Homework 6

1. Let p be a prime, $p=1 \bmod 4$. Show that

$$
[\sqrt{p}]+[\sqrt{2 p}]+\cdots+\left[\sqrt{\frac{(p-1)}{4} p} p\right]=\frac{p^{2}-1}{12}
$$

2. Let A_{n} (resp. G_{n}) be the arithmetic (resp. geometric) mean of

$$
\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}
$$

Show that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{A_{n}}=2 \text { and } \lim _{n \rightarrow \infty} \sqrt[n]{G_{n}}=\sqrt{e}
$$

3. Set $b_{j}:=\int_{\mathbb{Z}_{p}} B_{j}\left(t_{p}\right) d t_{p}$, where $d t_{p}$ is the standard Haar measure on \mathbb{Q}_{p} and B_{j} are the Bernoulli polynomials. Let

$$
F(T):=\sum_{j \geq 0} b_{j} T^{j} / j!
$$

Show that $F(T)=(T /(\exp (T)-1))^{2}$ and that $b_{j}=-\left(j B_{j-1}+(j-1) B_{j}\right)$.
4. Show that

$$
\sum_{(a, n)=1} e^{\frac{2 \pi i a}{n}}=\mu(n)
$$

5. Let

$$
f(s):=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

be absolutely convergent for $\Re(s)>\sigma>0$. Put

$$
g(x):=\sum_{n=1}^{\infty} a_{n} e^{-n x}
$$

Show that, for $\Re(s)>\sigma$, one has

$$
f(s) \Gamma(s)=\int_{0}^{\infty} g(x) x^{s-1} d x
$$

