowup time T , rather
than only before T [12, 34,52].

Another closely related variation that is more related to this work, are the kinetic-level construc-
tion of rarefaction waves [31], contact waves [32], and especially inner shock-layers [2, 13, 69, 89],
where a weak shock behaves similar to a sort of hydrodynamic limit at small, but fixed ϵ (essentially
the jump-size becomes the analogue of ϵ). The weak shock proofs proceed by constructing an exact
traveling wave solution of the Landau or Boltzmann equations by perturbing around a traveling
wave solution of the compressible Navier–Stokes equations. These proofs are not dynamical and
do not prove stability up to translations, only construct traveling waves. While these shock proofs
are closer to our work than a traditional hydrodynamic limit, our result and proof proceed quite
differently from any of these existing works. In our case, the limit only occurs in re-scaled time
s→ ∞ and in a region shrinking to the origin (x, v) = (0, 0), involves the formation of a finite time
imploding singularity in the macroscopic equations, and necessitates a fully dynamical argument
which proves finite codimensional stability of the blowup.

Organization. The rest of the paper is organized as follows. In Section 2, we introduce the self-
similar ansatz and outline the proof of Theorem 1.1. Section 3 discusses the properties of the
Euler imploding profile and introduces the equations for the macro-perturbation. In Section 4, we
establish the linear stability estimates for the macro-perturbation. Sections 5 and 6 are devoted to
estimates of the collision operator and to linear stability estimates for the micro-perturbation. In
Section 7, we estimate the top-order interaction terms between the macro and micro perturbations.
In Section 8, we estimate the nonlinear terms in the stability analysis. Building on these estimates,
we construct the blowup solution and prove Theorem 1.1 in Section 9. Finally, in Section 10, we
establish local well-posedness results for the fixed-point equations introduced in Section 9 and for
the Landau equation. Additional technical estimates and derivations are deferred to the Appendix.

2. Self-similar ansatz and outline of the proof

In this section, we develop the framework that reduces constructing finite time singularities in
the Landau equation (1.1) to establishing nonlinear stability of the local Maxwellian in self-similar
variables. We first derive the self-similar ansatz for the Landau equation (1.1) under a Type II
scaling, and then consider its formal hydrodynamic limit to the compressible Euler equations. This
converts the original equation into equation (2.23b). Then, we introduce the functional spaces
and analytic framework for the stability analysis. In Section 2.5, we outline the steps for proving
nonlinear stability and Theorem 1.1.

2.1. Self-similar blowup ansatz. For any function f and l > 0, the collision operator Q (1.2)
satisfies the following scaling property in v

Q(fl, fl)(v) = l−(γ+3)Q(f, f)(lv), fl(v) = f(lv).



13

We consider the self-similar ansatz

f(t, x, v) = (1− t)cfF
(
s,

x

(1− t)cx
,

v

(1− t)cv

)
,

s = − log(1− t), X =
x

(1− t)cx
, V =

v

(1− t)cv
,

(2.1)

where cf , cx, cv are time-independent blowup exponents. 9 The physical time t = 0 corresponds to
s = 0 in the self-similar variables, and the blowup time t = 1 corresponds to s = ∞. We have

∂tf = (1− t)cf−1(−cfF + cxX · ∇X + cvV · ∇V + ∂sF ),

v · ∇xf = (1− t)cf−cx+cvV · ∇xF,

Q(f, f)(v) = (1− t)2cf+(γ+3)cvQ(F, F ).

Choosing
cf − 1 = cf − cx + cv ⇐⇒ cx = cv + 1, (2.2a)

and using the above identities, we get the self-similar equation of F

∂sF + (cxX · ∇X + V · ∇X + cvV · ∇V )F = cfF +
1

εs
Q(F, F ), (2.2b)

where the Knudsen number in the self-similar equation is given by

εs = ε0(1− t)−(cf+(γ+3)cv+1) = ε0 e
s(cf+(γ+3)cv+1) . (2.2c)

If cf +(γ+3)cv +1 = 0, then the transport terms and the collision term in (2.2b) have the same
scaling, and we obtain the rate for Type I blowup. If, on the other hand

cf + (γ + 3)cv + 1 < 0, (2.3)

then we obtain εs → 0 as s → ∞; thus, we have a Type II scaling, and we are formally in a kind
of hydrodynamic limit as s → ∞, i.e., the self-similar equation becomes asymptotically collision
dominated. Throughout this paper, we consider exponents satisfying the Type II scaling (2.3).

2.2. Local Maxwellian and the compressible Euler equations. Since εs → 0, to leading order
as s → ∞ one would formally expect the solution to be a local Maxwellian, with hydrodynamic
fields governed by the Euler equations. Hence, we construct the profile F̄ as a local Maxwellian,
with fields that can a priori depend on time s

F̄ = Mρ,U,Θ = ρ(s,X)
1

(2πΘ(s,X))3/2
exp

(
− |V −U(s,X)|2

2Θ(s,X)

)
. (2.4)

A direct computation yieldsˆ
F̄ dV = ρ,

ˆ
F̄ V dV = ρU,

ˆ
F̄ V ⊗ V dV = ρ(ΘId +U⊗U),

ˆ
F̄ |V |2V dV = ρU(5Θ + |U|2).

(2.5)

We determine ρ,Θ,U, cx, cv, cf by integrating (2.2b) against 1, Vi, |V |2, which yields the self-similar
equations for the full compressible Euler equations

(∂s + cxX · ∇)ρ+∇ · (ρU) = (cf + 3cv)ρ,

(∂s + cxX · ∇)(ρU) +∇ · (ρ(ΘId +U⊗U)) = (cf + 4cv)ρU,

(∂s + cxX · ∇)(ρ(3Θ + |U|2)) +∇ · (ρU(5Θ + |U|2)) = (cf + 5cv)ρ(3Θ + |U|2).
(2.6a)

9In self-similar analysis, cf , cx, cv are commonly referred to as modulation parameters. They can be chosen to
eliminate unstable or neutrally stable directions of the blowup profile that arise from scaling symmetries of the
equation. Since in this work we establish only finite codimension stability—rather than full stability, we choose
time-independent parameters cf , cx, cv to simplify the analysis.
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We introduce the pressure P = ρΘ, 10 so we can rewrite the above system equivalently for (ρ,U, P )

[∂s + (cxX +U) · ∇]ρ+ ρ(∇ ·U) = (cf + 3cv)ρ,

[∂s + (cxX +U) · ∇]U+
1

ρ
∇P = cvU,

[∂s + (cxX +U) · ∇]P +
5

3
P (∇ ·U) = (cf + 5cv)P.

(2.6b)

Let κ = 5
3 be the adiabatic exponent for monatomic gases.11 The pressure can be expressed by

the ideal gas law in terms of the density ρ and the specific entropy s, or the pseudo entropy B, via

P = ρΘ =
1

κ
ρκ es, B = es, κ =

5

3
, (2.7a)

so that P = 1
κρ

κB. Here Θ denotes temperature. We further introduce the sound speed C 12

C =

√
dP

dρ
= ρ

κ−1
2 B

1
2 . (2.7b)

Then ρ and P can be expressed in term of C and B as ρ = C
2

κ−1B− 1
κ−1 , P = 1

κC
2κ
κ−1B− 1

κ−1 . Note

that P
ρ = 1

κC
2, and

1

ρ
∇P =

1

κ
C2∇ logP =

2

κ− 1
C∇C− 1

(κ− 1)κ
C2∇B

B
.

Then we can rewrite (2.6) as the compressible Euler in terms of the unknowns (U,C, B) as

[∂s + (cxX +U) · ∇]C+
κ− 1

2
C(∇ ·U) = cvC,

[∂s + (cxX +U) · ∇]U+
2

κ− 1
C∇C = cvU+

1

(κ− 1)κ
C2∇B

B
,

[∂s + (cxX +U) · ∇]B = (1− κ)cfB.

(2.8)

2.2.1. Smooth implosion for the Isentropic Euler equations. Taking B ≡ 1 and cf = 0, we get the
isentropic Euler system

[∂s + (cxX +U) · ∇]C+
1

3
C(∇ ·U) = cvC,

[∂s + (cxX +U) · ∇]U+ 3C∇C = cvU.
(2.9)

The recent work [74] extends the construction in [9, 67] on smooth imploding blowup solutions
for the 3D isentropic Euler equations, in the case of monatomic gases (κ = 5/3); moreover, [74]
constructed a sequence of smooth radially symmetric profiles (Un,Cn, Bn ≡ 1, cx,n, cv,n) with

cx,n =
1

rn
, cv,n =

1

rn
− 1, rn → (r∗)

−, r∗ =
6

3 +
√
3
= 3−

√
3, (2.10)

To achieve the Type II blowup condition that suggests a hydrodynamic limit to the 3D isentropic
Euler equations, we need εs → 0 (defined in (2.2c)) as s → +∞. That is, εs = ε0 e

−ωs with ω
defined as

ω(γ, r) := −cf − (γ + 3)cv − 1 = −(γ + 3)

(
1

r
− 1

)
− 1 = γ + 2− γ + 3

r
> 0. (2.11a)

10We use the law P = ρRΘ with R = 1.
11We use κ = 5

3
for the adiabatic exponent rather than the canonical notation γ, since γ is used to denote the

exponent for the collision kernel (1.2).
12The sound speed C differs from the rescaled sound speed σ in [22,23], and we do not use the rescaled sound speed
in this paper.
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In the limit cv,n = 1
rn

− 1 → 1
r∗

− 1, the constraint (2.11a) reduces to

γ >
√
3.

For each γ >
√
3, we choose n to be large enough so that 3−

√
3− rn is small enough to ensure

ω(γ, rn) > 0 in (2.11a). For such a chosen n, for the rest of the paper we fix the smooth radial profile
(Un,Cn) which solves (2.9) with exponents determined by (2.10) in terms of rn. For simplicity, we
denote

Ū = Un, C̄ = Cn, r = rn, (2.12a)

and simplify (cx,n, cv,n) in (2.10) as (c̄x, c̄v). We denote

c̄f = 0, c̄v =
1

r
− 1, c̄x =

1

r
, (2.12b)

and denote Ū = ŪeR, B̄ ≡ 1. The relation (2.7) reduces to

ρ̄ = C̄3, P̄ =
1

κ
ρ̄κ =

1

κ
C̄5, Θ̄ =

1

κ
ρ̄2/3 =

1

κ
C̄2. (2.12c)

2.2.2. Modified Euler profile. To construct a blowup solution with non-vacuous density for large
|X|, we modify the tail of the Euler profile. For R0 ≫ 1 which will be chosen to be sufficiently
large, we define the time-dependent cut-off radius Rs by

Rs := R0 e
c̄xs = R0 e

s/r . (2.13)

Let χ ∈ C∞
c (R3) be a radial cut-off function with 1B1 ≤ χ ≤ 1B2 , so that χR(X) := χ(X/R)

becomes a cut-off function between BR and B2R, where Ba denotes the ball {|X| : |X| < a}. We
modify the profile in (2.12) based on the cutoff profile (Ū, C̄s) where

C̄s := C̄χRs +Rs
−r+1(1− χRs), (2.14a)

and for consistency with (2.7) we define

ρ̄s := C̄3
s, Θ̄s :=

1

κ
C̄2
s, P̄s :=

1

κ
C̄5
s. (2.14b)

The purpose of (2.14) is to replace the sound speed C̄ by a (time-dependent) constant in the far-
field, so that the profiles of ρ̄s, P̄s are positive constants for large |X|. From the relation (2.1),
|X| ≈ Rs corresponds to |x| ≈ R0 in the physical variable.

Remark 2.1 (Far-field profiles). From (3.1a), we have C̄ ≍ Rs
−(r−1) for |X| ∈ [Rs, 2Rs]. The

term Rs
−(r−1) in the second part in (2.14) captures the correct scale of C̄(X) for |X| ∈ [Rs, 2Rs].

In addition, instead of Rs
−(r−1), we can choose another far-field profile in Rs

−r+1(1−χRs) (2.14) to
obtain different far-field asymptotics of the macroscopic part of the blowup solution. For example,
we can use C̄ as the profile and do not need the modification in (2.14). In that case, the associated
density profile ρ̄(X) would vanish to 0 as |X| → ∞.

Remark 2.2 (Growth rate Rs). Note that the growth rate in Rs defined in (2.13) is the same
as the self-similar spatial rate (1 − t)−c̄x = ec̄xs in (2.1). From (2.1), the far-field profile C̄s(X) =

Rs
−(r−1) for |X| > 2Rs in the self-similar variables corresponds to a constant profile for |x| > 2R0

in the original physical variables. This choice of growth rate is crucial for us to show that both the
perturbation and residual error of the profile are relatively small. See Lemma A.1.

Next, we introduce a normalized relative velocity V̊ , which plays a fundamental role in our
analysis, and is defined by

V̊ :=
V − Ū

C̄s
. (2.15)
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To fix notation, we also let µ denote a specific Gaussian:

µ(x) =
( κ
2π

) 3
2
exp

(
−κ2|x|2

)
, κ =

5

3
, κ2 =

κ

2
=

5

6
. (2.16)

The parameter κ2 appears naturally in the local Maxwellian (2.4).
In the rest of the paper, we denote by M,M1 the time-dependent local Maxwellians (2.4)

M1 = M1,Ū,Θ̄s
, M = Mρ̄s,Ū,Θ̄s

= ρ̄sM1. (2.17a)

Using the notation µ(·) from (2.16) and the cutoff profiles from (2.14), we can rewrite the local

Maxwellian in terms of V̊

M1 = C̄−3
s µ(V̊ ), M = C̄3

sM1 = µ(V̊ ). (2.17b)

Thus, the variable V̊ can be viewed as the normalized V adapted to the local Maxwellian profile.

Error of the profile. Since the modified profile does not solve the isentropic Euler equations
exactly, we introduce the following micro-error EM and macro-error (Eρ, EU, EP ) associated with
the above-defined profiles

EM := (∂s + c̄xX · ∇X + c̄xV · ∇V + V · ∇X)M,

Eρ := C̄−3
s ⟨EM, 1⟩V , EU := C̄−4

s ⟨EM, V − Ū⟩V , EP := C̄−5
s

〈
EM,

1

3
|V − Ū|2

〉
V

,
(2.18a)

where ⟨·, ·⟩V is defined as

⟨f, g⟩V :=

ˆ
f(V )g(V )dV. (2.18b)

We introduce the relative error EC in solving the C−equation (2.9) using the modified profile (C̄s, Ū):

EC = C̄−1
s

(
[∂s + (c̄xX + Ū) · ∇]C̄s +

1

3
C̄s(∇ · Ū)− c̄vC̄s

)
= [∂s + (c̄xX + Ū) · ∇] log C̄s +

1

3
(∇ · Ū)− c̄v.

(2.18c)

The errors (Eρ, EU, EP , EC) are supported in the far-field |X| ≥ Rs and have appropriate decay as
|X| → ∞. We estimate these errors in Lemma A.1 of Appendix A.1. We defer the computation of
EM to Lemma C.9.

2.3. Decomposition of the perturbation. Let M,M1 be the local Maxwellians defined in
(2.17). Our goal is to construct a global solution to the self-similar equation (2.2) near the local
Maxwellian M. To this end, we decompose the full solution to (2.2) as 13

F = M+M1/2
1 F̃ . (2.19)

Denote

Φ0 = M1/2
1 ,

Φi =
Vi − Ūi

Θ̄
1/2
s

M1/2
1 = κ1/2V̊iM1/2

1 , i = 1, 2, 3,

Φ4 =
1√
6

(
|V − Ū|2

Θ̄s
− 3

)
M1/2

1 =
κ√
6

(
|V̊ |2 − 9

5

)
M1/2

1 .

(2.20)

By elementary computation, we have

⟨Φi,Φj⟩V = δij .

13We renormalize the perturbation by M1/2
1 rather than M1/2 since the density in M1 is ρ ≡ 1 and it is more

convenient to define orthogonality using M1/2
1 .
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For a function g ∈ L2(V ), we use PM and Pm
14 to denote the projection onto the macro and

micro parts

PMg :=
∑

0≤i≤4

⟨g,Φi⟩V Φi, Pmg := (I − PM )g. (2.21a)

We denote the macro part and the micro part of F̃ by:

F̃M := PM F̃ , F̃m := PmF̃ . (2.21b)

Remark 2.3 (Macro- and micro-perturbations). Throughout the paper, we refer to F̃M as

the macro-perturbation and F̃m as the micro-perturbation.

Denote the transport operator T and the symmetric linear collision operator LM by

T g := (V · ∇X + c̄xX · ∇X + c̄vV · ∇V )g,

LMg := M−1/2
1

[
Q(M,M1/2

1 g) +Q(M1/2
1 g,M)

]
,

(2.22a)

and denote the nonlinear collision operator N by

N (f, g) = M−1/2
1 Q(M1/2

1 f,M1/2
1 g). (2.22b)

We denote the following moments from the micro part

I1(F̃m) :=
〈
V · ∇X(M1/2

1 F̃m), V̊
〉
V
,

I2(F̃m) :=
〈
V · ∇X(M1/2

1 F̃m) ,
1

3
|V̊ |2

〉
V
.

(2.22c)

Recall the exponents c̄x, c̄f , c̄v from(2.12). We choose time-independent blowup exponents cx, cv, cf :

cf = c̄f = 0, cx = c̄x = r−1, cv = c̄v = r−1 − 1.

Linearizing (2.2) around the local Maxwellian (2.17), we obtain the linearized equation for the
perturbation

∂s(M
1
2
1 F̃ ) + T (M

1
2
1 F̃ ) =

1

εs

[
Q(M,M

1
2
1 F̃ ) +Q(M

1
2
1 F̃ ,M) +Q(M

1
2
1 F̃ ,M

1
2
1 F̃ )

]
− EM, (2.23a)

where EM = (∂s + T )M is the error defined in (2.18). We derive the linearized equation of F̃ by

dividing M1/2
1 :

(∂s + T )F̃ +
1

2
(∂s + T ) logM1 · F̃ =

1

εs
LMF̃ +

1

εs
N (F̃ , F̃ )−M−1/2

1 EM,

where the logM1 term comes from

M−1/2
1 (∂s + T )M1/2

1 =
1

2
(∂s + T ) logM1.

The leading order term of this term is −3
2 c̄v (see (C.16)), so we introduce dM and write

1

2
(∂s + T ) logM1 = dM − 3

2
c̄v.

The linearized equation for the perturbation F̃ is thus(
∂s + T + dM − 3

2
c̄v

)
F̃ =

1

εs
LMF̃ +

1

εs
N (F̃ , F̃ )−M−1/2

1 EM. (2.23b)

We aim to construct a non-trivial global-in-time solution to (2.23) by establishing the nonlinear

stability estimates of F̃ , upon modulating finitely many unstable directions. Using the self-similar
transform (2.1) with exponents (2.12), we construct a finite time singularity in the Landau equation

14We use the calligraphic font to denote the operator P and P for the pressure to avoid confusion.
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(1.1). We introduce the functional spaces in the next subsection and outline the proofs in Section
2.5.

2.4. Functional spaces and weighted derivatives.

2.4.1. Weighted derivatives. In view of the local Maxwellian (2.17), we introduce weighted X,V -
derivatives to capture the scaling of the profile M and the perturbation. Let φ1 = φ1(X) be a
positive smooth weight to be designed in Lemma 4.1. For any multi-indices α, β ∈ Z3

≥0, we define

(weighted) derivatives 15

Dα
X := φ

|α|
1 ∂αX , Dβ

V := C̄|β|
s ∂βV , Dα,β := φ

|α|
1 C̄|β|

s ∂αX∂
β
V , ∂

(α,β)
X,V := ∂αX∂

β
V , (2.24)

where we denote ∂θZ = ∂θ1Z1
∂θ2Z2

∂θ3Z3
for Z = X,V ∈ R3 and θ = α, β. By definition, the weighted

derivatives satisfy the usual Leibniz rule.
For k ≥ 0, we define the tensor D≤kf spanned by the mixed derivatives of f

D≤kf := {Dα,βf}|α|+|β|≤k, |D≤kf | =
( ∑

|α|+|β|≤k

|Dα,βf |2
)1/2

, (2.25)

andD<kf = 1k>0D
≤k−1f . Similarly, we define the tensorD⪯(α,β) spanned by the mixed derivatives

of f :

D⪯(α,β) = {Dα′,β′}α′⪯α,β′⪯β, |D⪯(α,β)| =
(∑

α′⪯α
β′⪯β

|Dα′,β′
f |2
)1/2

. (2.26)

D≺(α,β) are defined analogously, where (α′, β′) ≺ (α, β) if α′ ⪯ α, β′ ⪯ β, and at least one of the
inequality ⪯ is strict ≺.

Motivation of Dα,β. Following [22,23], we use the weight φ1 ≍ ⟨X⟩ to capture the flow structure
in the compressible Euler equations for stability analysis. See details in Section 4. We weight ∂V
by the standard deviation in M (2.17) so that the weighted operator DV is similar to ∂V̊ . For

example, we have DV V̊i = ei is the i-th basis vector, and DV µ(V̊ ) = (∇µ)(V̊ ).
A crucial property of Dα,β is that it commutes with the self-similar flow ∂s + T in equations

(2.23), up to lower order terms that decay faster in X. See Lemma C.10 (2). We use this property

crucially to perform sharp decay estimates for F̃ in X and its higher order derivatives. See Lemma
B.4. Moreover, in many cases, Dα,β behaves similarly to a constant multiplier and simplifies many
estimates.

2.4.2. Weighted Sobolev norms: σ, X , Y-norms. Now we introduce function spaces in X and V .

X -norm. For hydrodynamic fields W = (U, P,B) which are functions of X, we equip the following
norm. For any k ≥ 0, η ∈ R, and some parameter ϖk,η determined in Theorem 4.2, we introduce

the X 2k
η -norm to analyze W and the Euler equations

⟨(Ua, Pa, Ba), (Ub, Pb, Bb)⟩X 2k
η

:=

ˆ ∑
g=U,P,B

wg(∆
kga ·∆kgb φ

2
2k +ϖk,ηga · gb) ⟨X⟩ηdX, k ≥ 1,

(wU, wP , wB) := (1, 1, 32), (2.27)

The X 2k+1
η -norm is defined similarly; see (4.6).

15Note that we do not have D2α
X = (Dα

X)2 or similar identities since we first take derivatives and then multiply the
weights. They do agree up to lower order terms: see Corollary C.3.
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σ-norm. For the micro-perturbation, we first introduce the σ-norm by generalizing the correspond-
ing norm in [47]. For a function g, we define the collision norm in V as (recall M(V ) = µ(V̊ ))

∥g∥2σ :=

ˆ
R3

A[M]∇V g · ∇V g + κ22C̄
−2
s A[MV̊ ⊗ V̊ ]g2dV

= C̄γ+5
s

ˆ
R3

A[µ](V̊ )∇V g · ∇V gdV + κ22C̄
γ+3
s

ˆ
R3

A[µV̊ ⊗ V̊ ](V̊ )g2dV,

(2.28)

where we recall the definition of A[f ] from (1.2b):

A[f ](V ) =

ˆ
Φ(V −W )f(W )dW =

ˆ
|V −W |γ+2(Id−ΠV−W )f(W )dW.

Here ΠV = V
|V | ⊗

V
|V | is the projection along the V direction. We define A[f ] the same way if f is

a vector-valued function, and for matrix-valued function f we define

A[f ](V ) =

ˆ
Φ(V −W ) : f(W )dW =

1

8π

ˆ
|V −W |γ+2(Id−ΠV−W ) : f(W )dW,

with matrix product f : g =
∑3

i=1

∑3
j=1 fijgij .

Y-norm. Now we introduce new norms that also take into account the X variable. For every η ∈ R,
we define

∥g∥2Yη
:=

ˆ
⟨X⟩η∥g∥2L2(V )dX, ∥g∥2YΛ,η

:=

ˆ
⟨X⟩η∥g∥2σdX. (2.29a)

Then we introduce the Hk counterparts of these norms:

∥g∥2Yk
η
:=

∑
|α|+|β|≤k

ν|α|+|β|−k |α|!
α!

ˆ
⟨X⟩η∥Dα,βg∥2L2(V )dX,

∥g∥2Yk
Λ,η

:=
∑

|α|+|β|≤k

ν|α|+|β|−k |α|!
α!

ˆ
⟨X⟩η∥Dα,βg∥2σdX,

(2.29b)

with constant coefficients ν|α|+|β|−k depending on ν ≪ 1 to be determined in Theorem 6.3, where
α, β ∈ Z3

≥0 are multi-indices, n! =
∏

1≤i≤n i denotes the factorial, and α! = α1!α2!α3! for multi-

index α = (α1, α2, α3). Note that Yη and YΛ,η coincide with Y0
η and Y0

Λ,η. We define ⟨·, ·⟩Yk
η
,

⟨·, ·⟩Yk
Λ,η

to be the inner product associated with the norm Yk
η and Yk

Λ,η.

We choose the weight νk−k = 1 for the top-order derivative terms with |α| + |β| = k in the

Yk
η -norm to facilitate the top-order estimates in Section 7. The multiplicity constant |α|!

α! in (2.29b)
arises from the difference between two sums:∑

|α|=n

|α|!
α!

H(∂αXg1, ∂
α
Xg2) =

∑
i1,..,in∈{1,2,3}

H(∂Xi1
..∂Xin

g1, ∂Xi1
..∂Xin

g2), (2.30)

for any function gi and functional H. The left hand side sums over different multi-indices α =
(α1, α2, α3) with |α| = n. The proof follows from a simple combinatorial calculation and is omitted.

Critical exponent. By choosing different exponents η in (2.27) and (2.29), we obtain different
coercivity estimates of the linear operators in (2.23). See estimates (2.34),(2.35). We define

η̄ = −3 + 6(r − 1). (2.31)

Under the self-similar scaling for the density ρ: ρλ = λ3c̄vρ
(

X
λc̄x

)
= λ−3(1−1/r)ρ

(
X

λ1/r

)
with λ > 0,

16 the exponent η̄ can be viewed as weighted L2-critical since the following η̄-weighted norm is

16Using (2.1) with cf = 0 and ϱ defined in (1.4), one can show that the self-similar ansatz for density is : ϱ =
(1− t)3cvρ( X

(1−t)cx
).
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invariant ˆ
ρ2|X|η̄dX =

ˆ
ρ2λ|X|η̄dX. (2.32)

In Section 3.2, we normalize the hydrodynamic variables W̃ = (Ũ, P̃ , B̃) for the perturbation so
that they have the same scaling as the density ρ.

2.5. Steps and ideas of the proof. To establish the nonlinear stability of the perturbation and
construct global solutions to (2.23), our argument proceeds in the following steps.

Step 1. Decomposing the perturbation. We decompose the perturbation F̃ into a macroscopic part

F̃M , a microscopic part F̃m, and derive the equations for F̃M and F̃m using (2.23b). For εs suf-

ficiently small, the evolutions of F̃M and F̃m are weakly coupled via the kinetic transport term
V · ∇X F̃ and the nonlinear terms. This structure allows us to essentially decompose the whole
stability analysis into proving the stability of the macro-perturbation and micro-perturbation sep-
arately.

Size of perturbation. We design the X k
η norm (see (2.27), or (4.6)) to analyze the hydrodynamic

fields of the macro-perturbation W̃ = (Ũ, P̃ , B̃) (see Step 2), and the Yk
η norm (see (2.29)) to

analyze the micro-perturbation; here k indicates the regularity index and η indicates the power of
|X| in the weight.

Let η̄ be the exponent in (2.31). We choose weights with two exponents η̄ and η with η < η̄ in
order to capture different temporal and spatial decays; we also choose two regularity indices k, k+1
with k sufficiently large.

Exponential decay estimates. In the norm with faster-decaying weights indicated by η, we aim
to establish

∥W̃(s)∥X 2k+2
η

, ∥F̃m(s)∥Y2k+2
η

< εs
1/2−ℓ, ℓ = 10−4, (2.33a)

∥W̃(s)∥X 2k
η
< εs

2/3, (2.33b)

for any s ≥ 0. We fix ℓ > 0 to be a sufficiently small absolute parameter and use εs
−ℓ for small ε0

to absorb any large absolute constants. Recall εs = ε0 e
−ωs from (2.11a).

Relative smallness estimates. The estimates in (2.33) yield non-sharp spatial decay estimates
for the perturbation at large |X| and are insufficient to close the nonlinear estimates. To overcome
this, we also work in the norms with critical decaying weights indicated by η̄ and aim to establish

∥W̃(s)∥X 2k+2
η̄

, ∥F̃m(s)∥Y2k+2
η̄

< δℓ, ∀s ≥ 0. (2.33c)

We choose ε0 = δ to be sufficiently small after we fix the parameters k, η, η̄, ℓ.

For |X| sufficiently large, due to the decay of the mass ρ̄s(X) and variance Θ̄s(X), the coercivity
estimates obtained from the linear collision operator LM become much weaker. Moreover, since
the far-field of the η̄-based norm X n

η̄ ,Yn
η̄ (n = 2k or 2k+2) is almost invariant under the self-similar

scaling (based on identities similar to (2.32)), the self-similar scaling fields c̄xX · ∇X + c̄vV · ∇V

in (2.22)-(2.23) do not generate a damping effect for large |X| in the X n
η̄ ,Yn

η̄ -estimates. As a
result, we can establish only smallness, rather than decay, estimates for the perturbation in the
norms in (2.33c). Estimate (2.33c) implies that ρ̃ is small relative to its profile ρ̄s and implies
relative smallness of similar variables and their weighted derivatives via the embedding inequalities
in Lemma B.4.

In the η-based norm, with η < η̄, we use the stability mechanism from the scaling fields c̄xX ·
∇X + c̄vV · ∇V in (2.22)-(2.23), leading to the exponential decay estimates in (2.33b), (2.33a). By
contrast, in the X n

η and Yn
η energy estimates with η > η̄, the scaling fields c̄xX ·∇X+c̄vV ·∇V induce
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an anti-damping effect, so that the perturbation in these norms is expected to grow exponentially
fast. Therefore, the choice of the functional spaces in (2.33) is crucial for establishing nonlinear
stability.

Step 2. Finite codimension stability of macro-perturbation. The macro-perturbation F̃M is gov-

erned by the linearized Euler equations around the isentropic imploding profile (ρ̄s, Ū, P̄s). Due
to the weak coupling with the micro-perturbation, we need to analyze perturbations to density,
velocity and pressure (ρ̃, Ũ, P̃ ), which are not covered by previous stability analyses of isentropic

implosions [9, 16, 23, 68]. Instead of estimating the system evolving (ρ̃, Ũ, P̃ ), we introduce a vari-

able B̃ related to the entropy, and perform estimates on the system for W̃ = (Ũ, P̃ , B̃), which
is symmetric and hyperbolic. The finite codimension stability of the profile relies on the interior
repulsive property (3.3b), and the outgoing property of the profile (3.3c). We generalize the fi-
nite codimension stability argument developed in [22, 23], and perform weighted linear stability
estimates in Section 4.

Using these stability estimates and applying the splitting method [24] to the perturbation W̃ =

W̃1 + W̃2, up to lower order terms, we obtain

1

2

d

ds
∥W̃1∥2X 2k1

η
≤ −λ1∥W̃1∥2X 2k1

η
+
〈
W̃1, (−I1,−I2, I2)(F̃m)

〉
X 2k1

η

+ l.o.t., (2.34a)

1

2

d

ds
∥W̃∥2X 2k+2

η̄
≤ Ck∥W̃∥2X 2k+2

η
+
〈
W̃, (−I1,−I2, I2)(F̃m)

〉
X 2k+2

η̄

+ l.o.t. (2.34b)

for k1 = k, k + 1, where κ = 5
3 , λ1 > 0 is independent of k and is defined in (2.42). See the

discussion of decay exponents at the end of this Section, e.g. (2.42). Note that the X 2k+2
η̄ -energy

estimates (2.34b) with the critical exponent η = η̄ do not contain any damping terms. It is therefore

important that the upper bound in (2.34b) involves the η-norm ∥W̃∥2
X 2k+2

η
rather than ∥W̃∥2

X 2k+2
η̄

,

since the former will be shown to decay exponentially fast in time (2.33).

The perturbation W̃2 captures the potential unstable modes and is small relative to W̃1. We
treat it as a sufficiently smooth forcing, and discuss its estimate in Step 6.

Step 3. Full stability of micro-perturbation. To control the micro-perturbation F̃m, we use the
coercivity estimates of the linear collision operator LM defined in (2.22a), inspired by [47]. Thanks
to the small parameter εs in (2.23), we can treat the transport term V ·∇X in (2.23) as a perturbation
of the coercive linear part. However, since the density and temperature decay spatially, these
coercivity estimates weaken for large |X|. In this region, we instead combine the coercivity of LM
and the stability effects generated by the scaling fields c̄xX · ∇X + c̄vV · ∇V in (2.22).

We develop these estimates in Sections 5 and 6 and establish 17

1

2

d

ds
∥F̃m∥2Y2k+2

η
≤ −λη∥F̃m∥2Y2k+2

η
− C̄γ

8εs
∥F̃m∥2Y2k+2

Λ,η

+ ⟨F̃m, V · ∇X F̃M ⟩Y2k+2
η

+ εs
−1⟨N (F̃ , F̃ ), F̃m⟩Y2k+2

η
+ Cεs + l.o.t., (2.35a)

1

2

d

ds
∥F̃m∥2Y2k+2

η̄
≤ Ckεs∥F̃m∥2Y2k+2

η̄
− C̄γ

8εs
∥F̃m∥2Y2k+2

Λ,η̄

+ ⟨F̃m, V · ∇X F̃M ⟩Y2k+2
η̄

+ εs
−1⟨N (F̃ , F̃ ), F̃m⟩Y2k+2

η̄
+ Cεs + l.o.t. (2.35b)

17In (2.35b), we may replace the term Ckεs∥F̃m∥2Y2k+2
η̄

by the upper bound Ck∥F̃m∥2Y2k+2
η

. Both estimates are sufficient

to prove nonlinear stability estimates.
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where C̄γ > 0 and λη > λ1 > 0 is independent of k and is defined in (2.42c). The term 1
εs
∥F̃m∥2

Y2k+2
Λ,η

is from the coercivity estimates of LM, and l.o.t. denotes lower order terms that can be treated
perturbatively. We refer to (2.29) for the definition of the norms Yk

η ,Yk
Λ,η. Similar to (2.34b), the

Y2k+2
η̄ -energy estimate (2.35b) does not contain any damping terms of the form −C∥F̃m∥2

Y2k+2
η̄

.

Step 4. Coupled estimates of macro and micro-perturbation. At the linear level, the equations for

the macro F̃M and micro F̃m perturbations are coupled via the transport term V ·∇X , which could
potentially lead to a loss of derivatives. See estimates (2.34) and (2.35).

In Section 7, we show that the cross term in (2.34) can be rewritten as〈
W̃1, (−I1,−I2, I2)(F̃m)

〉
X 2k1

η

=
1

κ
⟨F̃M (W̃1), V · ∇X F̃m⟩Y2k1

η
+ l.o.t., k1 = k, k + 1, (2.36)

up to lower order terms that can be bounded perturbatively; here FM (W̃1) is the macro-perturbation

with hydrodynamic fields W̃1. To avoid loss of derivatives, at the top order weighted H2k+2 esti-

mates, we choose a specific energy norm κ∥W̃1∥2X 2k+2
η

+ ∥F̃m∥2
Y2k+2
η

which satisfies

κ∥W̃1∥2X 2k+2
η

+ ∥F̃m∥2Y2k+2
η

=
∑

|α|+|β|=2k+2

ˆ
φk,η(X)(|Dα,βFM (W̃1)|2 + |Dα,βF̃m|2)dXdV + l.o.t.

for some weight φk,η, where l.o.t. contains terms involving X-derivatives of order at most 2k + 1.

Similarly, we estimate κ∥W̃∥2
X 2k+2

η̄

+ ∥F̃m∥2
Y2k+2
η̄

to close the energy estimates (2.34b) and (2.35b).

The above structure allows us to combine the estimates of the cross terms in (2.34) and (2.35) and
to perform integration by parts, thereby transferring the X-derivatives onto the weight.

Step 5. Estimate of nonlinear terms. We aim to treat the nonlinear terms N defined in (2.22b)
as a small perturbation of the linear coercive part. There are two difficulties. Firstly, the local
Maxwellian is spatially dependent with states decaying in X. Secondly, the coefficient εs

−1 of
the nonlinear terms (2.23) grows exponentially. To overcome the first difficulty, we design careful
weighted estimates in Sections 6 and 8. To overcome the second difficulty, in Section 8, we establish
two types of nonlinear estimates for N (f, g) (2.22b), based on the decomposition 18

N (F̃ , F̃ ) = N (F̃ , F̃m) +N (F̃m, F̃M ) +N (F̃M , F̃M ) := Nm +NmM +NMM . (2.37)

The first two terms contain the micro-perturbation F̃m. For the first term, we establish∣∣∣ 1
εs
⟨N (F̃ , F̃m), F̃m⟩Y2k+2

η

∣∣∣ ≲ 1

εs
∥F̃∥Y2k+2

η̄
∥F̃m∥2Y2k+2

Λ,η

≲
1

εs
(∥W̃∥X 2k+2

η̄
+ ∥F̃m∥Y2k+2

η̄
)∥F̃m∥2Y2k+2

Λ,η

,

(2.38)
for η = η, η̄. Using the crucial relative smallness estimates (2.33c), we treat it as a perturbation of
the coercive terms in (2.35). The second term NmM is estimated similarly.

However, using similar estimates and the top-order bounds (2.33a), (2.33c) is not sufficient to
bound NMM , since this leads to

εs
−1∥W̃∥X 2k+2

η1
∥W̃∥X 2k+2

η2
∥F̃m∥Y2k+2

Λ,η
≲ εs

−1∥F̃m∥2Y2k+2
Λ,η

+ εs
−1∥W̃∥2X 2k+2

η1

∥W̃∥2X 2k+2
η2

≲ εs
−1∥F̃m∥2Y2k+2

Λ,η

+ εs
−2ℓ∥W̃∥2X 2k+2

η2

,

18Note that N is a bilinear operator and F̃ = F̃m + F̃M .
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for suitable η1, η2. Owing to the large factor εs
−2ℓ, the term εs

−2ℓ∥W̃∥2
X 2k+2

η2

cannot be absorbed by

the O(1) damping term in (2.34a). Thus, extra smallness and faster decay estimates are required
to treat NMM as a perturbation of the damping terms in (2.34). 19

To overcome this difficulty, we estimate the perturbation in a lower order weighted Sobolev norm
(2.33b), which provides an extra smallness εs

2/3 compared to εs
1/2−. We further establish 20∣∣∣∣ 1εs ⟨N (F̃M , F̃M ), F̃m⟩Y2k+2

η

∣∣∣∣ ≲ 1

εs
∥F̃M∥Y2k

η
∥F̃M∥Y2k+2

η
∥F̃m∥Y2k+2

Λ,η
≲

1

εs
∥W̃∥X 2k

η
∥F̃M∥Y2k+2

η
∥F̃m∥Y2k+2

Λ,η

(2.33b)

≲ εs
−1/3∥F̃M∥Y2k+2

η
∥F̃m∥Y2k+2

Λ,η
≲ εs

1/6

(
εs

−1∥F̃m∥2Y2k+2
Λ,η

+ ∥F̃M∥2Y2k+2
η

)
,

(2.39)
for η = η and η̄. This allows us to treat the nonlinear term perturbatively. Note that in (2.39),

we gain crucial spatial decay so that we can bound F̃M in the spaces Y2k+2
η and Y2k

η with a weaker

spatial weight ⟨X⟩η, rather than the stronger weight ⟨X⟩η̄ appearing in Y2k+2
η̄ . Moreover, by

interpolation, one of the two F̃M terms can be placed in the lower order norm Y2k
η , which satisfies

the sharper estimate (2.33b).

Step 6. Construction of global solutions to (2.23). We construct a global solution to (2.23), which
satisfies estimates (2.33), by combining the a priori estimates established in previous steps and using

a fixed point argument. To avoid the potential unstable directions and estimate W̃2 in Step 2, we
generalize the argument in [23, 24] by splitting the equations, applying Duhamel’s formula, and

backward-in-time semigroup estimates for W̃2; see (9.4). We consider initial data small enough
(relative to ε0 = δ) in the norms in (2.33) and prove (2.33) using a bootstrap argument. Define

Ek+1,η = κ∥W̃1∥2X 2k+2
η

+ ∥F̃m∥2Y2k+2
η

, Ek+1,η̄ = κ∥W̃∥2X 2k+2
η̄

+ ∥F̃m∥2Y2k+2
η̄

.

We combine estimates (2.34a) and (2.35a) and estimates in Step 4, Step 5 to obtain

1

2

d

ds
Ek+1,η ≤ −λ1Ek+1,η −

C̄γ

4εs
∥F̃m∥2Y2k+2

Λ,η

+ Ckεs. (2.40)

We combine (2.34b) and (2.35b) and estimates in Step 4, Step 5 to obtain

1

2

d

ds
Ek+1,η̄ ≤ CkEk+1,η −

C̄γ

4εs
∥F̃m∥2Y2k+2

Λ,η̄

+ Ckεs.

These estimates imply Ek+1,η ≲k εs, Ek+1,η̄ ≲k δ
1−2ℓ and improve estimate (2.33a). 21

Extra smallness of ∥W̃1∥Xk
η
. With the above top order estimates, we have an improved estimate

at lower order. By interpolating the two damping terms in (2.40), we exploit the large damping

term εs
−1∥F̃m∥Y2k+2

Λ,η
and bound the cross term in (2.34a) with k1 = k:

1

2

d

ds
∥W̃1∥2X 2k

η
≤ −λ1∥W̃1∥2X 2k

η
+ Ckεs

1/2∥W̃1∥X 2k
η

·
( 1

εs
∥F̃m∥2Y2k+2

Λ,η

)1/2
+ Ckεs

2, (2.41)

where the last term Ckεs
2 arises from estimating terms introduced by the profile modification in

(2.14) and is negligible compared to other terms. The small factor εs
1/2 in the above estimates

19This difficulty does not appear in the stability analysis of the global Maxwellian with a fixed εs, e.g. [17, 47].
20Let F̃M be the macro-perturbation with hydrodynamic fields W̃. From Lemma C.13, we have the equivalence

∥F̃M∥Yk
η
≍k,η ∥W̃∥Xk

η
.

21We have εs = δ e−ωs (2.43) and choose λ1 > ω (2.42).
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shows that at lower order, the estimates of the micro and macro perturbation are weakly coupled.
Combining estimates (2.41), (2.40), and using the extra small factor εs

1/2, we improve (2.33b).
With these global estimates, we choose the initial perturbation carefully to ensure non-negativity

of initial data and prove Theorem 1.1.

Remark 2.4 (Effect of dissipation). To illustrate the mechanism behind the improved estimates

for ∥W̃1∥X 2k
η

in (2.41), we consider a simplified model. Approximating (T + dM− 3
2 c̄v)F̃ by F̃ , the

error term −M−1/2
1 EM by 1, the dissipative operator LMF̃ by a damping term −F̃ , and neglecting

the nonlinear terms N , equation (2.23b) may be heuristically reduced to

∂sF̃ + F̃ = −εs−1 F̃ + 1.

For small ε0 and initial data, the dissipation −εs−1F̃ leads to |F̃ (s)| ≲ εs, which is much smaller

than the scale εs
1/2−ℓ in (2.33). This suggests that exploiting the dissipation yields sharper esti-

mates. At the top-order level, however, this mechanism cannot be fully exploited, since closing the
estimates (2.34),(2.35),(2.40) requires the specific coupled structure between F̃m and F̃M in Step 4.
Instead, we exploit the dissipative effect at the lower-order level in (2.41) to establish (2.33b).

2.5.1. Choice of the parameters. Below, we discuss several parameters in the energy estimates.

Parameters of decay and weights. We discuss the constraint on the exponent η and choose
λη, λ1, which appeared in the above steps. Recall the definition of ω from (2.11), c̄x from (2.12),

and η̄ from (2.31). We choose η with the following properties

c̄x
4
(η̄ − η) > ω > 0, (2.42a)

η̄ − η ≤ (1 + ω)r

2
. (2.42b)

From Remark 2.5, it is not difficult to see that the constraints for η form a non-empty interval.
We define its related decay exponents λη and choose λ1 close to λη such that

λη :=
c̄x
4
(η̄ − η), ω < λ1 < λη. (2.42c)

The factors λ1 and λη are related to the spectral gap in the linear stability estimate, for the

Yη and Xη norms, respectively; see (2.34), (2.35), (2.40), and Theorem 4.2. We impose the lower

bound on η̄ − η in (2.42a) so that the linear damping terms, e.g. −λ1Ek+1,η lead to decay faster

than the error εs (2.40). 22

We impose the upper bounds on η̄− η in (2.42b) so that the Yη-norm is not too weak compared

to the Yη̄-norm. This constraint comes from estimate (2.39), where we bound the Yη̄-estimate of
the nonlinear term using the weaker Yη-norm. See more details in (8.1) and Theorem 8.1.

Parameters related to εs, Rs. Recall ω, c̄v, c̄x from (2.12) and (2.11). For some small δ ∈ (0, 1)
to be chosen in Theorem 9.2, we choose R0 in (2.13) and ε0 in (2.2c) as

ε0 = δ, R0 = ε−ℓr
0 = δ−ℓr , ℓr =

c̄x
ω
. (2.43a)

Since Rs = R0 e
c̄xs = ε−ℓr

0 eℓrωs and εs = ε0 e
−ωs, we get

εs = δ e−ωs ≤ δ ≤ 1, Rs = εs
−ℓr . (2.43b)

for any s ≥ 0.

22If (2.42a) does not hold and λ1 < (1/2− ℓ)ω, estimate (2.40) implies decay estimate E
1/2
k+1,η(s) ≲ E

1/2
k+1,η(0) · e

−λ1s,

which is slower than εs
1/2−ℓ = C(ε0) e

−(1/2−ℓ)ωs (2.33a). ℓ can be essentially treated as a small parameter close to 0.
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Remark 2.5 (Range of parameters). Let ω be defined in (2.11). For γ ∈ (
√
3, 2] and r ∈

(r∗ − 0.01, r∗) with r∗ = 3−
√
3, we have the following inequality regarding these parameters

1.25 < r < 1.3, 0 < ω ≤ 5 · 2−
√
3

3−
√
3
− 1 < 0.06.

As a result

rℓr =
1

ω
> 2, ℓr =

1

rω
> 2, Rs

−r = εs
rℓr ≲ εs

2, Rs ≳ εs
−2. (2.44)

Other parameters. We have fixed γ for the Landau equation (1.2), fixed the exponent r for the
profile in Section 2.2.1, and determined parameters η̄, η, λη, λ1 in (2.42). We fix the parameter ℓ in

(2.33) to be a small absolute constant.
Our stability estimates involve a few more parameters: δ for ε0 and the size of perturbation

(2.33), ν in the Y-norm (2.29), and the order of energy estimates k (see Steps 1-6). We determine
these parameters sequentially:

k = k⇝ ν ⇝ δ,

where each later parameter may depend on the previous ones. We determine k in (4.36), ν in
Theorem 6.3, and δ in Theorem 9.2.

2.5.2. Comparison with Guo’s stability estimates in [47]. Part of our stability estimates for the
micro-perturbation build on those in [47]. For instance, we adopt the coercivity estimates for
the linearized Landau collision operator and the associated functional framework from [47] in the
stability estimates in Step 3 in Section 2.5 for the micro-perturbation in V at each fixed point X;
we need to generalize the σ-norm introduced in [47] to define a σ-norm associated with a local
Maxwellian in (2.28). In addition, some of our nonlinear estimates for the collision operator, such
as (2.38) in Step 5, are inspired by those in [47].

Despite these similarities, there are several essential differences between [47] and the present work.
First, our profile (1.3) is a local Maxwellian rather than a global one [47], which necessitates the
development of genuinely inhomogeneous estimates. In particular, we design weighted operators and
functional spaces with X-weights that depend on the stability estimates for the macro-perturbation
and are adapted to the self-similar scaling fields. See Section 2.4. Second, we perform stability
analysis for X in the whole space, rather than on the torus X ∈ T3 [47]. Since coefficients in the
coercivity estimates decay in X, rather than remaining uniformly bounded away from zero [47], we
need to carefully control the spatial decay of the perturbation for large X. We emphasize that the
temporal decay estimates for the perturbation are sensitive to the choice of weights used for the
spatial decay estimates, as reflected in (2.33), making the control of spatial decay one of the major
difficulties. See the paragraph Relative smallness estimates in Step 1 for further discussion of this
difficulty.

Our analysis involves further challenges, including stability estimates for the macro-perturbation,
the limit εs → 0 in the self-similar equation, and the construction of a blowup solution from a finite
codimension set.

2.6. Notation. We collect here the main notation used throughout the paper. For each variable
or operator, we list below it the equation or result in which it is first defined or determined.

We use lowercase letters f, x, v to denote variables in the physical equations, whereas uppercase
letters F,X, V denote variables in the self-similar equations. The time variables are denoted by
t in the physical equations and by s in the self-similar equations. Lowercase letter m indicate
microscopic variables or operators, such as F̃m,Pm, while uppercase letter M indicate macroscopic
variables or operators, such as F̃M ,PM .
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Operators. We use calligraphic font to denote operators. Calligraphic L is reserved for linearized
operators around the profile, such as

LM
(2.22a)

, LE ,LU ,LP ,LB︸ ︷︷ ︸
(3.10)

, LE,s,LU,s,LP,s,LB,s︸ ︷︷ ︸
(3.9)

, Lmic
(6.7)

.

The following operators are introduced in the linearization in Section 2.3 and in Section 5.2

T
(2.22a)

, N
(2.22b)

, I
(2.22c)

, Ni
(5.10)

.

We use calligraphic F to denote the maps between the macro-perturbation and the variables in
the Euler equations : FE

(3.8)
, FM

(3.15)
.

We use K to denote a compact operator defined in Proposition 4.6 : Kk,η
Proposition 4.6

, Kk
(4.36)

.

We use calligraphic P to denote projection : Pm
(2.21)

, PM
(2.21)

.

We use Π· to denote various projections

Πv
(1.2b)

, ΠV̊
(5.1)

, Πs
(9.4)

, Πu
(9.4)

.

Functions and parameters. We use F -functions F̃ , F̃m, F̃M to denote functions related to the
solution of the self-similar Landau equation (2.2).

We introduce the following radial variable, unit vector, and velocity field:

ξ = |X|, eR =
X

|X|
, Ū(X) = Ū(ξ)eR.

(2.12)

(2.45)

We use the following parameters related to the profiles,

γ
(1.2b)

, r
(2.12)

, ω(r, γ)
(2.11a)

, ε0, R0, ℓr
(2.43)

,

and parameters related to weights and estimates

η, η̄
(2.31)

, ℓ = 10−4

(2.33a)
, kL, k

(4.36)
, ν

Theorem 6.3
, δ

Theorem 9.2, 1.1
.

We use a “bar” notation ·̄ to denote constants and functions associated with the profile:

c̄f , c̄x, c̄v︸ ︷︷ ︸
(2.12b)

, ρ̄, Ū, Θ̄, C̄, B̄, P̄︸ ︷︷ ︸
(2.12c)

,

and a “tilde” notation ·̃ to denote perturbation variables:

F̃
(2.19)

, F̃m, F̃M︸ ︷︷ ︸
(2.21)

, ρ̃, Ũ, B̃, P̃︸ ︷︷ ︸
(3.8)

, W̃ = (Ũ, P̃ , B̃).

We use subscript ·̄s to denote variables with the cutoff-modification introduced in (2.14)

ρ̄s, Θ̄s, P̄s, C̄s︸ ︷︷ ︸
(2.14)

and to denote variables and operators depending on the self-similar time s

εs
(2.2c)

, Rs
(2.13)

, LE,s, LU,s, LP,s, LB,s︸ ︷︷ ︸
(3.9)
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We use calligraphic M to denote a local Maxwellian and µ to denote the Gaussian function:

Mρ,U,Θ
(2.4)

, M, M1
(2.17)

, µ(·)
(2.16)

,

The calligraphic E is reserved for variables related to errors

EM, Eρ, EU, EP , EC︸ ︷︷ ︸
(2.18)

.

We use λ-parameters and Λ

λ1, λη
(2.42c)

, λη
(4.5b)

, λs, λu
(9.9)

, Λ(s,X, V )
(5.7)

to denote parameters or functions related to the decay rates and coercivity estimates.

We useϖ-parameters to denote parameters in the norms, e.g. X -norm (4.6) and Zj
R-norm (10.44)

ϖk,η
(2.27)

, ϖ′
k

(9.7)

, ϖZ,i
(10.44)

.

The σ, X , Y norms are defined in Section 2.4. We define the Z-norm in (9.7), the Y -space for

the fixed point argument in (9.36), and the Zj
R-norm in (10.44).

Symbols. Angled brackets represent the Japanese bracket ⟨·⟩ or an inner product or duality pairing
⟨·, ·⟩ depending on the context. In particular ⟨·, ·⟩V is a duality pairing in the V variable defined in
(2.18b).

We write p ≲ q to mean that there exists some absolute constant C > 0 such that p ≤ Cq,
and p ≍ q to mean that p ≲ q and q ≲ p. We use the notation A = B + Oh(B

′) to indicate that
there exists Ch > 0 such that |A− B| ≤ ChB

′. In particular, A = Oh(B
′) means that |A| ≤ ChB

′

for some constant Ch > 0 depending on h. Throughout the paper, c, C and Ci denote absolute
constants that may vary from line to line, while C̄h (with a bar) denotes a fixed constant depending
on h. We use the following fixed constants in this paper

κ =
5

3
(2.7)

, κ2 =
5

6
(2.16)

, C̄γ
Lemma 6.4

, C̄k,η
Theorem 4.2

, C̄N
Theorem 8.1

.

For any multi-index α, β ∈ Z3
≥0, we write α ⪯ β if and only if αi ≤ βi. We write α ≺ β if α ⪯ β

and α ̸= β.

3. Properties of Euler profile and equations of macro-perturbation

In this section, we present the properties of the Euler profile and its modification which are used
to established finite codimension stability of the macro-perturbation, and derive the equations of
macro-perturbation, which is the linearized Euler equations.

3.1. Properties of the Euler profile. For the Euler profile (Ū, C̄) without modification (2.12),
we first recall the following properties from [74, Theorem 1.1].

Lemma 3.1. The profile Ū = ŪeR, C̄ are radially symmetric and satisfy Ū(0) = 0 and

|∇kŪ| ≲k ⟨X⟩−r+1−k, C̄ ≍ ⟨X⟩−r+1, |∇kC̄| ≲k ⟨X⟩−r+1−k, (3.1a)

for any k ≥ 0. There exists c0 > 0 such that for any ξ ≥ 0, we have

c̄x + ∂ξŪ(ξ)− |∂ξC̄(ξ)| > c0. (3.1b)
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Let ξ∗ be the unique root of

c̄xξ∗ + Ū(ξ∗)− C̄(ξ∗) = 0. (3.2)

It corresponds to the degenerate point in the phase portrait [9,67,74] and is called the sonic point.
We have the following estimates for the modified profile C̄s (2.14).

Lemma 3.2. The modified profile C̄s satisfies

C̄s ≍ ⟨X⟩−r+1 +Rs
−r+1, |∇kC̄s| ≲k ⟨X⟩−r+1−k ≲ C̄s⟨X⟩−k, (3.3a)

for any k ≥ 1. There exists c1 > 0, ξ1 > ξ∗, and R0,1 ≫ 1, such that for any ξ ≥ 0 and R0 ≥ R0,1,
we have 23

c̄x + ∂ξŪ(ξ)− |∂ξC̄s(ξ)| > c1, ξ ∈ [0, ξ1], (3.3b)

c̄xξ + Ū(ξ)− C̄s(ξ) > min

{
c̄xξ + Ū − C̄,

1

2
c̄xξ

}
> 0, ∀ ξ > ξ∗, (3.3c)

c̄x + ξ−1Ū(ξ) > c1, ξ ≥ 0, (3.3d)

with implicit constants independent of s,R0 in the definition of C̄s (2.14), (2.13).
Moreover, there exists constants CŪ and CC̄ > 0 such that for any |X| ≥ 1, we have the refine

asymptotics

|C̄(X)− CC̄|X|−(r−1)| ≲ |X|−2r+1, |Ū(ξ)− CŪ|X|−(r−1)| ≲ |X|−2r+1. (3.4)

Remark 3.3 (Repulsive conditions). As in [22, 23], to establish finite codimension stability
estimates, we only need the interior repulsive condition (3.3b), which follows from (3.1b) for ξ ∈
[0, ξ∗]. Establishing the exterior repulsive condition ((3.1b) with ξ > ξ∗) can be highly nontrivial,
see e.g. [67]. While we use the full repulsive condition (3.1b) to prove the outgoing conditions (3.3c)
and (3.3d) below, these two conditions follow from the natural barrier functions and the sign of
the denominator in the ODEs for profile (Ū, C̄), and they are much simpler to establish than the
exterior repulsive condition. See further discussion in [23, Remark 2.3].

Proof of Lemma 3.2. On the one hand, from the definition of C̄s in (2.14) and the upper bound
of C̄ in (3.1a), we see directly that C̄s ≲ C̄ + Rs

−r+1 ≲ ⟨X⟩−r+1 + Rs
−r+1. On the other hand,

C̄ ≲ ⟨X⟩−r+1 ≤ Rs
−r+1 for |X| ≥ Rs, together with χRs ≡ 1 for |X| ≤ Rs we see

C̄ ≲ C̄χRs +Rs
−r+1(1− χRs) = C̄s.

Similarly, from Rs
−r+1 ≲ ⟨X⟩−r+1 ≍ C̄ when |X| ≤ 2Rs and 1− χRs ≡ 1 for |X| ≥ 2Rs, we know

Rs
−r+1 ≲ C̄s. Combined, we prove the first comparison in (3.3a).
By definition of C̄s and χRs in (2.14), we obtain

|∇iχRs | ≲i 1{Rs≤|X|≤2Rs}Rs
−i, ∀i ≥ 1.

We apply this to the second estimate in (3.3a), using (3.1a) and Leibniz rule for k ≥ 1:

|∇kC̄s| ≲k

k∑
i=0

|∇iC̄| · |∇k−iχRs |+Rs
−r+1|∇k(1− χRs)|

≲k |∇kC̄| · χRs +
k∑

i=1

⟨X⟩−r+1−iRs
−(k−i)1{Rs≤|X|≤2Rs} +Rs

−r+1−k1{Rs≤|X|≤2Rs}

≲k ⟨X⟩−r+1−k ≲ C̄s⟨X⟩−k.

23Note that C̄s depend on the parameter R0 via Rs. See (2.13) and (2.14).
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Proof of (3.3b)-(3.3d). Firstly, we take 0 < c1 < c0, ξ1 > ξ∗, and R0,1 > ξ1. Then we get C̄s = C̄
for |X| ≤ ξ1 < R0 < Rs. Thus, (3.3b) follows from (3.1b).

Since c̄xξ + Ū |ξ=0 = 0 and c̄xξ + Ū − C̄|ξ=ξ∗ = 0, using (3.1b) and integration, we obtain

c̄xξ + Ū(ξ) ≥ c0ξ > c1ξ, ∀ ξ ≥ 0, (3.5a)

c̄xξ + Ū(ξ)− C̄(ξ) ≥ c0(ξ − ξ∗) > 0, ∀ ξ > ξ∗. (3.5b)

Estimate (3.5a) implies (3.3d).
From (3.3a) and (3.1a), for R0 sufficiently large and ξ = |X| ≥ Rs ≥ R0, we obtain

c̄xξ + Ū − C̄s ≥ c̄xξ − C⟨ξ⟩−r+1 − CRs
−r+1 ≥ 1

2
c̄xξ +

1

4
c̄xRs − CRs

−r+1 ≥ 1

2
c̄xξ. (3.6)

Since c̄xξ + Ū − C̄s = c̄xξ + Ū − C̄ for ξ ≤ Rs, combining (3.5b) and (3.6), we prove (3.3c).

Proof of (3.4). Recall that the profile (Ū, C̄, c̄x, c̄v) solves the steady state of (2.9)

[(c̄xX + Ū) · ∇]C̄+
1

3
C̄(∇ · Ū) = c̄vC̄, [(c̄xX + Ū) · ∇]Ū+ 3C̄∇C̄ = c̄vŪ. (3.7)

Since Ū(X) = Ū(ξ)eR is radially symmetric, we get

c̄xX · ∇Ū(ξ)− c̄vŪ = c̄xξ∂ξŪ(ξ)− c̄vŪ = −3C̄∂ξC̄− Ū(ξ)∂ξŪ(ξ).

Since c̄v
c̄x

= 1− r, using the integrating factor ξr−1 = |X|r−1 and then dividing ξ, we get

c̄x∂ξ(ξ
r−1Ū(ξ)) = −ξr−2(3C̄∂ξC̄+ Ū(ξ)∂ξŪ(ξ)).

Using the decay estimates (3.1a), we obtain |ξr−2(3C̄∂ξC̄ + Ū(ξ)∂ξŪ(ξ))| ≲ ξ−r−1, which is
L1-integrable in ξ. Thus, there exists CŪ such that

|ξr−1Ū(ξ)− CŪ| ≲
ˆ ∞

ξ
|ξr−2(3C̄∂ξC̄+ Ū(ξ)∂ξŪ(ξ))| ≲ ξ−r.

Dividing ξr−1 on both sides, we prove the asymptotics of Ū(ξ) in (3.4). The asymptotics of C̄(X)
in (3.4) is proved similarly.

Since C̄(X) ≳ ⟨X⟩−r+1 (3.3a), we obtain CC̄ > 0, where CC̄ is the coefficient in (3.4). □

3.2. Linearized Euler equations. To control the macroscopic terms, we introduce the weighted
hydrodynamic fields

(ρ̃, Ũ, P̃ ) :=

ˆ
M1/2

1 F̃ ·
(
1,
V − Ū

C̄s
,
|V − Ū|2

3C̄2
s

)
dV, B̃ := ρ̃− P̃ , (3.8a)

and encode the above linear map from F̃ to W̃ := (Ũ, P̃ , B̃) as

(Ũ, P̃ , B̃) := FE(F̃ ) =

ˆ
M1/2

1 F̃ ·
(V − Ū

C̄s
,
|V − Ū|2

3C̄2
s

, 1− |V − Ū|2

3C̄2
s

)
dV, (3.8b)

where E is short for Euler. Variables Ũ, B̃ are similar to the perturbation of the velocity and
entropy up to some weights in (X, s).

