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Abstract

For every a < 1/3, we construct an explicit divergence-free vector field b(¢,z) which is
periodic in space and time and belongs to CYCY n CCY such that the corresponding scalar
advection-diffusion equation

00" +b - VO — kAT =0

exhibits anomalous dissipation of scalar variance for arbitrary H! initial data:

1
limsupJ J n’VG"‘(t,I)!Q dz dt > 0.
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The vector field is deterministic and has a fractal structure, with periodic shear flows alternating
in time between different directions serving as the base fractal. These shear flows are repeatedly
inserted at infinitely many scales in suitable Lagrangian coordinates. Using an argument based
on ideas from quantitative homogenization, the corresponding advection-diffusion equation with
small k is progressively renormalized, one scale at a time, starting from the (very small) length
scale determined by the molecular diffusivity up to the macroscopic (unit) scale. At each
renormalization step, the effective diffusivity is enhanced by the influence of advection on that
scale. By iterating this procedure across many scales, the effective diffusivity on the macroscopic
scale is shown to be of order one.

1. Introduction

We consider the Cauchy problem for the linear advection-diffusion equation
{ateﬁ +b VO — kA =0 in (0,00) x T¢,

1.1
0%(0,-) = 6 on T¢. (1)

The initial data 6 is assumed to belong to L?(T%) and have zero mean; it can also be assumed to be
smooth. The vector field b(¢,z) in (1.1) is assumed to be incompressible, that is, divergence-free:

V b(t,)=0, Vte(0,0). (1.2)

Physically, the solution 6% represents a scalar quantity, such as temperature or the concentration of
a pollutant in a fluid, which is “passive” in the sense of having a negligible effect on the flow itself.
For this reason, the equation in (1.1) is often called the passive scalar equation. We are interested in
the case in which the parameter £ > 0 is very small and the vector field b(t, x), although continuous
in (t,x), is still quite rough—possessing certain properties characteristic of turbulent flows.

The main result of this paper is the construction of an explicit vector field b(¢, ) for which the
variance of the corresponding passive scalar 8% exhibits anomalous dissipation.
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Theorem 1.1 (Anomalous dissipation of scalar variance). Let d > 2 and « € (0,1/3). There exists

a vector field
b e CPC%*([0,1] x T4) A CPCO([0,1] x T) (1.3)

which satisfies (1.2) such that, for every mean-zero initial datum 6y € H'(T?), the family of unique
solutions {0"} =0 € C([0,1]; L?(T%)) of the advection-diffusion equation (1.1) satisfy

lim sup /{HVHHH%Q((()J)X’H%) > QQHGOHiz(W) ) (1.4)

K—

for some constant o = o(d, 0o) € (0, 1] which depends only on d and the ratio |[0o|| r2(ra)/| V0ol L2 (1ay-

The initial-value problem (1.1) has a unique global solution for every x > 0 provided that the
vector field b(t, z) belongs to L L%. By the incompressibility condition (1.2), this solution satisfies
the energy balance relation

HQO(')H%%W) — [le=(1, ')H%2(Td) = 2”“V9HH%2((0,1)XW) . (1.5)

The quantity on the right side of (1.5) is therefore called the dissipation of scalar variance. While
norms of b(¢,x) do not appear explicitly in (1.5), the solution #* of course depends on the vector
field in a very complicated and nonlinear way.

The family {6}~ in Theorem 1.1 are actually classical solutions of (1.1). Indeed, the incom-
pressibility condition (1.2) allows us to write the drift term as part of the second-order diffusion
term, using a stream matrix which, in view of (1.3), belongs to C'®. The standard Schauder
estimates therefore imply that, for each k > 0, the solution of (1.1) belongs to C,?C%’a N Ctl o/ 202
for positive times.

As we will see in the proof, the parameter o > 0 in Theorem 1.1 can be taken to be

1+a+

9 —a €
Q(d, 90> _ C< H OHL2(T‘1) >1 , (16)
100/ £ (Tay

where ¢ > 0 is any positive constant, and ¢ = ¢(d, ) > 0 is a positive constant. In particular, o(d, )
depends only on d and a lower bound for the length scale |00 2(1a)/[ V0| 12(Ta)-

A subsequence k; — 0 along which the lower bound in (1.4) is realized is given explicitly in the
proof of Theorem 1.1 and, in particular, does not depend on 6y. In fact, we construct a sequence
of disjoint intervals I; := [3r;, 2;] with x; — 0 such that, if I = UjenI;, then

. K12 2 2
inf K[V 72((0,1)xra) = € 100ll72(ra)

In fact, the position of x within the interval I; determines, up to an error which can be made
arbitrarily small, the value of /{HV@“HQLQ ((0,1)xT4)? with the left and right endpoints of I; giving rise
to significantly different values. Our proof therefore exhibits subsequences /43;», KZ;-/ € I; such that, for
every initial datum 6y € L?(T9),

inf (655 — 0%5) (1) Paggey = S 0?60

jeN ) L2(Td) & 29 0 L2(Td) *
In particular, any subsequential limit of 0% must be distinct from any subsequential limit of 9“./7'/,
which demonstrates the lack of a selection principle for the vanishing viscosity limits to the solutions
of the transport equation (k = 0 in (1.1)), which thus has non-unique bounded weak solutions.



The vector field b(t, z) appearing in the statement of Theorem 1.1 has an explicit construction
using deterministic ingredients, namely periodic shear flows with directions that alternate in time.
An infinite sequence of copies of these shear flows are embedded in the vector field, each with a
different wave number, with the sequence of wave numbers tending to infinity at a super-geometric
rate. The proof of Theorem 1.1 is based on a renormalization of effective diffusivities, in which
each active scale in the vector field is homogenized, one-by-one. Each homogenization step enhances
the effective diffusivity of the equation. After an iteration up the scales, this reveals an effective
diffusivity of order one on the macroscopic scale, which implies anomalous diffusion. In Section 1.2,
below, we review the motivation for the construction of the vector field and give an outline of the
reiterated homogenization method used to prove Theorem 1.1. In Section 1.3 we discuss future
extensions of this result.

Theorem 1.1 and its proof provide only an example of a vector field b(t,z) such that the
advection-diffusion equation displays anomalous diffusion. Examples—the more physically realistic
the better—are certainly useful for building intuition about very complex phenomena. However,
we believe that the main value of this work is in the proof strategy, which is a demonstration of the
possibility of rigorously proving anomalous diffusion by analyzing the backwards cascade of eddy
diffusivities via quantitative homogenization techniques. We expect this point of view to be robust
and of independent interest to the broader area of rigorous hydrodynamic turbulence.

1.1 DMotivation and prior results on anomalous dissipation of scalar variance

If the vector field b(t,z) has significantly more spatial regularity than (1.3)—for example, if it
belongs to L%C;g’l—then the flows determined by the vector field are well-defined and the cor-
responding transport equation is well-posed (by standard ODE theory), which then must be the
equation satisfied by the limit as k — 0 of the solutions 6. Consequently, as the flows are measure-
preserving by (1.2), we deduce that

tim 0%(2, )] 20y = 0l oy V€ (0,50) (1.7)
In view of (1.5), this limit is equivalent to
ii_r)r%)/ﬁ|\V9“||%2((07t)wd) =0, VYte(0,0), (1.8)

which is evidently in contrast to the conclusion of Theorem 1.1.

If the limit in (1.8) does not hold, then we speak of anomalous dissipation of scalar variance
or, alternatively, anomalous diffusion. It is widely expected that solutions of (1.1) with vector
fields b(t,z) which are rougher than Lipschitz in space (but still Holder continuous) may exhibit
anomalous dissipation of scalar variance. This prediction was first discussed by Obukhov in [Obu49).

Indeed, anomalous diffusion is presumed to occur for vector fields describing the velocity of
a turbulent fluid, and is a basic assumption in phenomenological theories of scalar turbulence
in the physics literature. This remarkable prediction that the rate of dissipation is independent
of k, when b(¢,z) describes a turbulent flow, is backed by very strong experimental and numerical
evidence [SS00, War00, DSY05].

The reason that anomalous diffusion is expected to hold for “turbulent” velocity fields is
explained in the physics literature roughly as follows. A characteristic of a turbulent velocity
field b(t, x) is that it exhibits activity across a large range of length scales. Advection by the veloc-
ity field rearranges the level sets of the scalar *, creating wiggles on smaller length scales, which
are then mixed by the features of the velocity field on those smaller scales. This process continues



across a large number of length scales, called the inertial-convection range, with smaller and smaller
spatial oscillations created. Finally, the wiggles in the scalar reach down to the very small scale at
which the molecular diffusivity dominates advection, at which point they are dissipated away.

A rigorous theoretical explanation of this phenomenon is still elusive. In fact, the mathematical
analysis seems to lag the phenomenological theories by so much that not even a satisfactory example
of anomalous dissipation for passive scalars is available (the few available results are discussed
in Section 1.1, below).

It is not hard to see why this is so: the physicists’ explanation is the only way anomalous
dissipation can happen. For very small k, the diffusion term A essentially acts only on very small
length scales—otherwise its effect is negligible and the advection term dominates. But it is clear
from the identity (1.5) that the diffusion term is the only thing can be responsible for dissipation.
If anomalous dissipation is observed, it must be the vector field that is responsible for pushing the
oscillations of the scalar into smaller and smaller scales. Since wiggles in the vector field interact
with those of the scalar only if their wave numbers are separated by at most an order of magnitude,’
it follows that both the vector field and the scalar must have a large number of active scales whose
interactions span the range from the macroscopic scale to the “inertial” scale on which the diffusion
is felt. Since the 0" depends on b(¢, z) in a highly nontrivial, nonlinear fashion, it is very challenging
to analyze such a situation—even if one is permitted to construct the vector field.

There are essentially only two known classes of examples which exhibit anomalous dissipation of
scalar variance. The first is a stochastic model which is very rough in time (the Kraichnan model),
and the second is a class of deterministic vector fields which are “quasi self-similar” and have only
one active scale at each time (the singularly focusing alternating shear flows).

The Kraichnan model. Kraichnan introduced in [Kra68] a simplified model for passive scalar
turbulence, one of the early examples of “synthetic turbulence”. He proposed that b = b" is
taken to be a realization of a statistically homogeneous, isotropic, stationary Gaussian random
field, which has zero mean, is very rough in time (it has white-noise correlation), and is colored
in space (with a Kolmogorov-type scaling of increments in space, above a certain scale).? Then
one is to study the statistics of the field 6" solving (1.1) (understood in the Stratonovich sense,
df" — kAG"dt = db” o V). The main result concerning anomalous diffusion (1.4) in the joint
v,k — 0 limit, was established by Bernard, Gawedzki, and Kupiainen [BGK98]. See also [GV00,
VEE00, EVEO1, LJR02] for further results and refinements. Moreover, the Lagrangian flows £
become non-unique and stochastic in the v,k — 0 limit, for a fixed initial particle position and
a fixed velocity realization b”. This phenomenon is called spontaneous stochasticity. In fact, it
was shown by Drivas and Eyink [DE17] that spontaneous stochasticity is equivalent to anomalous
dissipation, not just for the Kraichnan model, but for any passive scalar transport of the type (1.1)
(even in the presence of boundaries). We refer to [FGV01, Kup03, Gaw08, DE17] for excellent
discussions about the Kraichnan model.

!This is due to the incompressibility condition (1.2), and the implicit assumption that b(t,z) is continuous. If
the constraint (1.2) is dropped, then it is easy to make examples, for instance by creating a vector field which pushes
all particles into a small neighborhood of the origin before suddenly pushing them away in radial directions. If the
vector field is allowed to be very rough in time, then small scales can also be created fairly easily, as discussed below.

*More precisely, b = b” (here v denotes an inverse Reynolds number) has covariance {(b (z, t)—b¥ (y, t))(b¥ (z, s)—
b} (y,s))) = 0(t — s)Dij(x — y), where the matrix D;; is symmetric, it has incompressible rows 9; D;; = 0, and most
importantly, the diagonal entries satisfy Di;(z) = A|z|** for £, « |z| « 1, and D;;(z) = B|z|* for |z| « £,. Here
a € (0,1] measures the space Holder regularity of the field in the inertial range, and £, is the dissipative scale. The
infinite Reynolds number limit corresponds to ¢, — 0 as v — 0. See e.g. [Kup03], [Gaw08], [DE17, (2.26)—(2.27)].



The main drawback of this model stems from the white-noise temporal correlation of the vector
field b(t, x), which is indeed so rough that it is probably responsible for the anomalous diffusivity.
At the experimental level, a consequence of this roughness was already noted by Sreenivasan and
Schumacher [SS10]: there are several differences between the predictions of the Kraichnan model
and the behavior of a passive scalar in Navier-Stokes turbulence. At the mathematical level, the
white-noise temporal correlation allows for a certain explicit and exact computation of the statistics
of the solution. Namely, one may obtain closed expressions for the correlation functions of the scalar
0"; therein, the assumed white in time correlation structure of the velocity field plays a crucial role.
As a consequence, the “exact analysis” developed for the Kraichnan model is not robust, and it did
not allow the fluid dynamics community to build sturdy tools for understanding the energy cascade
in Navier-Stokes turbulence.

Nonetheless, as noted by Majda and Kramer in [MK99], exactly solvable models provide ex-
cellent test problems for assessing the strengths and weaknesses of approximate closure theories in
turbulence. Besides the Kraichnan model discussed here, an exact mathematical analysis of diffu-
sion (enhancement and anomalies) is also available for the “Simple Shear Models” of Avellaneda
and Majda [AM91, AM90, AM92], which generalize an earlier model of Kubo [Kub63]. These
examples emphasize how randomly fluctuating velocity fields act as effective diffusion processes,
on large scales and long times. The vector fields in [AM91, AM90, AM92] are of a shear flow
type b(t,x) = (w(t),v(t,z1)), where the spatially uniform sweeping component w(t) is taken as
a stationary random process with possibly nonzero mean, and the shearing component v(z1,t) is
taken as a homogeneous and stationary, mean zero random field, whose statistics can be fine tuned
to match the statistically stationary turbulent flows. Using exactly solvable renormalization group
theories and Lagrangian renormalized perturbation theories (available for these simple shear flows),
Avellaneda and Majda are able to identify several distinct regimes, as indexed by the mean of w,
the strength of the infrared divergence in v, and the decorrelation time of long-wave portions of
the statistical velocity spectrum. Note however that anomalous diffusion (1.4), is not available in
the “Simple Shear Models” of [AM91, AM90, AM92].

Singularly-focusing alternating shear flows. To the best of our knowledge, the first example
of a deterministic vector field b(t, z), for which the anomalous dissipation of scalar variance (1.4)
is established rigorously, was recently constructed by Drivas, Elgindi, Iyer, and Jeong [DEILJ22].
In [DEIJ22, Theorem 1], it is shown that for any a € [0,1) and d > 2, there exists a vector
field b e L'([0,1]; C*(T%)) n L*([0,1]; L®(T%)), such that the following holds: b(t, -) is smooth for
any t < 1; for any initial data with 6y € H? which is sufficiently close (in L?) to a an eigenfunction
of the Laplacian, anomalous diffusion (1.4) holds for some p € (0, 1); and the scalar field 8" remains
uniformly bounded in L*([0, 1]; L*(T%)) as & — 0. The above result is sharp in the sense that if3
b e L}W1® (corresponding to a = 1), then trivially one has lim,_,g+ £{|V8¥|?>) = 0, as discussed
in the first paragraph of Section 1.1.

In essence, the construction of the vector field b(¢,z) in [DEIJ22] alternates shear flows with
stream function? sin(21¥72 ;104 4), on intervals [tj_1,t;), for {t; = 1 —277: 5 > 1}. This

3The Lipschitz regularity may be replaced with merely the integrability of Vb. Indeed, it follows from the Di
Perna-Lions theory [DL89] that as soon as b € L; W' is divergence free, all bounded weak solutions of the transport
equation d;0 + div (b#) = 0 are renormalized, and thus they conserve the energy [6(¢,-)[3>. See also the work of
Ambrosio [Amb04] for b € L{ BV, divergence free. Then, as x — 07 the a priori (subsequential) weak convergence
of 0" to a weak solution 6 of the transport equation, is in fact strong (due to the energy balance (1.5) and lower-
semicontinuity), implying that there is no dissipation anomaly.

4The sinusoidal shear velocity profiles are replaced by a smoothened sawtooth function, which makes the compu-
tations easier, and in fact almost explicit.



construction is on the one hand inspired by the earlier work of Pierrehumbert [Pie94], who proposed
an alternating shear flow of a single frequency, but with random i.i.d. phase shifts, to construct
a “universal mixer” for the transport equation.” On the other hand, the idea of a quasi self-
similar evolution on [tj_1,t;) X T? which singularly focuses as j — oo all the “action” towards
the final time slice {¢ = 1} x T —where all the anomalous dissipation of scalar variance occurs—is
inspired by earlier works of Aizenman [Aiz78] and Depauw [Dep03] concerning the uniqueness of the
transport equation below, and Alberti, Bianchini, and Crippa [ABC14] respectively Alberti, Crippa,
and Mazzucato [ACM19a, ACM19b] regarding mixing for the transport equation.® With b(t,x)
constructed as such, the proof of [DEIJ22] hinges on comparing the family of solutions {0},~¢ to
a solution 69 of the transport equation (x = 0) which satisfies lim,_,;- HVQOHLQ((OJE)XTCZ) = 400 and
for which a significant amount of energy travels to higher and higher frequencies as ¢ — 17, either
as inviscid mixing or as a balanced growth of Sobolev norms, resulting in a lack of compactness at
time ¢ = 1; see the abstract criterion for anomalous dissipation in [DEILJ22, Corollary 1.5].

Alternating shear flows which focus in a singular and quasi self-similar way onto a final time
slice have also been recently considered by Brue and De Lellis [BDL22], Colombo, Crippa, and
Sorella [CCS22], and jointly in [BCC*22], to give examples of anomalous dissipation of energy for
solutions of the forced 3D Navier-Stokes equations [BDL22, BCC*22], and to establish anomalous
diffusion for the drift-diffusion equation together with uniform-in-diffusivity Holder regularity for
the associated passive scalar. At the core of all these works is the anomalous dissipation of scalar
variance for the drift-diffusion equation (1.4).

Indeed, it is well-known that for 2%—dimensional solutions of the 3D Navier-Stokes equations
the vertical component of the flow satisfies the linear advection-diffusion equation (1.1). More
precisely, if ug = (ug,u)(x1,22,t): T? x R — R? and u3z = (v1,72,t): T?> x R — R satisfy
orupr + (ug - Va)ug + Vap — vAgug = fp, respectively dius + (up - Vi)us — vAgug = 0,
where fg is a horizontal body force, p is a scalar pressure ensuring Vg - ug = 0, and we denote
“horizontal” differential operators by Vg = (0s,,0s,) and Ag = 0z 5, + Ozya,, then the vector
field v = (ug,us) solves the 3D Navier-Stokes equations with viscosity v, pressure p, and body
force (f,0). Then, inspired by the constructions in [Aiz78, Dep03, ABC14, ACM19a, ACM19b]
the papers [BDL22, CCS22, BCC"22] construct both initial data for the scalar uz (essentially
a t1 checkerboard at unit scale) and a two-dimensional vector field ug—which is essentially a
sequence of alternating shear flows which are quasi self-similar on intervals of the type [t;j—1,t;)
with amplitudes a; and frequencies \j, where t; — 0%, a;,\; — 00 as j — co—such that the the
inviscid transport equation dyug + (ug - Vi)us = 0 mixes perfectly as t — 17, i.e. us(t,-) — 0 as
t — 17. To incorporate the effect of a vanishing sequence of diffusions v; — 0% as j — o0, these
authors smooth out the aforementioned vector field at a specific (a;, Aj,t;, vj)-dependent scale,
and then either appeal to the abstract criterion from [DEIJ22] or directly measure the variance

>The proof that the Pierrehumbert construction indeed an universal exponential mixer was recently obtained by
Blumenthal, Coti Zelati, and Gvalani [BCZG22], using a random dynamical systems based perspective.

5The deterministic theory of mizing for the linear transport (v = 0) and of enhancement of diffusion for the
drift-diffusion (k > 0) equation (1.1) is too vast to review here. Usually these theories consider vector fields b whose
regularity is at least LL WP for p > 1, so that the Di Perna-Lions theory applies to bounded solutions of the scalar
linear transport. The questions typically asked are: when x = 0, to describe the decreasing function o(¢) and the
timescale to such that [|0°(t,-)|g—1 < o(t — t0)]6°(to, )| m1, see e.g. [CDLOS, TKX14, Seil3, EZ19]. In other works,
the loss of regularity and nonuniqueness of weak solutions to the continuity equation is discussed [ABC14, Jabl6,
ACM19a, ACM19b, CEIM22] and [MS18, BCDL21, CL21]. For k > 0, it is well-known that some enhancement of
diffusion takes place due to mixing properties of the underlying flow of b [CKRZ08, BCZ17, F119, CZDE20, CZD21].
For such diffusion enhancing flows, the challenge is to quantify the optimal rate r(x) » « and the timescale ¢, « k1
such that [0 (t,-)[2. < Ce "*|6y2., for all ¢ > t, [CZDE20, CZD21, BN21, ELM23]. The dissipation anomaly
considered in this paper is an extreme form of enhancement of diffusion, with r(x) = O(1) uniformly in k as k — 0.



of the associated stochastic process, to show that the drift-diffusion equation may be viewed as
a perturbation of the transport equation, and hence exhibits anomalous diffusion. The term fg
is then just the remainder obtained by inserting the constructed vector ugy into the horizontal
part of the 3D Navier-Stokes equations. A clever fine-tuning of the parameters (aj;, A;,t;,v;) in
the construction attains both the uniform Hélder regularity of the sequence {u*7};>1 (in the full
0.1)x3) > 0. As in [DELJ22],

in these constructions the anomalous dissipation occurs only on the time slice {t = 1} x T¢. We
also note that by adding an extra space dimension to replace time, Johansson and Sorella [JS23]
have obtained similar results for the advection-diffusion equation in dimensions larger than 3, for
a vector field which is autonomous; here, the quasi self-similar singular focusing is achieved on a
“last space slice” instead of a “last time slice” (see also [Aiz78, Figure 3| for a closely related idea).

The main drawbacks of the aforementioned constructions of [DELJ22] and of [BDL22, CCS22,
BCC™22] are as follows: (i) all the energy that can be dissipated anomalously is dissipated at only
one instant in time, (ii) the vector field b(¢,z) has only one active scale at each time t € [0, 1),
(iii) the drift-diffusion equation is treated as a perturbation of the transport equation, and (iv) the
vector field b(t,z) and the initial datum 6, are not constructed independently of each other, and
the diffusive anomaly is not proved for all smooth initial data.

Regarding point (i), we note that the existence of a single time (e.g. t = 1 for [DEIJ22, BDL22,
CCS22, BCC*22]) at which all of the anomalous diffusion occurs, is incompatible with the (statis-
tical) stationarity of the turbulent vector fields, for which anomalous diffusion has been robustly
observed in practice. In contrast, the vector field b(¢,x) which we construct in Theorem 1.1 does
not distinguish any special times, and for t1,t9 € [0, 1] chosen at random, b(¢y, ) and b(tg,-) have
the same regularity, are macroscopically undistinguishable. This means in particular that our vec-
tor field does not quasi self-similarly focus the dynamics onto a single time slice, leading us to
point (ii). In the previous examples of anomalous diffusion [DEIJ22, BDL22, CCS22, BCC*22]
at each instance of time ¢ € [0,1) only one shear flow is active (at a suitable spatial frequency),
which in turn necessitates singular focusing in time for the passive scalar to witness infinitesimally
small scales in b(t,z). This picture is inconsistent with the observed power spectra of turbulent
flows in statistical equilibrium [Fri95]. The vector field b(¢, z) from Theorem 1.1 does not have this
property: at a.e. t € [0,1] the vector field b(¢,-) contains infinitely many shear flows of diverging
frequencies, which are twisted by the Lagrangian flows induced by the sum of the flows at all scales
“above” that of the shear being considered. At first sight, one may think that this “feature” of
b(t,z) comes with a “bug”: the underlying transport equation is severely ill-posed, leading us to
point (iii). At the heart of the proofs in [DEIJ22, BDL22, CCS22, BCC™*22], the transport equation
does the heavy lifting, in a quasi self-similar fashion as t — 17. In a sense, it is shown that the
non-diffusive picture is stable in L? under diffusive perturbations. Our work presents a fundamental
difference, as we do not view (1.1) as a perturbation of the transport equation (¢; +b-V)# = 0. In
fact, the diffusion is used in a fundamental way in the proof (see Section 1.2). At each scale larger
than the smallest active scale (determined by k) the advection part of the operator is in balance
with a renormalized diffusion operator. A welcome consequence of this perspective and of this proof
strategy is that in our analysis the vector field b(¢, z) and the initial data 6y are independent of each
other, with (1.4) holding for every 6y € H'(T%). This “universality” was however not present in any
of the earlier works on this subject, as mentioned in point (iv) above. In [BDL22, CCS22, BCC*22]
the main results establish the existence of both a vector field b(¢,x) and of an initial datum 6,
(a +1 checkerboard) for which (1.4) holds, while in [DELJ22, Theorem 1] the initial datum needs to

range strictly below LIW,™), and fact that lim SUp; o0 VjHVu”jHQLQ((



be sufficiently close (with respect to the H? topology) to an eigenfunction of the Laplacian on T%.”
This is of course not the physically motivated problem since the turbulent vector field b(¢, z) should
be given in advance (as a solution of, say, 3D Navier-Stokes), and then the passive scalar is to be
advected and diffused in this flow. The reason why Theorem 1.1 yields anomalous diffusion for
all H' initial data of zero mean is not the construction of the vector field b(t,x) per se, it is the
proof strategy, which shows that the quantity /{||V0"“H%2((071)XW) is close (in a k-independent sense)
to the rate of diffusion experienced by (essentially) a heat equation with the same initial datum,
and unit-size diffusivity coefficient.

1.2 An outline of the proof: fractal homogenization

We present the proof of Theorem 1.1 only in dimension d = 2 rather than a general dimension d > 2
for convenience and readability. The argument in higher dimensions has only notational differences.

As mentioned above, the proof of Theorem 1.1 is based on the idea that anomalous diffusivity is
the consequence of a “homogenization cascade” of “eddy diffusivities,” which goes from small scales
to large scales. We think of each homogenization step as modifying the equation by removing the
fastest wiggles in the vector field and—due the enhancement of diffusivity caused by these wiggles—
increasing the diffusivity parameter k. The “effective diffusivities” thereby increase as we zoom out
to larger scales, until finally, at the macroscopic scale, the vector field has no remaining wiggles
and the effective diffusivity is of order one. This strategy, which is a renormalization group-type
approach, has a very long history dating back to the 19th century (see [Fri95, Chapter 9]).

In this subsection, we will give a complete overview of the main ideas behind the construction
of the vector field b(t,z) and the proof of anomalous dissipation of scalar variance. The full proof
is very lengthy, as the justifications of many of the intuitions here require long computations and
many estimates.

Advection-enhanced diffusion and homogenization. We briefly review the phenomenon of
advection-enhanced diffusion, from the point of view of classical homogenization. Consider a Z%-
periodic, mean-zero, incompressible vector field u(¢, z) and the advection-diffusion equation

010 — KAO: + %u(g%,f) -Vl =0. (1.9)
The advection term may be expressed as a second-order term:
%u(g%a %) -Vl = -V (S(?, E)vea)y

where s is a stream matrixz for u, that is, an anti-symmetric matrix such that —V -s = u. This
allows us to write (1.9) as
00 =V - (klg+s(z,2)) V0. = 0. (1.10)

Here there are two scales: the small scale ¢ > 0 on which the stream matrix oscillates, and
the macroscopic scale which is of order one. Classical homogenization theory says that (1.10)
homogenizes to the effective equation

00 —V-avh =0,

"This limitation also applies to the constructions based on intermittent convex integration schemes [BV20] applied
to the transport and drift diffusion equations e.g. in [MS18, BCDL21, CL21, PS21]: all of these construct the vector
field at the same time as the scalar.



in the sense that, roughly speaking, solutions of the former converge in L?, as ¢ — 0, to those of
the latter. The effective diffusion matrix a is given by the formula

ae={(klgj+s)(e+Vxe)y, eeR?,

where ¢-) denotes the (space-time) average of a Z x Z%periodic function and x. is the corrector
with slope e, that is, the unique periodic (in space and time), mean-zero solution of the cell problem

Orxe — V- (Klg+8)(e+ Vxe) =0.
The symmetric part of a is given by
%(2_1 + E_lt)ij = /{(sij + n(Vxei . VXej>> .

The second term is positive (in the ordering of nonnegative definite matrices), and therefore the
symmetric part of a is larger than the original diffusion matrix xlz. This effect is called the
enhancement of diffusivity due to advection.

The enhancement of diffusivity from the point of view of homogenization has been well-studied
over the past four decades. There are too many works to cite here, so we refer the reader to [FP94,
MK99] and the references therein. The proposal to use homogenization methods to turbulence
models has however received a great deal of skepticism, primarily due to the lack of asymptotic
scale separation. The homogenization limit requires sending the parameter €, representing the ratio
of the two scales, to zero. Such criticisms can be found in [Fri95, page 225] and [MK99, page 304].

Indeed, the vector field b(¢,z) we will construct will have certain active scales and the ratio
of any pair of these active scales is fixed and not parametrized by a parameter being sent to zero.
Moreover, we have infinitely many active scales, and not only two as in the simple setup described
above. These issues pose serious analytic challenges, and we will address them using quantitative
homogenization methods. Rather than reason in terms of asymptotic limits, we need to precisely
quantify the length scales and time scales on which homogenization occurs. We will next consider
this question in the context of a simple shear flow.

Homogenization of a simple shear flow. The vector field b(¢, z) will have a fractal-like struc-
ture, and so we need to introduce the “base” fractal, that is, the pattern which links two different
scales and will be repeated infinitely many times. This role will be served by a simple alternating
shear flow.

Given parameters a,& > 0, consider the simple time-independent shear flow u(z) defined by

00) = (Lyrge con(izm) )
—2mae cos(=L)
The length scale on which the shear flow varies is €, and the parameter a represents the size of
the Lipschitz norm of the vector field. The stream function for u is ¥ (x) = as? sin(%%); in other
words, u = V1 i).. We stress here that ¢ is not a parameter to be sent to zero, it just represents
the inverse wave number of u.

The equation for a passive scalar  advected by u with diffusivity x > 0 can be written as

o0 — V- (K°(z)Vh) =0 (1.11)



where K¢ is the non-symmetric matrix

I —CL€2 Sin(27m:1 )) ) (112)

27]

KE = I =
(2) (H 2+ v (x)a) (a62 sin(
Due to homogenization, we expect that (1.11) should be close, on large enough scales, to its effective
equation B

00 — V- KoV =0,

where the effective diffusivity matrix Ko in this case can be computed explicitly. It is:

K, = (g 02€4> . (1.13)

a
K+ =

We again stress that we are not sending € — 0 here, the homogenization is with respect to a large-
scale limit. It turns out that homogenization is observed on length scales much larger than ag3x~!
and time scales much larger than 25!, This can be observed analytically from estimates on the
correctors, which can actually be computed explicitly in this case.

There is another way to think about this, which is in terms of the particle trajectories. The
diffusion Y; process corresponding to (1.11) satisfies the SDE

dY; = b(t, Y;)dt + V2kdW; . (1.14)

The particle evolving according to these dynamics will move with speed of order ae in the x4
direction, changing its direction (up or down) and its magnitude on time scales of order 25 =1, which
is the time it takes the diffusion to alter its z; coordinate on the order of e. The vector field has
typical size ae, therefore in this time the particle will have travelled a distance of order ae -2k~ =
ag3k~!. If we zoom out and observe the motion of the particle on length scales much larger
than ae®,~! and time scales much larger than 257!, then what we see (roughly) is that the xy
coordinate of the particle is performing a random walk with steps of size ag3x !, with 2,1 units
of time between steps. This leads to a diffusivity in the xo direction of order

3

(as?’/-s_l) 2 _ CL284

2kl K
Of course, this diffusive effect caused by the advection should be in addition to the molecular
diffusion, so we expect to find an effective diffusion of order

2_4
a‘e
effective diffusivity in xo direction = O </€ + > .
K

This rough intuition is in agreement the more precise formula (1.13).

The dimensionless quantity ae?s~!, recognized as representing the (square root of the) ellip-

ticity contrast in the matrix K¢ defined in (1.11), is a measure of the strength of the shear flow
term relative to the molecular diffusion. It determines the multiple of the small scale £ on which
homogenization occurs.

Now consider a vector field which alternates between shear flows in the x; direction and shear

flows in the x5 direction with frequency 7—1:

0 sin (27%2
Vs,a,T(tvx) = 2mae Z 1[kT,(k+1)T) (t) <<Sin(2m:1 )) 1{ke2Z} + < (0‘E )> 1{keQZ+1}> . (1'15)

keZ €
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If we require that 7 » 257!, so that the shear flows have enough time to homogenize, then the
corresponding advection-diffusion equation homogenizes to the average of Ko and the analogous
matrix K; with the diagonal entries swapped, which is conveniently isotropic. We find that, on
length scales much larger than ae®s~! and time scales much larger than 7, the equation with

alternating shear flows will homogenize to

00 — RAO = 0,

where the effective diffusivity is given by & = (1 + “22;24 ) K.

