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Abstract. Anomalous diffusion is the fundamental ansatz of phenomenological theories of passive scalar turbulence, and
has been confirmed numerically and experimentally to an extraordinary extent. The purpose of this survey is to discuss our
recent result, in which we construct a class of incompressible vector fields that have many of the properties observed in a
fully turbulent velocity field, and for which the associated scalar advection-diffusion equation generically displays anomalous
diffusion. Our main contribution is to propose an analytical framework in which to study anomalous diffusion via a backward
cascade of renormalized eddy viscosities. March 14, 2025

1. Introduction

Let 𝑢 = 𝑢(𝑡, 𝑥) : [0,∞) × T𝑑 → R𝑑 be a given divergence-free velocity field, which is T𝑑-periodic in space. Here
𝑑 ≥ 2 is the space dimension. We are interested in the setting where 𝑢 is continuous (in space and time), but has low
regularity; for example, 𝑢 ∈ 𝐶𝛼

𝑥,𝑡 := 𝐶0
𝑡 𝐶

𝛼
𝑥 ∩𝐶𝛼

𝑡 𝐶
0
𝑥 for some 𝛼 ∈ (0, 1). The motivation to consider such vector fields

stems from phenomenological theories of fully-developed hydrodynamic turbulence [13,26,31,42,54,61,66,70]. The
Hölder regularity exponent 𝛼 = 1

3 is singled out by the Onsager theory of ideal turbulence [37, 39], and this exponent
plays a prominent role in this note.

For such a given incompressible vector field 𝑢 ∈ 𝐶𝛼
𝑥,𝑡 , we consider the advection-diffusion equation

𝜕𝑡𝜃
𝜅 + 𝑢 · ∇𝜃𝜅 = 𝜅Δ𝜃𝜅 , 𝜃𝜅 |𝑡=0 = 𝜃in , (1.1)

which models the evolution of a passive scalar field 𝜃𝜅 = 𝜃𝜅 (𝑡, 𝑥) : [0,∞) × T𝑑 → R in a background fluid with
velocity 𝑢. The parameter 𝜅 > 0 represents molecular diffusivity, or, in non-dimensional form, an inverse Péclet
number. Since we are interested in the behavior of the fields 𝜃𝜅 as 𝜅 → 0, it is sufficient to consider 𝜅 ∈ (0, 1]. The
initial condition in (1.1) is given by 𝜃in = 𝜃in (𝑥), which is taken to have zero-mean on T𝑑 (that is,

⨏
T𝑑

𝜃in𝑑𝑥 = 0),
and is assumed to be sufficiently smooth (for instance, 𝜃in ∈ 𝐻1 (T𝑑)). The advection-diffusion equation (1.1) is to be
solved for 𝑡 ≥ 0; for simplicity, here we will only consider 𝑡 ∈ [0, 1]. We note that if 𝑢 ∈ 𝐶𝛼

𝑥,𝑡 with 𝛼 ∈ (0, 1), then
for any 𝜅 > 0 the solution 𝜃𝜅 of (1.1) is uniquely defined,1 and experiences parabolic smoothing: in positive time, we
have 𝜃𝜅 ∈ 𝐶0

𝑡 𝐶
2,𝛼
𝑥 ∩ 𝐶

1,𝛼/2
𝑡 𝐶0

𝑥 . Also, note that the solution 𝜃𝜅 continues to have zero-mean in positive time, namely⨏
T𝑑

𝜃𝜅 (𝑡, 𝑥)𝑑𝑥 = 0 for all 𝑡 ∈ (0, 1].

1.1. A rigorous definition of anomalous diffusion. The fundamental energy balance for the advection-diffusion
equation is derived by multiplying (1.1) with 𝜃𝜅 , and using that div 𝑢 = 0 to write

𝜕𝑡
(
1
2 |𝜃

𝜅 |2
)
+ div

(
𝑢 1

2 |𝜃
𝜅 |2

)
− 𝜅Δ

(
1
2 |𝜃

𝜅 |2
)
+ 𝜅 |∇𝜃𝜅 |2 = 0.

Integrating the above relation on [0, 𝑡] × T𝑑 yields the energy balance2

1
2 ∥𝜃𝜅 (𝑡, ·)∥2

𝐿2 (T𝑑) + 𝜅

∫ 𝑡

0

∥∇𝜃𝜅 (𝑡 ′, ·)∥2
𝐿2 (T𝑑) 𝑑𝑡

′ = 1
2 ∥𝜃in∥2𝐿2 (T𝑑) . (1.2)

We emphasize that (1.2) may be justified rigorously (with = sign) under a very weak assumption on the incompressible
velocity field 𝑢, namely 𝑢 ∈ 𝐿∞

𝑡 𝐿𝑑
𝑥 .

1At lower regularity than the one considered in this paper, it is possible to construct non-unique weak solutions of the advection-diffusion
equation (1.1). This was first achieved in [23, 57, 58], by treating the diffusion term as an error in an “intermittent convex-integration scheme” for
the transport equation; this idea was introduced in [17,18] for the 3D Navier-Stokes equations. In the works [23,57,58], the velocity field 𝑢 and the
scalar field 𝜃 𝜅 are constructed simultaneously, resulting in low regularity for both. See also the recent work [59] for a non-uniqueness proof based
on stochastic Lagrangians.

2The quantity ∥𝜃 𝜅 ∥2
𝐿2 (T𝑑 )

is the passive scalar’s variance (the mean of 𝜃 𝜅 is fixed to equal zero), but we may also think about it as an energy.
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The uniform-in-𝜅 a priori estimate on 𝜃𝜅 in 𝐿∞
𝑡 𝐿2

𝑥 provided by (1.2) shows that sequences {𝜃𝜅 𝑗 } 𝑗≥0, with 𝜅 𝑗 → 0
as 𝑗 → ∞, have sub-sequential weak-* limits in 𝐿∞

𝑡 𝐿2
𝑥 . Moreover, the linearity of (1.1) implies that any such weak-*

limit point 𝜃 is a 𝐿∞
𝑡 𝐿2

𝑥 weak solution of the transport equation

𝜕𝑡𝜃 + div(𝑢𝜃) = 0 , 𝜃 |𝑡=0 = 𝜃in . (1.3)

Since under weak convergence we have ∥𝜃 (𝑡, ·)∥𝐿2 (T𝑑) ≤ lim inf 𝜅→0 ∥𝜃𝜅 (𝑡, ·)∥𝐿2 (T𝑑) for 𝑡 ∈ [0, 1], with (1.2) we
obtain

0 ≤ lim sup
𝜅→0

𝜅

∫ 𝑡

0

∥∇𝜃𝜅 (𝑡 ′, ·)∥2
𝐿2 (T𝑑) 𝑑𝑡

′ = 1
2 ∥𝜃in∥2𝐿2 (T𝑑) − lim inf

𝜅→0

1
2 ∥𝜃𝜅 (𝑡, ·)∥2

𝐿2 (T𝑑)

≤ 1
2 ∥𝜃in∥2𝐿2 (T𝑑) −

1
2 ∥𝜃 (𝑡, ·)∥

2
𝐿2 (T𝑑) (1.4)

for 𝑡 ∈ [0, 1]. The right side of (1.4) depends only on the solution 𝜃 of the transport equation (1.3) which arose in the
weak-* limit.3 The bound on the energy dissipation rate obtained in (1.4) shows that if all 𝐿∞

𝑡 𝐿2
𝑥 weak solutions of

the transport equation (1.3) have constant-in-time 𝐿2 (T𝑑)-norm, then the right side of (1.4) vanishes identically, and
thus lim sup𝜅→0 𝜅

∫ 𝑡

0
∥∇𝜃𝜅 (𝑡 ′, ·)∥2

𝐿2 (T𝑑)𝑑𝑡
′ = 0. Such a situation occurs for instance if the solution of (1.3) is uniquely

obtained via ODE theory under the Cauchy-Lipschitz assumption 𝑢 ∈ 𝐿1
𝑡𝑊

1,∞
𝑥 . At a lower space integrability of the

velocity gradient, the Di Perna-Lions theory [30] guarantees that if 𝑢 ∈ 𝐿1
𝑡𝑊

1,1
𝑥 , then all 𝐿∞

𝑡 𝐿2
𝑥 weak solutions of (1.3)

are renormalized and thus they conserve their energy as a function of time.4
The above discussion shows that if ∇𝑢 ∈ 𝐿1

𝑥,𝑡 , then by the Di Perna-Lions theory we automatically have
lim sup𝜅→0 𝜅

∫ 𝑡

0
∥∇𝜃𝜅 (𝑡 ′, ·)∥2

𝐿2 (T𝑑)𝑑𝑡
′ = 0 for 𝑡 ∈ [0, 1]. Turbulent flows 𝑢 however do not posses the property

that ∇𝑢 ∈ 𝐿1
𝑥,𝑡 ; instead, we expect 𝑢 to have Onsager supercritical regularity, such as 𝑢 ∈ 𝐶𝛼

𝑥,𝑡 for some 𝛼 ≤ 1
3

(see [19, 37, 39, 42] and the references theorein). This leaves open the possibility that the right side of (1.4) does not
vanish identically, motivating the following definition:

Definition 1.1 (Anomalous diffusion). Fix an incompressible vector field 𝑢 ∈ 𝐶0
𝑥,𝑡 . If for any 𝜃in ∈ 𝐻1 (T𝑑) with⨏

T𝑑
𝜃in (𝑥)𝑑𝑥 = 0, there exists 0 < 𝜚 ≤ 1

2 such that the family of unique solutions {𝜃𝜅 }𝜅>0 of the Cauchy problem (1.1)
satisfy

lim sup
𝜅→0

𝜅

∫ 1

0

∫
T𝑑

|∇𝜃𝜅 (𝑡 ′, 𝑥) |2𝑑𝑥𝑑𝑡 ′ ≥ 𝜚∥𝜃in∥2𝐿2 (T𝑑) , (1.5)

we say the the advection-diffusion equation associated to 𝑢 exhibits anomalous diffusion on [0, 1]; equivalently,
anomalous dissipation of the passive scalar’s variance.5

The anomalous diffusion associated to the time interval [0, 1], as defined in Definition 1.1, may equivalently be
introduced for any time interval [0, 𝑡] with 𝑡 ∈ (0, 1]. Moreover, given any sequence 𝜅𝑛 → 0, one may find a further
subsequence 𝜅𝑛 𝑗

→ 0 along which the time dissipation measure E(𝑑𝑡) is the weak-* limit in the sense of bounded
measures

E(𝑑𝑡) := lim
𝑗→∞

𝜅𝑛 𝑗

∇𝜃𝜅𝑛𝑗 (𝑡, ·)
2
𝐿2 (T𝑑) . (1.6)

Here we abuse notation, as clearly E also depends on the initial datum 𝜃in, and also on the chosen sub-sequence
{𝜅𝑛 𝑗

} 𝑗≥0. With (1.4) and (1.6), relation (1.5) becomes 𝜚∥𝜃in∥2𝐿2 (T𝑑) ≤
∫ 1

0
E(𝑑𝑡) ≤ 1

2 ∥𝜃in∥
2
𝐿2 (T𝑑) .

1.2. Predictions from hydrodynamic turbulence. It is widely accepted that if the vector field 𝑢 represents a
homogenous isotropic turbulent velocity field, then solutions of (1.1) exhibit anomalous diffusion in the sense of
Definition 1.1. This prediction was first discussed by Obukhov [61], who drew direct analogies to the anomalous
dissipation of kinetic energy in a turbulent fluid, postulated by Kolmogorov’s 1941 phenomenological theory [51].
Compelling numerical and experimental evidence for anomalous diffusion is presented in [31, 66, 67, 70]. In this
setting, one expects that the time dissipation measure E(𝑑𝑡) is non-atomic, and is maybe even absolutely continuous
with respect to Lebesgue measure on [0, 1].

3For vector fields 𝑢 whose regularity lies below 𝐿1
𝑡 𝑊

1,∞
𝑥 , e.g. for 𝑢 ∈ 𝐿1

𝑡 𝐶
𝛼
𝑥 with 𝛼 < 1, the transport equations are expected to have

non-unique solutions. Different subsequences 𝜅 𝑗 → 0 could in principle select different such solutions (see Theorem 1.2 below). Therefore, (1.4)
should be written in terms of sequences 𝜅 𝑗 → 0, and for a given weak-* limit 𝜃 .

4See also the work of Ambrosio [2] for 𝑢 ∈ 𝐿1
𝑡 BV𝑥 .

5For passive scalar transport, anomalous diffusion (1.5) is equivalent to Lagrangian spontaneous stochasticity [32]. Roughly speaking, this
means that backwards-in-time transition probabilities of the SDE used to represent the advection-diffusion equation, do not converge as 𝜅 → 0 to a
Dirac mass around a deterministic Lagrangian trajectory.



ANOMALOUS DIFFUSION VIA ITERATIVE QUANTITATIVE HOMOGENIZATION 3

Under the ansatz that the advection-diffusion equation (1.1) associated to 𝑢 exhibits anomalous diffusion (a so-
called “experimental fact”), and assuming that 𝑢 represents a homogenous isotropic turbulent velocity field exhibiting
monofractal scaling in the inertial range, Obukhov [61] and Corrsin [26] have furthermore predicted that the sequence
{𝜃𝜅 }𝜅>0 retains uniform-in-𝜅 Hölder regularity, with exponents which may be determined from scaling.

In modern mathematical terms, in analogy with the Onsager conjecture for the incompressible Euler 6 equations [19,
25,28,29,36,39],7 one may propose a mathematical idealization of the Obukhov-Corrsin prediction, and postulate the
dichotomy:
(i) If 𝑢 ∈ 𝐶𝛼

𝑥,𝑡 for some 𝛼 ∈ (0, 1) is divergence-free, and if the family of solutions {𝜃𝜅 }𝜅>0 of (1.1) are uniformly-in-𝜅
bounded in 𝐿2

𝑡𝐶
𝛼
𝑥 for some �̄� > 1−𝛼

2 , then there is no anomalous diffusion, namely lim𝜅→0 𝜅∥∇𝜃𝜅 ∥2𝐿2
𝑡 𝐿

2
𝑥
= 0.

(ii) For each 𝛼 ∈ (0, 13 ),8 there exists divergence-free 𝑢 ∈ 𝐶𝛼
𝑥,𝑡 , such that anomalous diffusion holds in the sense of

Definition 1.1, with a non-atomic time-dissipation measure E(𝑑𝑡). Moreover, for all smooth initial conditions 𝜃in,
the solutions {𝜃𝜅 }𝜅>0 of (1.1) are uniformly-in-𝜅 bounded in 𝐿2

𝑡𝐶
𝛼
𝑥 for �̄� < 1−𝛼

2 .
Part (i) of the Obukhov-Corrsin dichotomy is known, and follows directly from the commutator estimate of Constain,
E, and Titi [25] (see e.g. [33] or [24]).9 As stated, part (ii) of the dichotomy remains open (see §1.3 for partial
progress). The main purpose of our work [9] is to provide a new perspective on anomalous diffusion for the passive
scalar equation, in the hope that these ideas will lead to a resolution of part (ii) of the Obukhov-Corrsin dichotomy.

1.3. Previous results. From a rigorous mathematical perspective, prior to our work [9], we are aware of only two
(classes of) examples of incompressible vector fields 𝑢 for which the associated passive scalar equation (1.1) exhibits
(a form of) anomalous diffusion (1.5): the first is the stochastic Kraichnan model (introduced by Kraichnan in [52]),
while the second is a class of deterministic singularly-focusing mixing flows (introduced by Drivas, Elgindi, Iyer, and
Jeong in [33]). We next discuss these examples, but do so exceedingly briefly. For a complete list of references and
appropriate context, we refer the interested readers to the introductions of [9, 20, 32, 33, 37, 55].

Kraichnan proposed in [52] a model in which 𝑢 = 𝑢𝜈 is a realization of a homogenous isotropic stationary zero-mean
Gaussian random field, which is delta-correlated in time, and is colored in space in order to match the Kolmogorov 1941
phenomenological theory: the space covariance is fully-smooth at length scales ≲ 𝜈

1
2 (a UV cutoff), and behaves like

a 𝐶𝛼 function at length scales ≳ 𝜈
1
2 (a synthetic power spectrum in the inertial range). For such a stationary Gaussian

random field 𝑢𝜈 , instead of (1.1) one studies the Stratonovich SDE 𝑑𝜃𝜅,𝜈 + 𝑢𝜈 ⊙ 𝑑𝜃𝜅,𝜈 = 𝜅Δ𝜃𝜅,𝜈𝑑𝑡. The main result is
that in the joint limit 𝜈, 𝜅 → 0, and for a.e. realization of the field 𝑢𝜈 , and any 𝜃in ∈ 𝐿2 (T𝑑) of zero-mean, anomalous
diffusion holds; see Bernard, Gawedski, and Kupiainen [14], Le Jan and Raimond [53], or Falkovich, Gawedski, and
Vergassola [40]. A fully rigorous, complete, and concise proof of anomalous diffusion for the Kraichnan model (and
its variants) may be found in the recent work of Rowan [62].

