Homework 1

- 1. For each $n \in \mathbb{N}$ find an ideal $I_n \subset \mathbb{C}[x, y]$ which needs n generators.
- 2. Find a finite set of generators of $I := \langle x^{2n} y^{3n} : n \in \mathbb{N} \rangle \subset \mathbb{C}[x, y].$
- 3. Consider the lines $l_1 : x_2 = x_3 = 0$, $l_2 : x_1 = x_3 = 0$, $l_3 : x_1 = x_2 = 0$ in \mathbb{A}^2 . Find generators of the ideal

$$I := I(\mathfrak{l}_1 \cup \mathfrak{l}_2 \cup \mathfrak{l}_3) \subset k[x_1, x_2, x_3].$$

- 4. Let $I \subset \mathbb{C}[x_1, \ldots, x_n]$ be an ideal. Show that the ring $\mathbb{C}[x_1, \ldots, x_n]/I$ is noetherian.
- 5. Show that the power series ring $\mathbb{C}[[x_1, \ldots, x_n]]$ is noetherian.