The construction of the multiscale vector field b(¢,z). The above discussion suggests an
idea for setting up a “homogenization cascade” by constructing a vector field b(¢,x) with many
copies of the alternating shear flows on different scales. We look for a decreasing sequence of length
scales €, — 0, of time scales 7,,, — 0, and of diffusivities k,, — 0 and an increasing sequence of
parameters a,, — o0 which satisfy the following relations:

-

2 4
a,,€
Km—-1 = (1+ - m)ﬁmy

2K2,
Am = E?nil )
5 g2 (1.16)
T » 2%
Km

ame?,
Em—1 > Em -
Rm

The last condition is to ensure that the wiggles we put in the vector field at scale €,,_1 do not
interfere with the homogenization of those at scale €,,. The condition on a,, is because we want
the vector field to be Holder continuous with exponent v € (0,1). We would then like to define a
vector field b(¢, x) in a recursively way, by adding shear flows at each scale &,,, roughly as follows:
set by = 0, and then define

bm<t7 .%') = bm—l(t7 x) + vﬁmyamﬂ'm (t’ .f) .

The idea is that the vector field b,,—1 is “macroscopic” from the point of view of v¢ 4., 7>
which will homogenize before spatial or temporal variations in b,,_; are noticed. We will then
define b := lim,, ., b;,. Note that this limit makes sense, due to the fact that the supremum
of | Ve, .am,mm | 1s of order ame,, = €%, which is small and can be summed up (since the scales will be
at least geometrically separated). The hope is then that we have set up the parameters in such a
way that the advection-diffusion equation with diffusivity x,, and vector field b, will homogenize
to the one with diffusivity x,,—1 and vector field b,,_1.

This however will not work without another crucial modification. The presence of the “macro-
scopic” vector field b,,_1 actually interferes with the homogenization of the wiggles represented
by Ve, am. - Indeed, this “macroscopic” term is essentially a constant from the point of view
of the much faster field ve,, 4,, 7., and a large constant drift added to a shear flow essentially
destroys the shear flow structure, with its very long streamlines, and consequently removes most
of the enhancement of the diffusivity. In fact, a large constant background drift will destroy the
enhancement of diffusivity of any time-independent flow: see Appendix A for details.

This presents a serious obstacle to building examples of continuous vector fields which exhibit

of anomalous diffusion, since continuity implies that larger wave numbers should have larger am-
plitudes. The solution to this problem is to force the small scale shear flow v, to be swept

Am,Tm
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by the vector field b,,,_1, so that they appear to be stationarity in the moving reference frame of a
particle advected by b,,—1. We do this by modifying the definition of b,, as follows:

b (t, ) := by 1(t, ) + Vem,am,™m (t, erll—l(t,x)) )

where X,,,_1 is the inverse flow for the vector field b,,_1, that is, the solution of 0, X = by,—1(¢, X).
If changed into Lagrangian coordinates, then the b,,_; term would disappear, and the Laplacian
term would only be slightly distorted. In this way, the vector field v¢,, 4,.7, can be homoge-
nized without disturbing b,,—;. This “self-advection” property—arising here naturally from the
renormalization perspective as a way to gain a sufficient enhancement of diffusivity between two
scales—is a property that real fluids have.®

This introduces a new complexity to our construction, because the inverse flows must be renewed
on a time scale which is much less than the inverse of the Lipschitz constant of b,,_1, which is of
order a,,. Otherwise the distortion due to the flows becomes intractable. Therefore we modify our
definition again by introducing 7, > 7 and defining

bm(t, x) = bm—l(ta 1‘) + Z l[T,QQ,(lJrl)T,/{l)(t)vé‘myam,Tm (t7 Xr:Ll—l(tv €, lT/vlz)) ) (1'17)
leZ

where X;bl_l(t, x, s) is the flow for b,,_1 with X;l_l(s, x,s) = x. This gives us two new constraints:

-1

T & Ty KL’ .

The second constraint ensures that we have good estimates on the difference between our flows
and the identity matrix. The first constraint 7, » 7, is needed because the periodic renewal of
the inverse flows has caused new periodic wiggles (in time) to appear in our vector field, and these
must also be homogenized! We need to make sure that the time scale of these wiggles does not
interfere with the homogenization problem for v,

Am,Tm *
We next try to see if we can choose the parameters to satisfy all of the constraints. First, in
order to have k,,—1 much larger than ,,, we need that

2
AmE _
mm>>61a
Km,

This suggests that we should try to pick all the parameters so that this number is a negative power,

say —y < 0, of gy, ,
amé _
Gmem o =
Km

2+ 1+a+ry
In other words, we have now chosen k,, = amem ' = €m .

to e kb« a;ll_l, which can be written in terms of the ¢,,’s as

The constraints for 7, reduce

11—«

e « el

8This property is not shared by many other models of synthetic turbulence, to our knowledge. See [TDO05, EB13]
for a discussion of this point, and the apparent disparities between models of synthetic turbulence and real turbulent
flows. Summarizing [TDO05], the authors of [EB13] write “The key point is that large-scale eddies in real turbulence
advect both particles and smaller scale eddies, while large-scale eddies in synthetic turbulence advect only particle
pairs and not smaller eddies.” We remark that a related difficulty was faced by Kraichnan in his attempts to build
his “DIA” model of turbulence: see [EF11, Section II.A], in particular the discussion of random Galilean invariance.

12



This is a sharper constraint that the one for the e,,’s in (1.16), so it remains to check if it is
compatible with the recurrence relation for k,,. This will be the case if and only if

2(1 — )
I+a+y

We can therefore pick an appropriate v > 0 if and only if 2(1 — «)/(1 + «) > 1, which is equivalent
to a < 1/3. This is the reason for the restriction on « in the statement of Theorem 1.1.

The scales e, are decreasing supergeometrically, and thus so are the diffusivities k,,. The
recurrence for kp, in (1.16) is very sensitive to the initial choice of x, and for this reason it much be
chosen be within a factor of two of one of the 6}\;””7 for some N. Otherwise the diffusivities will
oscillate between very large and very small numbers, and we will lose control of our homogenization
estimates.

Note that the exponents 1 + a 4+ v and (1+a+7)/(1-a) in scaling of the renormalized diffusivi-
ltaty

. 1 — . . ..
ties, km ~ e “T7 ~ 7,7 | tend to 4/3 and 2, respectively, as @ — 1/3, which is in agreement

with Richardson’s 4/3 law. In fact, then the variance in the position Y; of a particle trajectories

at time ¢ will indeed scale like tHlﬁiZW (for small k, well-chosen as explained above), and this
exponent is close to 3 when « is close to 1/3, as predicted. Demonstrating this is outside the scope
of the present paper, as it requires some uniform estimates for the passive scalar which will be
the focus of a forthcoming paper [ARV]. These are analogous to large-scale regularity estimates in
homogenization theory, adapted to the present situation of “fractal” homogenization. See below in
Section 1.3 for more.

What is described above is a slight simplification of construction of the vector field b(t,z) in
Section 2. In the actual construction, the indicator functions of the time variable appearing in (1.15)
and (1.17) are replaced by smooth approximations, so that the vector fields b, are smooth in time
as well as space, and uniformly a Holder continuous in both variables. We also have “quiet” time
intervals each time we switch the direction of the shear flows, which is convenient for technical
reasons. We similarly arrange for the shear flows to pause on time intervals of length 7/, around
any change of the inverse flows X;lil, where 7,,, € 7/, < 7)), is intermediate between the other two
time scales.

The homogenization step. The reader is hopefully convinced that the vector field b(t, ) whose
construction we have outlined above is a good candidate for exhibiting anomalous diffusion.

However, analyzing the effect of the complicated fractal-like structure of the vector field b(¢, x)
on the passive scalar 6~ is a challenge. Periodic homogenization is of course very well-understood,
even if there are a large (but finite) number of well-separated scales (a topic referred to as reiterated
homogenization). What is not well-understood is the case in which there are essentially infinitely
many scales which are not well-separated. This is the situation we encounter here, because even if
the ratio €,,,—1/em between scales can be made arbitrarily large in our construction of b(¢, ), once
the vector field is constructed it is a fixed finite number.

This difficulty has not gone unnoticed. Indeed, the idea of renormalization group-type approach
to anomalous diffusion for a passive scalar equation in which “eddy diffusivities” are successively
renormalized is described very clearly at a heuristic level in [Fri95, Section 9.6]. As explained there,
this idea has been present since the 19th century, but it is the lack of clear scale separation that is
the primary reason for the limited applicability of homogenization theory to passive scalar turbu-
lence and the reason “why the concept of eddy viscosity has been regarded by some theoreticians
of turbulence as (at best) a pedagogical device.” Similar remarks can be found in Majda and
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Kramer [MK99]. The present paper is the first work to our knowledge to address this difficulty in
a fully rigorous way.”

Let 6,,, be the solution of the equation
010m — KmAby, + by, - VO, =0 in (0,00) x T?

with advecting vector field b,,. As alluded to above, the main step in the proof of Theorem 1.1
is the demonstration that the equation the 6,, homogenizes to the one for 6, 1. The precise
statement is given below in Proposition 5.2, where one finds the estimate

"Gmuvemui%(og)xm)

Klmfl\|V9m71|\%2((0,1)x1r2)

Here C' is a constant depending only on « and § > 0 is an explicit exponent. An iteration of this

estimate yields that the quantity ﬁmHVGmH L2((0,1)xT2) is nearly independent of m, up to an error

which can be made very small, and in partlcular much smaller than /ﬂ?oHV@oH L2((0,1) which is of

xT?2)
order one.

The basic idea of the proof of the homogenization step is simple and classical. We build an
explicit ansatz for the solution of the equation for 6,,, which we denote by 5 . This function is
constructed explicitly using ingredients from the equation for 6,1, so we have a good understand-
ing of it—we know in particular that the difference 9 — 0,1 is small in L?. We then plug Hm into
the equation for 6, and carefully compute the error. If the error is sufficiently small, then we can
deduce that the difference 6, — §m is small from basic energy estimates.

The definition of the ansatz gm — Om—1 can be found in (4.24). It is more complicated than
usually expected for periodic homogenization. The classical two-scale ansatz consists of taking the
periodic correctors . and attaching them to a solution of the macroscopic equation; in our setting,
this suggests that we should define the two-scale ansatz by

d

Om(t, ) = O 1 (£,2) + Y EmXe; () O, 0m1(t, ),
i=1

where the x., represent the correctors corresponding to the shear flows v, 4,. .. on scale €, in the
definition of b,,. Keeping in mind that these shear flows are composed with the inverse flows X;lil
in the definition of b,,, which are very slow compared to v, 4,, ., it is reasonable to compose
these correctors with the inverse flows. Thus we should modify our ansatz to

d
em(t’ :L‘) = emfl(tv SU) + Z 1[7’%,(l+1)7—,’g)(t) Z €m (Xei © X;nl—l(ta K ZT;)/’L)) (i)a’tiemfl(tv l‘) )
leZ i=1

where as usual the indicator functions of time are actually replaced by a smoother approximation.

9Here we are thinking of vector fields which are continuous. There have been previous works, such
as [BAO02, KOO02], which use homogenization methods to prove the superdiffusivity of stochastic processes advected
by divergence-free vector fields. These papers consider a different scaling—there is no small diffusivity parameter
being sent to zero—and the vector fields considered in these papers have many active scales, with the property that
smaller scale wiggles (larger wave numbers) have much larger amplitudes. Note that the latter property is not consis-
tent with continuity, if the vector field were to be rescaled (blown down). Indeed, viewed from the macroscopic scale,
these vector fields will belong to negative regularity spaces. Building examples of such vector fields which exhibit
superdiffusivity or anomalous diffusion is a much easier task, since one does not have the problem, mentioned above,
of the low wave numbers killing the enhancement of the large wave numbers.
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We need to make two more modifications of this ansatz. First, there is a “distortion” caused
by the inverse flows which influences the diffusion part of the operator. This distortion can be
neglected in the homogenized equation, as it does not contribute at leading order. It cannot
however be neglected in the two-scale ansatz (doing so would cause an error which is too large).
Therefore, the function 6,,_1 must be replaced by another function 7;,_1 which is adapted to this
distortion. This is the purpose of the matrix s,,_1 in the definition of 7, 1 in Section 4.1. The
second modification comes from the need to homogenize the periodic wiggles in time caused by
the time-alternating shear flows, and by the renewal of the inverse flows. Since these wiggles are
constant in space and depend only on time, they can be homogenized in a rather ad-hoc fashion.
This is done by introducing the function ﬁm in the ansatz (this handles the faster time wiggles)
and slightly modifying the definition of 7},,_1 (by using the matrix K,,, which oscillated in time,
rather than k,,_1l2, in its definition).

Ultimately, our choice of the ansatz 9~m is justified by the estimate (5.29), which says that it
is sufficiently close to being a solution of the equation for 6, that it must actually be very close
to B,,. Obtaining this bound turns out to be quite technical and much of the effort in Sections 3-5
is devoted to its proof.

1.3 Uniform estimates for the scalar

The predictions made by the phenomenological theories of scalar turbulence go of course much
further than the anomalous dissipation of scalar variance; we refer the reader to [Fri95, SS00, War00,
FGVO01, DSY05, SS10] and references therein for a detailed account. For example, by drawing direct
analogies with the Kolmogorov theory of fluid turbulence, Obukhov [Obu49] and Corrsin [Cor51]
used scaling arguments to predict that if the vector field b(¢, x) represents a homogenous isotropic
velocity field exhibiting K41 “monofractal” scaling in the inertial range, with exponent 1/3, then
the scalar field 6” inherits this property—namely “monofractal” scaling of structure functions with
exponent 1/3—in the corresponding k-dependent scalar inertial range. This scaling argument can
be directly generalized to say that if the structure functions of b(t,z) have monofractal scaling
with exponent «, then the structure functions of the scalar #® have monofractal scaling with
exponent (1=a)/2. for any 0 < a < 1, not just 1/3 (though this is the relevant exponent in fluid
turbulence).

Just as with the Onsager conjecture, one may propose a mathematical idealization, corre-
sponding to simultaneously diverging Reynolds and Péclet numbers, and postulate a dichotomy:'°
(i) if b € CY9C% and if the solutions {#"}.~¢ of (1.1) are uniformly in & bounded in C?C¢
with o > (1=@)/2; then lim,_, /@HV@”H%%LQ = 0, and (ii) there exists b € C?C2 (presumably
with @ < 1/3), such that for all smooth initial conditions 6o, the solutions {6"}.~¢ of (1.1) are
uniformly in x bounded in C9C¢ for any o/ < (1-a)/2, and moreover lim,_,q /{HVG“H%;L% > 0.

Part (i) of this dichotomy is well-known and follows directly from the commutator estimate of
Constantin, E, and Titi [CET94]. As stated above, part (ii) of this dichotomy is open. Theorem 1.1
does not address the Holder regularity of the family {6"}.~0, only the anomalous dissipation of
scalar variance. We note however that the paper [CCS22] establishes a version of this Holder
regularity, but the uniform in x bounds for |6%(t, )| o’ in the full range o/ < (1=a)/2. are only

established for a particular initial datum 6p, and only in L? with respect to the time variable.

In forthcoming joint work with Rowan [ARV], we will sharpen the statement of Theorems 1.1 in
a number of ways. We show in [ARV] that with b(¢,z) as in Theorem 1.1, the advection-diffusion

19See also the discussions in [DEIJ22, Section 5] and [CCS22, Section 1].
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equation (1.1) regularizes the solutions up to C’?C'g(cl_a)/ ? along the subsequences {r;} exhibiting the
diffusive anomaly (1.4). We show that for all ¢y € (0,1), there exists a constant Cy, = Cy,(d, ) > 0
such that, for every mean-zero initial datum 6y € L?(T¢), we have

ilg) HHHHCO([to,l]’C(lfa)/z(Td)) < CtoHGOHLZ(’]I‘d) < 0,

where I is the interval of diffusivities defined in the paragraph below (1.6) above. This is achieved
by complementing the argument in this paper with “large-scale regularity” techniques developed
in quantitative homogenization theory. Another consequence of these estimates, which is obtained
in [ARV], is that the diffusive anomaly ¢ in (1.4) is uniform in the initial datum: the dependence
of 0(fp) on By € L2(T9) in Theorem 1.1 can be removed completely; in fact, we can take o = 1/2.
Moreover, by obtaining uniform-in-«x estimates for the parabolic Green function associated to the
drift-diffusion equation (1.1), we obtain in [ARV] estimates for the rate of separation of the squared
distance between two realizations of the SDE process Y; defined in (1.14), which are consistent with
Richardson’s 4/3-law.

1.4 Notation

We denote the positive integers by N = {1, 2, ...}, and the non-negative integers by Ny = NuU {0} =
{0,1,2,...}. We denote

Vif:=oVf, where o= <(1) _01> (1.19)

We use the brackets (-) to denote the mean of a periodic function of space only (not time), that is,
(-) = §pa(-)dz. Averages of periodic functions in both space and time (or just time) are denoted
by {-». We use v and A to denote maximum and minimum operations, that is, a v b := max{a, b}
and a A b := min{a,b}. We denote the indicator function of a set A by 14. It is convenient to
introduce, for every nonnegative integer n € Ny and f € C*(R?),

2
DT p 10wy and  [flr = sup s, (1.20)

n
[flnr = s

" n!R™ la|=n neNg

Note that [-],, r and [-]g are monotone decreasing with respect to R. For a Banach space X with
norm | - [|x, for n € Ny, and for a sufficiently smooth function f, it is convenient to denote the
X-norm of the nth order symmetric tensor (0% f)|q|=, as

IV*flx = e [0%flx - (1.21)

1.5 Outline of the paper

In Section 2, we construct the vector field b(t,z) and give bounds on the derivatives of its ap-
proximations b,,. We also study the regularity of the flows and inverse flows associated to by,.
In Section 3, we build the correctors, define the sequence of renormalized diffusivities and other
objects which are needed in the homogenization step. The ansatz 9~m is introduced in Section 4,
where some important estimates are also proved, using ingredients from Section 3. The main part
of the argument comes in Section 5, where we estimate the error that is made by plugging f,, into
the equation for 6,,. The proof of Theorem 1.1 appears at the end of that section.
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2. The fractal vector field: construction and regularity

In this section, we construct the periodic, incompressible vector field b(+) in Theorem 1.1 and prove
that it is Holder continuous.

2.1 A list of the ingredients used in the construction

We present here a list of the objects used in our construction of the incompressible vector field b.
These parameters are fixed throughout the rest of the paper.

e We let 5 be any positive exponent satisfying
4
1<p< 3 (2.1)

This represents the regularity of the stream function ¢ obtained in the construction. We
typically think of 5 as very slightly smaller than 4/3, perhaps 1.332. The parameter « in the
statement of Theorem 1.1 will be a = g — 1.

e We define an exponent ¢ explicitly in terms of 8 by

g ;<1+2(2ﬁ__61)> (2.2)

which prescribes the rate at which the scale separation em-1/e,, between successive scales €,,—1

and &, becomes larger as m becomes larger (and the scale £, becomes smaller): see (2.10),
below. Equivalently, this means that

8= ;1<1 - 4qq__11> . (2:3)

The main point is that ¢ satisfies

20
25— 1)
which follows from the inequality 8 < 4/3 in (2.1).

l<g< (2.4)

e We fix the small parameter § € (0, 1/16] defined explicitly by

1 2+1 .\ (q—1)2
0= 4(q_1)<1_2q+26> T 4g+D{dg-1) (25)

e We select a large positive integer N, € N defined by
1 500
Ny=|=+—]|. 2.6
v |+ 5 (2.6
The integer N, counts the highest number of derivatives we need to track in our argument.

e We also define the special exponent

(¢—1)p
= 2.7
V=T (2.7)
This exponent is not used in the construction of the vector field in the next subsection, but it
appears in Lemma 3.4 as a correction to the exponent for the renormalized diffusivities and

subsequently in many of the computations in Section 4.

17



e We let A € N [27,00) be a constant to be chosen later, at the very end of the arguments in
Section 5. It is called the minimal scale separation and will be chosen to depend only on S.

e We define a sequences of length scales {e,, }men, Which satisfies
Em € €0 K ey,

in the sense that the separation between these length scales is at least a negative power of &,,.
These are defined as follows. We set ¢y := 1 and

e 1= [A;Tml] = [exp((f_—mllog/\)], YmeN. (2.8)

m+1

Since €1 < AT < A~ ! and [Aﬁ] = [A%Aqm] > A[A%], we have that

“m_S A, VmeN,. (2.9)
Em+1

In particular, £, < A™™ < 277™. In fact, the sequence {¢,,} decreases at a super-geometric
rate with €,,41 ~ €/, as it is routine to check that

ga‘}n < (1= 10ep)ed, < emi1 < (14 10ey,)ed, < gf‘:% (2.10)
Finally, we remark that ¢! € N.
e We define a sequence {am }men, of positive constants by
am =272 ¥meN. (2.11)

The constant a,, gives the strength of the shear flows at length scale e,,: see (2.20), below.

e We introduce three sequences of time scales: {7y }meNg, {Thtmen and {7/ }men. We define
these in such a way that, for every m € N,

T & Thy K Thn < asl | & Ty s

in the sense that the separation of the time scales in each of these inequalities is at least a
negative power of €,,. They are defined as follows: we set 79 := 1 and, for every m € N,

-2
T i= (4|ens | +1) (2.12)
o -5 -1
T = 41| +1) T, (2.13)
-1
7= 2—25?;}‘1} . (2.14)
Em—1
In particular, we notice that
1 1 1 / "
—, —, — 4N and ™ Tmc4N4+1, VYmeN, (2.15)
Tm  Th T Tm Tm
and
9382 B0 <9 B2BH g 9B AR g2 2B (2.16)
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Thus these sequences, like {€,,}, are decreasing at a super-geometric rate. We also define

kTm + 5 (T, —
@;:[ Tm ﬂ?ﬂ ﬂww, keZ, (2.17)
Tm
so that
kTm + [_%Tﬂ’w %Tm] = lkT?ZL + [_%T’V/?/%’ %T’V/?/%] ’ Vkel. (218)

7_//

Notice that 7% many consecutive k’s correspond to the same .

We define stream functions 1, for each k € Z by

sin(2mx;) if ke (4Z+2i—1), i€ {1,2},

, (2.19)
0 if k€ 27Z.

Yo(z) == {

The function g vanishes for even k and encodes a vertical shear for k € 4Z + 1 and a
horizontal shear for k € 4Z + 3. We scale these stream functions by defining

Umpk = amemor(s=), YmeN, keZ. (2.20)

Note that the Lipschitz constant of the shear flows Vlwm,k is proportional to a,,. In fact,
recalling that [-]r defined in (1.20), we note that the stream functions 1, , satisfy

[Ymil 2x < Bamen,,  VmeN, keZ. (2.21)

We select an even cutoff function ¢ € C°(R) of time satisfying, for some constant C' € [1, o)
which depends only on N, (and thus only on f3),

I dYct—ky=1,  max [|o/¢]lpeme) < C, (2:22)

0<(<1
[ = 5€{0,.... Ny}

_2
3>

Wi

and 9
2
- = 2.23
L= (2:23)
We also scale the cutoff function by setting

t—ktm

Tm

@m@%—C< ), VmeN, keZ. (2.24)

Observe that, for some constant C' € [1,00) depending only on /3 (see Remark 2.1 below),

0< Cm,k < 1[(k_%)7m7(k+%)7m] ) ICEZCm,k = 17 je{f){la?](\]*}\‘aigm,k”Lw(Rd) < CT%j : (225)
€

The role of these time cutoffs is to enable us to switch between the stream functions 1, ;, for
different k.

We must define a second family of time cutoffs {&,,, , : m € Ny, k € Z} which live on a slightly
larger intervals than the ¢, 1’s. We take £ € C*(R) to be a smooth cutoff function of time,
satisfying, again for a constant C € [1,00) depending only on £,

—k)=1 and el poma <C (2.26
IE Z &( ) an ~e{gla§v*}” 6L (R2) ( )

1 337 <E<1s
[-2,9] [ )
ke2Z+1

S
-1

N[
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(k=2)7m t

Figure 2.1: The families of cutoff functions {( x} and {&m,x}. These are the small-scale time cutoff
functions, and each of them is active on an interval of width close to 7,,,. The (, ;s corresponding to odd k
are drawn in colors—purple and green corresponding to horizontal and vertical shear flows, respectively—and
in grey for even k as the corresponding vector fields vanish. Only two of the &, ;’s are drawn (in orange).
These have larger support that the (., x’s and transition between zero and one on intervals in which the
latter, for odd k, vanish.

and then define, for each k € 47Z,

t— k1,

Enalt) = (). (2.27)

Tm

Observe that the overlap in the periods between two succesive &, ’s is disjoint from the
support of the (;,;’s when [ is odd (with some extra room). Precisely, we have

1
dist(supp 0¢&m i, SUPD G t) = 137m Vke2Z +1, 1€ 2Z + 1. (2.28)

See Figure 2.1 The cutoff functions &, ; are not used in the construction of the vector field in
the next subsection, but they are needed in the construction of the correctors in Section 3.1,
see (3.12).

e We need to define two more families of time cutoffs
{Cmy : meNy, 1€Z} and {&,, : meNy, l€Z}.
These have the following properties:

ém,l = ém,O(' - ZT#L) and ém,l = ém,(](' - ngz)v

there exists C' € [1,00) depending only on £ such that, for every m € Ny and [ € Z,

Ya-hrprer e hrn—2m,] S md S Yo by, 04 Dyt -m]

. (2.29)
Ha-Yrprrp@r hr—rn] S Sml S Ha-hyrp—rf @+ Hrern]
and
Dimi=1, (2.30)
leZ
and - . '
e (107Gl e sy v 18 mlmgen) < C () ™ (2:31)
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-

47!

m

27/,

Em,l gm.,H»l

ém,lfl—) émJ — — ém7l+l

|
I
(=D, (1=, I (1+

[ [

"
)

Figure 2.2: The families of cutoff functions {(,,;} and {£,,;}. These are the large-scale time cutoff
functions, and each of them is active on an interval of width close to 7, and transition between zero and

one in intervals of width 7/, « 7/7. The main difference is that the émyl’s form a partition of unity, and their
transition occurs entirely outside the support of the (y, ;’s.

Observe that {CAmJ}lez does not form a partition of unity, and that for every k,l € Z,
I # 1y = CmiCng = 0. (2.32)

See Figure 2.2 The role of Q:m’l is to smoothly cutoff the vector field near the time at which
the flows and inverse flows are refreshed in our construction: see (2.36), below. The cutoff
functions émk are not used in the construction of the vector field in the next subsection, but
they are needed in the construction of the two-scale ansatz in Section 3.1, see (4.24).

Remark 2.1 (Convention for the constants). Throughout the rest of the paper, we use C' and ¢
to denote positive constants which depend only on [ and may vary in each occurrence. Note
that, since the parameters ¢, § and N, are defined explicitly in terms of 5, our constants may
depend on them as well. In particular, these constants are understood to never depend on the scale
parameter m. Also, since the parameter A will be chosen to be very large at the end of the proof
of Theorem 1.1—precisely to absorb the error terms arising in the proof—it is important that we
do not allow the constants C and ¢ to depend on an upper bound for A. Since A > 32, they may
depend on a lower bound for A.

2.2 Construction of the vector field

In this subsection, we construct an incompressible vector field b, which is a sum of rescaled copies
of a given family of periodic incompressible vector fields (shear flows) such that each term in the
sum is advected by the partial sum of the terms representing larger scales (lower frequencies).

We proceed by constructing a sequence {b,,} of smooth, incompressible vector fields which
are Z x Z*-periodic, with associated sequences of periodic stream functions {¢,,}, which satisfy

VLgbm = bma <¢m> = 07 (233)

and their corresponding flows {X,,} defined by

(2.34)

Xm(s,z,s) = .

{GtXm(-,x, $) = by(t, Xm (-, z,8)) in (—o0,0) x R?,
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We also denote by X,,,! the inverse flow, that is, X,,!(¢,-,s) is the inverse function of X,,(t,-, s).
The construction will be an iterative one, starting with the largest scale shears and progressively
building in the smaller scale ones, in the Lagrangian coordinates of the larger scale shears. The
vector field b, will have only scales larger than e, built into it, and we will eventually take b as
the limit m — oo.

We initialize the construction by setting

¢0(t,$) = O,
bo(t,z) := Vige =0, (2.35)
Xo(t,z,s) :=x.

Supposing that, for some m € N, we have defined ¢;, b; and X; for every j < m — 1 and that
these functions are smooth in all variables and satisfy the properties above. We then define ¢,,, by,
and X, as follows. We first define the new stream function ¢,, by

Qbm(ta l‘) = Qbmfl(tal') + Z C_.tm,l(t)Cm,k(t)"vZ}m,k (X;,il (t, :E7l7—'r/‘:7,))

k,€Z
= ¢m—1(t7 1’) + Z ém,lk (t)Cm,k(t)wm,k (Xn—11_1 (ta z, lkT#L)) . (236)
keZ

In the second equality we have appealed to (2.32). It is clear from induction that ¢,, is smooth.
It also has zero mean by induction, the fact that v, has zero mean and the fact that the in-
compressibility of b, 1 implies that Xn_ll_l(t, -, 8) is measure-preserving. We may therefore de-
fine by, (t,2) := V¢, (t,7) so that (2.33) is satisfied; and then define X,,(-,z,s) to be the unique
solution of the flow (2.34). These functions are clearly smooth, so this completes the construction.

Notice that the 1, ’s change each time we increment k, but the inverse flows anil(-, STl
depend on k only through the value of the initial time, namely lx7/,. In particular, the inverse
flows are the same for 7/7,, € 4N + 1 many consecutive values of k. To keep the notation short, we
define, for every m € N and k € Z,

Xna(t, ) i= Xpn(t,z,07)y)  and X L(E @) = XMt @, 1), (2.37)
As far as periodicity is concerned, it is clear from the construction that
¢m and b, areZ x Z>periodic,

that  — (X (¢, 2, s) —x) is Z?—periodic and X,, is 1-periodic in time, jointly in (¢, s), in the sense
that
Xp(t+mn,z,5+n)=Xn(t,z,s), YmeN, neZ t,seR, zeR?

We intend to define the vector field b(¢, ) by taking a limit:

(2.38)
b(t,z) := V%io(t, z).

The limit in the first line of (2.38) is valid in the sense of L®([0,1] x [0,1]%) due to the fact that
|¥k.m| is bounded by a,,e2, = agl, which is summable over m € N. That ¢ is regular enough that

the second line is valid is less clear at this stage.
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2.3 Regularity of the stream functions and associated flows

How regular should we expect the stream function ¢ to be? As we will discuss below, the reg-
ularity of ¢ is complicated by the composition with the inverse flows in (2.36). It turns out
that Xn_ll_l(t, kTl is close to the identity map on the support of the cutoff function ém,lk- If
we imagine that the inverse flows can be replaced by the identity map in (2.36), then we may
guess that the spatial regularity of ¢, — ¢m—1 is similar to a periodic function with period &,, and
amplitude a,,&2, = 5. Thus, the C%# seminorm of ¢, — ¢m_1 should be of order ehh ,, for every
B < — 1. Summing over the scales, this leads us to guess that ¢,y is uniformly bounded in C#'
for every 8’ < 8 — 1, and thus the limit ¢ should belong to C*#~. This argument also suggests
that b should belong to C%#~.

This guess is correct, although the proof is more subtle than the back-of-the-envelope com-
putation above may lead one to believe. Indeed, let us suppose that after the mth step of the
construction we have ¢, (t,-) € C*, uniformly in ¢ (with some estimate depending on m and k). If
we try to propagate this bound forward to ¢,,11, what we find is that

Om(t,") € CF = bp(t,) e CP! (by (2.33)),
— z— X 1t x,s) is OF1 (regularity of transport equation),
— i1 € CM! (by the first line of (2.36)).

We have lost one derivative! This suggests that obtaining the desired uniform bounds on ¢,
requires propagating bounds on all spatial derivatives of ¢,, using the analyticity of ¢y ,, (and
its small size for large m) to close the argument. This is the idea of the argument in the proof of
Proposition 2.2, below. For this to succeed, every implication in the display above must be carefully
quantified. Since the last implication uses the chain rule and must be iterated many times, we need
a version of the Fad di Bruno formula (Proposition B.2) and the estimates for derivatives of the
composition of two smooth functions that it implies (Proposition B.6). The second implication
involves the regularity of the inverse flow X,;l_l, which solves the transport equation. We need
estimates on all the derivatives of Xw_ll_1 which are explicit in their dependence on the order of
differentiation. Such estimates are classical, but also difficult to find in the literature in the explicit
form we require here; for the reader’s convenience, in Appendix B we present complete statements
and proofs of what we need here.

We recall that by (2.16) and (2.29), if t € supp (., then [t — [p7/)] < 3T < 9252 A2
2725¢277 As such cach flow X, (t+ s, x, s) and backwards flow X2 (¢ + s, 7, s) needs to be studied

for times ¢ which satisfy || < 2725227 This motivates assumption (2.40) below. Also, recall
that [-], r is defined in (1.20).