The main drawback of the Kraichnan model stems from the white-noise temporal correlation of the vector field
𝑢, which is indeed so rough that it is likely entirely responsible for the anomalous diffusivity; see the mathematical
discussion in [62] and the numerical comparisons made in [68].

The first deterministic vector field 𝑢 for which the dissipation anomaly (1.5) can be established rigorously, was
constructed by Drivas, Elgindi, Iyer, and Jeong [33]. These authors show that for any 𝛼 ∈ [0, 1) and any dimension
𝑑 ≥ 2, there exists 𝑢 ∈ 𝐿1 ( [0, 1];𝐶𝛼 (T𝑑)) ∩ 𝐿∞ ( [0, 1]; 𝐿∞ (T𝑑)), such that 𝑢(𝑡, ·) is smooth for any 𝑡 < 1, and
such that for any 𝜃in ∈ 𝐻2 (T𝑑) which is sufficiently close (in 𝐿2) to a an eigenfunction of the Laplacian, anomalous
diffusion (1.5) holds, with a purely-atomic time dissipation measure E(𝑑𝑡) = 𝜌(𝜃in)𝛿𝑡=1. The construction in [33] is
based on “quasi-self-similarly” (as 𝑡 → 1−) accelerating an inviscid mixing dynamics [1], and treating the diffusion
term as a perturbation. This is made possible by the singular nature of the speed-up of 𝑏 with respect to time, and the
fact that at each time 𝑡 < 1 the field 𝑢 has only one “active scale” with respect to space.

The ideas in [33] proved to be quite popular, leading to a number of further refinements [15, 21, 24, 35, 49, 50, 63].
Notably, Colombo, Crippa, and Sorella [24] gave examples of a smooth initial conditions 𝜃in, and of a divergence-
free vector field 𝑢 ∈ 𝐶0

𝑡 𝐶
𝛼
𝑥 (for any 𝛼 < 1), such that the associated family of solutions {𝜃𝜅 }𝜅>0 is uniformly-in-𝜅

6A weak solution (𝑢, 𝑝) ∈ 𝐿2
𝑥,𝑡 × 𝐿1

𝑥,𝑡 of the incompressible Euler equations solves the system 𝜕𝑡𝑢 + div(𝑢 ⊗ 𝑢) + ∇𝑝 = 0, with div𝑢 = 0, in
the sense of space-time distributions.

7For the incompressible Euler equations, the Onsager dichotomy is a “Theorem”, except for the most important endpoint case 𝛼 = 1
3 ; see [22,34]

for the sharpest rigidity statements, and [16, 44, 45, 47, 60] for the latest flexibility statements in the Onsager Theorem.
8The reason that we do not include here the full range 𝛼 ∈ (0, 1) is discussed in §4 below.

9Specifically, one may modify the argument of [25] to establish 𝜅
∫ 1

0
∥∇𝜃 𝜅 ( ·, 𝑡) ∥2

𝐿2 𝑑𝑡 ≲ 𝜅
𝛼+2𝛼−1

𝛼+1 (1 + ∥𝑢∥𝐿∞
𝑡 𝐶𝛼

𝑥
)
2(1−𝛼)
𝛼+1 ∥𝜃 𝜅 ∥2

𝐿∞
𝑡 𝐶𝛼

𝑥
.
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bounded in 𝐿2
𝑡𝐶

𝛼
𝑥 for any �̄� < 1−𝛼

2 , consistent with the Obukhov-Corrsin dichotomy; moreover, (1.5) holds with
E(𝑑𝑡) = 𝜌(𝜃in)𝛿𝑡=1, and sub-sequential limits select different weak solutions of the transport equation.10

This result was further refined by Elgindi and Liss [35], who for any 𝛼 ∈ (0, 1) provide a divergence-free vector
field 𝑢 ∈ 𝐶∞ ( [0, 1];𝐶𝛼 (T𝑑)) such that for all zero-mean and smooth initial conditions 𝜃in (instead of just one initial
condition) anomalous diffusion holds with E(𝑑𝑡) = 𝜌(𝜃in)𝛿𝑡=1; moreover, {𝜃𝜅 }𝜅>0 is uniformly-in-𝜅 bounded in 𝐿2

𝑡𝐶
𝛼
𝑥

for any �̄� < 1−𝛼
2 . We also mention the work of Johannson-Sorella [50] who construct an autonomous divergence-free

velocity field 𝑢 ∈ 𝐶𝛼
𝑥 and a smooth zero-mean initial condition 𝜃in, such that (1.5) holds; the associated time dissipation

measure E(𝑑𝑡) is purely absolutely continuous w.r.t. the Lebesgue on [0, 1]. Lastly, we note the recent paper of Hess-
Childs and Rowan [63] who for any 𝛼 ∈ (0, 1) construct 𝑢 ∈ 𝐶0

𝑡 𝐶
𝛼
𝑥 ∩𝐶

𝛼
1−𝛼
𝑡 𝐶0

𝑥 such that for any zero-mean 𝜃in ∈ 𝑇𝑉 (T2),
the passive scalar 𝜃𝜅 exhibits asymptotic total dissipation as 𝜅 → 0, at {𝑡 = 1}; that is, lim𝜅→0 ∥𝜃𝜅 (1, ·)∥𝐿1 (T2) = 0.

The main drawbacks of the constructions in [24,33,35] are that the anomalous dissipation occurs at only a discrete
set of times (E(𝑑𝑡) is proportional to 𝛿𝑡=1), the vector field 𝑢 has only one active scale at each time 𝑡 ∈ [0, 1), and
the advection-diffusion equation (1.1) is treated as a perturbation of the transport equation (1.3). Taken together, these
properties are inconsistent with the observed properties of turbulent flows.

Note that the result in [35] nearly solves part (ii) of the Obukhov-Corrsin dichotomy discussed above, except for
the singular nature of the time dissipation measure. In §4 we argue that this seemingly minor caveat (the atomic
nature of E(𝑑𝑡)), combined with the fact that anomalous diffusion is meant to hold for all smooth zero-mean initial
conditions 𝜃in, is in fact fundamental to the Obukhov-Corrsin dichotomy, and we present a conjecture in this direction
(see Conjecture 4.1).

1.4. Main result. Our goal in [9] was to build “minimally realistic examples” of “fluid-like” velocity fields 𝑢, for
which anomalous diffusion holds in the sense of Definition 1.1,11 and such that the time dissipation measure E(𝑑𝑡)
defined in (1.6) is non-atomic.12

From a broader perspective, our goal was to highlight what we believe to be the “right reason” for which anomalous
diffusion holds: it is not that the underlying transport dynamics exhibits mixing, which is accelerated towards a discrete
set of times; rather, we show that as one “zooms out” from small scales to large scales, one may observe a backwards
cascade of renormalized “eddy diffusivities” taking shape, in such a way that the large scale motion experiences 𝑂 (1)
diffusivity independently of the vanishing molecular diffusivity (as 𝜅 → 0). Of course, this picture is not at all original
and is indeed widely shared by physicists, where it goes under the name renormalization group: see for instance
Frisch [42, Section 9.6]. Our main result is:

Theorem 1.2 (Theorem 1.1 in [9]). Fix 𝑑 ≥ 2 and 𝛼 ∈ (0, 13 ).13 There exists an incompressible vector field
𝑢 ∈ 𝐶0 ( [0, 1];𝐶𝛼 (T𝑑)) ∩ 𝐶𝛼 ( [0, 1];𝐶0 (T𝑑)), such that for every 𝜃in ∈ ¤𝐻1 (T𝑑), the family of solutions {𝜃𝜅 }𝜅>0 of
the advection-diffusion equation (1.1) with velocity 𝑢, exhibits anomalous diffusion in the sense of Definition 1.1, with
a non-atomic time-dissipation measure. Moreover, we have:
• The parameter 𝜚 ∈ (0, 12 ] appearing in (1.5) depends only on 𝛼, 𝑑, and a lower bound on the natural length scale

of the initial datum, given by 𝐿in :=
∥𝜃in ∥𝐿2

∥∇𝜃in ∥𝐿2
. Specifically, for any 𝜀 > 0, we may find 𝑐 = 𝑐(𝑑, 𝛼, 𝜀) > 0 such that

𝜚 = 𝑐𝐿
2(1+𝛼)
1−𝛼 +𝜀

in .
• There exists a sequence 𝜅 𝑗 → 0, which depends on 𝛼 and 𝑑 but is independent of 𝜃in, along which the lower bound

in (1.5) is realized; upon defining K = ∪ 𝑗≥1 [ 12 𝜅 𝑗 , 2𝜅 𝑗 ], we have inf 𝜅∈K 𝜅∥∇𝜃𝜅 ∥2
𝐿2 ( (0,1)×T𝑑) ≥ 𝜚∥𝜃in∥2𝐿2 (T𝑑) .

• There exists 𝜇 > 0, such that for any sequence 𝜅𝑖 → 0 with {𝜅𝑖}𝑖≥1 ⊂ K, the sequence of solutions {𝜃𝜅𝑖 }𝑖≥1
is uniformly-in-𝜅𝑖 bounded in 𝐶0,𝜇 ( [0, 1]; 𝐿2 (T𝑑)), as 𝜅𝑖 → 0. In particular, the anomalous dissipation occurs
continuously in time: along this subsequence we have that

∫ 𝑡

0
E(𝑑𝑡 ′) is Hölder continuous in 𝑡 ∈ [0, 1]. See [9,

Remark 5.4].
• There exists sequences {𝜅𝑖}𝑖≥1, {𝜅′𝑖}𝑖≥1 ⊂ K such that as 𝜅𝑖 , 𝜅′𝑖 → 0, the sequences {𝜃𝜅𝑖 }𝑖≥1 and {𝜃𝜅′𝑖 }𝑖≥1 converge

strongly in 𝐶0
𝑡 𝐿

2
𝑥 to two distinct bounded weak solutions 𝜃 and 𝜃 ′ of the transport equation (1.3). This demonstrates

the lack of a selection principle for vanishing diffusivity limits of the advection-diffusion equation towards the
transport equation. See [9, Proposition 5.5].

10At the lower regularity 𝑢 ∈ 𝐿∞
𝑥,𝑡 , the vanishing viscosity limit fails to select not just unique solutions of the transport equation, but also

physically admissible ones, in the sense of non-increasing energy/entropy. [46]
11In particular, (1.5) holds for all zero-mean smooth initial conditions.
12In particular, the anomalous dissipation occurs continuously in time.
13The restriction 𝛼 < 1

3 is intimately related to Conjecture 4.1 below.
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• The constructed vector field 𝑢 is “nearly” a weak solution of the incompressible Euler equations, in the sense
of [9, Proposition 2.8].

• The class of vector fields 𝑢 for which the all the conclusions of this Theorem hold is dense in the class of all smooth
zero-mean divergence-free vector fields, with respect to the 𝐶0

𝑥,𝑡 topology. See Remark 3.1 below.

The construction of the vector field 𝑢 postulated in Theorem 1.2 has many features in common with Nash-type
convex-integration schemes for the incompressible Euler equations: multi-scale constructions with super-geometric
scale separation, infinitely-many nested active scales with “building blocks” that are stationary Euler solutions, and
the usage of Lagrangian flows to advect small-scale features by large-scale flows. On the other hand, the analysis
of the passive scalars 𝜃𝜅 is based on ideas from quantitative homogenization. Specifically, we need to perform
homogenization iteratively across many length scales. In this way, we observe the emergence of a sequence of effective
“eddy” diffusivities, which are recursively defined by homogenizing “up the scales”, from the small scale at which
molecular diffusion acts, to the large scale of the periodic box. In this process, every homogenization step resembles
Taylor [69] dispersion specialized to the case of a shear flow. An outline of the proof of Theorem 1.2 is provided in §3.

1.5. Anomalous diffusions via weak solutions of 3D incompressible Euler. We wish to highlight a very important
extension of Theorem 1.2, which was recently obtained by Burczak, Székelyhidi, and Wu in [20]. Whereas the vector
field 𝑢 in Theorem 1.2 may only be shown to be “nearly” a weak solution of the incompressible Euler equations on
T𝑑 ,14 the authors of [20] have shown that anomalous dissipation (as in Theorem 1.2) holds for large classes of vector
fields 𝑢 ∈ 𝐶𝛼

𝑥,𝑡 (with 𝛼 < 1
3 ), that are true weak solutions of three-dimensional incompressible Euler equations:

Theorem 1.3 (Burczak, Székelyhidi, Wu [20]). Fix 𝑑 = 3. For any 𝛼 ∈ (0, 13 ), there exists a weak solution
𝑢 ∈ 𝐶0 ( [0, 1];𝐶𝛼 (T3)) ∩𝐶𝛼 ( [0, 1];𝐶0 (T3)) of the incompressible Euler equations, such that the advection-diffusion
equation (1.1) with velocity 𝑢 exhibits anomalous diffusion, precisely as in Theorem 1.2. Additionally, the family of all
such weak solutions 𝑢 ∈ 𝐶𝛼

𝑥,𝑡 of the Euler equations is dense in the class of all solenoidal vector fields, with respect to
the 𝐶0

𝑡 𝐻
−1
𝑥 topology.

The proof of Theorem 1.3 uses the concepts and analytical methodology of our work [9], and elegantly combines
them with ideas from convex-integration / Nash-schemes for the incompressible Euler equations (the technical
implementation in [16] is of particular relevance). Notably, Burczak, Székelyhidi, and Wu succeed in [20] to interlace
the backwards energy cascade characteristic of convex integration schemes, with the backwards cascade of renormalized
diffusivities which is underpinning iterated homogenization. At a technical level, [20] need to contend with the fact
that the correctors are not anymore explicit,15 and with the fact that Isett’s gluing technique [47] necessitates a more
involved time-homogenization step.16 Lastly, we note that the proof in [20] necessitates at least three space dimensions,
due to the usage of non-intersecting Mikado flows [27]. It is conceivable that a two-dimensional result is attainable by
combining the ideas in [9,20] with the Newton-Nash scheme which was used to resolve the 2D Onsager conjecture [45].

2. Background on quantitative homogenization

Before turning to the proof of Theorem 1.2, it is instructive to briefly recall the basic two-scale expansion in parabolic
periodic homogenization, emphasizing the relation between the effective equation and the phenomenon of advection-
enhanced diffusion (see §2.1), and then to briefly recall some of the basic themes of quantitative homogenization,
highlighted in the context of the homogenization problem of a periodic shear flow, and leading to the Taylor dispersion
formula (see §2.2).

2.1. The two-scale expansion in parabolic homogenization. We begin with a general presentation of the parabolic
two-scale expansion in the periodic setting; this material is standard (see for example [43, 48, 64]). We consider
a Z×Z𝑑-periodic, mean-zero, incompressible vector field 𝑏 = 𝑏(𝑡, 𝑥) and for 𝜀, 𝜅 > 0, consider the advection-diffusion
equation

𝜕𝑡𝜃𝜀 − 𝜅Δ𝜃𝜀 + 1
𝜀
𝑏( 𝑡

𝜀2 ,
𝑥
𝜀
) · ∇𝜃𝜀 = 0 . (2.1)

14See Proposition 2.8 in [9].
15As opposed to [9], the solution of the cell-problem in [20] is not explicit. Instead, the correctors are very well-approximated by explicit

functions. This is known to be sufficient, because the space-homogenization step is stable under small perturbations in the diffusion matrix.
16Time-homogenization due to switching of flow-maps was a difficulty already faced and resolved in [9]. The complication in [20] stems from

the turning-on and turning-off of the fast oscillations in 𝑢, due to the so-called “gluing step”.
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By introducing a stream matrix s for the vector field 𝑏 (that is, an anti-symmetric matrix such that − div s = 𝑏), the
advection term in (2.1) may be expressed as a second-order term 1

𝜀
𝑏( 𝑡

𝜀2 ,
𝑥
𝜀
) · ∇𝜃𝜀 = − div(s( 𝑡

𝜀2 ,
𝑥
𝜀
)∇𝜃𝜀); in turn, this

allows us to write (2.1) as

𝜕𝑡𝜃𝜀 − div
(
a𝜀∇𝜃𝜀

)
= 0 , where a𝜀 (𝑡, 𝑥) := 𝜅I𝑑 + s( 𝑡

𝜀2 ,
𝑥
𝜀
) = a( 𝑡

𝜀2 ,
𝑥
𝜀
) . (2.2)

Note that (2.2) contains a diffusion matrix a𝜀 that oscillates fast (it depends on 𝜀), and is not symmetric (since s is
skew-symmetric). Homogenization theory quantifies the convergence as 𝜀 → 0 (say with respect to the 𝐿2

𝑡 ,𝑥 topology)
of solutions 𝜃𝜀 of (2.2) to solutions 𝜃 of the effective equation

𝜕𝑡𝜃 − div
(
ā∇𝜃

)
= 0 , (2.3)

where:
• the homogenized/effective diffusion matrix ā is given by

ā𝑒 =
〈〈
a(𝑒 + ∇𝜒𝑒)

〉〉
, 𝑒 ∈ S𝑑−1 , a := 𝜅I𝑑 + s , (2.4)

• ⟨⟨·⟩⟩ denotes the space-time average of a Z × Z𝑑–periodic function,
• 𝜒𝑒 is the corrector with slope 𝑒; that is, the unique Z × Z𝑑–periodic solution of the cell problem

𝜕𝑡 𝜒𝑒 − div
(
a(𝑒 + ∇𝜒𝑒)

)
= 0 ,

〈〈
𝜒𝑒

〉〉
= 0 . (2.5)

The above definitions show that the symmetric part of the effective diffusion matrix ā is given by
1
2 (ā + ā𝑡 )𝑖 𝑗 = 𝜅𝛿𝑖 𝑗 + 𝜅

〈〈
∇𝜒𝑒𝑖 · ∇𝜒𝑒 𝑗

〉〉
. (2.6)

The second term on the right side of (2.6) is positive (as a nonnegative definite matrix), and therefore the symmetric
part of ā is larger than the original diffusion matrix 𝜅I𝑑 . This effect is called the enhancement of diffusivity due to
advection.17

The convergence ∥𝜃𝜀 − 𝜃∥𝐿2
𝑡,𝑥

→ 0 as 𝜀 → 0, where 𝜃𝜀 solves the microscopic diffusion equation (2.2) and 𝜃 is an
appropriately chosen solution of the macroscopic/effective equation (2.3) is summarized informally as:

“the operator 𝜕𝑡 − div(a𝜀∇) homogenizes as 𝜀 → 0 to the operator 𝜕𝑡 − div(ā∇).”
A standard formalization of the above statement is achieved by proving that 𝜃𝜀 is well-approximated by its “two-scale
expansion”, which is defined in (2.7) below.