Integrating (2.23) against 1, V − Ū, |V − Ū|2, we obtain the equations of ρ̃

∂sρ̃+ (c̄xX + Ū) · ∇ρ̃+∇ · (C̄sŨ) = (3c̄v −∇ · Ū)ρ̃− C̄3
sEρ, (3.9a)

and of (Ũ, P̃ , B̃)

∂sŨ = LU,s(Ũ, P̃ , B̃)− I1(F̃m)− C̄3
sEU,

∂sP̃ = LP,s(Ũ, P̃ , B̃)− I2(F̃m)− C̄3
sEP ,

∂sB̃ = LB,s(Ũ, P̃ , B̃) + I2(F̃m),

(3.9b)
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where the linearized operators are defined as

LU,sW̃ := −(c̄xX + Ū) · ∇Ũ− C̄s∇P̃ +
(
3c̄v −

2

3
∇ · Ū− (∇Ū)− EC

)
Ũ

− 2∇C̄s · P̃ + 3C̄−1
s C̄∇C̄(P̃ + B̃),

LP,sW̃ := −(c̄xX + Ū) · ∇P̃ − C̄s∇ · Ũ+
(
3c̄v −∇ · Ū− 2EC

)
P̃ −

(
∇C̄s +

2

3
EU
)
· Ũ,

LB,sW̃ := −(c̄xX + Ū) · ∇B̃ + (3c̄v −∇ · Ū)B̃ + 2ECP̃ +
2

3
EU · Ũ,

(3.9c)

the matrix ∇Ũ is given by (∇Ũ)ij = ∂jŨi, and Ii depends on the micro part and is defined in
(2.22c). We refer the derivation to Appendix A.2. Note that the projection of (2.23) onto the
hydrodynamic fields give the full linearized Euler equations around the isentropic profile and we
do not have nonlinear terms. Denote LE,s = (LU,s,LP,s,LB,s). Here, the subindex s indicates that
the operator LE,s is time-dependent.

As s→ ∞, the error EC, EU defined in (2.18) becomes 0 and (C̄s, ρ̄s, P̄s) → (C̄, ρ̄, P̄ ). Denote by

LE = LE,∞, (LU ,LP ,LB) = (LU,∞,LP,∞,LB,∞) (3.10a)

the limiting operator as s→ ∞. We have

LUW̃ := −(c̄xX + Ū) · ∇Ũ− C̄∇P̃ +
(
3c̄v −

2

3
∇ · Ū− (∇Ū)

)
Ũ− 2∇C̄ · P̃ + 3∇C̄(P̃ + B̃),

LPW̃ := −(c̄xX + Ū) · ∇P̃ − C̄∇ · Ũ+
(
3c̄v −∇ · Ū

)
P̃ −∇C̄ · Ũ,

LBW̃ := −(c̄xX + Ū) · ∇B̃ + (3c̄v −∇ · Ū)B̃.
(3.10b)

In the rest of the work, we estimate the system of (Ũ, P̃ , B̃) instead of (ρ̃, Ũ, P̃ ), as the former
is a symmetric hyperbolic system. We can rewrite (3.9) schematically as

∂s(Ũ, P̃ , B̃) = LE,s(Ũ, P̃ , B̃)− (I1, I2,−I2)(F̃m)− (C̄3
sEU, C̄3

sEP , 0),
LE,s = (LU,s,LP,s,LB,s),

(3.11)

3.3. Relations between F̃M and (Ũ, P̃ , B̃). In this section, we derive the relations among

F̃M , F̃m (2.21), Ii defined in (2.22c), and (Ũ, P̃ , B̃, ρ̃) defined in (3.8).
Recall Θ̄s =

1
κ C̄

2
s =

3
5 C̄

2
s from (2.14). For any functions G, we have

⟨G,Φ0⟩V = ⟨M1/2
1 G, 1⟩V ,

⟨G,Φi⟩V =
〈
M1/2

1 G,
V − Ū

Θ̄
1/2
s

〉
V
=

C̄s

Θ̄
1/2
s

·
〈
M1/2

1 G,
V − Ū

C̄s

〉
V

= κ1/2
〈
M1/2

1 G,
V − Ū

C̄s

〉
V

, i = 1, 2, 3,

⟨G,Φ4⟩V =
1√
6

〈
M1/2

1 G,
|V − Ū|2

Θ̄s
− 3
〉
V
=

1√
6

〈
M1/2

1 G, 3κ · |V − Ū|2

3C̄2
s

− 3
〉
V
.

(3.12)

Applying the above identities with G = F̃M , using the definition (3.8) and κ = 5
3 , we get

⟨F̃M ,Φ0⟩V = ⟨M1/2
1 F̃M , 1⟩V = ρ̃ = P̃ + B̃,

⟨F̃M ,Φi⟩V = κ1/2Ũi, i = 1, 2, 3,

⟨F̃M ,Φ4⟩V =
1√
6

〈
M1/2

1 F̃M , 5 ·
|V − Ū|2

3C̄2
s

− 3
〉
V
=

1√
6
(5P̃ − 3ρ̃) =

1√
6
(2P̃ − 3B̃).

(3.13)
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By definition of the projection (2.21), we have M1/2
1 F̃m ⊥ 1, Vi, |V |2. Thus, applying the above

computation with G = M−1/2
1 V · ∇X(M1/2

1 F̃m) and using Ii defined in (2.22c), we obtain

⟨M−1/2
1 V · ∇X(M1/2

1 F̃m),Φ0⟩V = divX

ˆ
VM1/2

1 F̃mdV = 0,

⟨M−1/2
1 V · ∇X(M1/2

1 F̃m),Φi⟩V = κ1/2I1,i,

⟨M−1/2
1 V · ∇X(M1/2

1 F̃m),Φ4⟩V =
1√
6

〈
V · ∇X(M1/2

1 F̃m), 3κ · |V − Ū|2

3C̄2
s

〉
V
=

3κ√
6
I2,

(3.14)

where we have used ⟨G, 1⟩V = 0 in the last identity.

We define the linear operator FM mapping the hydrodynamic fields (Ũ, P̃ , B̃) to macro-perturbation

FM (Ũ, P̃ , B̃) := (P̃ + B̃)Φ0 + κ1/2ŨiΦi +

√
1

6
(2P̃ − 3B̃)Φ4. (3.15a)

Then we can rewrite F̃M defined in (2.21) as

F̃M = FM (Ũ, P̃ , B̃). (3.15b)

Recall the operator FE in (3.8). For any F̃ , we denote (Ũ, P̃ , B̃) := FE(F̃ ), F̃M = PM F̃ . By
definition of PM in (2.21), we obtain

(Ũ, P̃ , B̃) := FE(F̃ ) = FE(F̃M ) = FE ◦ FM (Ũ, P̃ , B̃),

F̃M = FM (Ũ, P̃ , B̃) = FM ◦ FE(F̃ ) = FM ◦ FE(F̃M ),

FM ◦ FE = PM , FE ◦ FM = Id,

(3.16)

Thus, FM and FE |Span{Φi} are inverse operators. We estimate the operator FM ,FE in Lemma
C.13.

4. Linear stability estimates: macroscopic part

In this section, we perform linear stability estimates on the hydrodynamic fields (Ũ, P̃ , B̃) in

(3.9). Throughout this section, we simplify the perturbation (Ũ, P̃ , B̃) as (U, P,B).
Firstly, we design the weight φ2k for weighted H2k estimates. Recall the sonic point ξ∗ defined

in (3.2). We have the following results similar to [23, Lemma 3.1].

Lemma 4.1 (Lemma 3.2 [22]). There exists a radially symmetric weight φ1 in the form of 24

φ1(y) := φb(y)
c2φf (y), φf (y) := 1 + c3⟨y⟩, (4.1a)

where c2, c3 > 0 and φb ∈ C∞ satisfies

φb(y) = 1, |y| ≤ ξ∗, φb(y) =
1
2 , |y| ≥ R2 + 1,

∂ξφb ≤ 0, ∀y ∈ R3, ∂ξφb ≤ −c1 < 0, |y| ∈ [R1, R2],
(4.1b)

for some R1, R2 with ξ∗ < R1 < R2, and there exists a constant µ1 > 0, such that

(ξ + Ū)∂ξφ1

φ1
+ iC̄s

∣∣∣∂ξφ1

φ1

∣∣∣− (1 + ∂ξŪ − i|∂ξC̄s|) ≤ − µ1
⟨ξ⟩

, (4.2a)

for all ξ ∈ (0,∞) and any i = 0, 1. For k ≥ 0 and φ1 satisfying the above properties, we define

φk(y) = φ1(y)
k. (4.3)

24The parameter c2, c3 in (4.1) corresponds to (κ2, ν) in [23, Lemma 3.1]. The forms (4.1a), (4.1b) are given in [23, Eqn
(3.5), Eqn (3.6)], respectively.
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The term (4.2a) relates to the coefficients of the top order term in later weighted H2k estimate.
In [23], the proof of the above theorem relies on the repulsive properties (3.3b) for ξ ∈ [0, ξ1], and
the outgoing property (3.3c) of the imploding profile for 2D compressible Euler. In [23, Lemma
3.1], the weight φb is not stated as a C∞ function. From the proof of [23, Lemma 3.1], φb can
be chosen to be any function satisfying (4.1b). In particular, we can choose φb ∈ C∞. Since the
modified profile (Ū, C̄s) for 3D compressible Euler satisfies these properties uniformly in s, the
proof of Lemma 4.1 in the current setting is the same and is omitted.

From (4.1), we obtain the following estimates of φ1

φ1(X) ≍ ⟨X⟩, |∇φ1| ≲ 1, |Dα
Xφ1| ≲α φ1, (4.4a)

for any multi-index α, where Dα
X is defined in (2.24). Since ⟨X⟩ = X +O(⟨X⟩−1), (4.1) implies

X · ∇X logφ1 = O(⟨X⟩−2) +X · ∇X log(1 + c3⟨X⟩) = 1 +O(⟨X⟩−1). (4.4b)

4.1. Weighted Hk coercivity estimates.

Theorem 4.2. Let LU,s,LP,s,LB,s be defined in (3.9) and η̄ in (2.31). Denote LE,s = (LU,s,LP,s,LB,s).
There exists k0 ≥ 6 large enough, 25 such that the following statements hold true. For any
η ∈ [−6, η̄) 26 and k ≥ k0, there exists Rη > 0, C̄k,η large enough and ϖk,η = ϖk(k0, Rη, C̄η, η) > 0
such that

⟨LE,s(U, P,B), (U, P,B)⟩X 2k
η

≤ −λη∥(U, P,B)∥2X 2k
η

+ C̄k,η

ˆ
|X|≤Rη

|(U, P,B)|2dX, (4.5a)

where λη is defined as follows and is independent of k 27

λη = −1

2

(
3c̄v +

c̄x
2
(η + 3)

)
=
c̄x
4
(η̄ − η) > 0, for η < η̄. (4.5b)

For η = η̄ and any k ≥ k0, there exists ϖk,η = ϖk(k0, R1, C̄, η) > 0 and a constant C̄k,η̄ > 0,
such that

⟨LE,s(U, P,B), (U, P,B)⟩Xk
η̄
≤ C̄k,η̄

ˆ
⟨X⟩η̄−r|(U, P,B)|2dX. (4.5c)

Here, the Hilbert spaces X n
η are defined as the completion of the space of C∞

c (R3) radially-symmetric
28 scalar/vector functions, with respect to the norm induced by the inner products 29

⟨(Ua, Pa, Ba), (Ub, Pb, Bb)⟩X 2k
η

:=

ˆ ∑
g=U,P,B

wg(∆
kga ·∆kgb φ

2
2k +ϖk,ηga · gb) ⟨X⟩ηdX, k ≥ 1,

⟨(Ua, Pa, Ba), (Ub, Pb, Bb)⟩X 2k+1
η

:=

ˆ ∑
g=U,P,B

wg(∇∆kga · ∇∆kgb φ
2
2k+1 +ϖk,ηga · gb) ⟨X⟩ηdX, k ≥ 0,

⟨(Ua, Pa, Ba), (Ub, Pb, Bb)⟩X 0
η
:=

ˆ ∑
g=U,P,B

wgga · gb ⟨X⟩ηdX,

(wU, wP , wB) := (1, 1, 32), (4.6)

The inner products ⟨·, ·⟩Xn
η
, and the associated norms, are defined in terms of the constants ϖn,η

(defined in the last paragraph of Section 4.1), the weight φn = φn
1 defined in Lemma 4.1. In

particular, these constants k0, Rη, C̄k,η, ϖk,η, η are independent of s, ε0 and R0 used in (2.13).

25The parameters k0, Rη and λη depend only on the weight φ1 from Lemma 4.1, on r > 0, and on the profiles (Ū, C̄).
26By choosing η > −3, we can obtain decay estimates of f from ∥f∥Xk

η
using the embedding in Lemma B.4. The

lower bound −6 of η is not important as we will only apply Theorem 4.2 with η close to η̄. We impose it to avoid
tracking some constants depending on η.
27From (2.10), (2.12), and (2.31), we have c̄v

c̄x
= 1/r−1

1/r
= −(r − 1) and η̄ = −3 + 6(r − 1) = −3− 6 c̄v

c̄x
.

28By radially symmetric functions we mean f(y) = f(|y|) and by radially symmetric vectors we mean f(y) = f(|y|) y
|y| .

29It is also convenient to denote X∞ = ∩k≥0X k.
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The special weights (wU, wP , wB) are determined by the relationship between
´
|M1/2FM |2dV

and (Ũ, P̃ , B̃). See Lemma C.13.

Remark 4.3 (The odd order norm). The norm X 2k+1 with odd index is auxiliary. We only
perform energy estimates, construct compact operator, and develop semigroup estimates in the
norm X 2k

η . Here, X 2k
η corresponds to the norm X k

η in [23].

Remark 4.4 (Full stability of B̃). The linear evolution of B̃ in (3.9) is almost decoupled from

Ũ, P̃ , and one can establish full stability of LB,∞ with radial symmetry using weighted estimates.

Before proving Theorem 4.2, we note the following simple nestedness property of the spaces X n
η ,

which follows from Lemmas B.2, B.3 with δ1 = 1, δ2 = a or δ2 = b.

Lemma 4.5. For any n ≥ m and a ≥ b, we have ∥f∥Xm
b
≲n,a,b ∥f∥Xn

a
and X n

a ⊂ Xm
b .

Next, we prove Theorem 4.2. We will drop ·̃ in the variables Ũ, P̃ , B̃ to simplify the notations,
and write W = (U, P,B).

Proof of Theorem 4.2. Applying the operator ∆k to the linearized operators LU,s,LP,s,LB,s defined
in (3.9), and using Lemma B.1 to extract the leading order parts with ≥ 2k-derivatives from the
terms containing ∇U,∇P,∇B, we get

∆kLU,sW = − (c̄xX + Ū) · ∇∆kU− C̄s∇∆kP︸ ︷︷ ︸
TU

+3c̄v∆
kU− 2k∂ξ(c̄xξ + Ū)∆kU− 2k∇C̄s∆

kP︸ ︷︷ ︸
DU

−
(
2

3
∇ · Ū+ (∇Ū) + EC

)
∆kU− 2∇C̄s ·∆kP + 3C̄−1

s C̄∇C̄(∆kP +∆kB)︸ ︷︷ ︸
SU

+RU,k,

(4.7a)

∆kLP,sW = − (c̄xX + Ū) · ∇∆kP − C̄s∇ · (∆kU)︸ ︷︷ ︸
TP

+3c̄v∆
kP − 2k∂ξ(c̄xξ + Ū)∆kP − 2k∇C̄s ·∆kU︸ ︷︷ ︸

DP

− (∇ · Ū+ 2EC) ·∆kP −
(
∇C̄s +

2

3
EU
)
·∆kU︸ ︷︷ ︸

SP

+RP,k, (4.7b)

∆kLB,sW = − (c̄xX + Ū) · ∇∆kB︸ ︷︷ ︸
TB

+3c̄v∆
kB − 2k∂ξ(c̄xξ + Ū)∆kB︸ ︷︷ ︸

DB

− (∇ · Ū) ·∆kB + 2EC∆kP +
2

3
EU ·∆kU︸ ︷︷ ︸

SB

+RB,k, (4.7c)

In (4.7) we have denoted by RU,k,RP,k,RB,k remainder terms which are of lower order (in terms
of highest derivative count on an individual term); moreover, we have used the notation T ,D,S to
single out transport, dissipative, and stretching terms.
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Using Lemma B.1 and the decay estimates (3.1a), (3.3a) on Θ̄s, C̄s, and (A.4), (A.5) on EC, EU,
we obtain that the remainder terms are bounded as

|RU,k| ≲k

∑
0≤i≤2k−1

(|∇2k+1−iŪ|+ |∇2k−iEC|) |∇iU|+ |∇2k+1−iC̄s| |∇iP |

+ |∇2k−i(C̄−1
s C̄∇C̄)| |∇i(P +B)|

≲k

∑
0≤i≤2k−1

⟨X⟩−2k+i−r|(|∇iU|+ |∇iB|+ |∇iP |), (4.8a)

|RP,k| ≲k

∑
0≤i≤2k−1

(|∇2k+1−iŪ|+ |∇2k−iEC|) |∇iP |+ (|∇2k+1−iC̄s|+ |∇2k−iEU|) |∇iU|

≲k

∑
0≤i≤2k−1

⟨X⟩−2k+i−r|(|∇iU|+ |∇iB|+ |∇iP |), (4.8b)

|RB,k| ≲k

∑
0≤i≤2k−1

|∇2k+1−iŪ| · |∇iB|+ |∇2k−iEC| |∇iP |+ |∇2k−iEU| |∇iU|

≲k

∑
0≤i≤2k−1

⟨X⟩−2k+i−r|(|∇iU|+ |∇iB|+ |∇iP |). (4.8c)

Next, in order to bound the left side of (4.5), we perform weighted H2k estimates with weight
given by φ2

2k⟨X⟩η, as dictated by the definitions in (4.5). To this end, we estimate the termˆ
(∆kLU,sW ·∆kU+∆kLP,sW∆kP + wB∆

kLB,sW ·∆kB)φ2
2k⟨X⟩ηdX, (4.9)

by appealing to the decomposition in (4.7).

Estimate for TU , TP , TB. We first combine the estimates of TU , TP , and then estimate TB. Using
the identity

∇∆kP ·∆kU+∇ · (∆kU)∆kP = ∇ · (∆kU ·∆kP ) (4.10)

and integration by parts, we obtain that the contribution of the transport terms TU , TP in (4.7) to
the expression (4.9) is given by

ITU+TP = −
ˆ (

(c̄xX + Ū) · ∇∆kU ·∆kU+ (c̄xX + Ū) · ∇∆kP ·∆kP

+ C̄s∇∆kP ·∆kU+ C̄s∇ · (∆kU ·∆kP )
)
φ2
2k⟨X⟩ηdX

=

ˆ (1
2

∇ · ((c̄xX + Ū)φ2
2k⟨X⟩η)

φ2
2k⟨X⟩η

(|∆kU|2 + |∆kP |2) +
∇(C̄sφ

2
2k⟨X⟩η)

φ2
2k⟨X⟩η

·∆kU∆kP
)
φ2
2k⟨X⟩ηdX.

Recall φ2k = φ2k
1 from (4.3) and r < 2 form (2.10). Using the decay estimates in (3.1a), the

outgoing property ξ + Ū > 0 (3.3d), we obtain

(c̄xξ + Ū)
∂ξ⟨X⟩η

⟨X⟩η
= (c̄x +

Ū

ξ
)
ηξ2

1 + ξ2
≤ c̄xη + C(⟨ξ⟩−r + ⟨ξ⟩−2) ≤ c̄xη + C⟨ξ⟩−r.

Using the above inequality and (3.1a) (with k = 1), we estimate

1

2

∇ · ((c̄xX + Ū)φ2
2k⟨X⟩η)

φ2
2k⟨X⟩η

=
1

2

(
3c̄x +∇ · Ū+ 4k(c̄xξ + Ū)

∂ξφ1

φ1
+ (c̄xξ + Ū)

∂ξ⟨X⟩η

⟨X⟩η
)

≤ c̄x
2
(η + 3) + C⟨ξ⟩−r + 2k(c̄xξ + Ū)

∂ξφ1

φ1
,∣∣∣∇(C̄sφ

2
2k⟨X⟩η)

φ2
2k⟨X⟩η

∣∣∣ ≤ |∇C̄s|+ C̄s

(
4k

|∇φ1|
φ1

+
|∇⟨X⟩η|
⟨X⟩η

)
≤ 4kC̄s

|∂ξφ1|
φ1

+ C⟨ξ⟩−r,
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where we have used |∇f | = |∂ξf | for any radially symmetric function f . Combining the above

estimates and using |ab| ≤ 1
2(a

2 + b2) on ∆kU∆kP , we get

ITU+TP ≤
ˆ

1

2

(∇ · ((c̄xX + Ū)φ2
2k⟨X⟩η)

φ2
2k⟨X⟩η

+
|∇(C̄sφ

2
2k⟨X⟩η)|

φ2
2k⟨X⟩η

)
(|∆kU|2 + |∆kP |2)φ2

2k⟨X⟩ηdX

≤
ˆ ( c̄x

2
(η + 3) + 2k

(
(c̄xξ + Ū)

∂ξφ1

φ1
+ C̄s

∣∣∣∂ξφ1

φ1

∣∣∣)+ C⟨ξ⟩−r
)
(|∆kU|2 + |∆kP |2)φ2

2k⟨X⟩ηdX,

(4.11a)

with C > 0 independent of k.
The estimate of contribution of TB in (4.7) to the expression (4.9) is easier and similar. Using

integration by parts, we obtain

ITB = −
ˆ (

(c̄xX + Ū) · ∇∆kB ·∆kBφ2
2k⟨X⟩η =

ˆ
1

2

∇ · ((c̄xX + Ū)φ2
2k⟨X⟩η)

φ2
2k⟨X⟩η

|∆kB|2φ2
2k⟨X⟩ηdX

≤
ˆ ( c̄x

2
(η + 3) + 2k

(
(c̄xξ + Ū)

∂ξφ1

φ1

)
+ C⟨ξ⟩−r

)
|∆kB|2φ2

2k⟨X⟩ηdX, (4.11b)

Estimate of DU ,DP ,DB,SU ,SP ,SB. Recall the definitions of the terms DU ,DP ,DB,SU ,SP ,SB

from (4.7). Using the estimates of the error term EU, EC in Lemma A.1 and the decay estimates
(3.1a), we get

|SU | ≤ C⟨ξ⟩−r(|∆kU|+ |∆kP |+ |∆kB|),

|SP | ≤ C⟨ξ⟩−r(|∆kU|+ |∆kP |),

|SB| ≤ C⟨ξ⟩−r(|∆kU|+ |∆kB|).
For DU ,DP , using Cauchy–Schwarz inequality for the cross term

|∇C̄s∆
kP ·∆kU|+ |∇C̄s ·∆kU ·∆kP | ≤ |∇C̄s|(|∆kP |2 + |∆kU|2), |∇C̄s| = |∂ξC̄s|, (4.12)

we obtain

ID+S =

ˆ (
(DU + SU )∆

kU+ (DP + SP )∆
kP + wB(DB + SB)∆

kB
)
φ2
2k⟨X⟩ηdX

≤
ˆ (

3c̄v − 2k(c̄x + ∂ξŪ) + 2k|∂ξC̄s|+ C⟨ξ⟩−r
)
(|∆kU|2 + |∆kP |2)φ2

2k⟨X⟩η

+ wB

(
3c̄v − 2k(c̄x + ∂ξŪ) + C⟨ξ⟩−r

)
|∆kB|2φ2

2k⟨X⟩ηdX, (4.13)

with C > 0 independent of k.

Estimates of RU ,RP . Recall that the remainder terms RU ,RP ,RB from (4.7) satisfy (4.8).
Moreover, using that φ2k ≍k ⟨X⟩2k from (4.4), we obtain

φ2
2k⟨X⟩η⟨X⟩−2k+i ≍k ⟨ξ⟩2k+i+η = ⟨ξ⟩2k+i+2·η/2,

At this stage we apply Lemma B.2 and Lemma B.3, with δ1 = 1 and δ2 = η− r for 1 ≤ i ≤ 2k− 1,
and an arbitrary ν > 0, to obtainˆ

⟨X⟩−2k+i|∇iF ||∆kG|φ2
2k⟨X⟩η−rdX

≤ ν∥⟨X⟩2k+(η−r)/2∆kG∥2L2 + Ck,η,ν∥⟨X⟩i+(η−r)/2∇iF∥2L2

≤ ν∥⟨X⟩2k+(η−r)/2∆kG∥2L2 + ν∥⟨X⟩2k+(η−r)/2∇2kF∥2L2 + Ck,η,ν∥⟨X⟩(η−r)/2F∥2L2

≤ 2ν∥⟨X⟩2k+(η−r)/2∆kG∥2L2 + 2ν∥⟨X⟩2k+(η−r)/2∆kF∥2L2 + Ck,η,ν∥⟨X⟩(η−r)/2F∥2L2 .
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We may apply the above estimates to each term in (4.8). Using the bound ⟨X⟩2(2k+(η−r)/2) ≲k

φ2
2k⟨X⟩η−r, and choosing ν = 1

2 in the above estimates, we get

IR =

ˆ ∣∣RU,k ·∆kU+RP,k ·∆kP + wBRB,k ·∆kB|φ2
2k⟨X⟩ηdX

≤
ˆ
(|∆kU|2 + |∆kP |2 + wB|∆kB|2)φ2

2k⟨X⟩η−r + Ck,η|(U, P,B)|2⟨X⟩η−rdX. (4.14)

Combining the bounds (4.11), (4.13), (4.14) and using the estimates in Lemma 4.1, we arrive atˆ (
∆kLU,sW ·∆kU+∆kLP,sW ·∆kP + wB∆

kLB,sW ·∆kB
)
φ2
2k⟨X⟩ηdX = IT + ID+S + IR

≤
ˆ {(

3c̄v +
c̄x
2
(η + 3) + C⟨ξ⟩−r

)
(|∆kU|2 + |∆kP |2 + wB|∆kB|2)φ2

2k⟨X⟩η

+ 2k
(
(ξ + Ū)

∂ξφ1

φ1
+ C̄s|

∂ξφ1

φ1
| − (1 + ∂ξŪ − |∂ξC̄s|)

)
(|∆kU|2 + |∆kP |2)φ2

2k⟨X⟩η

+ 2k
(
(ξ + Ū)

∂ξφ1

φ1
− (1 + ∂ξŪ)

)
· wB|∆kB|2φ2

2k⟨X⟩η
}
dX

+ Ck,η

ˆ
|(U, P,B)|2⟨X⟩η−rdX

≤
ˆ (

−2λη − 2kµ1⟨ξ⟩−1 + a1⟨ξ⟩−r
)
(|∆kU|2 + |∆kP |2 + wB|∆kB|2)φ2

2k⟨X⟩ηdX

+ Ck,η

ˆ
|(U, P,B)|2⟨X⟩η−rdX,

for some constant a1 > 0 independent of η, where we have used the notation λη = −1
2(3c̄v+

c̄x
2 (η+3))

defined in (4.5b). Since r > 1 (see (2.10)), there exists k0 sufficiently large, e.g. k0 = ⌈ a1
2µ1

⌉ + 1,

such that for any k ≥ k0, we get

−2kµ1⟨ξ⟩−1 + a1⟨ξ⟩−κ3 ≤ −2k0µ1⟨ξ⟩−1 + a1⟨ξ⟩−κ3 ≤ 0.

resulting inˆ
(∆kLU,sW ·∆kU+∆kLP,sW∆kP + wB∆

kLB,sW∆kB)φ2
2k⟨X⟩ηdX

≤ −2λη

ˆ
(|∆kU|2 + |∆kP |2 + wB|∆kB|2)φ2

2k⟨X⟩η + Ck,η|(U, P,B)|2⟨X⟩η−rdX. (4.15)

Weighted L2 estimates. For k = 0, we do not have the lower order terms R·,0 in (4.8) and we
do not need to estimate IR as in (4.14). Combining (4.11) and (4.13) (with k = 0), we obtainˆ

(LU,sW ·U+ LP,sW · P + wBLB,sW ·B) ⟨X⟩ηdX

≤
ˆ (

3c̄v +
c̄x
2
(η + 3) + C⟨ξ⟩−r

)
(|U|2 + |P |2 + wB|B|2)⟨X⟩ηdX.

(4.16)

for some constant C > 0, independent of k and η.
If η ∈ [−6, η̄), we have

2λη = −
(
3c̄v +

c̄x
2
(η + 3)

)
> 0.

Thus, there exists a sufficiently large Rη such that for all ξ = |X| ≥ Rη we have

3c̄v +
c̄x
2
(η + 3) + C⟨ξ⟩−r = −2λη + C⟨ξ⟩−r ≤ −2λη + C⟨Rη⟩−r ≤ −3

2
λη.
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Therefore, combining the two estimates above and taking C̄η = CwB max{⟨Rη⟩η−r, 1}, we arrive
at ˆ

(LU,sW ·U+ LP,sW · P + wBLB,sW ·B) ⟨X⟩ηdX

≤
ˆ

−3

2
λη(|U|2 + |P |2 + wB|B|2)⟨X⟩η + C̄η1|X|≤Rη

|(U, P,B)|2dX.
(4.17)

Choosing ϖk,η. In order to conclude the proof of (4.5), we combine (4.15), (4.16), and (4.17).

If η ∈ [−6, η̄), choosing ϖk sufficiently small, e.g. ϖk,η =
4Ck,η

|λη | , where Ck,η is as in (4.15),

multiplying (4.17) with ϖk,η and then adding to (4.15) we deduce (4.5a) with λη independent of k.
If η = η̄, we have λη = 0. We choose ϖk,η = 1. Multiplying (4.16) with ϖk,η and then adding

to (4.15), we deduce (4.5c). □

4.2. Compact perturbation. We follow [23] to construct a compact operator Kk,η such that

LE,s −Kk,η is dissipative in X 2k
η . We fix k0 ≥ 6 and restrict η ∈ [−6, η̄). 30

Proposition 4.6. For any k ≥ k0 ≥ 6 and η ∈ [−6, η̄), there exists a bounded linear operator
Kk,η : X 0

η → X 2k
η independent of s,R0 in the definition of C̄s (2.14), (2.13) with:

(a) for any f ∈ X 0
η we have

supp(Kk,ηf) ⊂ B(0, 4Rη),

where Rη is chosen in Theorem 4.2 (in particular, it is independent of k);

(b) the operator Kk,η is compact from X 2k
η → X 2k

η ;

(c) the enhanced smoothing property Kk,η : X 0
η → X 2k+6

η holds;

(d) the operator LE,s −Kk,η is dissipative on X 2k
η and we have the estimate

⟨(LE,s −Kk,η)f, f⟩X 2k
η

≤ −λη∥f∥2X 2k
η

(4.18)

for all f ∈ {(U, P,B) ∈ X 2k
η : LE,s(U, P,B) ∈ X k

η }, LE,s = (LU,s,LP,s,LB,s), and any s ≥ 0,
where λη > 0 is the parameter from (4.5) (in particular, it is independent of k).

In [23], the compact operator Kk = C̄ηKk,0 is constructed by applying the Riesz representation

theorem in the Hilbert space X 2k
η to the bilinear form

⟨Kk,0f, g⟩X 2k
η

:=

ˆ
χf · gdX

for some smooth cutoff function χ supported in B(0, 4R1) and vector value functions f, g, with
R1, C̄,X 2k

η chosen in the coercivity estimates similar to those in Theorem 4.2. The proof of the
properties of Kk,η in [23] is based the Riesz representation theory and the Rellich–Kondrachov

compact embedding theorem. When we apply the argument in [23], since the space X 2k
η , and the

parameters R1, C̄k,η, are independent of R0, δR, s in (2.13) and (2.14), the operator Kk,η constructed

by the same argument associated to X 2k
η is independent of R0, δR, s. Since the proof is the same,

we omit it.

4.3. Semigroup estimates of the limiting operator LE. To estimate the unstable part, we
will apply semigroup estimates to the limiting operator LE = LE,∞ as s→ ∞ (see (3.10)), which is
time-independent, and then estimate the error LE,s − LE,∞ perturbatively. We estimate LE ,LE,s

in X 2k
η with η chosen in (2.42).

30The result similar to Proposition 4.6 was first proved in [23, Proposition 3.4] for the stability analysis for the
imploding profile of the 2D isentropic Euler equations.
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Applying Theorem 4.2 and Proposition 4.6 with η ⇝ η, we obtain stability estimates of LE ,LE,s

in X 2k
η , and construct the compact operator Kk,η with the properties in Proposition 4.6. We recall

the notations from (2.42)

λη =
c̄x
4
(η̄ − η) > 0. (4.19)

4.3.1. Complex Banach space X k
C,η. To apply various functional analysis argument, following [23],

we introduce the complex Banach space X k
C,η associated with X k

η . Recall the inner product ⟨·, ·⟩Xk
η

from (4.6). For any vector value functions f, g, we define the inner product

⟨f, g⟩Xk
C,η

:= ⟨f, ḡ⟩Xk
η
. (4.20)

The Hilbert spaces X k
C,η is defined as the completion of complex-valued C∞

c radially-symmetric

scalar/vector functions with respect to the norm induced by the above inner products. It is not
difficult to show that

∥f∥2Xm
C,η

= ⟨f, f⟩Xm
C,η

= ∥Ref∥2Xm
η

+ ∥Imf∥2Xm
η
, (4.21)

where Imf denotes the imaginary part of f .
Using linearity and following [23, Section 3.4-3.5], for any real bounded linear operator B : X a

η →
X b
η with some a, b ≥ 0, we define its extension to X a

C,η → X b
C,η using linearity :

B(f + ig) = Bf + iBg, ∀f, g ∈ Xm. (4.22)

From (4.21), it is not difficult to show that B defined as above is a bounded complex linear operator
with

∥B∥Xk
C,η

= ∥B∥Xk
η
. (4.23)

4.3.2. Construction of the semigroup. We follow [23] to construct strongly continuous semigroups
generated by LE ,Dk = LE −Kk,η for any k ≥ k0. We define the domains of LE ,Dk as

Dk(Dk) = Dk(L) := {(U, P,B) ∈ X 2k
C,η, LE(U, P,B) ∈ X 2k

C,η}. (4.24)

We have the following results for LE ,Dk.

Proposition 4.7. Suppose that k ≥ k0 and Kk,η is the compact operator constructed in Proposi-

tion 4.6. The operators LE ,Dk = LE − Kk,η : Dk ⊂ X 2k
C,η → X 2k

C,η generate strongly continuous

semigroups

esLE : X 2k
C,η → X 2k

C,η, esDk : X 2k
C,η → X 2k

C,η.

We have the following estimates of the semigroup

∥ esDk ∥X 2k
C,η→X 2k

C,η
≤ e−ληs, ∥ esLE ∥X 2k

C,η→X 2k
C,η

≤ eCks (4.25)

for some Ck > 0, and the following spectral property of Dk

{z : Re(z) > −λη} ⊂ ρres(Dk), (4.26)

where ρres(A) denotes the resolvent set of an operator A.
Moreover, the semigroups map the real Banach space into the real Banach space:

esLE : X 2k
η → X 2k

η , esDk : X 2k
η → X 2k

η .

The construction and estimates of the semigroups esL, esDk in [23] are based on the following
steps.
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(1) Solve a linear PDE of (U,Σ) similar to (3.10), which is a symmetric hyperbolic system, and
prove its well-posedness. 31

(2) Apply the coercivity estimates (4.5) to obtain uniqueness of the solution and continuous de-
pendence on the initial data.

(3) To further construct the semigroup es(L−Kk,η) based on esL, one applies the Bounded Pertur-
bation Theorem [35, Theorem 1.3, Chapter III].

(4) Generalize the estimates on the real Banach space X 2k
η to the complex Banach space X 2k

C,η using

linearity.

In the current setting, the linear PDE with linear operators LE = (LU ,LP ,LB) defined in (3.10)
is a symmetric hyperbolic system. Moreover, we develop the same type of coercivity estimate (4.5)
as that in [23]. Thus, the proof is the same as that in [23]. After we construct the semigroup, the

decay estimate of esDk = es(LE−Kk,η) follows from the dissipative estimates (4.18) for LE − Kk,η,

and implies the estimates of the resolvent set (4.26). Note that the estimates (4.25), (4.26) apply
to all (Dk,X 2k

C,η) with k ≥ k0 with λη independent of k. Since the argument is the same, we omit

the proof here and refer the reader to [23, Sections 3.4, 3.5].

4.3.3. Hyperbolic decomposition. We consider k ≥ k0. Denote by σ(A) the spectrum of A :

σ(A) = {z ∈ C : z −A is not bijective in X 2k
C,η}.

We follow [22, 23] to obtain decay estimates of esLE and decompose the space X 2k
C,η. Based on

Proposition 4.7, using operator theories from [35, Corollary 2.11, Chapter IV] for the growth bound,
and [36, Theorem 2.1, Chapter XV, Part IV (Page 326)] for the spectral projection, we can perform
the following decomposition of X 2k

C,η and σ(LE). The arguments are the same as those in [23, Section

3.5]; we refer the reader to further discussions therein. Below, we summarize the results.
Recall the parameter λη from (2.42c) and (4.19) in Theorem 4.2, ℓ from (2.33), and ω from

(2.11). We have λη > ω. Next, we fix parameters λs, λu with(
2

3
ω − ℓ

)
< λs < λu <

2

3
ω < λη. (4.27)

Due to (4.26), the set
σu := σ(LE) ∩ {z : Re(z) > −λu}, (4.28)

only consists of finite many eigenvalues of LE with finite multiplicity. Applying the spectral pro-
jection, we can decompose X 2k

C,η into the stable part X 2k
st associated with the spectrum σ(LE)\σu

and unstable part X 2k
un associated with σu:

X 2k
η = X 2k

un ⊕X 2k
st , σ(LE |Xk

st
) = σ(LE)\σu ⊂ {z : Re(z) ≤ −λu}, σ(LE |Xk

un
) = σu. (4.29)

We omit the subindex η in X 2k
st ,X 2k

un since we only apply the decomposition to spaces with this
parameter.

The space X 2k
un has finite dimension and can be decomposed as follows

X 2k
un =

⊕
z∈σu

ker((z − LE)
µz), µz <∞, |σu| < +∞, dim(X 2k

un ) <∞. (4.30)

We have the following estimates of the semigroup in these two spaces

∥ esLE f∥X 2k
C,η

≤ Ck e
−λss ∥f∥X 2k

C,η
, ∀f ∈ X 2k

st , (4.31a)

∥ e−sLE f∥X 2k
C,η

≤ Ck e
λus ∥f∥X 2k

C,η
, ∀f ∈ X 2k

un , (4.31b)

31In the linear stability analysis of the isentropic Euler equations in [22], Σ is the perturbation of the rescaled sound
speed. We do not use such a variable in this work.
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for any s > 0, where λs, λu are defined in (4.27).

4.3.4. Smoothness of unstable directions. We use the following Lemma proved in [23, Lemma 3.9]
to show that the unstable part X k

un (4.30) is spanned by smooth functions.

Lemma 4.8. Let {Xi}i≥0 be a sequence of Banach spaces with Xi+1 ⊂ Xi for all i ≥ 0. Assume
that for any i ≥ i0 we can decompose the linear operator A : D(A) ⊂ Xi → Xi as A = Di + Ki,
where the linear operators Di and Ki satisfy

Di : D(A) ⊂ Xi → Xi, Ki : X
i−1 → Xi, {z ∈ C : Re(z) > −λ} ⊂ ρres(Di), (4.32)

for some λ ∈ R. Here, ρres(·) denotes the resolvent set of an operator and λ > 0 is independent of
i ≥ i0. Fix n ≥ 0 and z ∈ C with Re(z) > −λ. Assume that the functions f0, . . . , fn ∈ Xi0 satisfy

(z −A)f0 = 0, (z −A)fi = fi−1, for 1 ≤ i ≤ n.

Then, we have f0, . . . , fn ∈ X∞ := ∩i≥0X
i.

Consider Lemma 4.8 with (A, {Xi}i≥0, i0, λ) ⇝ (LE , {X 2i
C,η}i≥0, k0, λη) and the decomposition

LE = Dk + Kk,η for any k ≥ k0 ≥ 6, where Kk,η is constructed in Proposition 4.6. Using Lemma

4.5, Proposition 4.6, and (4.26), we verify the assumption on Xi and (4.32) in Lemma 4.8. Applying
Lemma 4.8 to ker((z − L)µz) ⊂ X 2k

un in (4.30) with z ∈ σ(LE) ∩ {z : Re(z) > −λu} ⊂ {z : Re(z) >
−λη} (see (4.28)), we obtain that X 2k

un are spanned by smooth functions in X∞
C,η = ∩i≥0X i

C,η ⊂ C∞.

From the definition of X i
C,η (4.21), f ∈ X i

C,η if and only if f, Imf ∈ X i
η. It follows Re(X 2k

un ) ⊂ ∩i≥0X i
η.

For any k ≥ k0 and s ∈ R, (4.30) implies that X 2k
un is finite-dimensional and invariant under the

operator esLE . For any n ≥ 0, k ≥ k0, and s ∈ R, since all norms in the finite-dimensional space
Re(X 2k

un ) ⊂ ∩i≥0X i
η are equivalent and X i

η is a norm for Re(X 2k
un ), we obtain

esLE f ⊂ X 2k
un , ∥Re f∥Xn

η
≲n,k ∥Re f∥X 2k

η
, ∀f ∈ X 2k

un . (4.33)

4.3.5. Additional decay estimates of LE. In order to localize the initial data (see (9.4a) below), we
will need the following decay estimates for esLE g with initial data g supported in the far-field. The
following Proposition is similar to [23, Proposition 3.8].

Proposition 4.9. Let Rη be as defined in Theorem 4.2 with η = η and LE be as defined in (3.10).
Consider the linear equations

∂sW = LEW, W = (U, P,B), (4.34)

with initial data W0 = (U0, P0, B0) with supp(W0) ⊂ B(0, R)∁ for some R > 4Rη > ξ∗. For any

k ≥ k0, the solution W(s) = esLE W0 satisfies

supp(W(s)) ⊂ B(0, 4Rη)
∁, ∥ esLE W0∥X 2k

η
≤ e−ληs ∥W0∥X 2k

η
.

The proof is similar to that of [23, Proposition 3.8].

Proof. Our key observation is that the support of the solution esLE W0 is moving away from
X = 0, remaining outside of B(0, 4Rη) for all time. Since supp(Kk,ηf) ⊂ B(0, 4Rη) (item (a) in

Proposition 4.6), we get Kk,ηW(s) = 0 for all time s, and the desired decay estimate follows from

(4.18) or (4.25).
Based on the above discussion, we only need to show that the solution satisfies W(s,X) = 0 for

all X ∈ B(0, 4Rη) and s > 0. Let χ be a radially symmetric cutoff function with χ(X) = 1 for

|X| ≤ 4Rη, χ(X) = 0 for |X| ≥ R > 4Rη, and with χ(|X|) decreasing in |X|. Our goal is to show

that the weighted L2 norm
´
(|U(s)|2+ |P (s)|2+ |B(s)|2)χ of the solution W = (U, P,B) of (4.34),

vanishes identically for s ≥ 0. By assumption, we have that
´
(|U(0)|2 + |P (0)|2 + |B(0)|2)χ = 0,

so it remains to compute d
ds of this weighted L2 norm using (4.34).
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Recall the decomposition of LE from (4.7) with k = 0 and LE,sW = LE,∞W = LEW. Then,
we have

RU,k = RP,k = RB,k = 0, EU = EP = EB = 0, C̄s = C̄.

Performing weighted L2 estimates analogous to the ones in the proof of Theorem 4.2, for the
transport terms we obtainˆ

(TU ·U+ TP P + TBB)χdX

= −
ˆ (

(X + Ū) · 1
2
∇
(
|U|2 + P 2 +B2

)
+ C̄∇P ·U+ C̄(∇ ·U) · P

)
χdX

=

ˆ
1

2
∇ ·
(
(X + Ū)χ

)
(|U|2 + P 2 +B2) +∇(C̄χ) ·UPdX

≤
ˆ

1

2

(
(X + Ū) · ∇χ+ χ∇ · (X + Ū)

)
(|U|2 + P 2 +B2) +

(
C̄|∇χ|+ χ|∇C̄|

)
|UP |dX. (4.35)

We focus on the terms in (4.35) that involve |∇χ|. Since χ is radially symmetric, we get

(X + Ū) · ∇χ = (ξ + Ū)∂ξχ.

Using Cauchy–Schwarz, the fact that ∂ξχ(X) = 0, |X| ≤ 4Rη and ∂ξχ ≤ 0 globally, and using that

(3.3c), (3.3d) yield ξ + Ū(ξ)− C̄(ξ) > 0 for ξ = |X| > ξ∗ (hence for ξ > 4Rη) and ξ + Ū(ξ) ≥ 0 for
any ξ, we obtain

1
2

(
(X + Ū) · ∇χ

)
(|U|2 + P 2 +B2) + C̄|∇χ||UP | ≤ 1

2

(
(ξ + Ū)∂ξχ+ C̄|∂ξχ|

)
(|U|2 + P 2)

≤ 1
2(ξ + Ū − C̄)∂ξχ(|U|2 + P 2) ≤ 0.

For the remaining contributions, resulting from the χ-terms in (4.35), and from the DU ,SU ,DP ,
SP ,DB,SB-terms in (4.7), in light of (3.1a) and we have that

1

2
χ∇ · (X + Ū)(|U|2 + P 2 +B2) + χ|∇C̄||UP |+ 3c̄vχ(|U|2 + P 2 +B2) +O(χ|(U, P,B)|2)

≤ Cχ(|U|2 + P 2 +B2)

for some sufficiently large C > 0 (depending on r, Ū, P̄ , C̄). Thus, we obtain

1

2

d

ds

ˆ
(|U|2 + P 2 +B2)χdX =

ˆ
(LU ·U+ LP · P + LB ·B)χdX ≤ C

ˆ
(|U|2 + P 2 +B2)χdX,

which implies via Grönwall that
´
|(U, P,B)(s)|2χdX = 0 for all s ≥ 0. The claim follows. □

4.3.6. Regularity parameter. Let k0 be the parameter from Theorem 4.2. To construct blowup
solution in Section 9, we fix regularity parameters kL and k with the special font

kL = 2d+ 16, k ≥ max{k0, kL}. (4.36a)

We simplify the compact operator Kk,η constructed in Proposition 4.6 with k = k:

Kk := Kk,η. (4.36b)

4.4. Estimate of LE,s − LE. We have the following estimates of the error terms (LE,s − LE)W.

Proposition 4.10. Let η be chosen in (2.31). For any η ∈ [η, η̄], k ≥ 0, and (U, P,B) ∈ X 2k
η , we

have
∥(LE,s − LE)(U, P,B)∥X 2k

η
≲k Rs

−r+ 1
2
(η−η)∥(U, P,B)∥X 2k+1

η
.

The above estimates show that the error terms (LE,s−LE)(U, P,B) decay faster than (U, P,B).
We will gain regularity from the compact operator Kk,η in Proposition 4.6 in the later fixed point
argument. See (9.3) and (9.39) in Section 9.
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Proof. We drop the dependence of LE,s,LE on (U, P,B) for simplicity. Denote W = (U, P,B).
From (2.14) and Lemma A.1, we have C̄ − C̄s = 0, Eρ = 0, EU = 0 for |X| < Rs. For |X| ≥ Rs,
using (3.3a) and C̄ ≲ C̄s, we obtain

|∇i(C̄s − C̄)| ≲i ⟨X⟩−iRs
−(r−1), |∇i((C̄−1

s C̄− 1)∇C̄)| ≲i ⟨X⟩−r−i (4.37)

Recall the definition of LE and LE,s from (3.11), (3.10). Using (3.3a) and (3.1a), for any l ≥ 0
and |X| ≥ Rs, we obtain

J2l := |∇2l(LE,s − LE)| ≲l

∑
0≤i≤2l

(
|∇2l−i(C̄s − C̄)| |∇i+1W|+ |∇2l−i+1(C̄s − C̄)| |∇iW|

+ (|∇2l−i(C̄−1
s C̄∇C̄−∇C̄)|+ |∇2l−i(EC, EU)|)|∇iW|

)
.

Using Lemma A.1 and (4.37), for any |X| ≥ Rs, we obtain

J2l ≲l

∑
0≤i≤2l

⟨X⟩−(2l−i)|∇i+1W|Rs
−(r−1) + ⟨X⟩−(2l−i)−1|∇iW|Rs

−(r−1) + ⟨X⟩−(2l−i)−r|∇iW|

≲l

∑
0≤j≤2l+1

(⟨X⟩−2l−1+jRs
−(r−1) + ⟨X⟩−2l+j−r)|∇jW|

≲l Rs
−r+1⟨X⟩−1

∑
0≤j≤2l+1

⟨X⟩−2l+j |∇jW|.

Note that for |X| ≥ Rs and η ∈ [η, η̄] (hence η − 2− η̄ < 0), we have

φ2
2l⟨X⟩η−2 ≲l ⟨X⟩4l+η−2 ≲ ⟨X⟩4l+η⟨X⟩η−η−2 ≲ ⟨X⟩4l+ηRs

η−η−2.

Since LE,s − LE = 0 for |X| < Rs, using the above estimates and applying the interpolation in
Lemma B.2 and Lemma B.3 with δ1 = 1, δ2 = η, we obtainˆ

|J2l|2φ2
2l⟨X⟩ηdX ≲l Rs

−2r+η−η
∑

0≤j≤2l+1

ˆ
|X|≥Rs

⟨X⟩4l−4l+2j+η|∇jW|2dX ≲l Rs
−2r+η−η∥W∥2X 2l+1

η
.

Applying the above estimates with l = 0, k, we complete the proof. □

5. Trilinear estimates of the collision operator in V

In this section, we estimate the V -integral of the nonlinear operator N (f, g) defined in (2.22b).
In Section 5.1, we estimate the diffusion coefficient matrix. In Section 5.2, we decompose and
estimate the collision operator.

5.1. Estimate of diffusion coefficient matrix. Recall Πv = v
|v| ⊗

v
|v| . Define a matrix-valued

function Σ as

Σ := C̄γ+5
s

(
⟨V̊ ⟩γΠV̊ + ⟨V̊ ⟩γ+2(Id−ΠV̊ )

)
. (5.1a)

Since Σ is a positive definite matrix, by definition, we have

Σ1/2 = C̄
γ+5
2

s

(
⟨V̊ ⟩

γ
2ΠV̊ + ⟨V̊ ⟩

γ+2
2 (Id−ΠV̊ )

)
, (5.1b)

and

C̄γ+5
s ⟨V̊ ⟩γId ⪯ Σ ⪯ C̄γ+5

s ⟨V̊ ⟩γ+2Id. (5.1c)

Here for matricesM1,M2, M1 ⪯ M2 meansM2−M1 is nonnegative definite. V̊ is an eigenvector
of Σ with eigenvalue C̄γ+5

s ⟨V̊ ⟩γ , and V̊ ⊤ is a two-dimensional eigenspace of Σ with eigenvalue

C̄γ+5
s ⟨V̊ ⟩γ+2.
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Lemma 5.1. Let f be a scalar-valued function of V . Then for any N ≥ 0 and γ ≥ 0, there exists
a constant CN such that for every V ∈ R3:

−CN C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )Σ ⪯ A[M1/2

1 f ](V ) ⪯ CN C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )Σ, (5.2a)

1

C0
Σ ⪯ A[M](V ) ⪯ C0Σ . (5.2b)

Moreover, for i = 0, 1, 2, and any j ≥ 0 and N ≥ 0, we have∣∣∣D≤j∇i
VA[M

1/2
1 f ](V )

∣∣∣ ≲j,N ∥⟨V̊ ⟩−ND≤jf∥L2(V )C̄
γ+2−i
s ⟨V̊ ⟩γ+2−i. (5.3)

Using the embedding (B.7b), if f is a function of X and V , then we further obtain that

∥⟨V̊ ⟩−Nf(X, ·)∥L2(V ) ≤ ∥f(X, ·)∥L2(V ) ≲ C̄3
s∥f∥YkL

η̄
for all N ≥ 0 and every X ∈ R3.

Proof. Without loss of generality, assume ∥⟨V̊ ⟩−Nf∥L2(V ) = 1. For (5.2), it suffices to show that

for any vector ξ ∈ R3,

ξ⊤A[M1/2
1 f ]ξ ≤ CN C̄−3

s ξ⊤Σ ξ,
1

C0
ξ⊤Σ ξ ≤ ξ⊤A[M]ξ ≤ C0ξ

⊤Σ ξ. (5.4)

By changing f to −f , this estimate implies the lower bound in (5.2a). Furthermore, it is sufficient

to show this for ξ = V̊ and ξ ⊥ V̊ since A[M1/2
1 f ] and A[M] are symmetric.

Proof of the first bound in (5.4). First, we show the upper bound of A[M1/2
1 f ]. Note that

A[M1/2
1 f ] =

ˆ
|V −W |γ+2(Id−ΠV−W )M1/2

1 (W )f(W )dW

= C̄γ+2
s

ˆ
|V̊ − W̊ |γ+2(Id−ΠV̊−W̊ )M1/2

1 (W )f(W )dW

⪯ CN C̄γ+2
s ⟨V̊ ⟩γ+2

ˆ
⟨W̊ ⟩γ+2(Id−ΠV̊−W̊ )M1/2

1 (W )|f(W )|dW.

As a consequence,

|A[M1/2
1 f ]| ≲ C̄γ+2

s ⟨V̊ ⟩γ+2

ˆ
⟨W̊ ⟩γ+2M1/2

1 (W )|f(W )|dW

≲ C̄γ+2
s ⟨V̊ ⟩γ+2∥⟨W̊ ⟩

γ+2
2

+NM1/2
1 (W )∥L2(W )∥⟨W̊ ⟩−Nf(W )∥L2(W )

≲N C̄γ+2
s ⟨V̊ ⟩γ+2.

(5.5)

Here we used that ∥⟨V̊ ⟩NM1/2
1 ∥L2(V ) ≤ CN for any N ≥ 0.

If ξ = V̊ and |V̊ | ≥ 1, since |V̊ | ≳ ⟨V̊ ⟩, we have

V̊ ⊤A[M1/2
1 f ]V̊ ≲ C̄γ+2

s ⟨V̊ ⟩γ+2

ˆ
⟨W̊ ⟩γ+2V̊ ⊤(Id−ΠV̊−W̊ )V̊M1/2

1 (W )|f(W )|dW

= C̄γ+2
s ⟨V̊ ⟩γ+2

ˆ
⟨W̊ ⟩γ+2W̊⊤(Id−ΠV̊−W̊ )W̊M1/2

1 (W )|f(W )|dW

≲ C̄γ+2
s |V̊ |2⟨V̊ ⟩γ∥⟨W̊ ⟩γ+2+2+NM1/2

1 (W )∥L2(W )∥⟨W̊ ⟩−Nf(W )∥L2(W )

≲ C̄γ+2
s |V̊ |2⟨V̊ ⟩γ

= C̄−3
s V̊ ⊤Σ V̊ .

If |V̊ | ≤ 1, then ⟨V̊ ⟩ ≍ 1, so ⟨V̊ ⟩γ+2 ≲ ⟨V̊ ⟩γ , and we use the upper bound (5.5) to deduce

V̊ ⊤A[M1/2
1 f ]V̊ ≤ |V̊ |2|A[M1/2

1 f ] ≲ |V̊ |2C̄γ+2
s ⟨V̊ ⟩γ+2 ≲ C̄γ+2

s |V̊ |2⟨V̊ ⟩γ ,
which is the same upper bound as above.
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Now we suppose ξ ⊥ V̊ , we also use (5.5) to obtain:

ξ⊤A[M1/2
1 f ]ξ ≤ |ξ|2|A[M1/2

1 f ]| ≲ |ξ|2C̄γ+2
s ⟨V̊ ⟩γ+2 = C̄−3

s ξ⊤Σ ξ.

Proof of the second bound in (5.4). The upper bound of A[M] follows directly from the first

bound because M = M1/2
1 · ρ̄sM1/2

1 , and ∥M1/2
1 ∥L2(V ) = 1. Next, we show the lower bound of

A[M]. By direct computation,

ξ⊤A[M]ξ = C̄γ+5
s

ˆ
|V̊ − W̊ |γ

(
|ξ|2|V̊ − W̊ |2 − |ξ · (V̊ − W̊ )|2

)
µ(W̊ )dW̊ .

Again, we only need to show lower bound for the cases ξ = V̊ and ξ ⊥ V̊ .
If ξ ⊥ V̊ , we have

ξ⊤A[M]ξ = C̄γ+5
s

ˆ
|V̊ − W̊ |γ

(
|ξ|2|V̊ − W̊ |2 − |ξ · W̊ |2

)
µ(W̊ )dW̊ .

When |V̊ | ≥ 1, we restrict the integral in {|W̊ | ≤ 1
3 |V̊ |}, and we can bound from below by

ξ⊤A[M]ξ ≥ C̄γ+5
s

ˆ
|W̊ |≤ 1

3
|V̊ |

|V̊ − W̊ |γ
(
|ξ|2|V̊ − W̊ |2 − |ξ · W̊ |2

)
µ(W̊ )dW̊

≥ C̄γ+5
s

ˆ
|W̊ |≤ 1

3
|V̊ |

(
2

3
|V̊ |
)γ
(
|ξ|2

(
2

3
|V̊ |
)2

− |ξ|2
(
1

3
|V̊ |
)2
)
µ(W̊ )dW̊

≳ C̄γ+5
s |V̊ |γ+2|ξ|2.

When |V̊ | ≤ 1, define a cone in V̊ ’s direction

CV̊ =
{
W̊ ∈ R3 : |W̊ · V̊ | ≥ 24

25
|W̊ ||V̊ |

}
.

Since V̊ ⊥ ξ, in this cone, we use Pythagoras’ rule to obtain

|W̊ |2 = |ξ|−2|ξ · W̊ |2 + |V̊ |−2|W̊ · V̊ |2 ≥ |ξ|−2|ξ · W̊ |2 + 242

252
|W̊ |2 =⇒ |ξ · W̊ | ≤ 7

25 |ξ| · |W̊ |.

We restrict the integral in the cone intersecting an annulus:

ξ⊤A[M]ξ ≥ C̄γ+5
s

ˆ
W̊∈CV̊ ,2≤|W̊ |≤3

|V̊ − W̊ |γ
(
|ξ|2|V̊ − W̊ |2 − |ξ · W̊ |2

)
µ(W̊ )dW̊

≥ C̄γ+5
s

ˆ
W̊∈CV̊ ,2≤|W̊ |≤3

|V̊ − W̊ |γ
(
|ξ|2|V̊ − W̊ |2 −

(
7

25
|ξ||W̊ |

)2
)
µ(W̊ )dW̊

≥ C̄γ+5
s

ˆ
W̊∈CV̊ ,2≤|W̊ |≤3

(
|ξ|2 − 212

252
|ξ|2
)
µ(W̊ )dW̊

≳ C̄γ+5
s |ξ|2.

Combined, we have shown

ξ⊤A[M]ξ ≳ C̄γ+5
s ⟨V̊ ⟩γ+2|ξ|2 ≳ ξ⊤Σ ξ, ∀ ξ ⊥ V̊ . (5.6)

Next, when ξ = V̊ , we have

ξ⊤A[M]ξ = C̄γ+5
s

ˆ
|V̊ − W̊ |γ

(
|V̊ |2|V̊ − W̊ |2 − |V̊ · (V̊ − W̊ )|2

)
µ(W̊ )dW̊

= C̄γ+5
s

ˆ
|V̊ − W̊ |γ

(
|V̊ |2|W̊ |2 − |V̊ · W̊ |2

)
µ(W̊ )dW̊ .
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When |V̊ | ≥ 1, we restrict the integral in an annulus but outside the cone:

ξ⊤A[M]ξ ≥ C̄γ+5
s

ˆ
W̊ /∈CV̊ , 1

3
≤|W̊ |≤ 1

2
|V̊ |

|V̊ − W̊ |γ
(
|V̊ |2|W̊ |2 − |V̊ · W̊ |2

)
µ(W̊ )dW̊

≥ C̄γ+5
s

ˆ
W̊ /∈CV̊ , 1

3
≤|W̊ |≤ 1

2
|V̊ |

(
1

2
|V̊ |
)γ ( 7

25

)2

|V̊ |2|W̊ |2µ(W̊ )dW̊

≳ C̄γ+5
s |V̊ |γ+2.

When |V̊ | ≤ 1, we integrate in another annulus but still outside the cone:

ξ⊤A[M]ξ ≥ C̄γ+5
s

ˆ
W̊ /∈CV̊ ,2≤|W̊ |≤3

|V̊ − W̊ |γ
(
|V̊ |2|W̊ |2 − |V̊ · W̊ |2

)
µ(W̊ )dW̊

≥ C̄γ+5
s

ˆ
W̊ /∈CV̊ ,2≤|W̊ |≤3

(
7

25

)2

|V̊ |2|W̊ |2µ(W̊ )dW̊

≳ C̄γ+5
s |V̊ |2.

Combined we have shown

ξ⊤A[M]ξ ≳ C̄γ+5
s ⟨V̊ ⟩γ |V̊ |2 = ξ⊤Σ ξ, ξ = V̊ .

Together with (5.6), we have completed the proof for the lower bound of A[M].
Finally, we prove (5.3). For i ≤ 2 and any multi-indices α, β with |α|+ |β| = j, since γ ≥ 0 and

Dα,β commutes with ∇V by (2.24), using (C.21) and Leibniz rule, we get

|Dα,β∇i
VA[M

1/2
1 f ]| =

∣∣∣ ˆ ∇i
V Φ(V −W ) ·Dα,β(M1/2

1 f)(W )dW
∣∣∣

≲j

ˆ
|V −W |γ+2−i · M1/2

1 (W ) · |D≤jf(X,W )|dW

≲j C̄
γ+2−i
s

ˆ
|V̊ − W̊ |γ+2−i · M1/2

1 (W ) · |D≤jf(X,W )|dW

≲j C̄
γ+2−i
s

ˆ
⟨V̊ ⟩γ+2−i⟨W̊ ⟩γ+2−i · M1/2

1 (W ) · |D≤jf(X,W )|dW

≲j C̄
γ+2−i
s ⟨V̊ ⟩γ+2−i∥⟨W̊ ⟩γ+2−i⟨W̊ ⟩NM1/2

1 ∥L2(W )∥⟨W̊ ⟩−ND≤jf∥L2(W ).