Proposition 2.2. For every m € N,

sgp[[(aﬁm — ¢m-1) ()], 71 < 10e),,  YneN, (2.39)
and, for every s,t € R with |t| < 27%%a 1 = 2_25672{ﬂ,
[VX(E+5,,8) = Lol et < 22 tlam = 280t 2, ¥neNo. (2.40)
Consequently, for any ' € (0,8 — 1] we have
16m = Sm1ll o oo ey < 22 (2.41)
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and there exists a constant C' > 0 which only depends on 3, such that
1$m = Gm—1llore mero@mrzy) < Cem " - (2.42)

Proof of Proposition 2.2. Let {M,}men S (0,00) and { Ry }meny € (0,00) be two sequences to be
defined explicitly below (see (2.49)). Suppose that, for some m € N, we have

T < (32M 1) 7! (2.43)
and ( 2
n+ 2
<My R2 +——5,  VneN,n>2. 2.44
ilelp[[d)m 1ﬂn Rp—1 m—144, 1 (n i 1)3 n e n ( )
The assumption (2.44) implies, for every n € N,
(n+1)” 1)2
teR t R
(n + 1) (n+ 1)IRpH,
< _ S~ 7 M=
YT §2£ﬂ¢m n+1,Rm s 1 2)
< MR, (2.45)

According to the definition (2.34), the backwards flow X! | solves (6;+by,,—1-V) X1 | = 0, and so
withY = X;f_l(-, x,-)—x, we are in the setting of Lemma B.7, with f = —g = b,;,_1. The previously
established estimate (2.45) shows that assumptions (B.12) hold with C¢ = Cg = M,,,—1R,' |, and
R¢ = Rg = Ry,,—1. Here we emphasize that the assumption (B.12) is only required to hold for
derivative indices n with n > 1. According to (B.14), we thus define R,,_1(t) := R, _1(1 +
8[t|M,,—1). By Lemma B.7, for every s,t € R such that |t| < (8M,,_1)"!, and for every n € N,

[X,L 0+ 5,-,8) —al, 7o < 161 M1 RyL (2.46)
Observe that if [t| < (64M,,—1)~!, then R,,_1(t) < %Rm_l and (2.46) implies that for all n > 1
(XL (t+s,- S)Hn,%Rm—l <[X L (tE+s,,8) — 2 R ) T ﬂx]]n%Rm_l
<16[t|My1 R, +4- 3R, <5-8R (2.47)

We now have all the necessary ingredients for estimating the second term in (2.36) using Proposi-
tion B.6. With the help of (2.21), (2.43), (2.47), and (B.9) we obtain, for every ¢t € R and every
n € N with n > 2 that

[[(¢m . ¢m_1)(7§7 .)Hnngm_lJrzoJ < QSup S}lp M’ch o XT:Llfl(t, °y lkﬂ,q/@)]] 9Rm_ 207
em k€Z tesupp Cm, 1y, Gm ke "
< 10ame?, . (2.48)

Here we have used that if ¢ € supp Gy, then by (2.29) we have that |t — I,7/| < 17, and
thus (2.43) implies |t — lx7/| < (64M,,—1)~!. Therefore, by the induction assumption (2.44),
the bound (2.48), and the monotonicity of [-], r with respect to R, for all n > 2, ¢t € R, and
R, = ng 1+ 20—” > R,,_1, we have

[6m(t, )n. B < [Pm—1(t; )n. R + [(Pm = dm—1)(t; )]n. R0

9 207T
2 1\ Ry—1+
< My R2, Y (R 1) +10ame?n<8 1 )

"+ 1P\ R Ry
<o 2D (Mot (R Y72 W0t R (n 4 1) (§Rmo1 + ZEY
SO 4+ 13\ My \ R M, R, '
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Thus, if we make the choice Ry, = 2(3Rin—1 + ?—mﬂ), since (n + 1)27"2 < 3 for n > 2, we arrive at

N2 (M1 30ame2 (3Ry—1 + 25
[[qu(t’.)]]n’RméMmRT_nz(n—l- ) < 1 (3 |+ 22 |

+
(n+1)3\ M, M,

With an eye on the induction hypothesis (2.44) with m in place of m—1, this motivates the recursion

Ry = 92R,, 1 +27 1
{ 4 : (2.49)

My, .= M1+ 27am€mR2 + 2184,

for all m > 1. Here we have used that 407 < 27, 60 - ( )2 <27, and 60 - (207)? < 2'8. We now take
the recurrence (2.49) to be the definition of the sequences {M,,} and {R,,}, starting from My :=1
and Ry := 1.

We next analyze the recurrence relation (2.49). Observe that

Ema1Rm = <9€m+1>€mRm_1 + 27<€m7+1>.

4em Em

Recall from (2.9) and the fact that A > 27 that

Em+1 1
Z‘ <57 YmeN. (2.50)
m

We deduce by induction that, for every m € N with m > 1

Em+1Rm < 2. (2.51)
Inserting the bound (2.51) back into the first line of (2.49) yields
Ry < (3+20)e,t. (2.52)

Inserting the bound (2.51) into second line in (2.49), we obtain that
My, < My q + (28 4+ 2"%)a,,,

and thus by appealing to (2.9), 8 < 4/3, A > 27, and (2.11), for every m € N we obtain the bound

m 2 218 28 218
M,, < 218 Z 218 Z AI(B— 2) + -~ _a. < 7;7 Ay, < 219am.
j=0 7=0 N
In view of (2.16), using (2.52) and (2.53) we find that
<27 Mgl 8 <o Mgl <oS Tl

That is, the hypothesis (2.43) is in fact valid for every m € N and is therefore superfluous.

By induction, we may conclude now that (2.44) holds for every m € N. Moreover, we have
shown that (2.47) and (2.48) are valid for every m € N, for n > 1 and respectively n > 2.
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Substituting (2.52), (2.53), and the bound 27¢,! < R,, < 2%,

~1 into the these bounds yields,
for m € N and all n € N with n > 2, that

+2)2
b, et < Pame?, T2 2.54
ig}g[[d)m( s )]]n7285m1 AmEp (TL T 1)3 ) ( )
Sup[(¢m — dm—1)(t, )], o7.-1 < 10ame2, = 1065, (2.55)
teR e
and for every s,t € R with |t| < (2%%a,,) 7!, and all n € N, that
(X, 't +5,8) — 2], 00,1 < 2'[t|amenm - (2.56)

The bound (2.55) implies (2.39) for n € N with n > 2, while the estimate (2.56) yields (2.40) for
every n € Ny, upon noting that

(TL + 1)329—2n€—1 B
(n + 2)2 m [[Xml(t + 87 y S) - ']]n+1,29£7nl < 223‘t‘am .

[[VX’I’;L]- (t + S, -, S) — :[2]]”,2118;11 <

In order to get (2.39) for n = 0, we use the definition of ¢y, in (2.36) and obtain

[ $m — ¢m—1HL°0(R><R2) < am&?zn = ET’Bn.

For the n = 1 bound, we interpolate between the above estimate and (2.55) with n = 2, to obtain

IV (6m — Sm-1)ll = (zxze) < (€))7 (10ame2 2 - (27e)2) 7 < 2801, (2.57)

and thus

Suﬂg[(¢m - ¢m—1)(t7 ')]]1,275,}1 < 88& < 10€,ﬁn.
te

Thus we have also proved (2.39) for n € {0,1}, and hence in view of (2.55) for every n € Np.

For future purposes, we note at this stage that upon telescoping the bound (2.39) for n € {0, 1},
similarly to (2.53) we obtain

m —1\"
St]élﬂl{?[[(bm(t’ ‘)]]n,28577nl < Z Sllp[[((b] - (z)j_l)(t? .)]]n,275]~71 ( 8] >

j=o t€R 257711
w = - 11 n=>0
<10-27"el 2 53’3—" <10-27"el 2 A—IB—n) < { 5 B 1’ (2.58)
=0 =0 p-1¢m> M =4

for n € {0,1}. Here we have used that 8 > 1 and A > 27. The above estimate with n = 1 then
immediately implies
b | oo RxR2) < 275! Slz‘p[[gbm]]l,g&g:nl < 2%/(p-1), (2.59)

which shows that the sequence of vector fields {b,}m>0 is uniformly bounded in space-time, uni-
formly in m.

In order to conclude the proof, we need to still consider the bounds (2.41) and (2.42). The first
one, namely (2.41), follows by interpolating the bounds in (2.39) when n = 1 and n = 2. For the
Hélder regularity of the time derivative, we differentiate the expression (2.36) in time to obtain

at (¢m - d)mfl) = Z at (ém,lk, Cm,k)wm,k o X;Llfl,lk

keZ

- Z Cém,lka,kvd)m,k o XTTllfl,lk : bm—l . VXTr_zlfl,lk . (260)
keZ
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Using (2.20), (2.25), (2.31), (2.59), and (2.57), we obtain

10t (dm — dm—1) || Lo (R xR2)
< 20106 (Comoty, Gmoke) | 220 () iuZPWm,kHLOO(R%
S
+ 2[[brm 1| Lo (R xR2) SUP (| Vi e[| oo (2) sup VX, e e
keZ tesupp Cm,lk Cm k
< Camsgnn;l + Camem,
< C(sfni(?*ﬁﬂé) + 1)5@‘1 < CefL, (2.61)
The exponent of &,,_1 in the last line was computed using (2.3), (2.5), and (2.10). Here we have
also used that 3 > 1 and ¢ > 1. By applying V= to (2.60), similarly to (2.61) we deduce
10t (b = brm—1)[| L2 (< R2)

<2Hat(éVn,lk€m,k)HL°°(R)iuIZ?vam,kHLOO(RQ) sup  [[VX Lyl me)
S

tesupp C'm,lk gm,k

+ 2Byl g rxrz) SR Vil oy sup VXL ey
keZ LESUPP Cim, 1y, Gm &

+ 2[[br—1|l Lo (mx®2) SUP|| Vi || oo (m2) sup IV2X, 1 1zk||L°° R2)
keZ tESUPP G, 1y Gm,k

+ 2Hme—1HLOO(R><]R2) Sup\Wd’mk”LO@(R?) sup ”V 1 e ”LOO(]R2)
keZ tesupp cm,lk Cm,k

The upshot of the above estimate is that, after telescoping, we arrive at

Hatbm”Loo(RxR2) <C Z 85_2 < Cé“gl 2 . (262)

Next, we apply one more time derivative to (2.60) to obtain

0 (6m — dm—1) (t, z)
= 2 at2 (ém,lka,k)¢m:k © X’;l*l’lk

keZ
-2 Z at (ém,lkgm,k)v¢m,k % Xn_lI,le : bm 1 VX ! —1,0
keZ
+Zém,lkakV wkaX lllk ( VXmlllk)®( 1 VX lllk>
keZ
- Z 6m,lk<’m,kv¢m,k © X;ll_lylk : (at m—1 " VX ! —1,l —bp-1- V(bm 1 VX ! 1 lk)) . (263)
keZ

Similarly to (2.61), and appealing in addition to the estimate (2.62), we obtain

102 (¢ — bm—1)|l Lo ®xRr2) < Came2, 7% + Camemt, b 4+ Capm + Camen (Efn__zl + am-1)
< Cay, = CeP2. (2.64)

The claimed estimate (2.42) now follows from (2.61) and (2.64) by interpolation, concluding the
proof of the Proposition. O
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Corollary 2.3. There exists a C € [1,00) which only depends on (3, such that for every m € N,

sup[ém (- )], o=t < Caﬁl, VYneN,n>2, (2.65)
teR e
and
sup[ém (-, 1)), et < Ceqy Vn e {0,1}. (2.66)
teR e

For every ' € (0, 8—1), the stream function ¢ belongs to CO(R; CHF (R?)) n CVF'(R; L®(R?)), and
in particular, the vector field b belongs to CO(R; C%% (R?)) n C%# (R; L* (R?)).

Proof of Corollary 2.3. The bounds for the derivatives of ¢,, of order n with n > 2, claimed in
(2.65), were already established in (2.54). The estimate (2.66) was proven earlier in (2.58). The
claimed regularity of ¢ = lim,, .o ¢, follows by telescoping sum ¢,, = ZTZl(qﬁj — ¢j—1), appealing
to (2.41) and (2.42), and using the fact that by (2.9) we have

n 1 if p >0,
Met<chlTq, Y
= eb ifp<O.
The regularity of b = V¢ = lim,,,_,o by, follows from that of ¢ by interpolation. O

By combining the estimates established in Proposition 2.2 with the results of Proposition B.10,
we obtain the following useful results.
Corollary 2.4. For every s,t € R with [t| < 27%%a,,!, we have that

IV X (t + 5, 8) — Tol oo 2y < 223t < 3. (2.67)

Moreover, for all s,t € R with |t| < 27%a,!, we have

[V X0 (t+ 5, X5, (¢ + 5,7,8),8) = L], gio.1 <40, VneN, (2.68)
and
[VXi(t+ 5, 8)], guaot <12, ¥neN. (2.69)
In particular, (2.67) and (2.69) imply that
sup 1HV"Xm(t + 8, 8) |l Lo(mey < 2n!(283, 1t VneN. (2.70)
[t|<2-28ar,

Proof of Corollary 2.4. From (2.54), we deduce that for any n € N,

2(n + 1)?
sup [by, (¢, ')]]n,2857n1 < sup Q

n+1
el ter n!(28e,)m V" fm ()l oo (r2)

2(n +1)% (n+ 1)1(28%,)"+!
< ~ t7 . _ m
33115 [9m(t g gner n!(28e,0)m (n+2)?

o (n+2)22(n+1)%(2%,}) < ol

<2° <
@mEm (n+1)3 (n+2)2

AmEm - (2.71)
The definition (2.34) suggests that we apply Proposition B.10 with f = b,,, C¢ = 2'a,,,,, and
Ry = 2%¢ 1. The bound (B.25) then directly implies (2.67) since [t| < 27%%a,! = (8C¢Rg)~!.
Similarly, the bound (2.68) for n > 1 follows from (B.26) with d = 2, since Rg(1 + 8Jt|C¢R¢)? <
4Ry = 2% 1. The bound (2.69) is a direct consequence of (B.28) for d = 2, since 16Rg(1 +
16Cs Re|t|) < 48Ry < 214!, Lastly, the estimate (2.70) follows from (2.67) (for n = 1) and (2.69)
(for n > 2), upon recalling definition (1.20). O
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2.4 Material derivative estimates

The bound (2.71) implies that for all n € N we have

n!(28¢,,1)"

22 -2 8 —1yn—1
(T 1) < 2% (n— 1)1(2%,,)" . (2.72)

anbmHL"O(RxRQ) < 214am5m

In order to estimate the time correctors in our two-scale ansatz in Section 4, it turns out that we
also need to have estimates available for

V" D bl e wxr2) + IV D, Vbl pomxrzy Y, € € No such that 1 <n+ £ < N,.

Here and throughout the rest of the paper we use the notation %, ,, for the material derivative
along the vector field b,,, which is the scalar differential operator defined by

@um =0 +b, V. (273)

Note that as opposed to (2.72), in which the index of the space derivatives is allowed to be arbitrarily
large (n € N), in (2.76) we only are concerned with a total derivative index n+¢ < N, which is finite
(in particular, bounded independently of m). As such, the implicit constants in these estimates are
allowed to depend on n and ¢, because this just means that they depend on Ny, and so they depend
on our choice of § (via (2.6)). The advantage of this relaxation is that we do not need to keep
track of factorial terms (e.g. n!, ¢!, (n 4 £)!), or on powers of constants (e.g. C™, C%). In particular,
as opposed to the previous section, where we had to carefully apply the auxiliary lemmas from
Appendix B.2, here we can apply standard consequences of the Leibniz and chain rules, such as

IV (f Pl < CIV* fllz=llglie + Cllf L=V gl (2.74)
IV (f o)l < ClIV Lo IVgllen-r + ClIV fllen-1[|VgllZe , (2.75)

for 1 < n < Ny, where C only depends on n (hence on Ny, hence on 3).

The main result of this section is:

Proposition 2.5. Assume that n,f € Ny are such that 1 < n+ £ < N,. Then, we have that

IV DY bl L ey < Celt (e572) (en))" (2.76)
IV D Vb Lo 2y < Ol 2(e572) ()" (2.77)

where C' only depends on (3.

Proof of Proposition 2.5. We first establish (2.76). The bound (2.76) for ¢ = 0 was already estab-
lished in (2.72). We next consider the case £ = 1, which is the first interesting case; the proof of
this case contains all the main ideas, but without the messy details about commutators.

We prove (2.76) for £ = 1 by induction on m. When m = 0, then by = 0 by (2.35), so there is
nothing to prove. Inductively, let m > 1 and assume that (2.76) for £ = 1 holds with m replaced by
m’ < m — 1. Note that the m dependence appears both through the function whose derivatives we
study, namely b,,, but also through the differential operator %, defined in (2.73). This nonlinear
dependence on m makes it convenient to introduce the notation v,, to denote the “fast part” of
the vector field b,,, namely

Vi =bp —by_1 = VL Z Em,ZkCW,kdjm,k © Xn;l_le . (278)
keZ

29



With this notation (2.73) becomes
Diom = Dtm—1+ Vi -V,
and the bound (2.39) may be recast as
IV Vil o 2y < Oyt (n = DI(Cer )" (2.79)
for all n € Ny. The difference with (2.72) is that (2.79) includes the case n = 0.
Next, we note that

9t7mbm — @t,m—lbm—l = %m_lvm + (Vm . V)bm . (280)

The reason for the above decomposition lies in the fact that the term % ,,—1v,, contains an im-

portant cancellation, namely % ,,—1 X ;11_1 L = 0, and as such

A@t,mflvm = [-@t,mfla Vl] Z Cka(m,kwm,k o Xr:zlfl,lk + vl-@t,mfl Z Cm,lkgm,k¢m,k o X;LI,L]{

keZ keZ
= _vlbmfl -V Z ém,lka,kﬂ)m,k: o X;il’lk + Vl Z at (ém,lka,k)wm,k o Xn_’Llfl,lk
keZ keZ
= —Vrb Vi + V0 (Gt Gk Y © Xl (2.81)
keZ

Identity (2.81) makes formal the intuition that the “cost” of % ,,—1 acting on v,, is equal to the
maximum between ||Vby,—1[|re and [|0¢(Cm iy, Gk )l Lo Indeed, from (2.16), (2.25), (2.31), (2.72)
(with n = 1), and (2.79) (with n = 0) we deduce from (2.81) that

1_B8-1
€ -

| Dt m—1Viml| Lo mxr2) < C(Eﬁl__i + 7'77_11)531_1 <Cr,

In fact, by appealing to (2.21), (2.40), (2.72), (2.74), (2.75), and (2.79), we deduce from (2.81) that
for0 <n < N, —1,

V" Dt m—-1Vm|l Lo mxr2) < C’Tnfblafjl(&?;n’ll te ) repte M e < Crtef=le—n  (2.82)

This handles the estimates for the first term on the right side of (2.80). For the second term on
the right side of (2.80), by (2.72), (2.79), and the Leibniz rule, we deduce that

V"™ (Vi - Vbpo_1) | oo (RxR2) < 05%_155;_21 (e +en"q) < Ceb1lr-1em, (2.83)
Also, by (2.79) and the Leibniz rule we obtain
IV (Vin - Vi) [l oo (rxrey < Cely e 2e," (2.84)

Since b, = b,,,—1 + vy, the above two bounds give an estimate for V" (v,, - Vb,,). Comparing the
bounds in (2.82)—(2.84), and noting that (2.16) and (2.5) give

TT;1 < C’sﬁf}f“ < 05%612) < C’sfn_z (2.85)
we deduce from (2.80) that for all 0 < n < Ny — 1, we have that

||Vn (-@t,mbm — -@t,mflbmfl) ||L°°(]R><R2) < C&En_1€6_2€;ln .

m
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Lastly, using that (8 —2) + (f—1) —n <28—-3<83—-3=—-13<0and &, < £,—1, We may use
that by induction the estimate (2.76) holds at level m — 1, to deduce

V" Dt mbumll Lo mxr2) < < Cel2ef- e 4 0l 2Pl e < e (2.86)

where the constant C' is independent of m, but may depend on n < N, — 1. This establishes (2.76)
at level m, when ¢ = 1. By induction on m, we have proven the bound (2.76) for £ = 1 and m > 0.

The proof of (2.76) for £ > 2 proceeds in a similar manner, but it requires a number of commu-
tator estimates, because the operators {Z; ,,,vm - V,V, 0}, do not commute. As before, when
m = 0 there is nothing to prove because by = 0. Inductively, let m > 1 and assume that
(2.76) for £ = 2 holds with m replaced by m’ < m — 1. By differentiating (2.80) with respect
to Dim = Pim—1 + Vi - V, we obtain

Db — D 1Pm—1 — D1V
= (Vm : v)@t,m—lbm—l + (Vm . v)@t,m—lvm + (@t,m—lvm . v)bm
+ (Vi - V) Db — (Vi - V)bi—1 - V) by, . (2.87)
All terms on the right side of (2.87) contain at most one material derivative, and therefore are
already bounded in light of (2.79), (2.82), and (2.76) with ¢ € {0,1}. By also appealing to (2.74)
and (2.85), we obtain for all n < N, — 2,
IV (RHS of (2.87)) |l (rxgzy < Ol ertP 72 (en + e ,) + Cely i 1eh2e
+ Oep et e + Cep e en 2 (e + )
< Cebrl (56_2)25_” . (2.88)

m m

In order to estimate the contribution from .@gm_lvm, we apply Z¢m—1 to (2.81), and deduce that

Dem1Vin ==V b 1 D1V — VD 1b$n LV + Vib,_ 1 Vbt v,
keZ keZ

Thus, by appealing to (2.21), (2.25), (2.31), (2.40), (2.72), (2.74), (2.76) with ¢ = 1, (2.79), (2.82),
and (2.85), analogously to (2.88) we may deduce that for n < N, — 2,

”Vngz?,mﬂvm”Lw(RxR?) CEﬁ 1( B 2) Em. - (2.89)

Combining (2.87), (2.88), (2.89), and the inductive assumption that (2.76) holds for ¢ = 2 at level
m — 1, we deduce that for n < N, — 2,

_ _o\2 _
V" D2 bmll L g2y < IV D7 1Pl Lo rxre) + Ceby (g0 %) e,
< el (eh %) ey + Celt (el ) e

< Csﬁb_l(sﬁ 2) Em’ -

m

By induction on m, this concludes the proof of (2.76) for ¢ = 2.

Estimate (2.76) in the case 3 < £ < N, and 0 < n < N, — ¢ may be proven in the same way
as for £ € {1,2}, save for the bookkeeping, which becomes tedious. Inductively on ¢, in analogy to
(2.80) and (2.87) we may show that the expression Qﬁmbm - ‘@t{m—lbm—l - Qﬁm_lvm is given by a
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sum of terms which contain at most £ — 1 material derivatives, and are hence bounded by induction.
The precise accounting of all terms requires estimates for high-order commutators with material
derivatives (e.g. [V", @fﬁmfl]), and for powers of sums of non-commuting operators (e.g. (Z¢m—1+
v - V)Y). Such estimates are given in [BMNV23, Appendices A.6 and A.7]. Using [BMNV23,

Appendices A.6 and A.7], we may show that every additional material derivative % ,, landing on

b,, “costs” a factor of at most 5&72, while every additional space derivatives “costs” a factor of at

most £,,}. We omit these details.

We now turn to the proof of (2.77). This bound follows from (2.76) if we are able to estimate
the commutator [@ﬁm, V]bm. When ¢ = 1, this commutator equals [.@t’m, V] = —Vb,, - V, and
hence

V" D Vb = V"Dt by, — V"L (Vb,, - Vby,).

Upon appealing to (2.72), (2.74), and (2.76) we obtain
IV Pl sy < O (65 (e) + O ) = (el )™

This establishes (2.77) when ¢ = 1, for n < N, — 1.

In order to prove (2.77) for ¢ > 2, we assume by induction that (2.77) holds for ¢/ < ¢ — 1. At
this stage, we recall from [BMNV23, Lemma A.12] that the commutator between high powers of
the material derivative operator and a space-gradient is given by

14

(7 7] = X () (010 (91215 (2.90)

=1

where (ad_@um)o(V) = V, and recursively we define (ad_@tym)e/(V) = [@t,m, (ad@t,m)gl_l(V)]. In
turn, using [BMNV23, Lemma A.13], we have that

(adZhm)( Z DY e H (275, Vb, (2.91)

I=1 aeN): |a|=t—j

where the product ngl is the product of matrices, and the coefficients ¢/ ; o only depend on /, j, o
From (2.90) and (2.91) we thus obtain

n—1 /(
n n' VA n—1l—n’ o
<|IV*Zfbmlre, +C Y, Z IV (adZt) (V)" b1,
n'=00=1

Since ¢ — ¢/ < £ — 1, and upon noting that the a in (2.91) satisfies |a] = ¢ — j < £ — 1, we deduce
that from the inductive assumption (2.77) and the bound (2.76) that

IV 2 0 Vbimllne, < Cepyten ) (en)"

n—1 ¢ ¢ j
+O YD > IV @ Vbn)lle IV 2 ol e,

n'=00'=1j=1 aeNi : o ='—j i=1
< Cep M (el ™) (e )"
n—1 £ A
+COIYDT D (et e B (B (e
n'=00'=1j=1geNi : |a|=t'—j
< Ol (B .
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A close inspection of the above chain of inequalities reveals that the total number of space, plus the
total number of material derivatives, never exceeds N, as desired. This establishes the inductive
step for (2.77), concluding the proof. O

An immediate consequence of Proposition 2.5 is an estimate for V0f applied to VX ;lll o X

Corollary 2 6. Assume that n,f € Ny are such that n + ¢ < N,. Then, for all t,s € R with
[t| < 27%a, 1, we have that

V"0 (VX + 8, Xon(t + 5,+,8),5)) | Lo 2y < Cep” (575;2)[, (2.92)
where the constant C = 1 depends only on 3, through N,.

Proof of Corollary 2.6. When ¢ = 0 and n = 0, the bound (2.92) follows from (2.40), while for
¢ =0 and 1 <n < N, we additionally appeal to (2.67), (2.70), and (2.75) to deduce

IV (VXL o Xi) o ey < CIVZX L 2= VXl ones + CIVEX S o [V X[ 7
< Ce e )"+ Cle)™ = Cep
As such, it only remains to prove (2.92) for £ > 1 and n < N, — /.

Using that Z; , X,," =0, for 1 </ < N, we have

af(vx,;l o Xpn) = (@,ﬁmVXT#) o Xy = ([th,v] - ) ° Xom . (2.93)

The formula for the commutator present in (2.93) was recorded earlier in (2.90). By again using
that 2 ;m X, = 0, we deduce from (2.90) that

¢
(2, VX =) (;) (adZs )" (V2L X = (adZsm) (V) XL, (2.94)
=1

where the first order differential operator (ad@t,m)z(V) is given by (2.91). With the available
bound (2.77), and the identity (2.91), we bound the left side of (2.94) as

V" [Zf s VX 22,
= V" (adZym) (V)X |2,

n 4
S SDIDINED) S [Tives 2 Vb1, IV X g,

n'=07=1 aeNj: |a|=t—j BeN}: |Bl=n’ i=1

n £
Z Z 2 Z H az+l l),@ (67—n1)n—n’
B—

LaeN): |a|=t—j BeN): |B|=n’ i=1
< OEH e (2.95)

In order to conclude the proof of (2.92), we combine the above estimate with the identity (2.93),
and (2.75), to obtain

IV, (VX' o Xom) e,
< CIV[Zf s VX e IV Xl oot + CIIV] tm:v]Xn_leLgﬁcgfl”VXmWLLg?z
< OB e .

m m
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In the above estimate, the time-support was not written out explicitly, but it was implicitly assumed
to be such that |t| < 27%%a,,!, so that we could appeal to the bounds (2.40) and (2.70). This

concludes the proof of the corollary. O

A second consequence of Proposition 2.5 is the following estimate on V”@t{m (VXm’l o X;fl)
This is necessary to estimate the spatial and material derivatives of the matrix s,, in Section 4.3.

Corollary 2.7. Assume that n,f € Ny are such that n + £ < N,. Then, for all t,s € R with
[t| < 27%a.!, we have that

IV D (VX (t+ 5, X (t+ 5,+,5),5)) | Lo re2y < Cepy” (572", (2.96)
where the constant C = 1 depends only on 3, through N,.

Proof of Corollary 2.7. When £ = 0, the desired bounds were already obtained in (2.68). For £ > 1,
the proof of (2.96) starts with the observation that VX,,0 X! = (VX,-1)~! as 2 x 2 matrices. Since
the flows by, that define X,,, are incompressible, we have that det(VX,,!) = 1, and so VX,, 0 X,
equals the transpose of the cofactor matrix associated to V.X,.1. In turn, since we are in two space
dimensions, this cofactor matrix equals to V(X 1), This leads to the identity

VX o Xt = (VX )™ = (vHxHY) T

The purpose of the above identity is to show that if we have estimates for all the entries of the matrix
V".@ﬁm (VX,,'), then we automatically obtain estimates for the matrix V"@t{m (VX0 X0,

To conclude, we note that since QﬁmX;Ll = 0, we have that V”@ﬁmVX;Ll =V" [@,ﬁm, V]X,h
and precisely this term was previously estimated in (2.95). In turn, this estimate recovers (2.96),
as desired. O

We conclude this section by noting that by construction, the vector field b defined in (2.38) is
“nearly a solution” of the incompressible Euler equations, as quantified by the following result.

Proposition 2.8. The vector field b constructed in (2.38) solves
b +div(b®b)+Vp=divR, divb=0, (2.97)

for a suitable pressure scalar p € C(R; C%F' (R2)) and a traceless stress tensor R € C(R; C%F' (R2)),
for any B' € (0,1) satisfying

/ _ 275 _ _ (/8 — 1)(4 — 35)2
B <23 1)+q_2(5 1) + 855 D)

Moreover, there exists a constant C' = 1 which only depends on 8 and B' as in (2.98), such that

(2.98)

o / 2 ) /
1Pl o o g2y + IR ooy s ey < CA™ a1 D= L OATEHCEDREE) (999

In particular, for B, fived, the right side of (2.99) can be made arbitrarily small by letting A be
sufficiently large.

We note that the parameter 8’ in (2.98) is allowed to be strictly larger than 2(8 — 1). As
such the regularity of the pressure in (2.97) is strictly better than the regularity of the pressure
for a generic 0302’5 ~! weak solution of the Euler equations, which is 0?02’2(’8 -, Proposition 2.8
follows from a fairly straightforward computation by telescoping (2.80) and (2.81) and the fact that
the term v, - Vv,,, vanishes to leading order due to the shear flows used in the construction. We do
not give the details here, since it is not needed in our analysis, but the interested reader can find

the proof commented out in the latex source file (downloadable on the arxiv) below this sentence.
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3. Correctors and renormalized diffusivities

In this section, we introduce the sequence of correctors and renormalized diffusivities for each
scale g,,.

3.1 The correctors: definitions and estimates

We will introduce a corrector xJ;, which mediates between scales ., and ,,—1. The job of x, is
to “correct” a solution of the ,,_1-scale equation

0tOm—-1 — Km-1A0,,_1 +by_1-Vb,,_1 =0, (31)

by adding the wiggles with wavelengths of order ¢, we would expect to see in the solution of
the g,,-scale equation.

As we have seen in the construction of the vector field, the difference between b,, and b,,_1
is the inclusion of shear flows oscillating at the length scale ¢,,, in the Lagrangian coordinates
corresponding to b,,—1. These shear flows alternate between horizontal and vertical shears (with
“quiet” periods in between) on the time scale 7,,, which, as we will show, is much longer than the time
scale on which in takes for the shear flows to homogenize. These oscillations in space and in time
will create oscillations in the corresponding solutions 6,,, of (3.1). We need to introduce correctors
which capture, at leading order, these oscillations. Roughly speaking, the correctors which capture
the spatial oscillations at scale &, in Lagrangian coordinates will be denoted by X,,. The time
oscillations due to the horizontal and vertical alternation of the shear flows will be corrected by a
function denoted by f]m

Since the scale ¢, on which the shears oscillate is much smaller than the active scales of the
flows X,,,—1, we should expect the correctors X,,, to be obtained—at least at leading order—from the
the composition of the correctors for the (time-independent) simple shear flow with the appropriate
Lagrangian flow X,, 1. As such, we first discuss the derivation of the correctors corresponding to
the time-independent shear flows. We denote these by X, j, and they turn out to be given by a an
explicit, well-known and simple formula.

3.2 Correctors and effective diffusivity for smoothly alternating shear flows

All of the notation from the previous section is adopted here; in particular we recall that the
stream function v, ;, is defined for each k¥ € Z and m € N in (2.19)-(2.20) and the time cutoff
functions ¢, and (p,; are defined in (2.22)-(2.24) and (2.29)-(2.31), respectively, and we recall
from (2.32) that the supports of these overlap only when | = [i, with [}, defined in (2.17). We also
define the incompressible vector fields u,, , by

£

2T AmEm cos(%)eg if kedZ + 1,

U k() = Vl?/’m,k(l’) =\ —27mamem cos(%)el if kedZ + 3, (3.2)
0 if ke2Z,
and we set )
Ynlt,2) = > G (e p (@) (3.3)
ke2Z+1

and R

W (£, ) 1= VY (t,2) = > Gty (6) G () () - (3.4)
ke2Z+1
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We let Vu,,(t,z) denote the 2-by-2 matrix with entries 0y, (e; - wy,) (¢, z); it is given by the formula

—4m ams1n(2”1)e ®ey ifkedZ+1,
Vu, k(7) = { 472 am sm<2”2>e ® e if kedZ + 3, (3.5)
0 if ke2Z.

We also introduce a special time ¢} , := (—% +k)Tm and, for each k > 0 and e € R?, define x* , .
to be the solution of

{atan,k,e - ’%Axﬁm,k,e + CAmylk Gm,kum,k ’ (e + vxﬁm,k,e) =0 in (_OO OO) X Rd? (3 6)

: d
Xrm.ke =0 in (—oo,t% ;) x RY.
We observe that (3.6) does have a unique solution by first imposing a zero initial condition at

time ¢, k and then noticing that, thanks to the presence of the cutoff function (,, ., we may extend
the solutlon to earlier times by setting it equal to zero. Note that xI' , =0 for k € 2Z by (3.2).