The parabolic two-scale expansion is constructed as follows. In addition to the corrector with slope 𝑒, 𝜒𝑒 (defined
in (2.5)), and to the homogenized matrix ā (defined in (2.4)), we introduce:
• the space-homogenized matrix ā(𝑡) is defined for 𝑡 ∈ R by

ā(𝑡)𝑒 = ⟨a(𝑡, ·) (𝑒 + ∇𝜒𝑒 (𝑡, ·))⟩, 𝑒 ∈ S𝑑−1 ,

where ⟨·⟩ denotes the space average of a Z𝑑–periodic function;
• this allows us to define the matrix

k(𝑡) :=
∫ 𝑡

0

(
ā(𝑡 ′) − ā

)
𝑑𝑡 ′ ,

which by construction has zero-mean in time, i.e.
∫ 1

0
k(𝑡)𝑑𝑡 = 0;

• integrating (2.4) with respect to space alone implies that ⟨𝜕𝑡 𝜒𝑒⟩ = 0, and thus for each 𝑡 ∈ R we may define the time
corrector ℎ𝑒 (𝑡, ·) as the the Z𝑑–periodic 𝐻1 (R𝑑) solution of

−Δℎ𝑒 (𝑡, ·) = 𝜕𝑡 𝜒𝑒 (𝑡, ·) , ⟨ℎ𝑒 (𝑡, ·)⟩ = 0 ;

• the purpose of introducing the space-homogenized matrix ā(𝑡) and the time corrector ℎ𝑒 (𝑡, ·) is to ensure that for
each 𝑡 ∈ R the vector field

𝑔𝑒 (𝑡, ·) := a(𝑡, ·)
(
𝑒 + ∇𝜒𝑒 (𝑡, ·)

)
− ā(𝑡)𝑒 + ∇ℎ𝑒 (𝑡, ·)

satisfies div 𝑔𝑒 (𝑡, ·) = 0 and ⟨𝑔𝑒 (𝑡, ·)⟩ = 0; in turn, this allows us to write 𝑔𝑒 (𝑡, ·) as the divergence of a skew-
symmetric matrix m𝑒 (𝑡, ·), which is the zero-mean solution of

−Δm𝑒,𝑖 𝑗 (𝑡, ·) = 𝜕𝑖𝑔𝑒, 𝑗 (𝑡, ·) − 𝜕 𝑗𝑔𝑒,𝑖 (𝑡, ·) .

17The enhancement of diffusivity due to advection, from the point of view of homogenization theory, is by now classical, and we do not offer a
complete summary of the relevant literature here. We instead refer the reader to [41, 54, 64] and the references therein.



ANOMALOUS DIFFUSION VIA ITERATIVE QUANTITATIVE HOMOGENIZATION 7

With this notation, the parabolic two-scale expansion is given by

�̃�𝜀 (𝑡, 𝑥) := 𝜃 (𝑡, 𝑥) + 𝜀

𝑑∑︁
𝑖=1

𝜕𝑖𝜃 (𝑡, 𝑥)𝜒𝑒𝑖
(

𝑡
𝜀2 ,

𝑥
𝜀

)
+ 𝜀2

𝑑∑︁
𝑖, 𝑗=1

k𝑖 𝑗
(

𝑡
𝜀2

)
𝜕𝑖 𝑗𝜃 (𝑡, 𝑥) , (2.7)

where 𝜃 is a solution of (2.3). The function 𝜃 is determined only once we specify a domain and a parabolic boundary
condition.

In order to show that �̃�𝜀 is a good approximation of the solution 𝜃𝜀 of (2.2) (again, by this we mean that one fixes a
domain, and lets 𝜃𝜀 match the values of 𝜃 on the corresponding parabolic boundary), we simply plug in the ansatz (2.7)
into (2.2) and try to argue that the error we make is small. Using that 𝜃 solves (2.3) we arrive at:

𝜕𝑡 �̃�𝜀 − div
(
a𝜀∇�̃�𝜀

)
= 𝑓𝜀 , (2.8)

where the “error” 𝑓𝜀 is given explicitly as

𝑓𝜀 (𝑡, 𝑥) := 𝜀 div

(
𝑑∑︁
𝑖=1

(
ℎ𝑒𝑖 I𝑑 − 𝜒𝑒𝑖a −m𝑒𝑖

) (
𝑡
𝜀2 ,

𝑥
𝜀

)
∇𝜕𝑥𝑖 𝜃 (𝑡, 𝑥)

)
+ 𝜀

𝑑∑︁
𝑖=1

(
𝜒𝑒𝑖

(
𝑡
𝜀2 ,

𝑥
𝜀

)
𝜕𝑥𝑖𝜕𝑡𝜃 (𝑡, 𝑥) + ℎ𝑒𝑖

(
𝑡
𝜀2 ,

𝑥
𝜀

)
𝜕𝑥𝑖Δ𝜃 (𝑡, 𝑥)

)
+ 𝜀2

𝑑∑︁
𝑖, 𝑗=1

k𝑖 𝑗
(

𝑡
𝜀2

)
𝜕𝑖 𝑗𝜕𝑡𝜃 (𝑡, 𝑥). (2.9)

The proof of the statement “the operator 𝜕𝑡 −div(a𝜀∇) homogenizes as 𝜀 → 0 to the operator 𝜕𝑡 −div(ā∇)”, quantified
by the convergence ∥𝜃𝜀 − 𝜃∥𝐿2

𝑡,𝑥
→ 0 as 𝜀 → 0, now follows from (2.7), (2.8), and (2.9):

• (good) bounds on the solution 𝜒𝑒 of the cell problem (2.5) imply (good) bounds for the time correctors ℎ𝑒, the
skew-symmetric matrix m𝑒, and the matrix k;

• coupled with (good) derivative estimates for the macroscopic function 𝜃, which solves the homogenized problem (2.3),
the aforementioned bounds show that the forcing 𝑓𝜀 appearing on the right side of (2.8) is 𝑂 (𝜀) (say in 𝐿2

𝑡 𝐻
−1
𝑥 );

• additionally, note that by the linearity of (2.2) we have that

𝜕𝑡 (�̃�𝜀 − 𝜃𝜀) − div
(
a𝜀∇(�̃�𝜀 − 𝜃𝜀)

)
= 𝑓𝜀 , (2.10)

and so by the standard parabolic energy estimate, �̃�𝜀 − 𝜃𝜀 is 𝑂 (𝜀) (say in 𝐿2
𝑡 ,𝑥);

• Since 𝜃𝜀 match the values of 𝜃 on the parabolic boundary of the spacetime domain, and �̃�𝜀 is an 𝑂 (𝜀) perturbation
from 𝜃, the difference �̃�𝜀 − 𝜃𝜀 is at most 𝑂 (𝜀) on the boundary (say in 𝐿∞

𝑡 ,𝑥);
• to conclude, note that from (2.7) and the above mentioned bounds we directly obtain that �̃�𝜀 − 𝜃 is 𝑂 (𝜀) (say in 𝐿2

𝑡 ,𝑥)
by standard energy estimates.

The above items sweep under the rug the fact that the aforementioned bounds depend in a crucial way on the ellipticity
constant of the matrix a = 𝜅I𝑑 + s, on the ellipticity ratio of a, which quantifies the size of the skew part s to the size
of the symmetric part 𝜅I𝑑 . They also depend on the size of the derivatives of the macroscopic function 𝜃, since these
appear in the definition of 𝑓𝜀 in (2.9). These considerations are crucial for the quantitative homogenization estimates
which we discuss next.

2.2. Quantitative homogenization for shear flows: Taylor dispersion. Stated as in §2.1, it appears that homogenization
relies on asymptotic scale separation (the limit 𝜀 → 0), which is a feature inconsistent with turbulence models.18
Asymptotic scale separation is also inconsistent with the construction of the vector field 𝑢 in §3.1. There, 𝜀 represents
the ratio of two consecutive length scales, which for a fixed parameter 𝑚 in the iteration corresponds to 0 <

𝜀𝑚+1
𝜀𝑚

< 1.
Note however that for 𝑚 = 100, say, the ratio 𝜀101

𝜀100
is fixed, and cannot be sent to 0. This is why quantitative

homogenization methods need, and should, be used! Rather than arguing that some quantities converge to others
in the limit of infinite scale separation, one needs to precisely quantify the length scales and time scales on which
homogenization may be observed to have occurred, modulo small errors (which then need to be summed up across
scales). Fortunately, quantitative homogenization rates for periodic coefficient fields are very explicit and quite
well-understood (see [48, 65] for instance).

We will next highlight this quantitative homogenization perspective for the operator 𝜕𝑡 − 𝜅Δ + 𝑢 · ∇, when 𝑢 is a
two-dimensional shear flow. For parameters 𝑎, 𝜀 > 0, let us consider

𝑢 = 𝑢𝑎,𝜀 = 2𝜋𝑎𝜀 cos
( 2𝜋𝑥2

𝜀

)
𝑒1 , (2.11)

18See e.g. the criticisms in [42, page 225] and [54, page 304].
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so that 0 < 𝜀 ≪ 1 is the scale of spatial oscillation (note that 𝑢 is time independent), and 𝑎 ≫ 1 is proportional to the
Lipschitz norm of 𝑢 (note that ∥∇𝑢∥𝐿∞ (T2) = 4𝜋2𝑎). Since we are two space dimensions, ⟨𝑢⟩ = 0, and div 𝑢 = 0, we
may write

𝑢𝑎,𝜀 = ∇⊥𝜓𝑎,𝜀 , where 𝜓𝑎,𝜀 = 𝑎𝜀2 sin
( 2𝜋𝑥2

𝜀

)
. (2.12)

Associated to the stream function 𝜓𝑎,𝜀 we may associate the anti-symmetric matrix 𝜓𝑎,𝜀I
⊥
2 , where I⊥2 is the (rotation)

matrix with components (I⊥2 )11 = (I⊥2 )22 = 0 and (I⊥2 )21 = −(I⊥2 )12 = 1. Then, in analogy to (2.2), we may rewrite

𝜕𝑡 − 𝜅Δ + 𝑢𝑎,𝜀 · ∇ = 𝜕𝑡 − div
(
a𝜀∇

)
(2.13)

where for compatibility of notation we have defined

a𝜀 (𝑥) := 𝜅I2 + 𝜓𝑎,𝜀 (𝑥)I⊥2 = a
(
𝑥
𝜀

)
, with a(𝑦) := 𝜅I2 + 𝑎𝜀2 sin(2𝜋𝑦2)I⊥2 . (2.14)

Here 𝑦 is a placeholder for the fast space variable 𝑥
𝜀
. In the example provided by (2.13)–(2.14) we may take advantage

of the fact that a is independent of time and of the first space coordinate to deduce that the correctors 𝜒𝑒 (which solve
the cell problem (2.5)) are also independent of time and of the first space coordinates. In fact, we may quickly verify
that the solution of (2.5) is given by

𝜒𝑒1 (𝑦) = 𝑎𝜀2

2𝜋𝜅 cos(2𝜋𝑦2) , and 𝜒𝑒2 (𝑦) = 0 , (2.15)

which is clearly Z × Z2–periodic. Plugging (2.15) into (2.4) we obtain

ā = 𝜅I2 +
(
𝑎2𝜀4

2𝜅 0
0 0

)
=

(
𝜅 + 1

2 𝜅 ·
(
𝑎𝜀2

𝜅

)2
0

0 𝜅

)
. (2.16)

The formula for the effective diffusion matrix ā given in (2.16) is called the Taylor dispersion formula [69] (specialized
to the case of the shear flow in (2.11)); see also the work of Aris [3].

The Taylor dispersion formula for ā obtained in (2.16) is notable because ā is diagonal (note that a had a non-constant
anti-symmetric part), by definition it is constant in space in time, and most notably, the enhancement of diffusion only
occurs in the 𝑒1 ⊗ 𝑒1 entry (a remnant of the fact that the 𝑢 in (2.11) points in the 𝑒1 direction but is independent
of 𝑥1). We also note that the quantity 𝑎𝜀2

𝜅
which appears squared as a factor for the strength of the enhancement is

dimensionless: 𝑎 is the Lipschitz norm of a velocity field so it scales as (time)−1, the parameter 𝜀 has units of (length),
while 𝜅 is a molecular diffusivity so it has units of (length)2 · (time)−1.

At this point we have simply derived an explicit formula for the homogenized matrix ā, but we have not said anything
quantitative about the statement “the operator 𝜕𝑡 − div(a𝜀∇) homogenizes as 𝜀 → 0 to the operator 𝜕𝑡 − div(ā∇).” The
following Lemma provides such a “sample” quantitative result; we do not claim that the following result is the sharpest
possible, it is not the most general either; we present it here for pedagogical value, as it provides useful intuition about
the quantitative bounds that may be extracted from the parabolic two-scale expansion.

Lemma 2.1 (Quantitative homogenization and Taylor dispersion). Let a𝜀 be defined by (2.14), and let ā be defined
by (2.16). The operator 𝜕𝑡 − div(a𝜀∇) homogenizes to the operator 𝜕𝑡 − div(ā∇), on

time-scales ≳ 𝑎−1 ·
(
1 + 𝑎𝜀2

𝜅

)
and space-scales ≳ 𝜀 ·

(
1 + 𝑎𝜀2

𝜅

)
. (2.17)

More precisely:
• Define 𝜃 to be the T2-periodic solution of the Cauchy problem for 𝜕𝑡𝜃 − div(ā∇𝜃) = 0 (cf. (2.3)), with smooth initial

datum 𝜃 |𝑡=0 = 𝜃in.
• For 𝑅 > 0 define the parabolic cylinders adapted to ā, as 𝑄𝑅 = 𝑄𝑅 (𝑡0, 𝑥0) = (𝑡0, 𝑥0) + (−𝑅2

𝜅
, 0] × 𝐸𝑅 (0), where 𝐸𝑅

is the ellipsoid defined by {𝑥 : |ā− 1
2 𝑥 | ≤ 𝑅} = ā

1
2 𝐵𝑅 (0). In our case, due to (2.16), this ellipsoid has axes of length

𝜅
1
2 𝑅(1 + 𝑎𝜀2

𝜅
) in the 𝑒1 direction, and 𝜅

1
2 𝑅 in the 𝑒2 direction.

• For every such parabolic cylinder 𝑄𝑅 with 𝑄2𝑅 ⊆ [0, 1] × T2, let 𝜃𝜀 be the solution of 𝜕𝑡𝜃𝜀 − div(a𝜀∇𝜃𝜀) = 0 in
𝑄𝑅, with (parabolic) boundary data 𝜃𝜀 ≡ 𝜃 on 𝜕par𝑄𝑅.

