Homework 5

1. Show that $\zeta(0)=-1 / 2$ and $\zeta^{\prime}(0)=-\frac{\ln (2 \pi)}{2}$.
2. Show that $2 B_{2 k}=1(\bmod 4)$, for $k>1$.
3. Check that $B_{2 k} \neq 0(\bmod 17)$ for $k=1, \ldots, 7$, and that there exists a $k \in[1, \ldots, 17]$ such that $B_{2 k}=0 \bmod 37$.
4. Assume that $\sum_{n \geq 1} \frac{a_{n}}{n^{s}}$ converges (not necessarily absolutely). Show that $\sum_{n \geq 1} \frac{a_{n}}{n^{\prime}}$ converges absolutely for $\Re\left(s^{\prime}\right)>\Re(s)+1$.
5. Let $\chi(n)=\left(\frac{-12}{n}\right)$. Find all real t such that $L(\chi, i t)=0$.