We will use vector notation for these correctors by writing

T
Xon.k —(kael> ) m e N.
Xm,k:,eg
Then V7, ;. denotes the 2 x 2 matrix
vxfn’k _ (511 Xﬁm7k791 ame k 92) (37)

K
axQ Xm,k,e1 ax?Xm k ,e2

Thanks to the one-dimensional nature of the stream functions u,, ;, we can give a simple explicit
formula for x7,. Indeed, a direct computation yields

X1 = i) [ Gt 61ems) v (1525 = 1)) s 59)

and thus

t

VX k(t0) = V(o) | G (oma()exp (4555~ 1)) ds. (39)
-0

Since Cm 1:Cmk < 1, we have

)

[, trnrmstrenn sz =0)as< [ exp((52(6 1) -

e

Therefore,
3
Came;),
(RxT2) = K

(3.10)

)

Since (., < 1 and . vanishes on [(k + 2)Tim, 0), we have, for every t = (k + 3)7p,,

t t—tTm 2 2k
J Gty (8) Gk (S) exp(%(s — t)) ds < f exp(4;r22,$(3 - t)) ds = —5—exp| — 2m .
— o m —w m 4Tk 3ez,
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Therefore, after time (k + %)Tm the corrector X ke becomes exponentially small: we have

C 3 2
sup <HXm k HLoo ']1'2 + gmHva k HLOO T2)> < a;’bgm exp (_ 7T3:;—m>
m

te((k+§)rm,oo)
T2 KT
< Cep exp (— 12 ) , (3.11)

where we rather crudely used a,, 7, < 1 in the last line. We will typically encounter the situation
in which “5= » 1. Indeed, it will be a negative power of ¢, in practice—see (3.47) below—and

therefore the exponential factor on the right side of (3.11) is very small.
We next define
= D ek Xk = Y Emk X (3.12)

keZ ke2Z+1

Recall that the cutoff function &, ; is defined in (2.27) and is locally constant except for times
outside the time interval [(k — 3)7,,, (k + 2)7], in other words, when the function Xk 18 very
small by (3.11).

We are able to conclude by (3.11), (2.28) and superposition that the components of x/, in (3.12)
are “almost” solutions of

OiXe — KAX e + Um - (€ + VXfhe) =0 in R xR,
Xpo(t, ) is Z x Z*-periodic, (3.13)
et )y =0, VteR.

We recognize (3.13) as the periodic, space-time corrector arising in parabolic homogenization.
Actually, the equation in the first line of (3.13) is valid only up to an exponentially small error.
Our reason for defining x !, slightly differently, not in terms of (3.13) but rather as the sum (3.12),
is because the exact formula (3.8) is more convenient to work with and the difference between these
two is negligible. We still refer to x, as a “corrector.”

Remark 3.1 (A special orthogonality property). An important property inherited from the shear
flow structure, which will come to our rescue in the next section, is the following pointwise orthog-
onality property: for every pair of multiindices o, 3 € Ng,

0 - VOPXE e =0 in R x T2 (3.14)

Indeed, if k € 4Z+1 (respectively, k € 47+ 3), then we see from (3.8) that the function é’ﬁxfn&e(t, )
depends only on z1 (resp., z2) and therefore its gradient is proportional to e; (resp., e2), while
from (3.2) we see that 0*u,, j is proportional to ey (resp., e1).

3.3 The renormalized diffusivities: recurrence, averaging and estimates

We introduce the following objects:

e We denote the spatially-averaged flux of the correctors by

J5 (1) = <(m2 + m(t,)0) (I + VX5 (¢, .))>. (3.15)
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e The homogenized matrix is the average of the flux in both space and time, defined by
1
K: = J 35.() dt = (KT + o) (I + VX)) (3.16)
0

Since x,,, and 1, are invariant under a simultaneous 27,/ Z—translation in time and a permutation
of the e; and ey axes, it follows that K; is a scalar matrix. We will therefore abuse notation by
allowing K, to denote both a matrix and the positive scalar constant a such that K, = als, since
it will always be clear from the context which is intended.

Using (3.8), we can find an explicit formula for J% (t) and K, which will be helpful in our
computations. Observe first, using the properties of the cutoff functions, the skew-symmetry of o
and the fact that (Vxy, ;) = 0, that we may write (3.15) as

J%(t)—nlz=<¢mavX;;<t,~)>=< > ém,zk<t><m,k<t>wm,kava,k(t,->>- (3.17)

ke2Z+1
Using (2.20), (3.8) and (sin?) = 1, we compute, for every k € Z and t € [(k — 2)7n, (k + 3)7i],

I (t) — Kl
ea®ey ifkedZ +1,
4g£~(s—t)) ds-{e1®e if kedZ+3,
0 if k € 27Z.
(3.18)

= 202 et Onslt) [ G
mEmSm,lg m,k B m,l S)Cm,k(s) eXp(

In particular, for a universal constant C' < oo,

2 4
50| < ( " Cmm) . (3.19)

K

Observe that J£, is a 7 -periodic function of time. We will show next that, up to a very small
error, J& can be written as a sum of products of 7,,,—periodic functions and 7,,,—periodic functions.

Define
N* —1

J5 (1) == kIy + Z Lr ()3 () (3.20)

where we define, for every n € {0, ..., N},

Jmn(t) = 5 D Gk )7 Gt () (Lieaz1y€2 ® €2 + Ligeazizper ®er) (3.21)
TL' 47T k ke2Z+1

and

= () f Cma(s (477 H(S_t)> exp(4”m“(s—t)) ds. (3.22)

leZ
Observe that jy, , is indeed 7,,~periodic, and Ly, ,, is 7,,~periodic.
The functions jy, ,, defined in (3.21) satisfy the bounds

2 n
ijn,nHLm(R) <caae;<§j> . VYne{0,...,Ny}. (3.23)
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Here the constant C' depends only on [ through C(; 99). Likewise, the functions Ly, ,, satisfy, for

m,n
every n,f € {0,..., Ny},

4 " 472
Io¢ Ll 22 < 2500 (GGt = 5)) | oy f (”) exp(_ ”) s

l€Z seR m

2
< nlC™ (gm) (r! )7t

K

for a constant C' < oo which depends only on C(; 31y and thus only on 3. Since n < Ny and N
depends only on 3, we deduce that, for some C(3) < o0,

m

ER
o e < () ) vee 0N, (3:24)

By Taylor’s formula and (2.25), for every s,t € R with s <t and N < N,

o

aHCm k( )

exp<47rm“ (s — t)) ds

(s—t))d .

N' H ) s — t|Nexp(47r B(s— t)) ds < 0(872">N exp(

KTm
By the previous inequality and the triangle inequality, we obtain

R Ca2 et [/ &2 V=
Jr(t) —JF (¢ <M —n . 3.25
750 - B (0] < S (2n ) (325)

Since Ny is a very large constant, the estimate (3.25) says that JZ, is indeed well-approximated by
the function J%,, provided that €2, « k7.

We define a 7)), —periodic function Kf, by averaging out the 7,,—periodic oscillations from J "

Ny—1
K (1) i= ko + Y. (oL a(t)- (3.26)

Observe that, by (3.23) and (3.24), if x satisfies
1

e2 < 2HTm (3.27)
then we have that
a2 &
|0/ KL, | e my < Clrh,) " </<; + mﬁ?ﬂ) .,  VleN. (3.28)

We also denote the time average of JI, by

=I5 ). (3.29)

By (3.25) and the ergodic theorem for periodic functions, we have, under the extra condition (3.27),
L Ca2 &4 2 \Vx
[(KE Y — K| < —mEm <€m> . (3.30)
K

KRTm
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Since N, is very large, this says that <<Kfn>> and Kfn are very close, provided that €2, « K7y,

For future reference, we introduce some higher-order time correctors for j¥, ,.: for every m e N,
b

n € {0,..., N}, we let {qy, , . }ren, be the sequence of 7,,—periodic functions on R characterized by
qfn,n,ﬂ = .]fn,n - <<.]fn,n>> s
afny) =0, VreN, (3.31)
atqfn,n,rJrl = _q,:n,n,r , VreN.

These satisfy the bounds:

K €$n " (CTm)T
qu,anLw(R) < Ca? e, (F&Tm> s Vne{0,..., Ny}, reNp. (3.32)

For reasons which will become apparent in (5.78) below, we need to compute the difference
between the averaged flux J¥ (¢) (which is given explicitly in (3.18)) and the spatially-averaged
energy

() i= 2 Gnk(®mu () (ol + Vx0T + VX)) (3.33)
kk'e2Z+1

This is the purpose of the next lemma.

Lemma 3.2. Assume that k satisfies (3.27). Then exists a constant C(f) < oo such that

35,(8) — B )] < S0 (72”) | (3.5

K KTm

Proof. Observe that

B = Y &nrénpn(lo+ (VXETVXRD)

kk'€2Z+1

The supports of &,  and &, » have nonempty intersection only if k, k" € 2Z + 1 satisfy |k — k'| < 2.
On the other hand, we see from the formulas (3.9) and (3.5) that

k—K|=2 = (Vxh) (t.2)Vxhp(t,a) =0, Vza'eT? teR. (3.35)

Therefore, the only pairs k, k' contributing to the sum satisfy k = k’. We deduce that

B = Y &nal(D+ (VX0 V) (3.36)
ke2Z+1

We next compute

(VX k) TV X 1) = <(Vum,k)tvum,k>(foo oty (5)Comie(8) exp(‘f;”(s — t)) d5>2 )

We see from (3.5) that

167402, sin? <2ml>e2 ®ey ifkedZ+1,

Em
(Vo) Vi) (2) = { 167442, sin? (2;;32)@ ®e ifkedZ+ 3, (3.37)
0 if ke2Z.
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and thus
ea®ey ifkedZ+1,

(V) Vg, iy = 87%a2, - { e1 ®ey if ke 4Z + 3, (3.38)
0 if ke2Z.
Using (2.25) and (2.29), we see that

. 4r2k [t 4 Cep,
, (t)Cm,k‘(t) - 2 J Cm,lk (3><m,k(8) eXP<4§22H(S - t)) ds| < C<> : (339)
m —0 m RTm
Combining the above and comparing to the formula for J% in (3.18) yields (3.34). O

Lemma 3.3. There exists C(() € [1,00) such that, for every k >0 and m e N,
_ 9a2 ¢4 Ce?
‘KzI — <m+ am&m)h’ < Ui < m oy b ) . (3.40)

80k K KTm,

Proof. Starting from (3.18), we find that

K;—FJQ:”Q 2,,%” 3 f Gt () oo f Cma (5 ka()exp< (s—t))dsdtIg.

Tm ke2Z+1

It therefore suffices to show that

‘80%2 ke§+1jfé , f Gt (8) o, (5) G (£) Gon i (5) exp (42 (s—t))dsdt‘

Using (2.22), we have that

f_too\Cm,k(t) = Gmk(8))] exp(4;rzin(s — t)) ds < |

On the other hand,

1
3 F
ke2Z+1

T

2 e?n 1 (2™ 9
lek ka ka exp( ( _t)) dsdt — T I{’f m,O(t)dt

The triangle inequality and the previous two displays yield (3.41). The proof is now complete. [

As previously mentioned, we will apply (3.11) and (3.40) when the factor €2, /(k7,,) on the right
side of (3.40) is very small, typically a small positive power of €,,: see (3.47) below. Therefore,
loosely sense, we have that

2 4
mfm (3.42)



We now define a sequence {k,,} of renormalized diffusivities, starting from a given “molecular”
diffusivity x, by the recursion

{ij_lzKRm mE{l,...,M}’ (343)

m
KM =K.

The idea is that k,,—1 represents an effective (or “eddy”) diffusivity observed at scale &,, from
the cumulative effects of the diffusion term kA and all the oscillations in the vector field b with
wavelengths smaller than €,,_1. We imagine that we have homogenized all scales below that of €,,, 1
and witnessed an enhancement of diffusivity which results in an effective diffusivity of k,,—1. We
choose the initial scale M in such a way that ejps is the critical scale at which the vector field b and
the diffusion interact in such a way that the recursion (3.43) stays under control.

The next lemma states that, for certain particular values of the molecular diffusivity x, we can
control the entire sequence of renormalized diffusivities. We denote by K the set of permissible
diffusivities, defined by

oo 1 28 28
K= [§e$1,2sﬁn“]. (3.44)

m=1

Lemma 3.4 (Control of the renormalized diffusivities). Suppose k € K and let N € N be such that

1 28 26
55&“ <k <2). (3.45)
Define a finite sequence Kpr, Kp—1, - - -, Ko by the recurrence (3.43), starting from kpy := k. Then
there exist universal constants 0 < ¢ < C' < o0 such that, for every m € {0,..., M — 1},
Came < ki < Came™ (3.46)
and
§ & 26
ce® | < M L CeX . (3.47)
RmTm

Proof. We proceed by first establishing (3.46) for the a different sequence {x/,}, defined by

2 4
/ 0 +9am5m
Km—1 = Fm

1. M
s, 0 Ml M) (3.48)

/
Ry = K.

According to our (imprecise) shorthand (3.42), we have reasons to expect that s/, is close to k.
Once we have proved (3.46), we will argue that the two sequences are indeed close enough that
we may obtain essentially the same estimate for ,,. Recall that the parameter v defined in (2.7)
satisfies, in view of (2.11) and (2.4),

ame2T = B (3.49)

Step 1. We prove that there exist universal constants 0 < ¢ < C < o such that

came < Kl < Cames™, vme {0,...,M —1}. (3.50)
Denote
RS0
T et
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We may rewrite the recurrence in (3.48) in terms of s,, as

em \’ —y = 2, 1
Sm—1 = Em Emi1 Sm| Em + 5 ) (3.51)

5m71 m

Notice that the exponent  has been chosen so that it satisfies ¢(8 — ) = 8 + 7. Hence by (2.10)

we have 5 5
‘( Em ) .5—75;3_1—1‘ — ‘( ;fm > —1‘ < Cem—1 < Cepi .
Em—1 Em—1 B

We therefore obtain from (3.51) that

1 1
Sm—1 — Sm <€f,7 + 52>‘ < Cepm—_15m (5?,7 + 32> . (3.52)

m m

In view of (3.49), the condition (3.45) can be written as

1 o 2
§5M7 sy <2,

We deduce from this and (3.52) that
Sp—1 <2+ 262]\7[ +Cepy—1 <4

and
1
SM—1 = 5~ Cep—1 =

=

Similarly, it is easy to check that

1 1 A
max{sm_l, } < max{sm, } (1 + Cafgfll) )
Sm—1 Sm

An iteration of the latter inequality therefore yields
1 N
2vqnl 2vqAal
max{sm_l, 57711} <4 H (1 + CaqulA ) < 4(1 + Ce, 117 ) <C.
j=m

The proof of (3.50) is now complete.
Step 2. We show that (3.50) implies (3.46). By (2.11), (2.12) and (3.50), we observe that

2

e B N C o) Ui Dt S
—<m Y%Ym 'm — -1 .
Kl Tm, m

By the definitions of the exponents in (2.5) and (2.7), we have that

(2—5)(q—1)—qv=(q—1)<2—QQ+1B> = 46.

q+1
Hence 9
9
ce® | < I < CeX (3.53)
Ko Tm

Arguing by induction, suppose that for some n € {1,..., M — 1}, we have

/
gﬁ—mgl Vme{n,...,M —1}. (3.54)
Rm

DO | =
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Then, using also (3.50), we deduce that, for every m e {n,..., M — 1},

2 1 + 9(1,%7‘&'%1 2
27\ [ Em 80 (4, )* 2v\ [ Fm
(1—06777) (KJI> < 1 9a3n2;1n < (]‘+C€n’7) (/ﬁ;/> .
m + 80N, m
Next we use (3.40), (3.53) and (3.54) to get
9a2et Kn—1 9a2et
1-Ce2 N1+ ") < = < (1402 )1+ = 2n 3.55
(1-Cel) ( 802 o < L+ Cens) 80k2 (3:55)
Putting these together and using the exact recursion formula for x/,_;, we get that
K K K
max{ et n—l} < (1400
Kp—1 En-1 n
Iterating this and using kj; = 'y, we find that
K Ky o
max{ ol "1} <[T(+cC) < (1+c257). (3.56)
j=n
This allows us to remove the condition (3.54) and replace it with Cei(ff M < 1; that is, for some

no(data) € N, we have that the inequality (3.56) holds for every n > ng. However, for m < ng, we
have ¢ < min{km, k,,} < max{km,k,,} < C, and so we have shown that

Em K,
max — max{ —-—,—" .
me{0,....M—1} Kby Km,

In view of (3.50) and (3.53), the proof of the lemma is now complete. O

In most of the rest of the paper, we assume that the molecular diffusivity constant « belongs to
the set K of permissible diffusivities defined in (3.44), so that the bounds of Lemma 3.4 are valid.
Incidentally, the reason we are only able to obtain anomalous diffusion along a subsequence of k’s
in Theorem 1.1 is due to the restriction in Lemma 3.4.

4. The multiscale ansatz

Now that we have constructed the vector field b and defined the renormalized diffusivities, we
are ready to begin the proof of anomalous diffusion. This will require some delicate asymptotic
expansions which will take us the next several sections to develop.

Throughout, we fix a molecular diffusivity x € I, with the set I defined in (3.44). We let M
denote the positive integer satisfying (3.45), and we let the finite sequence kps, Kpr—1, ..., Ko be
defined by (3.43). We also select an initial datum, which is Z2-periodic function 8y € C®(T?) with
zero mean,

(Bo) = J Oo(z)dz =0, (4.1)
T2
and which satisfies the quantitative analyticity condition (recall the notation in (1.21))

||vn90HL2(’I[‘2) < ”(90||L2(T2)71!R0_0n , Vn e N. (4.2)
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For each m € {0,..., N}, we let 6, denote the solution of the initial-value problem

OO — Km Ay 4+ by - VO, =0 in (0,00) x R?,
(4.3)

O = 0 on {0} x R%,

Recall that by, is defined in (2.36). In other words, 6,, is the solution of the modified equation in
which the stream function ¢ has been replaced by ¢,,, essentially removing the oscillations of ¢
with wavelengths smaller than ¢,,. Since ¢, is smooth, the equation can be written in terms of
the vector field b,,, as above, but it is often more convenient to write it in terms of the stream
function ¢,, as

00 — V - (Kmla + ¢mo) VO, =0 in (0,00) x R2. (4.4)
It is clear that 6, € C*((0,00) x R?) and, for each time ¢ € (0,0), the function 6,,(,-) has zero
mean and is Z?-periodic. Note that, (4.3) in the case m = 0, extends the domain of the given
function y from T2, which we identify with {0} x T2, to [0, 00) x TZ.
In order to prove Theorem 1.1, we will propagate lower bounds on the energy dissipation of the
solutions of (4.3) from m — 1 to m. In fact, the key step is show that, for every m € {0,..., N}
with €,,—1 < Ry,, we have

’imuvemni?((o,l)x?r?)

Hm—lHvem—lH%Q((O,l)xﬂQ)

This estimate is proved in Proposition 5.2, below. From (4.5), it is a simple matter to obtain the
lower bound on the energy dissipation in Theorem 1.1, as we will see.

The proof of (4.5) is based on the informal idea that the equation for 6,, should homogenize to
the equation for 6,,_1. To see why we should expect this, write the equation for 6,, as

(0 + b1 - V)0 — V- (ks + o) Vb, =0 in (0,00) x R?, (4.6)

where we define

~

’(/Jm(t, CIZ) = ¢m(tvx) - ¢m—1(t7x) = 2 ém,lk (t)Cm,k(t)wm,k (X;zl—l,lk (tv x)) :

ke2Z+1

We view the vector field b,,—1 in the transport term in the left of (4.6) as slow, as well as the
corresponding flows X,,_1; and inverse flows X ;171 ;- In contrast, we consider the coefficient ma-
trix ko lo + Jma in the second-order part of the operétor to be fast. Moreover, if we change variables
to Lagrangian coordinates with respect to the “slow” flows, then the transport operator 0;+b,,_1-V
becomes simply 0; and diffusion operator V - (HmIQ + Jma)v becomes V - (ﬁmlg + wma)v, which is
a shear flow which switches between the horizontal and vertical directions. Given the discussion in
the previous section, we expect the fast diffusive operator to homogenize to k,,—1A, which leaves
us with the equation for #,,_1 in the original coordinates.

When we speak here of “homogenization” we do not intend for the reader to understand this
too literally: no limit is taken, rather the equations will be shown to be close in quantitative sense
which is small relative to a power of £,,_1.

To make this idea precise, we introduce an multiscale ansatz for 0,,, denoted by gm, which is
built from 6,,—1 and the correctors defined in the previous section. Our strategy is very simple: we
will plug 0., into the equation for 60, and estimate the error. We will show that it is small enough
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to conclude that §m is close to 6,,. Since we built gm from 6,,_1, we will be able to relate 6,,
to 0,—1 and, in particular, obtain (4.5).

The definition of §m is motivated by the usual two-scale ansatz used in classical homogenization,
in which one attaches the periodic correctors to the (usually smooth) solution of the macroscopic
equation. However, it is necessarily more complicated, for several reasons.

First of all, there are actually three different “fast” scales in the equation for 6,,:
(i) the smallest spatial scale e,,, which is the length scale of the shear flows;
(ii) the time scale 7,,, on which the shear flows switch directions;
(iii) the time scale 7/, on which the Lagrangian flows X,,_1 must refresh.

We should think of these three fast scales as being well-separated, with the spatial scale &,,, being the
smallest /fastest. This means that each of these three scales must be separately homogenized! Since
homogenization estimates require smoothness of the macroscopic data, we must be very careful to
maintain sufficient regularity estimates when we homogenize the time scales. This is the reason we
spend so much effort proving estimates on T;,_1 and H,, later in this section.

A second complication is due to the need to compose with the Lagrangian flows. As we have
seen informally above, when we homogenize the spatial oscillations (the shear flows), we need to
work in Lagrangian coordinates. Rather than actually switch our coordinate system, our definition
of gm will involve compositions with the inverse flows X;ll_l. Unfortunately, the distortion caused
by these flows cannot be ignored, and we must therefore introduce corrections in the equation
for 0,,—1. This is the reason for the appearance of the matrix s,,—1 defined in (4.7), and its role in
the definition of T;,,—1.

We select m € {1,..., M} which is fixed throughout the rest of this section. We also employ the
following two notational conventions, which are in force throughout most of the rest of the paper:

e We use the correctors X}, and matrices J%,, K¥ and Kfm introduced in the previous section
with kK = Kk, (and never any other choice of the parameter ). In order to lighten the notation,
we drop the display of the dependence on x,, from the superscripts, writing for example x,,
and J,,, instead of x*m and J%m. Recall that K" = k,,_1 by (3.43).

m

e We employ the convention that all function compositions are assumed to occur in the spatial
variable only. In other words, as all function compositions involve the flows X,,_;; and
their inverses X', (see (2.37)), instead of writing (F(t,-) o Xp—1,(t,-))(z) we will just
write F'o X, 1. ’

In the next subsection, we will introduce the objects s,,—1, T;,—1 and }Nlm that are needed in the
definition of gm, which is then given in Section 4.2. In Sections 4.3 and 4.4, we will prove important
regularity estimates on T},_1 and .FNIm which are needed in the following section. We will not see
why our ansatz is a good one until the analysis in Section 5, which is where we plug it into the
equation for 6, and compute the error. The definitions here are motivated by the computations in
Section 5, and so we ask for the reader’s patience if they seem a bit mysterious at first glance.

4.1 Ingredients for the multiscale ansatz

We proceed by introducing equations with gradually more and more scales, starting from the largest
scales, until we arrive at a guess for what 6, should look like.
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We first introduce an equation with time oscillations on scale 7;/,, which are due to the reseting
of the flows. We define the matrix

Sm—1 = KmE ém,l (Vmel,l o X'n_ml—l,l — IQ) . (47)
leZ

At this point, we want to modify the equation for 6,, 1 by introducing a diffusion coefficient which
oscillates on the time scale 77/, We will call the resulting solution T, 1.

The rough idea is to define T},,_1 € C®([0, 1) x T?) to be the solution of the initial-value problem

(4.8)

0T~V (K +8m-1)VTm-1 +bp_1-VT,_1 =0 in (0,00) x R?,
Tm—1 =6 on {0} x R?.

It is not difficult to see why we should expect this equation to homogenize to the one for 6,,_1:
the principal part of the diffusion matrix in (4.8) is K,,,, which has periodic oscillations in time
only, with period 7/ and a mean which very close to K,, = km—1. The matrix s,,_; is lower-order
compared to K,,, due to (2.67). The reason for including it in the equation of T},_1 has to do with
the need to anticipate some errors arising in the analysis of the smaller (spatial) scales, due to the
change to Lagrangian coordinates. Note that we may also write the equation (4.8) as

OTm-1—V+ (Kp +Sm—1+ ¢m-10)VTy_1 =0 in (0,0) x R?. (4.9)

We do not actually define T),—1 to be the solution of (4.8). We will instead define it as an
approximate solution of (4.8) through an iteration procedure. The advantage of this is that it
allows us to prove better regularity estimates for T,, 1. Indeed, the best lower bound on the
matrix K, is Ky,I2, which is much less than x,,—1l2, even though K,, is larger than the latter on
a proportion of times at least 1 — Cefn. Nevertheless, if this is used in the energy estimates we will
get very pessimistic regularity bounds on T;,_1 compared to those we have for 0,1 in Lemma 4.1
below. To get better bounds, we work with an approximate solution of (4.8) which is constructed
as follows.

We will choose a large number, which represents the number of iteration steps in our definition
of T,,—1, and for convenience we may take the large integer N, defined in (2.6). We initialize the
iteration by setting

0
7O =0, (4.10)

For every 1 < i < N,, we recursively define Tr(rf)_l to be the solution of the initial-value problem

T | — ko A AT by 1 VT | =V (K — kmaTa + 8m 1) VI in (0,00) x R,
Tfni)_l = 0o on {0} x R?.
(4.11)
It is clear that Tﬁll e C*([0,0) x R?). Finally, we define
Tpy = TN (4.12)
By construction, T;,_1 satisfies
0 Tm-1—V - (K +8m-1)VTm-1+bpm1-VI,_1 =V e, in(0,00) x R? (4.13)
Tt = 0o on {0} x R?, '
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where the error e,,_ is given by

emn1 = (Km — fme1lz + 80) V(T — 1)y (4.14)

m—1

Comparing (4.13) with (4.8), we see that the “true” T),_; makes an error V - e,,— in solving the
advection-diffusion equation. We will however show that error F, will be very small, in fact it can
be made “very small” since N, is very large (see (2.6)).

Below in Section 4.3 we will show that the difference T,,—1 — 0,,—1 is small (see Lemma 4.4
for the precise statement). This amounts to homogenizing the temporal oscillations due to the
switching of the flows, which have period 7).

We would next like to write down an equation like (4.9), but with J,, in place of K,,. That is,
we want to include the temporal oscillations due to switching between horizontal and vertical shear
flows. Recall that the function J,, is essentially the sum of products of 7,,,—periodic and 7}, —periodic
functions of time only. When the faster time scale is averaged out of J,,, one obtains K,,, up to
very small errors: see (3.20) (3.25), and (3.26), above. We could write this equation perhaps as

~

O Tm—1—V - (I + ;1) VIt + byt - VIpo1 =0 in (0,00) x R, (115)
Tm—l = 90 on {0} X RQ, .

where r;;,_1 is defined as in (4.7), with J,, in place of K,,,. We will show the difference Ty —Ton1
is, up to errors we are able to neglect, given by an expansion which we now introduce.

We introduce a function H,, which is intended to represent, to leading order, the difference
between T’m_l — T},—1. The first idea is to take it to solve the transport-type equation'!

{ S;:boml V) Hp = G ;2 i(;} Oi)ﬂ;fZ’ (4.16)
where!?2
G = (I = Kon) + DtV (V (T 0 Xn10) 0 X1, )
leZ
=V -(Jn—Kn) Z mi (VX110 X;ll_u)VTm—l : (4.18)
lEZ

We get this by subtracting the equgtions for T,,—1 and Tm,l and then Nignoring the diffusion
term V - (Jm + rm_l)(VTm_l — VTn-1). We will not however define H,, to be the solution
of (4.16~), because we are unable to prove sufficient regularity estimates for it. Instead we will

define H,, explicitly in terms of known ingredients which approximate the solution of (4.16), but
for which we can prove better regularity estimates.

In order to define ﬁm, we first define a function I:Tmﬂq as follows:

N*—l
Hm,?"(t7x) = v : Z Am,n7r(tvx)q2$n,r+1(t) (419)
n=0

"See (4.21) for the actual definition of H.,, and (4.22)(4.23) for the equation it solves.
12 Note that, in the second line of (4.18), we used our notational convention (introduced in (3.7)) of writing
vector-valued functions as row vectors and gradients of scalars as column vectors. Hence

V(T-10Xm-1k) 0 X, 0 5 = (VX—1k 0 X0y o) Vs (4.17)
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where Q. = qm o 38 defined in (3.31) and the tensors A, ,,» = (A%knr)fj x—1 are the 3-tensors
recursively defined as follows:

A:fzkn 0 1= =0 Ly ( Z Ema(t) (O XP 0 X1 D Tn-1,
I€Z. (4.20)
A;j@kn PR (at + b1 - V)A%k’n r Vﬁb:’n—lAfgz{Cn,r .

In (4.19) we make the following convention regarding the contraction of indices: if q = (¢’ k)% i1
is a 2-tensor, and A = (A”k) _, is a 3-tensor, then V - (Aq) = 0;(AWkqi¥).

The definition in (4.20) above was made in view of the fact that

[(6: +bm—1-V),V] =Vby_1 -V

so that
Ny—1
(at + bmfl : V) Hm,r = (at + bmfl : V)V : Z Am,n,?‘ (ta x)qﬁmrtln7r+1(t)
n=0
=V Z Am,n,r-&-lqzxn’r+1 -V Z Am,n,rqfnr?n,r
n=0 n=0
and therefore, by defining
Ni/2
= > Hpy (4.21)
r=0
we obtain, by telescoping the resulting sum, that
Ny—1 Ni—1
(0 + b1 V)Hu ==V 3" A 0o+ Vo D) A wao Gl xys
n=0 n=0
We rewrite the first term as
N**l
=V D Aot 2)d), ot)
n=0
Ni—1
= az Z <.Zz,n - <<jfn’n>>>jk< Lﬁm ngl ak( m—1 © Xm 1l) X;L1171>
n=0 leZ
=V (T = Kn) D &ma(VXmo100 X0 ) VT
leZ
= ém +V- (jm - Jm) Z ém,l (VXm—l,l © X;LI,LI)VTWL*I .
leZ
We therefore obtain that R R
(Ot +bm—1-V)Hp =G+ V-dpp (4.22)
where we define d,, by
N*—l
d,, := (Jm - Jm) me,l (VXm—l,l o X;Ll_Ll)VTm—l + Z Am,TL,N*/quZLn7N*/2 . (4'23)
IeZ n=0
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The d,,, error will be very small, proportional to 56 * (which will be much less than €0%9). This
is because of the closeness of J to J in (3.25), and the fact that A, , n, is similarly small, as we
will show in Section 4.4.

As we will show in Lemma 4.7 below, ﬁIm and its gradient are relatively small. In fact, its
gradient is small enough that the error made by plugging it into the diffusion part of the operator
is small and can be neglected. This says implicitly that the equation (4.15) homogenizes to (4.8),
which takes care of the temporal oscillations on scale 7,,.

4.2 Definition of the multiscale ansatz gm

Without further ado, we can now present the two-scale ansatz HNm, which is defined by

gm =dm_+ Z ém,lgm,k;(m,k (V(Tmfl o Xm—l,l) O anl_lyl) + ﬁm (4'24)
k,l€Z
— T 1+ Z Em i Xom o (V(Tm-10 X1, ) 0 X0 ) + H,,, (4.25)
ke2Z+1

where X, ;, is the “twisted corrector” defined by

Xon,ke 7= Ximpke © Xl 1 g - (4.26)

The second line (4.25) in the display above is valid due to (2.30) the fact that X, ; vanishes if k is
even and

Emt&m i Xom bk = Emk Xk L=y} - (4.27)

In heavier notation, without our simplifying conventions outlined above, we could write 5,,1 as

Om(t,2) = Tro1(t,2) + Y &k (D)X (6 2)V (T (b X1, () (X, (62)) + Hin(E, ).
ke2Z+1

In order that the tensor contractions are clear, we also mention that the second term of (4.24) can

be written in coordinates as

Z Z ka )i€mok Ou; (Tin—1 0 Xy llk)OXT:L 1l
ke2Z+11i=1

Since, as explained above, we should consider 1,1 —i—ﬁ[m ~ fm_l, which solves (4.15), the definition
of our ansatz (4.24) can be compared to

Tin—1+ Z fm,k’;(m,k (V(Tmfl © Xm—l,lk) © Xn_1 1 lk)
ke2Z+1
The latter is similar to a two-scale expansion in classical homogenization, with the role of the
macroscopic function being played by f’m_l and the correctors by X, . The compositions with the
flows implicitly mean that the expansion is with respect to Lagrangian variables. In other words,
on each time interval of size 7]}, we have composed with the appropriate flow X,,,_;, , written the
two-scale expansion in these variables, and then composed with the inverse flow. Implicit is the
assumption that, since the inverse flows X 1l are “slow,” the correctors should be close to the
correctors for the stationary shear flows composed with the inverse flows.