• Then, we have that

∥𝜃𝜀 − 𝜃∥𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑅) ≲ (1 + 𝑎𝜀2

𝜅
) 𝜀
𝑅
∥𝜃∥𝐿2

𝑥,𝑡 (𝑄2𝑅) . (2.18)

Here, 𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑅) and 𝐿2
𝑥,𝑡 (𝑄𝑅) denote the usual volume-normalized norm (e.g. integrals

∫
𝑄𝑅

are replaced by
⨏
𝑄𝑅

).
In particular, when 𝑅 ≫ 𝜀(1 + 𝑎𝜀2

𝜅
), we see that ∥𝜃𝜀 − 𝜃∥𝐿∞

𝑡 𝐿2
𝑥 (𝑄𝑅) ≪ ∥𝜃∥𝐿2

𝑥,𝑡 (𝑄2𝑅) . Finally, note that with the time
scaling of the cylinder 𝑄𝑅, the condition 𝑅 ≫ 𝜀 ·

(
1 + 𝑎𝜀2

𝜅

)
becomes 𝑇 ≫ 𝜅−1𝜀2 ·

(
1 + 𝑎𝜀2

𝜅

)2 ≃ 𝑎−1
(
1 + 𝑎𝜀2

𝜅

)
. This

matches the heuristic claim in (2.17).
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Brief proof of Lemma 2.1. We wish to appeal to the parabolic two-scale expansion described in §2.1. We have already
computed the correctors with slope 𝑒, namely 𝜒𝑒, in (2.15). Since a = a(𝑦2) and 𝜒𝑒 = 𝜒𝑒 (𝑦2) are both independent
of 𝑡, the space homogenized matrix ā(𝑡) is time independent, and is equal to ā for all 𝑡 ∈ R. Hence, the matrix
k(𝑡) = 0 for all 𝑡 ∈ R, and the time correctors also vanish identically, ℎ𝑒 (𝑡, ·) = 0 for all 𝑡 ∈ R. Then, it follows that
𝑔𝑒1 (𝑡, 𝑦) = − 𝑎2𝜀4

2𝜅 cos(4𝜋𝑦2)𝑒1 and 𝑔𝑒2 (𝑡, 𝑦) = −𝑎𝜀2 sin(2𝜋𝑦2)𝑒1, so that the skew-symmetric matrices m𝑒 (𝑡, ·) are
given explicitly by m𝑒1 (𝑡, 𝑦) = 𝑎2𝜀4

8𝜋𝜅 sin(4𝜋𝑦2)I⊥2 and m𝑒2 (𝑡, 𝑦) = − 𝑎𝜀2

2𝜋 cos(2𝜋𝑦2)I⊥2 .
Using the explicit computations in the previous paragraph, the equation (2.3) for 𝜃 may also be written as

𝜕𝑡𝜃 −
(
𝜅 + 𝑎2𝜀4

2𝜅

)
𝜕11𝜃 − 𝜅𝜕22𝜃 = 0 . (2.19)

Moreover, the parabolic two-scale expansion is then given by (2.7) as

�̃�𝜀 (𝑡, 𝑥) := 𝜃 (𝑡, 𝑥) + 𝜀𝜕1𝜃 (𝑡, 𝑥)𝜒𝑒1
( 𝑥2
𝜀

)
= 𝜃 (𝑡, 𝑥) + 𝑎𝜀3

2𝜋𝜅 cos
( 2𝜋𝑥2

𝜀

)
𝜕1𝜃 (𝑡, 𝑥) . (2.20)

Additionally, the “error” term 𝑓𝜀 defined in (2.9) may be computed explicitly as

𝑓𝜀 (𝑡, 𝑥) = −𝜀 div
( (
𝜒𝑒1a +m𝑒1

) ( 𝑥2
𝜀

)
∇𝜕1𝜃 (𝑡, 𝑥) +m𝑒2

( 𝑥2
𝜀

)
∇𝜕2𝜃 (𝑡, 𝑥)

)
+ 𝜀𝜒𝑒1

( 𝑥2
𝜀

)
𝜕1𝜕𝑡𝜃 (𝑡, 𝑥)

= −𝜀 div
(
𝑎𝜀2

2𝜋 cos( 2𝜋𝑥2
𝜀

)∇𝜕1𝜃 (𝑡, 𝑥) − 𝑎2𝜀4

8𝜋𝜅 sin( 4𝜋𝑥2
𝜀

)∇⊥𝜕1𝜃 (𝑡, 𝑥)
)

+ 𝜀 div
(
𝑎𝜀2

2𝜋 cos( 2𝜋𝑥2
𝜀

)∇⊥𝜕2𝜃 (𝑡, 𝑥)
)
+ 𝜀𝜕1

(
𝑎𝜀2

2𝜋𝜅 cos(
2𝜋𝑥2
𝜀

)𝜕𝑡𝜃 (𝑡, 𝑥)
)

=: div 𝑣𝜀 (𝑡, 𝑥) , (2.21)

for an implicitly defined vector 𝑣𝜀 , and where we recall that ∇⊥ = I⊥2∇ = (−𝜕2, 𝜕1).
In order to conclude, we at last perform some PDE estimates. First, we need some standard bounds for 𝜃 which are just

standard pointwise estimates for the heat equation after a change of variables. These say that, for every ℓ ∈ {0, 1, 2, . . .},

(𝜅− 1
2 𝑅)ℓ ∥(ā 1

2∇)ℓ𝜃∥𝐿∞
𝑥,𝑡 (𝑄𝑅) + (𝜅− 1

2 𝑅)2ℓ ∥𝜕ℓ𝑡 𝜃∥𝐿∞
𝑥,𝑡 (𝑄𝑅) ≤ 𝐶ℓ ∥𝜃∥𝐿2

𝑥,𝑡 (𝑄2𝑅) . (2.22)

Next, we record a bound which is immediate from (2.21) and standard global energy estimates for (2.19) namely

∥𝑣𝜀 ∥𝐿2
𝑥,𝑡 (𝑄𝑅) ≲

(
𝑎𝜀3+ 𝑎2𝜀5

𝜅

)
∥𝜕1∇𝜃∥𝐿2

𝑥,𝑡 (𝑄𝑅) + 𝑎𝜀3∥𝜕22𝜃∥𝐿2
𝑥,𝑡 (𝑄𝑅) +

𝑎𝜀3

𝜅
∥𝜕𝑡𝜃∥𝐿2

𝑥,𝑡 (𝑄𝑅)

≲ 𝑎𝜀3

𝜅

ā :∇2𝜃

𝐿2
𝑥,𝑡 (𝑄𝑅)

≲ 𝑎𝜀3

𝑅2 ∥𝜃∥𝐿2
𝑥,𝑡 (𝑄2𝑅) , (2.23)

where the implicit constant in the ≲ symbol is universal. With this bound, we return to (2.10) and recall the parabolic
problem

𝜕𝑡 (�̃�𝜀 − 𝜃𝜀) − div
(
a𝜀∇(�̃�𝜀 − 𝜃𝜀)

)
= div 𝑣𝜀 . (2.24)

Note that (2.20) gives (�̃�𝜀 − 𝜃𝜀) (𝑡, 𝑥) = 𝑎𝜀3

2𝜋𝜅 cos(
2𝜋𝑥2
𝜀

)𝜕1𝜃 (𝑡, 𝑥) for (𝑡, 𝑥) ∈ 𝜕par𝑄𝑅, and so �̃�𝜀 − 𝜃𝜀 does not vanish
identically on 𝜕par𝑄𝑅; instead we have

∥�̃�𝜀 − 𝜃𝜀 ∥𝐿∞
𝑥,𝑡 (𝜕par𝑄𝑅) ≲ 𝑎𝜀3𝜅−1 ∥𝜕1𝜃∥𝐿∞ (𝑄𝑅) ≤ 𝜀𝜅−

1
2

ā 1
2

11𝜕1𝜃

𝐿∞ (𝑄𝑅) ≤

𝜀
𝑅
∥𝜃∥𝐿2 (𝑄2𝑅) .

The right side is bounded by that of (2.18). Therefore, by the maximum principle, we can correct this discrepancy at
the boundary (and just ignore it for our purposes).

We continue therefore by pretending that �̃�𝜀 − 𝜃𝜀 vanishes on 𝜕par𝑄𝑅, and return to (2.24) and perform a standard
energy estimate. We obtain:

∥�̃�𝜀 − 𝜃𝜀 ∥2𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑅) + 𝜅∥∇(�̃�𝜀 − 𝜃𝜀)∥2𝐿2
𝑥,𝑡 (𝑄𝑅) ≲ 𝜅−1∥𝑣𝜀 ∥2𝐿2

𝑥,𝑡 (𝑄𝑅) . (2.25)

We continue by ignoring the gradient term on the left side and appeal to (2.20), (2.22) and (2.23) to obtain

∥�̃�𝜀 − 𝜃∥𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑅) ≤ ∥�̃�𝜀 − 𝜃𝜀 ∥𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑅) + ∥𝜃𝜀 − 𝜃∥𝐿∞
𝑡 𝐿2

𝑥 (𝑄𝑅)

≲ 𝜅−
1
2 (𝜅−1𝑅2) 1

2 ∥𝑣𝜀 ∥𝐿2
𝑥,𝑡 (𝑄𝑅) +

𝜀
𝑅
∥𝜃∥𝐿2 (𝑄2𝑅)

≲ 𝜅−
1
2 (𝜅−1𝑅2) 1

2 𝑎𝜀3

𝑅2 ∥𝜃∥𝐿2
𝑥,𝑡 (𝑄2𝑅) +

𝜀
𝑅
∥𝜃∥𝐿2 (𝑄2𝑅)

= (1 + 𝑎𝜀2

𝜅
) 𝜀
𝑅
∥𝜃∥𝐿2

𝑥,𝑡 (𝑄2𝑅) .

This concludes the proof of (2.18). □
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3. An outline of the proof of Theorem 1.2

The proof consists of two parts: the construction of multi-scale the vector field 𝑢 (see §3.1), and the analysis of the
passive scalars 𝜃𝜅 via quantitive homogenization (see §3.2–§3.4). Throughout this section, it is instructive to keep in
mind the intuition gained from the discussion in §2.

3.1. Construction of the vector field 𝑢. The proof of Theorem 1.2 is the most difficult in the lowest nontrivial
dimension, namely 𝑑 = 2, for the same geometric reasons that the Onsager conjecture was hardest to establish in the
two-dimensional case [45]. We present the 𝑑 = 2 construction next.

The advantage of the case 𝑑 = 2 is notational: zero-mean divergence-free vector fields 𝑢 are given as the rotated
gradient of a scalar stream function 𝜙 (with associated anti-symmetric matrix I⊥2 𝜙); as such, we avoid the notational
care one must use when handling vectors, or when working with the curl operator.

For 𝑚 ≥ 0, we recursively construct a sequence of periodic, in (𝑡, 𝑥) ∈ [0, 1] × T2, 𝐶∞
𝑥,𝑡 smooth vector fields

𝑢𝑚 = ∇⊥𝜙𝑚, and then define 𝑢 = lim𝑚→∞ 𝑢𝑚; here the limit is taken with respect to the 𝐶𝛼
𝑥,𝑡 topology. We initialize

the construction with 𝜙0 = 0, so that 𝑢0 = 0. For any 𝑚 ≥ 1, having constructed the smooth, periodic, incompressible
vector field 𝑢𝑚−1 with associated stream function 𝜙𝑚−1, the induction step 𝑚 − 1 ↦→ 𝑚 consists in the construction of
a suitable stream function “increment” 𝜙𝑚 − 𝜙𝑚−1. For this purpose, we make the following initial parameter choices:
• Let {𝜀𝑚}𝑚≥0 be a decreasing sequence of scales, with 𝜀𝑚 → 0 as 𝑚 → ∞. We set 𝜀0 = 1, and 𝜀1 = Λ−1 for a large

integer Λ ≫ 1, chosen at the end of the proof. At each step 𝑚 ≥ 1, we view 𝜀𝑚 as the “fast scale” of oscillation,
and 𝜀𝑚−1 as the “slow scale”.19 Based on previous experience with multi-scale constructions in turbulence (see
e.g. [29]), we expect that it will be technically (very!) convenient to consider the sequence 𝜀𝑚 to decay “slightly
super-exponentially”, meaning that

𝜀𝑚 ≃ 𝜀
𝑞

𝑚−1 , for some 0 < 𝑞 − 1 ≪ 1 , (3.1)

for all 𝑚 ≥ 2. Here, the “≃” is not an “=” sign because we need 𝜀−1𝑚 to be an integer for all 𝑚 ≥ 0 (in order to enforce
T2–periodicity). How small the positive parameter 𝑞 − 1 needs to be taken is chosen as part of the proof.

• We let 𝑎𝑚 ≫ 1 denote the Lipschitz norm (up to universal constants) of the stream function increment 𝜙𝑚 − 𝜙𝑚−1.
If we think of the increment 𝜙𝑚 − 𝜙𝑚−1 as oscillating at frequency 𝜀𝑚, then in order to ensure uniform boundedness
of the velocity fields {𝑢𝑚}𝑚≥0 in 𝐶0

𝑡 𝐶
𝛼
𝑥 , it is natural and necessary to define

𝑎𝑚 := 𝜀𝛼−1𝑚 , for all 𝑚 ≥ 0 . (3.2)
Note that since 𝛼 < 1, we have 𝑎𝑚 → ∞ as 𝑚 → ∞.

3.1.1. A naive attempt for all 0 < 𝛼 < 1. With {𝜀𝑚}𝑚≥0 and {𝑎𝑚}𝑚≥0 fixed according to (3.1)–(3.2), and keeping in
mind the result of Lemma 2.1, a “naive” attempt at defining the stream function increment 𝜙𝑚 − 𝜙𝑚−1 is as follows.

Based on (2.12) we are tempted to declare that the stream function increment is given by 𝑎𝑚𝜀
2
𝑚 sin( 2𝜋𝑥2

𝜀𝑚
). Note

however that in this case the homogenized matrix (2.16) presents an enhancement only in the 𝑒1⊗ 𝑒1 component, which
is undesirable. The natural fix to this issue is to alternate the direction of shearing, by considering a stream function
which sequentially in time alternates the stream functions 𝑎𝑚𝜀2𝑚 sin( 2𝜋𝑥2

𝜀𝑚
) and 𝑎𝑚𝜀

2
𝑚 sin( 2𝜋𝑥1

𝜀𝑚
), “glued” by a partition

of unity in time, with characteristic time-scale proportional to some 0 < 𝜏𝑚 ≪ 1, to be determined. We would like
however these shears acting on different directions to not interact/interfere with each other (see also [16, 27, 47]), and
hence we leave room in which no shearing occurs, whenever we switch directions. As such, we define

Ψ𝑘 (𝑥) :=


sin(2𝜋𝑥1) , 𝑘 ≡ 1 mod 4 ,

sin(2𝜋𝑥2) , 𝑘 ≡ 3 mod 4 ,

0 , 𝑘 ≡ 0 mod 2 ,

and we attempt to declare
𝜙𝑚 (𝑡, 𝑥) − 𝜙𝑚−1 (𝑡, 𝑥) :=

∑︁
𝑘∈Z

𝜁

(
𝑡
𝜏𝑚

− 𝑘

)
𝑎𝑚𝜀

2
𝑚Ψ𝑘

(
𝑥
𝜀𝑚

)
, (3.3)

where 1[− 1
3
, 1
3
] ≤ 𝜁 ≤ 1[− 2

3
, 2
3
] is a 𝐶∞ smooth unit-scale bump function with

∫
R
𝜁2 (𝑡)𝑑𝑡 = 1, and which induces a

partition of unity via
∑

𝑘∈Z 𝜁 (· − 𝑘) ≡ 1.
By construction, the stream function increment in (3.3) is 4𝜏𝑚–periodic in time, and since the formula (2.4) for

the homogenized matrix involves averaging in time, we expect that enhancement will occur in both the 𝑒1 ⊗ 𝑒1 and

19The discussion in §2.2 refers to the fast scale 𝜀 and the slow scale 1. As such, in this new context it is the ratio 𝜀𝑚
𝜀𝑚−1 < 1 which plays the role

of the small parameter 𝜀 in §2.2.
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𝑒2 ⊗ 𝑒2 components, as desired, with the “amount of enhancement” being 25% of the one in (2.16). Note however that
in order to see this enhancement, Lemma 2.1 dictates that we “zoom out” in both time and space; in turn, this imposes
restrictions on 𝜏𝑚 and 𝜀𝑚.