Using (C.24a) and M1 = C̄−3
s µ(V̊ ), we know ∥⟨W̊ ⟩γ+N+2M1/2

1 ∥L2(W ) ≤ C(N, γ), so (5.3) is proven.
□

Corollary 5.2. Let f be a scalar-valued function of V , and g⃗, h⃗ be vector-valued functions of V .
Then for any N ≥ 0, it holds that∣∣∣⟨A[M1/2

1 f ]⃗g, h⃗⟩V
∣∣∣ ≲N C̄−3

s ∥⟨V̊ ⟩−Nf∥L2(V )∥Σ
1
2 g⃗∥L2(V )∥Σ

1
2 h⃗∥L2(V ).

Proof. Define M = Σ−1/2A[M1/2
1 f ]Σ−1/2. Since Σ is a positive definite matrix by (5.1), using

(5.2), we obtain

−CN C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )Id ⪯M ⪯ CN C̄−3

s ∥⟨V̊ ⟩−Nf∥L2(V )Id =⇒ |M(V )| ≲ CN C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V ).

Thus, using Cauchy–Schwarz inequality, we prove the desired result

|⟨A[M1/2
1 f ]⃗g, h⃗⟩V | = |⟨M Σ1/2 g⃗,Σ1/2 h⃗⟩V | ≲ ∥M∥L∞(V )∥Σ

1
2 g⃗∥L2(V )∥Σ

1
2 h⃗∥L2(V )

≲ CN C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )∥Σ

1
2 g⃗∥L2(V )∥Σ

1
2 h⃗∥L2(V ).

□
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Another direct consequence is that σ norm is equivalent to the following weighted H1 norm.

Corollary 5.3. Recall the σ-norm from (2.28). Define

Λ(s,X, V ) = C̄γ+3
s ⟨V̊ ⟩γ+2. (5.7)

Then

∥g(s,X, ·)∥2σ ≍
ˆ

Λ|g|2 + ⟨∇V g,Σ∇V g⟩dV = ∥Λ1/2g∥2L2(V ) + ∥Σ1/2∇V g∥2L2(V ). (5.8)

In particular, we have

∥Σ
1
2 ∇g∥2L2(V ) ≲ ∥g∥2σ, (5.9a)

∥Σ
1
2 (gC̄−1

s V̊ )∥2L2(V ) ≲ ∥Λ1/2g∥2L2(V ), (5.9b)

∥Σ
1
2 (gC̄−1

s V̊ )∥2L2(V ) ≲ ∥g∥2σ. (5.9c)

Proof. The proof of (5.8) can be found in [47, Corollary 1]. (5.9a) is a direct consequences of (5.8).
For (5.9b), we can compute it as

∥Σ
1
2 (gC̄−1

s V̊ )∥2L2(V ) = C̄γ+5−2
s ∥⟨V̊ ⟩

γ
2 gV̊ ∥2L2(V ) ≲ ∥Λ1/2g∥2L2(V ).

We used Λ = C̄γ+3
s ⟨V̊ ⟩γ+2 defined in (5.7). Then (5.9c) is due to (5.8). □

5.2. Decomposition and estimates of the collision operator. Recall N (·) form (2.22b):

N (f, g) = M−1/2
1 Q(M1/2

1 f,M1/2
1 g).

In the next lemmas we will derive the following equivalent formulation for N (f, g):

N (f, g) =
∑

1≤i≤6

Ni(f, g),

where N1(f, g) := div
(
A[M1/2

1 f ]∇g
)

N2(f, g) := −div
(
divA[M1/2

1 f ]g
)

N3(f, g) := −κ2C̄−1
s div

(
A[M1/2

1 f ]V̊ g
)

N4(f, g) := −κ2C̄−1
s V̊ ⊤A[M1/2

1 f ]∇g

N5(f, g) := κ22C̄
−2
s gV̊ ⊤A[M1/2

1 f ]V̊

N6(f, g) := κ2C̄
−1
s g divA[M1/2

1 f ] · V̊ .

(5.10)

In the rest of this section, the divergence operator div acts on the V variable.

Lemma 5.4. Let f, g, h be functions of V , then for each Ni defined in (5.10) the following holds:

|⟨Ni(f, g), h⟩V | ≲N C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )∥g∥σ∥h∥σ.

Recall Λ = C̄γ+3
s ⟨V̊ ⟩γ+2 from (5.7). For Ni, 2 ≤ i ≤ 6, we have the following improved estimates

|⟨Ni(f, g), h⟩V | ≲ C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )∥Λ1/2g∥L2(V )∥h∥σ, 2 ≤ i ≤ 6.

Proof. By the definition of N and Q, we split the inner product into two parts:

⟨N (f, g), h⟩ =
〈
M−1/2

1 Q(M1/2
1 f,M1/2

1 g), h
〉

= −
〈
A[M1/2

1 f ]∇(M1/2
1 g)− divA[M1/2

1 f ]M1/2
1 g,∇(M−1/2

1 h)
〉

= −
〈
A[M1/2

1 f ]∇(M1/2
1 g),∇(M−1/2

1 h)
〉
+
〈
divA[M1/2

1 f ]M1/2
1 g,∇(M−1/2

1 h)
〉
.
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We simplify the first inner product as〈
A[M1/2

1 f ]∇(M1/2
1 g),∇(M−1/2

1 h)
〉

=
〈
A[M1/2

1 f ]M1/2
1 (∇g + g∇ logM1/2

1 ),M−1/2
1 (∇h− h∇ logM1/2

1 )
〉

=
〈
A[M1/2

1 f ](∇g + g∇ logM1/2
1 ),∇h− h∇ logM1/2

1

〉
.

We carry a similar computation for the second inner product:〈
divA[M1/2

1 f ]M1/2
1 g,∇(M−1/2

1 h)
〉
=
〈
divA[M1/2

1 f ]g,∇h− h∇ logM1/2
1

〉
.

By direct computation,

∇V M = −M · κC̄−1
s V̊ , ∇V M1/2

1 = −M1/2
1 · κ2C̄−1

s V̊ , (5.11)

so ∇ logM1/2
1 = −κ2C̄−1

s V̊ . Therefore, the inner product can be expanded as

⟨N (f, g), h⟩ = −
〈
A[M1/2

1 f ]∇g,∇h
〉
−
〈
A[M1/2

1 f ]∇g, hκ2C̄−1
s V̊

〉
+
〈
A[M1/2

1 f ]gκ2C̄
−1
s V̊ ,∇h

〉
+
〈
A[M1/2

1 f ]gκ2C̄
−1
s V̊ , hκ2C̄

−1
s V̊

〉
+
〈
divA[M1/2

1 f ]g,∇h
〉
+
〈
divA[M1/2

1 f ]g, hκ2C̄
−1
s V̊

〉
= ⟨N1(f, g), h⟩+ ⟨N4(f, g), h⟩+ ⟨N3(f, g), h⟩+ ⟨N5(f, g), h⟩
+ ⟨N2(f, g), h⟩+ ⟨N6(f, g), h⟩.

(5.12)

This equality holds for any h ∈ L2(V ), so we have proven the decomposition (5.10).

Thanks to Corollary 5.2, we only need to bound a Σ
1
2 weighted norm for ∇g, ∇h, gV̊ , and

hV̊ . To this end, we use (5.9) to bound them by the σ norm or the weighted L2 norm. Applying
Corollary 5.2 to (5.12), we get

|⟨N1(f, g), h⟩| =
∣∣∣〈A[M1/2

1 f ]∇g,∇h
〉∣∣∣ ≲ C̄−3

s ∥⟨V̊ ⟩−Nf∥L2(V )∥g∥σ∥h∥σ. (5.13)

The estimate of N3, N5 are the same except that we apply the estimate (5.9b) instead of (5.9c)
since N3,N5 do not involve ∇V g:

|⟨N3,5(f, g), h⟩| ≲ C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )∥Λ1/2g∥L2(V )∥h∥σ.

Next, we derive bounds for N2, N6. We invoke pointwise bound of divA in (5.3) with i = 1, j = 0:

|⟨N2(f, g), h⟩| =
∣∣∣〈divA[M1/2

1 f ]g,∇h
〉∣∣∣

≤ C̄γ+1
s ∥⟨V̊ ⟩−Nf∥L2(V )

ˆ
⟨V̊ ⟩γ+1|g| · |∇h|dV

≤ C̄γ+1
s ∥⟨V̊ ⟩−Nf∥L2(V )∥⟨V̊ ⟩

γ+2
2 g∥L2(V )∥⟨V̊ ⟩

γ
2∇h∥L2(V )

= C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )∥C̄

γ+3
2

s ⟨V̊ ⟩
γ+2
2 g∥L2(V )∥C̄

γ+5
2

s ⟨V̊ ⟩
γ
2∇h∥L2(V )

≲ C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )∥Λ1/2g∥L2(V )∥h∥σ.
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Similarly,

|⟨N6(f, g), h⟩| =
∣∣∣〈divA[M1/2

1 f ]g, hκ2C̄
−1
s V̊

〉∣∣∣
≤ C̄−3

s ∥⟨V̊ ⟩−Nf∥L2(V )∥C̄
γ+3
2

s ⟨V̊ ⟩
γ+2
2 g∥L2(V )∥C̄

γ+5
2

s ⟨V̊ ⟩
γ
2 hκ2C̄

−1
s V̊ ∥L2(V )

≤ C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )∥C̄

γ+3
2

s ⟨V̊ ⟩
γ+2
2 g∥L2(V )∥C̄

γ+3
2

s ⟨V̊ ⟩
γ+2
2 h∥L2(V )

≲ C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )∥Λ1/2g∥L2(V )∥h∥σ.

Finally for N4, using integration by parts in ∇V , we obtain

⟨N4(f, g), h⟩ = −
〈
A[M1/2

1 f ]∇g, hκ2C̄−1
s V̊

〉
=
〈
divA[M1/2

1 f ]g, hκ2C̄
−1
s V̊

〉
+
〈
A[M1/2

1 f ]g,∇V h⊗ κ2C̄
−1
s V̊

〉
+
〈
A[M1/2

1 f ]g, hκ2C̄
−1
s ∇V V̊

〉
where in the last term, we have ∇V V̊ = C̄−1

s Id. The first two terms are the same as the above

N6-term, N3-term. For the last term, using Λ = C̄γ+3
s ⟨V̊ ⟩γ+2 and Lemma 5.1, we bound∣∣∣〈A[M1/2

1 f ]g, hκ2C̄
−1
s ∇V V̊

〉∣∣∣ ≲ C̄γ+2
s ∥⟨V̊ ⟩−Nf∥L2(V )

ˆ
⟨V̊ ⟩γ+2C̄−2

s |g| · |h|dV

≲ C̄γ+2−2−γ−3
s ∥⟨V̊ ⟩−Nf∥L2(V )∥Λ1/2g∥L2(V )∥h∥σ.

Combining the above estimate and the estimates of N3,N6, we prove

|⟨N4(f, g), h⟩| ≲ C̄−3
s ∥⟨V̊ ⟩−Nf∥L2(V )∥Λ1/2g∥L2(V )∥h∥σ.

Since ∥Λ1/2g∥L2(V ) ≤ ∥g∥σ, we complete the proof. □
Next, we estimate commutator with derivatives.

Lemma 5.5. Let f, g, h be functions of V . For each 1 ≤ i ≤ 6 and any multi-indices α, β, we have

|⟨Dα,βNi(f, g)−Ni(f,D
α,βg), h⟩V | ≲α,β

∑
α1+α2⪯α
β1+β2⪯β

(α2,β2)≺(α,β)

C̄−3
s ∥Dα1,β1f∥L2(V )∥Dα2,β2g∥σ∥h∥σ,

|⟨Dα,βNi(f, g)−Ni(D
α,βf, g), h⟩V | ≲α,β

∑
α1+α2⪯α
β1+β2⪯β

(α1,β1)≺(α,β)

C̄−3
s ∥Dα1,β1f∥L2(V )∥Dα2,β2g∥σ∥h∥σ.

Proof. By Leibniz rule and (C.21) we have∣∣∣Dα,β(M1/2
1 f)

∣∣∣ = ∣∣∣ ∑
α′⪯α
β′⪯β

Cα
α′ · Cβ

β′ ·Dα−α′,β−β′M1/2
1 ·Dα′,β′

f
∣∣∣ ≲M1/2

1

∑
α′⪯α
β′⪯β

⟨V̊ ⟩|β|+2|α||Dα′,β′
f |.

We can write

Dα,βN1(f, g) =
∑

α2⪯α, β2⪯β

Cα
α2

· Cβ
β2

div
(
A[Dα−α2,β−β2(M1/2

1 f)]∇Dα2,β2g
)

=
∑

α2⪯α, β2⪯β

Cα
α2

· Cβ
β2
N1

(Dα−α2,β−β2(M1/2
1 f)

M1/2
1

, Dα2,β2g
)
,



49

where by Lemma 5.4 and (C.21),∣∣∣〈N1

(Dα−α2,β−β2(M1/2
1 f)

M1/2
1

, Dα2,β2g
)
, h
〉
V

∣∣∣
≲ C̄−3

s

∥∥∥⟨V̊ ⟩−ND
α−α2,β−β2(M1/2

1 f)

M1/2
1

∥∥∥
L2(V )

∥Dα2,β2g∥σ∥h∥σ

≲ C̄−3
s ∥D⪯(α−α2,β−β2)f∥L2(V )∥Dα2,β2g∥σ∥h∥σ.

The bounds for N1 are proven after taking summations. Similarly,

Dα,βN2(f, g) =
∑

α2⪯α, β2⪯β

Cα
α2

· Cβ
β2
N2

(Dα−α2,β−β2(M1/2
1 f)

M1/2
1

, Dα2,β2g
)
,

and the bound for N2 follows.

For N3, since A[M1/2
1 f ]V̊ = A[M1/2

1 fV̊ ], we rewrite it as

N3(f, g) := −κ2C̄−1
s div

(
A[M1/2

1 f ]V̊ g
)
= −

∑
1≤i≤3

κ2C̄
−1
s div

(
A[M1/2

1 fV̊i]eig
)
=
∑

1≤i≤3

N3,i(fV̊i, g),

where ei is the standard basis in R3 and we define

N3,i(F,G) := −κ2C̄−1
s div(A[M1/2

1 F ]ei ·G), (5.14)

which is N3 with the V̊ factor replaced by the basis vector ei. For each i = 1, 2, 3, we also have
derivatives hitting κ2C̄

−1
s when applying Leibniz rule:

Dα,βN3,i(fV̊i, g) = −
∑

α2+α4⪯α
β2⪯β

Cα
α2,α4

· Cβ
β2

· κ2Dα4,0(C̄−1
s ) · div

(
A[D⪯(α,β)(M1/2

1 fV̊i)]ei ·Dα2,β2g
)

=
∑

α2+α4⪯α
β2⪯β

Cα
α2,α4

· Cβ
β2

Dα4,0(C̄−1
s )

C̄−1
s

N3,i

(D⪯(α,β)(M1/2
1 fV̊i)

M1/2
1

, Dα2,β2g
)
.

Note that similar to (5.9c), we also have

∥Σ
1
2 (gκ2C̄

−1
s ei)∥2L2(V ) ≤ κ22C̄

γ+3
s ∥⟨V̊ ⟩

γ+2
2 gei∥2L2(V ) ≲ ∥g∥2σ.

Following the proof of Lemma 5.4, one can show N3,i defined in (5.14) enjoys the same bound of
Ni in Lemma 5.4. Since |Dα4,0(C̄−1

s )| ≲ C̄−1
s from Lemma C.2 (4), we conclude the proof for N3 in

the same way as N1. The proof for N4, N5, and N6 are similar. □

6. Linear stability estimates: microscopic part

In this section, we derive the linear stability estimates for the equation that governs the evolution
of the microscopic part of the perturbation.

Recall the σ-norm in V from (2.28) and its equivalent formulation in (5.8), and recall the Y-norm
in (X,V ) from (2.29).

The following lemma contains several interpolation inequalities. These inequalities will be used
later to control the free transport term by the collision term and the self-similar scaling field.

Lemma 6.1. Recall Λ = C̄γ+3
s ⟨V̊ ⟩γ+2 defined in (5.7). Assume 0 < r < 3−

√
3. For any 1 < γ ≤ 2,

we have

⟨X⟩−r⟨V̊ ⟩3 ≲ ⟨X⟩−1C̄s⟨V̊ ⟩3 ≲ Λ
3

γ+2 . (6.1a)
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For any 0 ≤ γ ≤ 2, we have

⟨X⟩−1 + ⟨X⟩−1|V |+ ⟨X⟩−1C̄s⟨V̊ ⟩ ≲ Λ
1
2 . (6.1b)

Proof. From the bounds C̄s ≳ ⟨X⟩−r+1 in (3.3a) we know ⟨X⟩−r⟨V̊ ⟩3 ≲ ⟨X⟩−1C̄s⟨V̊ ⟩3. By direct
computation,

Λ
3

γ+2 = C̄
3(γ+3)
γ+2

s ⟨V̊ ⟩3.

To prove (6.1a), it suffices to show ⟨X⟩−1 ≲ C̄
3(γ+3)
γ+2

−1
s = C̄

2+ 3
γ+2

s , which holds provided(
2 +

3

γ + 2

)
(r − 1) ≤ 1.

Clearly, it holds for all γ > 1 and r < 4
3 .

Using the relation V̊ = V−Ū
C̄s

, the estimates (3.3a), and (3.1a), we obtain

|V | = |Ū+ C̄sV̊ | ≲ C̄s(1 + |V̊ |) ≲ C̄s⟨V̊ ⟩. (6.2)

Recall C̄s is bounded, so ⟨X⟩−1 + ⟨X⟩−1|V |+ ⟨X⟩−1C̄s⟨V̊ ⟩ ≲ ⟨X⟩−1⟨V̊ ⟩. Using

Λ
1
2 = C̄

γ+3
2

s ⟨V̊ ⟩
γ+2
2 ≳ ⟨X⟩−(r−1) γ+3

2 ⟨V̊ ⟩,

for any γ ≥ 0, to prove (6.1b) we only need

γ + 3

2
(r − 1) ≤ 1,

which holds for any γ ≤ 2 and r < 7
5 . □

6.1. The micro equation and the linear estimate. In this section we derive the equation for
F̃m and Dα,βF̃m. We also present the Hk estimate in Theorem 6.3. The proof of this theorem
occupies the following subsections.

Define

dM =
1

2
(∂s + T ) logM1 +

3

2
c̄v, d̃M = −1

2
V · ∇X logM1. (6.3)

where T g = (V · ∇X + c̄xX · ∇X + c̄vV · ∇V )g was defined in (2.22a). The estimates on dM and

d̃M can be found in Lemma C.10 (4).

Lemma 6.2. F̃m = PmF̃ satisfies(
∂s + T + dM − 3

2
c̄v

)
F̃m + Pm[(V · ∇X + 2dM + d̃M)F̃M ]− PM [(V · ∇X − 2dM − d̃M)F̃m]

=
1

εs
LM(F̃m)− Pm[M−1/2

1 EM] +
1

εs
N (F̃ , F̃ ). (6.4)

Here EM = (∂s + T )M is defined in (2.18), N (f, g) := M−1/2
1 Q(M1/2

1 f,M1/2
1 g) is defined in

(2.22b), and LM = N (ρ̄sM1/2
1 , ·) +N (·, ρ̄sM1/2

1 ) is defined in (2.22a):

LMg = M−1/2
1

[
Q(M,M1/2

1 g) +Q(M1/2
1 g,M)

]
.

Proof. We derive the linearized equation of F̃ from (2.23) by dividing M1/2
1 :

∂sF̃ + T F̃ +
1

2
(∂s + T ) logM1 · F̃ =

1

εs
LMF̃ −M−1/2

1 EM +
1

εs
M−1/2

1 Q(M1/2
1 F̃ ,M1/2

1 F̃ ). (6.5)
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where LM is defined in (2.22), and the logM1 term comes from

M−1/2
1 (∂s + T )M1/2

1 =
1

2
(∂s + T ) logM1.

We write 1
2(∂s + T ) logM1 = dM − 3

2 c̄v. Using the fact that Pm commutes with LM, we now
project (6.5) to the microscopic part:

Pm

[(
∂s + T + dM − 3

2
c̄v

)
F̃
]
=

1

εs
LM(F̃m)− Pm[M−1/2

1 EM] +
1

εs
N (F̃ , F̃ ). (6.6)

Here we used N (f, g) ⊥ Φi in L
2, so PmN (f, g) = N (f, g). Use Lemma C.10 (1),

Pm[(∂s + T )F̃ ] = (∂s + T )F̃m + Pm[(V · ∇X + dM + d̃M)F̃M ]

− PM [(V · ∇X − dM − d̃M)F̃m].

Combine this with (6.6) and

Pm(dMF̃ ) = dMF̃m + dMF̃M − PM (dMF̃ ) = dMF̃m + Pm[dMF̃M ]− PM [dMF̃m],

we conclude (6.4). □
We introduce a linear micro operator Lmic:

Lmicg =
1

εs
LMg −

(
T + dM − 3

2
c̄v

)
g + PM [(V · ∇X − 2dM − d̃M)g]. (6.7a)

Note that the operator Lmic depends on s. For simplicity of notation, we suppress this dependence.
Then (6.4) can be written in the following form

(∂s − Lmic)F̃m = −Pm[(V · ∇X + 2dM + d̃M)F̃M ] +
1

εs
N (F̃ , F̃ )− Pm[M−1/2

1 EM]. (6.7b)

One main goal of this section is to prove estimates for ∂s −Lmic, Pm[(V · ∇X + 2dM + d̃M)F̃M ]

and Pm[M−1/2
1 EM]. The nonlinear term N will be estimated in Section 8.

Theorem 6.3. Suppose that 1 < γ ≤ 2. For every k ≥ 0, η ≤ η̄, if ν ≤ νk for the νk determined
by Lemma 6.5, then for every g = Pmg, we have the following estimates of the operator Lmic:

⟨(∂s − Lmic)g, g⟩Yk
η
≥ 1

2

d

ds
∥g∥2Yk

η
+
c̄x
2
(η̄ − η)∥g∥2Yk

η
+
C̄γ

4εs
∥g∥2Yk

Λ,η

− Ck,η∥g∥
2(γ−1)
γ+2

Yk
η

∥g∥
6

γ+2

Yk
Λ,η

− Ck,η∥g∥Yk
η
∥g∥Yk

Λ,η
(6.8a)

≥ 1

2

d

ds
∥g∥2Yk

η
+ (2λη − Ck,ηεs) ∥g∥2Yk

η
+
C̄γ

6εs
∥g∥2Yk

Λ,η
, (6.8b)

where λη = c̄x
4 (η̄ − η) is defined in (4.5b). The remaining operators in (6.7) satisfy the following

estimates:∣∣∣⟨Pm[(2dM + d̃M)F̃M ], F̃m⟩Yk
η

∣∣∣ ≤ Ck∥F̃m∥Yk
Λ,η

∥F̃M∥Yk
η
, (6.8c)

−⟨Pm[(V · ∇X)F̃M ], F̃m⟩Yk
η
= Ok

(
ν−

1
2 ∥F̃m∥Yk

Λ,η
∥F̃M∥Yk

η

)
(6.8d)

−
∑
|α|=k

|α|!
α!

¨
(V · ∇X)Dα,0F̃M ·Dα,0F̃m⟨X⟩ηdV dX

︸ ︷︷ ︸
cross terms

,

|⟨Pm[M−1/2
1 EM], F̃m⟩Yk

η
| ≲k ∥F̃m∥Yk

Λ,η
. (6.8e)

In particular, let k be the regularity parameter chosen in (4.36). We choose ν = νk in the Y-norm
(2.29).
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Theorem 6.3 is proven by estimating LM, T , dM, and PM part of Lmic separately in the following
subsections. Proof of (6.8a) and (6.8b) is provided at the end of Section 6.4. The proof of (6.8c)
and (6.8d) can be found in Section 6.5. Finally, the proof of (6.8e) is in Section 6.6. The remaining
cross terms in (6.8d) will be estimated in Section 7, and the nonlinear term will be estimated in
Section 8.

Before we start with the calculation, let’s introduce the term Dα,β(∂s−Lmic)g and −Dα,βPm[(V ·
∇X + 2dM + d̃M)F̃M ]. We start with Dα,β(∂s − Lmic)g that can be rewritten as

Dα,β(−∂s + Lmic)g = (−∂s + Lmic)D
α,βg + Eα,β, (6.9)

where Eα,β is computed as

Eα,β :=
1

εs
h0 − h1 + h4 + h5,

and we denote

h0 := Dα,βLM(g)− LM(Dα,βg),

h1 := Dα,β(∂s + T + dM)g − (∂s + T + dM)Dα,βg,

h4 := Dα,βPM [V · ∇Xg]− PM [(V · ∇X)Dα,βg],

h5 := −Dα,βPM [(2dM + d̃M)g] + PM [(2dM + d̃M)Dα,βg].

The other term writes

−Dα,βPm[(V · ∇X + 2dM + d̃M)F̃M ] = −Pm[(V · ∇X + 2dM + d̃M)Dα,βF̃M ]− h2 − h3, (6.10)

where

h2 := Dα,βPm[V · ∇X F̃M ]− Pm[(V · ∇X)Dα,βF̃M ],

h3 := Dα,βPm[(2dM + d̃M)F̃M ]− Pm[(2dM + d̃M)Dα,βF̃M ].

6.2. Linear collision operator LM estimate. In this subsection, we provide coercivity estimate
for the first part of Lmic, i.e. the linearized collision operator LM. We first recall the spectral gap
of the linearized collision operator.

Lemma 6.4. Let g be a function of V . There exists a constant C̄γ > 0 such thatˆ
LMg · gdV ≤ −C̄γ∥Pmg∥2σ.

Proof. Recall V̊ = V−Ū
C̄s

. We make a change of variable

g̊(V̊ ) = g(C̄sV̊ + Ū) = g(V ), M̊1(V̊ ) = M1(C̄sV̊ + Ū) = M1(V ).

Denote W̊ = W−Ū
C̄s

and Φ(v) = 1
8π (Id− v⊗v

|v|2 )|v|
γ+2. Recall the Gaussian µ(·) from (2.16). Then

Q(M,M1/2
1 g)(V ) = divV

ˆ
R3

Φ(V −W )∇V−W

[
M(W )M1/2

1 (V )g(V )
]
dW

= divV

ˆ
R3

C̄γ+2
s Φ(V̊ − W̊ )∇V−W

[
µ(W̊ )M̊1

1/2
(V̊ )̊g(V̊ )

]
dW

= C̄γ+3
s divV̊

ˆ
R3

Φ(V̊ − W̊ )∇V̊−W̊

[
µ(W̊ )M̊1

1/2
(V̊ )̊g(V̊ )

]
dW̊

= C̄γ+3
s Q(µ,M̊1

1/2
g̊)(V̊ ).
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By symmetry, we obtain

LM(g)(V ) = M−1/2
1 (V )

(
Q(M,M1/2

1 g)(V ) +Q(M1/2
1 g,M)(V )

)
= C̄γ+3

s M̊1
−1/2

(V̊ )
(
Q(µ,M̊1

1/2
g̊)(V̊ ) +Q(M̊1

1/2
g̊, µ)(V̊ )

)
= C̄γ+3

s µ−1/2(V̊ )
(
Q(µ, µ1/2g̊)(V̊ ) +Q(µ1/2g̊, µ)(V̊ )

)
= C̄γ+3

s Lµg̊(V̊ ),

where we introduce the linear operator Lµ similar to LM from (2.22a).

Multiplying g, integrating in V , and then performing a change of variable V → V̊ , we yieldˆ
LMg · gdV = C̄γ+3

s

ˆ
Lµg̊(V̊ ) · g̊(V̊ )dV = C̄γ+6

s

ˆ
Lµg̊(V̊ ) · g̊(V̊ )dV̊ .

Applying the coercivity estimates of Lµ [47, Lemma 5] and then changing V̊ → V , we obtainˆ
LMg · gdV ≤ −C̄γ+6

s · C̄γ

ˆ
A[µ(V̊ )]∇V̊ P̊mg̊ · ∇V̊ P̊mg̊ +A[µV̊ ⊗ V̊ ](P̊mg̊(V̊ ))2dV̊

≤ −C̄γ+5
s C̄γ

ˆ
R3

A[µ(V̊ )]∇V Pmg · ∇V PmgdV − C̄γ+3
s C̄γ

ˆ
R3

A[µV̊ ⊗ V̊ ](Pmg)
2dV

= −C̄γ∥Pmg∥2σ.

The constant C̄γ > 0 depends on γ ≥ −3 only. Here, P̊m = Id−P̊M is the micro projection in the

V̊ variable. □

We now show the Hk estimate for the linearized collision operator.

Lemma 6.5. For k ≥ 0, η ∈ R, it holds that

⟨LMg, g⟩Yk
η
=

∑
|α|+|β|≤k

ν|α|+|β|−k |α|!
α!

¨
⟨X⟩ηDα,βLMg ·Dα,βgdV dX

≤ − C̄γ

3
∥g∥2Yk

Λ,η
+ C̄γ∥PMg∥2Yk

Λ,η
+ 1k>0Ck∥g∥2Yk−1

Λ,η

.

In particular, if ν ≤ νk ≤ 1 for some νk > 0 then

⟨LMg, g⟩Yk
η
≤ − C̄γ

4
∥g∥2Yk

Λ,η
+ C̄γ∥PMg∥2Yk

Λ,η
.

Note that this coercivity estimate is only used for stability analysis in Section 9 and is not used
to prove local well-posedness in Section 10.

Proof. The case k = 0 is a direct consequence of Lemma 6.4 and the elementary inequality

−∥Pmg∥2σ ≤ −1

2
∥g∥2σ + ∥PMg∥2σ.

For k > 0, we need to prove there exists a constant Ck > 0 such that for any multi-index α, β with
|α|+ |β| ≤ k, the following holds:

⟨Dα,βLMg,Dα,βg⟩Yη ≤ −C̄γ∥PmD
α,βg∥2YΛ,η

+
C̄γ

6
∥Dα,βg∥2YΛ,η

+ Ck∥D<|α|+|β|g∥2YΛ,η
. (6.11)

Provided this is true, we are left with removing the projection Pm from the C̄γ-term; for that we
use the bound

−∥PmD
α,βg∥2YΛ,η

≤ −1

2
∥Dα,βg∥2YΛ,η

+ ∥PMD
α,βg∥2YΛ,η

.
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In the second term we will commute the operators PM with Dα,β. Using (C.13) we have

∥PMD
α,βg −Dα,βPMg∥2YΛ,η

≤ Ck∥D<|α|+|β|g∥2YΛ,η
.

Combined with (6.11), we deduce

⟨Dα,βLMg,Dα,βg⟩Yη ≤ − C̄γ

2
∥Dα,βg∥2YΛ,η

+ C̄γ∥Dα,βPMg∥2YΛ,η
+
C̄γ

6
∥Dα,βg∥2YΛ,η

+ Ck∥D<|α|+|β|g∥2YΛ,η
.

We conclude the proof of the first claim by the definition of Yk
η . The second claim follows from

absorbing the last lower order term using ∥g∥2
Yk−1
Λ,η

≤ ν∥g∥2Yk
Λ,η

and setting νk ≤ C̄γ/(12Ck).

The rest of the proof is devoted to proving (6.11). Recall that

h0 = Dα,βLM(F̃m)− LM(Dα,βF̃m) = Dα,βN (ρ̄sM1/2
1 , g)−N (ρ̄sM1/2

1 , Dα,βg)

+Dα,βN (g, ρ̄sM1/2
1 )−N (Dα,βg, ρ̄sM1/2

1 ).

We apply Lemma 5.5 to the two commutator terms:∣∣∣ 〈Dα,βN (ρ̄sM1/2
1 , g)−N (ρ̄sM1/2

1 , Dα,βg), Dα,βg
〉
V

∣∣∣
≲α,β

∑
α1+α2⪯α, β1+β2⪯β

(α2,β2)≺(α,β)

C̄−3
s ∥Dα1,β1(ρ̄sM1/2

1 )∥L2(V )∥Dα2,β2g∥σ∥Dα,βg∥σ

≲α,β

∑
α1+α2⪯α, β1+β2⪯β

(α2,β2)≺(α,β)

∥Dα2,β2g∥σ∥Dα,βg∥σ

≤ C̄γ

12
∥Dα,βg∥2σ + Ck∥D<|α|+|β|g∥2σ,∣∣∣ 〈Dα,βN (g, ρ̄sM1/2

1 )−N (Dα,βg, ρ̄sM1/2
1 ), Dα,βg

〉
V

∣∣∣
≲α,β

∑
α1+α2⪯α, β1+β2⪯β

(α1,β1)≺(α,β)

C̄−3
s ∥Dα1,β1g∥L2(V )∥Dα2,β2(ρ̄sM1/2

1 )∥σ∥Dα,βg∥σ

≲α,β

∑
α1+α2⪯α, β1+β2⪯β

(α1,β1)≺(α,β)

C̄
γ+3
2

s ∥Dα1,β1g∥L2(V )∥Dα,βg∥σ

≲α,β

∑
α1+α2⪯α, β1+β2⪯β

(α1,β1)≺(α,β)

∥Dα1,β1g∥σ∥Dα,βg∥σ

≤ C̄γ

12
∥Dα,βg∥2σ + Ck∥D<|α|+|β|g∥2σ.

Here we used |Dα,β ρ̄s| ≲α,β ρ̄s, ∥Dα,βM1/2
1 ∥L2(V ) ≲α,β 1, and ∥Dα,βM1/2

1 ∥σ ≲α,β C̄
γ+3
2

s , which
follow from (3.3a) and Lemma C.12. Note that the above estimates do not depend on ν. Thus

⟨h0, Dα,βg⟩V ≤ C̄γ

6
∥Dα,βg∥2σ + Ck∥D<|α|+|β|g∥2σ.

For the main term, we apply Lemma 6.4:

⟨LMDα,βg,Dα,βg⟩V ≤ −C̄γ∥PmD
α,βg∥2σ.



55

In summary, we have

⟨Dα,βLMg,Dα,βg⟩V ≤ −C̄γ∥PmD
α,βg∥2σ +

C̄γ

6
∥Dα,βg∥2σ + Ck∥D<|α|+|β|g∥2σ.

Integrating in X with ⟨X⟩η weight, we conclude (6.11). The proof of the lemma is completed. □

6.3. Transport operator T estimate. In this subsection, we estimate the second part of Lmic,
which includes the transport operator T and also the reaction terms 3

2 c̄v, dM. Recall

T g = (c̄xX · ∇X + c̄vV · ∇V + V · ∇X)g, dM =
1

2
(∂s + T ) logM1 +

3

2
c̄v.

Lemma 6.6. Let η ∈ R. There exists C > 0 such that

−
〈(

T − 3

2
c̄v

)
g, g

〉
Yη

≤ c̄x
2
(η − η̄)∥g∥2Yη

+ C|η| · ∥g∥Yη∥g∥YΛ,η
, (6.12)

|⟨dMg, g⟩Yη | ≤ C∥g∥
2(γ−1)
γ+2

Yη
∥g∥

6
γ+2

YΛ,η
. (6.13)

Proof. We use integration by parts:

−2⟨T g, g⟩Yη = −
¨

⟨X⟩ηT |g|2dV dX

=

¨
[divX(c̄xX⟨X⟩η + V ⟨X⟩η) + divV (c̄vV ⟨X⟩η)]|g|2dV dX

=

¨ (
3c̄v + 3c̄x + ηc̄x

|X|2

⟨X⟩2
+ η

V ·X
⟨X⟩2

)
⟨X⟩η|g|2dV dX

≤
¨

(3c̄v + 3c̄x + ηc̄x) ⟨X⟩η|g|2dV dX

− ηc̄x

¨
⟨X⟩−2⟨X⟩η|g|2dV dX + |η|

¨
|V |⟨X⟩−1⟨X⟩η|g|2dV dX.

The first integral is exactly (3c̄v+3c̄x+ηc̄x)∥g∥2Yη
= (c̄x(η−η̄)−3c̄v)∥g∥2Yη

, because c̄xη̄ = −3c̄x−6c̄v
from the definition (2.31).

For the second and third integral, we use (6.1b): ⟨X⟩−2 ≤ ⟨X⟩−1 ≲ Λ
1
2 , |V |⟨X⟩−1 ≲ Λ

1
2 , so

¨
(c̄x⟨X⟩−2 + |V |⟨X⟩−1)⟨X⟩η|g|2dV dX ≲

¨
Λ

1
2 ⟨X⟩η|g|2dV dX

≤
(¨

|g|2dV dX
) 1

2
(¨

Λ⟨X⟩η|g|2dV dX
) 1

2

≲ ∥g∥Yη∥g∥YΛ,η
.

This proves (6.12).

As for (6.13), recall that dM = O(⟨X⟩−r⟨V̊ ⟩3) in (C.16). Using (6.1a), we can control∣∣∣∣¨ dM|g|2⟨X⟩ηdV dX
∣∣∣∣ ≲ ¨ |g|2Λ

3
γ+2 ⟨X⟩ηdV dX ≲ ∥g∥

2(γ−1)
γ+2

Yη
∥g∥

6
γ+2

YΛ,η
.

The lemma is thus proven. □
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Corollary 6.7. For every k ≥ 0, η ≤ 0, there exists Ck,η such that〈(
∂s + T + dM − 3

2
c̄v

)
g, g

〉
Yk
η

≥ 1

2

d

ds
∥g∥2Yk

η
+
c̄x
2
(η̄ − η)∥g∥2Yk

η

− Ck,η∥g∥
2(γ−1)
γ+2

Yk
η

∥g∥
6

γ+2

Yk
Λ,η

− Ck,η∥g∥Yk
η
∥g∥Yk

Λ,η
.

Proof. Recall the commutator h1 is defined by

Dα,β

(
∂s + T + dM − 3

2
c̄v

)
g =

(
∂s + T + dM − 3

2
c̄v

)
Dα,βg + h1.

Therefore,〈
Dα,β

(
∂s + T + dM − 3

2
c̄v

)
g,Dα,βg

〉
Yη

=
〈
∂sD

α,βg,Dα,βg
〉
Yη

+

〈(
T + dM − 3

2
c̄v

)
Dα,βg,Dα,βg

〉
Yη

+ ⟨h1, Dα,βg⟩Yη .

For the first inner product, it equals〈
∂sD

α,βg,Dα,βg
〉
Yη

=
1

2

d

ds

〈
Dα,βg,Dα,βg

〉
Yη

=
1

2

d

ds
∥Dα,βg∥2Yη

.

For the second inner product, applying Lemma 6.6 to Dα,βg yields

−
〈(

T + dM − 3

2
c̄v

)
Dα,βg,Dα,βg

〉
Yη

≤ c̄x
2
(η − η̄)∥Dα,βg∥2Yη

+ Cη∥Dα,βg∥
2(γ−1)
γ+2

YΛ,η
∥Dα,βg∥

6
γ+2

Yη
+ C∥Dα,βg∥YΛ,η

∥Dα,βg∥Yη .

For the third inner product, we use Lemma C.10 (2) and (4) :

h1 = Dα,β(∂s + T )g − (∂s + T )Dα,βg +Dα,β(dMg)− dMDα,βg

= O(C̄s⟨X⟩−1⟨V̊ ⟩+ ⟨X⟩−1)|D≤|α|+|β|g|+O(⟨X⟩−r⟨V̊ ⟩3)|D<|α|+|β|g|

≲ (Λ
1
2 + Λ

3
γ+2 )|D≤|α|+|β|g|.

We used the Leibniz rule for the term dM, and applied (6.1a) and (6.1b). We conclude

⟨h1, Dα,βg⟩Yη ≲ Cη∥D≤|α|+|β|g∥
2(γ−1)
γ+2

YΛ,η
∥D≤|α|+|β|g∥

6
γ+2

Yη
+ C∥D≤|α|+|β|g∥YΛ,η

∥D≤|α|+|β|g∥Yη .

Combine the three inner products and summing α, β by the definition of Yk
η norm (2.29), we

conclude

1

2

d

ds
∥g∥2Yk

η
+
c̄x
2
(η̄ − η)∥g∥2Yk

η
≤
〈(

∂s + T + dM − 3

2
c̄v

)
g, g

〉
Yk
η

+ Ck,η

∑
|α|+|β|≤k

ν|α|+|β|−k∥D≤|α|+|β|g∥
2(γ−1)
γ+2

YΛ,η
∥D≤|α|+|β|g∥

6
γ+2

Yη

+ Ck,η

∑
|α|+|β|≤k

ν|α|+|β|−k∥D≤|α|+|β|g∥YΛ,η
∥D≤|α|+|β|g∥Yη .

The proof is completed by Hölder inequality. □
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6.4. Projection PM estimates. Now we estimate the last part of Lmic, which is the term involving
macro projection PM . First, we estimate the main terms.

Lemma 6.8. Suppose γ ∈ (1, 2]. Let g = Pmg. For any multi-indices α, β and η ∈ R it holds that∣∣∣⟨PM [V · ∇XD
α,βg], Dα,βg⟩Yη

∣∣∣ ≲η,α,β ∥D≤|α|+|β|g∥Yη∥D≤|α|+|β|g∥YΛ,η
. (6.14)

Moreover, ∣∣∣⟨PM [dMDα,βg], Dα,βg⟩Yη

∣∣∣ ≲η,α,β ∥D≤|α|+|β|g∥
2(γ−1)
γ+2

Yη
∥D≤|α|+|β|g∥

6
γ+2

YΛ,η
, (6.15)∣∣∣⟨PM [d̃MDα,βg], Dα,βg⟩Yη

∣∣∣ ≲η,α,β ∥D≤|α|+|β|g∥
2(γ−1)
γ+2

Yη
∥D≤|α|+|β|g∥

6
γ+2

YΛ,η
. (6.16)

Proof. We use the fact that PM is a projection and integrate by part to obtain∣∣∣⟨PM [V · ∇XD
α,βg], Dα,βg⟩Yη

∣∣∣
=

∣∣∣∣¨ ⟨X⟩ηPM [V · ∇X(Dα,βg)] ·Dα,βgdV dX

∣∣∣∣
=

∣∣∣∣¨ Dα,βg · V · ∇X

(
⟨X⟩ηPM [Dα,βg]

)
dV dX

∣∣∣∣
≤
¨

|Dα,βg| · |V |
(
|η|⟨X⟩η−1

∣∣∣PM [Dα,βg]
∣∣∣+ ⟨X⟩η

∣∣∣∇XPM [Dα,βg]
∣∣∣) dV dX

≲η

¨
|Dα,βg| · |V |⟨X⟩−1

(∣∣∣PM [Dα,βg]
∣∣∣+ ∣∣∣⟨X⟩∇XPM [Dα,βg]

∣∣∣) ⟨X⟩ηdV dX

≲
¨

|Dα,βg| · |V |⟨X⟩−1
∣∣∣D≤1PM [Dα,βg]

∣∣∣ ⟨X⟩ηdV dX.

Recall that |V |⟨X⟩−1 ≲ Λ
1
2 from (6.1b). So∣∣∣⟨PM [V · ∇XD

α,βg], Dα,βg⟩Yη

∣∣∣ ≲ ∥Dα,βg∥
1
2
Yη
∥D≤1PM [Dα,βg]∥

1
2
Yη

× ∥Dα,βg∥
1
2
YΛ,η

∥D≤1PM [Dα,βg]∥
1
2
YΛ,η

.

(6.17)

By the commutator estimate (C.14) and Corollary C.3, we can commute PM and D≤1, Dα,β up to
lower order commutator:

∥D≤1PM [Dα,βg]∥Yη ≲ ∥PM [D≤1Dα,βg]∥Yη + ∥Dα,βg∥Yη

≲α,β ∥PMD
≤|α|+|β|+1g]∥Yη + ∥Dα,βg∥Yη

≲α,β ∥D≤|α|+|β|g∥Yη + ∥D≤|α|+|β|+1PMg∥Yη

= ∥D≤|α|+|β|g∥Yη .

In the last step, we used g = Pmg,PMg = 0. Similarly using (C.15) we have

∥D≤1PM [Dα,βg]∥YΛ,η
≲α,β ∥D≤|α|+|β|g∥YΛ,η

.

Plugging into (6.17) we obtain (6.14). As for (6.15), note that

⟨PM [dMDα,βg], Dα,βg⟩Yη =

¨
⟨X⟩ηPM [Dα,βg] · dMDα,βgdV dX.
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Using dM ≲ ⟨X⟩−r⟨V̊ ⟩3 ≲ Λ
3

γ+2 from Lemma C.10 (4) and (6.1a), we have the following bound
similar to (6.17):∣∣∣⟨PM [dMDα,βg], Dα,βg⟩Yη

∣∣∣ ≲ ∥Dα,βg∥
γ−1
γ+2

Yη
∥PM [Dα,βg]∥

γ−1
γ+2

Yη
∥Dα,βg∥

3
γ+2

YΛ,η
∥PM [Dα,βg]∥

3
γ+2

YΛ,η
.

Thus, the conclusion follows the same proof. The case of d̃M is identical: thanks to Lemma C.10

(4) and (6.1a) again we have d̃M ≲ ⟨X⟩−1C̄s⟨V̊ ⟩3 ≲ Λ
3

γ+2 . □

We are ready to prove the Yk
η estimate for PM terms.

Corollary 6.9. Suppose γ ∈ (1, 2]. If g = Pmg then

⟨PM [V · ∇Xg], g⟩Yk
η
≲k Ck∥g∥Yk

η
∥g∥Yk

Λ,η
, (6.18)

⟨PM [(2dM + d̃M)g], g⟩Yk
η
≲k Ck∥g∥

2(γ−1)
γ+2

Yk
η

∥g∥
6

γ+2

Yk
Λ,η

. (6.19)

Proof. Recall the commutator h4 is defined as

h4 := Dα,βPM [V · ∇Xg]− PM [(V · ∇X)Dα,βg]

= Dα,βPM [V · ∇Xg]− PM [Dα,β(V · ∇X)g]

+ PM [Dα,β(V · ∇X)g]− PM [(V · ∇X)Dα,βg]

=: h4,1 + PM [h4,2].

We first handle h4,1 term. By interpolation (6.1b) we conclude

|⟨h4,1, Dα,βg⟩Yη | ≤∥Λ
1
4Dα,βg∥Yη∥Λ− 1

4h4,1∥Yη

≲∥Dα,βg∥
1
2
Yη
∥Dα,βg∥

1
2
YΛ,η

∥⟨X⟩
1
2h4,1∥Yη .

Using (C.12) and |V | ≲ C̄s⟨V̊ ⟩, we know

∥h4,1∥L2(V ) ≲ ∥⟨V̊ ⟩−1D≤|α|+|β|−1(V · ∇Xg)∥L2(V )

≲ ∥⟨V̊ ⟩−1(|V |+ C̄s)D
≤|α|+|β|−1(∇Xg)∥L2(V )

≲ ⟨X⟩−1∥D≤|α|+|β|g∥L2(V ). (6.20)

Thus

∥⟨X⟩
1
2h4,1∥Yη ≲ ∥⟨X⟩−

1
2D≤|α|+|β|g∥Yη ≲ ∥Λ

1
4D≤|α|+|β|g∥Yη ≲ ∥D≤|α|+|β|g∥

1
2
Yη
∥D≤|α|+|β|g∥

1
2
YΛ,η

and we conclude

|⟨h4,1, Dα,βg⟩Yη | ≤ ∥D≤|α|+|β|g∥Yη∥D≤|α|+|β|g∥YΛ,η
. (6.21)

Next we handle h4,2. By (C.9) we have

|h4,2| ≲ C̄s⟨X⟩−1⟨V̊ ⟩|D≤|α|+|β|g| ≲ Λ
1
2 |D≤|α|+|β|g|,

thus

|⟨PM [h4,2], D
α,βg⟩Yη | = |⟨h4,2,PM [Dα,βg]⟩Yη |

≲ ∥Λ
1
4D≤|α|+|β|g∥Yη∥Λ

1
4PM [Dα,βg]∥Yη

≲ ∥D≤|α|+|β|g∥
1
2
Yη
∥D≤|α|+|β|g∥

1
2
YΛ,η

∥PM [Dα,βg]∥
1
2
Yη
∥PM [Dα,βg]∥

1
2
YΛ,η

.

Use the projection bound (C.14) and (C.15) we conclude

|⟨PM [h4,2], D
α,βg⟩Yη | ≲∥D≤|α|+|β|g∥Yη∥D≤|α|+|β|g∥YΛ,η

. (6.22)
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Summarizing, we have

|⟨Dα,βPM [V · ∇Xg], D
α,βg⟩Yη | =

∣∣∣ ⟨PM [(V · ∇X)Dα,βg], Dα,βg⟩︸ ︷︷ ︸
(6.14)

+ ⟨h4,1, Dα,βg⟩Yη︸ ︷︷ ︸
(6.21)

+ ⟨PM [h4,2], D
α,βg⟩Yη︸ ︷︷ ︸

(6.22)

∣∣∣
≲ ∥D≤|α|+|β|g∥Yη∥D≤|α|+|β|g∥YΛ,η

.

This proves (6.18) by Hölder inequality.
We apply a similar splitting to h5:

h5 := −Dα,βPM [(2dM + d̃M)g] + PM [(2dM + d̃M)Dα,βg]

= −Dα,βPM [(2dM + d̃M)g] + PM [Dα,β(2dM + d̃M)g]

− PM [Dα,β(2dM + d̃M)g] + PM [(2dM + d̃M)Dα,βg]

=: h5,1 + PM [h5,2].

By interpolation (6.1a) we conclude

|⟨h5,1, Dα,βg⟩Yη | ≤∥Λ
3

2(γ+2)Dα,βg∥Yη∥Λ
− 3

2(γ+2)h5,1∥Yη

≲∥Dα,βg∥
γ−1
γ+2

Yη
∥Dα,βg∥

3
γ+2

YΛ,η
∥⟨X⟩

1
2 C̄

− 1
2

s h5,1∥Yη .

By (C.12) with N = 3, using derivative bound Lemma C.10 (4) we have

∥h5,1∥L2(V ) ≲
∥∥∥⟨V̊ ⟩−3

∣∣∣D<|α|+|β|(2dM + d̃M)
∣∣∣ · ∣∣∣D<|α|+|β|g

∣∣∣∥∥∥
L2(V )

≲ ∥⟨X⟩−1C̄sD
<|α|+|β|g∥L2(V ).

Combining them, by (6.1a) we have

∥⟨X⟩
1
2 C̄

− 1
2

s h5,1∥Yη ≲ ∥⟨X⟩−
1
2 C̄

1
2
sD

≤|α|+|β|g∥L2(V ) ≲ ∥D≤|α|+|β|g∥
γ−1
γ+2

Yη
∥D≤|α|+|β|g∥

3
γ+2

YΛ,η
.

Thus

|⟨h5,1, Dα,βg⟩Yη | ≤∥D≤|α|+|β|g∥
2(γ−1)
γ+2

Yη
∥D≤|α|+|β|g∥

6
γ+2

YΛ,η
. (6.23)

Finally, since

|h5,2| ≲
∣∣∣D<|α|+|β|(2dM + d̃M)

∣∣∣ · ∣∣∣D<|α|+|β|g
∣∣∣ ≲ Λ

3
γ+2 |D<|α|+|β|g|,

we have

|⟨PM [h5,2], D
α,βg⟩Yη | = |⟨h5,2,PMD

α,βg⟩Yη |

≲ ∥D<|α|+|β|g∥
γ−1
γ+2

Yη
∥D<|α|+|β|g∥

3
γ+2

YΛ,η
∥PMD

α,βg∥
γ−1
γ+2

Yη
∥PMD

α,βg∥
3

γ+2

YΛ,η
.

Use the projection bound (C.14) and (C.15) again we conclude

|⟨PM [h5,2], D
α,βg⟩Yη | ≲∥D≤|α|+|β|g∥

2(γ−1)
γ+2

Yη
∥D≤|α|+|β|g∥

6
γ+2

YΛ,η
. (6.24)
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Summarizing, we have

⟨Dα,βPM [(2dM + d̃M)g], Dα,βg⟩Yη = ⟨PM [(2dM + d̃M)Dα,βg], Dα,βg⟩︸ ︷︷ ︸
(6.15),(6.16)

+ ⟨h5,1, Dα,βg⟩Yη︸ ︷︷ ︸
(6.23)

+ ⟨PM [h5,2], D
α,βg⟩Yη︸ ︷︷ ︸

(6.24)

≲ ∥D≤|α|+|β|g∥
2(γ−1)
γ+2

Yη
∥D≤|α|+|β|g∥

6
γ+2

YΛ,η
.

The proof of (6.19) is complete after applying Hölder inequality. □
Using the above estimates, below, we prove (6.8a) and (6.8b).

Proof of (6.8a) and (6.8b). The estimates for ∂s−Lmic in (6.8a) follows from Lemma 6.5 combined
with Corollary 6.7 and Corollary 6.9. Using Young’s inequality and 0 < γ − 1 < 3, we obtain

Ck,ηεs∥g∥2Yk
η
+

1

50εs
∥g∥2Yk

Λ,η
≥ Ck,η∥g∥Yk

η
∥g∥Yk

Λ,η
,

Ck,ηεs∥g∥2Yk
η
+

1

50εs
∥g∥2Yk

Λ,η
≥ Ck,η

(
εs∥g∥2Yk

η

) γ−1
γ+2
(
εs

−1∥g∥2Yk
Λ,η

) 3
γ+2 ≥ Ck,ηεs

γ−4
γ+1 ∥g∥

2(γ−1)
γ+2

Yk
η

∥g∥
6

γ+2

Yk
Λ,η

.

Since εs ≤ 1 and 2λη = c̄x
2 (η̄ − η) by (4.5b), we obtain εs

γ−4
γ+1 ≥ 1 and prove (6.8b). □

6.5. Estimates of the macro terms. Recall the decomposition 6.10. Now we handle Pm terms
in (6.8c) and (6.8d), which involve interaction with F̃M .

Proof of (6.8c). Thanks to commutator estimate (C.14) and derivative bound (C.16) we have

∥Dα,βPm[(2dM + d̃M)F̃M ]∥L2(V ) ≲α,β ∥D⪯(α,β)((2dM + d̃M)F̃M )∥L2(V )

≲α,β ∥|D⪯(α,β)(2dM + d̃M)| · |D⪯(α,β)F̃M |∥L2(V )

≲α,β ⟨X⟩−1C̄s∥⟨V̊ ⟩3|D⪯(α,β)F̃M |∥L2(V ).

The weights and V -derivative on the macroscopic quantities are negligible, due to (C.32b):

∥⟨V̊ ⟩3|D⪯(α,β)F̃M |∥L2(V ) ≲α,β ∥D⪯(α,0)F̃M∥L2(V ).

Therefore,

|⟨Dα,βPm[(2dM + d̃M)F̃M ], Dα,βF̃m⟩|L2(V ) ≲ ⟨X⟩−1C̄s∥D⪯(α,0)F̃M∥L2(V )∥Dα,βF̃m∥L2(V )

≲ ∥D⪯(α,0)F̃M∥L2(V )∥Λ
1
2Dα,βF̃m∥L2(V ),

where we used ⟨X⟩−1C̄s ≲ Λ
1
2 in the last step due to (6.1b). We conclude (6.8c) by integrating in

X with weight ⟨X⟩η and Hölder inequality. □

Proof of (6.8d). We first decompose the commutator h2 similar to the h4 term:

h2 := Dα,βPm[V · ∇X F̃M ]− Pm[(V · ∇X)Dα,βF̃M ]

= Dα,βPm[(V · ∇X)F̃M ]− Pm[Dα,β(V · ∇X F̃M )]

+ Pm[Dα,β(V · ∇X F̃M )]− Pm[(V · ∇X)Dα,βF̃M ]

=: h2,1 + Pm[h2,2].

h2,1 can be handled completely analogously to h4,1 in (6.20), yielding

∥h2,1∥L2(V ) ≲ ⟨X⟩−1∥D≤|α|+|β|F̃M∥L2(V ),
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For h2,2 we apply the commutator bound (C.9), (C.32b), and C̄s ≲ 1:

∥h2,2∥L2(V ) ≲ C̄s⟨X⟩−1∥⟨V̊ ⟩D≤|α|+|β|F̃M∥L2(V )

≲ ⟨X⟩−1∥D≤|α|+|β|F̃M∥L2(V ).

Therefore

⟨h2, Dα,βF̃m⟩V ≲ ⟨X⟩−1∥D≤|α|+|β|F̃M∥L2(V )∥Dα,βF̃m∥L2(V )

≲ ∥D≤|α|+|β|F̃M∥L2(V )∥Λ
1
2Dα,βF̃m∥L2(V ),

again using ⟨X⟩−1 ≲ Λ
1
2 . Integrating in X with weight ⟨X⟩η yields

⟨h2, Dα,βF̃m⟩Yη ≲ ∥D≤|α|+|β|F̃M∥Yη∥Dα,βF̃m∥YΛ,η
,

Therefore,

−⟨Pm[(V · ∇X)F̃M ], F̃m⟩Yk
η
= Ok,η(∥F̃m∥Yk

Λ,η
∥F̃M∥Yk

η
)

−
∑

|α|+|β|≤k

ν|α|+|β|−k |α|!
α!

¨
(V · ∇X)Dα,βF̃M ·Dα,βF̃m⟨X⟩ηdV dX.

Whenever |α| < k, we can use (C.3), (C.32b) and get

∥V · ∇XD
α,βF̃M∥L2(V ) =

3∑
i=1

∥Vi∇XiD
α,βF̃M∥L2(V )

≲
3∑

i=1

⟨X⟩−1C̄s∥⟨V̊ ⟩Dei,0Dα,βF̃M∥L2(V )

≲
3∑

i=1

⟨X⟩−1C̄s∥⟨V̊ ⟩D⪯(α+ei,β)F̃M∥L2(V )

≲
3∑

i=1

⟨X⟩−1C̄s∥D⪯(α+ei,0)F̃M∥L2(V ).

Thus we conclude∑
|α|+|β|≤k

|α|<k

ν|α|+|β|−k |α|!
α!

¨
(V · ∇X)Dα,βF̃M ·Dα,βF̃m⟨X⟩ηdV dX

≲
∑

|α|+|β|≤k
|α|<k

ν|α|+|β|−k |α|!
α!

ˆ
⟨X⟩−1C̄s∥D≤|α|+1F̃M∥L2(V )∥Dα,βF̃m∥L2(V )⟨X⟩ηdX

≲k

∑
|α|+|β|≤k

|α|<k

ν
|β|−1

2

ˆ
ν

|α|+1−k
2 ∥D≤|α|+1F̃M∥L2(V ) · ν

|α|+|β|−k
2 ∥Λ

1
2Dα,βF̃m∥L2(V )⟨X⟩ηdX

≲k ν
− 1

2 ∥F̃m∥Yk
Λ,η

∥F̃M∥Yk
η
.

Combined, we have completed the proof of (6.8d). □



62 J. BEDROSSIAN, J. CHEN, M. GUALDANI, S. JI, V. VICOL, AND J. YANG

6.6. Error estimate. We now prove the estimate (6.8e). Recall EM = (∂s + T )M which was

defined in (2.18). By Lemma C.9, we can write EM = Mp3(s,X, V̊ ), where p3(s,X, V̊ ) is a class

F−r polynomial of V̊ with degree 3 (see Definition C.4 and Definition C.1). Therefore,

Pm[M−1/2
1 EM] = C̄3

sPm[M1/2
1 p3(s,X, V̊ )] = C̄3

sM
1/2
1 p̃3(s,X, V̊ ),

where p̃3 is another polynomial of degree 3, because Pm is the projection orthogonal to the space

spanned by {1, V̊ , |V̊ |2}M1/2
1 .

Proof of (6.8e). With the above expression, we compute its weighted derivative:

Dα,βPm[M−1/2
1 EM] = Dα,β(C̄3

sM
1/2
1 p̃3(s,X, V̊ ))

=
∑

α1+α2+α3=α
β1+β2=β

Cαi,βi
·Dα1,β1M1/2

1 ·Dα2,β2 p̃3(s,X, V̊ ) ·Dα3,0C̄3
s.

Apply Corollary C.7 on p̃3, (C.21) on M1/2
1 , and Lemma C.2 (4) on C̄3

s, we conclude

|Dα,βPm[M−1/2
1 EM]| ≲ ⟨V̊ ⟩NM1/2

1 ⟨X⟩−rC̄3
s

for some N depending on α, β. So

⟨Dα,βPm[M−1/2
1 EM], Dα,βF̃m⟩Yη

=

¨
Dα,βPm[M−1/2

1 EM] ·Dα,βF̃m⟨X⟩ηdXdV

≲k

¨
⟨X⟩−r⟨V̊ ⟩N C̄3

sM
1/2
1 |Dα,βF̃m|⟨X⟩ηdXdV

≤
(¨

⟨X⟩η−2r⟨V̊ ⟩2N C̄3−γ
s M1dXdV

) 1
2
(¨

C̄3+γ
s ⟨V̊ ⟩2+γ |Dα,βF̃m|2⟨X⟩ηdXdV

) 1
2

≲k

(ˆ
⟨X⟩η−2rdX

) 1
2

∥Dα,βF̃m∥YΛ,η

≤
(ˆ

⟨X⟩η̄−2rdX

) 1
2

∥Dα,βF̃m∥YΛ,η
.

We used γ ≤ 3 so C̄3−γ
s ≲ 1. For ⟨X⟩η̄−2r to be integrable, we need η̄ − 2r < −3, 6(r − 1) < 2r,

r < 3
2 , which is satisfied by any r < 3−

√
3. We conclude the proof of (6.8e) by Hölder inequality,

and the proof of Theorem 6.3 is now complete. □

7. Top order estimates for the cross term

In this section, we estimate the cross terms in the energy estimates, e.g. Ii(F̃m) in (3.11) and

Pm[V · ∇X F̃M ] in (6.4). We estimate them together and exploit an integration by parts to avoid
the loss of derivatives. We have the following estimates.