We will test the validity of our ansatz (4.24) by plugging it into the left side of the equation
for 6,,, and estimating the error. This is the focus of Section 5. To prepare for this analysis,
we need to obtain good regularity estimates on the “macroscopic” ingredients in the expansion:
in particular, the function 7,,_1. Indeed, as we know from classical homogenization theory, the
homogenization error depends on the regularity of the macroscopic solution.
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4.3 Regularity estimates for 7,

Our first order of business is to show that the equation (4.13) can be considered as a small pertur-
bation of (4.3) with m replaced by m — 1. This intuition is formalized by noting that according
0 (4.10)—(4.12) we have

Tt = Oy = T =T =S 110 — 1), (4.28)
i—1 %/—/
::Vrsz)—l

(4)

where the equation for the increment V,
We obtain, for each 1 < i < N,,

7, can be found by subtracting (4.11) with ¢ and ¢ — 1.

{atvn@ — km a AVD by VYD =V (Ko — kaTs + 80 1) VYU i (0,00) x R,
V(i)_1 =0 on {0} x R?,

m

(4.29)

where for convenience we denote T, TE;) = 0, so that V( )1 = Om_1-
In light of (4.28)—(4.29) it is apparent that we must obtain good estimates for V6,,_; and
VV( i) 1, which we achieve in Lemmas 4.1 and 4.2 below.

Lemma 4.1 (Estimates on 6,,_1). There exists 1 < C < oo such that, for every n € Ny,
1 n —1— —1\n

Proof. We fix a multi-index e of order || = n > 0 and apply 0% to both sides of (4.4) (with m
replaced by m — 1) to obtain:

010%0m—1 =V - (Km-1la + ¢m-10) VO 1 = V- > (‘;) 0 P10V P01 (4.31)
B<a

in (0,00) x T?. Testing (4.31) with 0%0,,_1 and using that o is skew-symmetric, we get

1
o 010 )3~ 1000 ey + 20 [ [ 9001
0 JT?

te[0,1]
(8%
<20
B<a '6

When n = 0, the right side of (4.31), and hence (4.32), vanishes identically. As such, we are only
left to consider the case n > 1.

To upper bound the right side of (4.32), we split the sum into two parts: the terms involv-
ing ¢m—1 with |a — 8| = 2 and the terms involving ¢,,—1 with |a — 8| = 1. For the first group of
terms, we use (2.65) and obtain

5 (5)
peajapz2 P

1
Vb1 - 0 P 10VP0,, 1. (4.32)
T2

Vao‘em,l . 6a_ﬂ¢m,1avaﬂem,1
T2

L2((0,1)xT2)

!2
DI LG R N X
B<a,|a—pB|=2

(T2 (4.33)
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For the second group, in which | — 3] = 1, we perform an integration by parts and use the
skew-symmetry of o and (2.65) with n = 2 to see that

V%G1 - 0 Py 10VPO, 1| = %01 - V(0% Pop_1) - oVPO,, 4

T2 T2

Caﬁ Gl (voPe

m— 1HL2( 0,1)xT2) ‘ m— 1HL2( (0,1)xT2)

Therefore, if | — 3| = 1, then

» ()
parjarpi=1 \P

< C’|a\5g;21“8°‘0

1
J Vo1 0Py _10VPO,_1
0 JT2

m_lHLZ((O,l)XTQ) ﬂ<aﬁlo?i{ﬂ‘ 1HV(9 m— lHLQ (0 1 XTQ) (4.34)
We next insert the estimates (4.33) and (4.34) into the right side of (4.32), and appeal to (4.2) to

bound the initial data term. After dividing by |a|!?, we obtain for n = |a| > 1 that

Fom— 1HV& Om— 1HL2(01 xT2)  SUPie[0,1] H& Om—1( HL2(’J1‘2) HGOH%Q(TQ)
]! o Ry
Ce _ gy fim=1| VPO, 1HL2 0,1)xT2
< H2m 1 Z (05m£1)2\a Bl |B|‘2 ((0,1)xT?)
m=1 geaa—B|=2 ’
— 1/2 1/2
Caif Hé‘ O~ 1HL2( (0,1)xT2) max ’im—lHV5ﬁ0m_1HL2((0,1)><T2) (4.35)
|| Fom—1 (Ja| —1)! B<a,ja—pB|=1 18! '
Fixing a constant A > 1, to be selected below (just above (4.37)), and defining
1/2
1 Em—1\" 1| V0% 0 1HL2( 0,1)xT2)  SUPte[0,1] |0%6m-1( HL2(T2
Dy = ( ) a l l ’
1Ooll2(r2y N\ A/ af leef! !
(4.36)
we then take the maximum of (4.35) over all multi-indices a@ with || = n and rearranging the

resulting expression, using also elementary bounds for multinomial coefficients and factorials, to
obtain

D2 _ Em—1 2n<C72nBln72 9 z(nfk)Der ng 1 D
" ARy, TR =\A P k1 A2

Using the upper and lower bounds for k,,—1 from (3.46), for n > 1 we obtain from the above

estimate that
2n n—2 2(n—k)
Em—1 C C C 2
D? < —_ — D?
" <AReo> = ;:0<A> A

Note that when n = 0 only the first term on the right side of the above estimate is present. If we
choose A by

A= max{1,403/2, (40)"?,2 1+7/2R9 }
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then we obtain

Dy <27 (e;)2)" + 2 2 z0e, ) max{ Dy, . .., Dy_o} + 2 2116, i Dy - (4.37)

m—1

Iterating this inequality, we discover that, for every n € Ng,

D, < (g—w/z)n

m—1

Recalling (4.36) and the notation (1.21), the above estimate implies

1 n 1— n
sup [V 01 ( HL?(W TR /2 [V 1HL2 (0,1)xT2) S 1600 22(72)n! (Ae m—lm)
te[0,1]
In view of our choice of A, the above estimate gives (4.30). O

Next, we aim to obtain similar regularity estimates for {V, (©) Z]\i * . Since the equation (4.29)

contains the matrix s,,_1, we first need to obtain suitable estlmates for this function. We show s,,,_1
is small relative to k,,,—1, and the scale of its spatial oscillations are large compared to &,,. Indeed,
by (2.67) and (2.14), we have that the term defined in (4.7) satisfies

”Sm 1||Lao (RxT2) S < Km— 1SUPH45ml VX 1,0 — HLOO(]RX’]I‘Z) Chpm— 153;3 1
= Clapy_1e2F2 = CePTT20  (4.38)

More generally, we have the following bound on the higher-order spatial derivatives of s,,_1:
[[sm_ﬂ]CE:nl_1 < Ckpmo1 = ng:r_wl. (4.39)

The estimate (4.39) is a consequence of (2.68) and Proposition B.6.

Comparing (4.39) to (2.65) and (2.66), we see that s,,_1 is smaller than ¢,, by a factor of e7+20
while having the same analyticity radius, and is smaller in size than k,,_1 ~ amea T by a factor

of 5m-1- Our next goal is to use this fact to show that the bounds obeyed by V( )

those satisfied by 6,1, by a factor of at least £2°_,

_, are better than

Lemma 4.2 (Estimates on VTff)_l). There ezists a constant Cy < o0 such that, if eym—1 is small
enough that
Ciel (1ver Ry <1, (4.40)

then, for every m,i € Ny, we have the estimate

1

12 n+1y,(4)
(n + 2i)! B [V V0,

(Cozp 3" v CoRg) " (|97, Ll goyer)

), (4.41)

HLoo [0,1]:2(T2)) T

< Ap—

where we have defined the amplitude coefficients appearing in (4.41) by

i
2

A1 = Loy + Lieqr 2y (CRe21 (1 v en i RG2) ) + Ly (Gl (1 v el RGY) )P (442)
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Proof. The proof of Lemma 4.2 is recursive in ¢ > 0, and closely follows the proof of Lemma 4.1.
Since V( )1 = 01, the bound (4.1) establishes the inductive step, namely (4.41) for i = 0, as long
as we ensure Cp = C(4.30)-

Next, assume that (4.41) with ¢ replaced by ¢ — 1. Comparing the Vrgzl evolution (4.29) and
the 6,,_1 evolution in (4.4) (with m replaced by m — 1), we see that the only difference is due to
the forcing term V - (Km — Km—1lo + sm_l)VV( 1) and the fact that the initial data for Vn(f)_l

m—1 >
vanishes identically. As such, since K, is only a function of time, (4.32) becomes

1
sup H&a L (t, -)Hig(qﬂ) + 2/@m_1J J ‘V&O‘Vn(;) 1 2
0 Jr2

te[0,1]
ﬁm( I

+2ﬁ§a< )

1 )

f VooV (K — fimlo) VooV
0 Jr2

=: Erry + Errg + Errs. (4.43)

Lol QI L A v A

TQ

J VeV, 0 Py VPV,
0

+2

The first term on the right side of (4.43), Erry, is estimated in exactly the same fashion as (4.33)
and (4.34), resulting in the estimate

/ﬂm
Errp < ! Hvaa HL2 ((0,1)xT?2)

2
.\ cem& ]2

2 18]!12

B<aja— m>2

e (et )BTV, [ 1ym

max HV(?ﬁV (@)

+ C|a|€f; Haav 1||L2 OD)xT?) goa ja—Bl=1

1|‘L2( 0,1)xT2) (4.44)

In order to estimate the second term on the right side of (4.43), Erra, we appeal to the s,,—1 bounds
(4.38)—(4.39) and to the inductive estimate for V( 1) provided by (4.41). We arrive at

Rm— ay (2
Errs < Tlea V( 1HL2 (0,1)xT?)

]P(IB] +2i =2 (1 (oas
+ CAL 1ol Fary Y g (Gl (G
B<a ’

+ OB A2, 80 2e ey (] + 20 — 2)12(Coe, )" v CoRyH) P (4.45)

_1_—17/2 v CORQ_OI)2|’6|

m

Bounding the last term on the right side of (4.43), Errs, requires more care. First, recalling (3.43)
we note that

Ky — fim-1lz = Ky = Ky = (K — K ) + ({Km ) — Kiny) - (4.46)
By appealing to (3.30), (3.40), and (3.47), the term [{K,,) — K,,| may be made arbitrarily small,
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which may be combined with (4.41) at level ¢ — 1 to deduce the bound

1 )
Errs < 2 f vorvd (K, — (Kp)Verri—h

0 JT2

Calet [ &2 i

* Km (an > HV&"‘ 1”L2 (0,1)xT2) ||V&°‘V( 3 ||L2 (0,1)xT2)
1 .

<2 f vorv (K, — (Kp)) VooV

0 Jr2
Km—

+ 1HV5°‘ ol z2 0,1y xm2)

+ c(cgm,l)QN*A;,u,lHaouiz(w)(|a| +2i = 2)12(Coe, v CoRZNPY . (447)

It thus remains to estimate the first term on the right side of (4.47). For this purpose, we recall
from (3.26) that
N**l

K (t) — <Km) = Z <<jm,n>>(Lm7n(t) - <<Lm,n>>)
n=0
is a zero-mean symmetric matrix, which is 7/, -periodic in time. As such, we may write

Km(t) - <<Km>> = at(Qm(t) = -@t,mlem(t) 5 (448)

where
HQm”Lw([O,l]) < C/im_lT/?/l, and Qm(O) = Qm(l) =0. (4.49)

Using the above two displays, we may integrate by parts (since V -b,,_; = 0, the L2-adjoint of the
operator by,_1 - V is the operator —b,,_1 - V) and deduce that

1 i .
L , vorvh (K, — (Kn)) VRV

1 .
:_f vV . QuZym1 VoV Jf D1V VY . Qvorvith
0 JT2

1 1
_ f VooV . QuVbp_y - VooVt 4 f Vb1 - VeV . Quvervi—h
0 JT2

0 JT2 "
1 1
| L e @V e Vi = [ VetV Qe )
0 J12 o Jt2
= Err4,1 + Err472 + Err4,3 + Err474 . (4.50)

Using the Vb,,_; estimate in (2.72), the Q,, bound in (4.49), the estimate 7,/ B 2 < Ce¥ | we

obtain |Vb,,_1||Qm| < Ckm_1e2°_, and so, by also using the inductive estlmate for V@O‘VW(:_II)
in (4.2), we obtain

‘Err4’1‘ + ‘Err472’ < H;;I HV@O‘VW(:)_lH;((o;)xm)

+ OB A2, 0020y (] + 20 — 2)12(Coe,, ) v CoR )P (451)
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Next, we bound the Erry 3 and Erry 4 terms appearing on the right side of (4.50). For this purpose,
we note that (4.29) gives

VDm0V, = b 1 AV =V Y ( >aa Pby1 - VPV

B<a

+121VV - (Ko — i1 T) VAV

+1:1VV - Y (Cg)aaﬁsm_lvaﬁv(’ w (4.52)

B<a

Using (4.52) we first bound the more difficult term, Erry. The additional complication arises from
the fact that the first line on the right side of (4.52) contains terms with 2, and respectively 1,
additional derivatives on top of V0%, and this apparently prevents us from closing our estimates;
this is however not an issue, as these derivatives may be integrated by parts onto the T,Efbj)
for which we have already estimated all the space derivatives (including those of order n + 3). To

be precise, (4.52) allows us to rewrite

term,

1 . .
Erryy = mmlf voev? L Quavery Y
0 JT2

-y ( )f 0> Pb,,_1 - vV . Q,vvery i)

B<a

+ 1z‘>1f j V (K — /{m7112)vaavr(ni % )(V Qn VoV, TS ))
T2

Liz1 ) ( )f VY- (0% Ps,, VPV ., verviTh (4.53)

B<a

Note that the “gain” we expect for i = 1 (see (4.42)) is larger than for i > 2, and because of that,
special care must be devoted to the third term on the right side of (4.53), when ¢ = 1. Using (4.46)

and (4.48), and recalling that V( )1 = Opp—1, We rewrite

1z‘=1flf (V+ (K — w1 L)VEVD) (V- Quyeavio))
T2
ff (V- (€Km) = Kn) VOt ) (V- QuV 001
T2

(
)
)L (@i e, )
)

JJ (V- (€Km) = Kn) V01 ) (V- QuV0%01)

Q,,: VQaaem_1>

- L . Qm: @t,m,lv%aem,l)(Qm:VQaaemfl). (4.54)

The last term in the above expression may then be rewritten upon noting that % ,,—160,,—1 =
Km—100p,_1, and therefore

-@t,m—lvfyraaem—l _ Hm—lAvIQ)raaem—l + Z <a + (1367‘ + ep) aa+er+€p_ﬁbm_1 . vaﬁem—l
B<a+ertep
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Combining the above identity with (4.54) and (4.53), and appealing to the b,,_; estimate in (2.72),
the Q,, bound in (4.49), the s,,_1 estimate in (4.39), the inductive bound (4.2) at level i — 1, and
0 (3.30) and (3.47) for i = 1, we deduce

|Erryq] < ot HV&O‘ 1HL2( 0,1)xT2)

+C(C“m VT A 18012y (o] + 20)2 (Coe 7 v CoRg )1

’a|‘ |a‘ +2Z—1) -1 ‘ 1/2
+C Cerl e B2 1vasy!
2 igna—g (o) !

x el 100] 212y Am—1,i-1 (Coemy v CoRy D)1
+ Clizakm1 T A2, 15 110022y (el + 20 — 1)12(Coe,, 1 v CoRyt) P11+

+ Lim1 O 170, (C2 1) Y60l 7o) lex] + D) (Coe 57 v Gy )12
1\ 2|ax|+4

1HL2 (0,1)xT?)

+ 1i=1(Clim—lTT/:L)2"90”%2(11*2)“0’.‘ + D!(Je| + 3)! (Coa_l 2y COR;O )
+ Lim1 (Cham17in) 2 18022 g2y (Jex + DY(Coe ) v CoRg. )

(af+2)! 52 -1 \la=B[+1 —1-7/2 _1\ 18
’ |B<Za+1 o — B[ +2 (Cem=1) (Cena) (Coeps”™ v CoRy,)

loe|! (x| + 24)!(|8] + 2i — 2)! 1 \|la—8|
Cl;> Ce "
! l/lﬁga Bli(a—pgl+1z  (Com)

X (’Qm—lT” ) HHOH%Z(TQ)Agn 1 i_l(C()&;nliilwh Vv COR;(})‘O‘HWHQ
+ Cliz1 (|| + 20)!(Je| + 20 — 2)!
% (5moammem) 001 ey A 11 (Com 57 v CoRg )2 (455)

Returning to (4.50), we are left to consider the term Erry 3. The difference between this term and

Erry 4 is that Z; ,,—1 acts on V( 1) instead of V( ) ” 1, and as such we need to appeal to the identity
(4.52) with i replaced by i—1. We do not however need to integrate by parts terms with a derivative

count larger than |a| + 1 because they occur only on V( 1) and V( ) As such, similarly to (4.53)
we may rewrite

1

Erras = —m 1 f veev . QuaveeryiT)
0 J12
+ ) < )J vorv? . Qn V(0% Pby,,_r - VOPVITD)
B<a
1 )
—1@2] VoV QuVV - (K — ki 1I2) VOV
0 JT2

Lizy . < )J vorv? QY - (6% P, VPVITY)

B<a
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and similarly to (4.55) we may bound

|Errys| < e leaa 1||L2 (0,1)xT2)

+c<cnm_nm> 22, i 60132 ey (o] + 2002 (Coe,, ) v CoRyH) P

la|?(18] + 20 — 1)!? 1 \2la—
+C ) B (Ce L ))2lehl
B<a

% (2 mm) 210012 2y A2y i (Cos s v CoRp) 2P+
+ Cliza(Rm-17, )2A2 —1,i— 2“90HL2 T2) (loe +2¢ — 2)'2(0 571* 2, CoRy )

12 2i — 2)12
41, 3 P08+ 222
B<a |ﬁ|

2 —1— —1\2 4
% (km-17) 100132 p2) A2 1,40 (Cos, )7 v Colg )P
+ Cliso(|a) + 20 —2)12

1\ 2|o|+4

(05_1 1)2‘OL_B|

m—

% (Rm-17me2 1) 21002 2p2y A2 1o (Coe, 3 v CoRy ). (4.56)
Next, in analogy to (4.36) we define
—1—7/2 —1\—™n
DY = (Cozy ”; foRao )
Am—1,i[00l L2(T2)
1 %
/2 Waa 1HL2 (0,1)xT2) Supte[O,I]HaaVn(m)—l(tv ‘)||L2(1r2)
X max , ,  (4.57)
jaf=n (laef + 20)! (o] + 20)!

so that proving (4.41) amounts to showing that D < 1. To achieve this bound, we combine (4.43),
(4.44), (4.45), (4.47), (4.51), (4.51), (4.56), and absorb the appropriate term on the left side of
the inequality. By also using the parameter inequalities (2.16), (3.46), the fact that v > 446 (a
consequence of (2.5), (2.7), and ¢ > 1), and upon denoting'?

Fi=en P (Coen " v CoRyY) = Co(1v el PRy = Co > 1,

G:=(Ce b )(Cos_l 7y CORG_Ol) = (CCy )( 2 onet L Ra,) < V2,

for all n > 0 and 7 > 1 we arrive at

C Ce?_ A
(D(z)) ]__—( 222(n2k ())2Jr m1m11122n1k (4)
m 1,3
CA; Ce Ce N Ced
g Lizt ((C 2 P +s;§3_1f4) +1i—1< m—;g m_l) F o gt
m—1,: m—1,1 m—1,1
Cedd A2 . Ce20_ A2
+ 10 A T e (4.58)
Am 1,3 Am 1,3
We note that upon taking N, sufficiently large as in (2.6), and using (4.40), we may ensure that
(Cef,f,l)N* <e |, (4.59)

3The inequality G < /2 follows from e,—1 < 1 and Cy > 2C.
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so that in (4.58) we may bound (Ce?_, )ZN* <ed | F4 and 2 (Cf-:?,‘f_l)N*]:Z <ed | F
In order to initiate the induction in n =0, we ﬁrst consider estimate (4.58) for n = 0. Recalling
the definition (4.42), and the bound €20 | 2 < Oy ! (which is equivalent to (4.40)), (4.58) becomes

; Celo | Ft CA2,_ .. CAZ_,,_
(D((] ))2 < 11':17A2 = 4 Li>o (A2 Lzl ( .7:4 + 5 .7:2> 7A2 172 45 ]:4>
m—1,1 m—1,3 m—1,i

c 25 2 25 T2 Cl+emF?) _2C
< 11-6{172}0—3 + 1,90 F2(1+ep0 F?) + Lizs C’;‘ < o (4.60)
As long as C is taken to be sufficiently large, this established the bound D(()i) < 1. We now

inductively assume D,(j) < 1 for all £ € {0,1,...,n — 1}, and aim to establish that D,(f) < 1
in turn this would conclude the proof of (4.41). To do so, we return to (4.58), use (4.59), the

definition (4.42), and the inductive bound D,(j) < 1 for k <n—1, to conclude

C 2C 206%71Am_17i_1

i)\ 2
(Dn)) s ﬁ+ﬁ Am—1,i
Caﬁr‘f CAZ . CA2, i
+1,- 1A2 1F4+17,>2 <A2171( 45 f’4+8 f2) A2712 45 f4>
m—1,1 m—1,i m—1,i

The second line of the above estimate precisely matches the upper bound in (4.60), which was
shown to be < 2CCy ! under the standing assumptions. Using that F > Cy > 1, and recalling the
definition (4.41), we may bound also the first line of the above estimate, and finally deduce

5C 2C 2068 5C 4C
02 +lici g + 1,2920e® | 4+ 1m5— =l <22 41,
0

i))2 < o= i

n

Upon choosing Cj sufficiently large with respect to C', we establish the bound necessary for the

inductive step D,(f ) < 1, and thus conclude the proof of the Lemma. ]

A direct consequence of the bounds in Lemma 4.2 and of the definition (4.28) is the we have
regularity estimates for T}, _1.

Lemma 4.3 (Estimates on T,,_1). Let C := 408, where Cy = 1 is the universal constant from
Lemma 4.2. If e;—1 is small enough to ensure

< Ry, and  €¥_, < C7L, (4.61)

m—1

then, for every n € Ng we have
/in/il”V"HTm_

v < Cn, |00] p2(r2yn! (Cep )" (4.62)

1 g ggo.azz o2y + 1HL2((0,1)><T2)
where we have defined Oy, := 22V (2N,)!.

Proof. Assumption (4.61) gives that

Chel [(1v ey Ry?) = Cie | < CiC™ = . (4.63)

Thus assumption (4.40) holds, and we are allowed to apply Lemma 4.2. For compactness of notation,
denote the left side of (4.62) as

Fn = Imax (H& Tm IHLOC([O71];L2(T2)) + /<:3 ‘VaaTm 1HL2 (0 1 TQ)) .

la|=n
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From (4.28) and the identification 6,,_1 = v

1, we have that

Hence, the bound (4.41), the definition (4.42), and assumption (4.40) imply that

Ny

F, n + 2i)!
—1-7/2 —1\n S HGOHLQ(TQ) Z Am*“#
n!(C’o&mfl \Y% CORGO ) =0 n
N* . .
n+ 20\ (27)!
< extlza 3 ("7 ) gy

< 27PN 2N 00 | 212 - (4.64)
With assumption (4.61) and the definition C' = 4C3, the proof is completed. O

In the above proof we have merely used that for all ¢ > 0 the amplitude coefficients A,,—1;
appearing in (4.42) satisfy the bound A,,—1; < 1. Now, we use the precise structure of these
coefficients to deduce two further consequences.

Lemma 4.4 (T,,,—; and 6,,_; are close and T,,—1 almost solves (4.9)). Under the assumptions of
Lemma 4.3, we have that

1
[Tt = Om—1ll oo (0,1);22(72)) + e |V Tt — VOn—1lz2¢0,1)x72)
< 2N (Ca)em—1) 100l L2(r2y ,  (4.65)
and the error term appearing on the right side of (4.13) satisfies

—1—v/o\m N.
IV em—1llr2(0,1)xT2) < CCN*"&ZLQ_W!(0(4.62)%1_;/2) (Clus2)ems_y) */2||90||L2(’]I‘2)a (4.66)

for n € Ny and a universal constant C = 1.

Proof. In order to prove (4.65), we recall from (4.28) that Ty 1 — 1 = S% V,S)_l. There-

fore, similarly to (4.64) with n = 0, we deduce from the bound (4.41), the definition (4.42), and
assumption (4.61) (which implies (4.40) and also (4.63)), that

1
[ Tm—1 — em*1|‘Lw((071);L2('ﬂ‘2)) + Kﬁ_lHVTmfl - v07)171”[,2((0,1)><11‘2)

Ny
< 6ol r2(r2) D (20)! An 14
=1
3 2§ N* . 3 2§ (i72)+
< CofquQOHL?(T?) 2(22)!(00%%1) 2
=1
Ny
< Claso)em—1l60] 2(r) D (20)127 072+ =2
=1

< (2N:)!C62)em0 1100 L2 (12 -

This gives (4.65).
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In view of the definition of e,,—; in (4.14), proving (4.66) for n € {0, 1,2} amounts to combining
the Véﬁ*l) estimate from (4.41), the s,,,—1 bound in (4.39), and the estimate |K,, — km—1| < Ckpm—1
(which follows from (3.28)):

|0%em—1 ”L2((0,1)><’]I‘2)

< Chip—1|0*VV,, " (V) HLZ( o)) T Chm—1 Z ng|' 6*1 )Ia—5|HaﬁVV Ny) )|
BLa

O 1/2 LN, + o)A, 1N*H90HL2 T2) (C()g_l 7/2)\a|
< C,Qn/f_l(QN* + |a|)( 462)8,27‘3 1)N*2H90HL2 T2) (Co& " V/Q)M

L2((0,1)xT?)

A

Since (2N, + |a|)! < 21¢F2N< (2N, )l |a|! = C, 2/%l|a|! and 20, < C(4.62), this concludes the proof
of (4.66) and thus of the lemma. O

The estimates on all space derivatives of VT;,_1 obtained in Lemma 4.3 imply, when combined
with the available bounds on b,,,_; a control on mixed space-and-material derivatives of VT, _1.

Lemma 4.5. Under the assumptions of Lemma 4.3, for all n,¢ € Ng with £ = 1 and n + 2¢ < N,
we have

n — - n -/
V"D 1 VTl 2 o112y < Ce22_ 1 [00] 2 cyemit 7™ (1) (4.67)

m—1
for a sufficiently large constant C' = C'(Ny) = 1.

Proof. In (4.67) we only consider ¢ > 1 because for ¢ = 0 a different bound is already available
n (4.62). In order to prove (4.67), we recall from (4.10)—(4.12) that T,,,—; = T *,, where the

functions {VT(l 1} solve

-@tm 1V (l) = KmflAVTT(,?_I — Vb1 VT(Z)_
+ 15y VV - (Ko — Km1l2 + 8 -1) VT, 7' ) : (4.68)

We claim that for all 0 <7 < Ny, n € Ng,/ € N with n + 2/ < N, we have the bound

—1— n —/
i maXHaa@tm VT r2(ogxre) < Ce2y 6ol oy (Cep57%) ™ () " (4.69)

Kop— 1| m—1

Specializing (4.69) to the case i = N, gives (4.67), upon noting that the factor of C™ < O™+ may
be absorbed in the constant C4 g7).

We first prove (4.69) for ¢ = 1, as this contains the main idea. The generalization to ¢ > 2 is
a matter of accounting, and the upper bound obtained is allowed to have a large amplitude, by

a factor of ¢ 51. Since T D V(Z) by using that A,,_;; < 1 for all i’ > 0, we deduce

m m—1 = m—1’

similarly to ( 62 2) that for all 0 <17 < N and n € Ny, we have

< C|0o)| 2 x2yn! (Ce 7)™ (4.70)

HI/Q mlaXH@avT 1”L2( (0,1)xT2) S

m—1
la|=
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From (2.72), (3.28), (3.40), (4.39), (4.61), (4.70), and the Leibniz rule, it follows that for all
0 <1t¢ < N,, we have

_ 1
19013 gy o1 15610 Py VT L 2o e

< O (Co 77) "2+ 2)1 + ( Z (el
n+2 =
+ C/im 1(0 -1 17/2) ( + 2)' Z (Cg;bl_l)n—k-&ﬂ (06;1_—17/2)]6—2
k=0

<C(n+ 2)!65,;_21 (05_1_7/2)71

m—1

Since Ei__zl <e¥ L (71,)7" (see (2.12)(2.13)), the above estimate gives the proof of (4.69) for £ = 1.
From (4.68) it is clear that proving (4.69) for £ > 2, requires a bound for the space-and-material
derivatives of s,,,—1 (which we recall was defined in (4.7)). For this purpose, for all n,¢ € Ny with

n + ¢ < N, we claim that
||V”@£m_1sm,1||Loo(RxR2) C/{m 1€m 1(’7'/ )_é. (471)

As usual in such terms, we do not keep track of factorials because the constant C' in (4.71) depends
(only) on N,. When ¢ = 0, the bound (4.71) follows from (4.39). For ¢ > 1, we use the Leibniz
rule, (2.13), (2.14), (2.16), (2.29), (2.31), (2.67), (2.96), and (3.28),

¢ ¢
an-@t{m—ISm*lHLw(RxRQ) <C Z Z ZH@f‘e Em,l”LOO(R)Haf -t Kol Lo w)

V'=0¢"=01eZ
" -1
X an t,mfl(vafl,l oXm—ll IQ)HLSO(suppémﬂlXRQ)

e//_é _ 2.\ 0"
< C/{mfl Z (Tm) m'ril( fn 1)

In the last inequality we have used that 7/, Em 1 < Ce | < 1. This concludes the proof of (4.71).
With (4.71) in hand, we return to proving (4.69) for £ > 2. In view of (4.68), in order to estimate

higher order material derivatives of VI (@) 1, we need to understand the commutator between @t{;nl
and V2. In this direction, from [BMNV23 Lemma A.12] we recall that

-1
(26502 = 3 Y o (8dDim1)” (V) (adZim—) " (V)20 f (4.72)
0'=14¢0"=0

where ¢ p v > 0 are explicitly computable combinatorial coefficients, and we recall from (2.91)
that (adZ;m—1) (V) is a first order differential operator for any r > 0. With (4.72), we return to
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(4.68) and obtain (ignoring the precise contraction of tensors) that

/

=1 .
Py VT 12 Z ceo e (8dDrm-1)" (V) (ad D) " (V)DL VT
=04¢"=0

E - 1 !’ 7 'L
- Z ( v >@£m1me—1‘@£mllz v,
=0

=1 v

+ 1{1';1} 2 Z Cop' o (adgt7m_1)€//(V) (ad@th_l)é/iwl(V)
0'=01¢"=0
‘@fml 1Z (Km — Km—1lz + Sm_1)VT7§fj) . (4.73)

We note that the number of Z; ,,,—1 material derivatives acting on V7, ( ) ~,and VT, (l %) on the right

side of (4.73) is at most £ — 1, whereas on the left side of (4.73) we have E—many Dy m—1 material

derivatives acting on acting on VT( ) 1. As such the bound (4.69) is established inductively in
£ > 1, with the base step £ =1 belng already proven.
In order to bound the terms on the right side of (4.73), we note that (2.77) implies that

an(ad‘@tvm_l)T(v)fHLP(]RxRQ)
< Clem) IV Flrexez) + Clent) " (Ent) "IV Fll o rxr2) (4.74)

holds for all n + r < Ny and f € W"TLP. By combining (4.74) and (4.73), for n + 2¢ < N, with
¢ = 2, we obtain that

IN" DY 1V 1HL2(01] R2)

2)¢/ n ’ n ! (3
< CRpm—1 Z E(/B ) (|V HQK - KVT Zillze(o,nyxT2) +Em +1 HV fml 18 VT, )1HL2 ((0,1)x TQ))

+C ) ZHV” 1 VD1l e 01y k) IV DL VT 2 0.0y 1)
/ Oel
=1 0—1-¢ 2(/
+ Clyzyy Z > ey
=0 ¢"=0

X <||Vn+2<@fm1 141 éﬂ(K — Km—1l2 + 8- 1)9tm VT, i~ )>||L2 ((0,1)xT2)
4 (D HV(Qfml (Ko — Romela + Sm—l)@gv/n—IVT(Z Y )HL2 0 1)x1r2)> :

Recalling the Vb,,—1 bound in (2.77), the s,,—; estimate (4.71), the K,, bound in (3.28), the
VTfnl)_l bound with no material derivatives (4.70), the inductive bound (4.69) for @Z 1VT(Z)_1

with 1 < ¢ < ¢ — 1, and the parameter inequality €§L 217 35 « 1, we obtain from the above
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estimate that
1
”90”L2(T2 m2 1||vn-@tm 1V 1||L2 ([0,1]xR2)

<O 555:?”( (e 2 ) T D ) )

n (-1

=) Z e )™ (e () 1)
n'=0/0=
0—1 6—1—¢" n+2 .
_ n —n! (P _pt_pn —1—7/2\n/ _pn
+ Cliz1yhim- 12 > Zs el 2 (o )1t (g (7 =
=0 ¢'=1 n'=0
,6’ 2 *1 W/? o\ (e=1=1)
< Cep (e ) () 7Y
Y s LI Cr (4.75)

for all n + 2¢ < N,. Note that the bound on the term V”+2@fm 1 Sm—1, cf. (4.71), requires that
n+24+¢—1—¢ < N, this condition holds because n + 2+ 0 —1— 0 <n+1+¢<n+ 20 for
¢ > 1. By induction on /¢, this concludes the proof of (4.69), and thus of the Lemma. O

4.4 Estimates for fIm

Before estimating the function ﬁm defined in (4.21), we need to obtain estimates for space-and-
material derivatives of the tensors A, ,, , defined in (4.20).