The first condition in (2.17) dictates a constraint on the time scale 𝜏𝑚, which determines the periodicity in time
(inverse frequency) of the stream function increment in (3.3). We need the amount of time that each of the stream
functions Ψ𝑘 are active to be long enough to allow for homogenization to be observed; this dictates:

𝜏𝑚 ≫ 𝑎−1𝑚 ·
(
1 + 𝑎𝑚𝜀2

𝑚

𝜅𝑚

)
= 𝑎−1𝑚 + 𝜀2

𝑚

𝜅𝑚
≥ 𝜀2

𝑚

𝜅𝑚
. (3.4)

The second condition in (2.17) dictates that the length scale corresponding to “slow oscillations” (meaning, the scale
of oscillation of the “slow” stream function 𝜙𝑚−1), is large enough for homogenization to be observed; this dictates:

𝜀𝑚−1 ≫ 𝜀𝑚 ·
(
1 + 𝑎𝑚𝜀2

𝑚

𝜅𝑚

)
≥ 𝑎𝑚𝜀3

𝑚

𝜅𝑚
. (3.5)

With (3.4)–(3.5), Lemma 2.1 indicates that upon “zooming out” from scale 𝜀𝑚 to scale 𝜀𝑚−1,20 the enhancement of
diffusion is given by 𝜅I2 ↦→ 𝜅I2 + 1

8 𝜅 · (
𝑎𝑚𝜀2

𝑚

𝜅
)2I2; the division by 4 when compared to (2.16) is due to time-averaging.

If the above-described scenario can be justified rigorously, iteratively in 𝑚, then we have set up the parameters
{𝜀𝑚}𝑚≥0, {𝑎𝑚}𝑚≥0, and {𝜏𝑚}𝑚≥0, such that when “coarse-graining” at scale 𝜀𝑚21 the advection-diffusion equation (1.1),
with vector field 𝑢 = ∇⊥𝜙, with 𝜙 defined by summing over 𝑚 ≥ 0 the increments in (3.3), experiences an effective
diffusivity 𝜅𝑚 (see §3.2), which satisfies the recursion relation

𝜅𝑚−1 := 𝜅𝑚 + 1
8 𝜅𝑚 ·

( 𝑎𝑚𝜀2
𝑚

𝜅𝑚

)2
. (3.6)

The recursion (3.6) is to be “initialized” with 𝜅𝑀 = 𝜅, for an integer 𝑀 ≫ 1 which is to be determined such that 𝜀𝑀 is
proportional to the dissipation length-scale associated with the advection-diffusion equation (1.1) with a𝐶𝛼

𝑥,𝑡 vector field
𝑢. With this initialization, the recursion (3.6) is to be solved backwards: 𝑀 → 𝑀−1 → . . . → 𝑚 → 𝑚−1 → . . . → 0,
with the hope that 𝜅 = 𝜅𝑀 < 𝜅𝑀−1 < . . . < 𝜅𝑚 < 𝜅𝑚−1 < . . . < 𝜅0, and that 𝜅0 = 𝑂 (1) as 𝜅 → 0.

Let us next inquire whether the parameter choices (3.1), (3.2), together with the recursion (3.6), are consistent with
the constraints (3.4), (3.5), and with the fact that 𝜅0 = 𝑂 (1). Assuming for simplicity that 𝜅 = 𝜅𝑀 = 𝜀

1+𝛼+𝛾
𝑀

for some
𝑀 ≥ 122; then, it is not hard to verify that the relation

𝜅𝑚 ≃ 𝜀
1+𝛼+𝛾
𝑚 , where 𝛾 = (𝑞 − 1) 1+𝛼

𝑞+1 , (3.7)

for all 𝑀 ≥ 𝑚 ≥ 0, is consistent with (3.6), where we recall that 0 < 𝑞 − 1 ≪ 1. Moreover, setting 𝑚 = 0 in (3.7)
yields 𝜅0 ≃ 1, as desired, independently of the value of 𝑀 ≫ 1 (and hence of 𝜅 ≪ 1).

The constraint (3.4) is then used as to pick a time-scale that satisfies

𝜏𝑚 ≫ 𝑎−1𝑚 + 𝜀2𝑚𝜅
−1
𝑚 = 𝜀1−𝛼𝑚 + 𝜀

1−𝛼−𝛾
𝑚 ≃ 𝜀

1−𝛼−𝛾
𝑚 . (3.8)

Such a choice is permissible if 𝜏𝑚 ≤ 123 for all 𝑚 ≥ 0, i.e., as soon as 1 − 𝛼 − 𝛾 > 0. In light of the definition of 𝛾 in
(3.7), this is indeed possible for all values 𝛼 ∈ (0, 1), by letting 1 < 𝑞 < 1

𝛼
. Note that as 𝛼 → 1−, this implies 𝑞 → 1+.

3.1.2. What goes wrong with this naive construction? The discussion in §3.1.1 indicates that for any 𝛼 ∈ (0, 1) we
may construct a 𝐶𝛼

𝑥,𝑡 vector field (with stream function obtained by summing (3.3) in 𝑚 ≥ 1), such that the sequence of
renormalized diffusivities are compatible with the recursion relation (3.6), and the space-time separation is compatible
with (3.4) and (3.5), as dictated by Lemma 2.1; additionally, the amount of diffusion experienced by the passive scalar
when “coarse-grained” at 𝑂 (1) scales is itself 𝑂 (1), independently of the value of the molecular diffusion 𝜅 ≪ 1.

In discussing the above heuristic, a subtle (and fatal) point was overlooked: the homogenization of a shear flow
discussed in Lemma 2.1 assumed that the shear flow 𝑢 = 𝑢𝑎,𝜀 had zero-mean when averaged over one periodic cell of
the fast variable 𝑦 = 𝑥

𝜀
. Indeed, the cos(2𝜋𝑦2) present in the definition of 𝑢𝑎,𝜀 (see (2.11)) ensures that this velocity

field has zero-mean over T2 (𝑑𝑦). It was the very fact that ⟨𝑢𝑎,𝜀⟩ = 0 that allowed us to write this velocity field as the
rotated gradient of a periodic stream function 𝜓𝑎,𝜀 (see (2.12)), which was at the core of our homogenization analysis.

20It is this 𝑚 ↦→ 𝑚 − 1 homogenization step which goes from small scales to larger ones, and this is the motivation for referring to the cascade
of effective diffusivities as being “backwards”.

21See [4,6] for a general theory of quantitative theory of coarse-graining for elliptic and parabolic PDEs with multi-scale oscillating coefficients.
22That is, we are letting 𝜅 = 𝜅𝑀 → 0 along the designated sequence 𝜀

1+𝛼+𝛾
𝑀

→ 0, as 𝑀 → ∞.
23The choice of 𝑎𝑚 in (3.2), together with the definition (3.3) implies the uniform-in-𝑚 space regularity estimate of the velocity increments:

∥𝑢𝑚 − 𝑢𝑚−1 ∥𝐶0
𝑡 𝐶

𝛼
𝑥

= ∥∇⊥ (𝜙𝑚 − 𝜙𝑚−1) ∥𝐶0
𝑡 𝐶

𝛼
𝑥

≃ 𝑎𝑚𝜀1−𝛼𝑚 ≃ 1. On the other hand, if we wish to estimate uniform-in-𝑚 time regularity of

the velocity increments, we see that ∥𝑢𝑚 − 𝑢𝑚−1 ∥𝐶𝛼
𝑡 𝐶0

𝑥
= ∥∇⊥ (𝜙𝑚 − 𝜙𝑚−1) ∥𝐶𝛼

𝑡 𝐶0
𝑥
≃ 𝜏−𝛼𝑚 𝑎𝑚𝜀𝑚 ≃ 𝜏−𝛼𝑚 𝜀𝛼

𝑚 ≪ 𝜀
𝛼(𝛼+𝛾)
𝑚 , where in the last

inequality we have used (3.8). For any 𝛼 > 0 and 𝑞 > 1 we thus obtain 𝐶𝛼
𝑡 𝐶0

𝑥–regularity of our vector field for free.
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Returning to the construction in §3.1.1, for each 𝑚 ≥ 1 we note that the velocity field 𝑢𝑚 does not have zero-mean
when averaged over a periodic cell of the fast variable 𝑥

𝜀𝑚
. Indeed, the “macroscopic” velocity field 𝑢𝑚−1 is essentially

a constant from the point of view of the “microscopic” velocity increment 𝑢𝑚−𝑢𝑚−1, which is (𝜀𝑚T)2–periodic. To be
precise, recursion (3.3) shows that we have

⨏
(𝜀𝑚T)2 (𝑢𝑚 −𝑢𝑚−1) (𝑡, ·) = 0 for all 𝑡 ∈ R, while for any 1 ≤ 𝑗 ≤ 𝑚 − 1, we

have24
⨏
(𝜀𝑚T)2 (𝑢𝑚− 𝑗 − 𝑢𝑚− 𝑗−1) (𝑡, ·) ≃ 𝜀𝛼

𝑚− 𝑗
≠ 0, for 𝑡 ∈ ∪𝑘∈2Z+1 [𝜏𝑚− 𝑗 (𝑘 − 1

3 ), 𝜏𝑚− 𝑗 (𝑘 + 1
3 )]. Note that 𝜀𝛼

𝑚− 𝑗
≫ 𝜀𝛼𝑚

for any 1 ≤ 𝑗 ≤ 𝑚 − 1, so not only is the macroscopic velocity field 𝑢𝑚−1 essentially a constant from the point of view
of microscopic oscillations, in relative terms it is a large constant.

The issue is that presence of a large constant drift velocity, superimposed on a zero-mean shear flow, is able to
remove most of the enhancement of the diffusivity; this is so because generically this constant drift will point in
an irrational/Diophantine direction, causing averaging to overtake homogenization. This is explained quantitatively
in [9, Appendix A]. In the physics literature this phenomenon—that a non-constant mean flow interferes and potentially
destroys Taylor dispersion—is termed the “sweeping effect” [12, 38, 54]. To sum up, the construction presented in
§3.1.1 does not work, at least not “as is”.

3.1.3. Small-scale features are transported by the large-scale flow: 𝛼 < 1
3 . To overcome the issue raised at the end

of §3.1.2 we recall one of the cornerstones of phenomenological turbulence theories, the observation that microscopic
“eddies” are transported by the surrounding macroscopic flow, for a suitable amount of time [42].

Roughly speaking, the idea put forth in [9]25 is that the microscopic/fast shear flows should not be naively
superimposed on top of the existing macroscopic/slow shear flows (as (3.3) dictates); instead the microscopic/fast
shear flows should be added in a frame of reference that moves according to the macroscopic/slow velocity field (which
is to say, in the Lagrangian coordinates of this slow velocity), so that in this frame the shear flows continue to have zero
mean (to leading order).

For this purpose, for each [0, 1] × T2–periodic, divergence-free velocity field 𝑢𝑚, we define the associated flow
maps 𝑋𝑚 = 𝑋𝑚 (𝑡, 𝑥; 𝑠) by solving the ODE

𝑑
𝑑𝑡
𝑋𝑚 (𝑡, 𝑥; 𝑠) = 𝑢𝑚 (𝑡, 𝑋𝑚 (𝑡, 𝑥; 𝑠)) , 𝑋𝑚 (𝑠, 𝑥; 𝑠) = 𝑥 ,

where 𝑡, 𝑠 ∈ [0, 1] and 𝑥 ∈ T2. Here we use the notation introduced in §3.1; in particular, for each 𝑚 ≥ 1 the velocity
fields 𝑢𝑚 ∈ 𝐶∞

𝑥,𝑡 . We shall denote by 𝑋−1
𝑚 = 𝑋−1

𝑚 (𝑥, 𝑡; 𝑠) the corresponding inverse maps (sometimes referred to as
the “back-to-labels map”), satisfying the relations 𝑋−1

𝑚 (𝑡, 𝑋𝑚 (𝑡, 𝑥; 𝑠); 𝑠) = 𝑥 and 𝑋𝑚 (𝑡, 𝑋−1
𝑚 (𝑡, 𝑥; 𝑠); 𝑠) = 𝑥.26 Classical

ODE theory dictates that the Lagrangian maps 𝑥 ↦→ 𝑋𝑚 (·, 𝑥; ·) and their inverse flows 𝑥 ↦→ 𝑋−1
𝑚 (·, 𝑥; ·) remain close

to the identity map, in the sense that |∇𝑋𝑚 (𝑥, 𝑡; 𝑠) − I2 | + |∇𝑋−1
𝑚 (𝑥, 𝑡; 𝑠) − I2 | ≪ 1, only for time intervals which are

small multiples of the Courant-Friedrichs-Lax time, namely for |𝑡 − 𝑠 | ≪ ∥∇𝑢𝑚∥−1𝐿∞
𝑥,𝑡

. Thus, the usage of Lagrangian
coordinates necessitates the introduction of a new time-scale {𝜏′′𝑚}𝑚≥1, which needs to satisfy the relation27

𝜏′′𝑚∥∇𝑢𝑚∥𝐿∞
𝑥,𝑡

≪ 1 or, equivalently, 𝜏′′𝑚𝑎𝑚 = 𝜏′′𝑚𝜀
𝛼−1
𝑚 ≪ 1 . (3.9)

According to this new time-scale, for every ℓ ∈ Z we denote28

𝑋𝑚,ℓ (𝑡, 𝑥) := 𝑋𝑚 (𝑡, 𝑥; ℓ𝜏′′𝑚) , and 𝑋−1
𝑚,ℓ (𝑡, 𝑥) := 𝑋−1

𝑚 (𝑡, 𝑥; ℓ𝜏′′𝑚) ,
the forward and backward flows of 𝑢𝑚, initialized at time ℓ𝜏′′𝑚.

With the above notation, for 𝑚 ≥ 1 we define the stream function increment by29

𝜙𝑚 (𝑡, 𝑥) − 𝜙𝑚−1 (𝑡, 𝑥) :=
∑︁
𝑘,ℓ∈Z

𝜁

(
𝑡
𝜏𝑚

− 𝑘

)
𝜁

(
𝑡

𝜏′′𝑚−1
− ℓ

)
𝑎𝑚𝜀

2
𝑚Ψ𝑘

(
𝑋−1
𝑚−1,ℓ (𝑡 ,𝑥)

𝜀𝑚

)
, (3.10)

24Here we use
⨏ 𝜀𝑚

0
cos( 2𝜋𝑥1

𝜀𝑚− 𝑗
)𝑑𝑥1 = 𝜀𝛼+1

𝑚− 𝑗
(2𝜋𝜀𝑚)−1 sin( 2𝜋𝜀𝑚

𝜀𝑚− 𝑗
) ≃ 𝜀𝛼

𝑚− 𝑗
, since 𝜀𝑚

𝜀𝑚− 𝑗
≪ 1.

25In the context of the Onsager conjecture, this idea (a proto-version of it) was introduced first in [29], and played a major role in all subsequent
works, leading to [16, 44, 45, 47, 60]. In the context of homogenization of advection-diffusion equations, a version of this idea appeared in [56].

26Note that the maps 𝑥 ↦→ 𝑋𝑚 (𝑡 , 𝑥; 𝑠) and 𝑥 ↦→ 𝑋−1
𝑚 (𝑡 , 𝑥; 𝑠) are volume-preserving (since div𝑢𝑚 = 0), while the maps 𝑥 ↦→ 𝑋𝑚 (𝑡 , 𝑥; 𝑠) − 𝑥

and 𝑥 ↦→ 𝑋−1
𝑚 (𝑡 , 𝑥; 𝑠) − 𝑥 are [0, 1] × T2–periodic (since so is 𝑢𝑚).

27We note here a difference with the notation in [9]: there, 𝜏′′𝑚 is chosen to be small with respect to the CFL time-scale of𝑢𝑚−1, i.e. 𝜏′′𝑚𝑎𝑚−1 ≪ 1.
In this note we choose the slightly more intuitive notation, which relates 𝜏′′𝑚 to the CFL time-scale of 𝑢𝑚, i.e. 𝜏′′𝑚𝑎𝑚 ≪ 1; see (3.9).

28As before, we have a difference with the notation with respect to [9]: here we write 𝑋𝑚 ( ·, ·; ℓ𝜏′′𝑚) , whereas in [9, Equation (2.36)] we wrote
𝑋𝑚−1 ( ·, ·; ℓ𝜏′′𝑚) .

29If one wishes to prove Theorem 1.2, the parameters 𝑎𝑚 appearing in (3.10) need to become “slow functions” of space and time, oscillating
on scales 𝜀𝑚−1 in 𝑥 and 𝜏𝑚−1 in 𝑡 . The purpose of these slow functions in a convex-integration scheme is to cancel (through the mean of their
squares) a leftover Euler-Reynolds stress error. We refer the reader to [16, Section 5] and [20, Section 7.3] for these details.
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where 𝜁 is another𝐶∞ smooth unit-scale bump function, which smoothly approximates the cutoff function 1[− 1
2
, 1
2
] , and

such that its integer shifts nearly form a partition of unity:
∑

ℓ∈Z 𝜁 (· − ℓ) ≃ 1.30 Note that the cutoff functions 𝜁 (· − 𝑘),
the parameters 𝜀𝑚, 𝑎𝑚, 𝜏𝑚, and also the alternating shears Ψ𝑘 appearing in (3.10) are the same as in (3.3). At this stage
we only assume that the time-scale 𝜏′′𝑚−1 satisfies the smallness condition from (3.9), but as we shall see next, a largeness
constraint emerges (see (3.11) below). With the new definition of the stream function increment in (3.10) replacing the
previous naive attempt from (3.3), the velocity increment is defined again as as 𝑢𝑚 − 𝑢𝑚−1 = ∇⊥ (𝜙𝑚 − 𝜙𝑚−1).

