

p -adic numbers / multiplicative functions

- p -adic interpolation: $a^x, \Gamma_p(x)$ (p -adic Gamma function), $E_p(x)$ (Artin-Hasse exponential)
- Dieudonné–Dwork theory: if $f \in 1 + x\mathbb{Q}_p[[x]]$ then

$$f \in \mathbb{Z}_p[[x]] \Leftrightarrow f(x)^p/f(x^p) \in 1 + p\mathbb{Z}_p[[x]].$$

- binomial polynomials: Let \mathcal{L} be the \mathbb{Z} -module of all functions $f \in \mathbb{Q}[x]$ such that

$$f : \mathbb{N} \rightarrow \mathbb{Z}.$$

Then \mathcal{L} is free, with basis $\binom{x}{k}$.

- Mahler's theory: Let $f : \mathbb{Z}_p \rightarrow \mathbb{Q}_p$ be a continuous function. Put

$$a_n(f) := \sum (-1)^{n-k} \binom{n}{k} f(k).$$

Then

$$\sum_{k=0}^{\infty} \binom{x}{k} a_k(f) \rightarrow f(x),$$

uniformly.

- Mahler's theory: translation, δ -operators, basis system of polynomials, generalized Mahler series
- Multiplicative functions:

- divisor function,
- Moebius function,
- Euler function,
- Dedekind ψ -function,
- von Mangoldt function,
- Ramanujan τ -function

and open problems concerning these functions.