Proposition 4.6. Under the assumptions of Lemma 4.3, there exists a constant C' = 1 such that
for all0 <r < N«/2, meN, and 0 < n < Ny, — 1 we have

A7y < Cl0] ey (i o et 2 (1) ™ (4.76)

m—1~m—1

([0,1]xT2) =

for all k + 20 < N, — 2r.

Proof. We appeal to the space-and- material bounds for Vb,,_; available from (2.76), the space-
and material estimates for VX, 1,0 X 1 y in (2.96), the space-and-material bounds for V7,1
n (4.62) and (4.67), the time derivative bounds for Lim, in (3.24), and the time derivative bounds
for émJ in (2.31). Using these bounds, the product rule, and the definition of A, ¢ in (4.20), we

deduce
IV 2 1 Aol 2 oy rey < ClO0ll ey (2t Vi e T ()™ (77)

for all kK + 2¢ < N,. Here we have used implicitly the bounds efn__Ql < C(7),)7 ! and ke, ? <
C (! )~!. Inductively in r, it is then direct to establish

m

IV D o1 A < CJo] 2er2) (2t i, e T () T (4.78)

m—1~m—1

([0,1]xT2) =

but only for k and ¢ that satisfy k + 2(¢ + r) < N,. To see this, note that the recursion relation in
(4.20) gives Apypri1 = Dem—1Amnr + V1A, ., with suitable contraction. If only the first
term in this relation would be present, then (4.78) would simply follow by induction. The second
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term in this relation requires that we use the Leibniz rule to decompose Vk@f 1 (Vb 1Ay ny) =

Sh oS (B (H)VE kl.@fmel Vb1 Vklﬁfm 1A . The desired bound at level 7 + 1 is then
a consequence of (2.76) and (4.78) at level 7. O

Proposition 4.7. Under the assumptions of Lemma 4.3, there exists a constant C > 0, which only
depends on on N, such that

[ (, )| 2o 12 [0,1)x72) < Chy1100] L2 72 - (4.79)
and
IV Hon (£, M 1222 101172 < Cee_ i, 1ol p2crey (4.80)
Proof. Recall that
Nie/2 Ny —1
Hy(t,2) =V Y > At 2) Q1 (1) - (4.81)
r=0 n=0

Step 1. The uniform-in-time estimate (4.79). First, we observed that for all [ € Z, and ¢ €
[(1—Y2)7", (1+1Y/2)7!], since the flow X, _1,(t,-) is volume preserving, we have that | H, (t, Mz =
| Hp 0 X1 1(t,))ll2. Second, we note that by the construction of Cmy, this function vanishes
identically in a 27,,-neighborhood of (I + 1/2)7,, (see (2.29)), and thus by the definition of L, in
(3.22), we have

(o/Lim ) (1 £ 2)m) =0 (4.82)
for all £ € N. In turn, (4.82) and the recursive definition of the A, ,, , tensors in (4.20) gives that
A ((L£1Y2)7),-) =0 for all 0 < r < N«/2, and thus

Hy((1+1/2)70, ) =0,

for all [ € Z. Combining these two observations with the fundamental theorem of calculus in time,
we deduce that for all t € [(I — Y/2)7), (I + 12)7) ]

t
~ d
Tt )y = | X )yt
tJuyeymy, dt ’
t

. f Bl (', X1 4 2) (Do B (8, X o (¢ ) !

(1=1/2)rs, J2
< 2(r) 1 m—1 Hon 12[0,1] 1) sup [ Hm (t, )] 22 - (4.83)

te[(I=1/2) 7], (I+Y/2) 7]
Next, using (4.81), (3.32) and (4.76), we derive
H%am—lﬂmum([o,l]xﬂm

Ni/2 Ny —1

< Z Z (”V@t,mlAm,n,r

r=0 n=0

([0,1]xT2) |am.nrs1 HLOO([O,I])

+ Hme_1 HLOC([OJ] xT2) HVAm,n,'r' [0,1]xT2) qu,n,'r—i-l HLW([O,I])

+ HVAm,W”m([og]xW)||atqm’”ﬂ"+1“L°°([0,1])>
Ni/2 Ny —1 2 2 2 " r+1
— — —r— m<m C m c m
- CHHOHLQ - Z Z ({ m1/21€m(11w/2)( m) 1}{an5! <Hm&‘7—m) ((TT+)1)! }

r=0 n=0
2 2 2 n T
=iz _—(1+7/2) —r | [ G ( Cem \ " (CTm)
+ {(5%% Vemliema (1) }{ n! (anm> r! .
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We next use that

0 C%' T 0
Z( T,m> < Y (Ce, ) <2, (4.84)
r=0 m

r=0
and

i Cen n<i(025 )" <2 (4.85)
) s e’ 1) <2. :

n=0 n=0

Combining the three displays above, we arrive at

| D1 H, HL2 01]xT?) S < Clbollz2(r2) (amEmbim ),f;l/z () (4.86)

m—1-m—1

Returning to (4.83), we take the supremum in time over t € [(I — 1/2)7/,, (I + 1/2)7))], absorb the
suitable term in the left side, and then taking a supremum over [ € Z, we deduce

[Eonll o o1y z2ry) < Cl0lizre) (aenm 1)(4@)”»@;/215;91“/2’
-1 )1/2 1/Qé.*(lJr“W)
m—1

< 6o z2(r2yfim-1(ay,t €20
<

This concludes the proof of (4.79).
Step 2. The gradient estimate (4.80). Using (4.81), (3.32) and (4.76), we obtain

[V Honl 2 go,13m2)
N*/QN* 1
S Z Z Hvammﬂ'”LQ([O,l]x’W)||qma”ﬂ"+1HL°C([0,1])

r=0 n=0

Nig/2 Ny —1 2 2 2 \ " r+1
1y — —r oo Cexr, Ctm

< Clouluan Y, X | (a2 () i (S ORI

r=0 n=0 ’ mom ’

Inserting the bounds (4.84) and (4.85) into (4.87), we obtain that
HVH HL2 [0,1]xT2) CHHOHL?(T?){(5%1"3;11)’i;1121€;2,(}+7/2)}{ 2 62 Tm}

2 4

AQrEm 24 —1
= C|6o] p2(r2) 2 e GV 2

KRm

_1/2

1’£m 19

= C|00|| 12 (r2yam—-1Tmrn 3 = Cllbol2(r2)0

which proves (4.80). O

Proposition 4.8. Under the assumptions of Lemma 4.3, there exists a constant C' > 0, which only
depends on on N, such that

[l 2 go.1pmey < Critet (Cuns) ™ 10022y - (4.88)

Proof. Recalling the definition of d,, in (4.23) we have

A~

|d 2[Jm _JmHLOO([OJ])Sllelguémvl(VXm 10Xy, 1IZ)HL°0 [0,1]xT2) | VT 1HL2([0,1]><’]I‘2)

ml| L2 o2y <
Ny—1

+ Z HAm,n,N*/2HLQ([O,l]XTQ)|‘q51ﬂ,1n,N*/2||Lw([0,1]><T2)'

n=0
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Appealing to the closeness of J to J in (3.25), the A bound in (4.76), the q bound in (3.32), the
VT,,—1 estimate in (4.62), the summability in n from (4.85), and the flow bound (2.96), we deduce

Ca2et, (€2, \* =Y
ol onpers < 5 (22 ) ol

Km KEmTm
Ny —
_1 _1/2 7N*/2a 8 C(S N*/2
+ Cbol 2(r2) nZ:: Fm 1 (Thn) Tl (Rme> Tm
N.
< Ol oy 1 (O3 1) + Clfol aray iy (Celna) ™
Since the second of the above two terms is larger, this gives (4.88). O

5. Homogenization cascade up the inertial-convection subrange

In this section, we give the proof of Theorem 1.1. We begin by plugging the ansatz into the
advection-diffusion operator and computing the error. This is the purpose of the next subsection.
In Section 5.2 we estimate the error term, which is then used in Section 5.3 to complete the
main induction step, summarized in Proposition 5.2. The proof of the theorem appears finally in
Section 5.4.

5.1 Computing the error in the multiscale ansatz

In this subsection, we compute an explicit expression for the error obtained when we insert the
two-scale ansatz 0y, it into the left side of (4.8). That is, we compute (3; — kA + by, - V)b,,. The
main result is the Big Display on Page 72.

Throughout, we use the abbreviated notations
{Jm,k(u .’L') = (wm,k o X';ll_ljk) (ta x)a
@Zm(t 17) = Zkezém,lk Cm,k(t)qz)’m,k(t’ l’)

As in Section 4, we use the notational convention that function compositions are with respect to
the space variables only. Observe that the recurrence in (2.36) may be written as as

Gm(t,x) — dm_1(t,2) = bm(t,z),  ¥meNA [1,00). (5.1)

We proceed by splitting the operator:

~

(at — EmA + by, - V)em = (at + b1 - v)gm + (_"QmA + (bm - bmfl) : v)gm

= (8 + b1 - V)l —V - (Klz + 0,0) VB, . (5.2)
the tran;[:ort term the diffu‘s(ion term

We will compute the transport term and the diffusion term separately.

5.1.1. Computation of the transport term. It should come as no surprise that we will use Lagrangian
coordinates to compute the transport term. We make use of the following two identities:

(@ +Dm1- V)X = O6Xnp © Xonl1y, s (5.3)
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and

(é’t + by V) (V(Tm_l o Xm—l,l) o X! )

m—1,1

= (VX100 XL )VV - (Ko + 8m-1) Vi1 + €m1) - (5.4)
To prove these, recall that if Z(¢,z) is a flow for b,,_1, that is, a solution of the ODE
07 =bp-1(t,2),
then the inverse flow Z~! satisfies the transport equation (cf. (B.23))
(0t +bm1-V)Z71=0.

Moreover, if Z~! is smooth, then any function of Z~! also satisfies the same transport equation.
Applying this to Z = X,;,_1 1, while keeping in mind the convention that function compositions in
our formulas are with respect to the spatial variable only, we find that, for any function F(¢,x) of
both ¢ and x, we have

(0 + b1 V) (FoZ V)= Foz ™, (5.5)

and
(0t +bm-1-V)F)oZ =0, (FoZ). (5.6)

The first claimed identity (5.3) is then immediate from (5.5). To obtain (5.4), we use (5.5), (5.6)
and the equation (4.13) for T,,—1 as follows:

(@ + b1 - V) (V(Tnor 0 Ximo1g) 0 X0y )

m—1,1

= (Y (T1 0 Xim-12)) 0 X1
= (V@t(Tm_l (¢] mel,l>) (¢] X_l

m—1,1

= (V((&:Trm—1 + byt - VTin_1) 0 Xppo1y)) 0 X1

m—1,0

(VX100 X VIV (K + S 1) VTt + 1)

We are ready to apply (ﬁt +by,_1- V) to both sides of (4.25). Using the product rule, the equation
for H,, in (4.22), the definition of G, in (4.18), and the above identities (5.3) and (5.4), we obtain

(at +bm-1- V)am = (at +bm-1- v)T’mfl + Z (6t£m,k>~6m,k) ’ V(Tm,1 © Xm—le) © XT_nI,le

ke2Z+1
+ 2 Em.k (@ka ° X;zl—l,lk) : V(Tm—l © melylk) © Xn_ml—l,lk
ke2Z+1
+ Z gm,k’)v(myk; : (V)(m—l,l;C B X,-;l_le)vv : ((Km + Sm—l)VTm—l + em—l)
ke2Z+1
+ VY i (Im —Kn) V(T 0 Xon10) 0 X1y + V- i (5.7)
leZ

In view of the definition of s,,—1 in (4.7), we can write the equation for 7,1 as

(@ +bp1- V)1 = V- (2 i KV (Tn10 X 17) 0 X1y + em_l) :
leZ
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Using this, we can cancel the first term on the right of (5.7) with part of the first term on the
last line (the expression involving K,,). Note that we are using here the fact that K,, is a scalar

matrix, and it therefore commutes with (VXm,le oX ;11_1 lk)' We therefore obtain

(at + bmfl ' V)ém = Z (atgm,k%m,k) : V(Tmfl © Xm—l,lk) o Xy:Llfl’lk

ke2Z+1
+ 2 Em.k (5tXm,k o Xn_ql—l,lk) : V(Tm—l © melylk) © Xn_ml—l,lk
ke2Z+1
+ Y eniXomg (VX1 0 X0 )YV (K + Sm1) Vo1 + €1)
ke2Z+1
+ T 0 Y emaV(V (Tt 0 Xin1g) 0 X0y ) + Ve (din + €moa) - (5.8)
leZ

Below we will insert the identity (5.8) for the transport term back into the right side of (5.2).
The first, third and fifth terms on the right side of (5.8) are “acceptable errors,” that is, we will
eventually show that they are negligible for our purposes. The second and fourth terms will cancel
some expressions arising in our computation of the diffusion term, which we pursue next.

5.1.2. Computation of the diffusion term. We write the diffusive term in divergence form as
(—kmA + (b = byp1) - V)l = =V - ((kmlz + Pmo) Vo). (5.9)
Returning to the formula (4.25) to compute the gradient of Oy, we find

vam = Z gm,k (12 + v%m,k‘) Z ém,lv(Tm—l o Xm—l,l) © X7;1—1,l

ke2Z+1 leZ
+ > ni(le = VX0 X0 ) VT
leZ
+ 3 EnaXm iV (V(Tmo1 0 Xin1g,) 0 X0y, ) + VE, (5.10)
ke2Z+1

Inserting this into the operator on the right side of (5.9), we obtain
-V ((/ﬁ:mIQ + TZmU) ng)
=-V: Z fm,k (HWIQ + {/;ma) (12 + vim,kz) ng,lv(Tm—l © mel,l) o X;zl—l,l

ke2Z+1 leZ
=V Y i (mla + o) (I = VX100 X0y )V T
leZ
-V Z fm,k (’fmIQ + 7erLo')Sérn,kv(v(Tm—l © Xm—l,lk) © X;zl—l,lk)
ke2Z+1
— V- (kI + Un0) VH,y, . (5.11)

The second, third and fourth terms on the right side of (5.11) are acceptable errors: we will show
in the next subsection that they are negligible for our purposes.

Let’s look more closely at what is inside the divergence in the first term on the right side
of (5.11). Using the properties (2.25) and (2.26) of the cutoff functions and the fact that both X, ;.

and v, ;, vanish when k is even, we see that

Em kCm k' Vmk = Cmk¥miLip=ry  a0d §mkCon k' VXnkr = Cmk VXom ke L{k=k')
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We therefore obtain

Z Em.k Hm12+¢m0)(12+Vka zlfmlV 10 Xpo1g) 0 Xt 1,0

ke2Z+1 leZ
Z Em k (Hmh + Z 6m,zk/Cm,k'lzm,k/U> (I2 + VX0 1) Zém,lv(Tm—l 0 Xpm—14) 0 X1 11
ke2Z+1 k'eZ leZ
Z gm,k (ﬁmIQ + ém,lka,kQZm,kU) (12 + v%mjc) Z ém,lv(Tm—l o mel,l) S X;ll_l,l . (512)
ke2Z+1 leZ

Before we compute the divergence of this expression, we need to use a special property of the shear
flow structure, which is that

V- (Ym0 VXmik) = Vi - 0VXmi = 0. (5.13)

Indeed, from (2.19)-(2.20), (3.2) and (3.8), we see that v, 1 and X, depend only on one coor-
dinate z; for some i € {1,2}, which is the same for both functions and depends only on k. Using
coordinates with the summation convention, we therefore compute

v"Zm,k : Uv;(m,k = axﬂzm ko'ijarj Sém k
= (0 2, Yk © Xm 1)0z (Xml 1)lalj (axl/Xm k© Xm 1)8:10] (X;Ll—1>l’

- JU JJz(X )l ( ) ( Ilw OXm 1)(633sz,1€ OXm—l) =0.
=0

Using (5.13), we may write

R ((/‘fmIZ + CAm,lka,k'Jm,kU) (12 + vj\ém,k))
=V (CAm,lk Cm,k{/;m,ko' + ’imv%m,k)
=V (CAm,lka,kJm,kU + "vaXm,k © Xr:Ll_lylk + Km (VX;L 1,0, )va k© X -1 lk)

To proceed, we next use the fact that, for any smooth vector field g and smooth, measure-preserving
map M : R? —» R?, we have

V-((VM'g)oM)=(V-g)oM. (5.14)
In view of (5.14), we find that

V- (ém,lka,kQZm,kU + Hvam,k © X_ -1 lk)
= (v ' (gm lka kswm kO + Kvam k)) © Xm 1,0
+V- ((12 - VX1 ik © Xm 1 lk) (gm,lka,demkU + ﬁmVXm,k) © ‘va1 1 lk) (515)

Now comes the crucial point at which the corrector equation (3.13) for x,,, = X, is used.
By (3.13) and the fact that, similar to (5.13),

V- (wm,kUvannjk) vd}m k- VL rmo=0,

we can rewrite the first term of the right side of (5.15) as

(v : (é-kaCm,k‘d)m,k‘o- + Kmvxm,k)) o Xm Ll — atXmJg o Xﬁ —1,l
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Combining the previous displays, we obtain

V- ((kml2 + fm,lka,kTZm,kU) (I2 + VXimi))
= X © X0ty v, V(R (VX L ) VX0 X, lllk)

m—1,l

+ V- (2= VX1, 0 X001 ) G Gk + VX pe) © Xpohy ) (5.16)

Finally, using (5.16), we can compute the divergence of the last line of (5.12), which is also equal
to negative of the first line of (5.11):

% Z gm,k (K'mIQ + ém,lk Cm,k{/;m,ko') (12 + Vim,k)v(Tm—l © Xm—l,k) o Xn_z 1,k

ke2Z+1

Z gmkatkaoXm 1,k v( 10Xm 1lk)OXT7L 1,0k

ke2Z+1

+ 2 (Ve (R (VXL = 1) VX 0 Xt 1)) -V (Ter 0 X)) 0 X000y,
ke2Z+1

+ 2 EmiV ((Io = VX1, 0 X0 ) (G Con om0 + Em VXmk) © Xnby 1)
ke2Z+1

'V(Tm 10 Xpm— 1lk) OXm 1,0

+ Z gm k ’{mIZ + Cm 1 Cm, k:d}m kU) (12 + VXm k me lv ( m—10 Xm—1 l) X;LI_LZ) .

ke2Z+1 leZ

(5.17)

This expression will be substituted for the first line of (5.11), in view of (5.12), which will then be
substituted for the second term of (5.2). The second and third terms on the right side of (5.17)
are acceptable errors which are estimated in the next subsection. The first term on the right side
of (5.17) will cancel the second term on the on the right side of (5.8) when we combine (5.8)
and (5.11). The last term will be combined with the term involving J,, on the last line of (5.8),
which centers its mean and renders the resulting expression an acceptable error.

5.1.3. Formula for the error of the ansatz. We now combine (5.8) and (5.11), (5.12) and (5.17) to

obtain an explicit expression for (3, — kmA + by, - V)0, As we merge (5.8) and (5.11), we recall
that the second line of (5.8) cancels the first line of (5.17), and that the last line of (5.8) can be
nicely combined with the last line of (5.17).
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The result is the following equation satisfied by the ansatz §m:

(0 — KmA + by - V)b,

= > (@bniXomn)  V(Tno10 Xomo1y) 0 X0 (5.18)
ke2Z+1
+ Z gm,k%m,k ’ (VAXm—l,l;C © X;I,le)v(v ’ (Km + Smfl)vafl) (519)
ke2Z+1
—-V- 2 émJ(HmIQ + ’lZmU) (VTm_l — V(Tm_l o mel,l) o Xr_n 1 l) (5.20)
leZ
D1 iV (ko (VX = 1) VX0 Xty )V (T 0 Xng) 0 Xy (5:21)
ke2Z+1
D GnaV e (= Vo1 0 X0by ) Gt Gt + 5m VX © Xiiky,))
ke2Z+1
X V(Trn10 Xm-14,) 0 X0 (5.22)
-V Z fmk fmla + ¢mU)Xm kV(V( ~10 X1 lk) X;zl—l,lk) (5.23)
ke2Z+1
— V- (kmlz + Ymo) VHpy, (5.24)
+ V- (dmtem)+ Y, EnkXomp (VX100 X1 ) V(V - em1) (5.25)
ke2Z+1
- 2 gmk(*] HmI2+<m lka k¢m kU) (I2 + mek ) ng lv T— IOXm ll) X;Llfl’l) .
ke2Z+1 leZ
(5.26)

The term (5.18) is due to the time cutoff &, ; and is extremely small by (3.11), as we will see.
The terms in (5.19)—(5.22) are errors caused by the “twisting” introduced into our ansatz by the
composing 1,1 with the flows X;,_1; and inverse flows X 1 o these will be controlled using
the bounds on the flows and inverse flows we proved in Section 2: see (2.40) and (2.67). The
terms (5.23), (5.24) and (5.26) are “routine homogenization errors” which are expected. Finally,
the very tiny error terms in (5.25) is reflection of the way we constructed T),—; and PNIm, which
actually solve the equations (4.13) and (4.22), respectively, which are slight perturbations of the
equations (4.8) and (4.16) we initially wanted them to solve.

In the next subsection, we will show that the LQH ~1 norm of each of the numerous error terms

Y2

on the right side of the expression above is at most O(km €d)). This will subsequently permit us to
deduce that the L2L2 difference of the ansatz 6,, and the true solution 6,, of (4.3) is small, and
thus to compare the decay of the L? norm of ,, with that of 6,,_1, up to a suitable error.

5.2 Estimates of the nine error terms

In this subsection, we prove the existence of a constant C'(8) < oo such that, if the parameter A
satisfies
A=C (5.27)

then, for every m € N satisfying

n—1

m > me, = inf{n eN:n>2, < RQO} , (5.28)
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we have the estimate
/iy_nl/z H (at — kmA + by, - v)gmHLQ((O,l);H—l(TQ)) < 0521—1“90“L2(’]I‘2) : (5‘29)

The proof of (5.29) amounts to showing that each of the error terms in (5.18)—(5.26) can be
estimated by the right side of (5.29).

Remark 5.1. The role of the restrictions A > C' and m < mg, is to ensure that the conditions
in (4.61) are valid and, therefore, all of the estimates on 7T,,—1; and H,, proved in Section 4 are in
force.

5.2.1. Application of ergodic lemma for controlling nondivergence form terms. For each of the four
nondivergence terms in (5.19), (5.21), (5.22) and (5.26), we are faced with estimating the L2H 1
norm of a function of the form f(go Z~'), which is the product of a “fast” function g o Z~!, the
composition of an &, periodic, mean-zero function g with a smooth inverse flow Z~! which has
analyticity radius e,,—1, and a “slow” function f which is 1-periodic, smooth and has analyticity
radius of order &,,_1. We expect that a weak norm of f(go Z~!) would inherit smallness from the
relatively fast oscillations of g, which modulate the slower signal f, up to an error which depends
on the scale separation between ¢,, and €,,_1. Thanks to the periodicity of g, this error turns out
to be exponentially small in the ratio &,,_1/¢,, as we show in Appendix C. Roughly, what we have
is that

|f(g0 Z_l)HL2((O,1);H*1(’]T2))
Em—
S C’SmeHLQ((O,l)xT?)HgHLQ((O,l)x’]P) + C||gHL2((O,1)><T2) exp (‘Cé_r:) : (5.30)

The exact statement can be found in Remark C.5.

The first term in (5.30) represents the scaling of the H~1(T2) norm compared to the L2(T?2)
norm for a mean-zero, ,,—periodic function. For instance, in the case f =1 and Z = I and g is
constant in time, we have HgHH,l(Tg) ~ 5mHgHL2((0,1)><11‘2)' So essentially what (5.30) says in fact is
that the modulation by f and Z does not alter this estimate, up to an error which is exponentially
small in the scale separation. The constants C' in the second term on the right of (5.30) depend on

the appropriate analyticity norms of f and Z.

Here we check the applicability of this estimate to the terms (5.19), (5.21), (5.22) and (5.26).
In all cases, the role of the measure-preserving mapping Z is played by Xj,_1 ,, and it needs only to
be estimated for times in the support of the cutoff function &, . The required analyticity bounds
are then a consequence of Corollary 2.4, in particular the estimate (2.70), which implies, in view
of (2.12) and the definition of &, ,

sup  max |[|0% Xy, 1k (t, )| Loom2) < Cnl(Ce, b )"t Vn e N. (5.31)

tesupp £7n,k |a|:n

The choices of f and g we need to make are different in each estimate, but in every situation we
show that our choice of f satisfies, for some constant C' < oo,

sup  max |[|0%f(t, )| Lo (r2) < Cnl(Ce b )", VneN. (5.32)

tesupp Epmy i |XI=N
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We then may apply Remark C.5 with R =r = Cx = Cs;nlfl and N = ¢,;1. The result (C.14) then
yields

1090 Z7 ) 20,111 (r2))

_ Em—
< CEmeHB (0,1)xT2) H9||L2 0,1)xT2) T CH9HL2 © l)xW)gml—1 exp (_ CZ;)
CEmeHB (0,1)xT?2) H9||L2 (0,1)xT2) T Cepn? ”9HL2( 0,1)xT2) * (5.33)

In the last line we used that, by (2.10),

1 Em—1 -1 —(g—1
Emi exp(— Oc ) <e, exp(—cgm(f1 )) < 062991 )
m

For (5.19), we use the choices

f=&m k(VXm 1,1 © Xm 1 lk)vv : ((Km + Smfl)VTmfl) and 9= Xm,k (534)

The desired bound for f in (5.32) is a consequence of (2.68), the bounds for s,,_1 in (4.39), the
estimate for ky,,—; in (3.46), Lemma 4.3 and the product estimate of Lemma B.1.

The term (5.21) is not in divergence form, nor is it entirely nondivergence form. Therefore, we
split it into the sum of two terms, one in nondivergence form and the other in divergence form:

(5:21) = 3} &mprm (VX1 = 1) VX © X0 )V (T10Xm )0 X 0l )
ke2Z+1
ke2Z+1

Only the first term in nondivergence form requires the use of the ergodic lemma. We apply it with
the choices

f=mprm (VX — L)V (V(Tno1 0 Xmo1g) 0 X0 i) and g =V, (5.36)
Recall that
V(Tn10Xmoax) o Xl g o= (VXmako X0 1)V (5.37)

Therefore the desired bound for f in (5.32) is a consequence of (2.40), (2.68) and the product
estimate of Lemma B.1.

We next consider the term (5.22) which, as for (5.21), must be split since it is not completely
in nondivergence form. In order to write our expressions more compactly, we denote

Y11=l — VX1, 0 X;ll_l,l (5.38)
and we write (5.22) as

(5 22 Z fm kYm 1Ll (Cm k¢m kO + F&mVXm kOXT_nI,le)v(v (TmfloXm—l,lk)oX;Llfl,lk)
ke2Z+1

-V Z fm,kmel,k (Cm,kl’/;m,ko' + "imvxm,koXn_@l_l’lk)V(Tm—IOmel,lk)oXn_‘L 1,0
ke2Z+1
(5.39)
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Only the first term on the right of (5.39) will require the use of the ergodic lemma, and we will
apply it with the choice

{f =i = VXp1g, 0 X0 V(Y (Tt 0 X)) 0 X0, ), and (5.40)

g = Cm,k¢m,ka + /QmVXm,k .

In view of (5.37), the desired analyticity estimate (5.32) for f is a consequence of estimate (2.68)
of Corollary 2.4, Lemma 4.3 and the product estimate of Lemma B.1.

Finally, for (5.26), we apply the ergodic lemma (with the time variable frozen) with

=&m Am Th_10X,— OX_I, ;
{f Emi&m V(V( 1 1.1) m 1,1) (5.41)

g = Jm — (F‘:m12 + &m,lka,kwm,kU) (12 + va,k:) .

In view of (5.37), the desired analyticity estimate (5.32) for f is a consequence of estimate (2.68)
of Corollary 2.4, Lemma 4.3 and the product estimate of Lemma B.1.

5.2.2. A reference list of basic estimates. The following identities and estimates, proved above and
collected here for the convenience of the reader, will be used repeatedly in the estimates of the
terms on the right side of the Big Display on Page 72:

em ~el (5.42)
= 572, (5.43)
T ™ Gy 1€0 1 (5.44)
2q :8
Fomn =~ Al = BV = a1 (5.45)
EmTm Sm—1; (540
. " amé‘%z 1—
||Xm,k”Loo(Rx1r2) + em [V k }Lm(RxTQ) s om0 (5:47)
m

Bl o crny = ml ey = ame, = e, (5.48)

~ —1
IV o (£, M 22 o,17x72) < €215 5 160 272y » (5-49)

(1 —1
anHTmfluL%(o,l)de) S ”!(Cem(_fv/z))n“mﬁ ||90||L2(T2) , VneN. (5:50)

In each of the above inequalities, the symbols < and ~ are to be interpreted as asserting inequalties
and two-sided inequalities, respectively, with implicit prefactor constants which depend only on the
parameter 3. For (5.42), (5.43) and (5.44), see (2.10), (2.11) and (2.12), respectively; for (5.45)
see (3.46); for (5.46), see (3.47); for (5.47), see (3.10); for (5.49), see (4.80); for (5.48), see (2.20);
finally, for (5.50), see Lemma 4.3.

We present the estimates for the terms on the right side of the Big Display on Page 72, in
consecutive order.

The estimate of (5.18). The smallness of this term is a reflection of the fact that the spatial
oscillations in the shear flow homogenize on time scales of order €2, /K, which is much less than 7,
by a factor of 5%;5_1. While it is in nondivergence form, we can bound it brutally using an exponential
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factor so we do not need to use the ergodic lemma (Remark C.5) in the appendix; an L? estimate
is more than sufficient. The claim is that

D (maXmr) - V(Tn1 0 Xom1) 0 Xk )
ke2Z+1

< 0”1252291“90‘&2@2) . (5.51)
L2((0,1)xT?2)

Observe that (3.11), (2.26) and (5.46) imply that X, and H,, is very small on the support
of 04 . We can therefore estimate the left side of (5.51) by

o @t |V Tm=1l £2((0,1)xa)) < C'exp (‘Cfr_f—é1) IVOm—1]l L2 ((0,1) x4

< Onyt (s exp(—e, ) ) )0l 2gesy -

(. )

SUP | O¢&m k Xm i
ke2N

g
500
<Ce?y

This is (5.51). O

The estimates of (5.19). We claim that

3 bnkXomr - (VX100 X001 ) VY - (Bmo1T2 + Sm1) V1)
ke2Z+1

L2((0,1);H=1(T?))

< CrjiCen, 100]l 212y - (5-52)
We will use the ergodic lemma of Remark C.5, as explained above. We apply (5.33) with f and ¢
chosen as in (5.34) to find that the left side of (5.52) is bounded from above by the sum of

500

CE?'gnggHLQ((O,l)xTQ) = CEmfIHXm,k < 08?2918117;7 < 0529917

|L2((0,1)><'11‘2)

and

CameHLQ((O,l)x’]I‘Q)H9“L2((O,l)><’]1‘2)
< Cepy |Xm,k’“Loo igg”fm,kv*xm—l,lk HLOO(]RXTQ) va : ((Km + Sm—l)VTm_l) HLQ((O,l)XTQ)

1 T
< Cem-eny - O Em18, 1 Ky 11 [100] L2 0,1y x2)

12 [ Fm—1 72 Em 2 —y_— 12~ _86
= Ckyp Em 5m—1H90HL2(T2) < Ckyy Cffm—lHHOHL?(T?) :

m Em—

"

86
< CEm71

In the previous display, we used the size and regularity estimates for s,,—1 in (4.38) and (4.39) as
well as (5.42), (5.45), (5.47), (2.67) and (5.50) and the fact that

K. 1 2 e 2

m— m e P 89

( ) < ) 8m’ygm’yfl < C'8m71
Rm Em—1

—_———

<Ce ) <cedltV<coe i’

since, by (2.5) and (2.7),

2(q—1)—75—(q—1)ﬁ=(q—1)<2—qf1(2q+1)) =2(q—1)<1—zgi;5> = 80.

This completes the proof of (5.52). O
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The estimate of (5.20). We will show that

Z Em,k ('k';mIQ + JmU) (va_l — V(Tm—l o Xm,le) o X;ll_
ke2Z+1

1,0
L2((0,1)xT2)

< Ok e 25 1H90HL2(T2)' (5.53)
Using the formula

VT 1 — V(Ton10 Xpmo14,) 0 X,

m— 1lk

 (fa = VX1, o X ) VT
and the estimates (5.48), (2.68) and (4.9) with n = 0, we can bound the left side of (5.53) from
above by

H”mIQ + meHLw(RxW) igg H‘Em,k (12 - VXm*le) HLOO(RxW)”VTm—lHL?((o,l)xT?)

< C(Hm + amefn) ngflHva—luLZ((OJ)xqp) CRI/Z 26 1”90”LQ(T2) .
|

1/2 1/2
Km Ky 1

<Ck

This yields (5.53). O

The estimate of (5.21). We use the identity (5.35) to split (5.21) into a divergence-form part and
a nondivergence form part. The claimed estimates for these are as follows:

Z gm,k"im (VXy_nI,Ll )va k© Xm 1,1 V(Tm_l © melalk) © )(m1 1,1
ke2Z+1

L2((0,1)xT2)
< CrPe® 116, 5.54
< Okpem1lbol 22y  (5.54)

and

Y s (TX5 1~ 1) VX © X V(T (Tt 0 Ko1)o XL )

ke2Z+1 L2((0,1);H=1(T2))

< Ck), Ve 26 1H90HL2(T2)' (5.55)

For the L? estimate (5.54), we use (2.40), (5.47) and (5.50) to bound the left side from above by

m1 Ll — 12) HLOO(RXW)HWHvxm,kHLoo(RxTz)HV(Tm—l © melvlk) © Xm1 Ll HL2((0,1)xT2)

< CEm—l"{ma;ﬂHVTmflHL2((0,1)><'H‘2)

Km—1

1/2
Km _
_ Rl ( ) o 180l ey < CZE 160l e (5.56)
< Chby (5.45) & (2.7)

This completes the proof of (5.54).