Proposition 7.1. Let κ = 5
3 , Ii be the moments defined in (2.22c), X k

η , Yk
η be the norms defined

in (4.6) and (2.29), respectively. Let W̃ = (Ũ, P̃ , B̃) and F̃M = FM (W̃) be the macro-perturbation

associated with W̃. For any γ ∈ [0, 2], η ≤ η̄, and even non-negative integer k, we have∣∣∣κ〈(Ũ, P̃ , B̃), (−I1,−I2, I2)(F̃m)
〉
Xk

η

−
〈
Pm[V · ∇X F̃M ], F̃m

〉
Yk
η

∣∣∣ ≲k,η ∥W̃∥Xk
η
∥F̃m∥Yk

Λ,η
, (7.1a)∣∣∣〈Pm[(2dM + d̃M)F̃M ], F̃m

〉
Yk
η

∣∣∣ ≲k,η ∥W̃∥Xk
η
∥F̃m∥Yk

Λ,η
. (7.1b)
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Moreover, we have ∣∣∣〈(Ũ, P̃ , B̃), (−I1,−I2, I2)(F̃m)
〉
Xk

η

∣∣∣ ≲k ∥F̃m∥Yk+1
Λ,η

∥W̃∥Xk
η
, (7.1c)∣∣∣〈Pm[(V · ∇X + 2dM + d̃M)F̃M ], F̃m

〉
Yk
η

∣∣∣ ≲k ∥F̃m∥Yk
Λ,η

∥W̃∥Xk+1
η

. (7.1d)

In Section 7.1, we derive the main terms in the first inner product in (7.1). In Section 7.2, we
prove Proposition 7.1 by applying integration by parts.

7.1. Main terms in the macro cross terms.

Lemma 7.2. For any multi-indices α ∈ Z3
≥0, we have

κ
(
Dα

XŨ ·Dα
XI1 +Dα

X P̃ ·Dα
XI2 −

3

2
Dα

XB̃ ·Dα
XI2

)
=

ˆ
(V · ∇XD

α
X F̃m) · (Dα

X F̃M +R)dV + E ,

with lower order terms R satisfying

∥D≤1R(X, ·)∥L2(V ) ≲α ∥D≤|α|F̃M∥L2(V ),

and the error term E satisfying

|E (X)| ≲α ∥D≤|α|F̃M∥L2(V )∥D≤|α|F̃m∥σ.

Proof. We fix the multi-indices α and N ≥ 0. For any function g, we denote

J (g) := M−1/2
1 V · ∇X(M1/2

1 g) = V · ∇Xg − d̃Mg, (7.2a)

where d̃M was introduced in (6.3) with bound (C.16). Using Leibniz’s rule, we obtain

Dα
XJ (g) = V · ∇XD

α
Xg − V · ∇X log(φ

|α|
1 ) ·Dα

Xg −Dα
X(d̃Mg)

= V · ∇XD
α
Xg +O(|α||V |φ−1

1 ∇Xφ1) · |Dα
Xg|+O(D≤|α|d̃M) · |D≤|α|g|

= V · ∇XD
α
Xg +Oα(⟨X⟩−1C̄s⟨V̊ ⟩3) · |D≤|α|g| (7.2b)

= Oα(⟨X⟩−1C̄s⟨V̊ ⟩3) · |D≤|α|+1g|. (7.2c)

Here we used φ1 ≍ ⟨X⟩ and |∇Xφ1| ≲ 1 from (4.4), |V | ≲ C̄s⟨V̊ ⟩ from (6.2), and |D≤|α|d̃M| ≲α

⟨X⟩−1C̄s⟨V̊ ⟩3 from (C.16).
Using the identities (3.13), (3.14), we obtain

κDα
XŨ ·Dα

XI1 + κDα
X P̃ ·Dα

XI2 −
3

2
κDα

XB̃ ·Dα
XI2 =

4∑
i=0

Dα
X⟨F̃M ,Φi⟩V ·Dα

X⟨J (F̃m),Φi⟩V . (7.3)

Denote by RS(7.3) the right side. Thanks to commutator estimate (C.11), we know

Dα
X⟨F̃M ,Φi⟩V = ⟨Dα

X F̃M ,Φi⟩V +Oα(∥D<|α|F̃M∥L2(V )) = Oα(∥D≤|α|F̃M∥L2(V )).

Similarly, by applying (C.11) with N = 3 to (7.2) we get

Dα
X⟨J (F̃m),Φi⟩V = ⟨Dα

XJ (F̃m),Φi⟩V +Oα(∥⟨V̊ ⟩−3D<|α|J (F̃m)∥L2(V ))

= ⟨V · ∇XD
α
X F̃m,Φi⟩V +Oα(⟨X⟩−1C̄s∥D≤|α|F̃m∥L2(V ))

= ⟨V · ∇XD
α
X F̃m,Φi⟩V +Oα(∥D≤|α|F̃m∥σ).
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In the last step, we used ⟨X⟩−1C̄s ≲ Λ
1
2 from (6.1b). Combine them, we obtain

RS(7.3) =
4∑

i=1

Dα
X⟨F̃M ,Φi⟩V · ⟨V · ∇XD

α
X F̃m,Φi⟩V + E

=
4∑

i=1

(
⟨Dα

X F̃M ,Φi⟩V +Rα,i(X)
)
· ⟨V · ∇XD

α
X F̃m,Φi⟩V + E ,

where E satisfies the bound claimed in the lemma, and Rα,i(X) satisfies

|D≤1Rα,i(X)| ≲α ∥D≤|α|F̃M∥L2(V ). (7.4)

Use the definition of projection PM , we rewrite the above identity as

RS(7.3) =

ˆ
(V · ∇XD

α
X F̃m) ·

(
PM [Dα

X F̃M ] +
4∑

i=0

Rα,i(X)Φi

)
dV + E ,

which justifies the identity in the lemma with R =
∑4

i=0Rα,iΦi−Pm[Dα
X F̃M ] and ∥D≤1Φi∥L2(V ) ≤

C due to (C.26). Moreover, by applying Corollary C.3 and (C.12) we obtain

∥D≤1Pm[DαF̃M ]∥L2(V ) ≤ ∥Pm[D≤1DαF̃M ]∥L2(V ) +Oα(∥D≤|α|F̃M∥L2(V ))

≤ ∥Pm[D≤|α|+1F̃M ]∥L2(V ) +Oα(∥D≤|α|F̃M∥L2(V ))

= ∥D≤|α|+1Pm[F̃M ]∥L2(V ) +Oα(∥D≤|α|F̃M∥L2(V ))

= Oα(∥D≤|α|F̃M∥L2(V )).

Combining with (7.4), we have proved the bound on R. □

7.2. Proof of Proposition 7.1. Now, we are in a position to prove Proposition 7.1. Since k is
even, we assume k = 2n. Denote

J = ∥F̃m∥Yk
Λ,η

∥F̃M∥Yk
η
. (7.5)

By |V |⟨X⟩−1 ≲ Λ
1
2 from (6.1b), we know

¨
|V |⟨X⟩−1|D≤k

X F̃m||D≤k
X F̃M |⟨X⟩ηdV dX ≲k,η J. (7.6)

Main terms in the micro cross terms. Since the parameter ν in Y-norm has been chosen in
Theorem 6.3, using (6.8c) and Dα,0 = Dα

X , we estimate the second cross term in (7.1a) as

−⟨Pm[V · ∇X F̃M ], F̃m⟩Yk
η
= −

∑
|α|=k

|α|!
α!

¨
(V · ∇X)Dα

X F̃M ·Dα
X F̃m⟨X⟩ηdV dX +Ok,η(J).

(7.7)
Next, we show that the above main term can be further rewritten as

−
∑
|α|=k

|α|!
α!

ˆ
(V · ∇X)Dα

X F̃M ·Dα
X F̃m⟨X⟩ηdV dX

= −
ˆ
(V · ∇X)∆nF̃M ·∆nF̃mφ

2k
1 ⟨X⟩ηdV dX +Ok,η(J).

(7.8)
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To simplify notation, below, we simplify ∂xi as ∂i. Applying integration by parts, we obtain

RS(7.8) = −
∑

i1,..,in,j1,.,,jn∈{1,2,3}

ˆ
(V · ∇X)∂2i1 ...∂

2
inF̃M · ∂2j1 ...∂

2
jnF̃m⟨X⟩ηφ2k

1 dV dX +Ok,η(J)

=
∑

i1,..,in,j1,.,,jn∈{1,2,3}

ˆ
(V · ∇X)∂i1∂

2
i2 ...∂

2
inF̃M · ∂i1∂2j1 ...∂

2
jnF̃m⟨X⟩ηφ2k

1 dV dX

+ (V · ∇X)∂i1∂
2
i2 ...∂

2
inF̃M · ∂2j1 ...∂

2
jnF̃m · ∂i1(φ2k

1 ⟨X⟩η)dV dX +Ok,η(J)

Since |V ∂i1(φ2k
1 ⟨X⟩η)| ≲k,η |V |⟨X⟩−1φ2k

1 ⟨X⟩η (see (4.4)), the integral of the second term is bounded
by Ok,η(J) thanks to (7.6). Similarly, applying integration by parts in ∂j1 , we yield

RS(7.8) = −
∑

i1,..,in,j1,.,,jn∈{1,2,3}

ˆ
(V · ∇X)∂j1∂i1∂

2
i2 ...∂

2
inF̃M · ∂i1∂j1 ...∂2jnF̃m⟨X⟩ηφ2k

1 dV dX +Ok,η(J).

Repeating the above argument, we yield

RS(7.8) = −
∑

i1,..,in,j1,.,,jn∈{1,2,3}

ˆ
(V ·∇X)∂i1 ..∂in∂j1 ..∂jnF̃M · ∂i1 ..∂in∂j1 ..∂jnF̃m⟨X⟩ηφ2k

1 dV dX+Ok,η(J).

Using identity (2.30) between two summations with (n, g1, g2)⇝ (2n, F̃M , F̃m), we prove (7.8).

Proof of (7.1a) and (7.1b). Recall the X -norm from (4.6). Summing Lemma 7.2 with |α| = k = 2n
and integrating it over X with weight ⟨X⟩η, we obtain

κ
〈
(Ũ, P̃ , B̃), (−I1,−I2, I2)(F̃m)

〉
Xk

η

= −
ˆ
κ
(
∆nŨ ·∆nI1 +∆nP̃ ·∆nI2 −

3

2
∆nB̃ ·∆nI2

)
⟨X⟩ηdX +Ok,η(J)

= −
ˆ (

(V · ∇X∆nF̃m) · (∆nF̃M +R2n)⟨X⟩ηdV
)
+ E2n(X)⟨X⟩ηdX +Ok,η(J),

(7.9)

where the J-term bound the 0-th order inner product in X -norm (4.6) by Lemma 7.2 with α = 0
and (7.6), and E2n,R2n satisfy the estimates in Lemma 7.2 with |α| = 2n.

Combining the above estimate, (7.7), and (7.8), we obtain

LS(7.7) + LS(7.9) = −
ˆ
V · ∇X∆nF̃M ·∆nF̃mφ

2k
1 ⟨X⟩ηdV dX +Ok,η(J)

−
ˆ
V · ∇X∆nF̃m · (φk

1∆
nF̃M +R2n)φ

k
1⟨X⟩ηdV dX + E2n(X) · ⟨X⟩ηdX

= −
ˆ
(V · ∇X)(∆nF̃m ·∆nF̃M )φ2k

1 ⟨X⟩ηdV dX︸ ︷︷ ︸
:=I

+II,

(7.10)

where II denotes the error terms

II = Ok,η(J)−
ˆ
(V · ∇X∆nF̃m) · R2nφ

k
1⟨X⟩ηdV dX −

ˆ
E2n(X) · ⟨X⟩ηdX := II1 + II2 + II3.

For the first term I, applying integration by parts and using (7.6), we obtain

|I| ≲k,η

ˆ
|V | · |∇X(φ2k

1 ⟨X⟩η)| · |∆nF̃m∆nF̃M |dXdV ≲k,η J.
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For II2, applying integration by parts, |V | ≲ C̄s⟨V̊ ⟩ from (6.2), and using the estimates of
E2n,R2n in Lemma 7.2, we obtain

|II2| ≲
ˆ

|V∆nF̃m| · |∇X(R2nφ
k
1⟨X⟩η)|dV dX

≲k,η

ˆ
|V |⟨X⟩−1|φk

1∆
nF̃m| · |D≤1R2n| · ⟨X⟩ηdV dX

≲
ˆ

∥D≤k
X F̃m∥σ∥D≤k

X F̃M∥L2(V )⟨X⟩ηdX ≲k J.

(7.11)

Moreover, |II3| ≲k J directly follows from the bound of E2n in Lemma 7.2. Combining I, II1, II2
and II3, we conclude

LS(7.1a) ≲k,η ∥F̃m∥Yk
Λ,η

∥F̃M∥Yk
η
.

By Lemma C.13 we know ∥F̃M∥Yk
η
≍ ∥W̃∥Xk

η
, so (7.1a) is proven.

Estimate (7.1b) follows from (6.8c) and ∥F̃M∥Yk
η
≍ ∥W̃∥Xk

η
.

Proof of (7.1c), (7.1d). The proofs of (7.1c), (7.1d) are similar, except that we estimate the main
terms in (7.7), (7.9) directly, without using integration by parts. We have estimated the integral of
the R2n,E2n terms in the above proof of (7.1a), e.g.(7.11), which are bounded by J and are further

bounded by the upper bounds in (7.1c), (7.1d). For (f, g) = (F̃m, F̃M ) or (F̃M , F̃m), we have∣∣∣∣ˆ V · ∇X∆nf ·∆ng · φ2k
1 ⟨X⟩ηdV dX

∣∣∣∣ ≲ ˆ |V |⟨X⟩−1|D≤k+1
X f | · |D≤k

X g|⟨X⟩ηdV dX,

where k = 2n. Applying (6.1b), (7.1b), the Cauchy–Schwarz inequality, and ∥F̃M∥Yk
η
≍ ∥W̃∥Xk

η
,

we prove (7.1c), (7.1d).

8. Nonlinear estimates of collision operator in the energy space

Our main nonlinear estimates are as follows. 32

Theorem 8.1. Recall η̄ = −3 + 6(r − 1) from (2.31) and let η < η̄ satisfies

η̄ − η ≤ (1 + ω)r

2
. (8.1)

Let η, η1, η2 ∈ [η, η̄] 33 satisfy η1 + η2 ≥ η + η̄. There exists an absolute constant C̄N such that for
k ≤ kL with kL = 2d+ 16, we get

|⟨N (f, g), h⟩Yk
η
| ≤ C̄N ∥f∥YkL

η1

∥g∥Yk
Λ,η2

∥h∥Yk
Λ,η
. (8.2a)

For k > kL, we get

|⟨N (f, g), h⟩Yk
η
| ≤

(
C̄N ∥f∥YkL

η1

∥g∥Yk
Λ,η2

+ Ck∥f∥Yk
η1
∥g∥Yk−1

Λ,η2

)
∥h∥Yk

Λ,η

≤ Ck∥f∥Yk
η1
∥g∥Yk

Λ,η2

∥h∥Yk
Λ,η
. (8.2b)

Here, the pairing ⟨·, ·⟩Yk
η
is associated with Yk

η norm defined in (2.29):

⟨N (f, g), h⟩Yk
η
=

∑
|α|+|β|≤k

ν|α|+|β|−k |α|!
α!

ˆ
⟨X⟩η⟨Dα,βN (f, g), Dα,βh⟩V dX. (8.3)

32Nonlinear estimates near the global Maxwellian e−|V |2 on the torus X ∈ T3, which are similar to (8.2), have been
established in [47, Theorem 3]. We refer to Section 2.5.2 for a discussion of the difficulties in our setting.
33This constraint is not essential. We impose this range so that the constants related to η, η1, η2 ∈ [η, η̄] in Theorem
8.1 are bounded by absolute constants.
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Furthermore, if g = PMg, then for k ≥ kL

|⟨N (f, g), h⟩Yk
η
| ≲k ∥f∥Yk

Λ,η1

∥g∥Yk
η2
∥h∥Yk

Λ,η
, (8.4a)

and

|⟨N (f, g), h⟩Yk
η
| ≲k

(
∥f∥Yk−4

η
∥g∥Yk

η
+ ∥f∥Yk

η
∥g∥Yk−4

η

)
∥h∥Yk

Λ,η
. (8.4b)

We will apply estimate (8.2) with g being microscopic, estimate (8.4a) with f being microscopic,
g being macroscopic, and estimate (8.4b) with f, g being the macroscopic.

Proof. Recall the nonlinear term from (8.3). First, we separate the inner product into two parts:

⟨N (f, g), h⟩Yk
η
=

∑
|α|+|β|≤k

ν|α|+|β|−k |α|!
α!

ˆ
⟨X⟩η⟨N (f,Dα,βg), Dα,βh⟩V dX︸ ︷︷ ︸

:=I

+II

where II denotes the lower order terms and satisfies the following estimates due to Lemma 5.5

|II| ≲k

∑
|α|+|β|≤k

ν|α|+|β|−k
∑

α1+α2⪯α
β1+β2⪯β

(α2,β2)≺(α,β)

ˆ
⟨X⟩ηC̄−3

s ∥Dα1,β1f∥L2(V )∥Dα2,β2g∥σ∥Dα,βh∥σdX. (8.5a)

For I, since N =
∑

Ni (5.10), using Lemma 5.4, we obtain

|I| ≲
∑

|α|+|β|≤k

ν|α|+|β|−k |α|!
α!

ˆ
⟨X⟩ηC̄−3

s ∥f∥L2(V )∥Dα,βg∥σ∥Dα,βh∥σdX, (8.5b)

with constant independent of k. Following the assumption η1 + η2 ≥ η + η̄ together with C̄−3
s ≲

⟨X⟩3(r−1), we have

⟨X⟩ηC̄−3
s ≲ ⟨X⟩3(r−1)+ η

2
+

η1
2
+

η2
2
− η̄

2 = ⟨X⟩
η
2
+

η1
2
+

η2
2
+ 3

2 .

Let us first bound II. If |α1| + |β1| ≤ kL − 3 then by weighted Sobolev embedding (B.7b), we
take supremum for f :ˆ

⟨X⟩ηC̄−3
s ∥Dα1,β1f∥L2(V )∥Dα2,β2g∥σ∥Dα,βh∥σdX

≲ sup
X

{
⟨X⟩

η1+3
2 ∥Dα1,β1f(s,X, ·)∥L2(V )

}ˆ
⟨X⟩

η2
2 ∥Dα2,β2g∥σ⟨X⟩

η
2 ∥Dα,βh∥σdX

≲η1 ∥f∥Y|α1|+|β1|+3
η1

∥Dα2,β2g∥YΛ,η2
∥Dα,βh∥YΛ,η

≲ ∥f∥YkL
η1

∥Dα2,β2g∥YΛ,η2
∥Dα,βh∥YΛ,η

.

(8.6)

Otherwise, |α2|+ |β2| ≤ k − kL + 3 ≤ k − 5. We take the supremum for g:ˆ
⟨X⟩ηC̄−3

s ∥Dα1,β1f∥L2(V )∥Dα2,β2g∥σ∥Dα,βh∥σdX

≲ sup
X

{
⟨X⟩

η2+3
2 ∥Dα2,β2g(s,X, ·)∥σ

}
∥Dα1,β1f∥Yη1

∥Dα,βh∥YΛ,η
.

(8.7)

We recall that the σ norm can be bounded from above as

∥f∥2σ ≤
ˆ

C̄γ+3
s ⟨V̊ ⟩γ+2f2 + C̄γ+5

s ⟨V̊ ⟩γ+2|∇V f |2 =
ˆ

Λ(f2 + |C̄s∇V f |2) dV
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where Λ = C̄γ+3
s ⟨V̊ ⟩γ+2. Since C̄s∂ViD

α,βf = Dα,β+eif , by the definition of Dα,β, we have that

∥Dα2,β2g∥2σ ≤
ˆ

Λ
(
|Dα2,β2g|2 +

∑
i

|Dα2,β2+eig|2
)
dV

≲ ∥Λ1/2Dα2,β2g∥2L2(V ) +
∑
i

∥Λ1/2Dα2,β2+eig∥2L2(V ).

We apply (B.7c) and obtain

∥Dα2,β2g∥σ ≲η2 ⟨X⟩−
η2+3

2 ∥g∥Y|α2|+|β2|+4
Λ,η2

≲k ⟨X⟩−
η2+3

2 ∥g∥Yk−1
Λ,η2

.

Therefore, we can continue to bound (8.7) asˆ
⟨X⟩ηC̄−3

s ∥Dα1,β1f∥L2(V )∥Dα2,β2g∥σ∥Dα,βh∥σdX

≲η2 ∥Dα1,β1f∥Yη1
∥g∥Y|α2|+|β2|+4

Λ,η2

∥Dα,βh∥YΛ,η
.

(8.8)

Summarizing (8.6) for |α1|+ |β1| ≤ kL− 3 with |α2|+ |β2| ≤ k− 1, and (8.8) for |α2|+ |β2| ≤ k− 5,
we obtain

|II| ≲k,η1,η2 ∥f∥YkL
η1

∥g∥Yk−1
Λ,η2

∥h∥Yk
Λ,η

+ ∥f∥Yk
η1
∥g∥Yk−1

Λ,η2

∥h∥Yk
Λ,η
≲k ∥f∥

Ymax{k,kL}
η1

∥g∥Yk−1
Λ,η2

∥h∥Yk
Λ,η
.

For the first term I in (8.5), applying estimates (8.6) with (α1, β1, α2, β2) = (0, 0, α, β), summing
over α, β, and using the definition of Y-norm (2.29) and the Cauchy–Schwarz inequality, we prove

|I| ≲η1 ∥f∥YkL
η1

∥g∥Yk
Λ,η2

∥h∥Yk
Λ,η
, (8.9)

with absolute constants independent of k.
For k ≤ kL, the constants in II can be treated as independent of k constants, thus we prove

(8.2a) and (8.2b) by combining I and II.

Proof of (8.4). If g = PMg is macroscopic, then

∥g∥σ ≲ C̄
γ+3
2

s ∥g∥L2(V ).

Indeed, g is a linear combination of {Φi}5i=1 which are orthonormal in L2(V ), so

∥g∥σ ≲ ∥g∥L2(V )max
i

∥Φi∥σ ≲ C̄
γ+3
2

s ∥g∥L2(V ).

Here we used ∥Φi∥2σ ≲ C̄γ+3
s from (C.27).

Now we integrate in X, and recall that |Dα,0C̄
γ+3
2

s | ≲ C̄
γ+3
2

s , we conclude

∥g∥Yj
Λ,η2

≲ ∥C̄
γ+3
2

s g∥Yj
η2
, ∀ j ≥ 0.

Similarly, since ∥f∥L2 ≤ C̄
− γ+3

2
s ∥f∥σ for every f and γ ≥ −2 by Corollary 5.3, we know

∥f∥Yk
η2
≲ ∥C̄− γ+3

2
s f∥Yk

Λ,η2

.

By definition (2.22b), N (·, ·) commutes with multiplication by any function a(X). So we can apply
(8.2b) and prove (8.4a):

|⟨N (f, g), h⟩Yk
η
| = |⟨N (C̄

γ+3
2

s f, C̄
− γ+3

2
s g), h⟩Yk

η
|

≲ ∥C̄
γ+3
2

s f∥Yk
η1
∥C̄− γ+3

2
s g∥Yk

Λ,η2

∥h∥Yk
Λ,η

≲ ∥f∥Yk
Λ,η1

∥g∥Yk
η2
∥h∥Yk

Λ,η
.
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Finally, note that when |α1|+ |β1| ≤ k
2 ≤ k − 8 or |α2|+ |β2| ≤ k

2 ≤ k − 8, we haveˆ
⟨X⟩ηC̄−3

s ∥Dα1,β1f∥L2(V )∥Dα2,β2g∥σ∥Dα,βh∥σdX

≲
ˆ

⟨X⟩ηC̄
γ−3
2

s ∥Dα1,β1f∥L2(V )∥Dα2,β2g∥L2(V )∥Dα,βh∥σdX

≲ sup
X

{
⟨X⟩η+

3−γ
2

(r−1)⟨X⟩−
3+η1+η2+η

2

}(
∥f∥Yk−4

η1
∥g∥Yk

η2
+ ∥f∥Yk

η1
∥g∥Yk−4

η2

)
∥h∥Yk

Λ,η
.

The supremum is bounded by 1 when

3− γ

2
(r − 1) +

η − η2 − η1 − 3

2
≤ 0 ⇐⇒ η1 + η2 ≥ η + (3− γ)(r − 1)− 3

= η + η̄ − (3 + γ)(r − 1) = η + η̄ − r(ω + 1).

Therefore, when η1 = η2 = η, the constraint is satisfied by η ≤ η̄ provided 2η ≥ 2η̄ − r(ω + 1),
which reduces to (8.1). Thus, applying the above estimate to I, II in (8.5), we prove (8.4b). □

9. Construction of blowup solution

In this section, we prove Theorem 1.1 by constructing global solutions to (2.2) in the vicinity
of the local Maxwellian M defined in (2.4). Throughout this section, we perform weighted H2k

or H2k+2 energy estimates with the regularity parameter k chosen in (4.36) and use the compact
operator Kk = Kk,η (4.36) constructed in Proposition 4.6. The implicit constants in this section

may depend on η, η̄, and k, and we omit these dependencies for simplicity.

9.1. Decomposition of the solution. We use F to denote the nonlinear solution to (2.2). As

in (2.19) and (2.21), we denote the perturbation F̃ to the profile M and its macroscopic F̃M and

microscopic parts F̃m as

M1/2
1 F̃ := F −M, F̃M := PM F̃ , F̃m := PmF̃ . (9.1a)

We define the weighted hydrodynamic fields (ρ̃, Ũ, P̃ ) of the perturbation and B̃ via (3.8).

(ρ̃, Ũ, P̃ ) :=

ˆ
M1/2

1 F̃
(
1,
V − Ū

C̄s
,
|V − Ū|2

3C̄2
s

)
dV, B̃ = ρ̃− P̃ , (9.1b)

and denote

W̃ = (Ũ, P̃ , B̃) = FE(F̃ ). (9.1c)

Given W̃, we construct the macro-perturbation via (3.15): F̃M = FM (W̃). We recall that the

perturbation F̃ solves (2.23b) and W̃ solves (3.9).
We further decompose the macro-perturbation as

W̃ = W̃1 + W̃2, F̃M = F̃M,1 + F̃M,2

with 34

Ũ = Ũ1 + Ũ2, P̃ = P̃1 + P̃2, B̃ = B̃1 + B̃2,

so that

F = M+M1/2
1 (F̃m + F̃M,1 + F̃M,2), F̃ = F̃m + F̃M,1 + F̃M,2,

W̃i = (Ũi, P̃i, B̃i), F̃M,i = FM (W̃i), i = 1, 2.
(9.2)

34We emphasize that the ·̃1 or ·̃2 sub-index denote different parts of the perturbation, they do not represent Cartesian
coordinates.
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The field W̃i are defined as solutions of

∂sW̃1 = (LE,s −Kk)W̃1 + (LE,s − LE)W̃2 − (I1, I2,−I2)(F̃m)− (C̄3
sEU, C̄3

sEP , 0), (9.3a)

∂sW̃2 = LEW̃2 +KkW̃1, (9.3b)

and F̃m solves (6.7)

∂sF̃m = LmicF̃m − Pm[(V · ∇X + 2dM + d̃M)F̃M ] +
1

εs
N (F̃ , F̃ )− Pm[M−1/2

1 EM]. (9.3c)

where we recall Lmic from (6.7)

LmicF̃m =
1

εs
LMF̃m −

(
T + dM − 3

2
c̄v

)
F̃m + PM [(V · ∇X − 2dM − d̃M)F̃m]. (9.3d)

Let us clarify the definitions of the operators and functions in (9.3). The operators Kk, Ii,LE ,
LE,s,Lmic are linear. We define Kk = Kk,η (4.36) in Proposition 4.6 with parameter η, I1, I2 in

(2.22), LE,s in (3.9), LE in (3.10) with

LE,s = (LU,s,LP,s,LB,s), LE = (LU ,LP ,LB),

and T ,Lmic in (2.22) and (6.7). The error terms EU, Eρ, EM in (9.3) are defined in (2.18) or (A.1).

It is clear, by definition, that a global solution W̃1,W̃2, F̃m of (9.3) provides via (9.2) a global
solution F of (2.2).

There are a few important advantages to the decomposition 35 (9.2) and (9.3). First, the part

W̃2, which is used to capture unstable parts, is almost decoupled from the equations of W̃1 (9.3a)

with a small error (LE,s − LE)W̃2 (see Proposition 4.10) and F̃m (9.3c) at the linear level, and so

we can obtain decay estimates for W̃1 and F̃m directly using energy estimates and the dissipative
estimate of LE,s−Kk (see (4.18)) and of the linearized operators in (9.3c) (see Theorem 6.3), without

appealing to semigroups. Second, by applying energy estimates on W̃1 and F̃m, we can estimate
the time-dependent linear operators in (9.3a) and (9.3c). Third, we can obtain a representation

formula (and an estimate) for W̃2 by using Duhamel’s formula [23,24] 36 :

W̃2(s) := W̃2,s(s)− W̃2,u(s) + esLE

(
W̃2,u(0)

(
1− χ

( y
8Rη

)))
, (9.4a)

W̃2,s(s) := Re

ˆ s

0
e(s−s′)LE ΠsKk(W̃1)(s

′)ds′, (9.4b)

W̃2,u(s) := Re

ˆ ∞

s
e−(s′−s)LE ΠuKk(W̃1)(s

′)ds′, (9.4c)

where χ is a smooth radial cutoff function with χ(y) = 1 for |y| ≤ 2/3, and χ(y) = 0 for |y| ≥ 1,
and Rη is the parameter determined in Theorem 4.2, Πu is the orthogonal projection from X 2k

C,η to

X 2k
un (see (4.29)-(4.30)) and Πs := Id−Πu.
It is not difficult to see that (9.4) solves (9.3b) with initial data taken as

W̃2,in = −W̃2,u(0)χ
( y
8R4

)
= −χ

( y
8R4

)
Re

ˆ ∞

0
e−s′LE ΠuKk(W̃1)(s

′)ds′. (9.4d)

The detailed representation (9.4) shows that W̃2 is computed as a function of W̃1; for later
purposes it is useful to codify this relation as a map, A2, and to denote

A2(W̃1) := Right Side of (9.4a). (9.5)

35A similar decomposition was first developed in [24] to analyze stable blowup in the 3D incompressible Euler
equations, and then generalized in [22,23] for stability analysis of implosion in the compressible Euler equations.
36In general, the projections Πs,Πu can lead to a complex-valued solution. We restrict to the real part of the semigroup

so that W̃2 is real.
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9.2. Functional setting and parameters. In the rest of this section, we will consider power
η = η̄ defined in (2.31) or η = η satisfying (2.42):

η̄ = −3 + 6(r − 1), 4ω · r < η̄ − η <
(1 + ω)r

2
. (9.6)

We introduce the spaces Z2k+2, which are used for closing nonlinear estimates. Our goal is
to perform both weighted H2k and weighted H2k+2 estimates on (9.3), using the same compact
operator Kk and the same projections Πs,Πu appearing in (9.3) and (9.4b)-(9.4c); that is, we do
not wish to change Kk into Kk+1 for the weighted H2k+2 bound.

Recall the parameter λ1 < λη chosen in (2.42). For some ϖ′
k+1 > 0 to be chosen sufficiently

large, using Theorem 4.2, Proposition 4.6 (which in particular gives that Kk : X 0
η → X 2k+6

η ), and

the fact that by definition we have ∥ · ∥X 0
η
≲n,η ∥ · ∥Xn

η
, we obtain

ϖ′
k+1⟨(LE,s −Kk)f, f⟩X 2k

η
+ ⟨(LE,s −Kk)f, f⟩X 2k+2

η

≤ −ληϖ′
k+1∥f∥2X 2k

η
+
(
⟨LE,sf, f⟩X 2k+2

η
+ ∥Kkf∥X 2k+2

η
∥f∥X 2k+2

η

)
≤ −ληϖ′

k+1∥f∥2X 2k
η

+
(
−λη∥f∥2X 2k+2

η
+ Ck,η∥f∥2X 0

η
+ Ck,η∥f∥X 0

η
∥f∥X 2k+2

η

)
≤ −λ1

(
ϖ′

k+1∥f∥2X 2k
η

+ ∥f∥2X 2k+2
η

)
+
(
−(λη − λ1)ϖ

′
k+1 + Ck,η,λ1

)
∥f∥2X 2k

η
,

for all f ∈ {W ∈ X 2k+2
η : LE,sW ∈ X 2k+2

η }. Choosing ϖ′
k+1 > 0 large enough in terms of k, η and

λη, so that −(λη − λ1)ϖ
′
k+1 + Ck,η,λ1 < 0, we obtain the coercivity estimate

ϖ′
k+1⟨(LE,s −Kk)f, f⟩X 2k

η
+ ⟨(LE,s −Kk)f, f⟩X 2k+2

η
≤ −λ1

(
ϖ′

k+1∥f∥2X 2k
η

+ ∥f∥2X 2k+2
η

)
.

In light of the above coercive bounds, with ϖ′
k+1 > 0 chosen as above, we define the Hilbert

spaces Z2k+2 ⊂ X 2k+2
η according to the inner products 37

⟨f, g⟩Z2k+2 := ⟨f, g⟩X 2k+2
η

+ϖ′
k+1⟨f, g⟩X 2k

η
, ∥f∥2Z2k+2 = ⟨f, f⟩Z2k+2 , (9.7a)

and obtain with λ1 determined in (2.42) that

⟨(LE,s −Kk)f, f⟩Z2k+2 ≤ −λ1∥f∥2Z2k+2 , (9.8)

for all f ∈ {(U, P,B) ∈ X 2k+2
η : LE,s(U, P,B) ∈ X 2k+2

η }. Estimate (9.8) shows that we can use the

same compact operator Kk to simultaneously obtain coercivity estimates in weighted H2k+2 and
weighted H2k spaces. Moreover, we have the following equivalence.

Lemma 9.1. For f ∈ X 2k+2
η , we have

∥f∥X 2k+2
η
≲ ∥f∥Z2k+2 ≲ ∥f∥X 2k+2

η
.

Since k is fixed, we treat constants depending on η, η̄, k as absolute constants.

Parameters. Note that we have fixed η, η̄ and the regularity parameter k ≥ k0. We recall from
(2.42), (4.19), (4.31a) and (9.8), that the decay rates λη, λs, λu, and λ1 are given by(

2

3
− ℓ

)
ω < λs < λu <

2

3
ω, ω < λ1 < λη. (9.9)

We will only use parameters λs, λu in Lemmas 9.7 and 9.8 for the semigroup estimates. We use
λ1 and λη for the energy estimates.

37We apply the Z-norm only with power η = η. To simplify the notation, we do not indicate the dependence of Z
on η.
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9.3. Nonlinear stability and the proof of Theorem 1.1. We have the following nonlinear
stability results.

Theorem 9.2 (Nonlinear stability). Let k be the regularity index chosen in (4.36). There exists

a sufficiently small δ > 0 such that for any initial perturbation W̃1,in = (Ũ1(0), P̃1(0), B̃1(0)) and

F̃m,in = F̃m(0) which are smooth enough 38 to ensure W̃1,in ∈ X 2k+4
η̄ , F̃m,in ∈ Y2k+4

η̄
39 and small

enough to ensure

∥W̃1,in∥X 2k+2
η

+ ∥F̃m,in∥Y2k+2
η

< δ1/2, ∥W̃1,in∥X 2k
η
< δ2/3+ℓ,

∥W̃1,in∥X 2k+2
η̄

+ ∥F̃m,in∥Y2k+2
η̄

< δ2ℓ,
(9.10)

there exists a global solution W̃1 to (9.3a) with initial data W̃1,in, a global solution W̃2 to (9.3b)

given by (9.4), and a global solution to (9.3c) with initial data F̃m,in satisfying exponential decay
bounds

∥W̃1(s)∥X 2k+2
η

+ ∥F̃m(s)∥Y2k+2
η
≲ εs

1/2−ℓ, (9.11a)

∥W̃1(s)∥X 2k
η
< εs

2/3, (9.11b)

∥W̃2(s)∥X 2k+6
η
≲ εs

2/3−ℓ, (9.11c)

and the smallness bound

∥W̃2(0)∥Yn
η̄
≲n δ

2/3, (9.12)

∥W̃1(s) + W̃2(s)∥X 2k+2
η̄

+ ∥F̃m(s)∥Y2k+2
η̄
≲ δℓ, (9.13)

for all s ≥ 0 and n ≥ 0. We emphasize that we cannot prescribe the initial data W̃2,in = W̃2(0) =

(Ũ2(0), P̃2(0), B̃2(0)); rather, this data is constructed via (9.4d) (simultaneously with W̃1) to lie in
a finite-dimensional subspace of X 2k+4

η .

It is important to obtain extra smallness for the lower order norm ∥W̃1∥X 2k
η

compared to estimate

of the top order norm (9.11a). See the motivation in Step 6 in Section 2.5.

Remark 9.3 (Exponential decay estimates). We establish temporal exponential decay es-
timates of perturbation only in norms with faster decay weights, e.g. norms X 2k

η ,Y2k
η ,Z2k with

parameter η, rather than η̄. Note that η < η̄. In the norm X 2k
η̄ ,Y2k

η̄ with parameter η̄, we prove
smallness instead of temporal decay estimates. See the motivation in Step 1 in Section 2.5.

Remark 9.4 (Initial data). The initial data for Fin = M + M1/2
1 (F̃m + FM (W̃1 + W̃2)) is

obtained from Theorem 9.2 and the decomposition (9.2) at time s = 0. In light of Theorem 9.2, we
identify the space X2 mentioned in Remark 1.3 with an open ball in the weighted Sobolev space
Y2k+2
η̄ defined in (2.29). On the other hand, the space X1 mentioned in Remark 1.3 consists of

functions which are given as the sum of an element W̃1 which lies in open ball in the weighted

Sobolev space X 2k+2
η̄ (see definition (4.6)) and the element W̃2 constructed in (9.4d), which lies in

a finite-dimensional subspace of X 2k+6
η̄ . From (9.19) in the proof of Theorem 1.1, one can construct

a finite codimension set of positive initial data Fin.

38We require the X 2k+4-regularity of W̃1,in, a space which is stronger than Z2k+2, in order to obtain the local-in-time
existence of a X 2k+4-solution (see Theorem 10.1); in turn, this allows us to justify a few estimates, e.g. (9.8) for

W̃1 which requires LE,s(W̃1) ∈ X 2k+2. Note that this regularity requirement is only qualitative, and we only use
Theorem 9.2 with an C∞ initial perturbation (see (9.20)) in order to prove Theorem 1.1. The quantitative assumption
on the initial data is given by (9.10).
39Since η < η̄, using Lemma 4.5 and the definition of Yk

η in (2.29), we also obtain W̃1,in ∈ X 2k+4
η , F̃m,in ∈ Y2k+4

η .
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We defer the proof of Theorem 9.2 to Sections 9.4-Section 9.6. Based on Theorem 9.2, we are in
a position to prove Theorem 1.1.

Proof of Theorem 1.1. The proof of Theorem 1.1 consists of a few steps. First, we construct initial

perturbation W̃1, F̃m satisfying the assumptions in Theorem 9.2 and the initial data Fin satisfying
assumptions in Theorem 1.1. Then we use the estimates of the perturbation from Theorem 9.2 to
prove the regularity and limiting behaviors of the blowup solution in Theorem 1.1.

Step 1: Initial data. Recall from (9.1) that the initial data are given by

Fin = M+M1/2
1 F̃ = M+M1/2

1 (F̃M + F̃m), F̃M = FM (W̃) = FM (W̃1 + W̃2),

with W̃2 determined by (9.4) implicitly. Due to finite codimension stability of W̃, we cannot

prescribe W̃ freely. To ensure that Fin > 0, we first design a specific micro-perturbation Fm,pos

that is positive for large |V̊ | and has much slower decay in ⟨V̊ ⟩ compared to F̃M so that Fin ≈
M+M1/2

1 Fm,pos > 0.

A specific micro-perturbation. Recall from (2.17)

M1 = C̄−3
s µ(V̊ ), M = C̄3

sM1 = µ(V̊ ). (9.14)

We design a micro-perturbation as 40

Fm,pos(X,V ) = ⟨X⟩−l(C̄−3/2
s ⟨V̊ ⟩−2 + (c1 + c2(|V̊ |2 − 9

5
))M1/2

1 )
∣∣∣
s=0

, l > 3(r − 1) > 0, (9.15a)

and choose c1, c2 to ensure the orthogonal conditions

⟨M1/2
1 Fm,pos, h(V̊ )⟩V = 0, h(V̊ ) = 1, V̊i, |V̊ |2. (9.15b)

Since Fm,pos is radial in V̊ , we obtain ⟨M1/2
1 Fm,pos, V̊i⟩V = 0. Using (9.15b), (9.14), and a change

of variable V = C̄sV̊ + Ū, we rewrite the equation (9.15b) equivalently as

0 =

ˆ
M1/2

1 Fm,posh(V̊ )dV = C̄−3
s ⟨X⟩−l

ˆ
µ(V̊ )1/2

(
⟨V̊ ⟩−2 + (c1 + c2(|V̊ |2 − 9

5
))µ(V̊ )1/2

)
h(V̊ )dV̊

for h(V̊ ) = 1, |V̊ |2. Dividing the factor C̄−3
s ⟨X⟩−l and changing V̊ to a dummy variable z ∈ R3, we

simplify the equations of c1, c2 asˆ
µ(z)1/2

(
⟨z⟩−2 + (c1 + c2(|z|2 −

9

5
))µ(z)1/2

)
h(z)dz, h(z) = 1, |z|2.

Since the variance of the Gaussian µ(z) defined in (2.16) is κ−1 = 3
5 , by choosing h(z) = 1 and

using
´
µ(z)(|z|2 − 9

5)dz = 0, we obtain c1. By choosing h(z) = |z|2, we further obtain c2. Thus,
we obtain constants c1, c2 independent of X which satisfy (9.15b) and

|c1|, |c2| ≲ 1. (9.16)

Using (9.15), (9.16), and (9.14), we obtain

Fm,pos = ⟨X⟩−lC̄−3/2
s ⟨V̊ ⟩−2 + EFm , |EFm | ≲ ⟨X⟩−lC̄−3/2

s ⟨V̊ ⟩−3. (9.17)

Since the error part EFm has a Gaussian decay for large V̊ , we obtain Fm,pos > 0 for large |V̊ |.
Moreover, since l > 3(r − 1), using (C.21), (C.18), and a direct computation, we obtain

∥Fm,pos∥Yn
η̄
≲n 1, ∀ n ≥ 0. (9.18)

40Since M1 (2.17) and C̄s (2.14) depend on s, We evaluate the functions in (9.15) at s = 0 to construct time-
independent function Fm,pos(X,V ).
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Initial perturbation. Based on Fm,pos, we construct small initial perturbation that satisfies the
smallness and smoothness assumptions in Theorem 9.2. Consider a family of initial perturbations:

F̃m = δ1 · (Fm,pos + PmH), W̃1 = δ1δ
ℓ · ω, δ1 = bkδ

2/3. (9.19a)

with a small constant bk to be chosen and any H(X,V ), ω(X) satisfying

H ∈ ∩n≥0Yn
η̄ ⊂ C∞, ∥H∥Y2k+2

η̄
≤ 1, |H(X,V )| ≤ C̄−3/2

s ⟨X⟩−l⟨V̊ ⟩−3,

ω ∈ ∩n≥0X n
η̄ ⊂ C∞, ∥ω∥X 2k+2

η̄
≤ 1, supp(ω) ∈ B(0, 8Rη).

(9.19b)

Clearly, H = 0 or small H with compact support in X,V satisfies the above assumptions.
From (9.15), the definition of Y-norm (2.29), (9.18), and Lemma C.10, we have

∥F̃m∥Yn
η̄
≤ δ1(∥Fm,pos∥Yn

η̄
+ ∥PmH∥Yn

η̄
) ≲n δ1, ∥W̃1(0)∥Yn

η̄
= δ1δ

ℓ∥ω∥Yn
η̄
≲n δ1δ

ℓ, ∀ n ≥ 0.

(9.19c)

We take δ1 = bkδ
2/3 with small constant bk = b(∥Fm,pos∥Y2k+4

η̄
) > 0 depending on k so that the

smallness assumptions (9.10) in Theorem 9.2 are satisfied for W̃1(0), F̃m(0).

We construct W̃2 via Theorem 9.2 and use the support of W̃2(0) (9.4) and W̃1 (9.19b) to obtain

∥W̃2(0)∥Xn
η̄
≲n δ

2/3, ∥W̃2(0)∥X 2k+6
η̄
≲ δ2/3 ≲ δ1,

supp(W̃(0)), supp(W̃1(0)), supp(W̃2(0)) ⊂ B(8Rη),
(9.19d)

for any n ≥ 0. In particular, we have W̃2(0) ∈ C∞
c . Using the above construction, we obtain a

finite co-dimension set of positive initial data.

Gaussian upper and lower bound of Fin. Next, we show that for

δ1 = bkδ
2/3

with δ small enough, the initial data satisfy

Fin = M+M1/2
1 (δ1(Fm,pos + PmH) + F̃M )(0) ≥ 1

2M, F̃M = FM (W̃1 + W̃2). (9.20)

for any X,V . In particular, Fin is positive.
Since Rη is absolute constant and l > 3(r− 1), using the estimates of size and support in (9.19)

and the embedding in Lemma B.4, we obtain

|W̃(0, X)| ≲ 1|X|≤8Rη
⟨X⟩−

η̄+d
2 ∥W̃(0)∥X 2k

η̄
≲ (δ1δ

ℓ + δ2/3)⟨X⟩−3(r−1)1|X|≤8Rη
≲ δ1⟨X⟩−l. (9.21)

Since each basis in (2.20) satisfies |Φi| ≲ ⟨V̊ ⟩2M1/2
1 , using (3.15), (9.21), and (9.14), we obtain

|F̃M | ≲ |W̃(0, X)|⟨V̊ ⟩2M1/2
1 ≲ δ1⟨X⟩−l⟨V̊ ⟩2M1/2

1 = δ1⟨X⟩−lC̄−3/2
s ⟨V̊ ⟩2µ(V̊ )1/2 ≲ δ1⟨X⟩−lC̄−3/2

s ⟨V̊ ⟩−3.

Since Pm is a projection in V , using (9.19b), (3.15), and (C.24), we obtain

|PmH| ≤ |H|+ |PMH| ≲ |H|+ ∥PMH∥L2(V )⟨V̊ ⟩2M1/2
1

≲ C̄−3/2
s (⟨X⟩−l⟨V̊ ⟩−3 + ⟨X⟩−l⟨V̊ ⟩2µ(V̊ )1/2) ≲ C̄−3/2

s ⟨X⟩−l⟨V̊ ⟩−3.

Since l > 3(r − 1) (9.15), using (9.14), we obtain

M = µ(V̊ ) = C̄3
sC̄

−3
s µ(V̊ ) ≳ ⟨X⟩−3(r−1)C̄−3

s µ(V̊ ) ≳ ⟨X⟩−lC̄−3
s µ(V̊ ).
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Using the above three estimates, (9.14), and (9.17), we obtain

Fin − 1
2M = 1

2M+M1/2
1 (δ1Fm,pos + δ1PmH + F̃M )

≥ C1⟨X⟩−lC̄−3
s µ(V̊ ) + C̄−3/2

s µ(V̊ )1/2(δ1⟨X⟩−lC̄−3/2
s ⟨V̊ ⟩−2 − δ1|EFm | − δ1|PmH| − |F̃M |)

≥ C1⟨X⟩−lC̄−3
s µ(V̊ ) + C̄−3/2

s µ(V̊ )1/2
(
δ1⟨X⟩−lC̄−3/2

s ⟨V̊ ⟩−2 − Cδ1⟨X⟩−lC̄−3/2
s ⟨V̊ ⟩−3

)
= ⟨X⟩−lC̄−3

s µ(V̊ )1/2(C1µ(V̊ )1/2 + δ1 · ⟨V̊ ⟩−2 − Cδ1⟨V̊ ⟩−3),
(9.22)

for some absolute constants C1, C > 0. The above term is positive for δ1 = bkδ
2/3 with δ small

enough. Thus, we prove (9.20): Fin(0) >
1
2µ(V̊ ) = 1

2M.

Next, we prove the uniform Gaussian decay bound for Fin. Using C̄s|s=0 ≳R0 1 (3.3a) and

V̊ = V−Ū
C̄s

and V = v (2.1) at t = 0, we obtain |V̊ | ≳ c1⟨v⟩ − c2.

Using (9.27) to be shown with α = β = 0 and the bound on |V̊ |, we obtain Gaussian decay in v
that is uniformly in x

|Fin(X,V )− µ(V̊ )| ≲ µ(V̊ )1/4, |Fin(X,V )| ≲ µ(V̊ ) + µ(V̊ )1/4 ≲ exp(−C⟨v⟩2). (9.23)

Recall cv ≡ c̄v, cx ≡ c̄x, cf ≡ 0 and the self-similar relation from (2.1)

s = − log(1− t), X =
x

(1− t)c̄x
, V =

v

(1− t)c̄v
, f(t, x, v) = F (s,X, V ) = M+M1/2

1 F̃ . (9.24)

Since f(0, x, v) = F (0, x, v), we prove that the initial data f satisfies the Gaussian decay estimate
in v (9.23).

Initial hydrodynamic fields. Recall the mass, momentum, and energy density (ϱ,m, e) from

(1.4). Using the self-similar relation (2.1) and (3.8) and ρ̃ = B̃ + P̃ , we obtain

(ϱ,m, e)(t, x) =

ˆ
f(t, x, v)(1, v, |v|2)dv

= (T − t)3c̄v
ˆ
F (s,X, V )(1, (T − t)c̄vV, (T − t)2c̄v |V |2)dV

=
(
(T − t)3c̄v(ρ̄s + ρ̃), (T − t)4c̄v(ρ̄sŪ+ ρ̃Ū+ C̄sŨ),

(T − t)5c̄v(3ρ̄sΘ̄s + ρ̄s|Ū|2 + 3C̄2
sP̃ + 2Ū · ŨC̄s + ρ̃|Ū|2)

)
.

(9.25)

Using fin = Fin, x = X, v = V (9.24) at t = 0, (9.22) and (3.3a), we estimate the initial density

ϱ(0, x) =

ˆ
FindV ≥ 1

2

ˆ
MdV =

1

2
ρ̄s|s=0(x) =

1

2
C̄3
s|s=0 ≳ R

−3(r−1)
0 ,

for any x. We prove ϱin ≥ constant > 0 in Theorem 1.1. Using (9.25) and (9.26) to be shown below,
we obtain that the initial data have uniformly bounded hydrodynamic fields. We have proved all
the properties of initial data in Theorem 1.1.

Step 2: Asymptotically self-similar blowup. Since the initial perturbation (W̃1, F̃m) satis-
fies (9.19), which implies (9.10) and (9.40), using Theorem 9.2, we construct a global solution

(W̃1W̃2, F̃m) to (9.3) with estimates (9.11) and (9.13). Since system (9.3) is equivalent to the

linearized Landau equation (2.23), F = M + M1/2
1 F̃ with F̃ = F̃m + FM (W̃1 + W̃2) is a global

solution to the Landau equation (2.2) with F̃ (s) ∈ Y2k+2
η̄ , arising from the initial perturbation

F̃ (0). By requiring δ small, (9.19) implies that F̃ (0) also satisfies (10.5) for any k ≥ 0. Therefore,

by uniqueness of solutions, the global solution F̃ constructed in Theorem 9.2 and the local solution
constructed in Corollary 10.2 from the same initial perturbation F̃ (0) are the same. Since estimates
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(9.19c) and (9.19d) imply F̃ (0) ∈ ∩n≥0Yn
η̄ and since F (0, X, V ) > 1

2M(0, X, V ) by (9.22), using

Proposition 10.2, we further obtain that F̃ (s) ∈ ∩n≥0Yn
η̄ ⊂ C∞ and F satisfies a Gaussian lower

bound (10.10) with l = 0.
Using estimates (B.5) and (B.8) in Lemma B.4 with d = 3 and (9.11), we obtain

|W̃(s,X)| ≲ ⟨X⟩−
η+3

2 ∥W̃∥X 2k
η
≲ εs

1/2−ℓ⟨X⟩−
η+3

2 ,

|F̃ (s,X, V )| ≲ C̄
− 3

2
s ⟨X⟩−

η+3

2 ∥F̃∥Y2d
η
≲ C̄

− 3
2

s ⟨X⟩−
η+3

2 (∥W̃∥X 2d
η

+ ∥F̃m∥Y2d
η
)

≲ εs
1/2−ℓC̄

− 3
2

s ⟨X⟩−
η+3

2 ,

|D≤2k−2dF̃ (s,X, V )| ≲ C̄
− 3

2
s ∥D≤d

V D≤2k−2dF̃ (X, ·)∥L2(V )

≲ C̄
− 3

2
s ⟨X⟩−

η̄+3
2 ∥F̃∥Y2k

η̄
≲ δℓC̄

− 3
2

s ⟨X⟩−3(r−1) ≲ δℓC̄
3
2
s .

(9.26a)

In the last step, we used C̄s ≳ ⟨X⟩−(r−1) from Lemma 3.2.
From the definition (2.14), we obtain

lim
s→∞

Rs = ∞, lim
s→∞

C̄s = C̄, lim
s→∞

(ρ̄s, Θ̄s, P̄s) = (ρ̄, Θ̄, P̄ ), lim
s→∞

M = Mρ̄,Ū,Θ̄, (9.26b)

where M is the time-dependent local Maxwellian defined in (2.17), and Mρ̄,Ū,Θ̄ is defined in (2.4).

Since t→ 1− is equivalent to s = − log(1− t) → ∞, for fixed X,V , using the decay estimates in
(9.26), εs → 0 as s→ ∞, and the relation (9.25), we establish the blowup asymptotics

lim
t→T−

((T − t)−3c̄vϱ, (T − t)−4c̄vm, (T − t)−5c̄ve)(t, (T − t)c̄xX, (T − t)c̄vV ) = (ρ̄, ρ̄Ū, ρ̄(3Θ̄ + |Ū|2)),

lim
t→T−

f(t, (T − t)c̄xX, (T − t)c̄vV ) = Mρ̄,Ū,Θ̄.

Using c̄x = 1
r , c̄v = 1

r − 1 from (2.12), we prove (1.7), (1.6). Since c̄v = 1
r − 1 < 0 (2.12), the mass

ϱ, moments m, and the energy e blow up at t = 1. We prove results (b), (c) in Theorem 1.1.

Step 3. Estimates of blowup solution f . In this step, we study the limiting behavior of the
blowup solution and its regularity away from x = 0.

Recall F = M + M1/2
1 F̃ . Using Leibniz rule, |Dα,βM1/2

1 | ≲α,β ⟨V̊ ⟩|β|+2|α|M1/2
1 from (C.21),

|Dα,βM| ≲α,β ⟨V̊ ⟩|β|+2|α|M from (C.22), together with (9.26), we obtain for any |α|+ |β| ≤ 2k−2d
that

|Dα,β(F −M)| ≲ |D⪯(α,β)M1/2
1 | · |D≤2k−2dF̃ |

≲ ⟨V̊ ⟩|β|+2|α|M1/2
1 · δℓC̄

3
2
s = δℓ⟨V̊ ⟩|β|+2|α|µ(V̊ )1/2 ≲α,β δ

ℓµ1/4(V̊ ),

|Dα,βF | ≲α,β |Dα,βM|+ |Dα,β(F −M)|

≲ ⟨V̊ ⟩|β|+2|α|M+ δℓ⟨V̊ ⟩|β|+2|α|µ(V̊ )1/2

= ⟨V̊ ⟩|β|+2|α|
(
µ(V̊ ) + δℓµ(V̊ )1/2

)
≲α,β µ

1/4(V̊ ).

(9.27)

For fixed x and fixed v, using the self-similar relation (9.24), we obtain

V̊ (t, x, v) =
V − Ū(X)

C̄s(X)
=
v − (1− t)1/r−1Ū( x

(1−t)1/r
)

(1− t)1/r−1C̄s(
x

(1−t)1/r
)
, V̊ (t, 0, v) =

v

C̄(0) · (1− t)1/r−1
, (9.28)

For x = 0 and |α| = |β| = 0, using (9.27), X = 0 (9.24), and ε0 = δ (2.43), we prove

|f(t, 0, v)− µ(V̊ )| = |F (s, 0, V )− µ(V̊ )| ≲ εℓ0µ1/2(V̊ ), V̊ =
v

C̄(0) · (1− t)1/r−1
,
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and obtain the first estimate in Remark 1.4. By choosing ε0 = δ small enough, we obtain

Cεℓ0µ(0)
1/2 ≤ ε

ℓ/2
0 µ(0). For fixed v and x = 0, since V̊ → 0 as t → 1−, we prove the second

estimate in Remark 1.4.

Smoothness away from x = 0. We first derive that the limit of V̊ is v̊ as t → 1−. For fixed
x ̸= 0, using the asymptotics of (Ū, C̄) (3.4) , we obtain

lim
t→1−

(1− t)
1
r
−1Ū

(
x

(1− t)1/r

)
= lim

t→1−
(1− t)

1
r
−1

(
CŪeR

∣∣∣ x

(1− t)1/r

∣∣∣−(r−1)
+O

(∣∣∣ x

(1− t)1/r

∣∣∣−2r+1
))

= CŪeR|x|−r+1.

Next, we compute a similar limit for C̄s (2.14). Since (1− t)c̄x = e−c̄xs (9.24), using the definition
of Rs = R0 e

c̄xs in (2.13), (2.43), we obtain

X

Rs
=

x ec̄xs

R0 ec̄xs
=

x

R0
, χRs(X) = χ

(
X

Rs

)
= χ

(
x

R0

)
= χR0(x).

Thus, for x ̸= 0, using (3.4) and Rs = R0 e
c̄xs = R0(1− t)−

1
r , we obtain

lim
t→1−

(1− t)c̄v C̄s

(
x

(1− t)1/r

)
= lim

t→1−
(1− t)

1
r
−1

(
C̄

(
x

(1− t)1/r

)
χR0(x) + (1− χR0(x)) (R0(1− t)−

1
r )−(r−1)

)
= CC̄|x|−r+1χR0(x) + (1− χR0(x))R

−(r−1)
0 := cR0(x).

(9.29)

By definition x = X
(1−t)c̄x and using (3.3a), for any fixed x ̸= 0 and t ∈ [0, 1), we obtain

cR0(x) ≍ min{|x|, R0}−(r−1),

(1− t)c̄v C̄s(X) ≳ (1− t)c̄vRs
−(r−1) ≳ R−(r−1)

0 ,

(1− t)c̄v C̄s(X) ≲ (1− t)c̄v(X−(r−1) +Rs
−(r−1)) = |x|−(r−1) +R

−(r−1)
0 ≲ cR0(x).

(9.30)

Combining the above estimates, for fixed x ̸= 0 and v, using (9.28), we derive

lim
t→1−

V̊ (t, x, v) =
v − CŪeR|x|−r+1

cR0(x)
:= v̊(x, v). (9.31)

Using (9.27) with α = β = 0, we have

lim sup
t→1−

|f(t, x, v)− µ(̊v)| = lim sup
t→1−

|F (s,X, V )− µ(V̊ )| ≲ δℓ lim sup
t→1−

µ(V̊ )1/2 = δℓµ1/2(̊v).

With ε0 = δ (2.43) we establish estimate (1.10) in Remark 1.6.
Now we derive pointwise estimates for higher derivatives. Let functions g,G be related by

g(x, v) = G( x
(1−t)c̄x ,

v
(1−t)c̄v ) = G(X,V ). Using the definition of Dα,β (2.24), φ1 ≍ ⟨X⟩ from

Lemma 4.1, and the self-similar relation (9.24), we obtain

|Dα,βG(X,V )| ≍α ⟨X⟩|α|C̄|β|
s |∂αX∂

β
VG(X,V )| = (1− t)c̄x|α|+c̄v |β|⟨X⟩|α|C̄|β|

s |∂αx ∂βv g(x, v)|. (9.32)

For fixed x ̸= 0 and v, using the above asymptotics, and the property that µ(·) ∈ C∞, we obtain

lim
t→1−

(1− t)c̄x|α|+c̄v |β|⟨X⟩|α|C̄|β|
s (X) = |x||α|(cR0(x))

|β|,

lim
t→1−

∂αx ∂
β
v µ(V̊ (t, x, v)) = ∂αx ∂

β
v µ(̊v).

(9.33)
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Thus, for x ̸= 0, v ∈ R3, using (9.27)-(9.33) with (g,G)⇝ (f, F ), we prove

lim sup
t→1−

|x||α|(cR0(x))
|β||∂αx ∂βv (f − µ(̊v))| = lim sup

t→1−
|x||α|(cR0(x))

|β||∂αx ∂βv (f − µ(V̊ ))|

≲α lim sup
t→1−

|Dα,β(F − µ(V̊ ))| ≲α,β lim sup
t→1−

δℓµ1/4(V̊ ) = δℓµ1/4(̊v).

Dividing |x||α|(cR0(x))
|β| in the above estimate and using (9.30), we prove

lim sup
t→1−

|∂αx ∂βv (f − µ(̊v))| ≲α,β δ
ℓ|x|−|α|cR0(x)

−|β|µ1/4(̊v).

This yields higher-order estimates for the error.
Recall R0 = ε−ℓr

0 from (2.43). Using (9.27), (9.32), and then (9.30) (1 − t)c̄x |X| = |x|, for any
|x| ≠ 0, we obtain

µ1/4(V̊ ) ≳α,β |Dα,βF | ≳α,β (1− t)c̄x|α|+c̄v |β||X||α|C̄|β|
s |∂αx ∂βv f(t, x, v)|

≳α,β |x||α|R−(r−1)|β|
0 |∂αx ∂βv f(t, x, v)| ≳α,β,ε0 |x||α||∂αx ∂βv f(t, x, v)|.