The usefulness of (3.10) is that on the support of each cutoff function 𝜁 ( ·
𝜏′′𝑚−1

− ℓ), the “Lagrangian increment”
(𝜙𝑚 − 𝜙𝑚−1) (·, 𝑋𝑚−1,ℓ (·, 𝑥)) behaves as 𝑎𝑚𝜀

2
𝑚Ψ𝑘 ( 𝑥

𝜀𝑚
), which has zero-mean with respect to the fast space variable

𝑥
𝜀𝑚

. This overcomes the issue raised at the end of §3.1.2. However, in order to use the same heuristics as in §3.1.1,
leading to the recursion relation (3.6) and asymptotic (3.7) for the cascade of renormalized diffusivities, we need to
ensure that the Lagrangian flow maps 𝑋−1

𝑚−1,ℓ (·, ·) and the new time cutoffs 𝜁 ( ·
𝜏′′𝑚−1

− ℓ) appearing in (3.10), do not
interfere with the quantitative homogenization picture painted in §3.1.1. This necessitates that the new periodic time
oscillation which we have introduced (on time-scale 𝜏′′𝑚−1) does not interfere31 with the homogenization problem which
produced (3.6); put differently, this necessitates that from the point of view of a function oscillating at time-scale 𝜏𝑚,
functions varying on time-scale 𝜏′′𝑚−1 are essentially a constant, resulting in the new parameter constraint

𝜏′′𝑚−1 ≫ 𝜏𝑚. (3.11)

Together, the constraint on the new time parameter 𝜏′′𝑚 are

𝜏𝑚 ≪ 𝜏′′𝑚−1 ≪ 𝑎−1𝑚−1 . (3.12)

We also recall that 𝜏𝑚 needs to be chosen to satisfy (3.4).
At last, we try to see if we can choose the parameters in order satisfy all of the above-mentioned constraints. The

two inequalities in (3.12) indicate that a permissible choice for 𝜏′′𝑚−1 can be made if and only if 𝜏𝑚 is chosen to satisfy
𝑎−1𝑚−1 ≫ 𝜏𝑚. In turn, the lower bound for 𝜏𝑚 established previously in (3.8) shows that such a permissible choice for
𝜏𝑚 is possible if and only if 𝑎−1𝑚−1 ≫ 𝜀

1−𝛼−𝛾
𝑚 , where we recall that 𝛾 is defined by (3.7). Recalling the definition of

𝑎𝑚−1, and the 𝜀𝑚 to 𝜀𝑚−1 relation from (3.1), we arrive at the parameter constraint

𝜀
1−𝛼
𝑞

𝑚 ≃ 𝜀1−𝛼𝑚−1 = 𝑎−1𝑚−1 ≫ 𝜀
1−𝛼−𝛾
𝑚 . (3.13)

Inequality (3.13) may be satisfied for all 𝑚 ≥ 1 if 𝜀1 = Λ−1 is chosen to be sufficiently small (to absorb the implicit
constant in the ≫ symbol), and if 1−𝛼

𝑞
< 1 − 𝛼 − 𝛾. Recalling that 𝛾 = (𝑞 − 1) 1+𝛼

𝑞+1 , that 𝛼 ∈ (0, 1) and 𝑞 > 1, (3.13)
thus necessitates:

1−𝛼
𝑞

< 1 − 𝛼 − 𝛾 ⇔ 𝑞𝛾 < (𝑞 − 1) (1 − 𝛼) ⇔ 𝑞 (1+𝛼)
𝑞+1 < 1 − 𝛼 ⇔ 𝛼 < 1

2𝑞+1 .

Since 𝑞 > 1, we arrive at the Onsager-supercriticality constraint 𝛼 < 1
3 present in the statement of Theorem 1.2.

3.1.4. The construction of 𝑢: order of choosing parameters. To sum up, for a given 𝛼 ∈ (0, 13 ), we first choose 𝑞 > 1
so that (2𝑞 + 1)𝛼 < 1. Then, we define {𝜀𝑚}𝑚≥0 according to (3.1), and {𝑎𝑚}𝑚≥0 according to (3.2). In light of the
lower bound 𝜏𝑚 ≫ 𝜀

1−𝛼−𝛾
𝑚 (expected from (3.8)), and the upper bound 𝜏𝑚 ≪ 𝑎−1𝑚−1 (implied by (3.12)), we choose

𝜏−1𝑚 ≫ 1 to be an integer lying in the interval (𝜀𝛼−1𝑚−1, 𝜀
𝛼−1+𝛾
𝑚 ).32 With 𝜏𝑚 chosen, we then return to (3.12) and let

(𝜏′′𝑚−1)−1 to be an integer lying in the interval (𝑎𝑚−1, 𝜏−1𝑚 ).33 With these choices, the stream functions {𝜙𝑚}𝑚≥0
are defined by telescoping relation (3.10). The parameter Λ = 𝜀−11 ≫ 1 is chosen last, to absorb all 𝑚-independent
constants appearing in our estimates.

The vector field 𝑢 is obtained as 𝑢 = lim𝑚→∞ 𝑢𝑚, the limit being taken with respect to the 𝐶𝛼′
𝑥,𝑡 topology, for any

𝛼′ < 𝛼. Here, 𝑢𝑚 = ∇⊥𝜙𝑚, 𝜙𝑚 =
∑

1≤𝑚′≤𝑚 (𝜙𝑚 − 𝜙𝑚−1), 𝜙0 = 0, and the stream function increment is given by (3.10).

30For technical reasons, the time-cutoff functions 𝜁 and 𝜁 are chosen to satisfy a number of fine properties not mentioned here, in order to deal
with the fast switching of shear flows and the slow switching of flow maps; see [9, Section 2.1] for precise descriptions.

31More than that, this new time oscillation must itself be homogenized!

32 The choice 𝜏−1𝑚 ∈ N is made in order to ensure [0, 1]–time periodicity of the respective time cutoffs. For instance, 𝜏−1𝑚 ≃ 𝜀

(𝛼−1) (𝑞+1)+𝛾𝑞
2𝑞

𝑚 is
an allowable choice.

33For instance, an integer which satisfies (𝜏′′𝑚)−1 ≃ 𝜀
(𝛼−1) (𝑞+3)+𝛾𝑞

4
𝑚 is an allowable choice.
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Remark 3.1 (Genericity of the vector fields 𝑢 from Theorem 1.2). The choice 𝜙0 is arbitrary, made in [9] only for
notational simplicity. The proof of Theorem 1.2 works “as is” if we replace 𝜙0 by any sufficiently smooth, zero-mean
periodic stream function. Then, all we have to do is to ensure that 𝜀1 = Λ−1 is chosen to be (much) smaller than
the smallest scale of oscillation of this chosen smooth 𝜙0. By telescoping the available bounds on ∥𝜙𝑚 − 𝜙𝑚−1∥𝐶1

𝑥,𝑡

(see [9, Proposition 2.2]), we may then show that ∥𝜙 − 𝜙0∥𝐶1
𝑥,𝑡

= ∥𝑢 − ∇⊥𝜙0∥𝐶0
𝑥,𝑡

≤ 𝐶Λ−𝛼, where 𝐶 = 𝐶 (𝛼, 𝑞) > 0;
this upper bound may be made arbitrarily small by choosing Λ sufficiently large, showing that the class of vector fields
𝑢 for which Theorem 1.2 holds is in fact dense, in the class of all smooth divergence-free zero-mean vector fields,
with respect to the 𝐶0

𝑥,𝑡 topology. A stronger form of genericity of the family of vector fields 𝑢 ∈ 𝐶𝛼
𝑥,𝑡 which induce

anomalous diffusion is obtained in [20], see Theorem 1.3 above.

One may show, see [9, Section 2.3] that the family {𝜙𝑚}𝑚≥0 is uniformly bounded in 𝐶
1,𝛼
𝑥,𝑡 , that for each 𝑚 the

stream function 𝜙𝑚 is real-analytic in space (uniformly in time), with radius of analyticity proportional to 𝜀𝑚, that
the flow maps 𝑋𝑚 and their inverses 𝑋−1

𝑚 remain close to the identity on their natural timescale 𝜏′′𝑚, and that they are
also real-analytic with radius of analyticity proportional to 𝜀𝑚. That is to say, the family of stream functions {𝜙𝑚}𝑚≥0
behave in the way we expect them to behave.

Remark 3.2 (Propagation of smoothness in the construction). We have chosen in [9] to establish the quantitative
real-analyticity of the stream functions 𝜙𝑚, of the Lagrangian flows 𝑋𝑚, and of their inverses 𝑋−1

𝑚 , simply because it is
true: the Ψ𝑘 are sine waves, which are certainly analytic functions, the Lagrangian flow maps of an analytic function
are analytic, adding and composing analytic functions to each other preserves analyticity; one has to be careful however
when estimating the radius of analyticity of the resulting objects [9, Appendix B]. This real-analyticity is however not
essential for the proof: all that is needed is “sufficiently high regularity”, to justify certain high-order expansions in the
proof. Instead of working with real-analytic building blocks Ψ𝑘 (sine waves), it is sufficient to consider smooth ones,
and then to add a “mollification step” to the proof, as is common in convex-integration schemes (see e.g. [16, Section
2.4], [19, Section 5.3]). This perspective needs to be taken if one is to work with building blocks Ψ𝑘 which are
compactly supported in space, and this is the perspective taken in the proof of Theorem 1.3, see [20, Section 7.1].

3.2. A backwards cascade of eddy diffusivities and homogenized problems. With the vector field 𝑢 constructed
in §3.1 it remains to rigorously justify our scale-by-scale homogenization picture, which dictates that when “coarse-
grained” at scale 𝜀𝑚, the advection-diffusion equation (1.1) with vector field 𝑢 experiences an effective diffusivity 𝜅𝑚,
which satisfies the recursion relation (3.6), initialized with 𝜅𝑀 = 𝜅 for a suitably chosen 𝑀 ≥ 0. This requires the
introduction of a permissible set of diffusivities (the set K mentioned in Theorem 1.2), and a definition of “coarse-
graining” (at least, as it pertains to the analysis discussed here).

In spite of the inherent instability of the recursion formula 𝜅 ↦→ 𝜅+ 𝑎2
𝑚𝜀4

𝑚

8𝜅 , see (3.6), we have seen earlier in (3.7) that
the relation 𝜅𝑚 ≃ 𝜀

1+𝛼+𝛾
𝑚 is consistent with stably solving (3.6). As such, we define the permissible set of diffusivities

K := ∪𝑚≥0
[
1
2𝜀

1+𝛼+𝛾
𝑚 , 2𝜀

1+𝛼+𝛾
𝑚

]
.

For any given 𝜅 ∈ K, we may identify a unique integer 𝑀 ≥ 0 such that

𝜅 ∈
[
1
2𝜀

1+𝛼+𝛾
𝑀

, 2𝜀
1+𝛼+𝛾
𝑀

]
, and we define 𝜅𝑀 := 𝜅 . (3.14)

Then, for 𝑚 ∈ {1, . . . , 𝑀}, we recursively define the renormalized diffusivities

𝜅𝑚−1 := 𝜅𝑚

(
1 + 𝑐∗

( 𝑎𝑚𝜀2
𝑚

𝜅𝑚

)2)
. (3.15)

Here, 𝑐∗ > 0 is a universal constant, which may differ from the 1
8 value presented in (3.6) depending on the 𝐿2

𝑡 –
normalization of the time cutoffs 𝜁 and 𝜁 .

Note that (3.14)–(3.15) defines a backwards cascade of eddy diffusivities,34 which is 𝑂 (1) at the unit scale, in the
sense that

𝜅 = 𝜅𝑀 ≪ 𝜅𝑀−1 ≪ ... ≪ 𝜅𝑚 ≪ 𝜅𝑚−1 ≪ ... ≪ 𝜅0 ∈ [ 12 , 2] .
The above relation holds no matter how small the molecular diffusivity 0 < 𝜅 ≪ 1 is; except that as 𝜅 → 0 we have
𝑀 → ∞, and thus in this limit we need to perform infinitely many renormalization/quantitative homogenization steps.

It is useful to keep in mind the relations

𝑎𝑚𝜀2
𝑚

𝜅𝑚
≃ 𝜀

−𝛾
𝑚 ≫ 1 ,

𝜀2
𝑚

𝜅𝑚𝜏𝑚
≃ 𝜀

(1−𝛼(1+2𝑞) ) (𝑞−1)
2𝑞 (𝑞+1)

𝑚 ≪ 1 ,

34It is verified in [9, Lemma 3.4] that 𝜅𝑚 ∈ K for all 𝑚 ∈ {0, . . . , 𝑀 }.
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which hold since 𝜅𝑚 ≃ 𝜀
1+𝛼+𝛾
𝑚 ≃ 𝑎𝑚𝜀

2
𝑚 ·𝜀𝛾𝑚, since 𝜏𝑚 is given by the asymptotic in Footnote 32, and since 𝛼(2𝑞+1) < 1.

Having defined the permissible set of diffusivities K, and the sequence {𝜅𝑚}𝑀𝑚=0 (see (3.14)–(3.15)), it thus remains
to define what we mean by “coarse-graining” the advection-diffusion equation (1.1) at scale 𝜀𝑚. A precise and robust
definition of this concept, in a much more general setting is given in [4, 6]. For the purposes of proving Theorem 1.2,
we are able to get away with a simpler perspective based on iterated homogenization, available since the construction
of the field 𝑢 relies solely on space-time periodic building blocks.

Fix 𝜅 = 𝜅𝑀 ∈ K, and define 𝜃𝜅 to be the solution the advection-diffusion equation (1.1) with drift velocity 𝑢 and
smooth initial condition 𝜃in. Then, for each 𝑚 ∈ {0, . . . , 𝑀}, define 𝜃𝑚 to be the solution of the advection-diffusion
equation with the same initial datum, but with drift velocity given by 𝑢 mollified at scale 𝜀𝑚 (which in our context
means that the velocity is taken to equal 𝑢𝑚), and with diffusivity parameter 𝜅𝑚 (as defined by (3.14)–(3.15)). That is,
𝜃𝑚 is defined as the solution of

𝜕𝑡𝜃𝑚 + 𝑢𝑚 · ∇𝜃𝑚 − 𝜅𝑚Δ𝜃𝑚 = 0 , 𝜃𝑚 |𝑡=0 = 𝜃in , (3.16)

for each 𝑚 ∈ {0, . . . , 𝑀}. With this notation, we say that
the operator 𝜕𝑡 + 𝑢 · ∇ − 𝜅Δ “coarse-grains” at scale 𝜀𝑚 to the operator 𝜕𝑡 + 𝑢𝑚 · ∇ − 𝜅𝑚Δ ,

if we are able to show that we have
1
𝐶∗

· 𝜅𝑚∥∇𝜃𝑚∥2𝐿2
𝑡,𝑥

≤ 𝜅∥∇𝜃𝜅 ∥2
𝐿2
𝑡,𝑥

≤ 𝐶∗ · 𝜅𝑚∥∇𝜃𝑚∥2𝐿2
𝑡,𝑥

, (3.17)

for some universal constant 𝐶∗ > 1 (independent of 𝑚). If we are able to prove (3.17), then since 𝑢0 = 0 and 𝜅0 ≃ 1, by
the energy balance for (3.16) with 𝑚 = 0, and appealing to the Poincaré inequality, we have 𝜅0∥∇𝜃0∥2𝐿2

𝑡,𝑥

≃ 𝜚∥𝜃in∥2𝐿2

for some 𝜚 ∈ (0, 12 ]; this would then prove Theorem 1.2. The proof of (3.17) is described next.

3.3. The heart of the matter: one step of the homogenization iteration. In order to establish (3.17) we take an
iterative approach: using quantitative homogenization (akin to §2.2) for each 𝑚 ∈ {1, . . . , 𝑀} we show that the amount
of energy dissipation experienced by 𝜃𝑚 is comparable to the amount of energy dissipation experienced by 𝜃𝑚−1. In
this “one step” of the homogenization process we make an error, and we aim to prove that these errors are summable
in 𝑚, leading to (3.17).

Lemma 3.3 (below) summarizes this “one step” of homogenization induction, and this is the key step in the proof
of Theorem 1.2. Its proof consists of comparing the equations for 𝜃𝑚 and 𝜃𝑚−1 by homogenizing the oscillations
at scale 𝜀𝑚. The fact that we can only get away with worrying about one scale at each step of the proof is because
the scales 𝜀𝑚 are supergeometric, and thus becoming more well-separated as they get smaller: (3.1) shows that
𝜀𝑚/𝜀𝑚−1 ≃ 𝜀

𝑞−1
𝑚−1 → 0 as 𝑚 → ∞. This is an undesirable and non-physical feature of our model, but is necessary for

such a “naive” homogenization procedure to work, since we rely on the summability (in 𝑚) of the errors we make. In
more realistic examples, one should expect to see true geometric scale separation, and this necessitates examining the
interaction between many scales at each step of a renormalization iteration, and dealing with errors which are always
of order one. There has been some recent progress [4,6] in developing a general quantitative theory of coarse-graining
for elliptic and parabolic operators, which is based on quantitative homogenization theory and is capable of analyzing
such models—using a strategy which is broadly similar to our proof of Theorem 1.2.