For (5.55), we use the ergodic lemma of Remark C.5, as explained above. We apply (5.33)
with f and g chosen as in (5.36) to find that the left side of (5.55) is bounded from above by the
sum of

Cem 1|V Xm il 20,1y xm2) < Comirem’ < Cemiy,
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and

Cemufmk"ém(VXm 1,0 IQ)V(V(Tm 10 X 1lk)oXm 1lk)HL2 ((0,1)x

< Cembim supHEm,k(VXm1 e~ 12) [ Lo )|

((0,1)xT?)

)

HV( ( m—10 Xm— 1lk)oXmlllk)HLQ((O,l)xTQ)'

The latter term is almost the same as in (5.56), the only differences being that we have one extra

derivative on the T, expression, which costs exactly a;ﬁﬁ/ 2), and we also have an extra factor

of &y, = €l ;. This more than compensates, since, in view of (2.7),
1
q—1>(q—1)§>fy>§fy. (5.57)
This proof of (5.55) is therefore complete. O]

The estimate of (5.22). We will prove that
15:22)] 20,111 r2y) < Ol - (5.58)

We use the identity (5.39) to split (5.22) into divergence and nondivergence form terms. The
estimate for the first term on the right side of (5.39) is obtained with the help of the ergodic
lemma in Appendix C, as explained below (5.39). We apply (5.33) with the choice of f and g given
by (5.40). Up to the exponentially small error, the estimate is reduced therefore to

CE’”HfHLQ((O,l)x'H‘Q)HgHLQ((O,l)x’H‘Q)
< CgmilelgHgm,k(VXm—le 1) 1o RXT2)HV( (Tm-1 0 Xm-14,) © X;Ll—l,lk)HLQ((O,l)XTQ)

% o + 8V Xom el oo ey

< Chimel €2 e Uk 200 ] 122y < Ol 7740 ooy

As above in (5.57), we have that ¢ — 1 — /2 > 0, therefore the right side of the previous display is
bounded from above by the right side of (5.58).

The second term on the right side of (5.39) is in divergence form, so we just need to estimate
the L? norm of what is under the divergence. The claim is that

Z gm,kYm—l,k‘ ({m,lk Cm,kd)m,ko- + /{mVXmJg © X;LI,l’lk)v (Tmfl © Xm—l,lk) © X;llflyl
ke2Z+1

"2 (0,1)xT2)
< Cryieinilfolpzgray - (5:59)
The proof of (5.59) is almost the same as (5.54). Compared to the latter, we use the bound

< Ckmey,)

[ ]

instead of just the bound for |V X, kL, and we substitute the bound

||€m,kYm—1,kHLoo(RXT2) Cf‘:m 15

in place of the bound for (&, (VXm1 11, IQ)HLOO(RXW), which is essentially the same. Recall
that Y,,_1 1 is defined in (5.38) and the above bound is a consequence of (2.67) and (5.44). The
proof of (5.59) and hence of (5.58) is now complete. O
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The estimates of (5.23). The claimed estimate is

Yo G (Fmle + 6m0) X sV (V (Tt © Xin1gy) 0 X001
ke2Z+1

L2((0,1)xT2)

< Ok, e 45 1H90HL2(T2)' (5.60)

Using (5.47), (5.48) and (5.50), we bound the left hand side of (5.60) by

H"QmIZ + Q;Z)mO-HLOO HXm kHLoo Sup”fm kv(v( -10 Xm 1 lk) © Xm 1 lk)

2
< cgm(l N m) T it P N

L2((0,1)xT?2)

Km
2
AmEqy, € —
CHI/Q /2 <1+ ~ > <m>€m7€mW/2l Ko — lHHOHL2 ’11‘2) <Ck %2 " 1HQOHL2 T2)
. Km Em—1 )
~
SCnl/Q <Ceil

m—1

In the above display, we used that

<;m >5m75m7/21 < CellroR = e, (5.61)
m—1

since, by (2.5) and (2.7),

q—l—qv—;”y:(q—l)(l—qfl(ﬁ;)) =(q—1)<1—331;6> =40.

The proof of (5.60) is complete. O

The estimate of (5.24). The claimed estimate is

| (k2 + o)V Hy, < Crlred, 1100l 2(r2) - (5.62)

201y m2)

This follows easily from (5.49), (5.48) and (5.50). Indeed, we have that
| (“m12+¢m‘7)VHmHLz((o,1)xT2 [Kmla+mo] “VH HL2 (0,1)xT2)

2

mEm, —1/

< CHm <1+ o >€f7f 1/€m 21H00HL2 ']1'2) 0%1/2 46 1||90||L2 Tz .
m

.

~-
1/2 1/2
Rm—1

< Ckm,

This completes the proof of (5.62). O
The estimate of (5.25). The claimed estimate is
[(5.25)] 2 0,1);H—1(T? < Crpiem 100l (T2 (5.63)
((0,1);H=1(T?)) = )
We first show the following bound for d,,:
Yo _26

HdeLQ([OJ]XTQ)gﬁ Em—1]00l z2(T2) - (5.64)
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This bound follows from (4.88), upon taking N, to be sufficiently large to ensure that

1/2 L(ce?, 5 )N*/2\ K220
In turn, this estimate follows from Cs(s/ ° | < 1 and the definition of N, in (2.6), which implies
Ne=8+4(g—1)(B+7)5 =8+ 128q The last equality is follows from (2.3), (2.5), and (2.7).
We next prove that
1
Hem_luLQ([O,l]x'ﬂ'?) <Ck rf o 1”‘90”L2 T2) (5.65)

The inequality (4.66) with n = 0 says that

1 N,
lem—1llL2(0,1)x12) < CONyFy Y (o= */2H90HL2(T2) : (5.66)
If N, is sufficiently large to ensure that
1/2 (0525 )N*/2 < k1220 .

then (5.66) directly implies (5.65). Similar to the previous paragraph, the above estimate follows
from the definition of Ny in (2.6), which implies that N, > 8 + 128¢%(¢ — 1). Note that since N,
is chosen as in (2.6), the constant Cl, also depends only on S, and this gives us (5.65).

The claimed estimate for the third and final term in (5.25) is

< Ce2d k55 0ol r2gr2y  (5.67)
L2((0,1)xT2)

Z gm,k’%m,k (va—l,lk o Xf:llfl,lk) . V(V . em,l)
ke2Z+1

We proceed similarly as above. Using (2.67), (5.47) and (4.66) with n = 2, We have that

Z ém,k;(m,k (VXm—l,lk o XT:Ll_le) : V(V . em_l)

ke2Z+1 L2((0,1)xT?2)

Hgm,k (VXm—lylk © Xm1 1 lk) HLOO(]RXTQ)Hv2em*1”L2((0,1)><T2)

cel T CON R (Cen ) (CE8, ) M 00 202y

< OO, (/50700720 (el )™ ) il Bulogen

m—1

Arguing as above, we need to ensure that N, was chosen so large that the term in parentheses is
bounded by a constant times 8 . It suffices to take

N, >2+6_1(1+(q—1)(5—1)—QQ’Y),

which is clearly satisfied by the N, defined in (2.6). This completes the proof of (5.67) and thus
of (5.63). O

The estimates of (5.26). We will show that

Z Em.k (J (KmIo+Con 1y, G jm 10 (Ia+VX,, k)) V(V(Tm—loXm—sz)OX,;l_uk)

ke2Z+1 L3H;!

C/il/Q 46 1”‘90”L2(T2 ] (5.68)
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This term is in nondivergence form, so we need to apply the ergodic lemma in Appendix C, as
explained above. We apply (5.33) with the choice of f and g given by (5.41). Discarding the
exponentially small error term, this reduces the estimate (5.68) to an estimate for

C€m|‘fHL2( 0,1)xT2) H9HL2 ((0,1)xT2)
CsmSUPHEm KV (V (Tt 0 Xe1y,) 0 X, 0 1lk)HL2 ((0,1)xT2)
X HJm - (KmIZ + (m lka kVm ka) <12 + va k HLOO (RxT2)

< Cem - Ce, Pk, 200 ] 12 2y - Climen?

<C 1/2 1 v —(14+/2) 77 Km 1/2 9 < Ck 1/2 45 0
Km Em—1 P H 0HL2(T2) < Ok em il 0HL2 T2)

. S o m—
Here we used (5.45), (5.47), (5.48) and (5.61) again. This completes the proof of (5.68). O

We have now estimated every one of the terms on the right side of the Big Display on Page 72
and shown that they are each bounded by the right side of (5.29). The proof of (5.29) is therefore
complete.

5.3 Energy cascade down the scales

In this section, we complete the proof of Theorem 1.1. The main step remaining is to use the
estimates from the previous section to obtain lower bounds on the energy dissipation of 6, in
terms of that of 6,,_1, thereby formalizing the expectation that energy is pushed by advection into
smaller scales, down the inertial-convection subrange, until one finally reaches a scale small enough
that molecular diffusivity dominates.

Recall that we have fixed a small parameter k£ € K, with the set I defined in (3.44), and
chosen M € N satisfying (3.45); the finite sequence k7, kKar—1,- - -, ko is defined by (3.43).

Proposition 5.2 (Main induction step). There ezist constants C(f) < oo, such that, if the minimal
scale separation parameter A satisfies A = C, then the following statement is valid. For every Rg, >
0 and 0y € C*(T?) with {fy) = 0 which satisfies the quantitative analyticity condition

n!
‘H1|84X H&O‘H()HLQ(TQ H60HL2 T2) o Rn s VYn e N, (569)
x|=n 00
if we define
. . 1+/2
me, 1= mln{m eN:m=>2,¢, 7 < Rgo} , (5.70)
then, for every m € {mg,,..., M}, we have the estimates
1 6
[6m — O]l e 0 1y22x2y) 21V 0m = Vo 20y may < CEbui B0l 22y (5.71)
and )
EmlVOm
H ||L2(2(O,1)><11‘2) 1l < 0521,1' (5.72)
Em—1|VOm—1]72((0,1)x2)
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The proof of Proposition 5.2 is based on (5.29), which implies the bound on V#6,, — .
n (5.71). We then use this estimate to obtain the rest of the estimates in the proposition by doing
the computations for 6, and then switching back to 6, with the triangle inequality.

We will assume that the constant C' is large enough that the conditions (5.27) and (5.28) are
valid. Therefore the estimate (5.29) proved in the previous subsection is also valid.

The proof of the estimate of 0, — §m in L?H}. We prove the estimate (5.71):

[0m = Om | oo (0.1 22022y + s |V O — VQmHLZ (0,1)xT2) S Cep_1160] L2 (re) (5.73)
Since Oy, = Oy, at t = 0, the energy estimate and (5.29) yield

O — O} V0, — VO,

[Om — mHLoo((o,1);L2(1r2)) + Ko | VO — m||L2((0,1)><’]I‘2)

< a”(at — HmA + bm . v)9m||L2((0,1);H_1(T2)) < 067271—1”00”L2(']1‘2) .

This is (5.73). O
Estimate of the energy dissipation of 0, in terms of 6p,—1. We next prove that (5.72) holds. In

view of (5.71), it essentially equivalent to prove (5.72) with 6,, in place of 6,,. We therefore return
to the identity (5.10) and rearrange it in the form

ng = 2 Em.k (12 + VXm,k) © Xn_q,l—l,lkVTm—l

ke2Z+1
+ Z gmk m 1lk )(VXm,k) m— 1lkVTm 1
ke2Z+1
+ D ek VXank (VX 0 X0 = 12) VT
ke2Z+1
+ 2 ékamkv(V( 10X 1lk) OXmlllk) +Vﬁm' (5'74)
ke2Z+1

The first term on the right side of (5.74) makes the leading order contribution. We proceed by
estimating the second through fifth terms on the right side of (5.74), showing that their are suitably
small. For the second of these terms we use (2.67) and (5.44) in place of (4.65):

"”";7/12 Z gm,k VX;L Ll — )(va,k) m— 1lkVTm 1

ke2Z+1

L2((0,1)xT?2)

< C’%ZE ?cull\l) ‘VX —1,lk — b H Hgm,kva,kHLw(RxT2) HVTm—l HLQ((O,l)xTQ)
€

L (supp &y 1 X T?)

1/2
26 K - 26
<Cely () e Bolliages < O lful ey

m—

< Cby (5.45) & (5.47)
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For the third of these terms we use (2.67) and (5.44) in place of (4.65):

1/2
K;m

Z gm»k‘v%ﬂhk‘ (vafl,lk o X?’)_’Ll—l,lk - IQ)VTTTZ—I
ke2Z+1

L2((0,1)xT?2)

< O sl 7% e o) | VX1 = 1ol ) VTt 0y

1/2
K —y .25 26
<C (K m1> Em’ EganHQOHL?(’IFQ) < Cep1lboll L2 (m2y -
—

< Cby (5.45) & (5.47)

For the first term on the last line of (5.74), from (2.70), (5.47), and (5.50), we have

1/2
K‘/m

Y enk XV (V (T 0 Xono1y) 0 X0 )
ke2Z+1

L2((0,1)xT2)

< O ?clel§||£mk>~(mk HL°°(supp &m,k xT?) HVQTm*l ”LQ((OJ) xT?)

+ O S 1 Xom VKot | o a2y [V T 20,172
; ,

1/2 9
Km _ Em _ 2001
<o () e (2 ) ool < Cob® Moliage-

RKm—1 m—
A

"

< Cby (5.45) <2173

Finally, in view of the estimate for VH,, in (4.80), we have
7 é
Kl IV Ho (£, )| 220,17x72) < Cepy 1 160] 122y -

By (5.74), the triangle inequality and the previous five displays, we therefore obtain that

1/2
K’m

ng - Z ém,k (12 + va,k) © X;Ll_l,lkVTmfl
ke2Z+1

< G160l 22y -
L2((0,1)xT2)

In view of (4.65), (5.71) and (5.76), in order to prove (5.72) we have left to show

2
Rm

D0 bmk (T + Vo) 0 Xy, VT
ke2Z+1

2((0,1) 2)_Hm1“VTm1”iz((0’1)XT2)
L2((0,1)xT

5 2
< 05%1—1“90”L2(T2) -

(5.75)

(5.76)

(5.77)

The proof of (5.77) is based on an application of an ergodic lemma in the appendix (Lemma C.3).

Before we apply the lemma, we define the matrix

F(t,x) := Z Emie (I2 + VXnp) © Xr:Llfl,lk :
ke2Z+1
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We can therefore break up the left side of (5.77) as follows:

2

D Gmn(la+ Vxms) o X0t Vi
ke2Z+1

- fim71||VTm71H%Z((o,nx?ﬂ)
L2((0,1)xT2)

1

VTt () ey e — [
0

+ L ‘Nm«FtF)(tv )> —Jm ‘HVTW 1 HL?(T2 dt

1<VTm_1(t,-)-J V1 (t >dt—f <VTm 1) - (T YV T 1 (¢, )>‘

. VTm-1(t,z) - {(F'F)(t, ) )VTp-1(t,z) dz dt ‘

(5.78)

<VTm1 )+ IV Tt >>—nm_lum_lniQ((oMz)

The first and third terms on the right side of (5.78) are estimated using an ergodic lemma
(Lemma C.3 in the appendix); for the first term, we apply the ergodic lemma in space only,
and for the third term we apply the ergodic lemma in time only. The second term on the right side
of (5.78) is a consequence of Lemma 3.2. The fourth term is actually equal to zero, because 12
is equal to (J,,) by definition: see (3.16) and (3.43).

We next bound the second term on the right side of (5.78). We observe that

t _ t _
FF=T+ > &nil(VXmr) +VXmn) 0 X0+ D0 & ((VXmt) VX)) © X0k, -
ke2Z+1 ke2Z+1
Indeed, this follows from the fact that the supports of &, » and &, » have nonempty intersection
only if k, k' € 27 + 1 satisfy |k — k| < 2 and, by (3.35), we have
k—K|=2 = (Vxmro X, 1) (VX 0 X0 1lk,) =0. (5.79)

Taking the average in space and multiplying by &, yields, in view of (3.36),

kn(FENE) = kinlz + i > €i,k(t)<((vxmk) VX k) © XL 1zk>(t>
ke2Z+1

= fmly + hm Y, o i(t) VX o) VX ) (1) = B (1) (5.80)
ke2Z+1

Therefore, thanks to Lemma 3.2, we obtain
1
[, o P = T 9T ()
= [t = B DTy

< Fms (m) IV Tt ooty rey < €21 1001 22 (5.81)

where we used (5.46) and (5.50) to get the last inequality.
We next estimate the first term on the right side of (5.78). The claimed estimate is

1 1
mmf Bt YV T (8)[ 2 —J -V Tea(t) (P E) () VL 1) do
0 0

< e [6ol72(ry - (5.82)
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For this we apply an ergodic lemma from Appendix C, namely Lemma C.3 with the time time
variable frozen. We therefore fix t € (0,1), k € 2Z + 1 and ¢,j € {1,2} and we use the following
choices for the X, f and g appearing in that lemma:

X = Xm—l,lk )
f = axiTm—l(ta ‘)aijm—l(ta ) )

9= (124 &t ((VXn) +VX0m) + e ((VXn) Vo))

and with the following choices of the constants appearing the hypotheses of that lemma:s:

(Cx = Cep1,
R=Ce ',
{Cp = CoyRy )"
_ p-! i:_v{z
N=¢g.

Let’s check the hypotheses of Lemma C.3 in this situation. We first note that (C.6) is valid
since (2.40). The hypothesis (C.7) is valid due to (4.62). The periodicity assumption for g is clear
from the construction of the correctors X, 1, as these are e,,~periodic. Finally, the condition (C.8)
is valid since

Np 812n+v{2 6:n+j{2 - ;(ill—l)(l—ﬁ) 8;27(({71)/3
R(r+dCx) CemRay(Ry e 1 1+w/2 e ) ~ CRyyem C Ry, ~ CRy,

Clearly the expression on the right side is at least 1, provided that A is chosen sufficiently large.
Note that, after summing over k € 2Z + 1, the function g o X! is equal to the ijth component
of F'F(t,-). Therefore, an application of the lemma, namely (C.9), gives us the bound

o[B8, )V T 1 (8 ) 2 e JTQVTm1(t,;g).<(FtF)(t,.)>VTm1(t,x)d:r:

1/2 _2((11 D/ 2
S O L R
0

Integrating over t yields (5.82).
Returning to (5.78), we consider the third term on the right side. Our claim is that

1
<VTm_1(t,.).J VT ( >dt—J <VTm () - ATV T ( >|
0
< Ol [0ol72r2) - (5:83)

To see this, we first recall that the bound for J,, — J,,, in (3.25), together with (3.47), implies that
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the left side of (5.83) is bounded from above as

01<VTm_1(t,-).J )V T 1 ( >dt_J <VTm 1) )V a0 )>‘

Ca%nsfn 2, N
S o (m Tm > IV Tl ao ey + U —3n)): (VT (t,) ® VT ,-)>dt’
<C(C5%_1)N*K,m IHVTm 1HL2 01 ><11‘2 ’J <<Jm>> <VTm 1 ®VTm l ,)>dt‘
< O(Ce2_ Y 00)3 212 U —InY): <VTm (£, ) @ V1 ( ,-)>dt’. (5.84)

Next, we recall from (3.20) that J,,(t) — ¢J,) is a zero-mean 7/ —periodic function of time (re-
call (2.15)), and so we may write

Nyg—1

Jm(t) - <<jm>> = Z (Lm,n(t)jm,n(t) - <<Lm7n.]m,n>>) = atQm(t)

n=0

where
HQmHLw([O,l]) < C:‘im_ng,L, and Qm(O) = Qm(l) =0.
In light of the above two displays, we integrate by parts in time, use the identity

1
|, @2 (st @ VT, 1.0
f Qm J -@tm VI 1@V, + VT, — 1®@tm 1V 1)(t,l‘)d$dt,

which follows since V - b,,,—1 = 0, and appeal to the estimates (4.62) and (4.67) to deduce

U —(3)): (T 1 () ® VT a( ,')>dt‘

< C|Quml e (oap IV Tn—tl 22 (0,11 x12) | Zem—1V Tt | L2 ([0.1] <2

1 —1 _1
< Chimo1miy - ki3 00l 22y - Ceioy (7)™ Hin 1100 L2rzy < 2y 8022y -
Combining this display with (5.84) and using that
S N, 2
C(C gn 1) *ij_lHva_lHLQ([O,l]XT2) < 5500 H00HL2 T2)

for N, sufficiently large, we obtain (5.83).

Finally, we collect the bounds we have obtained for the terms on the right side of (5.78), namely
(5.81), (5.82), (5.83), and obtain that

2

Rm Z gm,k (12 + VXm,k) m— 1 Ak V11 - /‘mel”VTmflni%(O,l)x'ﬂ‘?)
ke2Z+1 L2((0,1)xT?)
< Ce2d_1160172(r2) -
This concludes the proof of (5.77). O
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The estimate 0f9 Tt in LPL2. We next prove the estimate
Ham - Tm_lHLw((O,l);LQ('H‘?)) < Cg(rsn—lHQUHL?(’]I‘Q) : (5'85)

We proceed by bounding the last two terms on the right side of (4.24). First, using (2.26), (5.47),
the fact that X ! 11, is volume preserving, and that |VXo—1,,| <214 on supp (&, 1), we obtain

Z §m,k>~cm,k (V(Tmfl © Xm—l,lk) © Xm1 1 lk)

ke2Z+1 L®((0,1);L2(T2))
< Sup||>~(m,kHLoo(RxT2 Z fmk 10X 1lk) OXm 1lk)
el ke2Z+1 L= ((0,1:L2(T))
< CY‘L:rln_7 iugufm,kz(VTmfl) o Xm—l,lk HLOO((O,l);LQ(’IF2)) . (5.86)
€

The right side of the above display requires that we bound [(VTi,-1) © Xin—14,)(t,)llp2(r2) in
L*(0,1), instead of L?(0,1) (a bound that would have been available from (5.50)). Instead, we
appeal to the fundamental theorem of calculus in time which in light of &, 1 ((k — %)Tm) = 0, gives

SUD|Em () (VTm-1) © Xom—1, (8 )| 22y
€

1) ey )t

(k"r%)Tm
<] (19nlin 9T )

-3 Tm

By further appealing to (4.62) with n = 0 and to (4.67) with n = 0 and ¢ = 1, and using also (2.27),
we deduce from the previous display that

Sllprm k( )(VTm 1) 0 X llk( )HLZ(TQ)

teR

< CTn;l/szTm—lHL%O,l :L2(T2)) + CT1/2H@t m—IVTm—lHLQ(O 1;L2(T2))
< C(7a" + 1) ™) i 60l ey < Crin 2 100 2y - (5.57)

By combining (5.86) and (5.87), we deduce

Z Em Xk (V (Tm-1 0 Xin-14,) © Xnh zk)
ke2Z+1

L*((0,1);L2(T?))

< Cgrln_A/Tn_zl/%;zi < ngw—lHHOHLZ(’]I‘Q) . (5.88)
(A

<celd |
In the last inequality we used that
_ - _os —L 1—v)—1+8/2— 2235
67171_77—1’;1/2’{7;121 = 57(1151717) e 2éemqu = 53;2717) M fn 1
and, since g € (1,4/3),
B qp 1 ¢ 3(¢ —1)° (4 - 3p)°
l—7y)-14=———-30=(q—-1)+p8(=— — = >0.
a1 =) 2 g+l W=D+8(5-57) "1 Dag=1  s0p—ad
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Finally, by the estimate for Hy, in (4.79), we have

[ Ho(t, | o r210,11x72) < Cet 180 1272y - (5.89)
The previous two displays, (4.24) and the triangle inequality yield (5.85). O

The proof of Proposition 5.2 is now complete, as the estimate for the first term on the left side
of (5.71) follows from (4.65), (5.73) and (5.85).

5.4 The proof of Theorem 1.1

We conclude this section by presenting the proof of Theorem 1.1.

We first prove the theorem in the case that the initial datum 6 satisfies the analyticity condi-
tion (4.2). It will be convenient to define m, € N by

My :=mp, — 1 = min{m eEN:m=>2, 51+W/2 Rgo} (5.90)

We start with the observation that, due to (3.46) and the definition of m. above, there are con-
stants ¢, > 0 and Cy < o0 which depend only on 3, such that

2q9(B+7) (5+ ) 2(B+7)
C*RGO2+W < el < ey 5B+7 < Fomy < C*eﬁ 7 < C’*RHO“"’ ) (5.91)

Recall that 0,,, satisfies the heat equation with diffusivity f,,:
010my — Fomy A0y + b - VO, =0 in (0,1) x T2.

The standard L? energy estimate and the Poincaré inequality are applicable. Since (§p) = 0, we
find that

B (0, M2y = ~26m, [V () a2y < 85O (1) By

Therefore, we obtain

1
1
[ o 19801 5, M Bany s = 5 (1801 = [0 (1. ) )

9 1 — e 8Fmam 2 2
= H00||L2(’IF2)# = 2m ’%m*HQOHL?(TQ) :

The last inequality is valid only if 8,,, 72 < 1, but this can be assumed to be valid in view of (5.90)
and (5.91), by taking A larger if necessary. Therefore, we obtain

2q(B+v)

1
271'26*RQOQ+AY HGOH%Q(TQ) < Ky L VO, (s, -)H%Q(Tg)ds. (5.92)

y (5.72) of Proposition 5.2, for every m € {my + 1,..., M}, it holds that

(1 - CE?n—l)Hm—luvem—l‘E?((O,l)><'J1‘2) < “m”vgmH%?((o,l)xT?)

< (1 + Ca§n,1>mm_1||v0m—1\\iz((o,1)xp) L (5.93)
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We take the parameter A to be large enough that, with C' as in the previous display, we have that

CA° < 1

< —. 5.94
100 ( )

This ensures that
1—05%_1 >1-Ce > —.
By induction, in view of (2.9), it follows from (5.93) that

M
. 2 ] I 2
min M} K’mHVQmHLZ((O,l)XTQ) = < <1 — Cgfn—l))’k':m* HVQm* “LQ((O,l)XTZ) )

ME{Mteer m=msx+1

where M = M (k) is is an integer satisfying (3.45). Observe that, using the elementary inequality
—2x < log(1 — ) valid for all z € (0, 1/2], we get

M M M
log 1_[ (1 — Csfn_l) = Z log<1 — Csfn_1> > -2C Z S —Csfn*.

m=my+1 m=msx+1 m=msx+1
Note that we used (5.94) to get the last inequality in the above display. We therefore obtain

M
H (1 — ngl_1> = eXp(—C’efn*) >

m=my+1

i

> w

and hence

. 2 3 2
el }“m|\vam\|L2((o,1)xT2) = L Fmal VOl 0,1 x2)

By a very similar argument, using the upper bound of (5.93) rather than the lower bound, we also

obtain that 4

2 2
max km VO 2 oy < =K Vo 9 oy -
me{m,..., M} mlVOmlLzoxr2) < 3hme[V0mali2o1)r2)
In particular, since k = k37, we have

3 4
e |V 22 0.1yr2) < KIV0M 2 0. 12) < 5 Kma| VOl Faoy sy (5:95)

We can write an equation for the difference 8 — 0y as
010 — Onr) — KA — Orr) +b -V (0 —0p) =V - (¢ — ¢ar)VOy) in (0,1) x T4,
Recall that, by (2.39),
6 — dnrll oo mxmay < C5§4+1 = Cehd.
We may therefore compare 6y to 6 using the above displays, (3.45), (5.95) and an energy estimate:
16 — 0011 Zo0(0.1):22(22)) + KIVE = VOM[T2((0.1) 72

C
< ;W — O 7001y w2y | VOM T2 (0.1 w2y

C
< — 16 = al oo ((0,1)xm2) s IV Orma |72 0.1y 72
Ky
_ 4B
< C&M‘Prl g?\gq . (Hm* HV@m* ”%2((0,1)><T2))

26(a—237) —2MB(g— 2+
= CEM q+1 (/{m* Hvam*HiQ((OJ)XTz)) < CA 2 B(q q+1)(/€m* Hvem*HiQ((OJ)XTz)) .
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Since ¢ > 1, the exponent of A in the last term on the right side is negative. Enlarging A, if
necessary, and using that M > 1, we obtain

2 2 1 2
10 = Orr 70 0,1y 02(12)) + BIVEO = VO T2¢(0.1)x72) < Z(Hm*\\vgm* ”L2((o,1)x1r2)) -

Combining the previous display with (5.95) and (5.92) therefore yields

1/2(HV9MHL2((0,1)xT2) — V0 = VOl 12 (0.1)x12))

\f ;T/zQ*HVGm*HLQ (0,1)xT?)

ﬁl/2HV9HL2((O,1)><’]I‘2) =

(B+7)

= W@RGU}M ||90||L2(T2) . (5.96)

This completes the proof of Theorem 1.1 in the case that the analyticity condition (4.2) is satisfied.

We now turn to the argument for general 6y € H'(T?) of zero mean. We introduce the length
scale Lg, implicitly appearing in (1.6):

160/l 2 (T2)

Ly, :=
* 00l 12

(5.97)

and we mollify 6y (viewed as a periodic function on R?) with the standard heat kernel ® (with
diffusion coefficient of unit size) at time ozngoz

0 == 0+ ®(a’L} , ).

Here a > 0 is a small parameter we will choose below. It is clear that 50 is a periodic and
mean-zero function. It is furthermore analytic, since <I>(042L§O, -) is, and satisfies, for a universal
constant C' < o0,

- c \"
gl?i}fLHaQHOHLQ(TQ) < |90|L1(T2)n!<aL > , VneN.

|ex|= 0o
That is, the analyticity condition (4.2) is valid for Rj = caLg,. If we let f be the solution of (1.1)

with 50 in place of 6y, then 6 — 0 is also a solution of the same equation with initial data 6y — 50,
and therefore the incompressibility of b implies as in (1.5) that

16— 00, gy + 26190~ D)2y = 10— Bollagey . >0 (598)

In view of (5.96) (applied to ) replacing 6 and bo replacing 6p) and the triangle inequality, it suffices
to show that we can choose « in such a way that

a(B+7)

160 = o] 2 7, < w\/aRf“ : (5.99)

We next compute

- a?L?2
HeoHiQ(W) = H%Hig(w) —ZL OLJ(GO*W(S, ) (@)[ da dt .

Using that
2L2
2 2
f 2](90 #« VO(s, ) (2)]" dudt < a®Lg [ Vo[ 2 g2y < Ca®[00] 2 (r2)
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we therefore obtain
(1- CO‘)HQUHB (T2) ||90||L2 2) S H00HL2 T2)

Since R(;O = caLy,, the inequality (5.99) will be valid provided that « satisfies

a(B+7)

a < L2+7 q(f“r'y)

With this choice of «, we observe that (5.96), (5.98), and (5.99) imply

+’y) q(B+~)

K2V L2 (0,1)xm2) = ch*Rgo 1601l z2r2y = cLgy ™" |60l 122 -

This completes the proof of the theorem.

Asa ﬁnal remark, we note that the exponent of Ly,, namely %, can be taken arbitrarily
close to 2_ 5 by taking ¢ closer to 1 than in (2.2), at the cost of all constants depending additionally

on q. With @ = 8 — 1, this matches what was promised in (1.6). O

A. Macroscopic mean drift destroys enhancement

The goal is to formalize the idea, mentioned in the introduction, that a slowly-varying background
flow with large amplitude will destroy the enhancement generated by a mean-zero, time-independent
microscopic flow with smaller amplitude. The arguments in this appendix are not used anywhere
in the paper; we include these for informational purposes only.

To simplify the discussion, we consider only two scales and assume that the macroscopic back-
ground flow is constant. We therefore assume that b : T¢ — R? is a periodic, incompressible,
mean-zero, time-independent vector field and v € R is a vector representing the constant back-
ground flow. We let m be the stream matrix for b and define for 0 < e « 1

a®:=I;+m(2).
We may then write
A+ (Ib(2) + L) V= -V a¥(@)V + Lo V.

We wish to estimate the effective diffusivity matrix, denoted by a,, which we obtain by homoge-
nizing the operator
o—V-aV+1ly.v. (A.1)

We can rewrite this operator, absorbing the constant vector v into the diffusion matrix, by changing
variables in space-time: if 6.(¢,z) is a solution of

0f. — V -a°(z)VO. + %U -V, =0,
then defining T.(t,x) := 0.(t,z — %tv), we find that

ol —V-a VT, =0, where a (t,x) :=a(z — ltv) =Ip+m(Z—vh) =a,(hL).

€27 ¢

We can therefore pose our problem as follows: we are interested in computing the effective diffusivity
matrix for the parabolic operator 0, —V -aS(t, 2)V, where a5(t,2) = a,(%, £) is periodic in z and
quasiperiodic in the time variable ¢. By classical homogenization theory, this problem homogenizes
to 0y — V-a,V for an effective matrix a, which depends on v; we can invert the change of variables
and see that a, is also the effective diffusivity of the original operator we were interested in (A.1).
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Let us assume that v € R? is a good Diophantine direction,'® i.e., that there exist A € (0,1)
and xk > 0 with

]ﬁ ul= AR, Wkezd = Z0\{0}.