Recall µ(·) from (2.16). Since | Ū(X)

C̄s(X)
| ≲ 1, using (9.28), the upper bound on C̄s in (9.30), and

(9.31), we obtain

|V̊ | ≥ C0|
v

(1− t)1/r−1C̄s(X)
| − C2 ≥ C1|

v

cR0(x)
| − C2 ≥ C3 |̊v| − C4, µ(V̊ )1/4 ≤ c exp(−C |̊v|2).

for some absolute constants Ci > 0. Combining the above estimates, we prove

|∂αx ∂βv f(t, x, v)| ≲α,β,ε0 |x|−|α| exp(−C |̊v|2)|, (9.34)

and obtain the estimate in Remark 1.5, which implies estimate (1.5) in result (a) in Theorem 1.1.

Step 4: Regularity of the blowup solution. Using the self-similar transform (2.1), we obtain

∥f(t, ·, v = 0)∥Ċα
x
= (1− t)−αc̄x∥F (s, ·, V = 0)∥Ċα

X
.

From the profile equations (3.7) and C̄(X) ≳ 1 for |X| ≤ 1, there exists some |X0| ≤ 1 with
Ū(X0) ̸= 0 (otherwise (3.7) implies Ū(X) = 0, C̄(X) = 0,∀|X| ≤ 1). Using (9.26), (9.27) and

F = M+M1/2
1 F̃ = µ(V̊ ) +M1/2

1 F̃ , by choosing δ small enough, we obtain

∥F (s, ·, V = 0)∥Ċα ≥ |F (s,X0, 0)− F (s, 0, 0)| ≥ |M(s,X0, 0)−M(s, 0, 0)| − Cδℓ

≥ 1

2

∣∣∣µ(Ū(X0)

C̄(X0)

)
− µ(0)

∣∣∣ ≥ c̄,
(9.35)

uniformly in s for some c̄ > 0. Combining the above estimates, we prove that ∥f(t, ·, v = 0)∥Cα
x

blows up for any α > 0.
Using (9.24) and (9.27), we obtain ∥f(t)∥L∞ = ∥F (s)∥L∞ ≲ 1. Thus, ∥f(t)∥L∞ is uniformly

bounded for t ∈ [0, 1). Estimate (1.5) in result (a) in Theorem 1.1 has been proved in (9.34).
Next, we fix v. Using the self-similar relation (9.24), (9.27), (9.35), and then taking 1− t small

enough, we obtain∣∣∣∣F (s,X0,
v

(1− t)1/r−1

)
− F

(
s, 0,

v

(1− t)1/r−1

)∣∣∣∣
≥ |F (s,X0, 0)− F (s, 0, 0)| − C

∣∣∣ v

(1− t)1/r−1

∣∣∣ ≥ c̄− C
∣∣∣ v

(1− t)1/r−1

∣∣∣ ≳ 1

2
c̄.

For 1− t > 0 small enough, using the mean-value theorem, and (9.24), we prove

sup
|x|≤(1−t)c̄x

|∇xf(t, x, v)| ≥ sup
|X|≤1

(1− t)−c̄x

∣∣∣∣∇XF

(
s,X,

v

(1− t)1/r−1

)∣∣∣∣ ≳ (1− t)−c̄xc.
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For any fixed v, using c̄x = 1
r and taking t→ 1−, we prove the gradient blowup result in result (a)

in Theorem 1.1. We complete the proof of Theorem 1.1. □

9.4. Setup of the fixed point problem. In subsections 9.4-9.6, our goal is to prove Theorem 9.2.

Since the formula for W̃2 (see (9.4c)) involves the future of the solution W̃1, and since W̃2

enters the evolution (9.3a) for W̃1 and (9.3c) for F̃m through the nonlinear term, we cannot solve

for the perturbation W̃1 directly. Instead, we reformulate (9.3a) as a fixed point problem. We fix

the initial data W̃1|s=0 = W̃1,in ∈ X 2k+4 sufficiently smooth, and sufficiently small such that (9.10)
holds. We define the space Y

∥W̃1∥Y := sup
s≥0

εs
−2/3∥W̃1∥X 2k

η
, (9.36)

and energy 41

Ek+1,η(W̃1, F̃m) := κ∥W̃1∥2Z2k+2 + ∥F̃m∥2Y2k+2
η

, (9.37a)

Ek+1,η̄(W̃, F̃m) := κ∥W̃∥2X 2k+2
η̄

+ ∥F̃m∥2Y2k+2
η̄

. (9.37b)

Note that Ek+1,η controls W̃1, while Ek+1,η̄ controls W̃ rather than W̃1. The parameter κ = 5
3

in (9.36) and (9.37) relates to the coupled estimates in Proposition 7.1. Showing W̃1 ∈ Y implies

that the norm X 2k
η of the perturbation W̃1 decay with a rate εs

2/3 as s→ ∞.

Next, we define an operator A (see (9.41)), whose fixed point (see (9.42)) is the desired solution
of (9.3a), (9.3c). We remark that throughout the remainder of this proof, we distinguish the W =

(U, P,B)-components of an input of a map (e.g. A, or A2) by variables with a “hat” (e.g. Ŵ1 =

(Û1, P̂1, B̂1)), and the output of these maps by variables with a “tilde” (e.g. W̃1 = (Ũ1, P̃1, B̃1)).
With this notational convention in place, the two-step process is:

• first, for Ŵ1 ∈ Y , we define

W̃2 = A2(Ŵ1), (9.38)

where the linear map A2 is defined by (9.5), via (9.4);

• second, we define W̃1 as the solution of a modified version of (9.3a) and F̃m as the solution
of (9.3c), namely

∂sW̃1 = (LE,s −Kk)W̃1 + (LE,s − LE)W̃2 − (I1, I2,−I2)(F̃m)− (C̄3
sEU, C̄3

sEP , 0), (9.39a)

∂sF̃m = LmicF̃m − Pm[(V · ∇X + 2dM + d̃M)F̃M ] +
1

εs
N (F̃ , F̃ )− Pm[M−1/2

1 EM].

where F̃ = F̃m+F̃M , and we construct the macro-perturbation F̃M associated with W̃1+W̃2

using the linear operator FM (3.15)

F̃M = FM (W̃1 + W̃2) = FM (W̃1 +A2(Ŵ1)). (9.39b)

We choose the initial data as in Theorem 9.2

W̃1|s=0 = (Ũ1(0), P̃1(0), B̃1(0)), F̃m|s=0 = F̃m(0). (9.39c)

For initial data W̃1(0), F̃m(0) satisfying (9.10) with δ small enough, applying (9.48) for W̃2 (to

be established) and k ≥ kL, we have F̃ = FM (W̃1 + W̃2) + F̃m ∈ Y2k+4
η̄ and

∥F̃in∥YkL
η̄

≤ C(∥W̃1,in + W̃2(0)∥X kL
η̄

+ ∥F̃m,in∥YkL
η̄
) ≤ Cδ2ℓ < ζ2, (9.40)

41Note that we only define Z norm in (9.7) with the power η and do not consider similar norm with power η̄.

Therefore, we consider ∥W̃1∥2X2k+2
η̄

in the definitions (9.36) rather than some Z norms with power η̄ of W̃1.
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with ζ2 chosen in Theorem 10.1. Thus, F̃in satisfies assumption (10.5). Applying Theorem 10.1 with

g = 1, we construct local-in-time solutions F̃ (s) ∈ Y2k+4
η̄ and (W̃1(s), F̃m(s)) ∈ X 2k+4

η̄ × Y2k+4
η̄ .

We will prove estimate (9.44b) in Proposition 9.5, which ensures that ∥F̃ (s)∥YkL
η̄

remains small.

Therefore, using the continuation criterion in Theorem 10.1, we justify the global existence of a

solution (W̃1(s), F̃m(s)) ∈ X 2k+4
η̄ × Y2k+4

η̄ to (9.39).

Concatenating the two steps given above defines a map with input Ŵ1 and output the solution
of (9.39):

(W̃1, F̃m)
(9.39)
= A(Ŵ1) =

(
AW (Ŵ1),Amic(Ŵ1)

)
. (9.41)

Denoting by AW the restriction of A to the W-components, we have thus reformulated the system

(9.3) as a fixed point problem: find W̃1 such that

W̃1 = AW (W̃1), (9.42)

with W̃2 and F̃m computed as A2(W̃1) and Amic(W̃1) , respectively.

By definition of W̃2 (9.38) and (9.4), W̃2 satisfies (9.3b) with the forcing KkŴ1:

∂sW̃2 = LEW̃2 +KkŴ1. (9.43a)

Combining the above equation and (9.39), we derive the equation of W̃

∂sW̃ = LE,sW̃ +Kk(Ŵ1 − W̃1)− (I1, I2,−I2)(F̃m)− (C̄3
sEU, C̄3

sEP , 0). (9.43b)

The proof of Theorem 9.2 reduces to establishing that the operator AW is a contraction with
respect to the norm in (9.36), in a vicinity of the zero state as in the statement of Theorem 9.2.
The proof of Theorem 9.2 is broken down in two steps, according to Proposition 9.5 (which shows
that the map AW maps the ball of radius 1 in Y into itself and into a space with higher regularity
characterized by Ek+1,η, Ek+1,η̄), and Proposition 9.6 (which shows that AW is a contraction for

the topology Y ).

Proposition 9.5. Recall εs = δ e−ωs from (2.43), the energy Ek,η, Ek,η̄ from (9.37), and the space

Y from (9.36). Let (W̃1, F̃m) = A(Ŵ1) and ℓ be the parameter to be chosen in (9.46). There exists

a positive δ0 ≪m 1 such that for any δ < δ0 and any Ŵ1 ∈ Y with ∥Ŵ1∥Y < 1, we have

∥W̃2(0)∥Xn
η̄
≲n δ

2/3, ∥W̃2(s)∥X 2k+6
η
≲ εs

2/3−ℓ, (9.44a)

and

∥W̃1(s)∥Y ≤ Cδℓ < 1, Ek+1,η(s) < εs
1−2ℓ, Ek+1,η̄(s) < δ2ℓ, (9.44b)ˆ s

0

1

ετ
∥F̃m(τ)∥2Y2k+2

Λ,η̄

dτ ≲ δ2ℓ, (9.44c)

for all s ≥ 0, n ≥ 0, and any θ ∈ [0, 1), with implicit constants independent of s, θ and δ.

Note that the norms ∥W̃1∥X 2k+2
η̄

, ∥F̃m∥Y2k+2
η̄

. may not decay in time. See Remark 9.3.

Proposition 9.6. There exists a positive δ0 ≪k 1 such that for any δ < δ0 and any pairs

Ŵ1,a,Ŵ1,b ∈ Y with ∥Ŵ1,a∥Y < 1 and ∥Ŵ1,b∥Y < 1 , we have

∥AW (Ŵ1,a)−AW (Ŵ1,b)∥Y < 1
2∥Ŵ1,a − Ŵ1,b∥Y .

From Proposition 9.5 and Proposition 9.6 we directly obtain:
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Proof of Theorem 9.2. Propositions 9.5 and 9.6 allow us to apply a Banach fix-point theorem for
the operator AW , in the ball of radius 1 around the origin in the space Y (9.36); this results in

a unique fixed point W̃1 in this ball, as claimed in (9.42). Upon defining F̃m := Amic(W̃1) and

W̃2 := A2(W̃1), by construction we have that W̃1 solves (9.3a) and W̃2 solves (9.3b). Using
the definitions of the Y norm in (9.36) and the energies (9.37) and Proposition 9.5), we deduce
that (9.11), (9.12), and (9.13) hold, thereby concluding the proof of Theorem 9.2. □

The following subsections are dedicated to the proof of Propositions 9.5 and 9.6. In subsec-
tion 9.4.1, we obtain suitable estimates for the linear map A2; in particular, in Lemma 9.7 we

demonstrate a smoothing effect for W̃2, which allows us to overcome the loss of a spatial derivative

due to the term ∇W̃2 and (LE,s −LE)W̃2 present in the first equation of (9.3). In subsection 9.5
we prove Proposition 9.5, while in subsection 9.6, we prove Proposition 9.6.

9.4.1. Estimates on A2. Recall the decomposition (4.29) of X 2k
C,η into stable and unstable modes.

In light of definitions (9.4b) and (9.4c), we establish the following decay and smoothing estimates
for the stable and unstable parts of Kk:

Lemma 9.7. For any real-valued f ∈ X 2k
η , we have

∥Re (esLE ΠsKkf)∥X 2k+6
η
≲ e−λss ∥f∥X 2k

η
,

∥Re (e−sLE ΠuKkf)∥X 2k+6
η
≲ eλus ∥f∥X 2k

η
,

for all s ≥ 0, where λu and λs are as in (9.9).

The proof uses the semigroup estimates in (4.31a), (4.31b). Since the proof is the same as [23,
Lemma 4.5], we omit it and refer the proof to [23].

Using Lemma 9.7 and the fact that LE generates a semigroup, we obtain a direct estimate for
the operator A2, as defined in (9.4).

Lemma 9.8. Recall λs <
2
3ω from (9.9). For Ŵ1 ∈ Y and for all s ≥ 0 we have

∥A2(Ŵ1)(s)∥X 2k+6
η
≲ e−λss sup

s≥0
e

2
3
ωs ∥Ŵ1(s)∥X 2k

η
.

Lemma 9.8 is an analog of [23, Lemma 4.6], which was proved using decay estimates essentially
the same as those in Lemma 9.7 and Proposition 4.9. Here, Lemma 9.7 corresponds to [23, Lemma
4.5], Proposition 4.9 corresponds to [23, Proposition 3.8], and the parameters (λs, λu,

2
3ω) with

λs < λu <
2
3ω correspond to ηs < η < λ1 in [23, Sections 4.3, 4.4]. The proof of Lemma 9.8 is the

same as that of [23, Lemma 4.6]. A minor difference is that the map T2 used in [23, Lemma 4.6]
depends on two variables (U,Σ), while A2 we use here depends on three variables (U, P,B). We
omit the proof of Lemma 9.8 and refer to [23] for more details. Since λs < λu <

2
3ω by (9.9), we

obtain a decay rate e−λss in the above Lemma.

9.5. Proof of Proposition 9.5. In this section, we prove Proposition 9.5 via a bootstrap argu-
ment. Recall the notations from the beginning of Section 9. Per the assumption of Proposition 9.5,

let ∥Ŵ1∥X 2k
η
< εs

2/3. Define W̃2 using (9.38), and then define W̃1 as the solution of (9.39). Denote

W̃2 = A2(Ŵ1), W̃ = W̃1 + W̃2.
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Bootstrap assumptions. We assume the following bootstrap bounds

Ek+1,η(s) < εs
1−2ℓ = δ1−2ℓ e−(1−2ℓ)ωs, (9.45a)

∥W̃1∥X 2k
η
< εs

2
3 = δ

2
3 e−

2
3
ωs, (9.45b)

Ek+1,η̄(s) < δ2ℓ, (9.45c)

for s ∈ [0, s̄], s̄ > 0, where ℓ = 10−4 is chosen in (2.33) and is a small parameter satisfying

0 < ℓ = 10−4 < min

{
2

3
− 1

2
,

1

10

}
. (9.46)

In the following sections, our goal is to show that there exists δ0 = δ0(k, η, η̄) such that these
bounds can be improved for any δ < δ0 and s ∈ [0, s̄]. Since we have fixed k, η, η̄, ℓi, the following
implicit constants C or those in the notation “≲” can depend on k, η, η̄ but independent of s, δ, εs.

Estimate of W̃2. Using Lemma 9.8, εs = δ e−ωs (2.43), ∥Ŵ1∥X 2k
η
< εs

2/3, and λs > (23 − ℓ)ω by

(9.9), we obtain

∥W̃2∥X 2k+6
η
≲ e−λss sup

s≥0
e

2
3
ωs ∥Ŵ1∥X 2k

η
≲ δ

2
3 e−λss ≲ εs

2/3−ℓ. (9.47a)

Under the bootstrap assumption (9.45), using (9.37) and Lemmas C.13, we estimate

∥F̃M∥Y2k+2
η
≲ ∥W̃∥X 2k+2

η
≲ E1/2

k+1,η + ∥W̃2∥X 2k+2
η
≲ εs

1/2−ℓ,

∥F̃M∥Y2k
η
≲ ∥W̃1∥X 2k

η
+ ∥W̃2∥X 2k

η
≲ εs

2/3−ℓ.
(9.47b)

Recall the initial data W̃2(0),W̃2,u(0) from (9.4c), (9.4d), which depend on Ŵ1. Using Lemma

9.7, ∥Ŵ1∥X 2k
η

≤ εs
2/3, λu <

2
3ω by (9.9), and εs = δ e−ωs (2.43), we obtain

∥W̃2,u(0)∥X 2k+6
η

=

∥∥∥∥ˆ ∞

0
e−LEsΠuKk(Ŵ1)(s)ds

∥∥∥∥
X 2k+6

η

≲
ˆ ∞

0
eλus εs

2
3ds ≲ δ

2
3

ˆ ∞

0
e(λu− 2

3
ω)s ds ≲ δ

2
3 .

From the definition of W̃2,u(0) and the projection Πu in (9.4c), W̃2,u(0) can be written as Re g for

some g ∈ X 2k
un . Using (4.33) and the above estimate, for any n ≥ 0, we obtain

∥W̃2,u(0)∥Xn
η
= ∥Re g∥Xn

η
≲n ∥Re g∥X 2k

η
= ∥W̃2,u(0)∥X 2k

η
≲n ∥W̃2,u(0)∥X 2k+6

η
≲n δ

2/3.

From (9.4d), since W̃2(0) = −W̃2,u(0)χ
( y
8R4

)
has compact support supp(W̃2(0)) ⊂ B(0, 8Rη) and

χ is a smooth cutoff function, using the definition of the X k
η norms (4.6) and the above estimate,

for any n ≥ 0, we obtain

∥W̃2(0)∥Xn
η̄
≲n ∥W̃2(0)∥Xn

η
≲n δ

2/3. (9.48a)

where the implicit constants can depend on R4, k (these parameters are fixed throughout this

section) and n. Using (9.48) and the assumption (9.10) on W̃1, F̃m, we yield

∥W̃(0)∥X 2k+2
η̄

+ ∥F̃m(0)∥Y2k+2
η̄
≲ ∥W̃1(0)∥X 2k+2

η̄
+ ∥W̃2(0)∥X 2k+2

η̄
+ δ2ℓ ≲ δ2ℓ. (9.48b)

Combining (9.47) and (9.48), we prove estimates (9.44a) on W̃2.

Remark 9.9 (Size of perturbations). The typical size of perturbations ∥W̃1∥X 2k+2
η

, ∥F̃m∥Y2k+2
η

is εs
1
2
−ℓ. The terms ∥W̃2∥X 2k+6

η
, ∥W̃1∥X 2k

η
(not ∥W̃1∥X 2k+2

η
) satisfy much smaller bounds εs

2
3
−ℓ.

From Remark 2.5, we have Rs ≪ εs
2. The reader can essentially treat the terms as if

∥W̃2∥X 2k+6
η

≈ 0, ∥W̃1∥X 2k
η

≈ 0, Rs ≈ 0.
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9.5.1. Energy estimates in Ek+1,η. In light of Lemma 9.8, we already bound ∥W̃2∥X 2k+6
η

. In order

to estimate Ek+1,η, we perform X 2k+2
η energy estimates on W̃1 and Y2k+2

η energy estimates on F̃m

using equations (9.39)

κ
〈
(∂s − (LE,s −Kk))W̃1,W̃1

〉
Z2k+2︸ ︷︷ ︸

:=IL,M,1

+
〈
(∂s − Lmic)F̃m, F̃m

〉
Y2k+2
η︸ ︷︷ ︸

:=IL,m,1

= IL,M,2 + IL,M,3 + IL,m,2 + IN ,η + IE,η,

(9.49a)

where IL,M,·, IL,m,· denote macro and micro linear terms given by

IL,M,2 + IL,M,3 := κ⟨(−I1,−I2, I2)(F̃m), W̃1⟩Z2k+2 + κ⟨(LE,s − LE)W̃2,W̃1⟩Z2k+2 ,

IL,m,2 := −⟨Pm[(V · ∇X + 2dM + d̃M)F̃M ], F̃m⟩Y2k+2
η

,
(9.49b)

IN ,η is the nonlinear term

IN ,η := 1
εs
⟨N (F̃ , F̃ ), F̃m⟩Y2k+2

η
, η = η or η̄, (9.49c)

and IE,η is the error term

IE,η := −κ⟨W̃1, (C̄
3
sEU, C̄3

sEP , 0)⟩Z2k+2 − ⟨Pm[M−1/2
1 EM], F̃m⟩Y2k+2

η
:= IE,M,η + IE,m,η (9.49d)

Estimates of linear terms. Note that the weight in X -norm (4.6) and Z-norm (10.44) are s-
independent. Using the coercivity estimates in Z norm (9.7) and (6.8b) in Theorem 6.3 with η = η,
we estimate IL,M,1, IL,m,1 as

1

2

d

ds
(κ∥W̃1∥2Z2k+2 + ∥F̃m∥2Y2k+2

η
) + λ1κ∥W̃1∥2Z2k+2 + (2λη − Cεs)∥F̃m∥2Y2k+2

η
+
C̄γ

6εs
∥F̃m∥2Y2k+2

Λ,η

≤ κ⟨(∂s − (LE,s −Kk))W̃1,W̃1⟩Z2k+2 + ⟨(∂s − Lmic)F̃m, F̃m⟩Y2k+2
η

= IL,M,1 + IL,m,1.

(9.50)
Next, we estimate the interaction between the macro and micro parts in IL,M,2. Using the

definition of Z norm in (9.7) and estimate (7.1c) with η = η, we estimate IL,M,2

IL,M,2 = κ
〈
W̃1, (−I1,−I2, I2)(F̃m)⟩X 2k+2

η
+ κϖ′

k+1⟨W̃1, (−I1,−I2, I2)(F̃m)⟩X 2k
η

= κ⟨W̃1, (−I1,−I2, I2)(F̃m)⟩X 2k+2
η

+O(∥F̃m∥Y2k+2
Λ,η

∥W̃1∥X 2k
η
).

(9.51)

Recall the map (3.15) and W̃ = W̃1 + W̃2. Using F̃M = FM (W̃1) + FM (W̃2), Lemma C.13, and
estimate (7.1c) with η = η, we estimate IL,m,2 as

IL,m,2 = −
〈
Pm[(V · ∇X + 2dM + d̃M)F̃M (W̃1)], F̃m

〉
Y2k+2
η

−
〈
Pm[(V · ∇X + 2dM + d̃M)F̃M (W̃2)], F̃m

〉
Y2k+2
η

= −
〈
Pm[(V · ∇X + 2dM + d̃M)F̃M (W̃1)], F̃m

〉
Y2k+2
η

+O(∥F̃m∥Y2k+2
Λ,η

∥W̃2∥X 2k+4
η

).

We estimate the main terms in IL,M,2 and IL,m,2 together using (7.1a) (7.1b) in Proposition 7.1

with η = η and combine the error terms using ∥W̃1∥X 2k
η
≲ ∥W̃1∥X 2k+2

η
:

|IL,m,2 + IL,M,2| ≲ ∥F̃m∥Y2k+2
Λ,η

(∥W̃1∥X 2k+2
η

+ ∥W̃2∥X 2k+4
η

). (9.52a)
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Using Cauchy–Schwarz inequality and the energy Ek+1,η (9.37), we obtain

|IL,m,2 + IL,M,2| ≲ εs1/2
(
Ek+1,η + ∥W̃2∥2X 2k+4

η
+

1

εs
∥F̃m∥2Y2k+2

Λ,η

)
. (9.52b)

For IL,M,3, applying Proposition 4.10, the equivalence of norms in Lemma 9.1, Cauchy–Schwarz
inequality, and using the energy Ek+1,η in (9.37) and R−r

s ≪ εs
2 from Remark 2.5, we estimate

|IL,M,3| ≲ ∥W̃1∥Z2k+2∥(LE,s − LE)W̃2∥X 2k+2
η

≲ R−r
s E

1/2
k+1,η∥W̃2∥X 2k+4

η
≲ εs

2E
1/2
k+1,η∥W̃2∥X 2k+4

η
.

(9.53)

Estimates of nonlinear terms. Consider η = η or η̄. For the nonlinear terms IN , we use

F̃ = F̃m + F̃M to decompose

⟨N (F̃ , F̃ ), F̃m⟩Y2k+2
η

= ⟨N (F̃ , F̃m), F̃m⟩Y2k+2
η

+ ⟨N (F̃m, F̃M ), F̃m⟩Y2k+2
η

+ ⟨N (F̃M , F̃M ), F̃m⟩Y2k+2
η

:= IN ,m + IN ,mM + IN ,MM .

Applying (8.2) in Theorem 8.1 to IN ,m, (8.4a) to IN ,mM , and (8.4b) with η ∈ {η, η̄} to IN ,MM ,

and then using (C.33) in Lemma C.13 to bound F̃M = FM (W̃), we obtain

|IN ,m| ≲ ∥F̃∥Y2k+2
η̄

∥F̃m∥Y2k+2
Λ,η

∥F̃m∥Y2k+2
Λ,η
≲ (∥F̃m∥Y2k+2

η̄
+ ∥W̃∥X 2k+2

η̄
)∥F̃m∥2Y2k+2

Λ,η

,

|IN ,mM | ≲ ∥F̃M∥Y2k+2
η̄

∥F̃m∥Y2k+2
Λ,η

∥F̃m∥Y2k+2
Λ,η
≲ ∥W̃∥X 2k+2

η̄
∥F̃m∥2Y2k+2

Λ,η

,

|IN ,MM | ≲ ∥F̃M∥Y2k+2
η

∥F̃M∥Y2k−2
η

∥F̃m∥Y2k+2
Λ,η

.

(9.54a)

For η = η̄ or η, combining the above estimates and using the energy Ek+1,η̄ (9.37), we get

|IN ,η| =
1

εs
|⟨N (F̃ , F̃ ), F̃m⟩Y2k+2

η
| ≲ 1

εs

(
E

1/2
k+1,η̄∥F̃m∥2Y2k+2

Λ,η

+ ∥F̃M∥Y2k+2
η

∥F̃M∥Y2k−2
η

∥F̃m∥Y2k+2
Λ,η

)
.

(9.54b)

Estimate of error terms. Using (A.6) in Lemma A.1 and Cauchy–Schwarz inequality, for η = η
or η̄, n = 2k, 2k+ 2, and any function G ∈ X n

η , we have

|⟨G, (C̄3
sEU, C̄3

sEP , 0)⟩Xn
η
| ≲ ∥G∥Xn

η
∥(C̄3

sEU, C̄3
sEP , 0)∥Xn

η
≲ ∥G∥Xn

η
Rs

−r.

Recall the definition Z norm (9.7). Using the energy (9.37), we estimate IE,M,· (9.49d)

|⟨W̃1, (C̄
3
sEU, C̄3

sEP , 0)⟩Z2k+2 | ≲ Rs
−rE

1/2
k+1,η,

|⟨W̃, (C̄3
sEU, C̄3

sEP , 0)⟩X 2k+2
η̄

| ≲ Rs
−rE

1/2
k+1,η̄.

(9.55a)

Note that in the second estimate, we use W̃ (the whole macro-perturbation) instead of W̃1.
For the other error term, for any υ > 0, using (6.8e) in Theorem 6.3 with η = η or η̄, we have

|⟨Pm[M−1/2
1 EM], F̃m⟩Y2k+2

η
| ≲ ∥F̃m∥Y2k+2

Λ,η
≲

υ

εs
∥F̃m∥2Y2k+2

Λ,η

+ υ−1εs (9.55b)
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Consequences of the bootstrap assumptions. We treat all the terms except the coercive terms
in (9.50) perturbatively. Under the bootstrap assumptions (9.45), using the bounds (9.47), (9.46)
and Rs

−r ≪ εs
2 from Remark 2.5, we simplify the estimates (9.52), (9.53), (9.55) with η = η

|IL,m,2 + IL,M,2| ≲ εs1/2(Ek+1,η + ∥W̃2∥2X 2k+2
η

+
1

εs
∥F̃m∥2Y2k+2

Λ,η

)

≲ εs
1/2(εs

1−2ℓ +
1

εs
∥F̃m∥2Y2k+2

Λ,η

) ≲ εs + εs
1/2 · 1

εs
∥F̃m∥2Y2k+2

Λ,η

,

|IL,M,3| ≲ εs2E1/2
k+1,η∥W̃2∥X 2k+4

η
≲ εs

2 · εs1/2−ℓεs
2/3−ℓ ≲ εs

2,

|IE,η| ≤ |IE,M,η|+ |IE,m,η| ≤ Cεs
2 +

υ

εs
∥F̃m∥2Y2k+2

Λ,η

+ υ−1εs.

(9.56)

For η = η̄ or η, since 1
6 − ℓ > ℓ (9.46) and εs ≲ δ from (2.43), we simplify the estimate (9.54b) as

|IN ,η| ≲ δℓ ·
1

εs
∥F̃m∥2Y2k+2

Λ,η

+ εs
1
2
−ℓ+ 2

3
−1∥F̃m∥Y2k+2

Λ,η

≲ εs + (δℓ + εs
2( 1

6
−ℓ)) · 1

εs
∥F̃m∥2Y2k+2

Λ,η

≲ εs + δℓ · 1

εs
∥F̃m∥2Y2k+2

Λ,η

(9.57)

Summary of the estimates. Recall

Ek+1,η = κ∥W̃1∥2Z2k+2 + ∥F̃m∥2Y2k+2
η

.

Applying the estimates (9.50), (9.56), (9.57) with η = η to (9.49), using λη > λ1 (9.9), εs ≤ δ by

(2.43), and choosing δ small enough, we derive

1
2

d
dsEk+1,η ≤− λ1Ek+1,η +

1

εs
(− C̄γ

6
+ Cεs

1/2 + υ + Cδℓ)∥F̃m∥2Y2k+2
Λ,η

+ C(1 + υ−1)εs.

Choosing υ = 1
100 C̄γ and δ > 0 small enough (depending on k, η) so that εs ≤ δ is very small (by

(2.43)), we establish

1

2

d

ds
Ek+1,η ≤ −λ1Ek+1,η −

C̄γ

8εs
∥F̃m∥2Y2k+2

Λ,η

+ Cεs ≤ −λ1Ek+1,η + Cεs. (9.58a)

Recall εs = δ e−ωs from (2.43). Since λ1 >
1
2ω from (9.9), ℓ > 0 from (9.46), and Ek+1,η(0) < δ

from (9.10), solving the inequality and choosing δ small enough, we prove

Ek+1,η ≤ e−2λ1sEk+1,η(0) + Cδ

ˆ s

0
e−2λ1(s−τ) e−ωτdτ ≤ Cδ e−ωs = Cεs ≪

1

2
εs

1−2ℓ. (9.58b)

We improve the bound (9.45a) and proved the second estimate in (9.44b) for s ∈ [0, s̄], where the
bootstrap assumptions in (9.45) hold.

9.5.2. Energy estimates in X 2k
η . The energy estimates on ∥W̃1∥X 2k

η
is similar and is easier. We

perform X 2k
η estimates on W̃1 in (9.39) and use similar decompositions as in (9.49)

⟨(∂s − (LE,s −Kk))W̃1,W̃1⟩X 2k
η

= ⟨(−I1,−I2, I2)(F̃m), W̃1⟩X 2k
η

+ ⟨(LE,s − LE)W̃2,W̃1⟩X 2k
η

− ⟨W̃1, (C̄
3
sEU, C̄3

sEP , 0)⟩X 2k
η

:= IL,M,2 + IL,M,3 + IE,M .
(9.59)
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The estimates of the left hand side, IL,M,3, IEM are similar to (9.50), (9.51), (9.53), (9.55a) (replacing

the norm Z2k+2 by X 2k
η and κ by 1). Thus, we only state the estimates and use the bootstrap

assumption (9.45) to further simplify them

1

2

d

ds
∥W̃1∥2X 2k

η
+ λη∥W̃1∥2X 2k

η
≤ ⟨(∂s − (LE,s −Kk))W̃1,W̃1⟩X 2k

η
,

|IL,M,3| = |⟨(LE,s − LE)W̃2,W̃1⟩X 2k
η
| ≲ Rs

−r∥W̃1∥X 2k
η
∥W̃2∥X 2k+2

η
≲ εs

2,

|IE,M | = |⟨W̃1, (C̄
3
sEU, C̄3

sEP , 0)⟩X 2k
η
| ≲ ∥W̃1∥X 2k

η
Rs

−r ≲ εs
2.

(9.60a)
For the cross term IL,M,2, we simply bound it using (7.1c) with η = η

|IL,M,2| = |⟨W̃1, (−I1,−I2, I2)(F̃m)⟩X 2k
η
| ≲ ∥F̃m∥Y2k+2

Λ,η
∥W̃1∥X 2k

η
. (9.60b)

Thus, combining the above estimates, we prove

1

2

d

ds
∥W̃1∥2X 2k

η
≤ −λη∥W̃1∥2X 2k

η
+ εs

2 + Cεs
1/2 · 1

εs1/2
∥F̃m∥Y2k+2

Λ,η
∥W̃1∥X 2k

η
. (9.61a)

The small factor εs
1/2 in the above estimates indicates that the estimates of ∥W̃1∥X 2k

η
and Ek+1,η

in (9.58) are weakly coupled. Recall εs = δ e−ωs (2.43). Next, we estimate

Ek,mix = Ek+1,η + εs
−2( 1

6
+ℓ)∥W̃1∥2X 2k

η
. (9.61b)

where εs
−2( 1

6
+ℓ) is the difference between decay rates of Ek+1,η and ∥W̃1∥2X 2k

η
in (9.45). We estimate

εs
−2( 1

6
+ℓ)∥W̃1∥2X 2k

η
by multiplying (9.61a) by εs

−2( 1
6
+ℓ) and using 1

2
d
dsεs

−b = −1
2bωεs

−b

1

2

d

ds

(
εs

−2( 1
6
+ℓ)∥W̃1∥2X 2k

η

)
≤ −

(
λη −

(
1

6
+ ℓ

)
ω

)
εs

−2( 1
6
+ℓ)∥W̃1∥2X 2k

η
+ Cεs

2−2( 1
6
+ℓ)

+ Cεs
1
2
−( 1

6
+ℓ) · 1

εs1/2
∥F̃m∥Y2k+2

Λ,η
· εs−( 1

6
+ℓ)∥W̃1∥X 2k

η
.

(9.61c)

Combining (9.58a) and (9.61) and using Cauchy–Schwarz inequality, we derive

1

2

d

ds
Ek,mix ≤ −min

{
λη −

(
1

6
+ ℓ

)
ω, λ1

}
Ek,mix −

C̄γ

8εs
∥F̃m∥2Y2k+2

Λ,η

+ Cεs
1
2
−( 1

6
+ℓ)

(
Ek,mix +

1

εs
∥F̃m∥2Y2k+2

Λ,η

)
+ C(εs + εs

2−2( 1
6
+ℓ)).

(9.62)

Since ℓ = 10−4 (9.46), from (9.10) and (9.9), we obtain

Ek,mix(0) ≲ δ + δ−2(1/6+ℓ)δ4/3+2ℓ ≲ δ (9.63)

From (9.9), we have

λη − (
1

6
+ ℓ)ω > (

2

3
− ℓ)ω >

7

12
ω, λ1 >

7

12
ω,

1

2
− (

1

6
+ ℓ) >

1

60
, 2− 2(

1

6
+ ℓ) > 1. (9.64)

Using εs ≤ δ by (2.43), choosing δ small enough, and using (9.62) and (9.64), we derive

1

2

d

ds
Ek,mix ≤ −(

7

12
ω − Cεs

1
60 )Ek,mix −

(C̄γ − Cεs
1
60 )

8εs
∥F̃m∥2Y2k+2

Λ,η

+ Cεs

≤ −13

24
ω · Ek,mix −

C̄γ

9εs
∥F̃m∥2Y2k+2

Λ,η

+ Cεs.
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Since 13
24ω >

1
2ω, solving the above inequality similar to (9.58) and using (9.63), we prove

Ek,mix ≤ Cδ e−ωs = Cεs,

which along with (9.61b) implies

∥W̃1∥X 2k
η

≤ Cεs
1
2
+ 1

6
+ℓ ≪ εs

2/3. (9.65)

We improve the estimate (9.45b) and prove the first bound in (9.44b) for s ∈ [0, s̄], where the
bootstrap assumptions in (9.45) hold.

9.5.3. Energy estimates in X 2k+2
η̄ and Y2k+2

η̄ . To control Ek+1,η̄, we estimate W̃ and F̃m. We recall

the equation of W̃ from (9.43)

∂sW̃ = LE,sW̃ +Kk(Ŵ1 − W̃1)− (I1, I2,−I2)(F̃m)− (C̄3
sEU, C̄3

sEP , 0).

The energy estimates on Ek+1,η̄ is similar to those of Ek+1,η in Section 9.5.1. We have

κ
〈
(∂s − LE,s))W̃,W̃

〉
X 2k+2

η̄︸ ︷︷ ︸
:=IL,M,1

+
〈
(∂s − Lmic)F̃m, F̃m

〉
Y2k+2
η̄︸ ︷︷ ︸

:=IL,m,1

= IL,M,2 + IL,M,4 + IL,m,2 + IN ,η̄ + IE,η̄,

(9.66a)

where IL,M,· denote the macro linear terms given by

IL,M,2 + IL,M,4 := κ
〈
(−I1,−I2, I2)(F̃m), W̃

〉
X 2k+2

η̄
+ κ⟨Kk(Ŵ1 − W̃1),W̃⟩X 2k+2

η̄
, (9.66b)

and we decompose IL,m, IN ,η̄ and IE in the same way as those in (9.49)

IL,m,2 = −
〈
Pm[(V · ∇X + 2dM + d̃M)F̃M ], F̃m

〉
Y2k+2
η̄

, (9.66c)

IN ,η̄ :=
1

εs
⟨N (F̃ , F̃ ), F̃m⟩Y2k+2

η̄
, (9.66d)

IE,η̄ := −κ⟨W̃1, (C̄
3
sEU, C̄3

sEP , 0)⟩X 2k+2
η̄

− ⟨Pm[M−1/2
1 EM], F̃m⟩Y2k+2

η̄
:= IE,M,η̄ + IE,m,η̄, (9.66e)

Using Theorem 4.2 and Theorem 6.3 with η = η̄, we estimate IL,M,1, IL,m,1 as

1

2

d

ds
(κ∥W̃∥2X 2k+2

η̄
+ ∥F̃m∥2Y2k+2

η̄
)− C

ˆ
|D≤2k+2

X W̃|2⟨X⟩η̄−rdX − Cεs∥F̃m∥2Y2k+2
η̄

+
C̄γ

6εs
∥F̃m∥2Y2k+2

Λ,η̄

≤ κ⟨(∂s − LE,sW̃),W̃⟩X 2k+2
η̄

+ ⟨(∂s − Lmic)F̃m, F̃m⟩Y2k+2
η̄

= IL,M,1 + IL,m,1.

The d
ds -term gives exactly d

dsEk+1,η̄ (9.37). Note that on the left hand side, we have the Yη̄-norm

term −Cεs∥F̃m∥2
Y2k+2
η̄

rather than −Cεs∥F̃m∥2
Y2k+2
η

. Since η̄ − r < η by (2.42), using

ˆ
|D≤2k+2

X W̃|2⟨X⟩η̄−rdX ≲ ∥W̃∥2X 2k+2
η

,

and the energy Ek+1,η, Ek+1,η̄ (9.37), we obtain

1

2

d

ds
Ek+1,η̄ − CEk+1,η − CεsEk+1,η̄ +

C̄γ

6εs
∥F̃m∥2Y2k+2

Λ,η̄

≤ IL,M,1 + IL,m,1.

For IL,M,4, using Kk = Kk,η by (4.36) and supp(Kkf) ⊂ B(0, 4Rη) by item (a) in Proposition

4.6, we obtain

|IL,M,4| ≲ ∥Kk(W̃1 − Ŵ1)∥X 2k+2
η̄

∥W̃∥X 2k+2
η̄
≲ ∥Kk(W̃1 − Ŵ1)∥X 2k+2

η
∥W̃∥X 2k+2

η̄
.
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Using energy (9.37), item (c) in Proposition 4.6, and bounds (9.45b), (9.47), implied by the boot-
strap assumptions, we obtain

|IL,M,4| ≲ ∥W̃1 − Ŵ1∥X 2k
η
∥W̃∥X 2k+2

η̄
≲ E1/2

k+1,η̄∥W̃1 − Ŵ1∥X 2k
η
.

For IL,M,2 + IL,m,2, applying Proposition 7.1 with η = η̄, the energy (9.37), we obtain

|IL,M,2 + IL,m,2| ≲ εs1/2∥W̃∥X 2k+2
η̄

· 1

εs1/2
∥F̃m∥Y2k+2

η̄
≲ εs

1/2(Ek+1,η̄ +
1

εs
∥F̃m∥2Y2k+2

η̄
).

We have estimated IN ,η̄ in (9.54) and IE,η̄ in (9.55) with η = η̄.

Consequences of the bootstrap assumptions. Under the bootstrap assumptions (9.45), using
the bounds (9.47), (9.46) and Rs

−r ≪ εs
2 from Remark 2.5, we simplify the above estimates as

1

2

d

ds
Ek+1,η̄ − Cεs

1−2ℓ − Cεs +
C̄γ

6εs
∥F̃m∥2Y2k+2

Λ,η̄

≤ IL,M,1 + IL,m,1,

|IL,M,4| ≲ εs2/3δℓ,

|IL,M,2 + IL,m,2| ≲ εs1/2δ2ℓ + εs
1/2 · 1

εs
∥F̃m∥2Y2k+2

η̄
.

(9.67a)

Applying the estimates of IN ,η̄ in (9.54), (9.57) and estimates of IE,η̄ in (9.55) with η = η̄, and

estimates Rs
−rE

1/2
k+1,η̄ ≲ εs

2 from (9.45c), (2.44), we obtain

|IN ,η̄| ≲ εs + δℓ · 1

εs
∥F̃m∥2Y2k+2

η̄
,

IE,η̄ ≤ |IE,M,η̄|+ |IE,m,η̄| ≤ Cεs
2 +

υ

εs
∥F̃m∥2Y2k+2

Λ,η̄

+ υ−1εs.
(9.67b)

Summary of the estimates. Combining the estimates in (9.67), we derive

1

2

d

ds
Ek+1,η̄ ≤ 1

εs
(− C̄γ

6
+ Cεs

1/2 + Cδℓ + υ)∥F̃m∥2Y2k+2
Λ,η̄

+ C(1 + υ−1)εs + C(εs
1−2ℓ + εs

2/3δℓ + εs
1/2δ2ℓ).

Recall the bounds of ℓ from (9.46) and εs = δ e−ωs from (2.43). We have

max{εs, εs1−2ℓ + εs
2/3δℓ + εs

1/2δ2ℓ} ≲ εs1/2. (9.68)

By choosing υ =
C̄γ

100 , then choosing δ small enough (depending on k, η, η̄), and using (9.68), we
obtain

1

2

d

ds
Ek+1,η̄ ≤ − C̄γ

8εs
∥F̃m∥2Y2k+2

Λ,η̄

+ Cεs
1/2 ≤ Cεs

1/2.

Integrating the above estimate in s, using εs = δ e−ωs, and (9.48) 42 , we obtain

1

2
Ek+1,η̄(s) +

C̄γ

8

ˆ s

0

1

εs
∥F̃m(τ)∥2Y2k+2

Λ,η̄

dτ ≤ 1

2
Ek+1,η̄(0) + Cδ1/2 ≲ δ4ℓ ≪ δ2ℓ. (9.69)

Thus, we have improved the estimate (9.45c) and proved the third estimate in (9.44b) for any s ≤ s̄.
The above estimate also implies (9.44c) for s ≤ s̄.

Combining (9.58), (9.65), (9.69), we improve all bootstrap assumptions in (9.45) for s ∈ [0, s̄].
Therefore, the bootstrap assumptions hold for s ∈ [0, s̄) with s̄ = ∞. Combining estimates (9.47a),
(9.48), (9.58), (9.65), and (9.69), we prove Proposition 9.5.

42Recall that we assume that the bootstrap assumptions (9.45) hold for s ∈ [0, s̄].
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9.6. Proof of Proposition 9.6. As in the assumption of the proposition, let Ŵ1,α ∈ Y, α ∈ {a, b}
be such that Êα = ∥Ŵ1,α∥Y < 1. According to (9.38), (9.39),(9.41), denote the associated solutions

W̃2,α = A2(Ŵ1,α), (W̃1,α, F̃α,m) = A(Ŵ1,α), W̃α = W̃1,α + W̃2,α, F̃α,M = FM (W̃α),

for α ∈ {a, b}. Throughout this proof, we use the subscript α ∈ {a, b} to denote two different
solutions, and we adopt the notation introduced (9.37); e.g. Ek+1,η, η = η, η̄ for the “energies” of
these two solutions. From Propositions 9.5 and (9.47) and estimate (C.33), we obtain

∥W̃2,α∥X 2k+6
η

+ ∥W̃1,α∥X 2k
η
≲ εs

2/3−ℓ, ∥W̃1,α∥X 2k+2
η

+ ∥F̃α,m∥Y2k+2
η
≲ εs

1/2−ℓ, (9.70a)

∥F̃α,M∥X 2k
η
≲ ∥W̃α∥X 2k

η
≲ εs

2/3−ℓ, ∥F̃α,M∥X 2k+2
η
≲ ∥W̃α∥X 2k+2

η
≲ εs

1/2−ℓ, (9.70b)

∥W̃1,α∥X 2k+2
η̄

< δℓ, ∥F̃α,m∥Y2k+2
η̄
≲ δℓ, (9.70c)ˆ ∞

0

1

εs
∥F̃α,m(s)∥2Y2k+2

Λ,η̄

ds ≲ δ2ℓ, α ∈ {a, b}. (9.70d)

Additionally, we denote the difference of two solutions by a ∆-sub-index:

Ŵ1,∆ = Ŵ1,a − Ŵ1,b, W̃i,∆ = W̃i,a − W̃i,b, i = 1, 2, W̃∆ = W̃a − W̃b, (9.71a)

F̃∆,m = F̃a,m − F̃b,m, F̃∆,M = F̃a,M − F̃b,M , F̃∆ = F̃a − F̃b, (9.71b)

N∆ = N (F̃a, F̃a)−N (F̃b, F̃b), (9.71c)

and introduce the following energies for the difference

Ek+1,∆(s) := κ∥W̃1,∆∥2Z2k+2 + ∥F̃m,∆∥2Y2k+2
η

, E∆ = ∥W̃2,∆∥X 2k+6
η

. (9.71d)

With this notation, to prove Proposition 9.6, we will show

∥W̃1,∆(s)∥X 2k
η
<

1

2
εs

2/3∥Ŵ1,∆∥Y . (9.72)

Using (9.39), we deduce that W̃1,∆, F̃m,∆ solves

∂sW̃1,∆ = (LE,s −Kk)W̃1,∆ + (LE,s − LE)W̃2,∆ − (I1, I2,−I2)(F̃m,∆),

∂sF̃∆,m = LmicF̃∆,m − Pm[(V · ∇X + 2dM + d̃M)F̃∆,M ] + 1
εs
N∆.

(9.73)

Remark 9.10 (Improved decay rates). The error terms EU, EP , E in (9.39) are canceled in the
above equations. This enables us to prove that Ek+1,∆ decays faster than εs.

Similar to Sections 9.5.1, 9.5.2, we estimate (W̃1,∆, F̃∆,m) in energy Ek+1,η and norm X 2k
η .

Performing energy estimates on Ek+1,∆, we yield

κ
〈
(∂s − (LE,s −Kk))W̃1,∆,W̃1,∆

〉
Z2k+2︸ ︷︷ ︸

:=IL,M,1

+
〈
(∂s − Lmic)F̃∆,m, F̃∆,m

〉
Y2k+2
η︸ ︷︷ ︸

:=IL,m,1

= IL,M,2 + IL,M,3 + IL,m,2 + IN∆
,

(9.74a)

where IL,M,·, IL,m,· are the macro and micro linear terms given by

IL,M,2 + IL,M,3 := κ
〈
W̃1,∆, (−I1,−I2, I2)(F̃∆,m)

〉
Z2k+2 + κ⟨(LE,s − LE)W̃2,∆,W̃1,∆⟩Z2k+2 ,

IL,m,2 := −
〈
Pm[(V · ∇X + 2dM + d̃M)F̃∆,M ], F̃∆,m

〉
Y2k+2
η

,

(9.74b)
and IN∆

is the nonlinear term

IN∆
:= εs

−1⟨N∆, F̃∆,m⟩Y2k+2
η

. (9.74c)
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Estimates of linear terms. The estimates of the linear terms are the same as those in Section
9.5.1. We apply the linear estimates (9.50), (9.52) and (9.53) with (W̃1,W̃2, F̃m, Ek+1,η) replaced

by (W̃1,∆,W̃2,∆, F̃∆,m, Ek+1,∆) and use the energy Ek+1,∆ (9.71) to obtain

1

2

d

ds

(
κ∥W̃1,∆∥2Z2k+2 + ∥F̃∆,m∥2Y2k+2

η

)
+ λ1κ∥W̃1,∆∥2Z2k+2 + (2λη − Cεs)∥F̃∆,m∥2Y2k+2

η
+
C̄γ

6εs
∥F̃∆,m∥2Y2k+2

Λ,η

≤ IL,M,1 + IL,m,1, (9.75a)

and

|IL,M,2 + IL,m,2| ≲ εs1/2(Ek+1,∆ + ∥W̃2,∆∥2X 2k+4
η

+
1

εs
∥F̃m,∆∥2Y2k+2

Λ,η

),

|IL,M,3| ≲ εs2E1/2
k+1,∆∥W̃2,∆∥X 2k+4

η
≲ εs

2(Ek+1,∆ + ∥W̃2,∆∥2X 2k+4
η

).
(9.75b)

Recall the energy Ek+1,∆ from (9.71). Using λη > λ1 (9.9), εs ≤ δ (2.43), and choosing δ small
enough, we simplify the first estimate as

1

2

d

ds
Ek+1,∆ + λ1Ek+1,∆ +

C̄γ

6εs
∥F̃∆,m∥2Y2k+2

Λ,η

≤ IL,M,1 + IL,m,1. (9.75c)

Estimates of nonlinear terms. The estimate of nonlinear terms are more difficult. Since N (·, ·)
(2.22b) is bilinear, using the definition of N∆ in (9.71), we obtain

N∆ = N (F̃a − F̃b, F̃a) +N (F̃b, F̃a − F̃b) = N (F̃∆, F̃a) +N (F̃b, F̃∆),

and further decompose F̃∆, F̃a, F̃b into the macro and micro perturbation

N (F̃∆, F̃a) = N (F̃∆,m, F̃a,M ) +N (F̃∆,M , F̃a,M ) +N (F̃∆, F̃a,m)

:= Ia,mM + Ia,MM + Ia,m,

N (F̃b, F̃∆) = N (F̃b, F̃∆,m) +N (F̃b,m, F̃∆,M ) +N (F̃b,M , F̃∆,M )

:= Ib,m + Ib,mM + Ib,MM .

(9.76a)

We estimate these terms using Theorem 8.1 with η = η. Applying (8.4) (micro-macro) to Ia,mM

with (η1, η2) = (η, η̄), (8.2) (∗-micro) to Ib,m with (η1, η2) = (η̄, η), and using the estimates of

(W̃1,α,W̃2,α, F̃α,m) with α ∈ {a, b} in (9.70), we obtain

|⟨N (F̃∆,m, F̃a,M ), F̃∆,m⟩Y2k+2
η

| ≲ ∥F̃∆,m∥2Y2k+2
Λ,η

∥F̃a,M∥Y2k+2
η̄
≲ δℓ∥F̃∆,m∥2Y2k+2

Λ,η

,

|⟨N (F̃b, F̃∆,m), F̃∆,m⟩Y2k+2
η

| ≲ ∥F̃b∥Y2k+2
η̄

∥F̃∆,m∥2Y2k+2
Λ,η

≲ δℓ∥F̃∆,m∥2Y2k+2
Λ,η

.
(9.76b)

Applying (8.4b) (macro-macro) to Ia,MM and Ib,MM with η = η̄ and then using ∥q∥Y2k−2
η
≲ ∥q∥Y2k

η

and the bound (9.70b), we obtain

|⟨N (F̃∆,M , F̃a,M ) +N (F̃b,M , F̃∆,M ), F̃∆,m⟩Y2k+2
η

|

≲
(
(∥F̃a,M∥Y2k

η
+ ∥F̃b,M∥Y2k

η
)∥F̃∆,M∥Y2k+2

η
+ (∥F̃a,M∥Y2k+2

η
+ ∥F̃b,M∥Y2k+2

η
)∥F̃∆,M∥Y2k

η

)
∥F̃∆,m∥Y2k+2

Λ,η

≲ (εs
2/3−ℓ∥F̃∆,M∥Y2k+2

η
+ εs

1/2−ℓ∥F̃∆,M∥Y2k
η
)∥F̃∆,m∥Y2k+2

Λ,η
. (9.76c)

To estimate Ia,m, Ib,m,M , we need the extra smallness on the dissipation in (9.44c). Applying (8.2)
(∗-micro) to Ia,m and (8.4) (micro-macro) to Ib,mM with (l1, l2) = (η, η̄), we obtain

|⟨Ia,m, F̃∆,m⟩Y2k+2
η

| = |⟨N (F̃∆, F̃a,m), F̃∆,m⟩Y2k+2
η

| ≲ ∥F̃∆∥Y2k+2
η

∥F̃a,m∥Y2k+2
Λ,η̄

∥F̃∆,m∥Y2k+2
η

,

|⟨Ib,mM , F̃∆,m⟩Y2k+2
η

| = |N (F̃b,m, F̃∆,M ), F̃∆,m⟩Y2k+2
η

| ≲ ∥F̃b,m∥Y2k+2
Λ,η̄

∥F̃∆,M∥Y2k+2
η

∥F̃∆,m∥Y2k+2
η

,
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Using the energy Ek+1,∆ and E∆ in (9.74), we obtain

∥F̃∆∥Y2k+2
η
≲ ∥F̃∆,M∥Y2k+2

η
+ ∥F̃∆,m∥Y2k+2

η

≲ ∥W̃2,∆∥X 2k+2
η

+ ∥W̃1,∆∥X 2k+2
η

+ ∥F̃∆,m∥Y2k+2
η
≲ E1/2

k+1,∆ + E∆,

∥F̃∆,M∥Y2k
η
≲ ∥W̃2,∆∥X 2k

η
+ ∥W̃1,∆∥X 2k

η
≲ E∆ + ∥W̃1,∆∥X 2k

η
.

Using (9.76), the above estimates, and εs
2/3−ℓ ≤ εs

2/3−2ℓ, we derive

|⟨N∆, F̃∆,m⟩Y2k
η
| ≲ δℓ∥F̃∆,m∥2Y2k+2

η
+
(
εs

2/3−2ℓ(E
1/2
k+1,∆ + E∆) + εs

1/2−ℓ(∥W̃1,∆∥X 2k
η

+ E∆)
)
∥F̃∆,m∥Y2k+2

Λ,η

+ (∥F̃a,m∥Y2k+2
η̄

+ ∥F̃b,m∥Y2k+2
η̄

)(E
1/2
k+1,∆ + E∆)∥F̃∆,m∥Y2k+2

Λ,η
.

Using ε-Young’s inequality and definition of IN∆
(9.74c), for any υ > 0, we establish

|IN ,∆| = εs
−1|⟨N∆, F̃∆,m⟩Y2k+2

η
|

≤ (υ + Cδℓ)

εs
∥F̃∆,m∥2Y2k+2

Λ,η

+
C

εsυ

(
g(s)(Ek+1,∆ + E2

∆) + εs
1−2ℓ(∥W̃1,∆∥2X 2k

η
+ E2

∆)
)
,

(9.77)

where we denote

g(s) = εs
4/3−4ℓ + ∥F̃a,m∥2Y2k+2

η̄
+ ∥F̃b,m∥2Y2k+2

η̄
. (9.78)

Energy estimates in Ek+1,∆. Plugging linear estimates (9.75) and (9.77) in (9.74a) and using
εs ≤ 1, we prove

1

2

d

ds
Ek+1,∆ + λ1Ek+1,∆ +

C̄γ

6εs
∥F̃∆,m∥2Y2k+2

Λ,η

≤ IL,M,1 + IL,m,1 = IL,M,2 + IL,M,3 + IL,m,2 + IN ,∆

≤ Cεs
1/2(Ek+1,∆ + ∥W̃2,∆∥2X 2k+4

η
) +

(υ + Cδℓ + Cεs
1/2)

εs
∥F̃∆,m∥2Y2k+2

Λ,η

+
C

εsυ

(
g(s)(Ek+1,∆ + E2

∆) + εs
1−2ℓ(∥W̃1,∆∥2X 2k

η
+ E2

∆)
)
.

Since W̃2,∆ = A2(Ŵ1,∆), applying Lemma 9.8 and the definition of Y norm (9.36), we obtain

E∆ = ∥W̃2,∆∥X 2k+6
η
≲ e−λss sup

s≥0
e

2
3
ωs ∥Ŵ1,∆∥X 2k

η

≲ e−λss δ
2
3 ∥Ŵ1,∆∥Y ≲ εs

2
3
−ℓ∥Ŵ1,∆∥Y .

(9.79)

Combining the above two estimates, bounding εs
1/2 ≲ g(s)/εs due to (9.78), choosing υ = 1

100 C̄γ ,
and δ small enough so that εs is small by (2.43), we obtain

1

2

d

ds
Ek+1,∆ ≤

(
−λ1 +

C

εs
g(s)

)
Ek+1,∆ − C̄γ

8εs
∥F̃∆,m∥2Y2k+2

Λ,η

(9.80)

+ C(g(s) + εs
1−2ℓ)εs

1
3
−2ℓ∥Ŵ1,∆∥2Y + Cεs

−2ℓ∥W̃1,∆∥2X 2k
η
,

where C is some absolute constant (depending on k, η̄, η).
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Energy estimates in X 2k
η . Note that the equation of W̃1,∆ (9.73) is linear and has the same form

as that of W̃1 in (9.3a) except that we do not have the error term in (9.73). Applying the estimate

of IL,M,1, IL,M,2, IL,M,3 in (9.60) and (9.61) with (W̃1,W̃2, F̃m) replaced by (W̃1,∆,W̃2,∆, F̃∆,m),

and using R−r
s ≲ εs

2 from Remark 2.5, we obtain X 2k
η estimates of W̃1,∆

1
2

d
ds∥W̃1,∆∥2X 2k

η
≤− λη∥W̃1,∆∥2X 2k

η
+ Cεs

2∥W̃1,∆∥X 2k
η
∥W̃2,∆∥X 2k

η
+ Cεs

1
2 · 1

εs
1
2

∥F̃∆,m∥Y2k+2
Λ,η

∥W̃1,∆∥X 2k
η
.

We do not have an error term similar to IE,M in (9.60) since there is no error term in (9.73).
Using (9.79) and Cauchy–Schwarz inequality, we obtain

1
2

d
ds∥W̃1,∆∥2X 2k

η
≤ (−λη + εs

2 + εs
ℓ)∥W̃1,∆∥2X 2k

η
+ Cεs

2∥Ŵ1,∆∥2Y

+ Cεs
1−ℓ · 1

εs
∥F̃∆,m∥2Y2k+2

Λ,η

.
(9.81)

Summary of the estimates. Recall εs = δ e−ωs. We estimate the mix energy

Emix,∆ := εs
−1Ek+1,∆ + εs

−4/3∥W̃1,∆∥2X 2k
η
. (9.82)

From (2.43), for any b, we have
1
2

d
dsεs

−b = 1
2bωεs

−b.

Combining (9.80) ×εs−1 and (9.81) ×εs−4/3, we obtain

1

2

d

ds
Emix,∆ ≤

(
−λ1 +

1

2
ω +

C

εs
g(s)

)
1

εs
Ek+1,∆ +

(
−λη +

2

3
ω + Cεs

ℓ

)
εs

− 4
3 ∥W̃1,∆∥2X 2k

η
− C̄γ

8εs2
∥F̃∆,m∥2Y2k+2

Λ,η

+ Cεs
1−ℓ− 4

3 · 1

εs
∥F̃∆,m∥2Y2k+2

Λ,η

+ C

(
g(s)

εs
· εs

1
3
−2ℓ + εs

1
3
−4ℓ + εs

2
3

)
∥Ŵ1,∆∥2Y .

Recall ℓ = 10−4 from (9.46). Using λ1 > ω (9.9),

1

3
− 2ℓ > 0, εs

1−ℓ− 4
3 < εs

ℓ−1, εs
2/3 + εs

1/3−4ℓ ≲ g(s)εs
−1

by (9.78), εs ≤ δ by (2.43), and taking δ small enough, we obtain

1

2

d

ds
Emix,∆ ≤ (−λ1 +

2

3
ω +

C

εs
g(s) + Cεs

ℓ)Emix,∆ − C̄γ − Cεs
ℓ

8εs2
∥F̃∆,m∥2Y2k+2

Λ,η

+
Cg(s)

εs
∥Ŵ1,∆∥2Y

≤ Cg(s)

εs
Emix,∆ +

Cg(s)

εs
∥Ŵ1,∆∥2Y .

Denote G(τ) = C
´ τ
0

1
εs
g(s)ds. For any 0 ≤ s1 < s2, using (9.70d) and ℓ < 1

3 (9.46), we obtain

0 ≤ G(s2)−G(s1) =

ˆ s2

s1

1

εs
g(s)ds ≲

ˆ ∞

0
εs

1/3−2ℓ + δℓ ≲ δ1/3−2ℓds+ δℓ ≲ δℓ.

Since (W̃1,∆, F̃∆,m)|s=0 = 0, we have Ek+1,∆(0) = 0, Emix,∆(0) = 0. Using Grönwall’s inequality,
we establish

Emix,∆(s) ≤ C

ˆ s

0
eG(s)−G(τ) ·g(τ)

ετ
dτ · ∥W̃1,∆∥2Y ≤ C

ˆ s

0
·g(τ)
ετ

dτ · ∥W̃1,∆∥2Y ≤ Cδℓ∥W̃1,∆∥2Y .