The precise statement of the main homogenization estimate in our induction is given in [9, Proposition 5.2]; here
we offer a simplified version (see also Remark 3.4):

Lemma 3.3 (The homogenization iteration). Fix 𝛼 ∈ (0, 13 ). There exists a small parameter 𝛿 = 𝛿(𝛼) ≈ (𝑞 − 1)2 > 0

and a universal constant 𝐶 = 𝐶 (𝛼) > 0, such that if 𝜀1 = Λ−1 is sufficiently small (in terms of 𝛼 alone) then the
following statement holds. Assume the zero-mean initial datum 𝜃in is real-analytic, with analyticity radius 𝑅𝜃in ∈ (0, 1]
which satisfies 𝑅𝜃in ≥ 𝜀

1+ 𝛾

2

1 (recall, 𝛾 is defined in (3.7)). For 𝜅 ∈ K, define 𝑀 via (3.14). Then, for all 𝑚 ∈ {2, . . . , 𝑀}
the solutions of (3.16) satisfy

∥𝜃𝑚 − 𝜃𝑚−1∥2𝐿∞ ( [0,1];𝐿2 (T2)) + 𝜅𝑚∥∇𝜃𝑚 − ∇�̃�𝑚∥2𝐿2 ( [0,1]×T2) ≤ 𝐶𝜀2𝛿𝑚−1∥𝜃in∥2𝐿2 (T2) (3.18)

and ����� 𝜅𝑚∥∇𝜃𝑚∥2𝐿2
𝑡,𝑥

𝜅𝑚−1∥∇𝜃𝑚−1∥2𝐿2
𝑡,𝑥

− 1

����� ≤ 𝐶𝜀𝛿
𝑚−1 , (3.19)

for a suitably defined function �̃�𝑚 (see (3.20) below). Here 𝐿2
𝑡 ,𝑥 = 𝐿2 ( [0, 1] × T2).



16 S. ARMSTRONG AND V. VICOL

Remark 3.4 (All real-analytic data). We show in [9, Proposition 5.2] that Lemma 3.3 holds for all zero-mean real-
analytic data 𝜃in,35 no matter how small their analyticity radius36𝑅𝜃in is. The only difference is that the bounds in (3.18)
and (3.19) hold only for 𝑚 ∈ {𝑚∗ + 1, . . . , 𝑀}, where 𝑚∗ := min{𝑚 ∈ N : 𝑚 ≥ 1, 𝑅𝜃in ≥ 𝜀

1+ 𝛾

2
𝑚 }.

Discussion of the proof of Lemma 3.3. The proof of this lemma is the bulk of the paper [9]. It requires solving separate
space and a time homogenization problems, due to the three different “fast” scales in the equation for 𝜃𝑚: the smallest
spatial scale is 𝜀𝑚, which is the length scale of oscillation of the shear flows; the smallest time scale, on which the
shear flows switch directions, is given by 𝜏𝑚; lastly, we have the time scale 𝜏′′𝑚−1 on which the Lagrangian flow maps
𝑋𝑚−1,ℓ must refresh. We should think of these three fast scales as being well-separated, with the spatial scale 𝜀𝑚 being
the smallest/fastest, and with 𝜏𝑚 ≪ 𝜏′′𝑚−1 (see (3.11)).

The idea is the same as for the classical periodic case presented in §2.1 and §2.2. We want to make a two-scale
ansatz �̃�𝑚, similar to the one for �̃�𝜀 in (2.7). Here, the “macroscopic” function is 𝜃𝑚−1, and akin to (2.8)–(2.9) we want
to plug this two-scale ansatz into the “microscopic” equation, which is the equation for 𝜃𝑚 (see (3.16)). The hope is
that the resulting error is small in 𝐿2

𝑡 𝐻
−1
𝑥 , so that we can obtain good estimates by appealing to parabolic regularity

theory, as in the proof of Lemma 2.1.
The initial “naive” idea would be to define �̃�𝑚 by the two-scale ansatz

�̃�𝑚 = 𝜃𝑚−1 +
∑︁
𝑘,ℓ∈Z

𝜉

(
·
𝜏𝑚

− 𝑘

)
𝜉

(
·

𝜏′′𝑚−1
− ℓ

) ∑︁
𝑖∈{1,2}

(𝜒𝑚,𝑘,𝑒𝑖 ◦ 𝑋−1
𝑚−1,ℓ)𝜕𝑖𝜃𝑚−1 + 𝐻𝑚 ,

where the 𝜒𝑚,𝑘,𝑒𝑖 are fast periodic “correctors” with slope 𝑒𝑖 , which are oscillating at scale 𝜀𝑚 and are obtained by
solving a cell-problem related to the shear flow Ψ𝑘 ; the 𝐻𝑚 is responsible for homogenizing the time cutoffs, and the
𝜉, 𝜉 are unit-scale time cutoffs that are slightly wider than 𝜁 and 𝜁 . Unfortunately, compared to the periodic setting, we
face a number of additional complications and for these reasons, the definition above is not precise enough and cannot
work. First, our equation is not 𝜀𝑚–periodic because of “macroscopic” perturbations from the scales 𝜀𝑚−1, . . . , 𝜀0,
including those caused by the Lagrangian flows. Moreover, we cannot just “freeze” the coefficients and make an error
here; some of these macroscopic perturbations need to be homogenized along with the 𝜀𝑚–scale oscillations. For these
reasons, our two-scale ansatz is a bit more complicated.

The actual definition of �̃�𝑚 which is used in (3.18) is given in [9, (4.24)] as

�̃�𝑚 = 𝑇𝑚−1 +
∑︁
𝑘,ℓ∈Z

𝜉

(
·
𝜏𝑚

− 𝑘

)
𝜉

(
·

𝜏′′𝑚−1
− ℓ

) ∑︁
𝑖∈{1,2}

�̃�𝑚,𝑘,𝑒𝑖

(
∇
(
𝑇𝑚−1 ◦ 𝑋𝑚−1,ℓ

)
◦ 𝑋−1

𝑚−1,ℓ
)
𝑖
+ 𝐻𝑚 , (3.20)

where:
• The “twisted correctors” �̃�𝑚,𝑘,𝑒𝑖 play the role of the fast periodic correctors with slope 𝑒𝑖 . These are simply the

periodic correctors for the horizontal and vertical shears at scale 𝜀𝑚, denoted by 𝜒𝑚,𝑘,𝑒𝑖 (see [9, (3.6)]), evaluated
along the inverse flow 𝑋−1

𝑚−1,𝑘 (see [9, (4.26)]). Note that in (3.20) the twisted correctors �̃�𝑚,𝑘,𝑒𝑖 , which are indexed
by 𝑘 ∈ Z, are simply glued together in time by the partition of unity given by 𝜉 ( ·

𝜏𝑚
− 𝑘); all other terms in (3.20) are

indexed by ℓ ∈ Z.
• The 𝐻𝑚 is an approximate time corrector, see the below discussion and [9, (4.21)].
• The function 𝑇𝑚−1 (defined in [9, (4.13)]) is a perturbation of the function 𝜃𝑚−1. It is chosen to be an approximate

solution of the equation

𝜕𝑡𝑇𝑚−1 + 𝑢𝑚−1 · ∇𝑇𝑚−1 − ∇ ·
(
K𝑚 + s𝑚−1

)
∇𝑇𝑚−1 = 0 , 𝑇𝑚−1 |𝑡=0 = 𝜃in , (3.21)

where
– The field K𝑚 (𝑡) (see [9, (3.26)]) is a time-oscillating field that oscillates between the homogenized matrices for

the vertical and horizontal shears; it averages to 𝜅𝑚−1I2, plus a negligible error.
– The field s𝑚−1 is defined as

s𝑚−1 := K𝑚

∑︁
ℓ∈Z

𝜉

(
·

𝜏′′𝑚−1
− ℓ

) (
∇𝑋𝑚−1,ℓ ◦ 𝑋−1

𝑚−1,ℓ − I2
)
.

It is added to the diffusion matrix of the𝑇𝑚−1 equation in order to deal with “distortions” caused by the Lagrangian
flows; these distortions are small, but cannot be neglected in the equation for 𝜃𝑚.

35Note that Theorem 1.2 is stated for 𝐻1 (T𝑑)–smooth initial data 𝜃in, not real-analytic one. However, upon mollification any 𝐻1 (T𝑑) data can
be well-approximated by a real-analytic one, and this suffices for the proof to close; see §3.4.

36We say that 𝑓 : T𝑑 → R is real-analytic with analyticity radius (at least) 𝑅 𝑓 ∈ (0, 1] if sup𝑛≥0 ∥∇𝑛 𝑓 ∥𝐿2 (T𝑑 )𝑅
𝑛
𝑓
(𝑛!)−1 ≤ ∥ 𝑓 ∥𝐿2 (T𝑑 ) .
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Equation (3.21) is close to the equation for 𝜃𝑚−1 (see (3.16) with 𝑚 replaced by 𝑚−1) in the sense that s𝑚−1 is small
(due to (3.9)) and the time oscillating field K𝑚 (𝑡) will homogenize to 𝜅𝑚−1I2 (time oscillations simply average).
A warning: for technical reasons, we do not define the function 𝑇𝑚−1 to be a solution of equation (3.21)! The

reason is that equation (3.21) does not possess sufficiently strong regularity estimates; this is because when compared
to 𝜅𝑚−1I2, the matrix K𝑚 has ellipticity constants which are much worse. Our regularity estimates for 𝑇𝑚−1 must
be very sharp, since it is the “macroscopic” function here and, as we saw in §2.1 and §2.2, higher derivatives of the
macroscopic function show up in the quantitative homogenization estimates. To fix this problem, we choose 𝑇𝑚−1 to
be an approximate solution of (3.21) which we construct by hand, using a high-order iterative scheme. We cut off the
iteration defining 𝑇𝑚−1 at a finite stage, ensuring that the regularity estimates we need to hold are valid, while making
a very small error in the equation for 𝑇𝑚−1. It is in these high-order estimates for 𝑇𝑚−1 that we use the quantitative
real-analyticity assumption of the initial data present in the statement of Lemma 3.3 (see [9, Section 4.3]).

Similarly, the function 𝐻𝑚 in (3.20) plays the role of the time corrector (analogous to ℎ𝑒 in §2.1). However, as
for 𝑇𝑚−1, in order to ensure that we have good enough regularity estimates for 𝐻𝑚, we actually construct it as an
approximate time corrector using an iterative scheme, to ensure that it has better regularity properties.

With the definition of the ansatz (3.20) in hand, the argument in [9] proceeds by plugging �̃�𝑚 into the equation
for 𝜃𝑚, and checking that the right-hand side is small. The error is quite explicit, although we do not write it here since
it takes half a page to display the nine error terms: see [9, (5.18)–(5.26)]. It is then a tedious task to check that all these
terms are suitably small in 𝐿2

𝑡 𝐻
−1
𝑥 , but after doing so we obtain the bounds (3.18)–(3.19) claimed in the lemma. □

3.4. The proof of Theorem 1.2: anomalous diffusion. To conclude this section, we show how Lemma 3.3 (and
Remark 3.4) imply that the family of solutions {𝜃𝜅 }𝜅∈K of the advection-diffusion equation (1.1) with velocity 𝑢,
exhibits anomalous diffusion in the sense of Definition 1.1, as promised in the statement of Theorem 1.2. For the
proofs of the statement made in bullets three–six in Theorem 1.2, we refer the reader to [9].

Assume for the moment that the function 𝜃in is real-analytic.37 Denote by 𝑅𝜃in ∈ (0, 1] its analyticity radius, so that
sup𝑛≥0 ∥∇𝑛𝜃in∥𝐿2 (T𝑑)𝑅

𝑛
𝜃in
(𝑛!)−1 ≤ ∥𝜃in∥𝐿2 (T𝑑) . Define 𝑚∗ ≥ 1 such that 𝜀1+

𝛾

2
𝑚∗ ≃ 𝑅𝜃in ; the precise definition of 𝑚∗ is

given in Remark 3.4. This definition, together with the relation 𝜅𝑚 ≃ 𝜀
1+𝛼+𝛾
𝑚 for all 𝑚 ≥ 0 (see (3.7)), gives

𝜅𝑚∗ ≃ 𝜀
1+𝛼+𝛾
𝑚∗ ≃ 𝑅

2(1+𝛼+𝛾)
2+𝛾

𝜃in
. (3.22)

Relation (3.22) shows that 𝜅𝑚∗ is a function of 𝑅𝜃in alone (it is independent of the molecular diffusivity parameter 𝜅).
By the energy inequality for the 𝜃𝑚∗ evolution (that is, (3.16) with 𝑚 replaced by 𝑚∗), and the Poincaré inequality, we
deduce

1
2

𝑑
𝑑𝑡
∥𝜃𝑚∗ (𝑡, ·)∥2𝐿2 (T2) = −𝜅𝑚∗ ∥∇𝜃𝑚∗ (𝑡, ·)∥2𝐿2 (T2) ≤ −(2𝜋)2𝜅𝑚∗ ∥𝜃𝑚∗ (𝑡, ·)∥2𝐿2 (T2) .

In turn, the above estimate implies

𝜅𝑚∗ ∥∇𝜃𝑚∗ ∥2𝐿2 ( [0,1]×T2) =
1
2 ∥𝜃in∥

2
𝐿2 (T2) −

1
2 ∥𝜃𝑚∗ (1, ·)∥2𝐿2 (T2)

≥ 1
2 ∥𝜃in∥

2
𝐿2 (T2)

(
1 − 𝑒−8𝜋

2𝜅𝑚∗
)

≥ 2𝜅𝑚∗ · 1
2 ∥𝜃in∥

2
𝐿2 (T2) . (3.23)

Here we have used that without loss of generality 𝜅𝑚∗ ≤ 1
3 (since 𝑚∗ ≥ 1, and we can take Λ to be sufficiently large),

and so 1 − 𝑒−8𝜋
2𝜅𝑚∗ ≥ 2𝜅𝑚∗ .

Next, take any 𝜅 ∈ K, and define 𝑀 = 𝑀 (𝜅) ≥ 0 according to (3.14), so that 𝜅 = 𝜅𝑀 ≃ 𝜀
1+𝛼+𝛾
𝑀

; in particular, as
𝜅 → 0 we have 𝑀 → ∞, and so 𝑀 > 𝑚∗ for all sufficiently small 𝜅 (since 𝑚∗ is only a function of 𝑅𝜃in , which is
fixed). By Remark 3.4, the bounds (3.18)–(3.19) hold for all 𝑚 in the nontrivial range {𝑚∗ + 1, . . . , 𝑀}. For instance,
by telescoping estimate (3.19), we obtain that for all 𝑚 ∈ {𝑚∗, . . . , 𝑀}

𝑀∏
𝑚=𝑚∗+1

(1 − 𝐶𝜀𝛿
𝑚−1) ≤

𝜅𝑚∥∇𝜃𝑚∥2𝐿2 ( [0,1]×T2)

𝜅𝑚∗ ∥∇𝜃𝑚∗ ∥2𝐿2 ( [0,1]×T2)
≤

𝑀∏
𝑚=𝑚∗+1

(1 + 𝐶𝜀𝛿
𝑚−1) .

37At the end of the proof we will use the fact that 𝐻1 (T2) functions can be approximated by real-analytic ones, with an error that can be made
quantitatively small in 𝐿2 (T2) .
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The super-geometric growth 𝜀𝑚 ≃ 𝜀
𝑞

𝑚−1 with 𝑞 > 1, together with the fact that 𝜀1 = Λ−1 is chosen sufficiently small
(in terms of 𝛼), implies

3
4 ≤

∞∏
𝑚=2

(1 ± 𝐶𝜀𝛿
𝑚−1) ≤ 4

3 ,

and thus for all 𝑚 ∈ {𝑚∗, . . . , 𝑀}, we have
3
4 𝜅𝑚∗ ∥∇𝜃𝑚∗ ∥2𝐿2 ( [0,1]×T2) ≤ 𝜅𝑀 ∥∇𝜃𝑀 ∥2

𝐿2 ( [0,1]×T2) ≤
4
3 ∥∇𝜃𝑚∗ ∥2𝐿2 ( [0,1]×T2) . (3.24)

Estimate (3.24) is used with 𝑀 = 𝑚∗ in the proof.
In view of the previously established lower bound (3.23), it remains to relate the term 𝜅𝑀 ∥∇𝜃𝑀 ∥2

𝐿2 ( [0,1]×T2) =

𝜅∥∇𝜃𝑀 (𝜅) ∥2𝐿2 ( [0,1]×T2) appearing in (3.24), to the true energy dissipation rate appearing in (1.5), 𝜅∥∇𝜃𝜅 ∥2
𝐿2 ( [0,1]×T2) .