Note that the set of directions satisfying this condition has full Lebesgue measure. We can write
the equation for the correctors y, associated to the homogenization problem as

Oixe — V- a,Vxe =by-e inRxR?, {(xe) =0,

where by (t,z) = V-a,(t,z) = b(x—tv). Here, and in what follows in this appendix, the brackets {-)
denote the mean of a quasiperiodic function of time, which is T%-periodic in space, i.e., for such f,

{fy=lim J[TT J[w (¢, x)dadt .

T—0
The enhancement of diffusivity is related to the correctors’ gradient field V. by the formula
e-aye — lef? = <|VX€‘ > (A.2)

To obtain (A.2), we use the equation for y. = x(t,z) to get

0=—{30x2> ={(Vxe-av(e+ Vxe)).

Therefore, since (Vx.) = 0, and the symmetric part of a, is I, we obtain from the above identity
that

e-aye=c¢e-(a,(e+ Vxe)) = e+ Vxe) -ay(e + Vxe)) = <|e + VXe|2> = le|? + <\VX8|2>.

The identity (A.2) says that the difference between the effective diffusivity a, and the molecular
diffusivity matrix I; is proportional to the size of the correctors. Next, we show that <|Vxe|2> is
small when |v| » 1. For this purpose, we use the identity

UV xel?> = {(by - €)xe)

and estimate the right side.

Assume f and g are quasiperiodic in ¢ and T%periodic in z. Then, denoting fk(t) and g (t) the
Fourier-series coefficients of f and g with respect to x only, we have by Plancherel that

- {5 o

keZd

We wish to apply this identity to f = x. and g = e- by, i.e., we wish to compute <(bv : e)xe>. Since
translation in physical space is modulation in Fourier space, we know that

o o d{ —i —— .. i od—
~ _ .b 2mikvt _ .b 2mik-vt | _ 2= )
gr(t) = (e-b)e dt (zm e Pl ok ot

Now, quasiperiodic functions with mean zero gradients are sublinear at infinity, and so we have via
integration by parts in time,

{fg)= hmJ[ Z Fe@®)grt)dt = hmJ[ Z 27Tk 9 cclif (t)dt. (A.3)

T—o0
T e VA

_ |k1+kaVv2] 1
/3K = 33|k|2°

CH
[v]

Y“For example, let v = (1,4/2) for d = 2. Then, for any k € Z2,

&
]
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Using the equation satisfied by f = x., we have that

% Fult) = 2mik - (a1, - Vo) (t) + i (t)

Since k - v is odd in k, the second term in the above display does not contribute to the expression
in (A.3). We deduce finally that

— T 1 — , k —
(o) = oot o (e o V(e (M)

Now, since v is a good Diophantine direction, we have the bound

1

kv
[v]

K|
With this information, we return to (A.4), use Plancherel and Cauchy-Schwartz to deduce that

||

T forall  keZzd.

<

v
) = (-] < RO Gw 3 B
kezd
< meﬁze Bl ey -
As a consequence,
<|Vxe|2> B (1+ !\m\\Lw(Td))2\|e -b|? * (Td)

A2|U|2

which becomes arbitrarily small for |[v| » 1. Returning to (A.2), we have thus shown that a mean
drift of “generic” direction destroys the enhancement of diffusion when |v| » 1.

B. Faa di Bruno formula and its consequences

In order to show that the stream function ¢(t,z) constructed in Section 2 has C? regularity as
stated in Proposition 2.2, we require explicit estimates on the derivatives of the solutions X of the
flow 0, X = f(¢, X) in terms of those of f. A qualitative version of such an estimate (for instance,
the statement that f € C¥ = X e C¥) is of course quite classical and can be found in most
introductory textbooks on ODE theory. The difference here is that we need an explicit estimate
which, while it must be known, is of a form we could not find written in the literature. Like
the qualitative arguments, the proof boils down to differentiating the equation many times. The
only difficulty is a bookkeeping one: we must keep track of all the terms arising out of repeatedly
applying the chain rule; that is, we need to use the Faa di Bruno formula.

B.1 Useful lemmas

Recall from (1.20) that for any integer n > 0, C' smooth function f, and R > 0, we denote

n 2
[[f]]n,R = (TL'+1)

D™ sup %1, (B.1)
R |o|=n N
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In the above definition, the shift factor (n + 1)? could be replaced by (n + 1) for any r > 1, at the
cost of introducing r-dependence on our constants. We shall frequently use the identity

ﬂ—%@ <g> - <Z> (B.2)

for |a| = n and 0 < k < n. By combining this identity with the Leibniz rule, we obtain:

Lemma B.1 (Product estimate). For f, g€ C2 we have the bound

[£olur < 4( o [£];) (max [o],.z) (B.3)

0<y< 0<y<

Proof of Lemma B.1. The Leibniz rule and (B.2) give

n + 1 o _

[f 9ln.r < - E sup ) 16° fll Lz 0% Pyll L

" nlRn B
k=0la=" 8=k B<a

(1) ¢ k Rk ( — k)IR"*
n 2
< <OI£J3<X [f15, R> ( max [[g]]] R> Zzl k+ 1 (n —)k +1)2°

The proof now follows since Y7 _o(n+1)%(k+1)2(n—k+1)"2 <4 for all n > 0. O

The workhorse of this Appendix is a multivariable version of the Faa di Bruno formula, with
requires some additional notation. We denote by Ny the set of all integers strictly larger than —1,

and by Ng the set of all multi-indices a = (a1, ,q) with a; € Nyg. For a multi-index o, we
write |af = a; +...+ag, ol = (o) ... (ag!), 0% = 091 ... 094, and y* = (y")-...- (y3*), where
y € R? is a point. The following notation shall be needed below Letn>1, a, B¢ Nd be such that
|B] =n, and 1 < |a] < n. For 1 < s < n define the set'®

ps(B, @) = {(kl,...,ks;ﬁl,...,fs) e (Nd x .. N&:NE x .. N9):
0< ki, 0<b <...<4, k—a2|k|£— } (B.4)
7j=1
With this notation in hand, we recall [CS96, Theorem 2.1].

Proposition B.2 (Multivariate Faad di Bruno Formula). Let h: R? — R be C* in a neigh-
borhood of Y, := g(xo) and g: R? — R? be C® in a neighborhood of xo. Denote their composition
by f:=hog. Then, for every multiindex 3 with n := |8| > 1

n kj
@De) -8 3 @Heeny, 3 1] ).

1<]al<n

Here we adopt the convention that 0° := 1.

5Here £; < 5 if either [£1] < |€2|, or |€1] = |[€2| and there exists k € {1,...,d} such that €1, = £y for k' < k,
and elk < sz.

94



Proposition B.2 expands the higher order chain rule into a complicated expression. In applica-
tions, we need to have tools which allow us to contract such complicated expressions into simple
ones. The first re-summation lemma that we use in the paper is similar to [CVW15, Lemma 3.2]:

Lemma B.3. Fiz the dimension d = 1. With the notation of Proposition B.2, we have

LA
o ( ¢! (\e/2|)) 1/2
o % (o '|a\'821p52 H e =20 ()
Proof of Lemma B.3. Define the following functions

M) =R+ ), ) =
d

g1(x) =... =gq(x) =g(x1 + ... + 2q), gz)=1—-+1—2z,

f(@) =h(gi(@),....9a(x)) = flar +...+zq),  f(2) =h(dg(z)) = 11_ -

which are real-analytic functions in the neighborhood of & = 0. For any multi-index « € Ng we
have that (0% f)(0) = (/% f)(0) and similarly for the functions h, g1, ..., gq. Moreover, we note the
following identities!®

(&"F)(0) = d~"n! (B.52)
@90 = (-1 () >0 (B.5b)
(@ F)(0) = 2(—1)" (nlf 1) (n+1)1>0 (B.5¢)

which are valid for n > 1. Let 3 be any multi-index of length n. We apply Proposition B.2 to the
function f(z) defined above, and using (B.5a)—(B.5b) deduce that

( )w‘ 1(1/2)|£">\kj|
(1)@ NHO) = ()" Y, d '“"04'2 )3 H (e, 1) (1) 3]

1<|al<n s=1ps(B,ex) j=1

s (|1£/2|)’j">|]|
S oSy S [T 9

1<|a|<n s=1ps(B,c) j=1

which is the expression that we wish to estimate. Here we have used that >};|k;| = |a| and
2.jlk;1l€j| = |B] = n. On the other hand, we know that from (B.5c) that

12

n+1

(—1) (P £)(0) = (—1)"(@"F)(0) = ( )<n+1>!. (B.7)

Equating (B.6) and (B.7) concludes the proof of the lemma. O

Another re-summation lemma that we use is a multi-D version of [KP02, Lemma 1.4.1]:

5Recall that (lr/f)n! = (Y2)(Y2—1)...(Y2—n+1) forn>1, and (162) = —1.
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Lemma B.4. Let R > 0 and d = 1. With the notation of Proposition B.2, we have that

(l¢; Mkl
B! Z |a||a|'2 Z H k|' |£ G =dR(1+dR)" 'n

1<]al<n s=1ps(B,a) j= 1

Proof of Lemma B.4. Similarly to the proof of Lemma B.3, we define the functions

- — 1
h(y) h(yl +...+ yd)7 h,(Z) = 1 — dR(Z — 1)
1
gz(m) =§($1+...+$d), g(z): d(l—z)’
_ — - B 1—=z
f(@) = h(gi(@), ... ga(x)) = flar +... +za),  f2) = h(dg(2)) = T— =7 @R<1):’
so that for any 3 € N3 with |3| = n, we have
(@h) (14, ..., Ya) = ("R)(1) = (dR)"n!
(AP £)(0,...,0) = (&"F)(0) = dR(1 + dR)"n!.
Using the above identities and Proposition B.2, we obtain that
dR(1 + dR)" 'n! = (8P £)(0,...,0)
|| |f ")“{: 4
=p! Z dR ‘a|'ZZHk|£|\k\
I<|alsn 5= lps (B,x) j= 1
! lad| ot (1€51) ‘k |
:B'ZR‘Q‘EZHklewlﬂ
1<|a|<n s=1p, :Ga ] 1
which concludes the proof. ]

Remark B.5. Due to the presence of the shift factor (n + 1)% in (B.1), in order for Lemmas B.3
and B.4 to be useful, we shall need the following inequality. Assume that || = n, 1 < |a| <
1<s<n,and (ki,...,ks;21,...,€s) € ps(B, ), as defined in (B.4). Then, we have that

(n+1)%
B.
far 17 L g e ° .

In order to prove (B.8), we note that by the definition of the partition set ps(3, ) in (B.4), we have
[€s| = €] =1 for all 1 < j <s. As such, we obtain that n = |8 = >37_; |k;|[€;] < [£s] 25, k)| =
|€s]|c|. Thus, the lower bound €| = n/|a| emerges, and since |k4| > 1 we have

s

(n+1)2 1—[ _ (n+ 1)2 1
(Jaf +1)2 1 1 (lg; | + 1)2lk; [ < (Ja| + 1)2 (|€s] + 1)2Is
(n+1)2 1 o (n+1)?
S (laf+1)2 (g + D2 (o + 1) (n+ |af)?

In the last inequality we have used that || = 1. This proves (B.8).
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The following estimate is standard for m = o0, as it give the radius of analyticity of the
composition of two real-analytic functions. We recall it here for the sake of completeness, and note
trivially that it holds for finite m.

Proposition B.6 (Composition estimate). Let h € L*(C™(R?)), g € L®(C™[R%)?, and
assume that there exist positive constants Cp, Cy, Ry, Ry € (0,0) such that

[2ln,r, < Ch and  [g]nr, < Cqy
for all 0 < n < m and respectively 1 <n < m. Then, for every 0 < n < m, we have
[hoglnr <Ch where R = Ry(1+dCyRy,). (B.9)

Proof of Proposition B.6. Let f(x) = h(g(x)) € L*(C™(R%)). For n = 0 the statement (B.9) holds
trivially. Let n > 1 and fix B € Nd with |3]| = n. From Proposition B.2, the assumed bounds on h
and g, the re-summation formula in Lemma B.4, and the bound (B.8), we deduce that

‘ ‘ . ( R|e AL )\kj|
3 |a\ « 97" (14]+1)2
0P fllz= < B! ) CuRy Z > H B
1<|al<n s=1ps(B,e) j=1
B! )l (1¢1H'*
n « '
<O aE X @mlaly 3 Hk'ﬂ'\k\
1<|a|<n 5= 1ps (B,x) j= 1
|
— CpRMdC,Ry)(1 + dCy Ry ——— B.10
VB (AC R (1 + dCy ) sy (5.10)
Re-arranging the right side of the above, and recalling (B.1), finishes the proof. O
B.2 Application to the transport equation
For given smooth functions f,g: R x R? — R? we first consider the solution Y of
O+f-V)Y =g inRxRY
(0 )V =e ) (B.11)
Y(0,)=0 on R%.
Lemma B.7. Assume there exist Ct, Re, Cg, Rg > 0 with Rg = R¢ and N € N such that
| nax sup [£Ct )lnpe <Ct,  and  max sup [g(t, )]nr, < Cg, (B.12)
Then, the solution Y of the transport equation (B.11) satisfies
1
X, sup m[[ (t: )n.ry ) < 8dCqg, (B.13)
where
1
Ry (t) := Rg + 4|t|dCs R} < Rg(1 + 4|t|dCsRg)  and = . (B.14)
4dCt Rs
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Proof of Lemma B.7. For n = 1, upon differentiating (B.11) we obtain
(0 +f-V)VY =Vg+ V- VY, VY (0,)=0.
Integrating this expression and appealing to (B.12), we obtain

dCg R|t]e1T Tt
Ry

[V (t,)iry <ARIVY (t)llze < < 2dCq

so that (B.13) holds when n = 1.

We prove (B.13) inductively on n, and without loss of generality, we only prove it for ¢ € (0, T].
Let |a| = n. Applying 0% to both sides of (B.11) yields:

(0 +f-V)0*Y =%+ ). (g) 0“7 Pf.VoPY inRxRY,

B<a

(B.15)
%Y (0,-) =0 on R,

Integrating (B.15), using assumption (B.12) and the inductive assumption (B.13), we get

d t
o) Re B+e
sup 02 (1) < sup [0%lag, + Ceswp % 3 (§)5E [ 1% v s s

|ee|=n loe|=n loe|=n " 8|=n—1,8<a (=1

RYFn—E) (k+1)! [t
1642 2 Z Q) fig J k+1
16 CHCy = 0|Zl|lp Bl=FB<a (B) n—k+1)2 (k+2)2 ), sRy ()" ds

n! dCgRen
< tCgRy
878 (n +1)2 B

RyFn+1)2(k+1)
2 k+1
+16d°CeCy +122<>n—k+1) (k:+2)2JoSRY(S) @5

t
| suw 0¥ (s, Mz
0 |a]=n

In the second inequality above we have appealed to identity (B.2). At this point we note that due
to the definition of Ry (s) in (B.14), we have

t ) tRy(t)j+1
Ry (s)ds < —X\° B.16
JOS v(s)ds 4d(j + 1)Cy R2 (B.16)

It follows from the above two estimates, the definition (B.1), and the fact that by (B.14) we have
Ry (t) = Rg > Ry, we obtain

Y, 0], CgRr Y ()] R s
Y. O)]n Ry ) < Ce dCfanJ SRy (s)ds sup Y, S)H Ry (s)
t Ry (t ) 4tRY s€[0,t]
16d2cfcg Z PRy R (n 4 1 (k+1) Jts N
1 [[Y('as)]]nR (s) = (n+ 1)
< Cg + — = YRS 4 4C.d
516 oy s T kZ_O(n—kJrl) 2(k + 2)2
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Using the estimate Z;g(n + 1)2%(k +1)72(n — k + 1)72 < 3/2, and taking the supremum over
€ [0,T], we obtain that

_ 16
sup t IHY(-,t)]]n’RY(t) < TS(Cg + 6dCg) < 8dCy .

te(0,T]
The above estimate shows that (B.13) holds at level n, closing the inductive step. 0
Corollary B.8. Under the assumptions of Lemma B.7, for all [t| < T and 0 < n < N — 1, we
have that 1dC. R
g'lg
where
Ryy (t) = Rg(1 + 4[t|dCsRe)* = Ry (t)(1 + 4[t|dCe Ry) . (B.18)

Proof of Corollary B.8. Using the definition (B.1), the bound (B.13), and the definitions of Ry (t)
n (B.14), and Ryy (t) in (B.18), we obtain

n 2 n ! n+1
9 C0her < oo o P 0 v

_ dnRy ()" 16d*tnCg Rg _ 4dCgR,
Rvy( )" (1 + 4tdCfRf)" = CrRg '
In the last inequality we have used that na < (1 + a)™ for any a > 0. O

8tdCq <

Lemma B.9. If in addition to (B.12) we assume that

107 €] n re < CeQF'm!, and [0 glnre < CgQgm!, (B.19)

for all0 < n < N and 0 < m < M, for some constants Qg, Q¢ > 0, then the solution Y of the
transport equation (B.11) satisfies the space-time derivative bounds

2Cg (n+m)m!

sup [OmY (¢, )], < m B.20
te[_jl}ﬂ[[ (Yo S G @ (B.20)

for allm < M +1 and n+m < N, where Ry (t) and T are as defined in (B.14), and
Q = max{Qf, Qg, C¢R¢,16dCs Rg } . (B.21)

Proof of Lemma B.9. The bound (B.20) is already known to hold when m = 0 due to (B.13) and
the definition of 7" in (B.14). We next proceed inductively, with respect to m.

Applying 07*0* to (B.11), with |a| = n, we obtain that

arrley = oratg - Y Y Y (?) <g) oI ga=BE . vl Py .

j=0k=0|8|=k,B<c

Taking the supremum over |a| = n, using the definition (B.1) and the identity (B.2), for any R > 0

we deduce
(n 2o n—k
07 Y Tnr < [0 8lnr + ~—5r— + Z > < >< >_’2’fl) GRS §
j=0k=0
k+1
d((k_+;£{ﬂ5fyﬂk+LR
4w (M n 2
Ut s 55 (7) S P st

j=0k=0

99



By further appealing to (B.19), choosing R = Ry (t) > Rg > R¢, and using that Q > Qg, Qf, we
obtain

ﬂathrlY]]n,Ry _ i i d(n + 1) (k+1) CsRy [[5gY]]k+l,RY
(m + 1)1Qm+1 ~ ( m+1 S (n—k+12(k+22(m+1) Q jlQr

Since 0 < j < m, we may appeal to (B.20) inductively, and obtain

[0YJes1ry _ 2Cg(k + 1+ j)!
JlQJ h CeRe(k + 1)!

Therefore, from the above two inequalities and the bound Ry (t) < 2Rg, it follows that (B.20) holds
at level m + 1, if we are able to establish the bound

i i (n+ 1) 2dCRg 2Cg(k +j +1)! _ 2Cg(n+m + 1)!
120 k=0 n —k+ 1 (k + 2) (m + 1) Q CeRek! h CtRgen!

For this purpose, we first note that for 0 < £k < n and 0 < 5 < m, we have that UHi!H)! <

)(;L(Zi);)Q(erl) < 4. Thus, it is left to verify the condition

(n+m+1)!
n! :

Second, we observe that ijo Do (k1

CtRs N 16dCsRg <
Q Q
In turn, this condition holds due to (B.21). This concludes the inductive proof of (B.20). O

B.3 Application to ODEs

Suppose that f: RxR? — R? be sufficiently smooth, divergence-free, and let X be the corresponding
flow starting from x, that is, X (-, z) satisfies

X (t,x) = f(t, X(t,z)) in (—o0,0) x RY, (B.22)
X(0,2) ==
and denote by X ~!(¢,-) the inverse flow, which thus solves
X 14+f. VX 1=0 in(—o0, o) x R,
- (B.23)
0,z) =z
In particular,
Y(t,z) = X t,z) —x (B.24)

solves (B.11) with g = —f.

Proposition B.10. Suppose that f is divergence-free, satisfies the bound (B.12), and let X be the
solution of (B.22). Then, for every t € [=T,T], where T is as defined in (B.14), we have that

IVX(¢,-) = Lallre < |tldCeRe < 3. (B.25)
Moreover, for every 0 <n < N — 1, we have that

t [SUJPT][[VX(@ Xt ) re(1+aitace me)? < (d = 1)1(20d)7 (B.26)
El—1,
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Proof of Proposition B.10. The bound (B.25) follows by directly differentiating (B.22), which yields
00X; = by) = O4f? o X (X" =8 ) + 0 0 X, (3:X; = 6;)(0,2) = 0,

and applying Gronwall’s inequality.
In order to prove (B.26), we recall that

VXoX1=(wvx 1! (B.27)

as d x d matrices. Since f is divergence free, det(VX~!) = 1, and so VX o X! is nothing by
the transpose of the cofactor matrix associated to VX1 = I; + VY. In turn, every entry of this
cofactor matrix is a sum of (d — 1)! many homogenous monomials of degree d — 1 in the entries of
the matrix Iy + VY. Since when g = —f the Corollary B.8 yields [VY (-, 1), g, (1+4tdce re)? < 4d,
it follows that [VX (-, )], re(1+4tdcery)z < Dd for all 0 < m < N —1 and d > 1. Applying
Lemma B.1 to a sum of (d —1)! homogenous monomials of degree d — 1 in terms of functions which
obey this bound, it follows that

[VX(t, Xt ) e (1 atacerpz < (d— 1)14972(5d)1 < (d — 1)!(20d)* !
foral0<n< N —1. O

In the course of our proof, we shall also require the regularity of the flow VX itself, not just its
behavior under differentiation when we compose with X 1.

Proposition B.11. Suppose that f satisfies the bound (B.12), and let X be the solution of (B.22).
Then, for every t € [T, T], where T is as defined in (B.14), and every 1 < n < N — 1, we have

sup [VX(t, 7)) 8dre(1+8dCe Relt]) < 6 (B.28)
te[~T,T)

Proof of Proposition B.10. It turns out that (B.26) is not convenient for setting up an induction
scheme. Instead, we will inductively propagate

2\ 1
X (¢ < (=)t ——, with B =8dC¢Ry, B.29
te[S_ujlzT][[ (’x)]]n,Sde(l-i-BM) (-1) (n)de w1 g ( )

uniformly for ¢ € [-T,T1], for all 1 < n < N. Without loss of generality we prove (B.29) only for
0 <t <T. The bound claimed in (B.26) follows from (B.29) since 4(—1)"~(2) < Y holds for all
n = 1, and by the definition of T" we have 1 + BT < 3. Indeed,

d(n +1)3 1
[X @ 2)]nsare (4B < mr2)? 24d Ry - IndBy = od

For n = 1, we verify (B.29) by using (B.25). This amounts to checking

4(1 + |t|dCfRf) < 1
8dR¢(1 + Blt|) ~ 2dRg

(B.30)

which holds since B > dCtRs.
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Next, we fix n > 2 and consider a multi-index 3 with |3| = n. By Proposition B.2, we have

s %X
2:0°X; = PXp(0fj) o X + 8 D (07F;) OXZ > 11 (k1) gllkl

2<|al<n s=1ps(B,a) j= 1
=: aBXk(akfj) oX + Eog - (B.31)

In (B.31) we have singled out the term 0“f; when |a| = 1; this is because only this term comes
paired with a derivative of X which is exactly of order n; and indeed one directly verify that for
each summand in Fq, we have 1 < |£;| < n — 1. This expression is thus suitable for an inductive
estimate. From (B.12), (B.29), the definition of the partition set in (B.4), the identity provided by
Lemma B.3, and the bound given in (B.8), we deduce that

/s | VL
CeR} |Ial' (D17 () ek (8B + B
|Eoa| < B! 2<§<n (lo| + 1 Szlp %:a ]Hl (k1) (£;1)1k5]
(=1)"(8dR¢)"(1 + Bt)" “lal| a1 < Ie/l)‘ ’)‘ N
< Cr (n+1)2 ﬁ'lggq ]! 5211,(%] H (k1) (e, )kl
—1)"(8dRg)"(1 + Bt)"
<2Cf( ) ((n flgg + BY) (n+1)!<nf1>. (B.32)

With (B.32) in hand, we return to (B.31), to which we apply Gronwall’s inequality (recall that
0P X|;—o = 0 since |B| = 2) and deduce that

t
107X (0. i < exp(TIVE iz, ) | [Pl
_1 n n 1 t
< etiocy T AR 1)!< /2 ) f (1+ Bs)"ds
n + 1 0

(n+1)2
_ Ly (SD)M(8dRe)" s\ (1+ Bt)™*!
=€ QCEAAIZi;ijjgf(n ])!<n-%1><B(n_%1)

The bound (B.29) at level n now follows once we establish

1520k (-1)" <n1f1>H;T <D 1(1/2> R

Observing that (—1 Y2y (Y2) T nl/2 < 1, and appealing to the definition of T" in (B.14), which
n+1l/\n n+1

gives 1 + BT < 1 + B/(4dC¢Ry), it follows that the above inequality is implied by the bound

e16 B B
— (14 < .
2 4dCs Rs 4dCs Ry
The above estimate now is clearly true by the definition of B in (B.29). This concludes the proof
of the inductive step for (B.29), and thus of the proposition. O

C. Ergodic lemmas for periodic functions

C.1 Some basic ergodic lemmas in one dimension

Lemma C.1 (Basic L' ergodic lemma). Assume the following:
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e f:RY R is a Z% periodic function satisfying, for given constants Cy >0 and r e (0,1],
the quantitative analyticity condition

Cynl!

TTL

(Ve < ,  VneN. (C.1)

1

e g€ LIOC(Rd) is a N™1Z% periodic function for some given integer N € N with N1 < r.

Then there exists a constant C(d) < oo such that

Nr
1)~ <Ol < cerlayemn( - ). ©2)
Proof of Lemma C.1. We have that

Fg) =g =flg=D)) = {(F =) g=<D))

where, recall that {-) represents the average on [0,1]%. Using Parseval’s identity, and denoting by
fi and g, the k' Fourier series coefficients of f and g, respectively, we have

{f=P)g—D)=C > frdn

kezd

where C'is a dimensional constant (taking into account factors of (27)%), and Z¢ = Z%\{0}. More-
over, since g—{g) is a zero mean N ~174_periodic function, all its nontrivial Fourier series coefficients
gx have the property that k is a nonzero integer multiple of N. Using this information, and letting
7 > (0, we thus obtain that

[Foy =Dl <0 Y0 M file Mgy (C.3)

k=N¢,0e7d

A simple exercise shows that there exists a constant C' > 0 (which only depends on the dimension
d) such that for 7 = r/c, the condition (C.1) implies

IO | < CcCy
for all k € Z4. Moreover, we trivially have |gx| < C{|g|) uniformly in k. Thus, by (C.3)
0
Kfoy—Xpl<CCp 3, UM< 00 Y, el
k=Nt tezs le|=1
from which (C.2) follows since Nr > 1. O

Remark C.2 (L? ergodic estimate). We also use the following variant of Lemma C.1: there exists
a constant C(d) < oo such that if f : R? — R is Z% periodic and satisfies

1 Cn!
vy < =8, (C.4)
and g : R? - R is N7'Z¢ periodic with {|g|?) < o0 and N7 > 1, then we have the bound
2( 12 2 2 2/1 12 Nr
21> = 72 < CCHlaPresn( 25 ). (©5)
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Indeed, we may just apply Lemma C.1 with f — f2, g — g% and r + r/2, because the Leibniz rule
and assumption (C.1) on f give

(n+1)! 5 nl

n S n 7 2\ Y2 n—j |2\ Y2 -
4wy < 3 (vt sty < o T < o

Lemma C.3 (L' and L? ergodic lemma with flows). Assume the following:

e X:RY - R? is a Z%-periodic, volume-preserving diffeomorphism satisfying, for given con-
stants Cx > 0 and R > 0, the quantitative analyticity condition

e f:RY = R is a Z% periodic function satisfying, for given constants Cy >0 and r e (0,1],
the quantitative analyticity condition

(v sy < Cf:! ., VneN. (C.7)

e g€ LIOC(Rd) is a N™1Z% periodic function for some given integer N € N satisfying

Nr > R(r+dCx). (C.8)
Then, there exists C(d) < o0 such that
Nr
XhHy - < - . .

K1 (0 X7 =<0 (o)l = €05 o esp(~ gy (©9)

Moreover, if we replace (C.7) by the stronger assumption

C

V17 < fn , (C.10)

and the assumption of g € LlOC(Rd) by g € LIOC(Rd), then we have the estimate

U1l XY = A Qo) < 3oy esp( - oy ) (©D)

Proof of Lemma C.3. Let f = fo X, which is thus also Z%periodic and real-analytic. By the
assumption (C.1) for f, (C.6) for X, and the composition estimate in Proposition B.6, we have

C n ~ r
v fHLOC (RY) S~ where r= m . (C.12)

Now since X and X ! are volume preserving, we have that
(fgo XV =(foXgy={fg).
Thus, by (C.12) we may apply Lemma C.1 to the functions f and g, and deduce that

N7

(o) o] < cotabes(-37 ). (C13)

for C' = C(d), as soon as N7 > 1. The bound (C.9) now follows by appealing again to the volume
preserving nature of X, which gives <f> = (foX) = {f), and spelling out the 7 in (C.12), and
using that by assumption we have N7 > 1. The proof of (C.11) is the same as the one outlined in
Remark C.2, applied to g and f . O
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Lemma C.4 (H~! ergodic lemma). Assume that f and g satisfying the hypotheses of Remark C.2,
and additionally that {fg) = 0 and {g) = 0. Then, exists a constant C = C(d) < o0 such that

1901wy < 5 U + Clay exo (- ). N

Proof of Lemma C.4. Internally to this proof, for a T? periodic function ¢ we write P<z¢ to denote
the truncation of the Fourier series of ¢ at frequencies k € Z? such that |k| < L; accordingly, define
P.rp = ¢ — P<rp. We use similar notations for Py, and P~;. We will use two useful identities.
First, since g has zero mean and is N~'Z? periodic, then all its active frequencies are nonzero
Z%-multiples of N, and thus
g9="Pxng. (C.15)

Second, using the triangle inequality in the frequency domain combined with (C.15) we may write
Penpf 9 = Penpf Pong = Ponp (PgN/Qf P;Ng). Thus, combining (C.15) and the previous
identity, we may rewrite

fg= IP)21\’/2 (PgNhf PZNQ) + IED>N/2f g- (C.16)
In particular, {fg) = 0 implies that <IP’> N f g> = 0.

For brevity of notation, let A = (—A)"2, so that by (C.16) we have

1591l -1 (zay = 1A (£l 2wy
HA "Ponp (Panpf Pong)llperay + 1A (Ponpsf 9)llLe(ray

< N||P<N/2f 9llL2(ray + ClIPsnpf gllp2(ray (C.17)

where C' is a universal constant (related to the 27 which we are not writing anywhere). In the
last inequality above we have used two bounds: [|[A™'Psp||;2_,;2 < CL™!, which is a consequence
of Plancherel; and |[[A™'P=o||;2_,z2 < C, which holds since for Z? periodic functions we have
Pso =Pz,

Let us first inspect the first term on the right side of (C.17). Since V" commutes with P<j, and
since ||[P<y[|2—,z2 < 1, assumption (C.4) holds with f replaced by P<n, f, with the same constants
Cy and r (note, we can also replace f by Ponsf, and this fact will be used later). Thus, we may
apply the conclusion of Remark C.2 to the product of P<ny, f and g, resulting in

IP<xsaf gllzacey < (I1lz2aey + CCp exp(=37/0) ) lgllpacrey

where C' = C(d). Similarly, we may apply the conclusion of Remark C.2 to the product of P.n, f
and g and deduce

IPonpf gllp2erey < (HP>N/2fHL2(’]1‘d) +CCf eXP(—NT/C)) 191l L2 (4 -

Since N = r~! > 1, combining the above two displays with (C.17) concludes the proof of (C.14),
but only once we show that [[P>n, f||12(ray is exponential small in —N7/c.

For this purpose, we note that for any 7 > 0, we have [lexp(=TA)P-nyr2-,z2 < exp(—N7/c).
On the other hand, by expanding the power series of exp and appealing to (C.4), we obtain, for
every 0 <7 <r,

lexp(rA ey < 3, A" fllzanay < Cr 3 o 1_T/r

m>0 m>0
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Thus, letting 7 = r/c for a suitable C' = C(d) > 2, this paragraph concludes with
P> np2f |l r2(rey < CCpexp(=Nr/c),
thereby concluding the proof of the Lemma. O

Remark C.5 (H~! ergodic lemma with flows). Let f and g be as in Lemma C.4, and let X be a
periodic volume preserving analytic diffeomorphism as in Lemma C.3, with

HVX - IdHLOO('I['d) + HVX_l - IdHLOO(']I'd) < 1/2.

If {fgoX~1) ={g) =0, then in analogy to how (C.5) implies (C.11), from (C.14) we may deduce

_ C 1/2 1/2 1/2 NT‘
1y . ~ 2 2 2 s

The argument goes as follows. As in the proof of Lemma C.3, define f = f o X, which is thus
periodic and satisfies the quantitative analyticity estimates (C.12). By duality, using that X is
volume preserving and |VX| < 3/2, we have

1F g0 X7 g1 (pa) = sup ffgoXl‘p‘
@GCw(Td)yHV@HLQ <1
S| fgsooX\ < sup | fg&‘ < CIF glig1nay-
peC(T),[|Ve| 21 FeC™ (T, | V@] 2 <32

Moreover, note that ¢ f g) = < fgoX _1> = 0 by assumption, so we may directly apply Lemma C.4
to the pair f and g, and deduce that (C.18) holds.
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