Using the definition (9.82) and taking δ small enough, we prove

∥W̃1,∆∥X 2k
η

≤ εs
2/3E

1/2
mix,∆ ≤ Cεs

2/3δℓ/2∥W̃1,∆∥Y ≪ 1

2
εs

2/3∥W̃1,∆∥Y .

The decay estimates of Emix,∆ can be improved, but we do not need such an improvement. We
have proved (9.72) and concluded the proof of Proposition 9.6.
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10. Local well-posedness of the fixed point equations

In this section, we show that the fixed point equations (9.39) and the Landau equation (1.1) admit
a local-in-time solution, by constructing a solution to the following system with an appropriate
initial value: (

∂s + T + dM − 3

2
c̄v

)
F̃ =

1

εs

[
LM(F̃ ) +N (F̃ , F̃ )

]
−M−1/2

1 EM

+ g · FM ◦ Kk(Ŵ1 +A2(Ŵ1)−FE(F̃ )).

(10.1)

Here the data Ŵ1 is given, A2 is defined in (9.5), and parameter g ∈ {0, 1}. Note that the linearized
self-similar Landau equation (2.23b) corresponds to g = 0.

10.1. Reformulation of the fixed-point equations. Firstly, we show that given Ŵ1, the fixed
point equations (9.39) are equivalent to (10.1) with g = 1. We consider (10.1) since it is easier to
establish the local well-posedness.

Given Ŵ1, we recall the fixed-point equations of (W̃1,W̃2, F̃m) (9.39) as follows

W̃2 = A2(Ŵ1), (10.2a)

∂sW̃1 = (LE,s −Kk)W̃1 + (LE,s − LE)W̃2 − (I1, I2,−I2)(F̃m)− (C̄3
sEU, C̄3

sEP , 0), (10.2b)

∂sF̃m = LmicF̃m − Pm[(V · ∇X + 2dM + d̃M)F̃M ] +
1

εs
N (F̃ , F̃ )− Pm(M−1/2

1 EM ), (10.2c)

where Lmic is defined in (6.7), and A2 is defined in (9.5). Using W̃ = W̃1 + W̃2,

Kk(Ŵ1 − W̃1) = Kk(Ŵ1 + W̃2 − W̃),

we rewrite the equation of W̃ (9.43) as

∂sW̃ = LE,sW̃ + g · Kk(Ŵ1 + W̃2 − W̃)− (I1, I2,−I2)(F̃m)− (C̄3
sEU, C̄3

sEP , 0), (10.2b’)

with g = 1. Given Ŵ1, we construct W̃2 using (10.2a). Then the system of (W̃1, F̃m) in (10.2b),

(10.2c) is equivalent to that of (W̃, F̃m) in (10.2b’), (10.2c).
We argue that the above system (10.2b’), (10.2c) is equivalent to

(∂s + T )(M
1
2
1 F̃ ) =

1

εs

[
Q(M,M

1
2
1 F̃ ) +Q(M

1
2
1 F̃ ,M) +Q(M

1
2
1 F̃ ,M

1
2
1 F̃ )

]
− EM + I (10.3a)

via F̃ = FM (W̃) + F̃m, where I is defined as

I := g · M
1
2
1FM ◦ Kk(Ŵ1 + W̃2 −FE(F̃ )). (10.3b)

Note that (10.3) differs from (2.23) by the I terms.
First, we show (10.3) implies the system (10.2b’)-(10.2c). In fact, since I is purely macroscopic,

following the derivations in Lemma 6.2 for the equations of F̃m by first dividing M1/2
1 and then

applying projection Pm, we obtain (10.2c) from (10.3). Using the map FE (3.8) and the relations
(3.15), (3.16), we obtain〈

g · M1/2
1 FM ◦ Kk(Ŵ1 + W̃2 −FE(F̃ )),

(
V−Ū
C̄s

, |V−Ū|2
3C̄2

s
, 1− |V−Ū|2

3C̄2
s

)〉
V

= g · FE ◦ FM ◦ Kk(Ŵ1 + W̃2 −FE(F̃ ))

= g · Kk(Ŵ1 + W̃2 −FE(F̃ )).

(10.4)

Note that equations (3.9) are derived by integrating (2.23a) against 1, V−Ū
C̄s

, |V−Ū|2
3C̄2

s
, 1 − |V−Ū|2

3C̄2
s

over V (see (3.8)). Integrating (10.3) against 1, V−Ū
C̄s

, |V−Ū|2
3C̄2

s
, 1− |V−Ū|2

3C̄2
s

over V , applying the same
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derivations (see Appendix A), and using the integrals of I over V in (10.4), we derive (10.2b’).
Thus, (10.3) implies the system (10.2b’)-(10.2c).

Using the W̃-equation (10.2b’) and the relation (3.15), we derive the equations of FM (W̃). Along

with the equation of F̃m (10.2c), we can derive the equation (10.3). The derivations are similar and
are thus omitted.

Dividing (10.3) by M1/2
1 and using the notation LM,N (2.22a), (2.22b), we obtain (10.1). With

F̃ being a solution to the nonlinear problem (10.1), we construct the solution W̃1 = FEPM F̃ −W̃2

and F̃m = PmF̃ to the system (10.2).
The main result in this section is the following local existence theorem.

Theorem 10.1. There exists absolute constants 0 < ζ2 < ζ1 < 1 such that the following statement
holds. Consider equation (10.1) with g ∈ {0, 1}, k ≥ kL with initial data

F̃ (0) ∈ Yk
η̄ , ∥F̃ (0)∥YkL

η̄
< ζ2. (10.5)

When g = 1, we further assume that Ŵ1 satisfies ∥Ŵ1(s)∥Xk
η
< εs

2/3δ2ℓ0 with δ0 given in Propo-

sition 9.6. There exists a unique local solution F̃ ∈ L∞([0, T ],Yk
η̄ ) ∩ L2([0, T ],Yk

Λ,η̄) to (10.1) with

T ≍ min{ε0, 1} and

∥F̃ (s)∥YkL
η̄

≤ min

{
ζ1, C(∥F̃ (0)∥YkL

η̄
+ ε−1

0 s)

}
, s ∈ [0, T ]. (10.6)

Moreover, the solution can be continued beyond s ∈ [0, T∗) in the same regularity class if

sup
s∈[0,T∗)

∥F̃ (s)∥YkL
η̄
< ζ2. (10.7)

The solution satisfies the energy estimates (10.77). Since we develop much sharper estimates on

F̃ when g = 1 in Section 9, we do not derive the explicit bounds in (10.77) when j > kL. Note that

we only require smallness in YkL
η̄ norm, but not the higher order Yk

η̄ norm.

From the above assumption on Ŵ1 and (9.47), Ŵ1,W̃2 satisfy the following estimate for any s

∥Ŵ1(s)∥Xk
η̄
< εs

2/3 ≲ 1, ∥W̃2∥Xk+6
η̄
≲ εs

2/3−ℓ ≲ εs
1/3 ≲ 1. (10.8)

Based on Theorem 10.1, we establish the following local existence results for the Landau equation
with a solution satisfying a Gaussian lower bound.

Proposition 10.2. Consider F = M+M1/2
1 F̃ . Suppose that F̃ (0) satisfies (10.5) with some k ≥ kL

and F (0) > 0. The Landau equation (2.2) admits a unique local solution F̃ ∈ L∞([0, T ],Yk
η̄ ) ∩

L2([0, T ],Yk
Λ,η̄) to (10.1) with T ≍ min{ε0, 1} and F (s) ≥ 0. The nonnegative solution extends

beyond s ∈ [0, T∗) in the same regularity class as long as condition (10.7) is satisfied.
Let M be the time-dependent local Maxwellian constructed in (2.4). There exists a0 ≥ 1 such

that the following holds. If the initial data satisfy

F (0, X, V ) ≥ c · ⟨X⟩−lM(0, X, V )a, ∀ (X,V ) ∈ R6, (10.9)

for some l ∈ [0, 100], a ≥ a0, c > 0, then there exists b ≳ a2, such that

F (s,X, V ) ≥ c · exp(b(ε−1
0 − εs

−1))⟨X⟩−lM(s,X, V )a, (10.10)

for any (X,V ) ∈ R6 and s ∈ [0, T∗), where [0, T∗) is the maximal interval on which (10.7) holds.

Remark 10.3 (Local C∞ solutions in the physical variables). Since assumption (10.5) im-

poses smallness only on YkL
η̄ norm for a fixed kL, we can choose F̃ (0) ∈ ∩k≥kLYk

η̄ in Proposition 10.2

in the case g = 0. Since M1/2
1 ,M ∈ C∞, using the embedding estimates in Lemma B.4, we obtain

|D≤k−2dF (s,X, V )| ≲k µ(V̊ )1/4(1 + ∥F̃ (s)∥Yk
η̄
), (10.11)
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where M(s,X, V ) = µ(V̊ ) and µ(·) is the Gaussian defined in (2.16). See the estimates in (9.26)

and (9.27). As a result, the local solution F corresponding to the initial perturbation F̃ (0) is C∞.
For any s <∞, since the physical time t (2.1) satisfies t < 1, we obtain

|X| ≍s |x|, |V | ≍s |v|, e−C1,s|v|2 ≲s µ(V̊ ) ≲s e
−C2,s|v|2 .

Using the self-similar transform (2.1) and Proposition 10.2, we construct a local smooth solution
f to the Landau equation (1.1) with the uniform Gaussian decay (10.11) and the Gaussian lower
bound (10.10).

In Section 10.2, we reformulate solving the nonlinear equation (10.1) as a fixed point problem
and perform uniform energy estimates. We prove the local existence of solution in Section 10.3,
the continuation criterion (10.7) in Section 10.4, and Proposition 10.2 in Section 10.5.

10.2. Iterative scheme and uniform energy estimates. Let us rewrite the linear operator
LM(F̃ ) defined in (2.22a) as:

LM(F̃ ) = M−1/2
1 Q(M,M1/2

1 F̃ ) +M−1/2
1 Q(M1/2

1 F̃ ,M)

= N (ρ̄sM1/2
1 , F̃ ) +N (F̃ , ρ̄sM1/2

1 )

= N1(ρ̄sM1/2
1 , F̃ ) + · · ·+N6(ρ̄sM1/2

1 , F̃ ) +N (F̃ , ρ̄sM1/2
1 ).

where Ni, 1 ≤ i ≤ 6, are defined in (5.10). Solution to (10.1) can be regarded as a solution to the

linear equation below with G̃ = F̃ :(
∂s + T + dM − 3

2
c̄v

)
F̃ =

1

εs

[
(N1 +N5)(ρ̄sM1/2

1 , F̃ )
]
+

1

εs
N (G̃, F̃ ) + H̃, (10.12)

with

H̃ = H̃(G̃,M1) =
1

εs

[
(N2 +N3 +N4 +N6)(ρ̄sM1/2

1 , G̃)
]
+

1

εs
N (G̃, ρ̄sM1/2

1 ) (10.13)

−M−1/2
1 EM + g · FM ◦ Kk(Ŵ1 + W̃2 −FE(G̃)).

Note that

(N1 +N5)(ρ̄sM1/2
1 , F̃ ) = div(A[M]∇V F̃ )− κ22C̄

−2
s A[MV̊ ⊗ V̊ ]F̃ ,

so 〈
(N1 +N5)(ρ̄sM1/2

1 , F̃ ), F̃
〉
V
= −∥F̃∥2σ, (10.14)

and by the same computation as [47, Page 396],

(N2 +N3 +N4 +N6)(ρ̄sM1/2
1 , G̃) = κ2C̄

−1
s (divA)[MV̊ ]G̃. (10.15)

10.2.1. Functional spaces. We find the solution to (10.1) as the fixed point of the map

T : G̃ ∈ Jk
ζ 7→ F̃ ∈ Jk

ζ (10.16a)

where for some k ≥ kL, ζ > 0, T > 0 small to be chosen, we denote

Jk
ζ :=

{
u ∈ Yk

η̄ : ∥u∥YkL
η̄

≤ ζ
}
, Yk

η̄ = L∞(0, T ;Yk
η̄ ) ∩ L2(0, T ;Yk

Λ,η̄), (10.16b)

where we define the T -dependent Yk
η̄ norm as

∥u∥2Yk
η̄
:= sup

s∈[0,T ]
∥u(s)∥2Yk

η̄
+

ˆ T

0

1

εs
∥u(s)∥2Yk

Λ,η̄
ds. (10.16c)
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Since we only use the weight with exponent η̄ throughout this section, we do not indicate its
dependence in the new norms and functional spaces, e.g. Jk

ζ . We will choose the life span T
depending on the size of ε0, as in Theorem 10.1.

For T to have a fix point, we need to show (1) (10.12) has a unique solution in Yk
η̄; (2) ∥F̃∥YkL

η̄
≤ ζ

whenever ∥G̃∥YkL
η̄

≤ ζ; and (3) T is contractive in Jk
ζ .

10.2.2. Localization and regularization. Recall that χR : R3 → R is a smooth, radial cutoff function
supported in B2R with χR = 1 in BR defined in Section 2.2.2. Specifically, we define the cutoff
function by

φR(s,X, V ) := χR(X)χR(V̊ ). (10.17)

Then, inside the support of φR, it holds

|X|2 + |V |2 ≤ (2R)2 + CC̄2
s⟨V̊ ⟩2 ≤ 4R2 + C(4R2 + 1) ≤ C⟨R⟩2 =: R∗2

so φR is supported in [0,∞)×BR∗ , where BR∗ denotes a ball in R6 with radius R∗.
We now compute the derivatives of the cut-off. The gradient in V of φR is

∇V φR(s,X, V ) = χR(X)∇V χ(V̊ /R)

= χR(X) · 1

C̄sR
· ∇χ(V̊ /R)

= χR(X) · 1

C̄sR
· χξ(V̊ /R) ·

V̊

|V̊ |
= φ̃R(s,X, V ) · κ2C̄−1

s V̊ ,

(10.18)

where χξ means the radial derivative of χ, and we introduce

φ̃R(s,X, V ) :=
1

κ2R2
· χR(X) ·

χξ(V̊ /R)

|V̊ |/R
. (10.19)

Next, we show that the smooth cut off function enjoys the derivative bound:

|Dα,βφR|+R2|Dα,βφ̃R| ≲α,β 1. (10.20)

In particular, the upper bound is uniform in R for any R > 0. To prove this, note that

Dα
X
χR(X) = R−|α|⟨X⟩|α|∂αXχ(X/R).

For any α ≻ 0, ∂αXχ is supported in B2 \B1, so D
α
X
χR is bounded. Similarly, when |α|+ |β| = 1,

Dα,βχR(V̊ ) = ∇χ(V̊ /R) ·Dα,βV̊ /R.

Note that |Dα,βV̊ | ≲α,β ⟨V̊ ⟩ (see Lemma C.5 for β = 0 and Remark C.6 for |β| > 0), so it is

bounded by CR in the support of ∇χ(V̊ /R), thus Dα,βχR(V̊ ) is bounded. By induction in view of

Corollary C.3, for general multi-index α, β with |α|+ |β| = k, we have Dα,βχR(V̊ ) is bounded, and
our claim (10.20) is proven for φR. The proof for φ̃R is identical so we do not repeat here.

Regarding the material derivative of ϕR, i.e. (∂s + T )ϕR, it equals to

(∂s + T )χR(V̊ ) = (∂s + T )V̊ · ∇χR(V̊ ) = (∂s + T )V̊ · 1
R
χξ(V̊ /R) ·

V̊

|V̊ |
.

Lemma C.9 gives

|(∂s + T )χR(V̊ )| ≲ R−1⟨X⟩−r⟨V̊ ⟩2 ≲ R−1⟨V̊ ⟩2.
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Moreover, by direct computation

(∂s + T )χR(X) =
c̄xX + Ū+ C̄sV̊

R
· ∇χ(X/R) ≲ R−1⟨X⟩⟨V̊ ⟩

using |V̊ | ≤ 2R in the support of χR(V̊ ). We can iterate the estimate for higher derivatives α, β,
and summarize

|Dα,β(∂s + T )φR| ≲ R−1⟨X⟩⟨V̊ ⟩2. (10.21)

We consider localized initial data

F̃in,R(X,V ) = F̃in(X,V ) · φR(0, X, V ). (10.22)

Clearly, F̃in,R ∈ C∞
0 (BR∗) and F̃in,R → F̃in in Yk

η̄ as R→ ∞.
Next, we show that (10.12) equipped with regularizing terms θ∆X,V with weight has an unique

smooth solution F̃θ,R for (X,V ) ∈ BR such that F̃θ,R = 0 on ∂BR. Specifically, we consider(
∂s + T + dM − 3

2
c̄v

)
F̃θ,R =

1

εs

[
(N1 +N5)(ρ̄sM1/2

1 , F̃θ,R)
]
+

1

εs
N (G̃, F̃θ,R) + H̃ + θ∆W F̃θ,R

(10.23)
with θ > 0, where the weighted Laplacian is defined as

∆WF = −ν−1⟨X⟩2⟨V̊ ⟩4F +
∑

|α1|+|β1|=1

⟨X⟩1−η̄⟨V̊ ⟩2∂α1
X ∂β1

V

(
φ
2|α1|
1 C̄2|β1|

s ⟨X⟩η̄∂α1
X ∂β1

V (⟨X⟩⟨V̊ ⟩2F )
)
,

(10.24)

and ν is the parameter for the Yη̄-norm (2.29) chosen in Theorem 6.3. While ∆WF may seem
complicated, it is in divergence form relative to the Yη̄ norm.

For this weighted diffusion term, we have the following estimate. The proof of Lemma 10.4
follows by applying integration by parts and tracking the main terms. We defer it to Appendix
C.4.

Lemma 10.4 (Weighted diffusion). There exist constants Ck ≥ 0 such that for compactly

supported h ∈ Yk+1
η̄ , we have 43

⟨∆Wh, h⟩Yη̄ = −∥⟨X⟩⟨V̊ ⟩2h∥2Y1
η̄
, (10.25a)

⟨∆Wh, h⟩Yk
η̄
≤ −1

2
∥⟨X⟩⟨V̊ ⟩2h∥2Yk+1

η̄
+ Ck1k>0∥⟨X⟩⟨V̊ ⟩2h∥2Yk

η̄
. (10.25b)

Next, we show that (10.12) is parabolic in V .

Lemma 10.5 (Parabolicity). There exists ζ0 ∈ (0, 1) such that for any ∥G̃∥YkL
η̄

≤ ζ0, we have

1

2
A[M] ⪯ A[M+M1/2

1 G̃] ⪯ 3

2
A[M].

Proof. Recall η̄ = −3 + 6(r − 1). Since kL ≥ d, using (B.7b) in Lemma B.4, ⟨X⟩−r+1 ≲ C̄s from

(3.3a), ρ̄s = C̄3
s from (2.12), and ∥G̃∥YkL

η̄
≤ ζ0, we obtain

∥G̃(X, ·)∥L2(V ) ≲ ⟨X⟩−
η̄+d
2 ∥G∥YkL

η̄
≲ ⟨X⟩−3(r−1)∥G̃∥YkL

η̄
≲ C̄3

s∥G̃∥YkL
η̄

≤ C1C̄
3
sζ0 = C1ζ0ρ̄s. (10.26)

Using Lemma 5.1 and taking ζ0 small enough, we prove

−A1 ⪯ A[M1/2
1 G̃] ⪯ A1, A1 = C∥G̃(X, ·)∥L2(V )C̄

−3
s Σ ⪯ CC1ζ0Σ ⪯ 1

2
A[M].

which proves the desired estimates. □

43The constant Ck depends on the parameter ν chosen in the Yη̄-norm (2.29). Since we have determined ν as some
small constant in Theorem 6.3, Ck can be treated as a constant that depends only on k.
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Classical parabolic theory then implies that (10.23) has a unique smooth solution in BR∗ . A
more precise statement is summarized in the next theorem:

Lemma 10.6. Let F̃in,R be as in (10.22), and G̃ ∈ Jk
ζ with ζ ≤ ζ0, where ζ0 is chosen in Lemma

10.5. There exists a unique solution F̃θ,R to (10.23) in the space

F̃θ,R ∈ C([0, T ];H1
0 (BR∗) ∩Hk(BR∗)) ∩ L2(0, T ;Hk+1(BR∗)),

with ∂sF̃θ,R ∈ L2(0, T ;Hk−1(BR∗)).

Proof. First note that θ∆WF in bounded domain is equivalent to θC̄2
sφ

2
1⟨X⟩⟨V̊ ⟩2∆X,V F (plus first

order or 0 order terms), where ∆X,V F is the standard Laplacian in R6. Since ζ ≤ ζ0, from Lemma

10.5, we obtain that A[M + M1/2
1 G̃] ⪰ 1

2A[M] ⪰ 0 pointwise in X and V . It follows that the
equation (10.23) is uniformly parabolic in both X,V variables.

Next, we analyze the regularity of the coefficients, starting with the coefficients of the diffusion
term. By (C.21) we know for any |α|+ |β| ≤ k,

|Dα,β(M1/2
1 G̃)| ≲M1/2

1 ⟨V̊ ⟩|β|+2|α||D≤kG̃|.

By Lemma 5.1, we know

|Dα,βA[M1/2
1 G̃]| = |A[Dα,β(M1/2

1 G̃)]| ≲ ∥D≤kG̃∥L2(V )C̄
γ+2
s ⟨V̊ ⟩γ+2,

which is bounded in BR∗ since G̃ ∈ Jk
ζ ⊂ L∞(0, T ;Yk

η̄ ). As the weight ⟨X⟩|α|C̄|β|
s in Dα,β is bounded

from above and below in BR∗ , ∂α,βX,VA[M
1/2
1 G̃] is also bounded in BR∗ . Therefore, the coefficients

of second order derivatives in (10.23) are in L∞(0, T ;W k,∞(BR∗)).

The coefficients in transport terms are the V and X in T , divA[M] in N1, and C̄s, V̊ , A[M1/2
1 G̃],

divA[M1/2
1 G̃] in N1, N2, N3, N4, which are all in L∞(0, T ;W k,∞(BR∗)). Similarly, coefficients of

the reaction terms in dM, c̄v, Ni, are in L∞(0, T ;W k,∞(BR∗)).

Next, we analyze the regularity of the forcing term H̃ defined in (10.13). In particular, by (10.15)
we have

∥(N2 +N3 +N4 +N6)(ρ̄sM1/2
1 , G̃)∥Hk(BR∗ ) ≤ ∥D≤k(κ2C̄

−1
s (divA)[MV̊ ])∥L∞(BR∗ )∥D≤kG̃∥L2(BR∗ ).

Therefore (N2+N3+N4+N6)(ρ̄sM1/2
1 , G̃) ∈ L∞(0, T ;Hk(BR∗)). Note that for functions supported

in BR∗ , σ norm and H1(V ) norm are equivalent. By Lemma 5.5, we see for any |α|+ |β| ≤ k,

∥Dα,βN (G̃, ρ̄sM1/2
1 )∥H−1(V ) ≲R ∥D≤kG̃∥L2(V )∥D≤k(ρ̄sM1/2

1 )∥σ,

which is bounded. ThereforeDα,βN (G̃, ρ̄sM1/2
1 ) ∈ L∞(0, T ;Hk−1(BR∗)). Finally, from Lemma C.9

we know the term −M−1/2
1 EM is smooth and bounded in BR∗ , and g ·FM ◦Kk(Ŵ1+W̃2−FE(G̃))

is in L∞(0, T ;H2k+6(BR∗)) in view of Proposition 4.6 and Lemma C.13.
Summarizing, (10.23) is a linear, uniformly parabolic equation with W k,∞ coefficients and Hk−1

forcing, and therefore has a unique regular solution Fθ,R in (0, T )×BR∗ . This concludes the proof
of the lemma. □

10.2.3. Uniform weighted L2 estimate. Before passing to the limit R → ∞ and θ → 0, we need
some energy estimates of F̃θ,R uniform in θ and R.
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Lemma 10.7. Let F̃θ,R be the solution to (10.23) obtained in Lemma 10.6 and ζ0 be the parameter

chosen in Lemma 10.5. Suppose that G̃ ∈ Jk
ζ with ζ < ζ0. Then

1

2

d

ds
∥F̃θ,R∥2Yη̄

+
θ

2
∥⟨X⟩⟨V̊ ⟩2F̃θ,R∥2Y1

η̄
+

1

εs

(
1

2
− C̄N ,0∥G̃∥YkL

η̄

)
∥F̃θ,R∥2YΛ,η̄

(10.27)

≤ C∥F̃θ,R∥2Yη̄
+
C

εs
∥G̃∥2Yη̄

+
C

εs
∥G̃∥

4
γ+2

Yη̄
∥G̃∥

2γ
γ+2

YΛ,η̄
+ C.

Proof. We define F̃θ,R = 0 outside BR∗ . Since F̃θ,R|∂BR∗ = 0 and F̃θ,R ∈ H1
0 (BR∗), this zero

extension defines a function on R6 satisfying F̃θ,R ∈ YΛ,η̄(R6).

Next, we perform Yη̄ estimates on (10.23) by estimating
˜

BR∗ (10.23) · F̃θ,R⟨X⟩η̄dXdV
¨

BR∗

(
∂s + T − dM +

3

2
c̄v

)
F̃θ,R · F̃θ,R⟨X⟩η̄dXdV (10.28)

=
1

εs

¨
BR∗

[
(N1 +N5)(ρ̄sM1/2

1 , F̃θ,R)
]
· F̃θ,R⟨X⟩η̄ dXdV (10.29)

+
1

εs

¨
BR∗

N (G̃, F̃θ,R) · F̃θ,R⟨X⟩η̄ dXdV (10.30)

+

¨
BR∗

H̃ · F̃θ,R⟨X⟩η̄ dXdV (10.31)

+

¨
BR∗

θ∆W F̃θ,R · F̃θ,R⟨X⟩η̄ dXdV. (10.32)

Recall that H̃ is defined in (10.13).
For (10.28), we apply Corollary 6.7 with k = 0, l = η̄, and δ large enough and get

1

2

d

ds
∥F̃θ,R∥2Yη̄

≤
¨

BR∗

(
∂s + T − dM +

3

2
c̄v

)
F̃θ,R · F̃θ,R⟨X⟩η̄dXdV + C∥F̃θ,R∥2Yη̄

+
1

8
∥F̃θ,R∥2YΛ,η̄

.

For (10.29), using the regularity of F̃θ,R from Lemma 10.6 and F̃θ,R ∈ YΛ,η̄(R6), we apply (10.14):

(10.29) = − 1

εs

ˆ
⟨X⟩η̄∥F̃θ,R∥2σdX = − 1

εs
∥F̃θ,R∥2YΛ,η̄

.

For (10.30) we use Lemma 5.4 and Sobolev embedding (10.26) to get

(10.30) =
1

εs

¨
BR∗

N (G̃, F̃θ,R) · F̃θ,R⟨X⟩η̄ dXdV

≤ C sup
X

{
C̄−3
s ∥G̃(s,X, ·)∥L2(V )

} 1

εs

ˆ
⟨X⟩η̄∥F̃θ,R∥2σdX

≤
C̄N ,0

εs
∥G̃∥YkL

η̄
∥F̃θ,R∥2YΛ,η̄

.

In the proof of Lemma 5.4, we only use integration by parts once. Since F̃θ,R|∂B∗
R
= 0, we obtain

the same proof and estimates.
For the diffusion term (10.32), applying Lemma 10.4, we have

(10.32) = θ⟨∆W F̃θ,R, F̃θ,R⟩Yη̄ = −θ∥⟨X⟩⟨V̊ ⟩2F̃θ,R∥2Y1
η̄
.
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We now estimate (10.31):

(10.31) =

¨
⟨X⟩η̄H̃F̃θ,R dXdV

=
1

εs

¨
κ2C̄

−1
s ⟨X⟩η̄(divA)[MV̊ ]G̃F̃θ,R dXdV (10.31a)

+
1

εs

¨
⟨X⟩η̄N (G̃, ρ̄sM1/2

1 )F̃θ,R dXdV (10.31b)

−
¨

⟨X⟩η̄M−1/2
1 EMF̃θ,R dXdV (10.31c)

+

¨
⟨X⟩η̄g · FM ◦ Kk(Ŵ1 + W̃2 −FE(G̃))F̃θ,R dXdV. (10.31d)

We start with the first integral. Recall M1 = C̄−3
s µ(V̊ ) and M = µ(V̊ ) from (2.17). Using (5.3)

with i = 1, j = 0, MV̊ = M1/2
1 · C̄3/2

s µ(V̊ )1/2V̊ , and (C.24a), we obtain

|(divA)[MV̊ ]| ≲ C̄γ+1
s ⟨V̊ ⟩γ+1∥C̄3/2

s µ(V̊ )1/2V̊ ∥L2(V ) ≲ C̄γ+4
s ⟨V̊ ⟩γ+1. (10.34)

Using (10.34), we estimate the first integral as

(10.31a) =
1

εs

¨
κ2C̄

−1
s ⟨X⟩η̄(divA)[MV̊ ]G̃F̃θ,R dXdV

≤ C

εs

¨
⟨X⟩η̄C̄γ+3

s ⟨V̊ ⟩γ+1|G̃F̃θ,R| dXdV

≤ C

εs

¨
⟨X⟩η̄C̄γ+3

s ⟨V̊ ⟩γ |G̃|2dV dX︸ ︷︷ ︸
:=I

+
1

8εs

¨
⟨X⟩η̄C̄γ+3

s ⟨V̊ ⟩γ+2|F̃θ,R|2dV dX.

Since C̄s ≲ 1 and γ ≥ 0, using Hölder’s inequality, we bound

I ≲
1

εs

(¨
⟨X⟩η̄C̄γ+3

s |G̃|2
) 4

γ+2
(¨

⟨X⟩η̄C̄γ+3
s ⟨V̊ ⟩γ+2|G̃|2

) 2γ
γ+2
≲

1

εs
∥G̃∥

4
γ+2

Yη̄
∥G̃∥

2γ
γ+2

YΛ,η̄
. (10.35)

Summarizing we obtain:

(10.31a) ≤ C

εs
∥G̃∥

4
γ+2

Yη̄
∥G̃∥

2γ
γ+2

YΛ,η̄
+

1

8εs
∥F̃θ,R∥2YΛ,η̄

.

For the second integral: using ∥M1/2
1 ∥σ ≲ C̄

3+γ
2

s ≲ 1 and ρ̄s = C̄3
s (2.14), we have

(10.31b) =
1

εs

ˆ
⟨X⟩η̄⟨N (G̃, ρ̄sM1/2

1 ), F̃θ,R⟩V dX

≤ 1

εs

ˆ
C̄−3
s ⟨X⟩η̄∥G̃(s,X, ·)∥L2(V )∥F̃θ,R∥σ∥ρ̄sM

1/2
1 ∥σdX

≲
1

εs

ˆ
⟨X⟩η̄∥G̃(s,X, ·)∥L2(V )∥F̃θ,R∥σdX

≤ 1

8εs

ˆ
⟨X⟩η̄∥F̃θ,R∥2σ +

C

εs

ˆ
⟨X⟩η̄∥G̃(s,X, ·)∥2L2(V )dX

≤ 1

8εs
∥Fθ,R∥2YΛ,η̄

+
C

εs
∥G̃∥2Yη̄

.
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For the third integral, recall from Lemma C.9 we know |EM| ≲M⟨X⟩−r⟨V̊ ⟩3. Since M = C̄3
sM1

(2.17), we obtain

∥M−1/2
1 EM∥2Yη̄

≲
¨

C̄6
sM1⟨X⟩−2r⟨V̊ ⟩6⟨X⟩η̄dV dX ≲

ˆ
R3

⟨X⟩−2r+η̄dX ≤ C.

Here we used −2r + η̄ < −3. Hence, using Cauchy–Schwarz inequality, we have

(10.31c) =

¨
M−1/2

1 EMF̃θ,R⟨X⟩η̄ dXdV

≲ ∥M−1/2
1 EM∥2Yη̄

+ ∥F̃θ,R∥2Yη̄
≤ ∥F̃θ,R∥2Yη̄

+ C.

For the last term, using Cauchy–Schwarz inequality, we have:

(10.31d) =

¨
⟨X⟩η̄g · FM ◦ Kk(Ŵ1 + W̃2 −FE(G̃))F̃θ,R dXdV

≤ ∥F̃θ,R∥2Yη̄
+ g∥FM ◦ Kk(Ŵ1 + W̃2 −FE(G̃))∥2Yη̄

.

Recall that Kk : Xη → Xη is defined in Proposition 4.6, with parameter η. Moreover, its image is

compactly supported in B4Rη which depends only on η. Applying Lemma C.13, (10.8), we obtain

∥FM ◦ Kk(Ŵ1 + W̃2 −FE(G̃))∥Yη̄ ≲ ∥Kk(Ŵ1 + W̃2 −FE(G̃))∥Xη̄

≲η ∥Kk(Ŵ1 + W̃2 −FE(G̃))∥Xη

≲η ∥Ŵ1 + W̃2 −FE(G̃)∥Xη

≲η ∥Ŵ1 + W̃2∥Xη + ∥G̃∥Yη

≲η 1 + ∥G̃∥Yη̄ .

For g ∈ {0, 1}, summarizing we get

1

2

d

ds
∥F̃θ,R∥2Yη̄︸ ︷︷ ︸
(10.28)

≤ C∥F̃θ,R∥2Yη̄
+

1

8
∥F̃θ,R∥2YΛ,η̄︸ ︷︷ ︸

(10.28)

− 1

εs
∥F̃θ,R∥2YΛ,η̄︸ ︷︷ ︸
(10.29)

+
C

εs
∥G̃∥YkL

η̄
∥F̃θ,R∥2YΛ,η̄︸ ︷︷ ︸

(10.30)

− θ

2
∥⟨X⟩⟨V̊ ⟩2F̃θ,R∥2Y1

η̄︸ ︷︷ ︸
(10.32)

+
C

εs
∥G̃∥

4
γ+2

Yη̄
∥G̃∥

2γ
γ+2

YΛ,η̄
+

1

8εs
∥F̃θ,R∥2YΛ,η̄︸ ︷︷ ︸

(10.31a)

+
1

8εs
∥F̃θ,R∥2YΛ,η̄

+
C

εs
∥G̃∥2Yη̄︸ ︷︷ ︸

(10.31b)

+ ∥F̃θ,R∥2Yη̄
+ C0︸ ︷︷ ︸

(10.31c)

+ ∥F̃θ,R∥2Yη̄
+ C(1 + ∥G̃∥2Yη̄

)︸ ︷︷ ︸
(10.31d)

.

Since εs ≤ 1 (2.43), after reorganization we get

1

2

d

ds
∥F̃θ,R∥2Yη̄

+
θ

2
∥⟨X⟩⟨V̊ ⟩2F̃θ,R∥2Y1

η̄
+

1

εs

(
1

2
− C∥G̃∥YkL

η̄

)
∥F̃θ,R∥2YΛ,η̄

≤ C∥F̃θ,R∥2Yη̄
+
C

εs
∥G̃∥2Yη̄

+
C

εs
∥G̃∥

4
γ+2

Yη̄
∥G̃∥

2γ
γ+2

YΛ,η̄
+ C,

where C is some absolute constant.
This completes the L2 energy estimate. □
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10.2.4. Uniform weighted Hj estimate. Next, we derive interior Yj
η̄ estimates for F̃θ,R uniformly in

R, with 1 ≤ j ≤ k. We introduce a sequence of cutoff functions as follows. We define

ϕ0 := 1, ϕ̃0 = 0, ϕj := φ2−jR, ϕ̃j = φ̃2−jR, ∀j > 0, (10.36)

where φR is defined in (10.17) and φ̃R is defined in (10.19). Consequently, ϕj for j ≥ 1 are all
supported in BR∗ . To simplify notation, we omit the dependence of ϕj on R. We define

hj := F̃θ,R · ϕj . (10.37)

Note that h0 = F̃θ,R. Since ϕj = 1 over the support of ϕi for all i < j, we can write hj = hj−1 · ϕj .
Applying (10.20) with (φR, φ̃R, R)⇝ (ϕj = φ2−jR, ϕ̃j = φ̃2−jR, 2

−jR) we obtain

|Dα,βϕj | ≲α,β 1, |Dα,βϕ̃j | ≲α,β (2−jR)−2 ≲α,β,j R
−2. (10.38)

In the next lemma we calculate the equation satisfied by hj .

Lemma 10.8. For j ≥ 1, hj solves the following equation in R6:(
∂s + T + dM − 3

2
c̄v

)
hj =

1

εs

[
(N1 +N5)(ρ̄sM1/2

1 , hj)
]
+

1

εs
N (G̃, hj) + H̃j + θ∆Whj , (10.39)

where
H̃j := ϕjH̃ + (∂s + T )ϕj · hj−1 − θ[∆W , ϕj ]hj−1

− 1

εs

(
N1(ρ̄sM1/2

1 , ϕj)hj−1 +N1(G̃, ϕj)hj−1

)
+

1

εs
ϕ̃j

(
2N4(ρ̄sM1/2

1 , hj−1)− (N6 − 2N4 − 2N5)(G̃, hj−1)
)
.

(10.40)

Proof. We omit the subscript j. First, we apply Leibniz rule and F̃θ,R = hj−1 on the support of ϕj :

(∂s + T )h = ϕ (∂s + T ) F̃θ,R + (∂s + T )ϕ · F̃θ,R,

∆Wh = ∆W (F̃θ,Rϕ) = ϕ∆W F̃θ,R + [∆W , ϕ]F̃θ,R = ϕ∆W F̃θ,R + [∆W , ϕ]hj−1.

For the collision terms, recall the definition of Ni, 1 ≤ i ≤ 6, in (5.10). By Leibniz rule and (10.18),
we have

N1(G̃, F̃θ,Rϕ) = ϕN1(G̃, F̃θ,R) +N1(G̃, ϕ)F̃θ,R + 2A[M1/2
1 G̃]∇V ϕ · ∇F̃θ,R,

= ϕN1(G̃, F̃θ,R) +N1(G̃, ϕ)F̃θ,R − 2ϕ̃N4(G̃, F̃θ,R),

N2(G̃, F̃θ,Rϕ) = ϕN2(G̃, F̃θ,R)−∇V ϕ · divA[M1/2
1 G̃] · F̃θ,R,

= ϕN2(G̃, F̃θ,R) + ϕ̃N6(G̃, F̃θ,R),

N3,4(G̃, F̃θ,Rϕ) = ϕN3,4(G̃, F̃θ,R)−A[M1/2
1 G̃]∇V ϕ · κ2C̄−1

s V̊ · F̃θ,R,

= ϕN3,4(G̃, F̃θ,R)− ϕ̃N5(G̃, F̃θ,R),

N5,6(G̃, F̃θ,Rϕ) = ϕN5,6(G̃, F̃θ,R).

Therefore,

N (G̃, h) = ϕN (G̃, F̃θ,R) +N1(G̃, ϕ)F̃θ,R + ϕ̃(N6 − 2N4 − 2N5)(G̃, F̃θ,R).

Similarly,

(N1 +N5)(ρ̄sM1/2
1 , h) = ϕ(N1 +N5)(ρ̄sM1/2

1 , F̃θ,R) +N1(ρ̄sM1/2
1 , ϕ)F̃θ,R − 2ϕ̃N4(ρ̄sM1/2

1 , F̃θ,R).

We thus obtain the equation for h in R6, from multiplying (10.23) by ϕ:(
∂s + T + dM − 3

2
c̄v

)
h =

1

εs

[
(N1 +N5)(ρ̄sM1/2

1 , h)
]
+

1

εs
N (G̃, h) + H̃j +∆Wh
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with a new forcing term H̃j in (10.40). □
Recall hj from (10.37). Since hj = ϕjϕiF̃θ,R = ϕjhi for any i < j, a straightforward consequence

of (10.20) is that by Leibniz rule,

∥hj∥Yk
l
≲k ∥hi∥Yk

l
≲k ∥F̃θ,R∥Yk

l
, ∥hj∥Yk

Λ,η
≲k ∥hi∥Yk

Λ,η
≲k ∥F̃θ,R∥Yk

Λ,η
, (10.41)

with constants only depending on k. This can be directly verified by Leibniz rule so we do not go
into details.

For any i, j ∈ R, since the commutator between the weight ⟨X⟩i⟨V̊ ⟩j and derivativesDα,β consists

of terms with ≤ |α|+ |β| − 1 derivatives, using induction on k, and |D≤l⟨X⟩i⟨V̊ ⟩j | ≲i,j,l ⟨X⟩i⟨V̊ ⟩j ,
we have

|D≤k(⟨X⟩i⟨V̊ ⟩jf)| ≍i,j,k ⟨X⟩i⟨V̊ ⟩j |D≤kf |, ∀ k ≥ 0, i, j ∈ R. (10.42a)

Recall Λ from (5.7). Similarly, we have

|D≤k(Λ
1
2 f)| ≍k Λ

1
2 |D≤kf |, Λ = C̄γ+3

s ⟨V̊ ⟩γ+2. (10.42b)

We omit the proof.
To bound the collision commutators in H̃j (10.40), we need the following estimates.

Lemma 10.9. For any i ≤ j, we have

Ii,j :=

ˆ
⟨X⟩η̄C̄γ

s ⟨V̊ ⟩γ+2 · ∥D≤iG̃∥L2(V ) · |D≤j−if | · |D≤jg|dV dX

≲j

(
1i>0∥G̃∥Ymax{kL,i}

η̄

∥f∥Yj−1
Λ,η̄

+ ∥G̃∥YkL
η̄
∥Λ

1
2 f∥Yj

η̄

)
∥g∥Yj

Λ,η̄
.

Proof. Recall the σ-norm from (5.8). We haveˆ
C̄γ
s ⟨V̊ ⟩γ+2|D≤j−if | · |D≤jg|dV ≲ C̄−3

s ∥D≤j−if∥σ∥D≤jg∥σ.

For i ≥ 1, Ii,j has the same structure as the II term in (8.5a). Using (8.6)-(8.8), we estimate:

Ii,j ≲j ∥G̃∥Ymax {kL,i}
η̄

∥f∥Yj−1
Λ,η̄

∥g∥Yj
Λ,η̄
.

Note that C̄s ≲ 1, so instead of σ norm we can also bounded Ii,j by weighted diffusionˆ
C̄γ
s ⟨V̊ ⟩γ+2|D≤j−if | · |D≤jg|dV ≲ C̄−3

s ∥Λ
1
2D≤j−if∥L2(V )∥D≤jg∥σ.

For i = 0, Ii,j has the same structure as the I term in (8.5b), which is bounded using (8.9) and
then (10.42) by

I0,j ≲ ∥G̃∥YkL
η̄
∥Λ

1
2 f∥Yj

η̄
∥g∥Yj

Λ,η̄
.

We complete the proof. □

Lemma 10.10. Let G̃ ∈ Jk
ζ with k > kL and ζ < 1. For any j ≥ 1, we have the following energy

estimates for hj = ϕjF̃θ,R

1

2

d

ds
∥hj∥2Yj

η̄
≤ Cj∥hj∥2Yj

η̄
− 1

εs

(1
2
− C̄N ∥G̃∥YkL

η̄

)
∥hj∥2Yj

Λ,η̄

+ 1j>0
C̄j,1

εs
∥hj−1∥2Yj−1

Λ,η̄

+ 1j>kL

Cj

εs
∥G̃∥Yj

η̄
∥hj−1∥Yj−1

Λ,η̄
∥hj∥Yj

Λ,η̄
+
Cj

εs

(
∥G̃∥

4
γ+2

Yj
η̄

∥G̃∥
2γ
γ+2

Yj
Λ,η̄

+ ∥G̃∥2Yj
η̄

)
+ Cj

− θ

4
∥⟨X⟩⟨V̊ ⟩2hj∥2Yj+1

η̄
+ 1j>0C̄j,2

(
θ +

1

R2εs

)
∥⟨X⟩⟨V̊ ⟩2hj−1∥2Yj

η̄

(10.43)
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for some absolute constant C̄j,i with C̄0,i = 0, i = 1, 2, where C̄N is an absolute constant determined
in Theorem 8.1.

Suppose that R−2 ≤ θ. We define the R-dependent norms Zj
R, Z

j
Λ,R:

44

∥f∥2
Zj
R

:=
∑

0≤i≤j

ϖZ,i∥ϕif∥2Yi
η̄
, ∥f∥2

Zj
Λ,R

:=
∑

0≤i≤j

ϖZ,i∥ϕif∥2Yi
Λ,η̄
,

ϖZ,0 = 1, ϖZ,j =
∏
i≤j

1

16(1 + C̄j,1 + C̄j,2)
,

(10.44)

which depend on R via the cutoff functions ϕi defined in (10.36).
Then, we have the following estimates uniformly in R, θ that satisfy R · εs ≥ 1, R−1 ≤ θ: 45

1

2

d

ds
∥F̃θ,R∥2Zj

R

≤ Cj∥F̃θ,R∥2Zj
R

− 1

εs
(
3

8
− C̄N ∥G̃∥YkL

η̄
)∥F̃θ,R∥2Zj

Λ,R

(10.45)

+ 1j>kL

Cj

εs
∥G̃∥Yj

η̄
∥F̃θ,R∥Zj−1

Λ,R
∥F̃θ,R∥Zj

Λ,R
+
Cj

εs
∥G̃∥

4
γ+2

Yj
η̄

∥G̃∥
2γ
γ+2

Yj
Λ,η̄

+
Cj

εs
∥G̃∥2Yj

η̄
+ Cj ,

for any j ≥ 0, where the constants Cj may change from line to line.

Proof. We recall that

⟨f1, f2⟩Yk
η̄
=

∑
|α|+|β|≤k

ν|α|+|β|−k |α|!
α!

ˆ
⟨X⟩η̄⟨Dα,βf1, D

α,βf2⟩L2(V )dX.

We perform Yj
η̄ estimates on (10.39) by estimating ⟨10.39, hj⟩Yj

η̄
:〈(

∂s + T + dM − 3

2
c̄v

)
hj , hj

〉
Yj
η̄

=
1

εs

〈
(N1 +N5)(ρ̄sM1/2

1 , hj), hj

〉
Yj
η̄

(10.46)

+
1

εs

〈
N (G̃, hj), hj

〉
Yj
η̄

+ ⟨H̃j , hj⟩Yj
η̄
+ θ⟨∆Whj , hj⟩Yj

η̄
.

Proof of (10.43). We analyze inner products in (10.46) term by term. This will be analogous to
the L2 estimate in Lemma 10.7.

• Viscosity. Apply Lemma 10.4 to h⇝ hj , we have

−θ⟨∆Whj , hj⟩Yj
η̄
≥ θ

2
∥⟨X⟩⟨V̊ ⟩2hj∥2Yj+1

η̄
− Cjθ1j>0∥⟨X⟩⟨V̊ ⟩2hj∥2Yj

η̄
, ∀j ≥ 0.

Note that for j = 0 we have h0 = Fθ,R. Using hj = hj−1ϕj for j ≥ 1, and (10.41), we obtain

−θ⟨∆Whj , hj⟩Yj
η̄
≥ θ

2
∥⟨X⟩⟨V̊ ⟩2hj∥2Yj+1

η̄
− Cjθ1j>0∥⟨X⟩⟨V̊ ⟩2hj−1∥2Yj

η̄
. (10.47)

• Transport. Using Corollary 6.7 for the left hand side of (10.46) with δ large enough, we obtain

1

2

d

ds
∥hj∥2Yj

η̄
≤
〈(

∂s + T + dM − 3

2
c̄v

)
hj , hj

〉
Yj
η̄

+ Cj∥hj∥2Yj
η̄
+

1

16
∥hj∥2Yj

Λ,η̄

. (10.48)

44Note that these parameters ϖZ,j are different from those in (4.6).
45To construct a local solution in the time-interval s ∈ [0, T ] for some finite T , we choose R large enough and then θ
small enough so that the assumptions on R, θ are satisfied.
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• Main collision. Now we handle the first term on the right hand side of (10.46). For N1,N5, we
first apply Lemma 5.5 to get the lower order terms: for |α|+ |β| ≤ j,〈

Dα,βNi(ρ̄sM1/2
1 , hj)−Ni(ρ̄sM1/2

1 , Dα,βhj), D
α,βhj

〉
Yη̄

≤ C̄−3
s ∥D≤j(ρ̄sM1)

1/2∥L2(V )∥D≺(α,β)hj∥YΛ,η̄
∥Dα,βhj∥YΛ,η̄

≤ 1

8
∥Dα,βhj∥2YΛ,η̄

+ Cj∥D≺(α,β)hj∥2YΛ,η̄
.

The leading order term, using (10.14) with F̃ = Dα,βhj , reads〈
(N1 +N5)(ρ̄sM1/2

1 , Dα,βhj), D
α,βhj

〉
Yη̄

= −∥Dα,βhj∥2YΛ,η̄
.

Combined and taking summation over α, β, and then using (10.41), for j ≥ 1, we conclude

〈
(N1 +N5)(ρ̄sM1/2

1 , hj), hj

〉
Yj
η̄

≤ −7

8
∥hj∥2Yj

Λ,η̄

+ Cj1j>0∥hj∥2Yj−1
Λ,η̄

≤ −7

8
∥hj∥2Yj

Λ,η̄

+ Cj1j>0∥hj−1∥2Yj−1
Λ,η̄

(10.49)

When j = 0, we obtain the above estimate from (10.14), and we do not have the lower order
term.

• Secondary collision. We handle the second term on the right hand side of (10.46). Using estimate
(8.2a), (8.2b) in Theorem 8.1 with l1 = l2 = l = η̄, we get∣∣∣〈N (G̃, hj), hj

〉
Yj
η̄

∣∣∣ ≤ (C̄N ∥G̃∥YkL
η̄
∥hj∥Yj

Λ,η̄
+ Cj1j>kL∥G̃∥Yj

η̄
∥hj∥Yj−1

Λ,η̄

)
∥hj∥Yj

Λ,η̄
.

For j ≤ kL, we only need the first term on the right hand side to bound the nonlinear terms.
Again, using (10.41) and j > j − 1, we further bound the nonlinear terms as∣∣∣〈N (G̃, hj), hj

〉
Yj
η̄

∣∣∣ ≤ (C̄N ∥G̃∥YkL
η̄
∥hj∥Yj

Λ,η̄
+ Cj1j>kL∥G̃∥Yj

η̄
∥hj−1∥Yj−1

Λ,η̄

)
∥hj∥Yj

Λ,η̄
. (10.50)

• Forcing. Recall the forcing term H̃j from (10.40)

H̃j := ϕjH̃ + (∂s + T )ϕj · hj−1 − θ[∆W , ϕj ]hj−1

− εs
−1N1(ρ̄sM1/2

1 , ϕj)hj−1 + 2εs
−1ϕ̃jN4(ρ̄sM1/2

1 , hj−1)

− εs
−1N1(G̃, ϕj)hj−1 − εs

−1ϕ̃j(N6 − 2N4 − 2N5)(G̃, hj−1),

(10.51)

Let us analyze them term by term, first with the main forcing term, then the commutators.
◦ Main forcing. For the term ϕjH̃, recall the definition of H̃:

H̃(G̃,M1) =
1

εs

[
(N2 +N3 +N4 +N6)(ρ̄sM1/2

1 , G̃) +N (G̃, ρ̄sM1/2
1 )

]
−M−1/2

1 EM + g · FM ◦ Kk(Ŵ1 + W̃2 −FE(G̃)).
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Recall |D≤jϕj | ≲j 1. For the term (N2 + N3 + N4 + N6)(ρ̄sM1/2
1 , G̃) = κ2C̄

−1
s (divA)[MV̊ ]G̃

(see (10.15)), given |α|+ |β| ≤ j, using |(divA)[MV̊ ]| ≲ C̄γ+4
s ⟨V̊ ⟩γ+1 by (10.34), we have〈

Dα,β(ϕjκ2C̄
−1
s (divA)[MV̊ ]G̃), Dα,βhj

〉
Yη̄

≤ Cj

¨
κ2C̄

−1
s ⟨X⟩η̄|(divA)[D≤j(MV̊ )]| · |D⪯(α,β)G̃| · |Dα,βhj |dXdV

≤ Cj

¨
⟨X⟩η̄C̄γ+3

s ⟨V̊ ⟩γ |D⪯(α,β)G̃|2dV dX +
1

16

¨
⟨X⟩η̄C̄γ+3

s ⟨V̊ ⟩γ+2|Dα,βhj |2dV dX

≤ Cj

(¨
⟨X⟩η̄|D⪯(α,β)G̃|2dV dX

) 4
γ+2
(¨

⟨X⟩η̄C̄γ+3
s ⟨V̊ ⟩γ+2|D⪯(α,β)G̃|2dV dX

) 2γ
γ+2

+
1

16

¨
⟨X⟩η̄C̄γ+3

s ⟨V̊ ⟩γ+2|D≤jhj |2dV dX.

where we have applied the Hölder’s inequality and C̄s ≲ 1 similar to (10.35) in the last inequality.

The integrals of G̃ are further bounded by the Y-norm. Summing up α and β, we obtain〈
ϕjκ2C̄

−1
s (divA)[MV̊ ]G̃, hj

〉
Yj
η̄

≤ Cj∥G̃∥
4

γ+2

Yj
η̄

∥G̃∥
2γ
γ+2

Yj
Λ,η̄

+
1

16
∥hj∥2Yj

Λ,η̄

.

For the second term in H̃, note that ∥D≤jM1/2
1 ∥σ ≲j C̄

γ+3
2

s ≲ 1 using (C.27) with i = 0,

Φ0 = M1/2
1 (2.20), |D≤j ρ̄s| = |D≤jC̄3

s| ≲j C̄
3
s by (3.3a) and Leibniz rule. Following estimates in

Theorem 8.1 and using (10.20), we obtain for any |α|+ |β| ≤ j that

⟨Dα,β(ϕjN (G̃, ρ̄sM1/2
1 )), Dα,βhj⟩Yη̄

≤ Cj

ˆ
C̄−3
s ⟨X⟩η̄∥D⪯(α,β)G̃(s,X, ·)∥L2(V )∥Dα,βhj∥σ∥D≤j(ρ̄sM1/2

1 )∥σdX

≤ 1

16

ˆ
⟨X⟩η̄∥Dα,βhj∥2σdX + Cj

ˆ
⟨X⟩η̄∥D⪯(α,β)G̃∥2L2(V )dX

≤ 1

16
∥Dα,βhj∥2YΛ,η̄

+ Cj∥D⪯(α,β)G̃∥2Yη̄
.

Taking summation in α, β we conclude

⟨ϕjN (G̃, ρ̄sM1/2
1 ), hj⟩Yj

η̄
≤ 1

16
∥hj∥2Yj

Λ,η̄

+ Cj∥G̃∥2Yj
η̄
.

For the remaining two terms, by Cauchy–Schwarz and (10.8) we have

⟨ϕjM−1/2
1 EM, hj⟩Yj

η̄
≤ ∥M−1/2

1 EM∥Yj
η̄
∥hj∥Yj

η̄
≤ Cj + ∥hj∥2Yj

η̄
,

g⟨ϕjFM ◦ Kk(Ŵ1 + W̃2 −FE(G̃)), hj⟩Yj
η̄
≤ g∥FM ◦ Kk(Ŵ1 + W̃2 −FE(G̃))∥Yj

η̄
∥hj∥Yj

η̄

≤ ∥hj∥2Yj
η̄
+ Cj∥Ŵ1 + W̃2∥2X j

η
+ Cj∥G̃∥2Yj

η

≤ ∥hj∥2Yj
η̄
+ Cj + Cj∥G̃∥2Yj

η̄
.

Combined we get

⟨ϕjH̃, hj⟩Yj
η̄
≤ 1

εs

(
Cj∥G̃∥

4
γ+2

Yj
η̄

∥G̃∥
2γ
γ+2

Yj
Λ,η̄

+
1

8
∥hj∥2Yj

Λ,η̄

+ Cj∥G̃∥2Yj
η̄

)
+ Cj∥hj∥2Yj

η̄
+ Cj . (10.52)

This concludes the estimate for ϕjH̃.
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◦ Transport commutators. We now deal with the second term of H̃j . Take |α| + |β| ≤ j. Using
(10.21) with (φR, R)⇝ (ϕj , 2

−jR), ϕj = φ2−jR and (10.42), we get

⟨Dα,β ((∂s + T )ϕj · hj−1) , D
α,βhj⟩Yη̄

≤
¨

⟨X⟩η̄|D≤j(∂s + T )ϕj | · |D⪯(α,β)hj−1| · |Dα,βhj |dXdV

≤ Cj

¨
⟨X⟩η̄ · 2jR−1⟨X⟩⟨V̊ ⟩2|D⪯(α,β)hj−1| · |Dα,βhj |dXdV

≤ Cj∥Dα,βhj∥2Yη̄
+ CjR

−2∥D⪯(α,β)(⟨X⟩⟨V̊ ⟩2hj−1)∥2Yη̄
.

Take summation in α, β we conclude

⟨(∂s + T )ϕj · hj−1, hj⟩Yj
η̄
≤ Cj∥hj∥2Yj

η̄
+ CjR

−2∥⟨X⟩⟨V̊ ⟩2hj−1∥2Yj
η̄
. (10.53)

◦ Diffusion commutator. Recall the weighted Laplacian from (10.24)

∆WF = −ν−1
η̄ ⟨X⟩2M ⟨V̊ ⟩2NF+

∑
|α1|+|β1|=1

⟨X⟩M−η̄⟨V̊ ⟩N∂α1
X ∂β1

V

(
φ
2|α1|
1 C̄2|β1|

s ⟨X⟩η̄∂α1
X ∂β1

V (⟨X⟩M ⟨V̊ ⟩NF )
)
,

and hj−1 = F̃θ,R · ϕj−1. Next, we compute the commutator [∆W , ϕj ]hj−1. In the support of hj ,

we have F̃θ,R = hj−1. Denote gj−1 = ⟨X⟩M ⟨V̊ ⟩Nhj−1. For each |α1|+ |β1| = 1, we have

∂α1
X ∂β1

V

(
φ
2|α1|
1 C̄2|β1|

s ⟨X⟩η̄∂α1
X ∂β1

V (gj−1ϕj)
)
=∂α1

X ∂β1

V

(
φ
2|α1|
1 C̄2|β1|

s ⟨X⟩η̄gj−1∂
α1
X ∂β1

V ϕj

)
+ ∂α1

X ∂β1

V

(
φ
2|α1|
1 C̄2|β1|

s ⟨X⟩η̄∂α1
X ∂β1

V gj−1

)
· ϕj

+ φ
2|α1|
1 C̄2|β1|

s ⟨X⟩η̄∂α1
X ∂β1

V gj−1 · ∂α1
X ∂β1

V ϕj :=
∑

1≤i≤3

Ii,α1,β1 .

Since the commutator associated with the first term in ∆WF is 0 and the term I2,α1,β1 is canceled
in the commutator, using Leibniz rule, we obtain

θ[∆W , ϕj ]hj−1 = θ
∑

|α1|+|β1|=1

⟨X⟩M−η̄⟨V̊ ⟩N (I1,α1,β1 + I3,α1,β1).

For |α1|+ |β1| ≤ 1, i = 1, 3, since I1i,α1,β1 involves at most one derivative acting on gj−1, using
integration by parts, Leibniz rule, and (10.38), we conclude

θ⟨[∆W , ϕj ]hj−1, hj⟩Yj
η̄
≤ Cjθ∥⟨X⟩⟨V̊ ⟩2hj−1∥2Yj

η̄
+
θ

4
∥⟨X⟩⟨V̊ ⟩2hj∥2Yj+1

η̄
(10.54)

◦ Collision commutator: N1. Finally, we bound the last four terms in H̃j (10.51). Start with the
two terms involving N1:

−N1(ρ̄sM1/2
1 , ϕj)hj−1 −N1(G̃, ϕj)hj−1.

By (10.18), we get

N1(G̃, ϕj) = divV (A[M1/2
1 G̃]∇V ϕj) = divV (A[M1/2

1 G̃V̊ ] · κ2C̄−1
s ϕ̃j)

= divV A[M1/2
1 G̃V̊ ] · κ2C̄−1

s ϕ̃j +A[M1/2
1 G̃V̊ ]κ2C̄

−2
s

3∑
i=1

D0,ei ϕ̃jei.

Using (5.3) with i = 0 and (10.38), we get

|D≤iN1(G̃, ϕj)| ≲i C̄
−2
s |D≤iA[M1/2

1 G̃V̊ ]| · |D≤i+1ϕ̃j |+ C̄−1
s |D≤i divA[M1/2

1 G̃V̊ ]| · |D≤iϕ̃j |

≲i C̄
γ+2−2
s ∥D≤iG̃∥L2(V )R

−2⟨V̊ ⟩γ+2.
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Using Leibniz rule and Lemma 10.9 with (f, g)⇝ (hj−1, hj), we obtain∣∣∣⟨N1(G̃, ϕj) · hj−1, hj⟩Yj
η̄

∣∣∣
≲j

∑
i≤j

ˆ
⟨X⟩η̄|D≤iN1(G̃, ϕj)| · |D≤j−ihj−1| · |D≤jhj | (10.55a)

≲j R
−2

(
∥G̃∥

Ymax{kL,j}
η̄

∥hj−1∥Yj−1
Λ,η̄

+ ∥G̃∥YkL
η̄
∥Λ

1
2hj−1∥Yj

η̄

)
∥hj∥Yj

Λ,η̄
.

When applying the above estimate with G̃ replaced by ρ̄sM1/2
1 , we use ρ̄s = C̄3

s (2.14), M1 =

C̄−3
s µ(V̊ ) (2.17), and estimates (3.3a), (C.21), (C.24a) to obtain

∥D≤j(ρ̄sM1/2
1 )∥L2(V ) ≲j ∥C̄3

s⟨V̊ ⟩2jM1/2
1 ∥L2(V ) = C̄3/2

s ∥⟨V̊ ⟩2jµ(V̊ )1/2∥L2(V ) ≲ C̄3
s. (10.55b)

So

|D≤jN1(ρ̄sM1/2
1 , ϕj)| ≲j C̄

γ+5−2
s R−2⟨V̊ ⟩γ+2 = R−2Λ.