In order to achieve this, we note that 𝜃𝜅 − 𝜃𝑀 satisfies the equation

(𝜕𝑡 − 𝜅Δ + 𝑢 · ∇)(𝜃𝜅 − 𝜃𝑀 ) = div
(
(𝜙 − 𝜙𝑀 )∇𝜃𝑀

)
, (𝜃𝜅 − 𝜃𝑀 ) |𝑡=0 = 0 .

Since by construction we have ∥𝜙 − 𝜙𝑀 ∥𝐿∞
𝑥,𝑡

≤ 𝐶𝜀
(1+𝛼)𝑞
𝑀

≪ 1 (which follows by telescoping the trivial bound
for (3.10)), a simple energy estimate gives

∥𝜃𝜅 − 𝜃𝑀 ∥2
𝐿∞ ( [0,1];𝐿2 (T2)) + 𝜅∥∇𝜃𝜅 − ∇𝜃𝑀 ∥2

𝐿2 ( [0,1]×T2) ≤
1
8 𝜅∥∇𝜃𝑀 ∥2

𝐿2 ( [0,1]×T2) . (3.25)

Combining (3.22), (3.23), (3.24), (3.25), and recalling that 𝜅 = 𝜅𝑀 , we deduce

𝜅∥∇𝜃𝜅 ∥2
𝐿2 ( [0,1]×T2) ≥ 𝜅∥∇𝜃𝑀 ∥2

𝐿2 ( [0,1]×T2) − 𝜅∥∇𝜃𝜅 − ∇𝜃𝑀 ∥2
𝐿2 ( [0,1]×T2)

≥ 7
8 𝜅𝑀 ∥∇𝜃𝑀 ∥2

𝐿2 ( [0,1]×T2) ≥
7
8 · 3

4 · 𝜅𝑚∗ ∥∇𝜃𝑚∗ ∥2𝐿2 ( [0,1]×T2)

≥ 𝜅𝑚∗ · 1
2 ∥𝜃in∥

2
𝐿2 (T2) ≥ 𝐶∗𝑅

2(1+𝛼+𝛾)
2+𝛾

𝜃in
· 1
2 ∥𝜃in∥

2
𝐿2 (T2) . (3.26)

In order to complete the proof of anomalous diffusion for all zero-mean data in 𝐻1 (T2), we need to address the
real-analyticity assumption used in (3.26), which explicitly contains the analyticity radius 𝑅𝜃in .

For this purpose, for any 𝜃in ∈ 𝐻1 (T2) we define 𝐿in :=
∥𝜃in ∥𝐿2

∥∇𝜃in ∥𝐿2
. Then, we mollify 𝜃in at spatial scale 𝜆𝐿in, for a

parameter 𝜆 which is to be determined; that is, we define

�̃�in := 𝜃in ∗Φ(𝜆2𝐿2
in, ·) ,

where Φ(𝑡, 𝑥) is the standard heat kernel (with unit diffusion coefficient). The function �̃�in is real-analytic, and its
analyticity radius is given by 𝑅

𝜃in
= 𝑐𝜆𝐿in, for a universal constant 𝑐 > 0. Moreover, standard properties of the heat

kernel Φ imply that

∥𝜃in∥2𝐿2 (T2) ≥ ∥�̃�in∥2𝐿2 (T2) ≥ ∥𝜃in∥2𝐿2 (T2) − 𝐶𝜆2𝐿2
in∥∇𝜃in∥2𝐿2 (T2) ≥

(
1 − 𝐶𝜆2

)
∥𝜃in∥2𝐿2 (T2) . (3.27)

To conclude, we denote by �̃�𝜅 the solution of the advection-diffusion equation (1.1) with initial condition �̃�in. By
linearity, we have that (𝜕𝑡 + 𝑢 · ∇ − 𝜅Δ) (�̃�𝜅 − 𝜃𝜅 ) = 0, and so by the standard energy balance for this difference
(recall (1.2)), the triangle inequality, the bound (3.26) with 𝜃𝜅 replaced by �̃�𝜅 and 𝜃in replaced by �̃�in, and with the
bounds in (3.27), we deduce

𝜅∥∇𝜃𝜅 ∥2
𝐿2 ( [0,1]×T2) ≥ 𝜅∥∇�̃�𝜅 ∥2

𝐿2 ( [0,1]×T2) − 𝜅∥∇(�̃�𝜅 − 𝜃𝜅 )∥2
𝐿2 ( [0,1]×T2)

≥ 𝐶∗𝑅
2(1+𝛼+𝛾)

2+𝛾

𝜃in
· 1
2 ∥�̃�in∥

2
𝐿2 (T2) −

1
2 ∥�̃�in − 𝜃in∥2𝐿2 (T2)

≥ 𝐶∗
2 (𝑐𝜆𝐿in)

2(1+𝛼+𝛾)
2+𝛾 · 1

2 ∥𝜃in∥
2
𝐿2 (T2) − 𝐶𝜆2 · 1

2 ∥𝜃in∥
2
𝐿2 (T2) , (3.28)

assuming that 𝐶𝜆2 ≤ 1
2 . The bound (3.28) dictates that we choose 𝜆 small enough ensure that the first term on the

right side dominates; this amounts to letting

𝜆 ≤ 𝑐∗𝐿
1+𝛼+𝛾
1−𝛼

in ,

for some universal constant 0 < 𝑐∗ ≪ 1 which depends on 𝑐, 𝐶, and 𝐶∗. Inserting the above bound into (3.28) implies

𝜅∥∇𝜃𝜅 ∥2
𝐿2 ( [0,1]×T2) ≥

(
𝐶∗
4 (𝑐𝑐∗)

2(1+𝛼+𝛾)
2+𝛾

)
· 𝐿

2(1+𝛼+𝛾)
1−𝛼

in︸                               ︷︷                               ︸
=:𝜚

· 12 ∥𝜃in∥
2
𝐿2 (T2) .



ANOMALOUS DIFFUSION VIA ITERATIVE QUANTITATIVE HOMOGENIZATION 19

The dependence of the coefficient 𝜚 on 𝐿in claimed in the first bullet of Theorem 1.2 now follows by letting 𝜀 =
2𝛾
1−𝛼 =

2(𝑞−1) (1+𝛼)
(𝑞+1) (1−𝛼) → 0 as 𝑞 → 1.

4. Extensions and open problems

4.1. Uniform Hölder regularity of the scalars. An important question which is not addressed by Theorem 1.2 is the
regularity of the solutions 𝜃𝜅 , in particular whether there is a uniform-in-𝜅 Hölder estimate such as

sup
𝜅∈K

∥𝜃𝜅 ∥𝐿2 ( [0,1];𝐶0,𝛼 (T𝑑)) < ∞ . (4.1)

If we could show (4.1) for �̄� arbitrarily close to 1−𝛼
2 , then this would be resolve part (ii) of the Obukhov-Corrsin

dichotomy discussed in §1.2.
To see why we should expect such an estimate, let us recall the Campanato characterization of the Hölder space𝐶0,𝛽 ,

which states that38 for any 𝑓 ∈ 𝐻1 (T𝑑),[
𝑓
]
𝐶0,𝛽 (T𝑑) ≃ sup

𝑟 ∈(0,1)
𝑟1−𝛽 ∥∇( 𝑓 ∗ 𝜂𝑟 )∥𝐿∞ (T𝑑) . (4.2)

What we have shown in Theorem 1.2 (recall (3.24) and also (3.7)) is that

∥∇𝜃𝑚∥𝐿2 ( [0,1]×T𝑑) ≈ 𝜅
− 1

2
𝑚 ≃ 𝜀

− 1+𝛼+𝛾
2

𝑚 ,

where we ignore the dependence on the initial datum 𝜃in of the implicit constants in the ≈ symbol, and we recall
that 𝛾 > 0 is a very small exponent (proportional to 𝑞 − 1, which can thus be made arbitrarily small in our construction
of the vector field). While not explicitly stated, the estimate in Lemma 3.3 implies that, for 𝑗 < 𝑚, we have

𝜅 𝑗 ∥∇𝜃𝑚 ∗ 𝜂𝜀′
𝑗
,𝜏′′′

𝑗
− ∇𝜃 𝑗 ∥2𝐿2 ( [0,1]×T𝑑) ≲ 𝜀2𝛿𝑗−1 , (4.3)

where 𝜀′
𝑗
=
√
𝜀 𝑗+1𝜀 𝑗 and 𝜏′′′

𝑗
:=

√︃
𝜏𝑗𝜏

′′
𝑗

are chosen so that 𝜀 𝑗 < 𝜀 𝑗′ < 𝜀 𝑗−1 and 𝜏′′
𝑗
< 𝜏′′′

𝑗
< 𝜏𝑗 , with some amount

of separation between each of these scales; again, we ignore the dependence on the initial datum 𝜃in of the implicit
constants in the ≲ symbol. In other words, we should consider ∇𝜃 𝑗 ≃ ∇𝜃𝑚 ∗ 𝜂𝜀′

𝑗
,𝜏′′′

𝑗
if 𝑗 < 𝑚. Therefore the previous

two displays imply the bound

∥∇(𝜃𝑚 ∗ 𝜂𝜀′
𝑗
,𝜏′′′

𝑗
)∥𝐿2 ( [0,1]×T𝑑) ≈ 𝜅

− 1
2

𝑗
≃ 𝜀

− 1+𝛼+𝛾
2

𝑗
≃ (𝜀′𝑗 )−

1+𝛼
2

−𝑂 (𝛾)

If we could upgrade this bound from 𝐿2 to 𝐿∞,39 then by (4.2) we would have the desired uniform Hölder estimate
for 𝜃𝑚 with regularity exponent �̄� = 1 − 1+𝛼

2 −𝑂 (𝛾) = 1−𝛼
2 −𝑂 (𝛾).

The aforementioned “upgrade” amounts to proving the Lipschitz-type estimate

∥∇𝜃𝑚∥𝐿2
𝑡 𝐿

∞
𝑥 ( [0,1]×T𝑑) ≈ 𝜅

− 1
2

𝑚 , (4.4)

which states that the gradient field ∇𝜃𝑚 does not concentrate on sets of small measure: it is roughly the same size,
everywhere in T𝑑 . It is very natural to expect such an estimate to be true. First, at an intuitive level, since: (i) our
vector field is built from periodic ingredients with supergeometric scale separation between successive scales (so that
the main contribution of ∇𝜃𝑚 are the wiggles at scale 𝜀𝑚), and (ii) we have shown that the solutions have expansions
with periodic ingredients, there is no reason to expect any such “concentration” to occur.

Second, uniform Lipschitz estimates of exactly this type have played a central role in homogenization theory since
the pioneering work of Avellaneda and Lin [10,11] in the ’80s; they now go by the name large-scale regularity theory
(see the monographs [7, 65] and the references therein). While the arguments of Avellaneda and Lin [10, 11] are
based on compactness and apply only to equations with periodic coefficients and thus one active scale, a quantitative
approach to large-scale regularity was later proposed in [8]; this method is more robust and applies to equations with
non-periodic coefficients (such as almost periodic and random coefficients).

The way it works heuristically is that the regularity of the homogenized equation is “transferred” to the equation with
oscillating coefficients using quantitative homogenization estimates, and an excess decay iteration. In our setting, the
“homogenized equation” would be the equation for 𝜃𝑚−1 and the “equation with oscillating coefficients” would be the
equation for 𝜃𝑚. This sets us an induction going down the scales in which the regularity for 𝜃𝑚−1 is transferred to 𝜃𝑚:
a cascade of regularity, dual to the inverse cascade of homogenization. Such an iteration argument would obviously be

38We denote by {𝜂𝑟 }𝑟>0 a standard family of mollifiers, with 𝜂𝑟 localized to scale ≃ 𝑟 , and by {𝜂𝑟,𝑠 }𝑟,𝑠>0 a family space-time mollifiers at
spatial scale 𝑟 and time scale 𝑠.

39We would also need some uniform-in-time estimates to treat the time mollification.
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very technical to implement and take a great deal of effort to write, but we have all the ingredients to implement it in
our setting,40 and we do not expect that formalizing it would require major new ideas beyond [8, 9].

As part of the induction argument that proves (4.4), we will also upgrade the estimate (4.3) to an 𝐿∞-type estimate,
and thus the uniform-in-𝑚 Hölder estimate for 𝜃𝑚 can be obtained.

One nice consequence of such a Hölder estimate would be that the condition in Theorem 1.2 that the initial data
belong to 𝐻1 (T𝑑) would be removed, and the positive constant 𝜚 would be universal. This would then imply the
exponential decay in time of the 𝐿∞ (T𝑑)-norm of our solutions 𝜃𝜅 𝑗 , uniformly along our subsequence 𝜅 𝑗 .

4.2. Geometric separation of scales and intermittency. A major shortcoming of the vector field constructed in
Section 3.1 is that the active scales {𝜀𝑚}𝑚≥0 are supergeometrically separated. This nonphysical aspect was necessary
for our proof of anomalous diffusion, based on iterative quantitative homogenization, to work. If we want the methods
in [9] to apply to more realistic physical models, we need to develop a more flexible method.

Therefore, we think that it is an important open problem is to prove anomalous diffusion for a variant of our
construction in which the scales {𝜀𝑚}𝑚≥0 are geometrically separated, i.e., 𝜀𝑚 = exp(−𝐶𝑚).

If the scales are geometrically separated, then we would make an error of order one at each scale—which we
obviously cannot sum up! Moreover, we would have to deal with leading-order interactions between multiple scales at
once. In contrast, the proof of Theorem 1.2 is based on comparing the equation for 𝜃𝑚−1 to the equation for 𝜃𝑚; the
scales 𝜀𝑚+1 and 𝜀𝑚−1 do not interact directly, which would not be the case if they were geometrically separated.

It is only due to the supergeometric scale separation that we should expect the Hölder estimate discussed in
Section 4.1 above to be valid. A geometric separation of scales—which implies the interaction between many scales
at once—should lead to concentration effects and therefore intermittency. We would expect in this case that the 𝐿 𝑝

norm of ∇𝜃𝑚 to be very different for different values of 𝑝.
At first glance, these issues may seem fatal to our whole strategy based on homogenization theory. However, a

general “coarse-graining” theory, based on quantitative homogenization methods, has been recently developed [5, 6].
Based on this, and on an iterative quantitative homogenization argument, a superdiffusive central limit theorem was
recently proved in [4] for a passive scalar model with a random vector field (with non-separated scales). There is
therefore some hope that iterative quantitative homogenization methods as in [4, 9] may apply to more physically
realistic models of scalar turbulence.

4.3. A regularity threshold for Euler solutions exhibiting anomalous diffusion? We conjecture that the regularity
threshold 𝛼 = 1

3 present in Theorem 1.2 is not an artifact of our proof in [9], but rather, a delicate rigidity constraint
imposed by the Lagrangian nature of turbulent diffusion. We propose the following problem:

Conjecture 4.1 (Anomalous diffusion + self advection = Onsager super-criticality). Let 𝑑 ∈ {2, 3}. Assume that
𝑢 ∈ 𝐶0 ( [0, 1];𝐶𝛼 (T𝑑)) ∩ 𝐶𝛼 ( [0, 1];𝐶0 (T𝑑)) is a weak solution of the incompressible Euler equations, for some
Hölder regularity exponent 𝛼 ∈ (0, 1). Furthermore, assume that for any initial condition 𝜃in ∈ ¤𝐻1 (T𝑑), the family of
solutions {𝜃𝜅 }𝜅>0 of the passive scalar equation (1.1) with velocity field 𝑢 displays anomalous diffusion continuously
in time; i.e., (1.5) holds and the time dissipation measure E(𝑑𝑡) from (1.6) is non-atomic. Then, we have that 𝛼 ≤ 1

3 .

We expect that the method of proof for resolving Conjecture 4.1 is more interesting than what the statement of the
Conjecture yields. Indeed, if one wishes to prove that the Conjecture is false, then one first needs to construct𝐶𝛼

𝑥,𝑡 weak
solutions of the incompressible Euler equations, for some 𝛼 ∈ ( 13 , 1). This question is widely open (in the absence
of artificial forcing terms). Conversely, if one is to prove that the Conjecture is true, then one needs to synthesize
weak Euler solutions from the information gained by watching what the associated advection-diffusion equation does
to arbitrary 𝐻1 (T𝑑) smooth scalar initial conditions, in the vanishing diffusivity limit; one of the clear enemies is the
pressure term in the Euler system.
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40We would need a localized version of Lemma 3.3, which applies not just in the whole torus T2, but in all appropriately scaled space-time
cylinders above the scale at which we expect homogenization to occur. Such an estimate can be obtained by an argument similar to that of Lemma 3.3,
there will just be additional boundary layer terms to control.
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