Homework 2

- 1. Consider the homogeneous ideal $J := \langle x_0^2 x_1, x_1^3, x_1 x_2 \rangle$. For i = 0, 1, 2 let I_i be the dehomogenization of J with respect to x_i and J_i the homogenization of I_i . Compute each I_i and J_i . Show that $J \subsetneq J_0 \cap J_1 \cap J_2$. Show that $(J : \langle x_0, x_1, x_2 \rangle) \neq J$.
- 2. Compute the Hilbert polynomial of

$$J := \langle x_0 x_1, x_2^2 \rangle \subset \mathbb{C}[x_0, x_1, x_2]$$

3. Let $C \subset \mathbb{P}^2$ be a curve given by $f(x_0, x_1, x_2) = 0$. Let $C \to \mathbb{P}^2$ be a map given by

$$(x_0, x_1, x_2) \mapsto \left(\frac{\partial f}{\partial x_0}(x_0, x_1, x_2), \frac{\partial f}{\partial x_1}(x_0, x_1, x_2), \frac{\partial f}{\partial x_2}(x_0, x_1, x_2)\right).$$

Show that the image is a point iff C is a line. The image is called the *dual curve*.

- 4. Let $K = \mathbb{Q}(\sqrt[3]{a}, \sqrt[4]{b})$, with $a \neq m^3$, i.e., a is an integer which is not a cube, and $b \neq \pm n^2$. Determine the Galois group $\operatorname{Gal}(\tilde{K}/\mathbb{Q})$ of the Galois closure \tilde{K} of K.
- 5. Determine generators of \mathcal{O}_K , where $K = \mathbb{Q}(\sqrt[3]{d})$, with $d \in \mathbb{Z}$.