Plugging the above estimate into (10.55a) and using the definition of YΛ,η̄-norm (2.29), we get∣∣∣⟨N1(ρ̄sM1/2
1 , ϕj) · hj−1, hj⟩Yj

η̄

∣∣∣ ≤ CjR
−2(∥Λ

1
2hj−1∥Yj

η̄
+ ∥hj−1∥Yj−1

Λ,η̄
)∥hj∥Yj

Λ,η̄

≤ 1

16
∥hj∥2Yj

Λ,η̄

+
Cj

R4
∥Λ

1
2hj−1∥2Yj

η̄
.

(10.55c)

◦ Collision commutator: N4,5,6. We now estimate the commutator terms related to N4,N5,N6,
which are

ϕ̃j

(
2N4(ρ̄sM1/2

1 , hj−1)− (N6 − 2N4 − 2N5)(G̃, hj−1)
)
.

Recall from (5.10)

N4(f, g) = −κ2C̄−1
s V̊ ⊤A[M1/2

1 f ]∇V g

N5(f, g) = κ22C̄
−2
s gV̊ ⊤A[M1/2

1 f ]V̊

N6(f, g) = κ2C̄
−1
s g divV A[M1/2

1 f ] · V̊ .

(10.56)

Below, we let l = 4, 5, 6. For any |α|+ |β| ≤ j, we use Leibniz rule, |D≤jϕ̃j | ≲j R
−2 by (10.20),

Lemma 5.4, and Lemma 5.5 to bound the lower order derivatives on hj−1:〈
Dα,β(ϕ̃jNl(G̃, hj−1))− ϕ̃jNl(G̃,D

α,βhj−1), D
α,βhj

〉
V

≲j

∑
1≤i≤j

R−2C̄−3
s ∥D≤iG∥L2(V )∥D≤j−ihj−1∥σ∥D≤jhj∥σ.

This is the same situation as Ii,j for i ≥ 1 in Lemma 10.9, so they are bounded in the same way
as N1 terms.

For the main term, applying estimate of N4,5,6 in Lemma 5.4 and using (10.38), we obtain∣∣∣〈ϕ̃jNl(G̃,D
α,βhj−1), D

α,βhj

〉
V

∣∣∣ ≲ R−2C̄−3
s ∥G̃∥L2(V )∥Λ1/2Dα,βhj−1∥L2(V )∥Dα,βhj∥σ.

With the same idea as in the estimate of I0,j in Lemma 10.9 we obtain∣∣∣ 〈ϕ̃jNl(G̃,D
α,βhj−1), D

α,βhj

〉
Yj
η̄

∣∣∣ ≲ R−2∥G̃∥YkL
η̄
∥Λ

1
2hj−1∥Yj

η̄
∥hj∥Yj

Λ,η̄
.

Summarize in α, β, we conclude the same upper bound for Nl, l = 4, 5, 6 terms as N1 terms:∣∣∣〈ϕ̃jNl(G̃, hj−1), hj
〉
Yj
η̄

∣∣∣ ≲j R
−2

(
∥G̃∥

Ymax{kL,j}
η̄

∥hj−1∥Yj−1
Λ,η̄

+ ∥G̃∥YkL
η̄
∥Λ

1
2hj−1∥Yj

η̄

)
∥hj∥Yj

Λ,η̄
.

(10.57a)
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Replacing the above estimate of G̃ by ρ̄sM1/2
1 and replacing the bound of ∥D≤jG̃∥L2(V ) (based

on (B.7b) or (10.26)) by ∥D≤j(ρ̄sM1/2
1 )∥L2(V ) ≲j C̄

3
s (see (10.55b)), we have the same bound as

(10.55c)

〈
ϕ̃jN4(ρ̄sM1/2

1 , hj−1), hj
〉
Yj
η̄
≤ 1

16
∥hj∥2Yj

Λ,η̄

+
Cj

R4
∥Λ

1
2hj−1∥2Yj

η̄
. (10.57b)

Summary. Summarizing, we obtain

1

2

d

ds
∥hj∥2Yj

η̄
− Cj∥hj∥2Yj

η̄
− 1

16
∥hj∥2Yj

Λ,η̄︸ ︷︷ ︸
(10.48)

+
θ

2
∥⟨X⟩⟨V̊ ⟩2hj∥2Yj+1

η̄
− Cjθ∥⟨X⟩⟨V̊ ⟩2hj−1∥2Yj

η̄︸ ︷︷ ︸
(10.47)

≤− 7

8εs
∥hj∥2Yj

Λ,η̄

+
Cj

εs
∥hj−1∥2Yj−1

Λ,η̄︸ ︷︷ ︸
(10.49)

+
1

εs

(
C̄N ∥G̃∥YkL

η̄
∥hj∥Yj

Λ,η̄
+ Cj1j>kL∥G̃∥Yj

η̄
∥hj−1∥Yj−1

Λ,η̄

)
∥hj∥Yj

Λ,η̄︸ ︷︷ ︸
(10.50)

+
1

εs

(
Cj∥G̃∥

4
γ+2

Yj
η̄

∥G̃∥
2γ
γ+2

Yj
Λ,η̄

+
1

8
∥hj∥2Yj

Λ,η̄

+ Cj∥G̃∥2Yj
η̄

)
+ Cj∥hj∥2Yj

η̄
+ Cj︸ ︷︷ ︸

(10.52)

+ Cj∥hj∥2Yj
η̄
+
Cj

R2
∥⟨X⟩⟨V̊ ⟩2hj−1∥2Yj

η̄︸ ︷︷ ︸
(10.53)

+Cjθ∥⟨X⟩⟨V̊ ⟩2hj−1∥2Yj
η̄
+
θ

4
∥⟨X⟩⟨V̊ ⟩2hj∥2Yj+1

η̄︸ ︷︷ ︸
(10.54)

+
Cj

εsR2

(
∥G̃∥

Ymax{kL,j}
η̄

∥hj−1∥Yj−1
Λ,η̄

+ ∥G̃∥YkL
η̄
∥Λ

1
2hj−1∥Yj

η̄

)
∥hj∥Yj

Λ,η̄︸ ︷︷ ︸
(10.55a),(10.57a)

+
1

8εs
∥hj∥2Yj

Λ,η̄

+
Cj

εsR4
∥Λ

1
2hj−1∥2Yj

η̄︸ ︷︷ ︸
(10.55c),(10.57b)

.

Note that we have multiplied the estimate in (10.49), (10.50), (10.55), (10.57) by εs
−1, which is

associated with the Ni-term in (10.39). For the upper bound in (10.55a), (10.57a), since G̃ ∈ Jk
ζ

with ζ < 1 and R > 1, we obtain ∥G̃∥YkL
η̄

≤ 1 and

Cj

εsR2
∥G̃∥

Ymax{kL,j}
η̄

∥hj−1∥Yj−1
Λ,η̄

∥Yj
η̄
∥hj∥Yj

Λ,η̄
≤ 1j>kL

Cj

εsR4
∥G̃∥Yj

η̄
∥hj−1∥Yj−1

Λ,η̄
∥Yj

η̄
∥hj∥Yj

Λ,η̄

+
Cj

εs
∥hj−1∥2Yj−1

Λ,η̄

+
1

32εs
∥hj∥2Yj

Λ,η̄

,

Cj

εsR2
∥G̃∥YkL

η̄
∥Λ

1
2hj−1∥Yj

η̄
∥hj∥Yj

Λ,η̄
≤ Cj

εsR4
∥Λ

1
2hj−1∥2Yj

η̄
+

1

32εs
∥hj∥2Yj

Λ,η̄

.

Since 2 ≥ γ+2
2 , γ + 3 ≥ 0, we obtain Λ

1
2 ≲ ⟨V̊ ⟩(γ+2)/2 ≲ ⟨X⟩⟨V̊ ⟩2. Using (10.42), we bound

∥Λ1/2hj−1∥Yj
η̄
≲ ∥⟨X⟩⟨V̊ ⟩2hj−1∥Yj

η̄
.



110 J. BEDROSSIAN, J. CHEN, M. GUALDANI, S. JI, V. VICOL, AND J. YANG

Combining similar terms in the above two estimates, using the diffusion and εs ≤ 1, R > 1, we
simplify the energy estimates as

1

2

d

ds
∥hj∥2Yj

η̄
≤ Cj∥hj∥2Yj

η̄
− 1

εs

(
1

2
− C̄N ∥G̃∥YkL

η̄

)
∥hj∥2Yj

Λ,η̄

+
Cj

εs
∥hj−1∥2Yj−1

Λ,η̄

+ 1j>kL

Cj

εs
∥G̃∥Yj

η̄
∥hj−1∥Yj−1

Λ,η̄
∥hj∥Yj

Λ,η̄
+
Cj

εs

(
∥G̃∥

4
γ+2

Yj
η̄

∥G̃∥
2γ
γ+2

Yj
Λ,η̄

+ ∥G̃∥2Yj
η̄

)
+ Cj

− θ

4
∥⟨X⟩⟨V̊ ⟩2hj∥2Yj+1

η̄
+ Cj

(
θ +

1

R2
+

1

εsR4

)
∥⟨X⟩⟨V̊ ⟩2hj−1∥2Yj

η̄
.

(10.58)
Changing the constants for the diffusion terms to other absolute constants, we prove (10.43).

Proof of (10.45). Summing the L2 estimates (10.27) and the weighted Hj estimates (10.43) (or
see above (10.58)) with weight ϖZ,j , we obtain

1

2

d

ds

∑
j≤k

ϖZ,j∥hj∥2Yj
η̄

≤
∑
j≤k

ϖZ,j

(
Cj∥hj∥2Yj

η̄
− 1

εs

(1
2
− (C̄N + C̄N ,0)∥G̃∥YkL

η̄

)
∥hj∥2Yj

Λ,η̄

+ 1j>0
C̄j,1

εs
∥hj−1∥2Yj−1

Λ,η̄︸ ︷︷ ︸
:=Ij,2

+ 1j>kL

Cj

εs
∥G̃∥Yj

η̄
∥hj−1∥Yj−1

Λ,η̄
∥hj∥Yj

Λ,η̄
+
Cj

εs
(∥G̃∥

4
γ+2

Yj
η̄

∥G̃∥
2γ
γ+2

Yj
Λ,η̄

+ ∥G̃∥2Yj
η̄
) + Cj

− θ

4
∥⟨X⟩⟨V̊ ⟩2hj∥2Yj+1

η̄︸ ︷︷ ︸
:=Ij,3

+1j>0C̄j,2(θ +
1

εsR2
)∥⟨X⟩⟨V̊ ⟩2hj−1∥2Yj

η̄︸ ︷︷ ︸
:=Ij,4

)
.

Recall the norms Zj , Zj
Λ and weight ϖZ,j from (10.44). By definition, we obtain ϖZ,0 = 1, C̄0,i =

0. Since Rεs ≥ 1, R−1 ≤ θ, we obtain

C̄j,2(θ +
1

R2εs
)ϖZ,j ≤ C̄j,2 · 2θ ·ϖZ,j <

θ

8
ϖZ,j−1, C̄j,1ϖZ,j <

1

8
ϖZ,j−1, ∀j ≥ 1.

For the weighted sum of the diffusion terms Ij,i, i = 2, 3, 4, using the above estimates, we obtain∑
j≤k

ϖZ,jIj,2 ≤
∑

0<j≤k

ϖZ,j−1

8εs
∥hj−1∥2Yj−1

Λ,η̄

=
∑

0≤j≤k−1

ϖZ,j

8εs
∥hj∥2Yj

Λ,η̄

,

and∑
j≤k

ϖZ,jIj,4 ≤
∑

0<j≤k

θ

8
ϖZ,j−1∥⟨X⟩⟨V̊ ⟩2hj−1∥2Yj

η̄
=

∑
0≤j≤k−1

θ

8
ϖZ,j∥⟨X⟩⟨V̊ ⟩2hj∥2Yj+1

η̄
≤ 1

2

∑
j≤k

ϖZ,jIj,3.

Thus, in the above weighted sum, the diffusion terms have the negative sign up to the term
(C̄N + C̄N ,0)∥G̃∥YkL

η̄
∥hj∥2Yj

Λ,η̄

. By definition (10.44), for any i ≥ 0, we have

∥hi∥Yi
η̄
≲i ∥F̃θ,R∥Zi

R
, ∥hi∥Yi

Λ,η̄
≲i ∥F̃θ,R∥Zi

Λ,R
. (10.59)

Using (10.59), the Z-norm (10.44), and dropping the weighted diffusion in Ij,3, Ij,4, we prove

1

2

d

ds
∥F̃θ,R∥2Zk

R
≤ Ck∥F̃θ,R∥2Zk

R
+

1

εs

(
− 3

8
+ (C̄N + C̄N ,0)∥G̃∥YkL

η̄

)
∥F̃θ,R∥2Zk

Λ,R

+ 1k>kL

Ck

εs
∥G̃∥Yk

η̄
∥F̃θ,R∥Zk−1

Λ,R
∥F̃θ,R∥Zk

Λ,R
+
Ck

εs
(∥G̃∥

4
γ+2

Yk
η̄
∥G̃∥

2γ
γ+2

Yk
Λ,η̄

+ ∥G̃∥2Yk
η̄
) + Ck.

Changing the dummy variable k to j, we prove (10.45). □
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10.2.5. Uniform energy estimates. Recall the constant C̄N from (8.2) Theorem 8.1, C̄N ,0 from
Lemma 10.7, and ζ0 from Lemma 10.5. We choose

ζ1 = min

{
1

8(C̄N + C̄N ,0)
, ζ0, 1

}
. (10.60a)

Next, we assume G̃ ∈ Jk
ζ1
. From (10.60a), we obtain

−3

8
+ (C̄N + C̄N ,0)∥G̃∥YkL

η̄
≤ −3

8
+ (C̄N + C̄N ,0)ζ1 < −1

4
. (10.60b)

Using (10.60) and Lemma 10.10 with j ≥ kL, we obtain

1

2

d

ds
∥F̃θ,R∥2Zj ≤ Cj∥F̃θ,R∥2Zj −

1

4εs
∥F̃θ,R∥2Zj

Λ

+ 1j>kL

Cj

εs
∥G̃∥Yj

η̄
∥F̃θ,R∥Zj−1

Λ
∥F̃θ,R∥Zj

Λ

+ Cj + Cjεs
−1(∥G̃∥

4
γ+2

Yj
η̄

∥G̃∥
2γ
γ+2

Yj
Λ,η̄

+ ∥G̃∥2Yj
η̄
)

Applying Young’s inequality

Cj

εs
∥G̃∥Yj

η̄
∥F̃θ,R∥Zj−1

Λ
∥F̃θ,R∥Zj

Λ
≤ 1

8εs
∥F̃θ,R∥2Zj

Λ

+
Cj

εs
∥G̃∥2Yj

η̄
∥F̃θ,R∥2Zj−1

Λ

, (10.61)

we bound
1

2

d

ds
∥F̃θ,R∥2Zj ≤ Cj∥F̃θ,R∥2Zj −

1

8εs
∥F̃θ,R∥2Zj

Λ

+ CjRj , (10.62a)

where Rj denotes the forcing terms

Rj := 1j>kLεs
−1∥G̃∥2Yj

η̄
∥F̃θ,R∥2Zj−1

Λ

+ 1 + εs
−1(∥G̃∥

4
γ+2

Yj
η̄

∥G̃∥
2γ
γ+2

Yj
Λ,η̄

+ ∥G̃∥2Yj
η̄
). (10.62b)

Integrating (10.62) over s, we obtain

1

2
∥F̃θ,R(s)∥2Zj +

ˆ s

0

1

8ετ
∥F̃θ,R∥2Zj

Λ

≤ 1

2
∥F̃θ,R(0)∥2Zj + Cj

ˆ s

0
(∥F̃θ,R∥2Zj +Rj)(τ)dτ. (10.63)

Applying Grönwall’s inequality to ∥F̃θ,R(s)∥Zj , and using ε−1
τ ≤ εs

−1 for τ ≤ s, we obtain

∥F̃θ,R(s)∥2Zj ≤ eCjs(∥F̃θ,R(0)∥2Zj + Cj

ˆ s

0
Rj(τ)dτ). (10.64)

Using (10.22), (10.20) and (10.44), we obtain

∥F̃θ,R(0)∥2Zj ≲j ∥F̃ (0)∥2Yj
η̄
. (10.65)

Applying (10.64) in the upper bound in (10.63), and using (10.65), we prove

∥F̃θ,R(s)∥2Zj +

ˆ s

0

1

ετ
∥F̃θ,R∥2Zj

Λ

≤ Cj e
Cjs

(
∥F̃ (0)∥2Yj

η̄
+

ˆ s

0
Rj(τ)dτ

)
, (10.66a)

where Cj may change from line to line.
For Rj (10.62), using εs ≥ ε0 e

−Cs (2.43) and Hölder’s inequality, for s ≤ T , we obtainˆ s

0

1

ετ
∥G̃∥

4
γ+2

Yj
η̄

∥G̃∥
2γ
γ+2

Yj
Λ,η̄

dτ ≤ C eCs

ε0
∥G̃∥

4
γ+2

L2(0,s;Yj
η̄)
∥G̃∥

2γ
γ+2

L2(0,s;Yj
Λ,η̄)

. (10.66b)

Combining the above two estimates and using (10.62), for s ≤ T , we obtain

∥F̃θ,R(s)∥2Zj +

ˆ s

0

1

ετ
∥F̃θ,R∥2Zj

Λ

≤ Cj e
Cjs
(
∥F̃ (0)∥2Yj

η̄
+

ˆ s

0

1

ετ
(1j>kL∥F̃θ,R∥2Zj−1

Λ

+ 1)∥G̃∥2Yj
η̄
(τ)dτ

+
1

ε0
∥G̃∥

4
γ+2

L2(0,s;Yj
η̄)
∥G̃∥

2γ
γ+2

L2(0,s;Yj
Λ,η̄)

+ s
)
. (10.66c)
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Note that when j ≤ kL, the F̃θ,R-term on the right hand side vanishes.

Thus, given G̃ ∈ Jk
ζ1

with k ≥ kL, using (10.66) with ν = 1 inductively for j = kL, kL + 1, kL +

2, .., k, we obtain F̃θ,R ∈ L∞((0, T ), Zj) ∩ L2((0, T );Zj
Λ) with

∥F̃θ,R(s)∥2Zj +

ˆ s

0

1

ετ
∥F̃θ,R∥2Zj

Λ

≤ Cj

(
s, ∥F̃ (0)∥Yj

η̄
, sup

τ≤s
∥G̃(τ)∥2Yj

η̄
+

ˆ τ

0

1

ετ
∥G̃∥2Yj

Λ,η̄

)
, (10.67)

for any j ≤ k and any s ≤ T . Here, we do not require T to be small.

10.2.6. Convergence. Suppose G̃ ∈ Jk
ζ1
. We consider s ∈ [0, 1]. We take Rn = n, θn = n−1. For

large n ≥ Ns, assumptions R · εs ≥ 1, R−1 ≤ θ in Lemma 10.10 are satisfied. Recall the cutoff
function ϕL from (10.17) and the uniform estimates (10.20). Since for fixed L = m, for n large
enough, we have ϕL = ϕnϕL. Using estimate similar to (10.41), (10.38), and (10.44), for any j ≥ 0,
we obtain

∥ϕLF̃θn,Rn∥Yj
η̄
≲j ∥F̃θn,Rn∥Zj

Rn

≲j ∥F̃θn,Rn∥Yj
η̄
, ∥ϕLF̃θn,Rn∥Yj

Λ,η̄
≲j ∥F̃θn,Rn∥Zj

Λ,Rn

. (10.68)

Note that (10.67) is uniform in θ,R for θ ≤ R−1, Rεs ≥ 1. A subsequence of ϕLF̃θn,Rn converges

weakly to some limit in F̃L ∈ Yk
η̄ . Note that F̃L = F̃L′ on the ball of radius min{L,L′} and

s ≤ T . Using a diagonalization argument, we can take L → ∞ and extract a subsequence such
that F̃θni ,Rni

⇀ F̃ weakly in Yk
η̄ for any s ≤ T and compact sets, and F̃θni ,Rni

⇀ F̃ weakly in

L2((0, T ),Yk
Λ,η̄) on compact sets. From (10.66) and (10.67), we obtain F̃ ∈ Yk

η̄ (see (10.16)) and it
satisfies the energy estimates

∥F̃ (s)∥2Yj
η̄
+

ˆ s

0

1

ετ
∥F̃∥2Yj

Λ,η̄

≤ Cj e
Cjs
(
∥F̃ (0)∥2Yj

η̄
+

ˆ s

0

1

ετ
(1j>kL∥F̃∥

2
Yj−1
Λ,η̄

+ 1)∥G̃∥2Yj
η̄
(τ)

+
1

ε0
∥G̃∥

4
γ+2

L2(0,s;Yj
η̄)
∥G̃∥

2γ
γ+2

L2(0,s;Yj
Λ,η̄)

+ s
)
,

(10.69a)

for any s ≤ T and j ≤ k. The F̃ term on the right hand side vanishes when j = kL.

Recall the YkL
η̄ norm from (10.16). For j = kL and ∥G̃∥YkL

η̄
< ζ1 < 1, since εs ≤ ε0 ≤ 1, 2

2+γ ∈

[0, 1], we bound the norm of G̃ using ∥G̃∥YkL
η̄
:

ˆ s

0

1

ετ
∥G̃∥2

YkL
η̄

≲
C eCs

ε0
s, ∥G̃∥

4
γ+2

L2(0,s;YkL
η̄ )

∥G̃∥
2γ
γ+2

L2(0,s;YkL
Λ,η̄)

≤ s
2

γ+2 ∥G̃∥2
YkL

η̄

≲ s
2

γ+2 ,

and then take supremum over s ≤ T ≤ 1 to yield

∥F̃∥2
YkL

η̄

= sup
s≤T

∥F̃ (s)∥2
YkL
η̄

+

ˆ s

0

1

ετ
∥F̃ (τ)∥2

YkL
Λ,η̄

≤ C eCT
(
∥F̃ (0)∥2

YkL
η̄

+ T + (T
2

2+γ + T )
1

ε0

)
≤ C̄1

(
∥F̃ (0)∥2

YkL
η̄

+
1

ε0
T

2
2+γ
)
, (10.69b)

for some absolute constant C̄1.
Thus, to ensure that the map T satisfies the property T : Jk

ζ1
→ Jk

ζ1
, for some ζ2, T with

ζ2 < ζ1, T ≤ 1 determined in Section 10.3.1, we first impose

∥F̃ (0)∥YkL
η̄
< ζ2, C̄1

(
ζ22 + T

2
2+γ

1

ε0
) <

ζ21
4
. (10.70)

From the above estimates, we obtain

∥F̃∥YkL
η̄

= ∥T (G̃)∥YkL
η̄
< 1

2ζ1, ∀ ∥G̃∥YkL
η̄
< ζ1. (10.71)

Estimates (10.69) and (10.71) imply the property T : Jk
ζ1

→ Jk
ζ1
.
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10.3. Contraction estimates and local existence. In this section, we first establish the con-

traction estimates and then choose small ζ, T so that the map T is contraction in YkL
η̄ .

Suppose G1, G2 ∈ Jk
ζ1
. Let F̃i be the solution to (10.12) associated with Gi: F̃i = T Gi. Denote

F̃∆ = F̃1 − F̃2, G∆ = G1 −G2, N∆ = N (G1, F̃1)−N (G2, F̃2).

Since the error term EM and Kk term in H̃ in (10.12) does not depend on Gi, the Ni-operators are

bilinear, we obtain the following equation for F̃∆ = F̃1 − F̃2:(
∂s + T + dM − 3

2
c̄v

)
F̃∆ =

1

εs

[
(N1 +N5)(ρ̄sM1/2

1 , F̃∆)
]
+

1

εs
N∆ + H̃∆,

where H̃∆ and N∆ are defined as

H̃∆ :=
1

εs
(N2 +N3 +N4 +N6)(ρ̄sM1/2

1 , G∆) +
1

εs
N (G∆, ρ̄sM1/2

1 ),

N∆ := N (G1, F̃1)−N (G2, F̃2) = N (G1 −G2, F̃1) +N (G2, F̃1 − F̃2)

= N (G∆, F̃1) +N (G2, F̃∆).

Below, we perform YkL
η̄ , Z

kL∞ energy estimates on F̃∆. We bound F̃∆ using Z,ZΛ-norms (10.44)

and bound F̃i, Gi, G∆ using Yη̄,YΛ,η̄ norms.
Applying Theorem 8.1 with k = kL, we obtain∣∣∣⟨N (G∆, F̃1) +N (G2, F̃∆), F̃∆⟩YkL

η̄

∣∣∣ ≤ C∥G∆∥YkL
η̄
∥F̃1∥YkL

Λ,η̄

∥F̃∆∥YkL
Λ,η̄

+ C̄N ∥G2∥YkL
η̄
∥F̃∆∥2YkL

Λ,η̄

.

Since the Zj
∞, Z

j
Λ,∞ norms (10.44) are the linear combinations of Yj

η̄ norms and are equivalent to

Yj
η̄ ,Y

j
Λ,η̄ norms, we further obtain

|⟨N (G∆, F̃1) +N (G2, F̃∆), F̃∆⟩ZkL∞
| ≤ C∥G∆∥YkL

η̄
∥F̃1∥YkL

Λ,η̄

∥F̃∆∥ZkL
Λ,∞

+ C̄N ∥G2∥YkL
η̄
∥F̃∆∥2

Z
kL
Λ,∞

.

The linear terms satisfy the same estimates as those in (10.45) with R = ∞ (the estimates in
the whole space) without the error terms, nonlinear terms and the g-forcing terms. Combining the
linear estimates and the above nonlinear estimates, for j = kL, we obtain

1

2

d

ds
∥F̃∆∥2

Z
kL∞

≤ C∥F̃∆∥2
Z

kL∞
− 1

2εs
∥F̃∆∥2

Z
kL
Λ,∞

+
C

εs

(
∥G∆∥2YkL

η̄

+ ∥G∆∥
4

γ+2

YkL
η̄

∥G∆∥
2γ
γ+2

YkL
Λ,η̄

)
+ Cεs

−1∥G∆∥YkL
η̄
∥F̃1∥YkL

Λ,η̄

∥F̃∆∥ZkL
Λ,∞

+ C̄N εs
−1∥G2∥YkL

η̄
∥F̃∆∥2

Z
kL
Λ,∞

.

Since C̄N ∥G2∥YkL
η̄

≤ C̄N ζ1 <
1
8 by (10.60a), using Young’s inequality similar to (10.61), we bound

1

2

d

ds
∥F̃∆∥2

Z
kL∞

≤ C∥F̃∆∥2
Z

kL∞
− 1

4εs
∥F̃∆∥2

Z
kL
Λ,∞

+
C

εs

(
∥G∆∥2YkL

η̄

+ ∥G∆∥
4

γ+2

YkL
η̄

∥G∆∥
2γ
γ+2

YkL
Λ,η̄

)
+
C

εs
∥G∆∥2YkL

η̄

∥F̃1∥2YkL
Λ,η̄

.

Note that F̃1(0) = F̃2(0) = F̃ (0), we obtain F̃∆(0) = 0. Applying Grönwall’s inequality similar to
(10.63)-(10.66), we obtain

∥F̃∆∥2
Z

kL∞
+

ˆ s

0

1

ετ
∥F̃∆∥ZkL

Λ,∞
dτ ≤ C eCs

( 1

ε0
s

2
γ+2 ∥G∆∥

4
γ+2

L∞(0,s;YkL
η̄ )

∥G∆∥
2γ
γ+2

L2(0,s;YkL
η̄ )

+

ˆ s

0

1

ετ
(∥F̃1∥2YkL

Λ,η̄

+ 1)∥G∆(τ)∥2YkL
η̄

)
.
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Since ∥f∥
Z

kL∞
≍ ∥f∥YkL

η̄
, ∥f∥

Z
kL
Λ,∞

≍ ∥f∥YkL
Λ,η̄

for any f , bounding the above upper bounds by ∥G̃∥YkL
η̄

(see (10.16)), and using 2
2+γ ≤ 1, for s ≤ T ≤ 1, we establish

∥F̃∆(s)∥2YkL
η̄

+

ˆ s

0

1

ετ
∥F̃∆∥YkL

Λ,η̄

dτ ≤ C
( 1

ε0
s

2
γ+2 +

ˆ s

0

1

ετ
∥F̃1∥2YkL

Λ,η̄

)
∥G∆∥2YkL

η̄

.

Taking supremum over s ∈ [0, T ] and using estimate (10.69b), (10.71) on F̃1, we further prove

∥F̃∆(s)∥2YkL
η̄

≤ C̄2

(
∥F̃1(0)∥2YkL

η̄

+
1

ε0
T

2
2+γ

)
· ∥G∆∥2YkL

η̄

, (10.72)

for some absolute constant C̄2 independent of T, ε0.

10.3.1. Choosing ζ2, T . Recall ζ1 from (10.60a), and constants C̄1, C̄2 from (10.69b) and (10.72).
We choose ζ2 and T > 0 as:

ζ2 = C̄3ζ1, T (ε0)
2

2+γ = min{C̄2
3ε0ζ

2
1 , 1} > 0, (10.73a)

with some absolute constant C̄3 small enough such that

C̄3 < 1, (C̄1 + C̄2)(ζ
2
2 +

1

ε0
T

2
2+γ ) ≤ 2C̄2

3ζ
2
1 (C̄1 + C̄2) < min

{
1

4
ζ21 ,

1

4

}
. (10.73b)

For initial data F̃ (0) ∈ Yk
η̄ with ∥F̃ (0)∥YkL

η̄
< ζ2, the above parameters imply (10.70) and the

estimates (10.71). For any G1, G2 ∈ Jk
ζ1
, estimates (10.72) and (10.73) imply

∥T (G1)− T (G2)∥2YkL
η̄

≤ C̄2(∥F̃ (0)∥2YkL
η̄

+
1

ε0
T

2
2+γ )∥G1 −G2∥2YkL

η̄

<
1

4
∥G1 −G2∥2YkL

η̄

.

Thus T is a contraction mapping in JkL
ζ1
.

Using the Banach fixed point theorem with the map T in the space JkL
ζ1
, we construct a unique

fixed point F̃ = T (F̃ ) , which solves the nonlinear equations (10.1). We prove the existence and

uniqueness of local-in-time solution in Theorem 10.1. Moreover, since F̃ satisfies the estimates

(10.69a) with j = kL for s ≤ T < 1 and F̃ ∈ JkL
ζ1
, we prove (10.6).

Energy estimates. Since F̃ = T (F̃ ), it satisfies the energy estimates in (10.69) with G̃ = F̃

provided F̃ ∈ Jk
ζ1
. In particular, for j ≥ kL, j ≤ k, using (10.69a), we obtain

∥F̃ (s)∥2Yj
η̄
+

ˆ s

0

1

ετ
∥F̃∥2Yj

Λ,η̄

≤ Cj e
Cjs
(
∥F̃ (0)∥2Yj

η̄
+

ˆ s

0

1

ετ
(1j>kL∥F̃∥

2
Yj−1
Λ,η̄

+ 1)∥F̃∥2Yj
η̄
(τ)

+
1

ε0
∥F̃∥

4
γ+2

L2(0,s;Yj
η̄)
∥F̃∥

2γ
γ+2

L2(0,s;Yj
Λ,η̄)

+ s
)
,

(10.74)

Applying ε-Young’s inequality to ∥F̃∥
4

γ+2

L2(0,s;Yj
η̄)
∥F̃∥

2γ
γ+2

L2(0,s;Yj
Λ,η̄)

and using ε0 e
−Cs ≲ εs, we obtain

Cj e
Cjs

1

ε0
∥F̃∥

4
γ+2

L2(0,s;Yj
η̄)
∥F̃∥

2γ
γ+2

L2(0,s;Yj
Λ,η̄)

≤ 1

2

ˆ s

0

1

ετ
∥F̃ (τ)∥2Yj

Λ,η̄

+ Cj e
Cjs

ˆ s

0

1

ετ
∥F̃ (τ)∥2Yj

η̄
,

where Cj may change from line to line. We absorb the first term on the right hand side using the
dissipation on the left hand side of (10.74). Combining the above two estimates, we prove

∥F̃ (s)∥2Yj
η̄
+

ˆ s

0

1

ετ
∥F̃∥2Yj

Λ,η̄

≤ Cj e
Cjs
(
∥F̃ (0)∥2Yj

η̄
+

ˆ s

0

1

ετ
(1j>kL∥F̃∥

2
Yj−1
Λ,η̄

+ 1)∥F̃∥2Yj
η̄
(τ) + s

)
,

(10.75)

whenever F̃ ∈ L∞(0, s;Yk
η̄ ) ∩ L2(0, s;Yk

Λ,η̄).
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10.4. Continuation criterion. Below, we show that if

sup
s∈[0,T∗)

∥F̃ (s)∥YkL
η̄
< ζ2, (10.76)

we can extend the solution to (10.1) in L∞((0, T2),Yk
η̄ ) ∩ L2((0, T2),Yk

Λ,η̄) for some T2 > T∗.

Suppose (10.76) holds true. Firstly, we show that F̃ ∈ Yk
η̄. Since ζ2 < ζ1, F̃ satisfies the energy

estimates in (10.75). For j = kL, since 1j>kL = 0, using (10.76) and (10.75), we bound ∥F̃∥YkL
η̄

in

terms of F̃ (0) and s

∥F̃ (s)∥2Yj
η̄
+

ˆ s

0

1

ετ
∥F̃∥2Yj

Λ,η̄

≤ C eCs(∥F̃ (0)∥2Yj
η̄
+ ε−1

0 s). (10.77a)

For j > kL, applying Grönwall’s inequality to ∥F̃ (s)∥2
Yj
η̄

, we obtain

∥F̃ (s)∥2Yj
η̄
+

ˆ s

0

1

ετ
∥F̃ (τ)∥2Yj

Λ,η̄

≤ Cj exp
(
Cj e

Cjs

ˆ s

0

1

ετ
∥(F̃∥2Yj−1

Λ,η̄

+1)dτ
)
·
(
∥F̃ (0)∥2Yj

η̄
+s
)
. (10.77b)

For j = kL + 1, the right hand side is uniformly bounded for s < T∗ due to the estimate (10.77a)
with j = kL. Applying the above estimates inductively on j, we establish the uniform boundedness
for any j ≤ k :

sup
s∈(0,T∗)

∥F̃ (s)∥2Yj
η̄
+

ˆ s

0

1

ετ
∥F̃ (τ)∥2Yj

Λ,η̄

≤ C(j, T∗, ∥F̃ (0)∥Yj
η̄
). (10.77c)

Since F̃ (s1) ∈ Yk
η̄ and ∥F̃ (s1)∥YkL

η̄
< ζ2 for any s1 < T∗, we apply the fixed-point construction

in previous sections with initial data F̃ (s1) and extend the solution in Jk
ζ1

to s ∈ [s1, s1 + T (s1))

with T (s1) ≥ C̄4min{εs1 , 1}
γ+1
2 chosen in (10.73), where C̄4 is some absolute constant. Note that

we need to change ε0 in (10.73) to εs1 due to the change of initial time. Since

lim
s1→(T∗)−

s1 + C̄4min{εs1 , 1}
γ+1
2 > T∗,

choosing s1 close to T∗ so that s1 + T (s1) > T∗, we extend the solution beyond T∗. We complete
the proof of the continuation criterion. We complete the proof of Theorem 10.1.

10.5. Local existence of solution to the Landau equation. Consider F = M+M1/2
1 F̃ with

initial data F̃ (0) satisfying (10.5) and F (0, X, V ) > 0. Using Theorem 10.1 with g = 0, we construct

a local solution F̃ to (10.1) with g = 0. Equation (10.1) with g = 0 for F̃ is equivalent to (2.2) for

F = M +M1/2
1 F̃ . We obtain a local solution to (2.2) with F̃ ∈ L∞([0, T ],Yk

η̄ ) ∩ L2([0, T ],Yk
Λ,η̄).

Moreover, the solution satisfies (10.6) and the continuation criterion (10.7).

Gaussian lower bound. Below, we prove the positivity of F . Since ζ1 < ζ0, using F = M +

M1/2
1 F̃ , Lemma 10.5, and Lemma 5.1, we obtain

C1Σ ⪯ 1

2
A[M] ⪯ A[F ] ⪯ C2Σ (10.78)

for some C1, C2 > 0, where Σ is defined in (5.1). Using (5.3) with N = 1, i = 2, f = ρ̄sM1/2
1 + F̃ ,

the estimate (10.26), and ζ0 < 1, we obtain

|∇2
VA[M+M1/2

1 F̃ | ≲ C̄γ
s ⟨V̊ ⟩γ∥ρ̄sM1/2

1 + F̃∥L2(V ) ≲ C̄γ
s ⟨V̊ ⟩γ(C̄3

s + C̄3
s) ≲ C̄γ+3

s ⟨V̊ ⟩γ . (10.79)

We can treat (2.2), (1.2) as a linear parabolic equation with the following operator

LF g := (∂s + T )g − εs
−1(A(F ) : ∇2

V g − divV (divV A(F )) · g),
T g = (c̄xX · ∇X + c̄vV · ∇X + cvV · ∇V )g.

(10.80)
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Below, we construct a barrier function H > 0 and show that F − CH ≥ 0 for some C ≥ 0.

Barrier function. Recall M = µ(V̊ ) = exp(−κ2|V̊ |2) and M1 form (2.17) and (2.16). Let
l ∈ [0, 100], b > 0, a ≥ 1 be parameters to be chosen. 46 We construct the following barrier function

Hl,a,b = e−b·εs−1⟨X⟩−lMa = e−b·εs−1⟨X⟩−l exp(−aκ2|V̊ |2), (10.81)

where we recall εs = ε0 e
−ωs from (2.43).

Next, we show that LFH ≤ − b
2ωεs

−1Hl,a,b for some a, b large enough. A direct calculation yields

LFHl,a,b := e−bεs−1⟨X⟩−l(∂s + T )Ma︸ ︷︷ ︸
:=I1

+ ⟨X⟩−lMa∂s e
−bεs−1︸ ︷︷ ︸

:=I2

+e−bεs−1 MaT ⟨X⟩−l︸ ︷︷ ︸
:=I3

−εs−1 e−bεs−1⟨X⟩−l(A[F ] : ∇2
V Ma − divV (divV A(F )) · Ma)︸ ︷︷ ︸
:=II

.

Recall the function class F−r from Definition C.1. Using (A.1) and Lemma C.9, we obtain

|I1| = a| e−bεs−1⟨X⟩−lMa−1(∂s + T )M| = a| e−bεs−1⟨X⟩−lMa−1EM|

≲ a e−bεs−1⟨X⟩−l⟨X⟩−r⟨V̊ ⟩3Ma ≲ a⟨X⟩−r⟨V̊ ⟩3Hl,a,b.

For I2, from (2.43), we obtain ∂sεs
−1 = ωεs

−1 and

I2 = ⟨X⟩−lMa · (−bωεs−1) e−bεs−1
= −bωεs−1Hl,a,b.

For I3, using V̊ = V−Ū
C̄s

, |V | ≲ C̄s⟨V̊ ⟩, and l ≤ 100, we obtain

|I3| = | e−bεs−1 Ma(c̄xX · ∇X + V · ∇X)⟨X⟩−l| ≲ | e−bεs−1 Ma(⟨X⟩−l + |V |⟨X⟩−l−1)|

≲ | e−bεs−1 Ma⟨X⟩−l(1 + C̄s⟨X⟩−1⟨V̊ ⟩)| ≲ (1 + C̄s⟨X⟩−1⟨V̊ ⟩)Hl,a,b.

For the collision part, since Ma = exp(−κ2a|V̊ |2) = exp(−κ2a |V−Ū|2
C̄2
s

), we yield

∂ViVjMa = 4a2κ22C̄
−2
s V̊iV̊jMa − 2aκ2C̄

−2
s δijMa.

Using (10.78), (10.79), a ≥ 1, and the above calculation on ∇2
V Ma, we yield

A[F ] : ∇2
V Ma − divV (divV A[F ]) · Ma

≥
(
C̄γ+5
s · C1a

2C̄−2
s ⟨V̊ ⟩γ |V̊ |2 − C̄γ+5

s · C2aC̄
−2
s ⟨V̊ ⟩γ+2 − C3C̄

γ+3
s ⟨V̊ ⟩γ

)
Ma

≥ C̄γ+3
s (C1a

2|V̊ |2⟨V̊ ⟩γ − C4a⟨V̊ ⟩γ+2)Ma,

for some absolute constant Ci. Thus, we estimate II as

II ≤ −εs−1 e−bεs−1⟨X⟩−lC̄γ+3
s (C1a

2|V̊ |2⟨V̊ ⟩γ − C4a⟨V̊ ⟩γ+2)Ma

= C̄γ+3
s εs

−1(−C1a
2|V̊ |2⟨V̊ ⟩γ + C4a⟨V̊ ⟩γ+2)Hl,a,b.

Combining the above estimates, we prove

LFHl,a,b ≤
(
C + CC̄s⟨X⟩−1⟨V̊ ⟩+ Ca⟨X⟩−r⟨V̊ ⟩3 − bωεs

−1

+ εs
−1C̄γ+3

s (−C1a
2|V̊ |2⟨V̊ ⟩γ + C4a⟨V̊ ⟩γ+2)

)
Hl,a,b.

Using Lemma 6.1, we obtain

LFHl,a,b ≤
(
C5 + C5C̄

γ+3
s ⟨V̊ ⟩γ+2 − bωεs

−1 + εs
−1C̄γ+3

s (−C1a
2|V̊ |2⟨V̊ ⟩γ + C4a⟨V̊ ⟩γ+2)

)
Hl,a,b.

46We impose an upper bound for l so that we do not need to track constant depending on l.
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There exist absolute constants a∗, C̄ large enough, such that for any

a ≥ a∗ > max

{
2C4

C1
, 1

}
, b ≥ C̄a2, (10.82)

using εs
−1 ≳ 1 and |V̊ |2 ≥ 1

2⟨V̊ ⟩2 for |V̊ | ≳ 1, we obtain

C5 + εs
−1(−C1a

2|V̊ |2⟨V̊ ⟩γ + C4a⟨V̊ ⟩γ+2) ≤ εs
−1(−C1

2
a2 + C4a)⟨V̊ ⟩γ+2 +

1

3
bωεs

−1 ≤ 1

3
bωεs

−1.

By further requiring a∗ large in (10.82), and using C̄s ≲ 1, we prove

LFHl,a,b ≤ (C5 +
1

3
bωεs

−1 − bωεs
−1)Hl,a,b ≤ −1

2
bωεs

−1Hl,a,b. (10.83)

uniformly for any a, b satisfying (10.82), and l ∈ [0, 100]. Using LFF = 0 and (10.83), for any
C ≥ 0, we obtain

LF (F − CHl,a,b) ≥ 1
2bCωεs

−1. (10.84)

Decay at infinity. Using (B.8) with η ⇝ η̄ = −3 + 6(r − 1), (10.6) and kL ≥ 2d, we obtain

F (s,X, V ) ≥ M− |F̃ |M1/2
1 ≥ µ(V̊ )− C|F̃ |C̄−3/2

s µ(V̊ )1/2

≥ −CC̄−3
s ⟨X⟩−

η̄+3
2 µ(V̊ )1/2∥F̃∥YkL

η̄
≥ −CC̄−3

s ⟨X⟩−3(r−1)µ(V̊ )1/2.

For Hl,a,b (10.81), since a ≥ 1, we have

Hl,a,b(s,X, V ) ≤ ⟨X⟩−lµ(V̊ )a ≤ ⟨X⟩−lµ(V̊ ).

When l > 0, since C̄s ≳s 1, µ(V̊ ) → 0 as |V − Ū| → ∞, and |Ū(X)| → 0, ⟨X⟩−3(r−1) → 0 as
|X| → ∞ (see (3.1a)), we obtain

F (s,X, V ) ≥ −c1(R), |H(s,X, V )| ≤ cl(R), for |(X,V )| ≤ R, (10.85)

with c1(R), cl(R) > 0 and c1(R), cl(R) → 0 as R → ∞, uniformly in s ∈ [0, T ]. For initial data

satisfying (10.9), we obtain ψ := F − c ebε
−1
0 Hl,a,b|s=0 > 0. Applying the maximum principle to ψ

in the domain ΩR = {(s,X, V ) : s ∈ [0, T ], |(X,V )| ≤ R}, we prove

ψ(s,X, V ) = (F − c ebε
−1
0 Hl,a,b)(s,X, V ) ≥ −c1(R)− c ebε

−1
0 ·cl(R), ∀(s,X, V ) ∈ ΩR.

Taking R→ ∞, we prove ψ(s,X, V ) ≥ 0 and obtain (10.10).
When l = 0, under the assumption (10.10), since Hl,a,b is decreasing in l (10.81), we have

F − c ebε
−1
0 Hq,a,b|s=0 ≥ F − c ebε

−1
0 H0,a,b|s=0 > 0, ∀ q > 0.

Since (10.84) holds for any l ∈ [0, 100], applying the maximum principle to F − c ebε
−1
0 Hq,a,b and

then taking q → 0+, we prove F − c ebε
−1
0 H0,a,b ≥ 0. We complete the proof of Proposition 10.2.

Appendix A. Derivation of the linearized Euler equations and error estimate

In this appendix, we estimate the macro-error of the profile Eρ, EU, EP , EC defined in (2.18), and
derive the linearized Euler equations (3.11) from (2.23).
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A.1. Estimate of the macro-error. In this section, we estimate the macro-error Eρ, EU, EP , EC
defined in (2.18). First, we recall the definitions from (2.18)

EM = (∂s + c̄xX · ∇X + c̄xV · ∇V + V · ∇X)M,

Eρ = C̄−3
s ⟨EM, 1⟩V , EU = C̄−4

s ⟨EM, V − Ū⟩V , EP = C̄−5
s

〈
EM,

1

3
|V − Ū|2

〉
V

,
(A.1a)

and

EC = C̄−1
s

(
[∂s + (c̄xX + Ū) · ∇]C̄s +

1

3
C̄s(∇ · Ū)− c̄vC̄s

)
. (A.1b)

Using the derivations (2.6) and ∂sŪ = 0, we obtain the following formulas

Eρ = C̄−3
s

(
[∂s + (c̄xX + Ū) · ∇]ρ̄s + ρ̄s(∇ ·U)− 3c̄vρ̄s

)
= [∂s + (c̄xX + Ū) · ∇] log ρ̄s + (∇ · Ū)− 3c̄v = 3EC,

EU = C̄−4
s (⟨EM, V ⟩V − Ū⟨EM, 1⟩V )

= C̄−1
s

(
(c̄xX + Ū) · ∇Ū− c̄vŪ+ ρ̄−1

s ∇P̄s

)
= C̄−1

s

(
(c̄xX + Ū) · ∇Ū− c̄vŪ+ 3C̄s∇C̄s

)
,

EP = C̄−5
s

(1
3
(⟨EM, |V |2⟩ − 2Ū · ⟨EM, V ⟩+ |Ū|2⟨EM, 1⟩)

)
= C̄−5

s

(
[∂s + (c̄xX + Ū) · ∇]P̄s + κP̄s(∇ · Ū)− 5c̄vP̄s

)
=

1

κ
[∂s + (c̄xX + Ū) · ∇] log P̄s + (∇ · Ū)− 5

κ
c̄v = Eρ = 3EC.

(A.1c)

Here we used ρ̄s = C̄3
s and Ps =

1
κ C̄

5
s in deducing Eρ = EP = 3EC.

Using the equation of Ū from (2.6b), ρ̄ = C̄3 and P̄ = 1
κ C̄

5 from (2.12c), we obtain

(c̄xX + Ū) · ∇Ū− c̄vŪ = −ρ̄−1∇P̄ = −C̄−3 · ∇
(
3

5
C̄5

)
= −3C̄∇C̄. (A.2a)

Similarly, we obtain ρ̄−1
s ∇P̄s = 3C̄s∇C̄s. Combining these two estimates, we obtain

EU = C̄−1
s (−3C̄∇C̄+ 3C̄s∇C̄s) =

3

2
C̄−1
s ∇(C̄2

s − C̄2). (A.2b)

Lemma A.1 (Cut-off error). Let EC, EU, EP , Eρ be defined in (2.18) (or (A.1)). We have

Eρ = EP = 3EC. (A.3)

For k ≥ 0, we have the following estimates of EC and EU

|∇kEC| ≲k ⟨X⟩−r−k1{|X|≥Rs}, (A.4)

|∇kEU| ≲k ⟨X⟩−r−k1{|X|≥Rs}. (A.5)

Recall the X -norm from (4.6). For any k ≥ 0, η ≤ η̄ = −3 + 6(r − 1), and E = EU, EC, EP , or Eρ,
we have

∥C̄3
sE∥Xk

η
≲k,η Rs

η−η̄
2

−r ≲k,η Rs
−r. (A.6)

Proof of Lemma A.1 . The identity (A.3) follows from (A.1c).



119

Note that (Ū, C̄) solves (2.9) precisely. Since C̄ = C̄s in {|X| ≤ Rs}, the errors are zero inside
the ball {|X| ≤ Rs}. Subtract (2.9) from (A.1b), we have

C̄sEC =

[
∂s + (c̄xX + Ū) · ∇ − c̄v +

1

3
∇ · Ū

]
(C̄s − C̄)

=

[
∂s + (c̄xX + Ū) · ∇ − c̄v +

1

3
∇ · Ū

]
[(Rs

−r+1 − C̄)(1− χRs)]

= (1− χRs)(∂s − c̄v +
1

3
∇ · Ū)Rs

−r+1 − (Rs
−r+1 − C̄s)

[
∂s + (c̄xX + Ū) · ∇

]
χRs .

Within the first term, due to our choice of cut-off function, it holds that

(∂s − c̄v)Rs
−r+1 = [(−r + 1)c̄x − c̄v]Rs

−r+1 = 0.

There is also cancellation on the second term:

(∂s + c̄xX · ∇)χRs =

[
− X

Rs
2∂sRs +

1

Rs
c̄xX

]
· ∇χ = 0.

With these cancellations, we have

C̄sEC =
1

3
(1− χRs)(∇ · Ū)Rs

−r+1 − (Rs
−r+1 − C̄s)Ū · ∇χRs .

To prove (A.4), We take a multi-index α, and compute

∂αX(C̄sEC) = Rs
−r+1∂αX

[
1

3
(1− χRs)(∇ · Ū)

]
− ∂αX

[
(Rs

−r+1 − C̄s)Ū · ∇χRs

]
. (A.7)

Note that for any multi-index α, it holds that

|∂αXχRs | ≲ Rs
−|α||∇|α|χ| ≲ ⟨X⟩−|α|, |∂αX∇ · Ū| ≲ ⟨X⟩−r−|α|.

We used that X ≈ Rs in the support of ∇χ. By Leibniz rule we know

∂αX
[
(1− χRs)(∇ · Ū)

]
≲ ⟨X⟩−r−|α|. (A.8)

Similarly, because

|∂αX(Rs
−r+1 − C̄s)| ≲ C̄s⟨X⟩−|α|, |∂αXŪ| ≲ ⟨X⟩−r+1−|α|, |∂αX∇χRs | ≲ ⟨X⟩−|α|−1,

by Leibniz rule we conclude

|∂αX
[
(Rs

−r+1 − C̄s)Ū · ∇χRs

]
| ≲ C̄s⟨X⟩−r−|α|. (A.9)

Combining (A.8), (A.9) with (A.7) and Rs
−r+1 ≲ C̄s, we have shown

∂αX(C̄sEC) ≲ C̄s⟨X⟩−r−|α|.

This proves (A.4) with k = 0. Using Leibniz rule again and (3.3a), (A.4) follows by induction:

C̄s|∇kEC| ≲ |∇k(C̄sEC)|+
∑
k′<k

|∇k−k′C̄s||∇k′EC|

≲ C̄s⟨X⟩−r−k + ⟨X⟩−r+1−(k−k′)⟨X⟩−r−k′ ≲ C̄s⟨X⟩−r−k.
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Proof of (A.5) and (A.6). As for (A.5), using (A.1c) and (A.2b), we directly compute

|∇k(C̄sEU)| ≲ |∇k(C̄s∇C̄s − C̄∇C̄)| ≲ C̄s⟨X⟩−r−k + C̄⟨X⟩−r−k ≲ C̄s⟨X⟩−r−k.

(A.5) follows by the same Leibniz rule and induction.
Finally, for E = EU or EC and any k ≥ 0, by Leibniz rule and (3.3a), (A.4), (A.5), we obtain

|⟨X⟩k∇k(C̄3
sE)| ≲k ⟨X⟩kC̄3

s⟨X⟩−r−k1{|X|≥Rs} ≲k Rs
−3(r−1)⟨X⟩−r1{|X|≥Rs}.

Therefore, using the definition of X -norm (4.6) and the above estimate, we obtain

∥C̄3
sE∥Xk

η
≲k,η ∥⟨X⟩

η
2
+k∇k(C̄3

sE)∥L2 + ∥⟨X⟩
η
2 (C̄3

sE)∥L2

≲k,η Rs
−3(r−1)

( ˆ
{|X|≥Rs}

⟨X⟩−2r+ηdX
) 1

2
≲k,η Rs

−3(r−1)+−2r+η+3
2 = Rs

η−η̄
2

−r.

For η ≤ η̄, since −2r+ η ≤ −2r+ η̄ = 4r− 9 < −3 by Remark 2.5, the above integral is integrable.
Given η ≤ η̄, (A.6) follows directly. □

A.2. Derivation of the linearized Euler equations. We need the following basic results for
the orthogonality of certain polynomials in Gaussian weighted L2(V ) space.

Lemma A.2 (Orthogonality). Recall the basis Φi from (2.20) and M1 = C̄−3
s µ(V̊ ) from (2.17),

where µ(x) =
(

κ
2π

)3/2
exp

(
−κ|x|2

2

)
is a Gaussian with variance 1

κ = 3
5 given in (2.16). Define

A(V̊ ) =

(
V̊ ⊗ V̊ − 1

3
|V̊ |2Id

)
M1/2

1 , b(V̊ ) =
(
|V̊ |2 − 3

)
V̊M1/2

1 .

Then Aij ,bj ⊥ M1/2
1 p(V̊ ) for any p(V̊ ) ∈ Span{1, V̊i, |V̊ |2} in L2(V ) for all 1 ≤ i, j ≤ 3. In

particular, Aij ,bj ⊥ Φk in L2(V ) for all 1 ≤ i, j ≤ 3 and 0 ≤ k ≤ 4.

The proof follows standard computations of the normal distribution and is therefore omitted.
We refer to [42, Eq. (3.64)], where a similar result is stated for the standard Gaussian with variance
1. 47

Recall the linearized equation (2.23):

(∂s + T )(M1/2
1 F̃ ) =

1

εs
Q(M+M1/2

1 F̃ ,M+M1/2
1 F̃ )− EM.

Let p = p(V̊ ) ∈ Span{1, V̊i, |V̊ |2} be a polynomial of V̊ . Then it is orthogonal to Q. Taking inner
product with p on both sides, we obtainˆ

(∂s + T )(M1/2
1 F̃ ) · p dV = −⟨EM, p⟩V . (A.10)

We separate F̃ = F̃M + F̃m. By product rule, we haveˆ
(∂s + T )(M1/2

1 F̃M ) · p dV =

ˆ
(∂s + T )(pM1/2

1 F̃M )dV︸ ︷︷ ︸
I

−
ˆ
(∇p)(V̊ ) · (∂s + T )V̊ · M1/2

1 F̃MdV︸ ︷︷ ︸
II

.

Note that for any function g we have

c̄vV · ∇V g = c̄v divV (gV )− 3c̄vg,

V · ∇Xg = Ū · ∇Xg + (V − Ū) · ∇Xg = Ū · ∇Xg + (div Ū)g + divX [(V − Ū)g].

47In our case, the variance is 1
κ
= 3

5
, which leads to the term |V̊ |2 − 3 in b(V̊ ) instead of |V̊ |2 − 5 in the unit-variance

case [42, Eq. (3.64)]. Since the matrix V̊ ⊗ V̊ − 1
3
|V̊ |2Id in A(V̊ ) is homogeneous in V̊ , the change of variance does

not affect the orthogonality Aij ⊥ Φk in L2(V ).
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Recall that V − Ū = C̄sV̊ . Therefore

(∂s + T )g = [∂s + (c̄xX + Ū) · ∇X + div Ū− 3c̄v]g + divV [c̄vV g] + divX(C̄sV̊ g).

Apply this to g ⇝ pM1/2
1 F̃M and integrate over V , we obtain

I =

ˆ
(∂s + T )(pM1/2

1 F̃M )dV

= [∂s + (c̄xX + Ū) · ∇X + div Ū− 3c̄v]

ˆ
pM1/2

1 F̃MdV + divX

(
C̄s

ˆ
pV̊M1/2

1 F̃MdV

)
.

For II, we use (C.7)

(∂s + T )V̊ = −
(
EU − 3∇C̄s + V̊ · ∇Ū

)
−
(
EC − 1

3
∇ · Ū+ V̊ · ∇C̄s

)
V̊ .

Therefore

II = (EU − 3∇C̄s) ·
ˆ

∇p · M1/2
1 F̃MdV +

(
EC − 1

3
∇ · Ū

)ˆ
∇p · V̊M1/2

1 F̃MdV

+

ˆ
(V̊ · ∇Ū) · ∇p · M1/2

1 F̃MdV +

ˆ
(V̊ · ∇C̄s)∇p · V̊M1/2

1 F̃MdV.

Recall F̃ = F̃m + F̃M . The terms I, II account for the contribution from F̃M . (A.10) becomes

I + II +
〈
(∂s + T )(M1/2

1 F̃m), p
〉
V︸ ︷︷ ︸

III

= −⟨EM, p⟩V . (A.11)

Since M1/2
1 F̃m is orthogonal to 1, V̊ , |V̊ |2, and since the scaling fields X · ∇X , V · ∇V and ∂s

preserve the orthogonality, which follows from (C.25), using the notations Ii from (2.22c), we
obtain〈

(∂s + T )(M1/2
1 F̃m),

(
1, V̊ ,

1

3
|V̊ |2

)〉
V

=

〈
V · ∇X(M1/2

1 F̃m),

(
1, V̊ ,

1

3
|V̊ |2

)〉
V

=
(
0, I1(F̃m), I2(F̃m)

)
.

(A.12)

Equation of ρ̃. Set p(V̊ ) = 1, then ∇p = 0, II = 0. Recall ⟨EM, 1⟩V = C̄3
sEρ from (A.1). Using

(A.11) and (A.12) (the first component), we obtain the equation of ρ̃ in (3.9)

[∂s + (c̄xX + Ū) · ∇X + div Ū− 3c̄v]ρ̃+ divX(C̄sŨ) = −C̄3
sEρ.

Equation of Ũ. Now let p(V̊ ) = V̊ , then ∇p = Id. We first compute I:

I = [∂s + (c̄xX + Ū) · ∇X + div Ū− 3c̄v]Ũ+ divX

(
C̄s

ˆ
V̊ ⊗ V̊M1/2

1 F̃MdV

)
.

Note that by orthogonality (see Lemma A.2)ˆ (
V̊ ⊗ V̊ − 1

3
|V̊ |2Id

)
M1/2

1 F̃MdV = 0.

Therefore we have ˆ
V̊ ⊗ V̊M1/2

1 F̃MdV =

(ˆ
|V̊ |2

3
M1/2

1 F̃MdV

)
Id = P̃ · Id,

and

I = [∂s + (c̄xX + Ū) · ∇X + div Ū− 3c̄v]Ũ+∇X(C̄sP̃ ).
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Next, we compute II. Because ∇p = Id, we have

II =

ˆ
(∂s + T )V̊M1/2

1 F̃MdV =
(
EU − 3∇C̄s

)
ρ̃+

(
EC − 1

3
∇ · Ū

)
Ũ

+ Ũ · ∇Ū+∇C̄s :

ˆ
V̊ ⊗ V̊M1/2

1 F̃MdV

=
(
EU − 3∇C̄s

)
ρ̃+

(
EC − 1

3
∇ · Ū

)
Ũ+ Ũ · ∇Ū+ P̃∇C̄s.

Recall that ⟨EM, V̊ ⟩ = C̄3
sEU from (A.1). Combining I, II, and the derivation of III in (A.12)

(the second component), we derive:

[∂s + (c̄xX + Ū) · ∇X + div Ū− 3c̄v]Ũ+∇X(C̄sP̃ )

+
(
EU − 3∇C̄s

)
ρ̃+

(
EC − 1

3
∇ · Ū

)
Ũ+ Ũ · ∇Ū+ P̃∇C̄s + I1(F̃m) = −C̄3

sEU.

Recall B̃ = ρ̃− P̃ . Using ρ̃ = B̃ + P̃ and (A.2b), we obtain

(EU − 3∇C̄s)ρ̃ = (3∇C̄s − 3C̄−1
s C̄∇C̄− 3∇C̄s)ρ̃ = −3C̄−1

s C̄∇C̄(B̃ + P̃ ).

Collecting similar terms, we derive the Ũ-equation in (3.9).

Equation of P̃ . Now set p(V̊ ) = 1
3 |V̊ |2, then (∇p)(V̊ ) = 2

3 V̊ . We compute I:

I =[∂s + (c̄xX + Ū) · ∇X + div Ū− 3c̄v]P̃ + divX

(
C̄s

ˆ
1

3
|V̊ |2V̊M1/2

1 F̃MdV

)
.

Note that (|V̊ |2 − 3)V̊M1/2
1 ⊥ Φi by Lemma A.2, soˆ

1

3
|V̊ |2V̊M1/2

1 F̃MdV =

ˆ
V̊M1/2

1 F̃MdV = Ũ.

Therefore

I = [∂s + (c̄xX + Ū) · ∇X + div Ū− 3c̄v]P̃ + divX(C̄sŨ).

Next, we compute II. Using ∇p = 2
3 V̊ and

´
(|V̊ |2 − 3)V̊M1/2

1 F̃MdV = 0 by Lemma A.2, we have

II =
2

3

(
EU − 3∇C̄s

)
·
ˆ
V̊M1/2

1 F̃MdV +
2

3

(
EC − 1

3
∇ · Ū

)ˆ
|V̊ |2M1/2

1 F̃MdV

+
2

3

ˆ
(V̊ · ∇Ū) · V̊M1/2

1 F̃MdV +
2

3

ˆ
(V̊ · ∇C̄s)|V̊ |2M1/2

1 F̃MdV

=
2

3

(
EU − 3∇C̄s

)
· Ũ+ 2

(
EC − 1

3
∇ · Ū

)
P̃ +

2

3
P̃ div Ū+ 2∇C̄s · Ũ

=
2

3
EU · Ũ+ 2ECP̃ .

Recall that ⟨EM, 13 |V̊ |2⟩ = C̄3
sEP from (A.1). Combining I, II, and the derivation of III in

(A.12) (the third component), we derive the equation of P̃ in (3.9).

[∂s + (c̄xX + Ū) · ∇X + div Ū− 3c̄v]P̃ + divX(C̄sŨ) +
2

3
EU · Ũ+ 2ECP̃ + I2(F̃m) = −C̄3

sEP .

Equation of B̃. Recall B̃ = ρ̃− P̃ and Eρ = EP from Lemma A.1. Taking the difference between

the equation of ρ̃ and that of P̃ , we derive the equation of B̃ in (3.9):

[∂s + (c̄xX + Ū) · ∇X + div Ū− 3c̄v]B̃ − 2

3
EU · Ũ− 2ECP̃ − I2(F̃m) = −C̄3

s(Eρ − EP ) = 0.
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Appendix B. Functional Inequalities

The goal of this appendix is to gather a few functional analytic bounds that are used throughout
the paper. Lemmas B.1-B.3 were established in [23, Appendix C], and we refer there for details.

First, we record a Leibniz rule for radially symmetric vectors/scalars.

Lemma B.1 (Lemma A.4 [9]). Let f, g be radially symmetric scalar functions over Rd and let
F = FeR = (F1, .., Fd) and G = GeR = (G1, .., Gd) be radially symmetric vector fields over Rd.
For integers m ≥ 1 we have

|∆m(F · ∇Gi)− F · ∇∆mGi − 2m∂ξF ∆mGi| ≲m

∑
1≤j≤2m

|∇2m+1−jF| · |∇jGi|,

|∆m(f∇g)− f∇∆mg − 2m∇f∆mg| ≲m

∑
1≤j≤2m

|∇2m+1−jf | · |∇jg|,

|∆m(F · ∇g)− F · ∇∆mg − 2m∂ξF ∆mg| ≲m

∑
1≤j≤2m

|∇2m+1−jF| · |∇jg|,

|∆m(f div(G)− f div(∆mG)− 2m∇f ·∆mG| ≲m

∑
1≤j≤2m

|∇2m+1−jf | · |∇jG|,

whenever f, g, {Fi}di=1, {Gi}di=1 are sufficiently smooth.

Next, we focus on Gagliardo-Nirenberg-type interpolation bounds with weights. In all of the
following lemmas, we do not assume that the functions are radially symmetric.

Lemma B.2 (Lemma C.2 [23]). Let δ1 ∈ (0, 1] and δ2 ∈ R. For integers n ≥ 0 and sufficiently
smooth functions f on Rd, we denote

βn := 2nδ1 + δ2, In :=

ˆ
|∇nf(y)|2⟨y⟩βndy,

where as usual we let ⟨y⟩ = (1 + |y|2)1/2. Then, for n < m and for ν > 0, there exists a constant
Cν,n,m = C(ν, n,m, δ1, δ2, d) > 0 such that

In ≤ νIm + Cν,n,mI0. (B.1)

Lemma B.3. Let δ1 ∈ (0, 1], δ2 ∈ R, and define βn = 2nδ1 + δ2. Let ψn be a weight satisfying the
pointwise properties ψn(y) ≍n ⟨y⟩βn and |∇ψn(y)| ≲n ⟨y⟩βn−1. Then, for any ν > 0 and n ≥ 0,
there exists a constant Cν,n = C(ν, n, δ1, δ2, d) > 0 such that48ˆ

|∇2nf |2ψ2n ≤ (1 + ν)

ˆ
|∆nf |2ψ2n + Cν,n

ˆ
|f |2⟨y⟩β0 , (B.2a)

ˆ
|∇2n+1f |2ψ2n+1 ≤ (1 + ν)

ˆ
|∇∆nf |2ψ2n+1 + Cν,n

ˆ
|f |2⟨y⟩β0 , (B.2b)

for any function f on Rd which is sufficiently smooth and has suitable decay at infinity.

Proof. The inequality (B.2a) has been established in [23, Lemma C.3]. Below, we prove (B.2b).
We adopt the notation In from Lemma B.2. Denote

θn = βn+1 = 2nδ1 + (2δ1 + δ2), gn = ψn+1, In =

ˆ
|∇nf |2ψn. (B.3)

48Throughout the paper we denote by |∇kf | the Euclidean norm of the k-tensor ∇kf , namely, |∇kf | =

(
∑

|α|=k |∂
αf |2)1/2.
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From the assumption of (βn, ψn), (θn, gn) satisfies the same assumptions as those of (βn, ψn) in
Lemma B.3. Thus, for any ν > 0 applying (B.2a) with (f, ψn, βn)⇝ (∂if, gn, θn), we obtain

ˆ
|∇2n∂if |2g2n ≤ (1 + ν)

ˆ
|∆n∂if |2g2n + Cν,n

ˆ
|∂if |2⟨y⟩θ0 := J1,i + J2,i. (B.4)

For the second term, since θ0 = β1 and ψn(y) ≍n ⟨y⟩βn , for any ν1 > 0, applying Lemma B.2,
we obtain

J2,i ≤ ν1

ˆ
|∇2n+1f |2⟨y⟩β2n+1 + C(ν1, ν, n)

ˆ
f2⟨y⟩β0 ≤ Cnν1I2n+1 + C(ν, ν1, n)I0,

where Ij is defined in (B.3), and Cn is some constant depending on n. Recall g2n = ψ2n+1.
Combining the above two estimates and summing these estimates over i, we prove

I2n+1 =

ˆ
|∇2n+1f |2g2n ≤ (1 + ν)

ˆ
|∆n∇f |2g2n + Cnν1I2n+1 + C(ν, ν1, n)I0.

Since ν, ν1 > 0 are arbitrary parameters, taking ν1 small enough so that Cnν1 < 1, and then
rewriting the above inequality, we prove (B.2b). □

We record the following estimates for the functional spaces Xm
η defined in (4.6) and Ym

η defined
in (2.29). It is convenient to state estimates for a general dimension d, not just for d = 3. We recall
from Lemma 4.1 that the weights φm satisfy φm(y) ≍m ⟨y⟩m, and |∇φm(y)| ≲m φm−1(y).

Lemma B.4. Suppose that η ∈ [−100, 100].

(1) For any f ∈ X k
η , 0 ≤ i ≤ k − d, and X ∈ Rd, we have the pointwise estimate

⟨X⟩i|∇i
Xf(X)| ≲k ⟨X⟩−

η+d
2 ∥f∥Xk

η
. (B.5)

(2) Recall Dα,β = φ
|α|
1 C̄

|β|
s ∂αX∂

β
V from (2.24). Suppose that the weight ψ(X,V ) > 0 satisfies

|∂αXψ| ≲α ⟨X⟩−|α|ψ, |∂V ψ| ≲ C̄−1
s ψ. (B.6)

for any multi-indices α with |α| ≤ d.
For f : Rd × Rd → R and multi-indices α, β with |α|+ |β| ≤ k − d, we have

∥ψ(X, ·)1/2Dα,βf(X, ·)∥L2(V ) ≲α,β ⟨X⟩−
η+d
2

∑
|p|+|q|≤k

∥ψ(X,V )1/2⟨X⟩η/2Dp,qf∥L2(X,V ) (B.7a)

pointwise for X ∈ Rd. In particular, for α, β with |α|+ |β| ≤ k − d, we have

∥Dα,βf(X, ·)∥L2(V ) ≲k ⟨X⟩−
η+d
2 ∥f∥Yk

η
, (B.7b)

∥Λ(X, ·)1/2Dα,βf(X, ·)∥L2(V ) ≲k ⟨X⟩−
η+d
2 ∥f∥Yk

Λ,η
. (B.7c)

Moreover, we have the pointwise estimate

|f(X,V )| ≲ C̄
− d

2
s ∥D≤d

V f(X, ·)∥L2(V ) ≲ C̄
− d

2
s ⟨X⟩−

η+d
2 ∥f∥Y2d

η
. (B.8)

Result (1) is essentially the same as [23, Lemma C.4]. For completeness, we present the proof.

Proof. We first obtain a pointwise estimate of weighted derivatives of f . Consider the cone with
vertex at X extending towards infinity: Ω(X) := {z ∈ Rd : zjsgn(Xj) ≥ |Xj |, ∀1 ≤ j ≤ d}. For any
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fixed V , by integrating on rays extending to infinity, we have

I(X,V ) := ψ(X,V )⟨X⟩η+d|Dα,βf |2 = ψ(X,V )⟨X⟩η+d+2|α|C̄2β
s (∂αX∂

β
V f(X,V ))2

≲
ˆ
Y ∈Ω(X)

∣∣∣∂X1∂X2 ..∂Xd

(
ψ(X,V )⟨X⟩η+d+2|α|C̄2β

s ∂αX∂
β
V f(X,V )

)2∣∣∣dX (B.9)

≲
∑

|θ1|+|θ2|+|θ3|=d

ˆ
Y ∈Ω(X)

∣∣∣∂α+θ1
X ∂βV f · ∂α+θ2

X ∂βV f · ∂θ3X
(
ψ(X,V )⟨X⟩η+d+2|α|C̄2β

s

)∣∣∣dX.
Using the estimates of C̄s in (3.3a) and assumption (B.6) on ψ, we obtain

|∂θ3X (ψ(X,V )⟨X⟩η+d+2|α|C̄2β
s )| ≲α ψ(X,V )⟨X⟩η+d+2|α|−|θ3|C̄2β

s

=ψ(X,V )⟨X⟩η+2|α|+|θ1|+|θ2|C̄2β
s ≲α ψ(X,V )⟨X⟩ηφ2|α|+|θ1|+|θ2|

1 C̄2β
s .

Recall Dα,β = φ
|α|
1 C̄

|β|
s ∂αX∂

β
V from (2.24). Combining the above estimates and applying φ1 ≍ ⟨X⟩

from Lemma 4.1, we establish

I(X,V ) ≲
∑

|θ1|+|θ2|≤d

ˆ
Y ∈Ω(X)

|Dα+θ1,βf ·Dα+θ2,βf |ψ(X,V )⟨X⟩ηdX. (B.10)

Proof of (B.5). For function f independent of V , applying the above estimate with β = 0, ψ ≡ 1,
any α with |α| = k, and Cauchy–Schwarz inequality, we establish

⟨X⟩η+d+2|α|(∂αXf(X))2 = I(X) ≲
∑
p≤k

∥⟨X⟩η/2Dp
Xf∥

2
L2 .

Recall the X n
η norm from (4.6). Applying the interpolation in Lemma B.2 and Lemma B.3 with

ψn = φ2n
1 and βn = 2n+ η, we further obtain

⟨X⟩η+d+2|α|(∂αXf(X))2 ≲k ∥f∥2Xk
η
.

Multiplying ⟨X⟩−(η+d) on both sides of the above estimate, we prove (B.5).

Proof of (B.7a). Integrating (B.10) over V ∈ Rd, using Cauchy–Schwarz inequality, and |α|+ |β|+
|θ| ≤ k, we establish

ˆ
I(X,V )dV ≲

∑
|θ1|+|θ2|≤d

ˆ
Y ∈Ω(X)

|Dα+θ1,βf ·Dα+θ2,βf |ψ(X,V )⟨X⟩ηdXdV

≲
∑

|p|+|q|≤k

∥ψ(X,V )1/2⟨X⟩η/2Dp,qf∥2L2 .

Multiplying ⟨X⟩−(η+d) on both sides of the above estimate, we prove (B.7a).

Proof of (B.7b) and (B.7c). Recall the norm Yk
η from (2.29). Since ψ(X,V ) ≡ 1 satisfies assump-

tions in (B.6), using (B.7a) with ψ ≡ 1, we prove (B.7b).
Recall the norm Yk

Λ,η from (2.29). From estimate (C.19) in Lemma C.12, ψ(X,V ) = Λ(X,V ) =

C̄γ+3
s ⟨V̊ ⟩γ+2 satisfies the assumptions in (B.6). Using (B.7a) with ψ = Λ, we prove (B.7c).
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Proof of (B.8). The second inequality in (B.8) follows from (B.7b) with α = 0, |β| ≤ d. To prove
the first inequality, we fix X,V and introduce Ω(V ) := {z ∈ Rd : zjsgn(Vj) ≥ |Vj |, ∀1 ≤ j ≤ d}.
Following the argument in (B.9) and using Cauchy–Schwarz inequality, we estimate

C̄d
sf

2(X,V ) ≲
ˆ
Ω(V )

∣∣∣∂V1∂V2 ..∂Vd
(C̄d

sf
2(X,V ))

∣∣∣dV ≲ ∑
|θ1|+|θ2|=d

ˆ
|C̄|θ1|

s ∂θ1V f · C̄|θ2|
s ∂θ2V f |dV

≲ ∥D≤d
V f(X, ·)∥2L2(V ),

and prove the first inequality in (B.8).
We conclude the proof of Lemma B.4. □

Appendix C. Estimates of projections and related functions

In this appendix, we estimate the projections defined in (2.21) and their related functions.

C.1. Estimate functions of V̊ . To facilitate our proof, we introduce the following class of func-
tions with algebraic bound.

Definition C.1. We say a function f ∈ C∞((s0,∞) × R3) has good decay property if for any
multi-index α it satisfies

|∂αXf(s,X)| ≲α ⟨X⟩−|α|.

Denote F the class of functions with good decay property. It is straightforward to verify that F
forms an algebra. For η ∈ R we define Fη = ⟨X⟩ηF, then f ∈ Fη iff ∂αXf(X) ≲ ⟨X⟩η−|α| for all
multi-index α using simple induction. Note that Fη1 ·Fη2 ⊂ Fη1+η2 . Vector-valued function is said
to be of class Fη if each component is in Fη. By definition, we have F0 = F.

Lemma C.2. The following examples are in class Fη:

(1) Ū ∈ F−r+1, ∇C̄s ∈ F−r.
(2) C̄−1

s ∈ Fr−1.
(3) ∇ log C̄s ∈ F−1.

(4) C̄l
s∂

α
X C̄−l

s ∈ F−|α| for any l ∈ R and any multi-index α.

(5) C̄−l
s ∈ Fl(r−1) for any l > 0.

(6) φ1 ∈ F1.

Proof. (1) is a direct consequence of (3.1a) and (3.3a). We prove the rest.

(2) To see C̄−1
s ∈ Fr−1, we first prove

|C̄s∂
α
X C̄−1

s | ≲α ⟨X⟩−|α| (C.1)

inductively. (C.1) clearly holds for α = 0. Moreover, if (C.1) holds for any α′ ≺ α then

0 = ∂αX(C̄−1
s C̄s) = C̄s∂

α
X C̄−1

s +
∑
α′≺α

Cα
α′ · ∂α−α′

X C̄s · ∂α
′

X C̄−1
s

= C̄s∂
α
X C̄−1

s +
∑
α′≺α

Cα
α′ ·

∂α−α′

X C̄s

C̄s
· C̄s∂

α′
X C̄−1

s .

Note that |∂α−α′

X C̄s| ≲ ⟨X⟩−r+1−|α−α′| ≲ ⟨X⟩−|α|+|α′|C̄s, so (C.1) holds by the inductive as-
sumption. From (C.1) and the fact C̄s ≳ ⟨X⟩−r+1, we know

|∂αX C̄−1
s | ≲ C̄−1

s ⟨X⟩−|α| ≲ ⟨X⟩r−1−|α|,

so C̄−1
s ∈ Fr−1.

(3) ∇ log C̄s = C̄−1
s ∇C̄s which is in F−1 by the previous two conclusions.
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(4) We first prove

|C̄l
s∂

α
X C̄−l

s | ≲α,l ⟨X⟩−|α| ∀l ∈ R (C.2)

inductively. Again, it is true for α = 0. Suppose α = α′ + ei, then

C̄l
s∂

α
X C̄−l

s = C̄l
s∂

α′
X

[
C̄−l
s C̄l

s∂XiC̄
−l
s

]
= C̄l

s∂
α′
X

[
C̄−l
s · (−l)∂Xi log C̄s

]
= −l

∑
α′′⪯α′

Cα′
α′′ · C̄l

s∂
α′′
X C̄−l

s · ∂α′−α′′

X ∂Xi log C̄s.

If (C.2) holds for any α′′ ⪯ α′ ≺ α, then together with ∇ log C̄s ∈ F−1 we conclude

|C̄l
s∂

α
X C̄−l

s | ≲ ⟨X⟩−|α′′|⟨X⟩−|α′−α′′|−1 = ⟨X⟩−|α|,

so (C.2) is proved.
To prove (4), we need to show

∂βX(C̄l
s∂

α
X C̄−l

s ) ≲α,l,β ⟨X⟩−|α|−|β|. (C.3)

(C.2) proves the β = 0 case, and we now show (C.3) for β > 0 inductively. Suppose β = β′+ei,
then

∂βX(C̄l
s∂

α
X C̄−l

s ) = ∂β
′
[
∂XiC̄

l
s∂

α
X C̄−l

s + C̄l
s∂

α
X∂XiC̄

−l
s

]
= ∂β

′
[
l · ∂Xi log C̄s · C̄l

s∂
α
X C̄−l

s

]
+ ∂β

′

X (C̄l
s∂

α
X∂XiC̄

−l
s )

= l
∑

β′′⪯β′

Cβ′

β′′ · ∂β
′′

X ∂Xi log C̄s · ∂β
′−β′′

X C̄l
s∂

α
X C̄−l

s + ∂β
′
(C̄l

s∂
α
X∂XiC̄

−l
s ).

Therefore, if (C.3) holds for β′ and β′′, then it holds for β as well.
(5) When l > 0, by (C.2) we have

|∂αX C̄−l
s | ≲ C̄−l

s ⟨X⟩−|α| ≲ ⟨X⟩l(r−1)−|α|,

so C̄−l
s ∈ Fl(r−1).

(6) From Lemma 4.1 we see φ1 ∈ C∞(R3) is smooth and φ1(X) = C(1 + c3⟨X⟩) for |X| ≥ R2 + 1,
where C, c3, R2 are constants. Verification of the good decay property is straightforward.

□
This lemma enables us to derive the following corollary, which shows we can concatenate deriva-

tives up to lower order corrections.

Corollary C.3. Let f be a function of X,V . For multi-index α, β, α1, β1, we have

Dα1,β1Dα,βf −Dα1+α,β1+βf =
∑

α′≺α1+α
β′⪯β1+β

cα′,β′,α1,β1,α,βD
α′,β′

f

where cα′,β′,α1,β1,α,β ∈ F. With a slight abuse of notation, we can write

Dα1,β1Dα,βf −Dα1+α,β1+βf = cD≺(α1+α,β1+β)f,

where c is a class F tensor.

Proof. Since the weight does not depend on V , we have Dα,β+β1 = D0,β1Dα,β and

Dα1,β1Dα,βf = D0,β1Dα1,0Dα,βf, Dα1+α,β1+βf = D0,β1Dα1+α,βf.
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Thus we can assume β1 = 0 without loss of generality. By induction in |α1|, we only need to prove
the case |α1| = 1. Note that

Dei,0Dα,βf = Dei,0φ
|α|
1 C̄|β|

s ∂αX∂
β
V f = Dα+ei,βf +Dei,0 log(φ

|α|
1 C̄|β|

s ) ·Dα,βf.

We conclude the proof since Dei,0 log(φ
|α|
1 C̄

|β|
s ) ∈ F (see Lemma C.2 (3) and (6)). □

Definition C.4. We say p ∈ C∞((s0,∞)× R3 × R3) is a class F polynomial of V̊ if

p(s,X, V ) =
∑

|α|≤N

cα(t,X)V̊ α

with cα ∈ F and N ≥ 0. The smallest N is called the degree of p. We define class Fη polynomial
of V̊ similarly when the coefficients are of class Fη.

Lemma C.5 (Estimate of V̊ ). For any multi-index α, we have Dα,0V̊i is a class F polynomial

of V̊ with degree at most 1. In particular,

∂αX V̊ = cα,1V̊ + cα,2, cα,1, cα,2 ∈ F−|α|. (C.4a)

Proof. We prove (C.4a) by induction. The case α = 0 is trivial. For |α| = 1, we use

∂Xi V̊ = −V − Ū

C̄2
s

∂XiC̄s −
∂XiŪ

C̄s
= −∂Xi log C̄sV̊ − C̄−1

s ∂XiŪ =: cei,1V̊ + cei,2.

By Lemma C.2, cei,1, cei,2 ∈ F−1. For |α| ≥ 2, we can write α = α′ + ei and

∂αX V̊ = ∂Xi∂
α′
X V̊ = ∂Xi(cα′,1V̊ + cα′,2)

= ∂Xicα′,1V̊ − cα′,1(cei,1V̊ + cei,2) + ∂Xicα′,2.

so cα,1 = ∂Xicα′,1 − cα′,1cei,1 ∈ F−|α′|−1 = F−|α|, cα,2 = ∂Xicα′,2 − cα′,1cei,2 ∈ F−|α′|−1 = F−|α|.

Since φ1 ∈ F1, we know φ
|α|
1 ∂αX V̊ = φ

|α|
1 cα,1V̊ + φ

|α|
1 cα,2, where φ

|α|
1 cα,1, φ

|α|
1 cα,2 are both of class

F. Therefore, Dα,0V̊i is a class F polynomial of degree at most 1. □

Remark C.6. Note that D0,ei V̊ = ei, and D
α,βV̊ = 0 when |β| ≥ 2.

Corollary C.7. If p(s,X, V ) is a class F polynomial of V̊ of degree N , then Dα,βp(s,X, V ) is also

a class F polynomial of V̊ , with degree at most N − |β|. Recall that degree of 0 is −∞.

Proof. Without loss of generality, assume p(s,X, V ) = c(s,X)V̊ β′
for some coefficient c ∈ F and

multi-index β′. Then

Dα,βp = C̄|β|
s Dα,0(C̄−|β|

s D0,βp) =
∑
α′⪯α

Cα
α′ · C̄|β|

s Dα−α′,0C̄−|β|
s ·Dα′,0D0,βp. (C.5)

By Lemma C.2 (4) we know C̄
|β|
s Dα−α′,0C̄

−|β|
s ∈ F, so it remains to verify Dα′,0D0,βp is a class F

polynomial of V̊ .
Note that D0,β(V̊ β′

) = 0 if β ̸⪯ β′, so Dα′,βp = 0 whenever |β| > |β′|. When β ⪯ β′ we have

D0,β(V̊ β′
) = Cβ′

β V̊
β′−β.

Therefore, D0,βp = c(s,X) · Cβ′

β V̊
β−β′

, and by Lemma C.5 with product rule we know Dα,0D0,βp

is a class F polynomial with degree |β − β′|. □
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Next, we estimate functions involving µ(V̊ ).

Lemma C.8. Let H(s,X, V ) = µ(V̊ )1/2p(s,X, V ), where µ is the Maxwellian defined in (2.16),

and p(s,X, V ) is a class F polynomial of V̊ with degree dp. Then

Dα,βH(s,X, V ) = µ(V̊ )1/2p̃(s,X, V̊ )

where p̃(s,X, V̊ ) is another class F polynomial of V̊ , with degree dp + |β|+ 2|α|.

Proof. By the product rule and Corollary C.7, it suffices to verify the case p ≡ 1. That is,

Dα,βµ(V̊ )1/2 = µ(V̊ )1/2pα,β(s,X, V̊ ) (C.6)

where pα,β(s,X, V̊ ) is some class F polynomial of V̊ with degree |β|+ 2|α|.
We use induction. Assume (C.6) holds for all multi-index (α, β) with |α|+ |β| ≤ k. Now we want

to show it also holds for (α+ α1, β + β1) where |α1|+ |β1| = 1. By Corollary C.3, we have

Dα+α1,β+β1µ(V̊ )1/2 = Dα,βDα1,β1µ(V̊ )1/2 + cD≺(α+α1,β+β1)µ(V̊ )1/2.

Using inductive assumption, the lower order term cD≺(α+α1,β+β1)µ(V̊ )1/2 = pµ(V̊ )1/2 with some
class F polynomial p with degree at most |α + α1| + 2|β + β1| − 1. For the leading term, note we
have

Dα1,β1µ(V̊ )1/2 =
1

2
µ(V̊ )1/2Dα1,β1 logµ(V̊ ) = −κ2µ(V̊ )1/2Dα1,β1 |V̊ |2.

By Corollary C.7, Dα1,β1 |V̊ |2 is a class F polynomial of V̊ with degree 2 if α1 = 1, with degree 1

if β1 = 1. Therefore, Dα,βDα1,β1µ(V̊ )1/2 = pµ(V̊ )1/2 where p has degree at most |β| + 2|α| + 2 if
α1 = 1, |β| + 2|α| + 1 if β1 = 1. In either case, p has degree at most 2|α + α1| + |β + β1|. The
induction is completed. □

We estimate the transport operator applied to V̊ . Recall the transport operator defined in (2.22):
∂s + T = ∂s + c̄xX · ∇X + c̄vV · ∇V + V · ∇X .

Lemma C.9. (∂s + T )V̊ is a class F−r polynomial of V̊ with degree 2, which equals to

(∂s + T )V̊ = −EU + 3∇C̄s − V̊ · ∇Ū−
(
EC − 1

3
∇ · Ū+ V̊ · ∇C̄s

)
V̊ = O(⟨X⟩−r⟨V̊ ⟩2). (C.7)

The error term EM defined in (A.1) equals to

EM = −κMV̊ ·
(
−EU + 3∇C̄s − V̊ · ∇Ū−

(
EC − 1

3
∇ · Ū+ V̊ · ∇C̄s

)
V̊

)
= Mp3(s,X, V ),

where p3(s,X, V ) is a class F−r polynomial of V̊ with degree 3.

Proof. Recall EC and EU were computed in (A.1b) and (A.1c). We first apply ∂s + T to C̄s:

(∂s + T )C̄s = [∂s + (c̄xX + V ) · ∇]C̄s

= [∂s + (c̄xX + Ū) · ∇]C̄s + (V − Ū) · ∇C̄s

=

[
∂s + (c̄xX + Ū) · ∇ − c̄v +

1

3
∇ · Ū

]
C̄s +

(
c̄v −

1

3
∇ · Ū

)
C̄s

+ C̄sV̊ · ∇C̄s

= C̄sEC +

(
c̄v −

1

3
∇ · Ū

)
C̄s + C̄sV̊ · ∇C̄s.

Dividing C̄s, by bound (3.3a) and (A.4) we know

(∂s + T ) log C̄s = EC + c̄v −
1

3
∇ · Ū+ V̊ · ∇C̄s = c̄v +O(⟨X⟩−r⟨V̊ ⟩). (C.8)
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In fact, (∂s + T ) log C̄s − c̄v is a class F−r polynomial of V̊ with degree 1. Next, we apply ∂s + T
to Ū:

(∂s + T )Ū = T Ū = [∂s + (c̄xX + V ) · ∇]Ū

= [∂s + (c̄xX + Ū) · ∇]Ū+ (V − Ū) · ∇Ū

= C̄sEU + c̄vŪ− 3C̄s∇C̄s + C̄sV̊ · ∇Ū.

Finally, we apply ∂s + T to V̊ to get

(∂s + T )V̊ = (∂s + T )

(
V − Ū

C̄s

)
=

1

C̄s

(
T V − T Ū− V − Ū

C̄s
(∂s + T )C̄s

)
=

1

C̄s

[
c̄vV −

(
C̄sEU + c̄vŪ− 3C̄s∇C̄s + C̄sV̊ · ∇Ū

)
−
(
EC + c̄v −

1

3
∇ · Ū+ V̊ · ∇C̄s

)
C̄sV̊

]
= −

(
EU − 3∇C̄s + V̊ · ∇Ū

)
−
(
EC − 1

3
∇ · Ū+ V̊ · ∇C̄s

)
V̊

= O(⟨X⟩−r⟨V̊ ⟩2),

using the decay estimates (3.1a), (3.3a), (A.4) and (A.5). Now we compute EM = (∂s + T )M:

(∂s + T )M = M(∂s + T ) logM = M(∂s + T )
(
−κ
2
|V̊ |2

)
= −κMV̊ · (∂s + T )V̊ = Mp3(s,X, V ).

The proof is completed. □

C.2. Commutators between P, Dα,β, and T . In this subsection, we justify the following com-
mutator estimates.

Lemma C.10 (Commutator estimate). Let f ∈ C∞((s0,∞)× R3 × R3).

(1) Commuting ∂s + T and Pm:

Pm[(∂s + T )f ]− (∂s + T )Pmf = Pm[(V · ∇X + dM + d̃M)PMf ]

− PM [(V · ∇X − dM − d̃M)Pmf ].

(2) Commuting ∂s + T and Dα,β:

[V · ∇X , D
α,β]f = Oα,β(C̄s⟨X⟩−1⟨V̊ ⟩)

∑
|α′|+|β′|=|α|+|β|

|Dα′,β′
f |, (C.9)

[∂s + T − V · ∇X , D
α,β]f = Oα,β(C̄s⟨X⟩−1⟨V̊ ⟩+ ⟨X⟩−1)|Dα,βf |. (C.10)

(3) Commuting Dα,β and PM : recall that Φi is defined in (2.20). We define Rα,β and Rα,i by

Dα,0⟨f,Φi⟩V = ⟨Dα,0f,Φi⟩V +Rα,i(s,X), (C.11a)

Dα,βPMf(s,X, V ) = PMD
α,βf(s,X, V ) +Rα,β(s,X, V ). (C.11b)

We have the following pointwise estimate on Rα,i for any N ≥ 0

|Dα′,0Rα,i(s,X)| ≲α,α′,N ∥⟨V̊ ⟩−ND<|α|+|α′|f(s,X, ·)∥L2(V ). (C.11c)
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Moreover, for each N ≥ 0 and any α, β, we have

∥⟨V̊ ⟩NRα,β(s,X, ·)∥L2(V ) ≲N,α,β ∥⟨V̊ ⟩−ND<|α|+|β|f(s,X, ·)∥L2(V ), (C.12)

∥⟨V̊ ⟩NRα,β(s,X, ·)∥σ ≲N,α,β ∥⟨V̊ ⟩−ND<|α|+|β|f(s,X, ·)∥σ. (C.13)

As a consequence, we have the following bound:

∥Rα,β∥Yl
≲α,β ∥D<|α|+|β|f∥Yl

, (C.14)

∥Rα,β∥YΛ,η
≲α,β ∥D<|α|+|β|f∥YΛ,η

. (C.15)

(4) Commuting Dα,β and dM, d̃M: recall that dM and d̃M are defined in (6.3). The derivative of

dM and d̃M can be bounded by∣∣∣Dα,βdM

∣∣∣ ≲ ⟨X⟩−r⟨V̊ ⟩3,
∣∣∣Dα,β d̃M

∣∣∣ ≲ ⟨X⟩−1C̄s⟨V̊ ⟩3. (C.16)

Remark C.11. Because PM + Pm = Id, the commutator with PM is just the negative of the
commutator with Pm.

Before we prove Lemma C.10, we establish the following basic derivative bounds.

Lemma C.12 (Estimates of the basis and weight). Recall M1 = C̄−3
s µ(V̊ ) from (2.17). For

any multi-indices α, β and l ∈ R, we have the following pointwise estimates

|Dα,βC̄l
s| ≲α,β C̄l

s, (C.17)

|Dα,β⟨V̊ ⟩l| ≲α,β ⟨V̊ ⟩l, (C.18)

|Dα,βΛ| ≲α,β Λ, (C.19)

|Dα,βΦi| ≲α,β C̄−3/2
s ⟨V̊ ⟩2+|β|+2|α|µ(V̊ )1/2, (C.20)

|Dα,βM±1/2
1 | ≲α,β ⟨V̊ ⟩|β|+2|α|M±1/2

1 , (C.21)

|Dα,βM| ≲α,β ⟨V̊ ⟩|β|+2|α|M, (C.22)

|Dα,β logM1| ≲α,β ⟨V̊ ⟩2 if |α|+ |β| > 0. (C.23)

For any function f , integer N ≥ 0, and multi-indices α, β, we have

∥⟨V̊ ⟩Nµ(V̊ )1/2∥L2(V ) ≲N C̄3/2
s , (C.24a)

|⟨f,Dα,βΦi⟩V | ≲N,α,β ∥⟨V̊ ⟩−Nf∥L2(V ). (C.24b)

Proof. We start with the proof of (C.17)-(C.19). C̄s is V -independent, so (C.17) follows Lemma C.2
(4). For (C.18), we use induction on |α|+ |β|. Assume (C.18) holds for any l ∈ R and |α|+ |β| ≤ k.
We will show it holds for (α+ α1, β + β1) with |α1|+ |β1| = 1. By Corollary C.3,

Dα+α1,β+β1⟨V̊ ⟩l = Dα,βDα1,β1⟨V̊ ⟩l + cD≺(α+α1,β+β1)⟨V̊ ⟩l.

By inductive assumption, the lower order term is bounded as

|cD≺(α+α1,β+β1)⟨V̊ ⟩l| ≲α,β ⟨V̊ ⟩l.

For the top order term, note that

Dα1,β1⟨V̊ ⟩l = l⟨V̊ ⟩l−2V̊ ·Dα1,β1 V̊ .

By induction, for any |α′|+ |β′| ≤ k we have

|Dα′,β′⟨V̊ ⟩l−2| ≲k ⟨V̊ ⟩l−2.
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Together with |Dα′,β′
V̊ | ≲k ⟨V̊ ⟩ and |Dα′,β′

Dα1,β1 V̊ | ≲k ⟨V̊ ⟩ using Corollary C.7, we conclude by
Leibniz rule that

Dα,βDα1,β1⟨V̊ ⟩l ≲ ⟨V̊ ⟩l−2+1+1 = ⟨V̊ ⟩l.

Combined with lower order term, we proved (C.18) for α+α1, β+β1 and the induction is completed.

Because Λ = C̄γ+3
s ⟨V̊ ⟩γ+2, (C.19) follows by Leibniz rule.

Next, we prove (C.20)-(C.23). Recall that

Φi = C̄−3/2
s pi(V̊ )µ(V̊ )1/2

where pi is a polynomial of degree deg pi ≤ 2. By (C.17) and Lemma C.8, we have

Dα,βΦi =
∑
α′⪯α
β′⪯β

Cα
α′C

β
β′ ·Dα′,β′

C̄−3/2
s ·Dα−α′,β−β′

(pi(V̊ )µ(V̊ )1/2)

≲α,β C̄−3/2
s ⟨V̊ ⟩deg pi+|β|+2|α|µ(V̊ )1/2.

(C.20) is proven. As for (C.21), we have shown Dα,βM1/2
1 ≲ ⟨V̊ ⟩|β|+2|α|M1/2

1 because M1/2
1 = Φ0.

By the product rule we have for |α|+ |β| > 0 that

0 = Dα,β(M1/2
1 M−1/2

1 ) =
∑

α′⪯α,β′⪯β

Cα
α′C

β
β′ ·Dα′,β′M1/2

1 ·Dα−α′,β−β′M−1/2
1 .

We can conclude (C.21) by induction. By writing M = C̄3
s ·M

1/2
1 ·M1/2

1 , (C.22) follows by Leibniz

rule and (C.17), (C.21). Finally, logM1 = −3 log C̄s + logµ(V̊ ) = −3 log C̄s − κ2|V̊ |2, so (C.23)
follows Lemma C.2 (3) and Corollary C.7.

To prove (C.24a), we verify it using a change of variable:ˆ
⟨V̊ ⟩2Nµ(V̊ )dV = C̄3

s

ˆ
⟨V̊ ⟩2Nµ(V̊ )dV̊ ≲N C̄3

s.

Estimate (C.24b) follows (C.20), (C.24a) and the Cauchy–Schwarz inequality:ˆ
f ·Dα,βΦidV ≲ C̄−3/2

s

ˆ
|f(V )|⟨V̊ ⟩−N ⟨V̊ ⟩N+2+|β|+2|α|µ(V̊ )1/2dV ≲N,α,β ∥⟨V̊ ⟩−Nf∥L2(V ).

We have completed the proof. □

Proof of Lemma C.10.

(1) We separate V · ∇X from other terms in ∂s + T :

[Pm, ∂s + T ]f = [Pm, ∂s + c̄xX · ∇X + c̄vV · ∇V ]f + [Pm, V · ∇X ]f.

The second commutator can be computed directly as

[Pm, V · ∇X ]f = Pm[(V · ∇X)f ]− V · ∇XPmf

= Pm[(V · ∇X)(Pm + PM )f ]− (PM + Pm)[(V · ∇X)Pmf ]

= Pm[(V · ∇X)PMf ]− PM [(V · ∇X)Pmf ].

For the first commutator, we observe that the projection operator commutes with the scaling
field and time derivative:

M1/2
1 ∂s(M−1/2

1 PMf) = PM (M1/2
1 ∂s(M−1/2

1 f)),

M1/2
1 (X · ∇X)(M−1/2

1 PMf) = PM (M1/2
1 (X · ∇X)(M−1/2

1 f)),

M1/2
1 (V · ∇V )(M−1/2

1 PMf) = PM (M1/2
1 (V · ∇V )(M−1/2

1 f)).

(C.25)
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This is because M1/2
1 Φi is in Span{1, Vi, |V |2} (with X-dependence), and ∂s, X · ∇X , V · ∇V

maps this span to itself. Recall dM and d̃M defined in (6.3).

M1/2
1 (∂s + c̄xX · ∇X + c̄vV · ∇V )M−1/2

1 f

= (∂s + c̄xX · ∇X + c̄vV · ∇V )f − 1

2
(∂s + c̄xX · ∇X + c̄vV · ∇V ) logM1 · f

= (∂s + c̄xX · ∇X + c̄vV · ∇V )f −
(
dM + d̃M − 3

2
c̄v

)
f.

As shown in (C.25), the operator M1/2
1 (∂s + c̄xX · ∇X + c̄vV · ∇V )M−1/2

1 commutes with the
projection PM , so it also commutes with Pm. We deduce

[Pm, ∂s + c̄xX · ∇X + c̄vV · ∇V ]f =

[
Pm, dM + d̃M − 3

2
c̄v

]
f

=
[
Pm, dM + d̃M

]
f,

because scalar multiplication commutes with Pm. The remaining computation is the same as
the V · ∇X part.

(2) Note that Dα,βV = C̄sei when α = 0, β = ei, and D
α,βV = 0 when α ̸= 0 or when |β| ≥ 2.

Therefore,

Dα,β(V · ∇Xf) =
∑
α′⪯α
β′⪯β

Cα
α′C

β
β′ ·Dα′,β′

V ·Dα−α′,β−β′∇Xf

= V ·Dα,β∇Xf +
∑
i

Cβ
eiD

0,eiV ·Dα,β−ei∇Xf

= V · ∇XD
α,βf − V · ∇X log(φ

|α|
1 C̄|β|

s )Dα,βf +
∑
i

βiC̄sD
α,β−ei∂Xif

= V · ∇XD
α,βf +O(|V |⟨X⟩−1)Dα,βf + C̄sφ

−1
1

∑
i

βiD
α+ei,β−eif.

The bound for the first commutator comes from φ−1
1 ≲ ⟨X⟩−1 and |V | ≲ C̄s⟨V̊ ⟩. Note that we

only sum Dα+ei,β−ei for βi > 0, therefore β − ei ⪰ 0.
Similarly, for the second commutator we have

[∂s + T −V · ∇X , D
α,β]f

=
{
(∂s + T − V · ∇X) log(φ

|α|
1 C̄|β|

s )− c̄x|α| − c̄v|β|
}
Dα,βf

=
{
|β|(∂s + T − V · ∇X) log C̄s + c̄x|α|X · ∇X logφ1 − c̄x|α| − c̄v|β|

}
Dα,βf

=
{
|β|(c̄v +O(⟨X⟩−r⟨V̊ ⟩))− |β|V · ∇X log C̄s + c̄x|α|(1 +O(⟨X⟩−1)− c̄x|α| − c̄v|β|

}
Dα,βf

=
{
O(⟨X⟩−r⟨V̊ ⟩) +O(|V |⟨X⟩−1) +O(⟨X⟩−1)

}
Dα,βf

= O(C̄s⟨X⟩−1⟨V̊ ⟩+ ⟨X⟩−1)Dα,βf.

We used the equation (C.7) and the estimate of φ1 from (4.4):

X · ∇X logφ1 = 1 +O(⟨X⟩−1).
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(3) First, we consider pure X derivative, i.e. the case |β| = 0. Recall Rα,i from (C.11a). By
Leibniz rule,

Rα,i =
∑
α′≺α

Cα
α′⟨Dα′,0f,Dα−α′,0Φi⟩V .

Therefore

Dα1,0Rα,i =
∑

α′
1⪯α1

∑
α′≺α

Cα1

α′
1
· Cα

α′⟨Dα′
1,0Dα′,0f,Dα1−α′

1Dα−α′,0Φi⟩V

=
∑

α2≺α1+α
α3⪯α1+α

cα2,α3⟨Dα2,0f,Dα3,0Φi⟩V ,

with cα2,α3 ∈ F, thanks to Corollary C.3. We bound the pairing using the L2 norm and the σ
norm:

⟨Dα2,0f,Dα3,0Φi⟩V ≤ ∥⟨V̊ ⟩−NDα2,0f∥L2(V )∥⟨V̊ ⟩NDα3,0Φi∥L2(V ),

⟨Dα2,0f,Dα3,0Φi⟩V ≤ ∥⟨V̊ ⟩−NDα2,0f∥σ∥Λ− 1
2 ⟨V̊ ⟩NDα3,0Φi∥L2(V ).

By (C.20) and (C.24a) we know

∥⟨V̊ ⟩NDα,βΦi∥L2(V ) ≲α,β,N 1. (C.26)

Let us also compute the σ norm and weighted norm for the derivative of the basis:

∥⟨V̊ ⟩NDα,βΦi∥2σ = C̄−3
s ∥⟨V̊ ⟩Np(V̊ )µ(V̊ )1/2∥2σ

≤ C̄−3
s

(
C̄γ+5
s

ˆ
⟨V̊ ⟩γ+2|∇V (⟨V̊ ⟩Np(V̊ )µ(V̊ )1/2|2dV

+ C̄γ+3
s

ˆ
⟨V̊ ⟩γ+2|(⟨V̊ ⟩Np(V̊ )µ(V̊ )1/2|2dV

)
≲α,β,N C̄γ+3

s .

(C.27)

Similarly,

∥Λ− 1
2 ⟨V̊ ⟩NDα,βΦi∥2L2 ≲ C̄−3

s

{
C̄−γ−3
s

ˆ
⟨V̊ ⟩−γ−2|⟨V̊ ⟩Np(V̊ )µ(V̊ )1/2|2dV

}
≲ C̄−γ−3

s . (C.28)

In summary, we conclude

|Dα1,0Rα,i(s,X)| ≲N,α,β ∥⟨V̊ ⟩−ND<|α|+|α1|f(s,X, ·)∥L2(V ) (C.29)

|Dα1,0Rα,i(s,X)| ≲N,α,β C̄
− γ+3

2
s ∥⟨V̊ ⟩−ND<|α|+|α1|f(s,X, ·)∥σ. (C.30)

which proves (C.11c).
Now we compute

Rα,0(s,X, V ) = Dα,0PMf − PMD
α,0f

=
∑
i

Dα,0(⟨f,Φi⟩Φi)− ⟨Dα,0f,Φi⟩Φi

=
∑
i

∑
α′⪯α

Cα
α′ ·Dα′,0⟨f,Φi⟩Dα−α′,0Φi − ⟨Dα,0f,Φi⟩Φi

=
∑
i

∑
α′≺α

Cα
α′ · ⟨Dα′,0f,Φi⟩ ·Dα−α′,0Φi +

∑
α′⪯α

Cα
α′ · Rα′,i ·Dα−α′,0Φi

 .



135

For any α1, β1, applying Leibniz rule, (C.20) to Φi, (C.11c) to Rα′,i, and (C.24b), we obtain

|Dα1,β1(⟨Dα′,0f,Φi⟩ ·Dα−α′,0Φi)| ≲α,α1,β1 ∥D≤|α′|+|α1|+|β1|f∥L2(V )C̄
−3/2
s ⟨V̊ ⟩2+2|α|+2|α1|+|β1|µ(V̊ )1/2,

|Dα1,β1(Rα′,i ·Dα−α′,0Φi)| ≲α,α1,β1 ∥D<|α′|+|α1|+|β1|f∥L2(V )C̄
−3/2
s ⟨V̊ ⟩2+2|α|+2|α1|+|β1|µ(V̊ )1/2.

Estimate (C.12) follows (C.24b), (C.29), and (C.26), whereas (C.13) follow (C.27) and (C.30).
Now we consider derivatives in both X and V . Note that

Dα,βPMf =
∑
i

∑
α′⪯α

Cα
α′ ·Dα′,0⟨f,Φi⟩ ·Dα−α′,βΦi

=
∑
i

∑
α′⪯α

Cα
α′ · (⟨Dα′,0f,Φi⟩+Rα′,i) ·Dα−α′,βΦi,

so we can obtain the weighted L2 bound for Dα,βPMf . Using integration by parts,

PMD
α,βf =

∑
i

⟨Dα,βf,Φi⟩Φi = (−1)|β|
∑
i

⟨Dα,0f,D0,βΦi⟩Φi,

so we can obtain the weighted L2 bound for PMD
α,βf as

∥⟨V̊ ⟩NDα,βPMf∥L2(V ) + ∥⟨V̊ ⟩NPMD
α,βf∥L2(V ) ≲N ∥⟨V̊ ⟩−ND≤|α|f(s,X, ·)∥L2(V ). (C.31)

So (C.12) holds provided β ≻ 0. (C.13) holds similarly. (C.14), (C.15) follow (C.12), (C.13)
after integration in X with weight ⟨X⟩η.

(4) By a direct computation,

dM =
1

2
(∂s + T ) logM1 +

3

2
c̄v

=
1

2
(∂s + T ) logM− 3

2
(∂s + T ) log C̄s +

3

2
c̄v =

1

2
M−1EM − 3

2
[(∂s + T ) log C̄s − c̄v].

Lemma C.9 shows EM/M is a is a class F−r polynomial of V̊ of degree 3. By (C.8), we know

(∂s + T ) log C̄s − c̄v is a class F−r polynomial of V̊ of degree 1. Therefore, dM is a class F−r

polynomial of V̊ of degree 3. Using Corollary C.7, we know Dα,βdM is a class F polynomial of
V̊ with degree at most 3− |β|, thus the conclusion follows.

Since the weight φ1 in (2.24) satisfies φ1 ≍ ⟨X⟩ by (4.4), the computation for d̃M is straight-
forward:

Dα,β d̃M =
1

2
V ·Dα,β∇X logM1 +

1

2

∑
i

Cβ
ei ·D

0,eiV ·Dα,β−ei∇X logM1

=
1

2

∑
i

Viφ
−1
1 ·Dα+ei,β logM1 +

1

2

∑
i

βiC̄sφ
−1
1 ·Dα+ei,β−ei logM1

= O(⟨V̊ ⟩C̄s⟨X⟩−1|D≤|α|+|β|+1 logM1|).

By using (C.23) we conclude the proof.

□

C.3. Estimates between X and Y norms.

Lemma C.13. Let W̃ = (Ũ, P̃ , B̃), FM be the operator defined in (3.15) and F̃M = FM (W̃). For
any multi-indices α, β and N ∈ R, we have the following relationˆ

|Dα
XFM (Ũ, P̃ , B̃)|2dV = κ

(
|Dα

XŨ|2 + |Dα
X P̃ |2 +

3

2
|Dα

XB̃|2
)

+ 1|α|≥1O(|D≤|α|
X W̃| · |D≤|α|−1

X W̃|),
(C.32a)
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where κ = 5
3 , and the following equivalenceˆ

⟨V̊ ⟩2N |Dα,βFM (Ũ, P̃ , B̃)|2dV ≲α,β,N |D≤|α|
X (Ũ, P̃ , B̃)|2 ≲α

ˆ
|D≤|α|

X FM (Ũ, P̃ , B̃)|2dV. (C.32b)

In particular, for any η ∈ R, k ∈ Z+, we have the following estimates between the X -norm and
Y-norm for the macro-perturbation

∥FM (Ũ, P̃ , B̃)∥Yk
η
≲ ∥(Ũ, P̃ , B̃)∥Xk

η
, (C.33a)

∥FM (Ũ, P̃ , B̃)∥Yk
Λ,η
≲ ∥(Ũ, P̃ , B̃)∥Xk

η
. (C.33b)

Proof. Denote W̃ = (Ũ, P̃ , B̃) and F̃M = FM (Ũ, P̃ , B̃). Since W̃ only depends on X, using the
relation (3.15), the Leibniz rule, and (C.20), for any multi-indices α, β, we obtain

Dα,βF̃M = Dα
X(P̃ + B̃) ·Dβ

V Φ0 + κ1/2Dα
XŨi ·Dβ

V Φi +

√
1

6
Dα

X(2P̃ − 3B̃) ·DβΦ4 + I, (C.34a)

where the error term I satisfies

|I| ≲α,β

∑
0≤i≤|α|−1

|Di
XW̃| · (

∑
1≤j≤5

|D≤|α|+|β|−i
X,V Φj |) ≲α,β |D≤|α|−1

X W̃| · C̄−3/2
s ⟨V ⟩2+|β|+2|α|µ(V̊ )1/2.

(C.34b)
For any N ∈ R, using (C.24a), we obtain

∥⟨V ⟩NI∥L2(V ) ≲α,β,N 1|α|≥1|D
≤|α|−1
X W̃| ≲ 1|α|≥1|D

≤|α|
X W̃|. (C.34c)

Proof of (C.32a). Since Φi are orthonormal (2.20) and κ = 5
3 , applying (C.34) with β = 0, we

prove

∥Dα
X F̃M∥2L2(V ) = |Dα

X(P̃ + B̃)|2 +
∑
i

κ|Dα
XŨi|2 +

1

6
|Dα

X(2P̃ − 3B̃)|2 +O(∥I∥L2(V )|D
≤|α|
X W̃|+ ∥I∥2L2(V ))

= κ(|Dα
XŨ|2 + |Dα

X P̃ |2 +
3

2
|Dα

XB̃|2) + 1|α|≥1O(|D≤|α|
X W̃| · |D≤|α|−1

X W̃|).

Thus, we prove (C.32a). Using induction on k ≥ 0 and (C.32a), we obtain

∥D≤k
X F̃M∥2L2(V ) ≍k ∥D≤k

X W̃|. (C.35)

Proof of (C.32b). For the main term on the right hand side of (C.34a), applying estimates similar
to I in (C.34b), (C.34c), we prove the first bound in (C.32b):

∥⟨V ⟩NDα,βF̃M∥L2(V ) ≲α,β |D≤|α|
X W̃| · C̄−3/2

s ∥⟨V ⟩2+|β|+2|α|+Nµ(V̊ )1/2∥L2(V ) ≲α,β,N |D≤|α|
X W̃|.

The second bound in (C.32b) follows from (C.35).

Proof of (C.33). Recall the X -norm from (4.6), Y,Yk
Λ,η-norms from (2.29). For the coefficient in

Yk
Λ,η norm, we note that C̄s ≲ 1 (3.3a). Using (C.32b) with N = 0 and N = γ+3

2 , we prove

∥FM (W̃)∥2Yk
η
+ ∥FM (W̃)∥2Yk

Λ,η
≲k

∑
|α|≤k,|β|≤k+1

∥⟨X⟩η/2⟨V̊ ⟩
γ+2
2 Dα,βFM (W̃)∥2L2

≲k ∥⟨X⟩η/2D≤k
X W̃∥2L2(X) ≲ ∥W̃∥2Xk

η
,

where in the last inequality we have used (B.2) with ψn = ⟨X⟩ηφn
1 with φ1 defined in Lemma 4.1,

βn = 2n+ η and ν = 1. This completes the proof. □
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C.4. Proof of Lemma 10.4 on weighted diffusion term. Recall the weighted operator from
(2.24) and the weighted diffusion from (10.24):

∆WF = −ν−1⟨X⟩2⟨V̊ ⟩4F +
∑

|α1|+|β1|=1

⟨X⟩1−η̄⟨V̊ ⟩2∂α1
X ∂β1

V

(
φ
2|α1|
1 C̄2|β1|

s ⟨X⟩η̄∂α1
X ∂β1

V (⟨X⟩⟨V̊ ⟩2F )
)

:= ∆L2F +∆H1F. (C.36)

Proof of Lemma 10.4. Denote

g = ⟨X⟩⟨V̊ ⟩2h. (C.37)

Estimate of k = 0. First, consider k = 0. Recall the Yη̄ norms from (2.29). By definition, we
yield

⟨∆Wh, h⟩Yη̄ = −ν−1

¨
⟨X⟩2+η̄⟨V̊ ⟩4h2dXdV +

¨
∆H1h · h⟨X⟩η̄dXdV := I1 + I2.

For I2, using the notation g (C.37) and integration by parts, we obtain

I2 =
∑

|α1|+|β1|=1

¨
∂α1
X ∂β1

V

(
φ
2|α1|
1 C̄2|β1|

s ⟨X⟩η̄∂α1
X ∂β1

V (⟨X⟩⟨V̊ ⟩2h)
)
· ⟨X⟩⟨V̊ ⟩2h

= −
∑

|α1|+|β1|=1

¨
φ
2|α1|
1 C̄2|β1|

s ⟨X⟩η̄∂α1
X ∂β1

V g · ∂α1
X ∂β1

V gdXdV

= −
∑

|α1|+|β1|=1

¨
|Dα1,β1g|2⟨X⟩η̄dXdV.

Combining the above estimates, using the definition of Y1
η̄ (2.29) and 1! = 0! = 1, we prove Lemma

10.4 for k = 0:

⟨∆Wh, h⟩Yη̄ = −ν−1

ˆ
|g|2⟨X⟩η̄dXdV −

∑
|α1|+|β1|=1

¨
|Dα1,β1g|2⟨X⟩η̄dXdV = −∥g∥2Y1

η̄
.

Estimate for k ≥ 1. For higher order estimates, by Leibniz rule, we rewrite ∆W (C.36) as

∆Wh =
∑

|α1|+|β1|=1

⟨X⟩⟨V̊ ⟩2φ2|α1|
1 C̄2|β1|

s ∂2α1
X ∂2β1

V g + c1⟨X⟩⟨V̊ ⟩2D⪯(α1,β1)g

=
∑

|α1|+|β1|=1

⟨X⟩⟨V̊ ⟩2D2α1,2β1g + c1⟨X⟩⟨V̊ ⟩2D⪯(α1,β1)g,
(C.38)

where c1 denotes generic bounded functions containing functions like Dα,βf
f , f = ⟨X⟩, ⟨V̊ ⟩, C̄s, φ1

with bounds only depending on k. We use similar notations c below, which may change from line
to line. Note that by applying the Leibniz rule iteratively, we obtain

⟨X⟩⟨V̊ ⟩2Dα,βh = Dα,β(⟨X⟩⟨V̊ ⟩2h) + cD≺(α,β)(⟨X⟩⟨V̊ ⟩2h) = Dα,βg + cD≺(α,β)g. (C.39)

For the main term in (C.38), we take a single term |α1|+ |β1| = 1 and obtain〈
⟨X⟩⟨V̊ ⟩2D2α1,2β1g, h

〉
Yk
η̄

(C.40)

=
∑

|α|+|β|≤k

ν|α|+|β|−k |α|!
α!

ˆ
⟨X⟩η̄Dα,β

[
⟨X⟩⟨V̊ ⟩2D2α1,2β1g

]
·Dα,β hdV dX. (C.41)
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We start by commuting Dα,β with the weights ⟨X⟩⟨V̊ ⟩2:

Dα,β
[
⟨X⟩⟨V̊ ⟩2D2α1,2β1g

]
= ⟨X⟩⟨V̊ ⟩2Dα,βD2α1,2β1g + c⟨X⟩⟨V̊ ⟩2D≺(α,β)D2α1,2β1g

= ⟨X⟩⟨V̊ ⟩2Dα+2α1,β+2β1g + c⟨X⟩⟨V̊ ⟩2D≺(α+2α1,β+2β1)g

= ⟨X⟩⟨V̊ ⟩2Dα1,β1Dα+α1,β+β1g + c⟨X⟩⟨V̊ ⟩2D≺(α+2α1,β+2β1)g. (C.42)

Therefore, one term in (C.41) can be computed as

ˆ
⟨X⟩η̄Dα,β

[
⟨X⟩⟨V̊ ⟩2D2α1,2β1g

]
Dα,βh dV dX (C.43)

=

ˆ
⟨X⟩η̄

(
Dα1,β1Dα+α1,β+β1g + cD≺(α+2α1,β+2β1)g

)
⟨X⟩⟨V̊ ⟩2Dα,βh︸ ︷︷ ︸

(C.39)

dV dX

=

ˆ
⟨X⟩η̄(Dα,βg + cD≺(α,β)g)

(
Dα1,β1Dα+α1,β+β1g + cD≺(α+2α1,β+2β1)g

)
dV dX

=

ˆ
⟨X⟩η̄Dα1,β1Dα+α1,β+β1g ·Dα,βg dV dX (C.44)

+

ˆ
⟨X⟩η̄Dα1,β1Dα+α1,β+β1g · cD≺(α,β)g dV dX (C.45)

+

ˆ
⟨X⟩η̄D≺(α+2α1,β+2β1)g · cD⪯(α,β)g dV dX. (C.46)

We now deal with (C.44) using integration by parts:

(C.44) =

ˆ
⟨X⟩η̄Dα1,β1Dα+α1,β+β1gDα,βg dV dX

= −
ˆ

⟨X⟩η̄Dα+α1,β+β1gDα1,β1Dα,βg dV dX +

ˆ
c⟨X⟩η̄Dα+α1,β+β1gDα,βg dV dX

= −
ˆ
⟨X⟩η̄|Dα+α1,β+β1g|2 dV dX +

ˆ
c⟨X⟩η̄Dα+α1,β+β1gD≺(α+α1,β+β1)g dV dX.

We apply the Cauchy–Schwarz inequality in the last integral, and we have

ˆ
c⟨X⟩η̄Dα+α1,β+β1gD≺(α+α1,β+β1)g dV dX

≤ 1

8

ˆ
⟨X⟩η̄|Dα+α1,β+β1g|2 dV dX + Cα,β

ˆ
⟨X⟩η̄|D≺(α+α1,β+β1)g|2 dV dX. (C.47)

Summarizing we get

(C.44) ≤− 7

8

ˆ
⟨X⟩η̄|Dα+α1,β+β1g|2 dV dX + Cα,β

ˆ
⟨X⟩η̄|D≤|α|+|β|g|2 dV dX.

Cauchy–Schwarz for (C.45) and (C.46) yield a similar bound as in (C.47). We get

(C.43) ≤− 3

4

ˆ
⟨X⟩η̄|Dα+α1,β+β1g|2 dV dX + 3Cα,β

ˆ
⟨X⟩η̄|D≤|α|+|β|g|2 dV dX. (C.48)
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Using this, we take the summation in (C.41), we have

(C.41) ≤
∑

|α|+|β|≤k

ν|α|+|β|−k

(
−1

2

ˆ
⟨X⟩η̄|Dα+α1,β+β1g|2 dV dX + 3Cα,β

ˆ
⟨X⟩η̄|D≤|α|+|β|g|2 dV dX

)

≤ −3

4

∑
|α|+|β|≤k

ν|α|+|β|−k

ˆ
⟨X⟩η̄|Dα+α1,β+β1g|2 dV dX + Ck∥g∥2Yk

η̄
.

The lower order term ⟨X⟩⟨V̊ ⟩2D⪯(α1,β1)g in (C.38) can be estimated similarly by interpolation〈
c1⟨X⟩⟨V̊ ⟩2D⪯(α1,β1)g, h

〉
Yk
η̄

≤ 1

32
∥g∥2Yk+1

η̄
+ Ck∥g∥2Yk

η̄
. (C.49)

Since ν is a fixed constant, we treat it as an absolute constant independent of k.
We now summarize (C.40) in α1, β1 and combine (C.49) to conclude〈
c1⟨X⟩⟨V̊ ⟩2D⪯(α1,β1)g +

∑
|α1|+|β1|=1

⟨X⟩⟨V̊ ⟩2D2α1,2β1g, h
〉
Yk
η̄

(C.50)

≤ −5

8

∑
|α1|+|β1|=1

∑
|α|+|β|≤k

ν|α|+|β|−k︸ ︷︷ ︸
=ν|α+α1|+|β+β1|−(k+1)

|α|!
α!

¨
⟨X⟩η̄|Dα+α1,β+β1g|2 dV dX +

1

8
∥g∥2Yk+1

η̄
+ Ck∥g∥2Yk

η̄
.

For any multi-indices α′, β′ with 1 ≤ |α′|+ |β′| ≤ k + 1 and |α′| ≥ 1, we have

I =
∑

|α1|+|β1|=1

∑
|α|+|β|≤k

1(α+α1,β+β1)=(α′,β′)
|α|!
α!

≥
∑

|α1|=1

∑
|α|=|α′|−1

1α+α1=α′
|α|!
α!

=
∑

1≤i≤3

1α=α′−ei1α′
i≥1

(|α′| − 1)!

α′!
· α′

i =
(|α′| − 1)!

α′!
· |α′| = |α′|!

α′!
.

If α′ = 0, we obtain I ≥ 1 = |α′|!
α′! . Thus, denoting α′ = α + α1, β

′ = β + β1, we further bound
(C.50) as

(C.50) ≤ −5

8

∑
1≤|α′|+|β′|≤k+1

ν|α
′|+|β′|−(k+1) |α′|!

α′!

¨
⟨X⟩η̄|Dα,βg|2 dV dX +

1

8
∥g∥2Yk+1

η̄
+ Ck∥g∥2Yk

η̄

= −5

8
∥g∥2Yk+1

η̄
+

5

8
ν−(k+1)∥g∥2Yη̄

+
1

8
∥g∥2Yk+1

η̄
+ Ck∥g∥2Yk

η̄

≤ −1

2
∥g∥2Yk+1

η̄
+ Ck∥g∥2Yk

η̄
.

In the last equality, we used that the lowest order term in Yk
η̄ norm is ν−k∥g∥2Yη̄

.

Using the decomposition in (C.38), we complete the proof of Lemma 10.4 for k > 0. □
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